Chapter 1

Introduction/Background

The Z80 microprocessor was very popular in the late 1970’s and early 80’s and was designed into a number of computer systems. (It is probably still being designed into new products, as a CPU core in highly integrated VLSI chips for consumer products. Othe CPUs from this era, such as the 6502 and 8051 are enjoying the same longevity.) Because there are a number of S-100 systems and other Z80-based CP/M systems being actively maintained and repaired by their owners, I decided to design a simple PIC-based circuit that could emulate a Z80 for displaying memory, writing to I/O ports, etc. as an aid to troubleshooting. Before I started the design, I became aware of a product developed in the early 80’s by Nicolet Paratronics called the Z80 NICE. It offered a lot more capabilities than I had planned to implement, with only a small increase in component cost. Using the capabilities of this device as a reference, I implemented the Z80 ICE to which this manual applies. I have added some new capabilites as well, which I hope will prove useful. Many thanks to Jeff Jonas for the generous loan of his NICE unit so I could become familiar with it.

Chapter 2

Setup

The Z80 ICE was designed to be used with either a terminal, or a terminal emulation program such as TeraTerm or HyperTerm running on a PC or Mac.

Serial settings are 8 data bits, no parity, and 1 stop bit. At baud rates of 2400 or below, no hardware handshaking should be needed. At higher baud rates, using the R command may require connecting the CTS signal and enabling hardware handshake flow control.

Baud rate is automatically detected by the ICE. After powering up the unit, hit Enter on the terminal to send a carriage return. The ICE uses this to detect the baud rate and set its rate to match. Supported rates are 300, 600, 1200, 2400, 4800, 9600, and 19,200 baud. After the ICE has set its baud rate, it will send the sign-on message. If you don’t see this after pressing Enter, press it again.

Chapter 3

Command Line Interpreter

Commands may be entered in either upper or lower case. All numeric values such as addresses or counts are entered and displayed in hex. When entering a 16-bit value (d16) 1-4 hex digits can be entered. 1 or 2 digits can be entered for an 8-bit value (d8). If a command accepts parameters it must be followed by a space. The parameters can be separated by either a comma or a space. Each command must be followed immediately by either a semicolon or a carriage return.

The command line can hold up to 31 characters. Once that limit is reached, you should hear a beep from the terminal. Any additional characters entered will replace the last character on the line.

The command(s) on the command line will be executed when a carriage return is typed.

There are two prompts:

OK====> indicates the last command was accepted and executed without error

ERR===> indicates that the last command was either not accepted, or caused

an error when it was executed.

In either case, the ICE is ready for a new command to be entered.

Some commands may take a long time to execute, and you may decide to abort the command.

The following commands may be either paused using Ctl-S, then resumed using Ctl-S or Ctl-Q,

or stopped, by using Ctl-C:

D
Display memory

L
List memory

V
Verify (compare) memory

T
Trace

U
Untrace

It is possibe to put more than one command on the same command line. In this case, use a semicolon instead of carriage return to signal the end of a command. Using the repeat line (RL) command, it is possible to repeat a sequence of commands in a loop. Delay can be inserted between commands with the Z command.

For example, the command O 80 A5;Z 10;RL<CR>
will write A5 to I/O address 80, then delay for 10 mSec, and repeat. To break out of the loop, press Ctl-C. The actual delay between iterations will be larger than 10 mSec if refresh is enabled.

The following commands always end command line processing, and will prevent looping if used in a command line repeat loop:

G, L, Q, R, S, T, U, W, X

Chapter 4

Overview of Operations

The ICE has two modes of operation – Go mode and Quit mode.

In Go mode, the ICE executes Z80 instructions at full speed, but not all of the commands are available. Basically, commands that don’t require participation by the Z80 can be executed in this mode, such as enabling or disabling interrupts or bus requests to the Z80. Breakpoints can be changed in Go mode, since they are not used in this mode.

In Quit mode, the Z80 is paused, and can be used to implement the full set of commands, such as displaying memory, disassembling memory into opcodes, computing checksums, etc. The Trace and Untrace commands can be used in Quit mode to execute code, but not at full speed.

Interrupts:

The ICE can recognize interrupts in Go mode, but not in Quit mode. In Go mode, the user can enable or disable maskable or non-maskable interrupts reaching the CPU. Separate control of each is available. In Quit mode, no interrupts can reach the CPU.

Bus Requests:

The ICE can recognize bus requests in Go mode, but not in Quit mode. In Go mode, the user can enable or disable bus requests reaching the CPU. In Quit mode, no bus requests can reach the CPU.

Memory Refresh:

When the ICE is in Quit mode, the Z80 executes bursts of NOP instructions to provide for refresh of any DRAM present in the target system. This takes up about 25% of the processor’s time, so if you know that your system doesn’t use DRAM, you may want to disable refresh to speed up instruction tracing. In Go mode, the Z80 is executing at full speed, so no extra refresh provision is needed.

Since refreshing DRAM’s requires a certain number of refresh cycles in a certain period of time, if the system clock is too slow, it will be impossible to meet this requirement. If the Z80’s clock is below 200 KHz, refresh will be disabled at start-up. To meet a typical DRAM refresh requirement, the clock would need to be more like 2 MHz anyway.

Reset:

The PIC MCU uses the same reset signal as the Z80, so it comes up in a known state whenever the Z80 gets reset:

The ICE comes up in Quit mode

Maskable and non-maskable interrupts are enabled, or will be at least, when a Go command is entered. Bus requests are enabled as well.

All breakpoint and printpoint enables are cleared

The “saved memory address” is set to 0xFFFF. (More on this later)

The Z80’s PC is reset to 0000

Since the PIC gets reset whenever the Z80 is reset, you need to send it a carriage return to allow the auto-baud detection to complete.

Chapter 5

Go Mode Commands

These commands can be entered in either mode, except Q:

BP
-
Set breakpoint (address)

BPC
-
Set breakpoint count

EBP
-
Enable breakpoint

DBP
-
Disable breakpoint

EPP
-
Enable printpoint

DPP
-
Disable printpoint

C
-
Clear all breakpoints and printpoints

EI
-
Enable maskable interrupts

DI
-
Disable maskable interrupts

EN
-
Enable non-maskable interrupts

DN
-
Disable non-maskable interrupts

EB
-
Enable bus requests (DMA)

DB
-
Disable bus requests

ER
-
Enable refresh

DR
-
Disable refresh

H
-
hexadecimal sum and difference

CF
-
Clock Frequency measurement (Z80 clock)

Q
-
Quit (pause Z80)

RL
-
Repeat (command) line

ST
-
Status display

Z
-
Sleep
BP:
(Set breakpoint address)

Sets any of the three breakpoint addresses, which are used by the trace and untrace commands. Breakpoints end the current trace or untrace command when reached (and enabled) during either of these commands. They are compared to the current PC after each instruction is executed.

Breakpoints only work in Quit mode. Current breakpoint status can be displayed with the ST command.

Format:

BP n,d16
n is 1,2 or 3. d16 is a 16-bit address

Example:

OK ====> ST

---> 0ABC 00 D

---> 0246 00 D

---> 0369 00 D
INBR

OK ====> BP 1 123

OK ====> BP 2 654

OK ====> BP 3 982

OK ====> ST

---> 0123 00 D

---> 0654 00 D

---> 0982 00 D
INBR

OK ====>

BPC:
(Set breakpoint pass count)

Sets pass count for one of the three breakpoint addresses, which are used by the trace and untrace commands. (Count=0 and count=1 will produce the same result) Setting the count to 3 will cause a trace to stop on the third time that breakpoint matches the current PC. (If it is enabled)

If the pass count does not reach zero while a trace or untrace command is executing, its value is preserved and can be examined with the ST command to see how many times that breakpoint was hit. So if the pass count was set to 10 at the start of the command and is 7 after the trace or untrace stops, that address was hit 3 times.

Format:

BPC n,d8
n is 1,2 or 3. d8 is an 8-bit count

Example:

OK ====> ST

---> 0123 00 D

---> 0654 00 D

---> 0982 00 D
INBR

OK ====> BPC 1,33

OK ====> BPC 2,66

OK ====> BPC 3,99

OK ====> ST

---> 0123 33 D

---> 0654 66 D

---> 0982 99 D
INBR

OK ====>

EBP:
(Enable breakpoint(s))

Enables one of the three breakpoints, which are used by the trace and untrace commands. If no parameter is entered, all three breakpoints will be enabled.

Format:

EBP [n
]
n is 1,2 or 3

DBP:
(Disable breakpoint(s))

Disables one of the three breakpoints, which are used by the trace and untrace commands. If no parameter is entered, all three breakpoints will be disabled.

Format:

DBP [n]
n is 1,2 or 3

Example:

OK ====> ST

---> 0123 33 D

---> 0654 66 D

---> 0982 99 D
INBR

OK ====> EBP

OK ====> ST

---> 0123 33 E

---> 0654 66 E

---> 0982 99 E
INBR

OK ====> DBP 3

OK ====> ST

---> 0123 33 E

---> 0654 66 E

---> 0982 99 D
INBR

OK ====>

EPP:
(Enable printpoint(s))

Enables one of the three printpoints, which are used by the trace and untrace commands. If no parameter is entered, all three printpoints will be enabled.

Printpoints cause the current Z80 register values to be displayed when reached (and enabled) during an untrace command. They are compared to the current PC after each instruction is executed.

Note that printpoints and breakpoints share the same three address values, so a particular address can be enabled as a breakpoint, a printpoint, or both. (Breakpoint pass count values don’t affect printpoint operation.)

Format:

EPP [n
]
n is 1,2 or 3

DPP:
(Disable printpoint(s))

Disables one of the three printpoints, which are used by the trace and untrace commands. If no parameter is entered, all three printpoints will be disabled.

Format:

DPP [n
]
n is 1,2 or 3

Example:

OK ====> EPP

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====> DPP 2

OK ====> DPP 3

OK ====> ST

---> 0123 33 E P

---> 0654 66 D

---> 0982 99 E
INBR

OK ====>

EI:
(Enable maskable interrupts)

Enables maskable interrupts to reach the Z80 when in Go mode. If this command is entered while the CPU is in Go mode, interrupts will be enabled immediately. An “I’ appears on the last line of the status display if maskable interrupts are currently enabled.

Format:

EI

DI:
(Disable maskable interrupts)

Prevents maskable interrupts from reaching the Z80 when in Go mode. If this command is entered while the CPU is in Go mode, interrupts will be disabled immediately.

Format:

EI

Example:

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====> DI

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
 NBR

OK ====> EI

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====>

EN:
(Enable non-maskable interrupts)

Enables non-maskable interrupts to reach the Z80 when in Go mode. If this command is entered while the CPU is in Go mode, non-maskable interrupts will be enabled immediately. An “N’ appears on the last line of the status display if non-maskable interrupts are currently enabled.

Format:

EN

DN:
(Disable non-maskable interrupts)

Prevents non-maskable interrupts from reaching the Z80 when in Go mode. If this command is entered while the CPU is in Go mode, non-maskable interrupts will be disabled immediately.

Format:

DN

Example:

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====> DN

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
I BR

OK ====> EN

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====>

EB:
(Enable bus requests)

Enables bus requests to reach the Z80 when in Go mode. If this command is entered while the CPU is in Go mode, bus requests will be enabled immediately. A “B’ appears on the last line of the status display if bus requests are currently enabled.

Format:

EB

DB:
(Disable bus requests)

Disables bus requests from reaching Z80 when in Go mode. If this command is entered while the CPU is in Go mode, bus requests will be disabled immediately.

Format:

DB

Example:

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====> DB

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
IN R

OK ====> EB

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====>
ER:
(Enable refresh)

Enables refresh bursts to occur when the Z80 is in Quit mode. This setting has no effect on Go mode operation. An “R’ appears on the last line of the status display if refresh is currently enabled.

Format:

ER

DR:
(Disable refresh)

Disables refresh bursts when the Z80 is in Quit mode.

Format:

DR

Example:

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====> DR

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INB

OK ====> ER

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====>
H:
(Hex “calculator”)

Hexadecimal sum and difference. If values entered are A and B, in that order,

command displays A+B, A-B. Results are limited to 16 bits and will wrap above 0xFFFF.

Format:

H d16,d16
Values entered as 1-4 hex digits.

Example:

OK ====> H 10A5,674C

77F1,A959

OK ====> H FFFE,0002

0000,FFFC

OK ====> H 2000,1000

3000,1000

OK ====>

CF:
(Clock frequency)

Measure the frequency of the Z80 clock. Results are displayed with 1 KHz resolution.

Minimum displayable clock rate is ~ 19 KHz.

Format:

CF

Example:

OK ====> CF

Z80 clock frequency is ~ 3.976 MHz

OK ====>

Q:
(Quit)

Quit (stop Z80 and enter Quit mode)

Format:

Q

Example:

OK ====> Q

.Z.V.. A=00 BC=1234 DE=F74C HL=5542 S=FFF0 P=824D LD A,L

S….C A’=4C B’=1A64 D’=F29C H’=0000 X=FFF0 Y=824D I=00

OK ====>

RL
(Repeat Line)

This command may be used to repeat a command or group of commands on a single command line. This could be used together with the sleep command to create a repetitive write to the same I/O location, for instance, so that an oscilloscope can be used to observe timing and signal behavior.

ST
(Status)

Display breakpoint/printpoint and hardware status. The first three lines of the status display are devoted to breakpoint/printpoint information. The first value is the address which will be compared to the PC. The second value is the breakpoint pass count. The third value is either a D or E which indicates whether that address and pass count are currently enabled as a breakpoint. The fourth value, if displayed, is a P if the address is currently enabled as a printpoint.

The fourth line shows the current state of the three hardware enables. If maskable interrupts are enabled, an I will be displayed. If non-maskable interrupts are enabled, an N will be displayed. If bus requests are enabled, a B will be displayed. Note that all three of these are always disabled in Quit mode, regardless of what is displayed. If Quit mode refresh bursts are being generated, an R will be displayed. Finally, if the Z80 is currently executing instructions at full speed (a Go command has been issued) the word RUNNING will be displayed.

Format:

ST

Example:

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR

OK ====> G

Execution begins at ====> 473F

OK ====> ST

---> 0123 33 E P

---> 0654 66 D P

---> 0982 99 E P
INBR RUNNING

OK ====>

Z
(Sleep)

Causes the command processor to insert a variable delay before processing any other commands.

Format:

Z d8

The parameter is used to specify the desired delay in mSecs. The actual delay will be somewhat longer if refresh is enabled.

Chapter 6

Quit Mode Commands

These commands can only be used in Quit mode:

CS
-
Generate and display 16-bit checksum of memory region

D
-
Display memory

F
-
Fill memory

G
-
Go

I
-
Input from I/O port

L
-
List (dissassemble) memory

M
-
Move memory block

MT
-
Memory test (destructive)

O
-
Output to I/O port

R
-
Read Intel Hex file into memory

S
-
Substitute into memory

SR
-
Soft reset

T
-
Trace

U
-
Untrace

V
-
Verify

W
-
Write Intel Hex file from memory

X
-
Examine/change registers

CS:
(Checksum memory region)

Adds memory contents from start address to end address and displays 16-bit sum.

Format:

CS start,end
Addresses entered as 1-4 hex digits.

Format:

CS

Example:

OK ====> CS 0000,03FF

Checksum: 0x73FD

OK ====>

D:
(Display memory)

Displays memory contents from start address to end. Start address is truncated so that display always starts at nnn0. Multiples of 16 bytes are displayed, until end address is reached (or passed). ASCII equivalents for the data are also displayed.

Format:

D [start],[end]

Addresses entered as 1-4 hex digits. Both parameters are optional. If no end

address is entered, 80H bytes are displayed. If no start address is entered,

display begins at the next address after the end of the last D or L command.

So entering just D will start displaying from the end of the previous D

command.

Example:

OK ====> D 0002,0019

0000 C3 F1 A5 26 72 89 CE 27-F3 06 82 01 CD 00 77 BC …………….

0010 3C 1F 5A 62 CE 98 CE 27-F3 06 82 01 CD 00 77 BC …………….

OK ====> D

0020 C3 F1 A5 26 72 89 CE 27-F3 06 82 01 CD 00 77 BC …………….

0030 3C 1F 5A 62 CE 98 CE 27-F3 06 82 01 CD 00 77 BC …………….

0040 C3 F1 A5 26 72 89 CE 27-F3 06 82 01 CD 00 77 BC …………….

0050 3C 1F 5A 62 CE 98 CE 27-F3 06 82 01 CD 00 77 BC …………….

0060 C3 F1 A5 26 72 89 CE 27-F3 06 82 01 CD 00 77 BC …………….

0070 3C 1F 5A 62 CE 98 CE 27-F3 06 82 01 CD 00 77 BC …………….
0080 C3 F1 A5 26 72 89 CE 27-F3 06 82 01 CD 00 77 BC …………….

0090 3C 1F 5A 62 CE 98 CE 27-F3 06 82 01 CD 00 77 BC …………….
F:
(Fill memory)

Fills memory from start address to end with the value given.

Format:

F start,end,value
Addresses entered as 1-4 hex digits. Value is 1-2 hex digits. Same value is

written to every location. No attempt is made to verify that the write

succeeded.

G:
(Go)

Go (Start Z80 CPU executing at full speed)

Format:

G [starting address]
Starting address entered as 1-4 hex digits. If no starting

address is entered, current PC value is used.

I:
(Input from I/O port)

Input 8-bit data from selected Z80 I/O port and display it

Format:

I address
8-bit I/O address entered as 1-2 hex digits.

L:
(List memory)

Lists (dissassembles) memory contents from start address to end as Z80 instructions.

Format:

L [start],[end]

Addresses entered as 1-4 hex digits. Both parameters are optional. If no end

address
is entered, 19 instructions will be displayed. If no start address is

entered, display begins at the next address after the end of the last D or L

command. So entering just L will start displaying from the end of the previous

L command.

Example:

OK ====> L 0
M:
(Move memory block)

Moves a block of memory data from one area of memory to another. The destination area must be writeable for the command to work, but no attempt is made to confirm that the write actually succeeded.

Format:

M start,end,dest

The block of data between start and end (inclusive) is copied to a new area of

memory, starting at dest.

MT:
(Memory test)

Performs a destructive test of memory by writing a rotating pattern of first a single 1 bit, then a single 0 bit and the rest ones to each memory location in the indicated range. After the pattern is written to the entire area, all locations are checked to see if the value read matches what was written. Any mismatches are displayed as address, value written, value read. The entire memory range is written and read 16 times, so any particular address may appear in the error list up to 16 times, if it fails for all data values.
Format:

MT start,end

O:
(Output to I/O port)

Write 8-bit data entered to selected Z80 I/O port

Format:

O port #,d8
8-bit I/O port number/address entered as 1-2 hex digits.

R:
(Read Intel Hex file into memory)

Used to load target system memory with test programs, etc, saved in Intel Hex format. An optional 16-bit offset may be entered. This offset will be added to the addresses in the Hex file before storing the file data in memory. This is useful if the code being loaded is relocatable. If no offset is entered, an
offset of 0 is used. (no offset)

Format:

R [d16]

S:
(Substitute into memory)

Used to load hex data values into system memory. No attempt is made to determine if write to memory was successful, so you can substitute into EPROM, but it won’t accomplish much.

Format:

S d16

To advance to next address without changing contents, hit CR. To back up to previous

address, hit a dash (-). To exit sustitute memory mode, hit a period (.).

SR:
(Soft reset)

Causes the ICE to reset all of the Z80’s registers to zeroes.

Format:

SR

T:
(Trace)

This command may be used to step through target system code one instruction at
a time. The Z80’s internal registers are displayed after each instruction. An optional parameter may be entered to specify a number of instructions to be executed. Entering T 10 will execute 10 instructions and then stop. If an enabled breakpoint is reached before 10 instructions have executed, the trace will stop immediately. If the number of instructions to execute is entered as 0, the trace instruction will continue until a breakpoint is hit, and will not count instructions. If no parameter is entered, only one instruction will be executed.

Format:

T [d16]

U:
(“Untrace”)

This command is similar to the trace command, but the registers are not displayed after every instruction, so execution is much faster. The registers may be displayed when specific PC values are hit using printpoints. Untracing will stop if the requested number of instructions has been executed, or if an enabled breakpoint has been reached. A parameter must be entered to specify a number of instructions to be executed. Entering U 10 will execute 10 instructions and then stop and display the registers. If an enabled breakpoint is reached before 10 instructions have executed, the untrace will stop immediately.
If the number of instructions to execute is entered as 0, the untrace instruction will continue until a breakpoint is hit, and will not stop based on instruction count. When the untrace
command stops, the total number of instructions executed during this one command is displayed. This could be used to count, for instance, how may Z80 instructions are executed between system reset and a prompt appearing.

Format:

U d16

V
(Verify/compare memory)

This command will verify/compare two regions of memory and display and differences found.

Differences will be displayed as: address in first region, value in first region, value in second region.

Format:

V start,end,dest

Parameters are d16. All bytes from start to end (inclusive) will be compared.

W
(Write memory out as Intel Hex file)

Used to save target system EPROM images, etc, in Intel Hex format. A 16-bit offset must be entered. This offset will be added to the addresses in the Hex file before storing the file data in memory. This may be useful if the code is located at an address other than 0, but you want the Intel Hex file addresses to start at 0 for loading into an EPROM programmer, for instance. Offset addition will wrap at 64K, so
0xF000 + 0x1000 = 0x0000. If you don’t want any offset, just enter 0.

Format:

W start,end,offset
Parameters are d16. All bytes from start to end (inclusive) will be written.

Start must be a lower address than end.

X

Chapter 22

How does it work?

The ICE consists of a 6 MHz Z80 CPU, a CPLD custom logic chip, an RS-232 level translator/charge pump chip, and a PIC microcontroller. The PIC chip communicates with the terminal through the RS-232 chip and controls the Z80. It is capable of reading Z80 register values, loading the Z80’s registers, single-stepping the Z80 through code, starting the Z80 running at full speed, and stopping the Z80. The CPLD chip contains logic to allow the PIC to control the Z80 and also to inhibit the bus request and interrupt signals from reaching the Z80. It can also prevent the Z80’s MREQ, IOREQ, RD, and WR signals from reaching the target system. In Quit mode, these four signals are forced to their inactive state in the target system, to insure that the target system is not using the data bus. This is necessary as the data bus is used for PIC-to-Z80 communication in this mode. In Go mode, the PIC chip starts up the Z80 and lets it run. In this mode, the ICE operates just like a normal Z80 chip. In Quit mode, the Z80 has been stopped, and can be used to implement the commands that give the ICE its power. All communication with the target system’s memory takes place through the Z80. To read data from a memory location, the PIC arranges for the Z80 to read from that location, and then hand the data to the PIC.

Chapter 23

Differences between this unit and Nicolet’s NICE

New commands not present in NICE:

CF - Measure clock frequency

CS - form 16-bit checksum of memory block

W - Write out memory as Intel Hex

DN, EN - separate hardware control of NMI input

Other differences:

L command displays hex data bytes along with instructions

L command resolves branch target addresses

U command displays branch trace instead of the last few PC values as “backtrace”

U and T commands check for # of instrs = 0, which disables instruction count limit.

U command displays total instructions executed since start of command.

Z80 Halt output is monitored and a message is displayed if CPU is halted.

Z80 operation at much lower frequencies is supported because we measure Z80 clk and scale our
timings accordingly. The NICE does not operate properly at 500 KHz and below.

Socketed chips are used to allow using different Z80 chips, or replaing PIC or MAX232 if damaged.

MAX232 chip is used to provide better RS-232 levels to PC or terminal. NICE uses 5V and Gnd.

R command (read Intel Hex) can operate at higher baud rates. The NICE unit manual implies that a
maximum of 300 baud can be supported without hardware handshaking. I haven’t seen any problems
loading files at 2400 baud, with no hardware handshake.

Operating current - NICE draws about 500 mA from the Z80 socket. Our unit draws about 70 mA
with a CMOS Z80 installed, and about 130 mA with an NMOS Z80 installed. The PALs and MCU
used in the NICE draw much more current than the CPLD and our PIC chip.

NICE supports assembly of Z80 instructions into RAM. A nice feature, but a lot of work, which I
couldn’t justify. It didn’t seem useful enough to warrant the effort.

