R S
DE— ———
—— ————
S——— ——————
———— ——
S——— —————
——————me E—————

9 . 280 Editor /Assembler/Debugger
i

SHARP
‘ mz700

Copyright (C) Apollo Software 1983
{SHARF MZI-700 version)

Copyright (C) 1979 & 1980
by Avalon Software of England

T e

Unit 12, Horseshoe Park

. .
Horseshoe Road, Pangbourne, Berkshire, RG8 7JW L t d
Tel: (07357) 4335 Telex: 849462 TELFAC.KUM lm] e

¥EEK AVALON ZEM for the SHARF MZ-700 XXX Page 1

INTRODUCT TI0N

Thank vyou for buying this copy of MZI-700 ZEN. Zen consists
of an editor, a I80 assembler, and an symbolic object
debugger. The editor lets vyou create and modify a source

file consisting of statements in the Z80 assembly language.
The assembler translates these into object code in memory,
and the debugger allows you to execute them in a controlled
manner. Since the debugger can access the symbol table, it
is possible to debug code easily, refering to symbols
defined at assembly time.

The advantages of assembly programming over higher level
programming are flexibility, speed, and compactness.

‘The disadvantage is that you have to be smarter!

STARTING UF

1) Type LOAD followed by the CR key (hereafter <CR>).
2) Insert Zen cassette, rewind if necessary.

3) Press the cassette recorder PLAY key.

4) Wait.

After a few seconds Zen will be found. After about 40
seconds, Zen will auto-run, and the prompt ZEN> will appear.

CcCOMMAND LEVEL.

Whenever the prompt ZEN> is displayed, you are at command
level. You can select any one of the following commands,
which are described in detail later.

Source Edit Tape, etc

Z ... ZAP numeric R ... READ character

E ... ENTER V ... VERIFY character
N ... NEW W ... WRITE character
Source Position Ob ject/Debug

... DOWN numeric
«e. UP numeric
.es TARGET numeric

D ... COPY
u

T

L ... LOCATE string

F

E

FILL

GOTO numeric
«e. IN numeric

OuUT numeric

««« MODIFY numeric
... QUERY numeric
... XAMINE register

«ee FRINT numeric
... BOTTOM

xSCXo~mMNO

Source Global

A ... ASSEMBLE

H ... HOWRIG ? «a. EVALUATE numeric
[

=y

3

.ew KILL
... SYMEOLTABLE character

Just typing <CR> will clear the screen.

COMMAND SYNTAX

To <select a command type in the command letter, followed by
a parameter if necessary, then press <CR:. The type of
parameter required by a given command is shown in lower case
in the above command table.

X% AVALON ZEN for the SHARF MZ-700 %xxX Fage 2

The types are:

character ... a single character.

string a sequence of characters.

numeric & number, symbol, or expression, see below.
register see XAMINE command.

All the commands which take a parameter will adopt a default
value if you fail to supply one. All the commands are
explained in detail later on.

1f Zen doesn’t understand anything you've typed in, it will
display the error message HUH?, and return to command level.

USER INFPFUT

Whenever you are required to input from the keyboard,
whether at command level or anywhere else, the following
rules apply:

(1) Zen takes no action until you press <CR>.

2) DEL can be used to backspace.

(3) You cannot backspace past the start of your input.
(4) You cannot type past the end of the video line.
(S) GRPH and ALPHA may be used to change case.

(&) All other characters are data characters.

NUMERICS

A numeric is a decimal, hexadecimal, or octal number; a
symbol, or an expression containing numerics and arithmetic
operators.

Decimal is the default base for numbers, Hexadecimal numbers
are postfixed "H', and octal are postfixed "07. All rumbers
must begin with a digit O to 9, so hexadecimal numbers may
require & leading zero in some cases.

Symbols may be used in any place where a literal number may
be used. They are only available after assembly.

Characters may also be used. Any single character enclosed
in single or double guotes may be used wherever a number may
be.

All of the above types may be part of an expression. The
infix maths operators are:

+ Addition / Division
— Subtraction & lLogical And
¥ Multiplication . Logical Or

An expression may be used in any place a simple number may
be used. Expressions are evaluated strictly left to right
with no precedence ordering. Arithmetic is 16 bit unsigned
integer, and overflow is ignored. Elements in an expression
need not be delimited, as the maths operators are implied
separators.

XXF AVALON ZEN for the SHARF MZ-~700 XXX Fage &

SOURCE EDIT COMMANDS

Note: Most of the commands described below require a numeric
parameter following the command letter, e.g. Z74. This is
refered to as "mn" in the text to describe the general
operation of the command.

7 - IAP
Deletes <(or "Zaps") nn lines from the source file, starting
with the current line.

274<CR:> would delete 74 lines,

Z<CR:* would just delete ! line.
The command cancels if it hits the end of file, and the
message EOF appears. Otherwise the new line is displayed.

E — ENTER

Enters text into the source file. Zen will display a line
npumber as a prompt. Enter a line of text, and type “CR». Zen
will then display the next line number, and invite you to
enter another line. To exit from this line, simply type a
full stop "." at the beginning of a line. Text is entered at
the current line, as indicated by the line number. The old
current line, and all following lines, are moved downwardsi.
Thus ENTER inserts lines before the current line.

N — NEW

This command lets you modify an existing line. The current
line number, and line of text is displayed. The cursor is
positioned at the end of the line. Change the line (by
deleting characters and/or typing extra characters) and then
type <CR>, and the new line will replace the old one in the
file. If you are at the end of file, EOF will be displayed.

SOURCE POSITION COMMANDS

D — DOWN

Moves you down the file by the specified number of lines,
setting a new current line.

D13<CR> moves down 13 lines.

D<CR>» moves down one line.
The command cancels at EQF, as in ZAF.

u - upP
Moves the pointer up nn lines. Cancels at S0F (Start of
File). (see DOWN).

T — TARGET
Moves you to a specified line, and makes that iLhe current
line. If no line specified, moves to line !, the Top or S0F.
Cancels at EOF as in ZaAF.

TS2<CR:> moves to line 52

i<CR: moves to top, line 1

B - BOTTOM
moves to Bottom wr EQF. Displays EOF message. Typing R R

UR0COR: PORICR: will display the last few lines of the File.

X% AVALON ZEN for the SHARP MZ-700 XXX Page 4

L - LOCATE

Will locate a string of text in the text file.

LBIT 7, (HL)<CR>
. moves to the first line containing the string RIT 7, (HL) and
makes it current and displays it. It cancels at EOF as in
ZAP. The file is searched from the line AFTER the current
line, downwards. you’ll see why when you' ve tried it a few
times. There are no restrictions on the string content.

P - PRINT
Displays nn lines of the file on the VDU. beginning with the
current line. The 1last line displayed is made the new
current line, thus another PRINT would list the line again.
F22<CR> would display (print) 22 lines
P<CR» would display the current line
Cancels at EOF as in ZAP.

SOURCE GL.OBAL. COMMANDS

H — HOMBISB
Displays the start of file (SOF), end of file (EOF) and top
of memory addresses in hex.

K - KILL

Kills the file. Erases it. Deletes it. (like NEW in BASIC).
It is possible to recover from an accidentally Kliied file -
see later.

A — ASSEMBLE

Assembles the source file from SOF to the END pseudo op.
After typing A<CCR> you will be prompted for a list option,
these are:

VSCR> List to Video
E<CR> List to External device (e.g. Printer)
<CR> Don"t list. This is the fastest.

When selecting E, you are prompted for a name. This will
appear at the top of each page of the listing. It is wise to
give the program name, and possibly a version number, so you
can tell your listings apart at a later stage.

Use the null option to inhibit listing until all syntax
errors are eliminated.

The 1listing process is independant of the object code
generation process, which is controlled by the LOAD pseudo
op.

. hd

X AVALON ZEN for the SHARF MZ-70

xRN Fage o

S — SYMBOL TABLE

Alphabetically sorts and lists the symbol table built up
during the previous assembly. The order is affected only by
the Ffirst letter of each name, but the process is fast. You
will be prompted for a Llist option: VICR> ar E<CR>».
(defaults to E). If E is specified the name defined in the
last ASSEMELE to E is used.

It is possible to generate only part of the symbol table
listing, by adding a selector to the command letters:

SKACR*
would only generate symbols beginning with the letter K.

TAFPE STORAGE

Zen can READ, WRITE or VERIFY source or object files. Source
files are saved without line numbers, as pure text. Lines
are ended by <CR>, code 13. Object files are saved in the
standard SHARF format, as type 1 files. Note that Zen
maintains full compatability with Zen on the other sharp
micros: MZ-80K, MZ-BOA and MZ-80E(at "slow" tape rate).

All sharp files have a type number. i.e.:

Object (Machine Code)...
MZ-80 BASIC Frogram
MZ-80 BASIC Data
Zen SOWCEe seoraneanassnen
MZ-700 S-BASIC Data
MZ-700 S-RASIC Program .

[N SR S

Note that Type 4 files are used by both Zen and S-BASIC.
They are incompatable, i.e. you cannot load Zen Source into
EASIC, or HRasic Data into Zen.

To select object files, add an 0" ta the command. Not
adding any letter will select Source files.

The commands are:

R > READ source file RO« . READ obiect file

R> VERIFY source file VOSCR> VERIFY object file
R> WRITE source file WO<CR> WRITE object fiie

W

¢

Zen checks the file type. as well as the name, so there is
no chance of picking up the wrong file, even if their names
are the same.

You can abort from these commands by pressing SHIFT. BREAR.
Zern will return to command level.

21 AVALON ZEN for the SHARP MZ-700 kxxk Fage &

READ

Upon entry you will be prompted for a file name. If you
supply one, then that +file will be searched for. If you
default, then Zen loads the first file of the correct type
that it finds.

Source files are always loaded at EOF, allowing you to merge
files together. To load without merging, Kill the old file
before reading. After the file has loaded, the new file size
is displayed.

Object files are locaded at the load address on the cassette.
Object files are never auto-executed. Instead the execute
address is placed in the User Program Counter, for use with
the GOTO command.

VERIFY

Similar to read, only the file is not loaded. It is checked
against memory to ensure that the tape is correct. The
VERIFY command must be used immediately after the WRITE
command, or not at all. Using the verify command at other
times will cause an error.

WRITE
If writing the source file, you’ll just be prompted for a
name. Then the source file is saved.

To save an object file, more information is required. START,
STOP, EXEC, and LOAD addresses will be prompted for. Memory
is written from START to SBSTOP inclusive. STOP must be
greater than START or you’ll get an error message EXEC
defines the execution address of the file. The MZ--700
monitor will auto execute any file with an execute address
greater than 1iFFH. The LOAD address defines where the file
should load into memory. For example, you might want to
write from B000H to 83FFH and have to file load back at
1200H

OBJECT COMMANDS

C - COPY

Copies a block of memory from START address to STOP address
inclusive, to a DESTINATION address. You are prompted for
all three parameters.

F - FILL
Fills a block of memory, from START to STOP inclusive with a
DATA constant. You are prompted for all three.

Xk AVALON ZEN for the SHARF MI-700 xxx Fage 7

6 - GOTO
Executes a user program from & specified address, for
debugging and testing.

G4604HICR> jumps to that address.

BSTART<CR> jumps to the address label START.

G<CR» jumps to the address in the User Frogram Counter.
You will be prompted for a BREAKPOINT address. Inputting an
address sets a breakpoint there, null (just <CR») sets no
breakpoint. A breakpoint is an address at which the
enecution of the user program will stop, and control
returned to Zen, saving all the registers. The breakpoint
cannot be set in ROM, and must be the first byte of an
instruction. The GOTO command loads the Z80 registers from
the User registers {(as shown by XAMINE) , and finally sets
the FC via a JP instruction. Zen uses a RST 38H aopcode as a
breakpoint. When the Z80 hits this instruction, it pushes
the PC onto the stack, and jumps to 38H. The monitor in ROM
then jumps to 1038H, where there is a vector to the TRAF
handler. All registers are then saved. The breakpoint
location is restored to its old value, and the code at 1038H
is restored. To continue from & breakpoint, use the G<CRX
command. You can set another breakpoint then.

Note: the user is recommended not to use the RST 38H while
using Zen Breakpoints.

Note: If you label the start of ymur program 0: you can run
it, for testing, by a simple GO<CR>

I - IN
Reads one of the 780 I1/0 ports.

I33<CR» would read port 33,
The data is read and displayed in Hex and 81nary. Note that
the SHARF MZI-700 uses various I1/0 ports, and peripheral
devices can be connected -to others. Due to the fact that
some ports will swap memory banks in and out, special care
is required to prevent disaster when using these.

0 - out
Writes to one of the Z80 1/0 ports.
QOFEH<CR> would output to port 2354
You are prompted for a DATA parameter. Also see IN.

M —~ MODIFY
Lets you examine and modify memory contents.

MB213HCCR> would commence at that address.
The address and the byte at that address are displaved, both
in Hex. If you supply a parameter, then the locatiaon is
modified, otherwise (null input) Zen steps to the next
address. To quit modify, then type a full stop, .7 as a
parameter. If vyou default on the initial address, then the
last used address displayed by MODIFY or GUERY (see below)
is taken.

2 - QUERY
Dizplays a block of memary in Hex and Ascii. Sixty four
bytes are displayed, in eight rows of eight bytes.

Unprintable ascii characters are printed as dots.

¥x%x AVALON ZEN for the SHARP MZ-700 XXX Fage 8

X — XAMINE
Displays the wuser registers in Hex. The main registers are
on the first line, and the alternate on the second line. The
Flags, SZHVNC, are displayed to the right of the registers
when set.

X<{CR
If a register name is appended to the command letter,
e.g. XHL<CR>
then the register is dislayed and can be modified. Any
individual Z2Zbyte register may be examine/modified by this -
method. Also A, B, C, D, E, H, and L may in one byte form.
In addition, the 2byte Zen registers SOF, EOF, and ML
(Memory limit) may be modified by this command.

EVAaALUATE II

? — EVALUATE
evaluates a number or expression, and displays the result on
the vdu in decimal and bhesx,. It is ideal for conversion
between the two bases, or discovering the value of a symbol,
character, the result of a calculation etc.
e.g. 2?13

?1200H

?0DH

?START

2 ngw

EAVAR 3

P13I2+646H/4. "D"

PEND-START+1
Type these in, and Zen will print the answer in Hex and
Decimal. Zen will give an UNDEFINED error if labels (e.g.
START or END) are not defined.

*¥%X%k AVALON ZEN for the SHARF MZ-700 XXX Fage %

ASSEMBLER SYNTAX

Zen expects source statements to be constructed according to
the syntax defined in the ZILOG 1Z80 Assembly Language
Frogramming Manual. A summary of the instructions is given
later. The user is advised to obtain a book on Z80
programming if he/she is not already familiar with it.

Each line in the source file is divided conceptually into at
most 4 fields, e.g.:

FICTURE: LD HL, (CURSOR);Pick up cursor

Label PICTURE:
Operator LD

Operand(s) HL, (CURSOR)
Comment sPick up cursor

The fields may be typed in in free format, i.e. they do not
need to be positioned at any special part of the line. The
correct separators (spaces, commas, colons, semicolons) must
be used. Any or all fields may be omitted, although an
operand without an operator is meaningless.

COMMENTS
Comments are ignored by the assembler. They are preceded by
a semicalon and terminated by the end of line.

OPERATORS
There are 74 generic operators (LD, CALL, JF, etc). In
addition Zen provides the pseudo ops defined later.

OPERANDS
The number of operands in a statement depends on the
operator. e.g.:

NOF ... No operand

CF One operand

EIT ... Two operands

JR One or two operands
RET ... None or one operand

Oper ands may be:

Register names (A, H, HL, 1Y, etc)
Condition codes (Z, NZ, C, PO, V, NV, etc)
Numerics

Numerics
See section on numerics before. Note that $ may be used to
access the program counter.

Condition codes

In addition to the Zilog standard set, two extras have been
added. The 80 has a parity/Overflow flag which is set for
parity after logical operations, and for overflow after
arithmetic operations. Zilog standard FO and PE are ideal
for odd and even parity tests, but very misleading when used
to test +for overflow. The extras V and NY are provided fuor
this purpose. V is identical to FE and NV to FO.

¥xx AVALON ZEN for the SHARF MZ-700 ¥xx Page 10

LABELS

A label is a way of marking a statement. Each time you use a
JrFP, CALL, etcs you will need a way of specifying the
destination as an operand. Zen allows you to do this using
meaningful names. The label is a symbol.

SYMBOL. S

A symbol is a name associated with a value. The name can be
used instead of stating the value. A symbol is declared to
the assembler in one of two ways:

(1) By wusing the EQU pseudo op (similar to LET in Basic).
This allows you to assign your own value to a symbol.
e.g. CR:EQU 13

(2) By placing it at tﬁe start of a statement. The assembler
will assign the value of the program counter to the symbol.
The symbol is being used as a label.

In both cases the symbol must be postfixed with a colon,
":", when declared. A symbol must begin with a letter, but
can contain letters and digits after that. Letters must be
upper case. Strictly any non special character may be used,
providing its ascii code is less than 128. This includes 7,
'ty =, €tc, but not $ and . which are the program counter and
OR arithmetic operator. Especially note that Sharp lower
case are not allowed.

Symbols may be of any length, but long symbols will be
listed in truncated form by the formatting code (see
LISTING) . Single character symbols, and symbols not
beginning with a capital letter, are not listed in the
symbol table.

Reserved words, Condition codes and register names, may not
be used for symbols.

PSEUDO OFS

These are additional operators which are not part of the Z80
instruction set, but are understood by the assembler. They
are used in exactly the same way as normal operators.

END ... End assembly No operand

DS Define storage .. One operand

DW Define word One aperand

DB Define byte(s) .. variable operands
EQU ... Equate One operand

ORG ... Origin ..s2.c.... One operand

LOAD .. Load memory One operand

END
This operator must be used to terminate assembly. Failure to

do so will result in an error message and an incomplete
assembly.

Skips a number of object locations. Commonly used to reserve
space for a stack or text buffer where memory contents don’t
need to be initialized.

¥k AVALON ZEN for the SHARF MZ-700 Xk% Fage 11

Du

Generates a word (2 bytes) in the object file in Zilog 280
format, i.e. low byvte firet, high byte cond. This faormat
ig used by all Z80 sixteen bit instructions.

bB
Generates bvte(s) in the object file. Takes as many operands
as desired separated by commas. Each operand may be an

expression but clearly must have a value between O and 285,
It is possible to "chop off" the high byte by ANDing with
295 (%285 . In addition to the usual data types., a literal
character string may be used:

MESSAGE:DE "I'm a SHARF MZ-700"

Strings may be of any length, but cannct form part of an
expression. Strings may be enclosed in single of double
quates. Do not confuse & string with a single character,
which can form part of an expression.

MESSAG2:DB "I'm a SHARF MZ-70","0".80H

The above example shows a string, with the last character
ORed with 80H to set bit 7.

EQU

Assigns a value to a symbol. The operand may be any numeric
including a symbol or an expression, but the value must be
known to the assembler. Forward referencing is not allowed,
and will result in an UNDEFINED message.

ORG

Defines the origin, or assembly address, of the object code.
This operand may be used as ofterr as required to pravide
different sections of code at different addresses. The same
restrictions apply to the operand as in EQUate.

LOAD

Lets vyou load the object code =mtraight into wmemory as iU is
produced.

e.g. LOAD 800Q0H

You may load anywhere in memory, independant ot the actual
origin. If the LOAD is not specified then no memory (s
altered in any way. Note that ancther ORG turns the loading
process oaff, and it needs to be switched on specifically
with another LOAD.

XXX AVALON ZEN for the SHARF MI-700 XXX Fage 13

ERROR HANDL . ING
1§ the assembler encounters an error, then the following
will happen:

{1) Assembly terminates.

(2) An error message is displaved.

{(3) The incorrect line becomes the editor current line.
{4) The line is displayed.

(5) Zen returns to command level.

You may correct the error, and assemble again. The N command
is very useful for this if the error is a simple one just in
the one line. It is impossible to make an error which will
damage Zen or the Source file. Assembly runs at around four
thousand lines a minute, %0 errors are found very quickly.

The error messages are:
UNDEFINED ... You've used an undeclared symbol.

SYMEOL No symbol in EQU, or symbol of zero length.
RESERVED You have used a reserved name for a symbol.

FULL oun.. ... The symbol table is full, see later.
DOUBLE SYMEROL A symbol has been declared twice.

EOF ...cnnaan There is no END. Zen has reached EOF.
ORG! veuueewe No origin supplied.

HUH? Zen is completely baffled.

OFPERAND Something is wrong with an operand,
e.9g. LD A,256
EIT 9,Fk
LD «(DEY,C
INC AF
Also included are relative ijumps % indexing out of range,
JR $+999
LD E,{IX-187)

The assembler will catch all incorrect statements, so don™t
be afraid to experiment.

ASSEMBL Y LISTING

Zen supports two list devices, a 40 character per line icpl)
video display, and an 80 cpl external device, usually a
printer. If it is desired to change to, say, an 80 cpl video
device, or a 132 cpl external device, then this can be done
simply by changing the listing field widths table (Zen
listing...COMWIDTH). The external device is set up to be the
printer/plotter, or external sharp printer. but this can be
changed easily (Zen listing...EXTERN) Zen generates listings
a page at a time, video is set to 20 lines per page, and
extern to &0, This can be changed easily (Zen
listing...FAGE).

The external device has only to recognise two characters,
Ascii formfeed (12, oCH, which is given at the start of
each page, and Ascii Carviage Return (13, ODHi, which 1w
giveri after each line. Spare byles air left before the
evternal device driver (Zen lisling...2XTERN) 1o zilcw codes
toy be modified to swit the prister. In additios the title
can be printed double width o f the printer can support the
apbion. The correcl code shoulid be ted al FBUFF, and
Lime cods For normal oat e end of the -

.

Xk AVALDN ZENM for the SHARF MI-T700 ¥¥XX Page 13

PAUSE CONTROL

When assembly ie in progress, you may use the SHIFT key to
pause. Fressing either shift key will hold the listing at
the END OF FAGE, allowing you to change paper on a sheet fed
printer, etc. To restart, press any key except “07, which
causes you to Quit assembly, and return to command level.

FORMATTING
The symbol, operand, and comment fields of a statement may
be of indefinate length. To produce a neat and readable
listing, Zen will truncate these fields if necessary, or pad
them with spaces. The object code field is never truncated
in any way.

The sizes of fields used are set in COMWIDTH and SYMWIDTH.
The first byte is Extern, second is Video. The object code
and line numbers take 20 characters at the start of each
line. COMWIDTH contains sizes of the remaining line.
SYMWIDTH contains symbol field width., This is used both for
assembly and symbol table listing. The next line is the
operators, 5 is always sufficient. The next is the operands.
The last line is the comments. The total of these four, plus
20 should equal the line length.

SYMBOL TABLE OUTPUT .

Similar to the assembly listing. On video I symbols are
listed on each line. On Extern this is changed to fouwr, and
the field is extended.

ODDS AND ENDS

SYMBOL TABLE

The symbol table is where symbols are stored with their
16bit value. The table is positioned directly above Zen and
underneath the Source file. Sooner or later, you'll want to
make it larger. As the start of file pointer is also used as
the symbol table upper limit, the Source file needs to be
shifted up.

(1) Save the source file, if necessary.

2) Kill the file.

{3) Use XAMINE to change SOF.

(4) Kill the file again. This sets EOF to SOF.

(S) Assemble, to close the symbol table.

(6) Save Zen. (see below)

SAVING ZEN

(1) Kill the file.

(2) Assemble to close the symbol table.

(%) Write Zen to tape (etc) using WO.

You must save up to the very last byte shown in the listing.
Start, Load, and Execute addresses are all 1200H.

Jo verify - use VO.

¥xx AVALON ZEN for the SHARP MZ-700 x¥x Page 14

MEMORY PROTECTION

The source file cannot grow indefinately. Sooner or later
you will run out of memory. There are three commands which
extend the source file, ENTER, NEW, and READ. All these
commands look ahead and see what will happen if they are
executed. If they will exceed the top of memory you will get
a message of the form:

wxx MEMORY FULL
when xxxx is the address in Hex where the file would grow.

Normally the top of user RAM is taken to be the memory
limit, however, you can add a limit of your own. Use the
XAMINE caommand to change Zen’s ML (memory limit) register.
If this is zero, then Zen will take the top of user RAM as a
limit. If you set it to a non zero address, then Zen will
let the source file grow up to, and including, that address,
but no further.

STACK & INTERUPTS

Zen uses the standard stack at 10FOH. This is the one used
by the monitor. Zen will run quite happily under interupts,
providing enough stack space is available. When executing
user programs, Zen sets up a user stack for the program,
which is small. The user program should set its own stack as
soon as posible.

SOF, EOF, ML

These three "Zen registers” are to be found, under the names-
SOFP, EOFP, and LIMIT, in the Zen listing. They can be
modified by MODIFY if desired. It is easier, and has been
encouraged in this manual, to use XAMINE to alter them.
Don’t get mixed up with these and ZIBO registers.

RECOVERY from KILL

When you Kill a file, all Zen does is to set EOF to SOF. The
text is still there in memory. Find the last byte in the
file (use QUERY, etc). The last byte will be an Ascii CR,
following END. Use XAMINE to change EOF to this address plus
one. The source file will re-appear.

Sood Luck!

XXk AVALON ZEN for the SHARF MZI-700 XxxX Page 15

EXAMPLE

This is an example of a typical session, starting with
loading Zen, and ending by saving a complete program. The
program we are developing is a trivial one to print out the
character "A" to the screen. The program then retuwns to the

monitor. For testing we breakpoint the code to return to
Zen.

X% MONITOR 1Z-013A %X Comments
‘EgLAY User input
A G ZEN X e Loading ZEN is Underlined
ZENCE 1 1
1 ORG_BOOOH, 3is 'CR
§ %gﬂgi“‘-~‘_‘\“‘\\-\ Enter Program.
4 0:CALL nq______h_______Note: LOAD needs a parameter,
S LD A, "A" Note: CALL 7 should be CALL 6
6 CALL 12H;Character outy
7 CALL 6,
8 E1:JP OADH3Rack to MON,
9 e
10 END,
11 oy "Dot" out
ZEN>TS,
S O0:CALL 7
ZEN>N)
S 0:CALL é3Carriage returng Modify line
ZEN>T
1 ORG 80QQ0H
ZEN:P22, List program
1 ORG 800Q0H
2 LOAD
3
4 0:CALL 6j3Carriage return
5 LD A,"A"
& CALL 12Hj3Character out
7 CALL &
8 E1:JP OADH;EBack to MON
9
10 END
EOF
ZENZA, Assemble.
OPTION:y
QPERAND
2 LDA‘Bb- Error!!
ZEN>Na
2 LOAD %3 Correct the error,
ZENZA, and re-assemble. OK.
OF TION?
ZEN:>GOuL

Run the program,

BKFT>ELY breakpoint at RET

A 6——-__~‘~__~_\
IT WORKS!!!

X% AVALON ZEN for the SHARP MZI-700 kxkx Fage 16

ZEN>X Examine registers.
HL DE BC AF IR
0000 0000 ©G0O0 CDO2 O04E N (Exact details may vary)

Q000 0000 Q000 0000
IXx 1Y SP PC
Q000 0000 13BA 8OOR
ZEN>QB0Q0H, "Query" memory.
8000 CD 06 00 3E 41 CD 12 00 /..>A/..
8008 CD 06 QO C3 AD 0O FF FF /../u.nmn M
8010 FF FF FF FF FF FF FF FF nnnnnnoan
8018 FF FF FF FF FF FF FF FF nnnonnnn
8020 00 00 00 00 00 00 00 00vene
8028 00 00 00 00 00 00 Q0 0O ...u.e-u-
8030 00 00 00 00 00 OO0 00 00
8038 00 00 00 00 00 00 00 00c.0.
ZEN>MBOQAH, Modify "A"™ to "B"
8004 42 CD . "By ., typed Note: Zen redisplays
ZEN>BO, the line.
BKPT>ELy

Run.

B It works, printing "B".

ZEN>Ty,
1 ORG 8000H
ZENDN,)
1 ORG 1200H, Change to ORG 12pP¢H for saving.
ZEN>Dy
2 LOAD ¢
ZEN>;
2NZDAD 8000H but still LOAD 8@@pH.
ZEN>As Assemble.
OPTION>,
ZEN>?E1l, Find value of E1
120BH 4619
ZEN>WO,
START >8000H,
STOP >800BH; :L—-Write correct memory locations.

EXEC>
LDAW%; T Load & Exec at label O

NAME >DISPLAY Ay , Note: RECORD.PLAY

WRITING DISFLAY A ~

ZEN>VO, Verify program

NAME >3

FOUND DISPLAY A (TYPE 1) '
VERIFYING DISPLAY A M

ZEN> \
) All OK.

