DHBBBBBRBBSBIBBIBDBBBEBBBDBHBBBEDDDBBBBABSDBEIHD

CHAPTER 2
EDITOR-ASSEMBLER

&ﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁ%&ﬁﬁﬁﬁ&ﬁﬁﬁ&ﬁ&ﬁﬁ&ﬁ%ﬁﬁﬁ&ﬁﬁﬁﬁﬁ&ﬂﬁﬁ@@ﬁﬁ

{8

1213 BIDBIB B BBMBBIBBISE
i e

2.1 OUTLINE OF THE EDITOR-ASSEMBLER

As its name indicates, the editor-assembler is the system program which includes both the text editor
and the assembler. This section discusses the editor-assembler in outline; see section 2.2 and 2.3 for
details.

Control is transferred between the text editor and the assembler as indicated below.

Text editor —— Assembler: “‘X’’ command

Text editor: + [BREAK

Assembler

The reason for combining the text editor and the assembler in this manner is to eliminate the need to
change cassette tapes when control is transferred between the two. That is, combining the text editor.
and the assembler makes it possible to edit and assemble programs in one setting by allowing the
assembly list to be reviewed and errors in the source program to be corrected immediately. For example,
it is normal for several errors to be made in keying and symbols during source program preparation; if it
were necessary to replace the tape each time an error was corrected, a great amount of time would be
consumed. The text editor eliminates this requirement and makes it possible to both edit the source pro-
gram and check it at the same time.

In the photograph below, the editor-assembler is first loaded by the IPL, then three text lines are
prepared using text editor (which is activated first); then the X command is executed to shift to
assembler; finally, the [SHIFT] and [BREAK] keys are pressed simultaneously to return to the text

editor from the assembler and the T command is executed.

Byte size is displayed at this position.

: Editor-assembler loaded by IPL program.

D
Editor-assembler 52-811A V1.0 (@ : Number of usable edit buffer bytes displayed.
Copyright (C) 1985 by SHARP Corp.

: Three lines of text prepared using the text editor
‘I’ command.

N butes @& : X’ command executed to transfer control to

&P :’?m‘ir the assembler.

i o : Instruction entered in response tc question from
the assembler.

: Control returned to the text editor with [SHIFT.
+ |BREAK| and the command wait state
entered.

: “T* command entered and text lines displayed.
The CP remains in the position it was in before
control is transferred to the assembler.

Example of display by the MZ disk version editor- !
assembler.

10

2.2.1 OQutline of the text editor

The text editor is used to prepare source programs for the assembler and files (such as data files)
which consist of strings of ASCII characters. It is also used to read in and correct or edit such pro-
grams and files and to output edited source files.

The following functions are provided for making modifications and revisions.

1. Insertion
2. Deletion
3. Change

Data input into the edit buffer is organized two dimensionally in lines and columns. A number
which is referred to as the line number is assigned to each line in sequence, starting with the first line
in the edit buffer.

Locations within the edit buffer which are to be modified are usually specified by means of a
pointer (which is referred to as the character pointer, hereafter referred to as CP). Insertions, dele-
tions, and changes are made by moving the CP to the appropriate line and executing the appropriate
command. Revisions and modifications can be made in units of either lines or words. It is also possi-
ble to search for or exchange character strings in character string units.

When the text editor is used, the memory is organized as shown in the figure below.

0000 .
Monitor
Text editor
Source file
Read
Program unit 1
Append Program unit 2
¢ Edit buffer
FF00
Work area

11

The text editor provides the following commands. These commands are almost compatible with that
of the editor of the Data General’s NOVA minicomputer.

Command Command Function
type name
\ DEFAULT ! Sets the specified external storage device as the default device.
i \DELETE | Deletes the specitied file in the RAM file.
\ DIR Displays the contents of the directory.
\ DIR/P Prints out the contents of the directory on the printer.
File control \ INIT Initializes tlhe MZ disk. o
commands \ LOADALL | Loads all files on the a MZ disk into the RAM file.
\ MODE Specifies the number of characters to be printed on a line by the colour plotter printer
and/or to be displayed on the screen.
\ RENAME | Changes the name of the specified file.
\ RUN Executes machine language programs. !
\ SAVEALL |Saves all files in the RAM files on a MZ disk.
R Clears the edit buffer and inputs file indicated by the filename. The CP is positioned at t
Input beginning of the edit buffer after execution of this command. (Read file)
command A Appends the input file indicated by the filename to the contents of the edit buffer. (Ap-
] pend) The CP position is not changed.
Output | w Writes the edit buffer contents to the storage device specified name in ASCII code. Lo
command i
Comparison } v Compares the contents of the edit buffer with the contents of the specified file.
command !
"Type ! T Displays the entire contents of the edit buffer. The CP position is not changed.
command ‘ nT Displays n lines starting at the CP position.
‘ B Positions the CP at the beginning of the edit butfer.
onJ Positions the CP at the beginning of the line indicated by n (line number).
! nL Moves the CP to the beginning of the line n lines after the current CP position.
; L Moves the CP to the beginning of the current line.This is the same as when n =0 in the nL
| command.
¢ nM Changes the CP position by n characters.
! M Does not move the CP. This is the same as when n=0 in the nM command.
z Moves the CP to the end of the text in the edit buffer.
C Searches for the specified character string and replaces it with another character string; the
- search starts at the current CP position and proceeds to the end of the edit buffer. The CP is
CP position- L t :
ing command repositioned to the end of lheAcharactcr string replaced. o) i
: Q Repeats the C command each time the specified character string is found until the end of the :
' ! buffer is reached. The CP is repositioned to the end of the character string last replaced.
] 1 Insert the specified character string at the position of the CP.
The CP is repositioned to the end of the character string inserted. Line numbers are updated i
when a line is inserted with this command. |
nK Deletes the n lines following the CP. The CP position is not changed. '
K Deletes all characters preceding the CP until a CR code is detected. The CR code is nor‘
deleted. '
nD Deletes the n characters following the CP.
D No operation.
S Searches for the specified character command string, starting at the CP position and pro- |
ceeding to the end of the buffer. The CP is repositioned to the end of the character string |
, when it is found. |
Search = Displays the number of characters (ingluding spaces and CRs) stored in the edit buffer. |
d Displays the number of the line at which the CP is located. |
comman L& Deletes the entire contents of the edit butfer.
) X Transfers control to the assembler.
Changes the list mode for listing to the printer. !
1

Passes control to the monitor. i

2.2.2. Character pointer and delimiter
The character pointer (CP) is positioned at the boundary between two adjacent characters or the
beginning or end of the text. It does not point directly at any character.

Movement of the CP is explained below based on the assumption that the following text is stored in
the edit buffer.

The beginning of the edit buffer
1 LD A,i1d4H (The beginning of text) CP —
4 L
B.,7
2 LD] {/ >
3 ADD A, }/ / ISP
4 DAA | ", A
| Command IL: \
‘ Example of text typed in \ 1
H |
(Line »numbers. are. not Command B ! P Edit buffer
stored in the edit buffer as \
shown in the figure at \ H
right.) cr CR
/ L
/
| D
Command M ! [SP]
\ B
' ’
CcP 7
Command 3J
: {CR
»—= The beginning cp A
of tine 3 D
D

The B command moves the CP to the beginning of the edit buffer, the J command moves it to the
top of the specified line and the L command to the beginning of the nth line from the line in which the
CP is currently located; the top of the specified line is the boundary following the CR code of a
preceding line.

. The delimiter is used to separate commands. Enter it by pressing function key [F5]. When the
delimiter is entered between individual commands, several commands can be entered together and ex-
ecuted in sequence by pressing [CR] once. Thus, the two sequences shown below perform the same

function.
B [CRl |
10L CR : <G> B 10L FiK TR

o

R

IK !

The I (Insert) command must be followed by a delimiter because it uses CR codes as character codes
for the source text.
The following example replaces ADD on line 3 in the above program with ADC.

IR 2M 1D Fic & [CR) or BE¥ CADD B ADC CR

13

— Screen editing —

Data can be changed or modified directly on the CRT screen. After the data has been displayed
using the T, C, Q, or S commands, the cursor is moved to lines displayed on the screen and the data
is rewritten. The line in which the cusor is positioned is changed when [CR] is pressed, and the CP
is positioned to the end of that Line. It is also possible to change multiple lines in succession.

It should be noted that line numbers change when the 1,D, and K commands are used; this can
make it impossible to change the line desired.

Display text on the CRT screen with T command.
(The 2nd and 6th lines require revision.)

‘imﬂmmamr\)»o

Move the cursor to the point to be moditied.

MO o
BZ

BONONALN .
zou.

Make the change and press[CR].

<4

Q2D

T
L
<
b
Ji
L
A

S

14
1
2
!
S
€
7
8
L]

m
2
o

Move the cursor to the next line to be modified,
make the change, and press[CR].

mIramraor
ZOD

WOVOUEWNI .
ZOOD.

Return the text editor to the command wait state by
moving the cursor to a blank line and pressing ;‘
or, position the cursor immediately after *‘*’* and

—-
ror
DZODO
e
xro

PULB WA -
O

enter the next command immediately.

OO~
o
MMDr G

14

2.2.3 Text editor commands
— File control commands —
\ DEFAULT command

This command sets the specified storage device as the default (current) device to/from which the
specified file is written or read when a file name is specified without a device name in the 1/0 com-
mands. The default device setting is also effective for the DIR command.

*\ DEFAULT QD [CR] Sets Ihe MZ dxsk as the default dence
* \ DEFAULT CMT [CR] Sets the cassette tape as the default device.
* \ DEFAULT RAM [CR Sets the RAM file as the default dev1ce

—Type in /DEFAULT while the text editor is in the command wait state (*)

~—Type in a device name with a space between the command and the device name.

—Press the [CR] key; the text editor sets the specified device as the default device.

Note: When the editor-assembler is started up, the storage device from which it is loaded is set as the

default device.

\ DIR command

* This command displays the contentes of the directory of the specified storage device, that is, a list of
the names of files stored on the media in the specified storage device. When the MZ disk is specified, it is
set as the default device after execution of this command.

* \ DIR/CR; Displays the contentes of the directory of the current default
storage device.

* \ DIR QD [CR] Displays the contents of the directory of the MZ disk.

* \ DIR RAM ‘CR* Displays the contents of directory of the RAM file.

—Type in \ DIR whlle in the command wait state (*).

— Specify a device name with a space between the command and the device name. (The device name
may be omitted when the current device is to be specified.)

—Press the [CRkey; the text editor displays the contents of the directory of the specified or default
device.

Note: This command cannot be used with the cassette tape.

\ DIR/P command

This command prints out the contents of the directory on the printer.

* \ DIR/P CR’ Prmts out [he contents of the dxrectory ofthe spemf'ed device on
the printer.

* \ DIR/P [CR] Prints out the contentes of the directory of the MZ disk on the
printer.

* \ DIR/P RAM [CR] Prints out the contentes of the directory of the RAM file on the
printer.

—Type in \ DIR/P while the text editor is in the command wait state (*).
— Specify a device name with a space between the command and the device name.

15

(The device name may be omitted when the current device is to be specified.)

—Press the "CR! key; the text editor prints out the contents of the directory of the specified device on
the printer.

Note: This command cannot be used with the cassette tape.

\ INIT command
This command initiallizes the MZ disk or RAM file. Refer to the MZ-800 Owner's Manual tor the
detailed explanation of the other functions of this command.

A !

* \ INIT CR; Initializes the MZ disk. i

* \ INIT QD [CK Initializes the MZ disk.

* \ INIT “RAM:SFFFF” [CR, Initializes the RAM file. |

* \ INIT “LPT:$2" CR Sets the listing device to a CENTRONICS standard printer. i
—Type in \ INIT while the text editor is in the command wait sate (*). .

—Type in QD or RAM:SFFFF with a space between the command and the device name.

—Press the "CR. key; confirmation message **OK? [Y/N}’’ appears on the screen.

— Press Y to execute initialization and N to cancel it in response to the message. When vou press N, the
text editor returns to the command wait state again.

\ MODE command

This command sets the number of characters printed on a line by the colour plotter printer in its text
mode and that displayed on the CRT screen. Both the printer and the CRT are set to 40 characters when
the power is turned on.

* \ MODE TN CR] Sets the line length for printing to 40 characters per line.
* \ MODE TL CR} Sets the line length for printing to 26 characters per line.
= \ MODE TS [CR] Sets the line length for printing to 80 characters per line.
* \ MODE DL CR! Sets the line length for display 10 40 characters per line.
*+ \ MODE DS CR: Sets the line length for display to 80 characters per line.

—Key in \ MODE while the text editor is in the command wait state (*).

—Specify TN, TL, TS. DL or DS.

— Press the (CR, key.

Note: \ MODE DS and \ MODE DL cannot be used in the MZ-700 mode. ‘

\ RUN command

This command executes the specified machine language program.

= \ RUN”’TRANS 'CR: Executes machine language program TRANS on the current
storage device. i

* \ RUN”TEST"”",R CR! Sets the memory into the same state as when IPL (Initial Program
Loading), loads machine language program TEST, then executes !

the program. i

. prog]

—Type in \ RUN while the text editor is in the command wait state (*).

16

— Specify the file name. When you execiite machine language programs created on the MZ-80K series
computers, R must be specified following the file name. Type in a comma **,"” after the file name
when specifying R.

—Press the CR] key.

When R is not specified, the specified program is loaded without changing the current memory state
and executed. When the R option is specified, the memory is set into the same state as when IPL and
the specified program is loaded and executed.

Note: 1. This command cannot be used with the cassette tape.

2. When the RUN command is executed, control is transferred to the specified program after
that program is loaded. In some cases, control is not returned to the text editor. If the
specified machine language program is to be executed in a memory area overlapping the area
in which the editor-assembler is stored, it is loaded over the editor-assembler program and the
editor-assembler will be destroyed.

.\ DELETE command

I
| * \DELETE”’RAM:SAMPLE"” [CR| Deletes file “SAMPLE”’ in the RAM file. ‘|

| SR

—Key in \ DELETE while in the command wait state (*).

— Type in the device name, then file name after the commad name.
—Press _CR| ; the specified file is deleted.

Note: This command cannot be used in the MZ-700 mode.

\ RENAME command

‘ * \RENAME"RAM:OLDPROG","NEWPROG" {CR;

Changes file name OLDPROG of the file in the RAM
file to NEWPROG.

—Type in \ RENAME while in the command wait state (*).
—Specify the current file name to be changed and a new file name.
— Press [CR] ; the current file name is changed to the new file name.
Note: 1. When a file has already been saved under the same file name as the specified new file name in
the RAM file, execution of this command results in an error.
. 2. This command cannot be used in the MZ-700 mode.

\ LOADALL command

r‘ \ LOADALL Reads the entire contents of the MZ disk into the RAM file.

—Type in \ LOADALL while in the command wait state (*).

— Press [CR ; the entire contents of the MZ disk is read into the RAM file.

Note: 1. Optional RAM file MZ-IR18 must be installed and initiallized in advance to execute this
command.
See the \ INIT command on page 16 for the method of initializing the RAM file. When the
size of the RAM file is smaller than that required, this command cannot be executed even if
the RAM file has been initialized. In this case, expand the RAM file size with the \ INIT
command (maximum 63KB).

2. This command cannot be used in the MZ-700 mode.

\ SAVEALL command .
*\ SAVEALL [CR] Saves the entire contents of the RAM file on the MZ disk.J

—Key in \ SAVEALL while in the command wait state (*).
— Press @ ; the entire contents of the RAM file is saved on the MZ disk.
Note: 1. This command cannot be used in the MZ-700 mode.

2. Optional RAM file MZ-IR 18 must be installed to execute this command. When two or more
files are stored in the RAM file, all files in the RAM file cannot always be saved on the MZ
disk even if the total file size does not exceed the capacity of the MZ disk, because those tiles
are recorded on the MZ disk with a blank space for separation between adjacent files.

— Input commands —

R (Read file) command

This command clears the edit buffer area. then loads it with the source file (ASCII file) specified by
the filename in it; loading starts at the beginning of the edit buffer. The CP is positioned at the beginn-
ing of the edit buffer after execution of this command.

*RFORMULA #1 Reads source file FORMULA #1 into the edit buffer.
*R“CMT:FORMULA #2” Reads source file FORMULA #1 from the cassette tape in-]
to the edit buffer. T

—XKey in R while in the command wait state (‘“*’°).

—Specify the filename immediately following R. (When the file to be read is the first file on the
cassette tape, the file name can be omitted.)

—The text editor locates the specified file and reads it when _CR; is pressed.

— The file read is stored in the edit buffer, starting at the edit buffer’s beginning. (See the figure
below.)

—“OK” is displayed after the file has been read; the CP is positioned to the beginning of the edit buf-
fer.

18

- + (BREAK] terminates the R command.
—The message “‘Full buffer’ is displayed when the buffer becomes full. In this case, the entire file has

not been read.

input file

FORMULA #1
Source file

CP —»
R command

FORMULA #1

A (Append file) command

This command appends the file specified by the filename to the contents of the edit buffer. The CP
position is not changed.

<—— The beginning of the
edit buffer

Edit buffer

* AFORMULA #2 [CR]

*A”CMT:FORMULAR#3" [CR

i

¢

Appends source file FORMULA #2 to the contents of
the edit buffer starting at the CP position.

Appends file FORMULAR #3 on the cassette tape to the
contents of the edit buffer starting at the CP position.

—Key in A while in the command wait state [GE 2

— Specify the filename immediately following A. (The filename may be omitted when the file to be ap-
pend is the first file on the cassette tape.)

—The text editor locates the specified file and reads it when CR] is pressed.

—The file read is stored in the edit buffer, starting at the position of the CP. Use Z in order to position
the CP to the end of the text when an addition is to be made to its end. The figure below shows addi-
tion of input file “FORMULA #2”" to the end of text “FORMULA#1”°))

Input file

FORMULA #2
Source file

A command

T

FORMULA #1

<+—— The beginning of
the edit buffer

Edit buffer

FORMULA #2

—The CP is positioned to the beginning of the data added.

—Press [SHIFT]| + [BREAK

to terminate the A command.

— The message *‘Full buffer’” is displayed when the buffer becomes full. In this case, the entire file has

not been read in.

— Qutput command —
W (Write) command

This command outputs the entire contents of the edit buffer to the output file specified by the
filename regardless of the CP position.

*WFORMULA #3 [CR! Assigns file name *“FORMULA #3" to the file in the edit
: huffer and outputs the file to the current storage device.
*W”QD:FORMULA #4”” [CR| Outputs the text created in the edit buffer to the MZ disk

under file name FORMULA #4.

|
|

—Key in W while in the command wait state (***’’).

—Specify the file name. (When the source file is output to the cassette tape, the file name can be omit-
ted.) ’

—The text editor begins output of the text to the specified device when _CR’ is pressed. .

— After output of the file has been completed, the text editor enters the command wait state. The file
output is a source file.

Text editor
Beginning of the —» .
edit buffer Ouptut file
Text W command
) ‘ —__,| FORMULA#3
Edit buffer Filename “FORMULA #3"" source file

—The CP position is not affected by execution of the W command.
—Press [SHIFT| + [BREAK, to terminate the W command.

20

— Verify command —
V (Verify) command

This command verifies the contents of the edit buffer with the contents of the file whose file name

is specified.

| +VFORMULA #3 [CR]

1

| *V"'CMT:FORMULA #4" [CR]
J

Verifies the contents of the edit buffer with the contents of

file FORMULA #3.
Verifies the contents of the edit buffer with the contents of

file FORMULA #4 on the cassette tape.

—Key in V while the text editor is in the command wait state.

—Key in the name of the file whose contents are to be verified. (When the file is the first file on the
cassette tape, the file name may be omitted.)

—Press ; the system then searches for the specified file and starts verification.

—When the contents of the file is the same as that of the edit buffer, the system returns to the com-
mand wait state. Otherwise, ‘“Not same”’ is displayed.

—The CP position is not affected by execution of the W command.

Text editor
Beginning of the .
edit buffer v - Input file
L.
Text
T FORMULA #3
Edit buffer Source file

21

— Type command —
T (Type) command

This command displays all or a part of the contents of the edit buffer with line numbers attached.
The CP position is not changed.

*T [CR Displays all of the contents of the edit buffer with line numbers attached.

the line specified by n, then displays them. (Same as above when n=0).

1
' *nT [CR Assigns line numbers to lines, starting at the CP position and continuing to
|

—Key in the number of lines, n followed by T (Type) while in the command wait state.
— Press [CR! ; the contents of the edit buffer is displayed.
—The following are special cases of nT.

n=0: The same as T
0<: Error message ‘7?7 is displayed.
nzm (Where m is the number of lines from the one at which the CP is located to the end of

the buffer contents): only m lines are displayed.
—The current CP position can be determined with the nT command, since display starts with the
character following the CP.
—Press [SHIET| + [BREAK] to terminate the T command. Press [SPACE to suspend T command
execution, and press it again to resume it.
—The photograph at right shows the relationship
between the type command and the CP for the
following text.

b
pal
o

(2]
4
=

LD osF. START

CALL TIMST 3TIMER ZET
CALL LETNL NEW LIME
END

-J\;;,r".-—A
W
Ao

a4
S
M
3
3
3
E}
rs

o _5008:-\

— Error message “‘Large’’ is displayed when n ex-
ceeds 65535.

22

— CP positioning commands —
B (Begin) command

" *B[CR Positions the CP to the beginning of the edit buffer. W

—Key in B while in the command wait state (*).

—Press .

—The B command is executed to position the CP to the beginning of the edit buffer.
—nB performs the same function.

Z command

*Z [CR Moves the CP 10 the end of text in the edit buffer. —]

-Key in Z while in the command wait state (*).

—Press .

— When the Z command is executed, the CP is positoned to the end of the text in the edit buffer.
—nZ performs the same function.

J (Jump) command

*nJ {CR Positions the CP to the beginning of line n.

—Key in line number n and J while in the command wait state (*).
—Press .
—The nJ command is executed to position the CP to the beginning of line n.
—The following are special cases.
n=0or | or n is omitted:
The command performs the same function as the B command.
n<0: Error message *‘7??”" is displayed.
n=m (Where m is the number of lines of the edit buffer contents):
This command performs the same function as the Z command.

23

L (Line) command
This command moves the CP forward or backward by the specified number of lines. The CP is
positioned at the beginning of the specified line after execution.

[#nL [CR] Moves the CP to the beginning of the nth line from the line at
which it is currently located.
*L [CR] Moves the CP to the beginning of the line at which it is current-
ly located.

—Key in the number of lines, n and L while in the command wait state (*).

— Press .

—The CP is positioned at the beginning of the specified line when the nL command is executed.
—The following are special cases:

0: The command functions in the same manner as the L command. ,
m (where m is the number of lines from the line at which the CP is located to the end o
the edit buffer contents):
The command functions in the same manner as the Z command.
n<0: The CP is moved n lines toward the beginning of the edit buffer.
in| =f—1(where ¢ is the number of the line at which the CP is currently located):

n
n

v

The command functions in the same manner as the B command.

M (Move) command

This command moves the CP forward or backward by the specified number of characters.
Spaces and carriage returns are counted as characters, but line numbers are not.

*nM [CR] Moves the CP to the position which is n characters from its cur-
rent position.

—Key in the number of characters, n and M while in the command wait state (*).

— Press ; the nM command is executed to move the CP to the specified boundary between
characters.

—When n<0, the CP is moved backward by |n| characters.

—The CP position is not changed when n=0 or if it is omitted.

24

Py

— Correction commands —

C (Change) command

This command replaces a string in the edit buffer with another string. The search for the specified
string starts at the current CP position and proceeds toward the end of the edit buffer; the string is
replaced when it is found and the CP is positioned at the end of the string replaced.

*Cstring 1 88 string 2 Searches for the character string specified with string 1, starting
at the current CP position and proceeding toward the end of the
edit buffer; replaces the string with the one specified by string 2
when it is found.

| *Cstring 1 Deletes the character string specified by string 1.

—Key in C while in the command wait state (*).

—Key in the string to be located followed by a delimiter.

—XKey in the string which is to replace the one located.

— Press and a search is made for the first string. Only the first occurrence of the string is replaced.
The line including the string replaced is displayed and the CP is positioned at the end of that string.

—The message ‘“Not found”’ is displayed if the specified string is not found.

—Strings 1 and 2 need not be of the same length.

Q (Queue) command

This command repeats the function of the C command each time the specified character string is
found until the end of the edit buffer is reached. The CP is repositioned to the end of the string last
replaced.

* Qstring 1 [string 2 Causes the function of the C command to be executed repeated-

ly.
» Qstring 1 Deletes all occurrences of the character string specified by string
1.

—XKey in Q while in the command wait state (*).

—The remainder of the operation is the same as for o

the C command. H EBE {g

. 4 XTEM

—The photograph at right shows the resuit of ex- :Bfgxgg
ecution of the Q command on the following text. %T'ﬁﬁréé :
11 %

1 LD BC, (¥TEME) 558 iz

LT (XTEMF), DE e

3 IR 1ZAOH

ES

XTEMF:DEFS 2

I (Insert) command

This command inserts the specified string at the CP position. A carriage return is performed on the
CRT screen if one is included in the string. Line numbers are updated automatically when a new line is
inserted. The CP is repositioned to the end of the string inserted.

* Istring B2 [CR] Inserts the specified string at the CP position.
ﬂslring 1[CR] Inserts the lines specified by string 1,
string 2 string 2 and string 3 at the CP position.
1 string 3
; E A CR is treated as a character by the I command. Therefore, a
i delimiter must be keyed in before [CR] is pressed to separate
l the CR from the preceding string and terminate the I command. .

—XKey in I while in the command wait state (*).

—Key in the string to be inserted.

— Characters keyed in are inserted starting at the CP position. Therefore, the edit buffer contents
following the CP is automatically shifted toward the end of the edit buffer.

—When a [CR] is pressed in, it is inserted as a carriage return code.

—XKey in a delimiter after all the strings have been keyed in.

—Press [CR] to execute the I command.

—The photograph at right shows an example of

using the | command. ;rsg
ZL
,TIMER_SET
3 82’.5’ SNERRRS
A :
Text: iﬁnn.n A5 ;TENP S
1 STARY T :
1 SIART:
SO SR, STAR TART,
= LDOSF, START - 5%2&"“35‘1_ (TIMER SET
TOCALL TIM sTIMER ZET 4 LD A5 TEMP S
o e et TorMEr S CALL'XTEMP ;SET TEMPO
4 CALL xTEMP $135ET TEMFD & END -
S END -

LD A,5 ;TEMPO 5 is inserted
between lines 3 and 4 of the above text.

When you create a new source file, first enter the { command (I {CR]) and then type in the program. .

K (Kill) command

This command deletes the n lines preceding or following the CP from the edit buffer.

‘ *nkK Deletes the n lines preceding or following the CP from the edit
buffer. If the CP is located in the middle of a line, the characters
preceding the CP are not deleted if n>0 and the characters
following the CP are not deleted if n=<0.

I *K [CR] Deletes characters preceding the CP position until a CR code is

i‘ detected. The code is not deleted.

S

—Key in the number of lines, n and K while in the command wait state (*).
—Press [CR] to execute the K command.
—Operation differs according to the value of n as follows.
. n>0: Deletes all characters following the CP until n CR codes are detected.
CR codes detected are also deleted. Command execution ends after the last
code has been de!rted. '
n<0: Deletes all charaeters preceding the CP until 'n: + 1 CR codes are detected. The
(Ini+ I)th CR code is not deleted.
n=0 or not Deletes all characters preceding the CP until a CR code is detected. That is, delelets

specified the part of the line in front of the CP. The CR code detected is not deleted.

—Line numbers are automatically updated after deletion.

—The CP position is not changed.

— The photograph at right shows an example of the
result of execution of the K command with the
following text. (This text is presented only to il-
lustrate operation of the command; it has no
meaning in assembly language.)

gJJ KKLL
HJJKKLL

27

D (Delete) command
This command deletes the specified number of characters from the edit buffer, starting at the cp

position.
*nD Deletes the specified number of characters from the edit buffer, !
starting at the CP position. A CR code is counted as a character.
«D (No operation results.)

—Key in the number of character n and D while in the command wait state (*).

— Press to execute the command.

— Operation differs according to the value of n as follows.

n>0: Deletes the n characters foilowing the CP from the edit buffer. A CR code is
counted as a character.

n<O0: Deletes the n characters preceding the CP from the edit buffer.
A CR code is counted as a character.

n=0 or not No operation results.

specified

— Line numbers are automatically updated if necessary.

—The CP position is not changed.

— The photograph at right shows an example of the
result of execution of the D command with the
following text. (This texi is presented only for the
purpose of this illustration; it has no' meaning in

AW 8 8 WA

assembly language.)

1 ABCE

FoH
IJeL
MNOF

PR

28

— Search command —

S (Search) command
This command searches the edit buffer for the specified character string.

3
*S string 'CR] Searches for the specified character string, starting at the cur-

rent CP position; the CP is repositioned to the end of the
character string when it is found.

L

—Key in S.

—Key in the string to be located.
—Press [CR, to execute the S command.

— The search starts at the current CP position and proceeds toward the end of the bu*fer,

— When the specified string is found, the line containing it is displayed and the CP is puositioned to the
end of the character string.

~— If the specified string cannot be found, the message ‘‘Not found’ is displayed and the CP is reposi-
tioned to the beginning of the edit buffer.

—The photograph at right shows the result of a
search for the character string ““LETNL’’ in the
following text. The line including “LETNL’’ is
displayed following the S command. The 2T
command indicates that the CP is positioned to SNEW LINE
the end of the string.

N
HE;YEHP0(~—4

2 TAF
3 OTALL TIMIT TIMER 2ET
4 TALL LETNL $MNEW LINE
S LD As 03H JTEMRO.--2
o Tatl YTEMF

END

29

— Special commands —

= (equal) command

e ————————)

* =[CR] Displays the total number of characters (including spaces and
CRs) in the edit buffer.

Lo —— e e = PR
—Keyvin = (equal) while in the command wait state (%).

—Press _CR_: the total number of characters stored in the edit bufter is displayed.

. (period) command

e e ,

*., [CR] Displays the number of the line on which the CP is located.

—Keyv in . (period) while in the command wait state (*). '
--Press |CR: the the line number on which the CP is located is displayed.

& (ampersand) command

[*& [CR] Clears the edit buffer. ‘
—Key in & (ampersand) while in the command wait state (*).

—Press [CR ; the contents of the edit buffer are then cleared.

X (TRANSfer) command

[*X ' Transfers control to the assembler. J

—Key in X while in the command wait state’(*).
— Press [CR| ; control is then transferred 1o the assembler and an assembler messag: is displayed.

30

(sharp mark) command

|

l * f Changes the printer list mode. J

—Key in # (sharp symbel) while in the command wait state (*).

— The printer list mode is disabled when the text editor is started. It is enabled when the # command is
executed once; executing it again disables it, and so on.

— The following shows a listing obtained by executing the T command when the printer list mode is
enabled.

*

3

tex¥EDITOR LIST SAMFLE xx%

STARTIENT

LD SR ETART SINITIAL STADE FOINTER
CALL LETNL

LD AYS

CALL YTEME $SET TEMROD TD S

B IR I RN o)

! (exclamation mark) command

*! Transfers control to the monitor. ~ J

—Key in ! {exclamation mark) while in the command wait state (*).
—Press [CR] ; the following message is then displayed.

“M)onitor B)oot C)ancel?”’

e Pressing the M key transfers control to the monitor.

¢ Pressing the B key transfers control to the IPL.

o Pressing the C key cancels the ! command and returns the text editor to the command wait
state.

—There are three methods of returning control to the text editor from the monitor.
e Jump to address 5600 (4000): The editor buffer is cleared. (cold start)
e Jump to address 5603 (4003): The edit buffer is not cleared. (hot start)

e Execute the monitor's R command: Same as the hot start above.

Note: Addresses within the parentheses must be used in the MZ-700 mode.

31

2.3 ASSEMBLER

2.3.1 Outline of the assembler

The assembler is a system program which assembles source files prepared and edited using the text

editor and outputs relocatable files (relocatable binary files) or object files. Relocatable files are the

stage which is between source files and object files, and are organized in such a manner as to be

relocatable and linkable.

Source files are written in assembly language (label symbols, mnemonic symbols of instruction codes

and directive statements) in accordance with the assembler rules. Source programs edit:d with the text
editor are output in the ASCII code format as they are. The assembler interprets the syntax of su’
source programs and produces relocatable or object files. Information concerning the status of symboli

address (data) definition and syntax errors is also prepared at this time.

— Starting the assembler —

X
assemble mode.
%ﬂs:ﬁ; output :N)one

ect assemble mode.
ary output N)one
1istina N>

-t
- 19 X

)

1 e.
SN ay ae, @
ine tee Bl B

-V

as 2?2008
ouw

CAL TiIMsT

Cl
L
L
[
2
F

-
=0 N
PWher

Control is transferred from the text editor to the
assembler by entering the X command.
First, select the ripe of an output file to be generated.
When no output :ile is needed, select None.

No output file —None

Relacatable file —RB

Object file —OBJ

Ne -, select what is to be displaved on the CRT screen.
Nothing -- None
Everything —All
Error information only — Error

Finally, select what is to be printed on the printer.
Nothing — None
Everything — All
Error information only —Error

Then, enter the listing bias (4-digit hexadecimal number)
(to be discussed later).
The S option can be specified after the listing bias. th’
the S option is specified, the following parts of a
assembly list are not output.
e Macro expansions (instructions invoked by
macro calls)
¢ [Instructions which were not assembled because
the condition in the preceding IF directive was
not met.
® ASCII codes gencrated by DEFM instructions

Finally, enter a file name to be assinged to the out-
put file when a relocatable or object file is to be
generated.

32

— Listing bias and ORG dirdctive —

In the sample listing below, the relative address starts at 2000 as specified in the ORG directive at the
top of the program. (The detailed explanation of the ORG directive is given later.)

The assembly listing can be started at an appropriate address in the sam= manner to n ike it easier to
read. This is the idea of the “listing bias” which was mentioned earlier. For example the same listing as
the one shown below can be obtained without the ORG directive if a listing bias of 2000 is specified.
Unlike the ORG directive, however, the listing bias is temporarily effective only on listing and no effect
on relocatable or object files produced. Further, when a listing bias is specified for a program whose
starting address is specified with an ORG directive, the ORG directive has priority over the listing bias.

When the S option is specified, the following parts of an assembly list are not output as shown in the
photographs below.
® Macro expansions (instructions invoked by macro calls)
¢ Instructions which were not assembled because the condition in the preceding IF directive was
not met. '
* ASCII codes generated by DEFM instructions
To set the listing bias to zero, press the [CR’ key, or key in S and press the "CR] key (when the S
option is specified).

The simple program shown below is provided for the purpose of helping to explain the function of
the assembler; it has no meaning in execution.

semble mode.

:2; 3:tput :N)one 0)BJ N

isting ‘N)one Jrror 2Q

isting :N)one Jrror 2N

in7_bias 2?5008
mbling now

ect assemble mode,
- t :N)one
rror 2A
rror 2N

D

D0 1y oy X

HMACRO_TEST
LD A,B

’

DOOON

1]
egal)

3
78

A
-]
o
-]
e

ot

I\
L,DE

2%:%1;“ ‘ABCDEFG”

41424344

B OVVDDDDDDOU =-VWee-B X
OO s DOODD o+

3 =ZRRDORDDDRON N

0801=
ct assemble mode.
ry output :N)one - R)

|
S
B
C
L

L
A
S

3
g

S
)

S
2
C
S
B

-
e

t
e
]
88
89
2
H
i
i
G
ND

elect aagis le _made
ect assemble .
inary output :N)one R)B O0)BJ 78

When the S option is not specified When the S option is specified

33

CO A

1

MMIN v bs b ra

Fasr L Lo by ba by o

el
n T

1FF

SO0
a0
(0001

rm

2011

>N
Eadiat]

> pa

Dol

DOVR

e

=1

St o L e i B A X K

P
1

-
[}

Lo
)
L

CALL
cAaLL

— M muy be used instead of
(HL).

~— Address label symbol +
EQU defined symbol

— Absolute address 10

—~ 100D is interpreted as a
symbol.

— EQU defined symbol +
numerical data

Ly AEC+3Y T

ArXYZI+Z

Indicates the contents of
the symbol table

— D000 interpreted as symbol.

2.3.2. Assembly language rules
The source program must be written in accordance with the assembly laguage rules. This subsection
describes the structure of the source program and the assembly language rules.

A assembly source program consists of the following.

Z.-84 instruction mnemonics
Label symbols
Comments
[Definition directives
Assembler directives Entry directive
(Pseudo instructions) Skip directive
 End directive

Comments may be used as needed by the programmer; they have no effect on execution of the pro-
gram and are not included in output files.
All assembly source programs must be ended with a assembler directive END.

Z.80 instruction mnemonic cods form the body of the assembly source program. These are explained
in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters (CALL, JP, etc.), separators (space,
comma, etc.) and operands.

A label symbol represents an address or data. It is placed in the label field separated from the follow-
ing instruction with a colon (:), and is referenced by using it as an operand. The first 6 characters of a
label symbol are significant to discriminate one from the other. The 7th and following characters are ig-
nored if they are used.

Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for
separators and other special purposes may be used.

Commnets are messages used to help to understand the operation; it must be preceded by a semi col-
on (;) and ended with a CR code.

Assembler directives (also called pseudo-instruction or pseudo-operation) are a number of com-
mands to the assembler. Thay do not generate instruction codes. Instead, they inform the assembler of
certain actions to be taken, or they create data values. Assembler directives are written in the same field
as Z80 instruction mnemonics.

Definition directives, entry directive, skip directive and so forth are included in the assembler
directives.

The END directive is one of the assembler directives. It marks the end of the assembly source file.
All assembly source file must be ended with an END directive.

35

— Characters —

Characters which are used to write an assembly source program arc alphanumeric characters, special
symbols and so on. Special symbols have functional meaning to the assembler (separators (* : 7. ** . ”
and ““ ; *"), CR code, SPACE code, etc.)

1) Alphabetic characters: A BCDEFGHIIJKL MNOPQRSTUVWXYZ

These characters are used t0 represent symbols and instruction mnemonic codes. Siv fetters A - Fare

also used as numerics of hexadecimal system which represent 10 1o 15 in decimal. H is used to in-

dicate hexadecimal.
2) Numerics: 0123456789

These are used to represent numeric constants and symbols. Whether a constant is handled as a

decimal number or a hexadecimal number is determined according to the rules of numeric represen-

tation.
3) Space

When an assembly source program is listed with the T command of the text editor, spaces are

displayed (printed) as they were typed in. However, when an assembly list is output, spaces are

treated as separators except when they are used in comments and cause tabulation. Spaces placed
between op-code and operand or between operand and comment perform the tabulation function

as shown below.
|

Example OR [SP] FOH {SP] ; —X0 i
XYZ: PUSH [SP| AF | Editor list

ADD [SP] HL, BC {SP, ; BC=COUNT i

N

OR FOH . A< —X0 !
XYZ: PUSH AF © Assembly listing
ADD HL,BC ; BC=COUNT |
1 1 !
Tab position Tab position Tab position

4) Colon “: "
A colon behaves as a separator when it is placed between a label symbol and instruction (or
assembler directive). It performes the tabulation function on the assembly listing.
Example: START: LD SP, START
MAIN: ENT

1

Tab position
A label symbol can also be defined by writing only a label symbol and colon on a line. (See the
paragraph describing label symbols.)

F.xample: ENTRY: — ENTRY is defined as the same addres as

TOPO.
TOPO: PUSH HL

36

Yy

6)

7

Q.

Semicolon ** ;
A semicolon indicates the beginning of a comment. The part of a line from a colon to the line end (
CR) has no influence on program execution. A semicolon may be placed at the top of a line or at
the beginning of the comment column.
Example: ; |
SAMPLE PROGRAM The entire lines are used as

" comment lines.

CMMNT: ENT : COMMENT

(Commenmr;)

Carriage return (CR code)

A carriage return code marks the end of a line.

Other special symbols [+ — ' () ,]

These symbols are used in instructions.

Other characters

The other characters such as graphic characters are not generally used although the assembler allows

the use of them for label symbols and comments.

— Line —

A typical line of a source program is made up of a label symbol, Z80 instruction or assembler direc-

tive, and comment. Components on each line are arranged according to the tab setting when it is listed.
(See the assembly list on page 40.)

37

— Label symbols —

All characters other than special symbols may be used for label symbols, but generally alphanumerics
are used. Each label symbol can consist of up to 6 characters; the 7th and following characters, if used,
are ignored by the assembler.

Example: Correct ABC START BUFFER STEP 50
Incorrect (ABO), HL Y +3 XYZ -3 — Special characters are
used.
More than COMPAREQ These are treated as the same label symi o,
6 characters COMPAREI COMPAR.

A label symbol can be defined as data and equated to a numeric constant (1 or 2 bytes) using

assembler directive EQU. .
Example: ABC: EQU 3
CR: EQU O0DH

VRAMO: EQU DOOOH

A label symbol preceding the instruction field and followed by a colon (:) is defined as an address. It
can be defined as a global symbol with assembler directive ENT.
Example: RLDR: ENT
RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), it must be defined in the
assembly source program unit in which it is referenced, or must be declared as a global symbol in other
program unit with an ENT directive.

A label symbol which has once been defined is not defined again in the same program unit.

Two or more diferrent symbols can be defined as the same relocatable instruction address as shown
below.

Example: ABCD: ENT Label symbols ABCD, EFGH and 1JK are all defined
EFGH: ENT as relocatable address of op-code LD of instruction
LD A, B. ABCD and EFGH are also defined as global
K LD AB | e
ABCD: 1 Same as the above, except that ABCD and EFGH ar.
EFGH: ‘ not global symbols.
IK: LD A,B J

38

— Constants —

There are two types of constants: decimal and hexadecimal. Plus (+) and minus (-) signs can be at-
tached to them. An alphanumeric character string which is defined as a label symbol is assumed as a
label symbol even if it satisfies the requirements for a constant.

The assembler handles a constant as a decimal number when it consists of numerics only.

Example 23 999 +3 ~62

The assembler handles a constnt as a hexadecimal number when it consists of 09,A,B,C,D,EorF
and followed by H.

Example 2AH CDH +0lH -BH 0010H O00ADH 00H
A constant used in the operands of a JP, JR, DINZ or CALL instruction represents an absolute ad-
dress when it has no sign and a location relative to the current address when it has a sign. Constants used

in the operands of the other instructions represent numeric data. Negative constants are converted into
two’s complement.

39

2.3.3 Assembly listing and assembler messages

When you select ““All’’ among the itmes displayed following ““CRT listing” or *‘LPT listing’’ after
the assembler is started up, an assembly list is output on the CRT screen and/or printer according to
your selection. Examining this assembly listing is one of the most important procedure in programming
in the assembly language, since whether there are errors in the source program, whether the desired
machine codes have been obtained and so on must be checked by this examination.

The assembler assembles a source program and outputs the assembly list, which includes line
numbers, relative addresses, relocative binary codes, assembler messages and source program list
(including label symbols, Z80 instruction mnemonic codes and comments). The assembly listing is paged
every 60 lines. Line numbers and comments are not displayed on the CRT screen.

The assembly listing format is shown below. The listing shows that tabs are set at the beginnings of
the label symbol, op-code, operand and comment columns.

Line Relative Relocatable Assembler Label Op-code Operand Comment
Number address binary code message ,—_‘L‘
s i s B n— k] r 1
cx SHARF 180 ASSEMBLER SZ-011A V1.0A PAGE o2 This message is output at the top of
each page.
CONST OO0O0AI CONSTZ GOOAU MAIN Q00U MAINO Q00A MAIN7 0012
MAINS 0016 START 0000 TEMFO] TEMPL 0O00&L
0001 0099 H
GOOZ: 0DOO $ ASSEMBLER LIST ZAMFLE
000z 0000 H
0004 QOO0 ZTART: ENT SENTRY FROM LINITH!
0005 0000 MAIN: ENT SENTRY FROM UNITHZ
0004 0000 F1OD0D LD SFPETART sINITIAL 2P
0007: 0003 210000 E Lo HL» TEMFO
0008 0004 DDZIOOO0 O E LD IX s TEMFL+
000%: 0uoA OD2L0000 EE MAING: LD (IX+CONST)) CONSTZ
0010 OOOE 00000000 & XA A
0012 1A MAINT: Lo A, (DE:
001z B7 ar A
0014 206G L JR NZCOMP
0014: 0014 ER MAINZ: EX DE +HL
Q015 00t7 END

The messages printed in the message column of the assembly listing are divided into two types:

definition status messages and error messages.

— Definition status messages —

E (External)

This message indicates that external symbol reference is made; i.e., the label symbol which is
referenced in the operands of the instruction is not defined inside the current program unit. Therefore,
label symbols for which the E messages are printed in the message column must be defined as global
symbols in other source program units (see assembler directive ENT on page 43). Reference to external
label symbols is accomplished after the current program unit and those in which the referenced symbols
are defined as global symbols are linked with the symbolic debugger.

When an external symbol referenced is not defined as a global symbol in any other program units,
that symbol is assumed as an undefined symbol. If a program unit including such undefined symbols is’
assembled into an object file, undefined symbols treated as 1-byte data are converted into 00 and those
treated as 2-byte or longer data (address) are not certain.

Example E LD B, CONSTO
Indicates that 1-byte data CONSTO is an extertnal symbol.

E CALL SORT
Indicates that address SORT (1-byte data) is an external symbol.

EE BIT TOP, (IY + FLAG)
Indicates that 1-byte data FLAG is an external symbol.
Indicates that 1-byte data TOP is an external symbol.

— Error messages —

C (illegal Character error)
This message in-icates that illegal characters are used in operands.

F (Format error)
This message indicates that the instruction format is incorret.

N (Non label error)
This message indicates that assembler directive ENT or EQU has no label symbol.

Example N EQU 0012H
Indicates that a label symbol is missing.

41

L (erroneous Label error)
This message indicates that an illegal reference is made.
Example: L JR XYZ
XYZ is not defined in the current source program. (External symbols cannot be
referenced in the JR and DJNZ instructions.)

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.
Example: M ABC: LD DE, BUFFER

M ABC: ENT
L—Indicates that ABC is defined more than once.

O (erroneous Operand)
This message indicates that an illegal operand has been specified.
Example: O JP +100-ABC

Q (Questionable mnemonic)

This message indicates that a mnemonic code is incorrect.

Example: Q CALXYZ
ity
CALL XYZ is correct.
Q PSHB

?lj—Sl:I BC is correct.

S (String error)
This message indicates that single or double quotation mark(s) is omitted.
Example: S DEFM GAME OVER

DEFM ‘GAME OVER’ is correct.

U (Undefined parameter)
This message indicates that a parameter is not defined when a macro instruction is called.

Example: U JPZ, @3 .

V (Value over)

This message indicates that a numeric specified for an operand exceeds the range allowed.

Example: VvV LD A, FF8H
vV SET 8, A
vV JR - 130

42

2.3.4. Assembler directives

Assembler directives (also referred to as pseudo instructions) are commands to the assembler and are
not converted into machine codes themselves, instead they inform the assembler of actions to be taken.

Among them, the DEFB, DEFW and DEFM directives generate machine codes corresponding thei
operands. The other assembler directives are provided to allow etfective use of label symbols, to allow 10
write programs effectively or to determine the assembly listing format.

— ENT (ENTry) —

This assembler directive makes an entry declaration; that is, it declares that the specified label sym-
bol is a global symbol. Label symbols referenced in other program units mus: be declared as global sym-
bols. A label symbol declared as a global symbol not only makes it possible for the symbolic debugger to
link the related program units, but also allows the symbolic addressing from the other program units.

. Label symbols not declared as global symbols can be referenced only inside the current program
unit.

The example below shows mutual external symbol reference between program units GAUSS-MAIN
and GAUSS-SR. The E messages to the left of CALL CMPLX and JP MAIN indicate that the label
symbols MAIN and CMPLX are external.

i

; GAUSS-MAIN
MAIN: ENT + Entry definition of label symbol
Address undefined MAIN
CD0000 E CALL CMPLX
Program unit 1 E message :
GAUSS-MAIN CALL CMPLX+2 « No offset can be added to a label symbol ;
which is defined externally. |
END + END is always required at the end of a

program unit.

|

. ; GAUSS-SR

CMPLX: ENT + Entry definition of label symbol
CMPLX
Program unit 2 RET
"GAUSSSR*" Address undefined :
C30000 E JP MAIN
E message :
END

A7

— EQU (EQUate) —

This assembler directive equates a label symbol to a numeric value (or address). The numeric value
must be a decimal or hexadecimal constant. Once a label symbol has been defined as a numeric cons-
tant, numerics can be added or subtracted to/from it; this allows new symbols to be defined using it.

Label symbols used in operands are handled as relative addresses and set to various values according
to the starting address specified when the program is assembled. However, when a label symbol is
equated to a numeric value with the FQU directive, that label symbol is set to the value regardless of the
starting address.

The EQU directive also defines a label symbol as a giobal symbol. Therefore, a label symbol defined
by the EQU directive can be referenced from other program units.
However, program units including EQU directives must be loaded before other program units to b
linked. ‘

For the above functions, the EQU directive is useful to assign easily remenbered names to entry ad-
dress of monitor subroutines, I/0 device port numbers and so forth.

D001 QOO0 H

Qo DO0L s MONITOR LIME
BREEY:
TIMET:

D0QS

Qo058

— POTFF is equated to FF
(hexadecimal).

CDOFFE

— CON 3 is equated to 3
(decimal). In this case,

CON 1 and CON 2 mu
be defined in advance ’
in this example.

so0a= POTFE COFE=

The equal signs (=) in the symbol table output following the assembly list indicate that the cor-
responding label symbols are defined with the EQU directive.

— ORG (ORiGin) —
This assembler directive determines the object program loading address. For example, when
ORG 2000H
is placed at the beginning of the program to be assembled, the assembler assembles the program
with a load address of 2000H.

When a relocatable binary file generated with the loading address specified with the ORG direc-
tive is linked with other programs by the symbolic debugger, the loading address specified with the
ORG directive is effective and that specified by the symbolic debugger is ignored.

When relocatable files with loading addresses specified with ORG directives are linked or when
more than one ORG directives are used in a program, the loading addresses must be specified so that
programs loaded do not overlap each other and must appear in the sequencial order.

000G
DO
D000
0000

BLOCE TRANZFER

0004 :

<0 ORG 2000H
E E.XFEF: LD LE.DE=T
E Lo Ly S0OURCE
LD B, BLOCH
LOIR
co RET
(O1O0;) BLOCK#: Zald 2S5
END
BLXFER 2000 BLOCK®# ©O100= DEEST SO000 SOURCE 2

In the symbol table output following the assembly list, symbols marked with a equal sign (=) are
defined with the EQU directive, those marked with a U are undifined, and those with no messsge are
correctly used inside the program.

45

— MACRO/ENDM —

These assembler directive define instructions between them as a macro instruchon. The MACRO
Jirective defines its operand (symbol) as the name of the macro and the ENDM directive ends the
Jetininon

Parameters (arguments) can be used m a macro and they must be represented by senal numbers
seceded by @, de.. @1 and @22, The maximum number ot parameters is 7. Use of parame.ers

anves a macro a higher tlexibility to fit the generalized case.

A acros once defined can be used to define a new macro and nesting is allowed up to three levels.

I'o call a macro, use its label symbol as a mnemonic code and specify real values (symbols or
numerics) to replace the parameters in the macro as its operands in the ascending order of the
parameter numbers.

Whenever the assembler encounters a macro name, il generates a macro cxpansion for the in-
structions defined as the macro and invokes those instructions.

The assembler outputs the assembly list with all macros expanded and their parameters replaced
with real values. Macros can be detined anywhere in a program before they are calied.

A macro is similar to a subroutine on the point that it 1s cailed where its function is needed in a
program. However, unlike a subroutine, macro cail does not transfer control to the macro. Instead.
instructions defined as the macro are wnserted there in the program when the program is assembled.

The listing below shows an example of the macro use. The MACRO directive, ENDM directive, in-
structions defined as a macro and macro call instruction (on line 11) are marked with an asterisc

T
0OOLE 0000 * MACRD INT 1 A macro whose label
D002 0000 * @3 LD A+ (@1) 1 pame is INT is defined.
HOO3T 0000 * SUE < Four parameters are us-
QODar ODOO * JR N, @3 ed.
000S: 0000 * LD (R4),A
000kL: ODOO * ENDIM 7 A macro whose label na-
0007t 0000 * MACRD STRING | e is STRING is detined.
0008 0000 * LEFM reyez’ |
0009 0000 * ENDM :
0010 0000 H -
O0tl: 0000 + INT GIV:4,2TART » ANTZ
0000 3ALS00 * START: LD ALLDIV) 7 Macro INT is expaned
0003 DLOZ * SUEB 2 ! and assembled with its
0003 20F9 * JR N TART | parameters replaced with
0007 321400 * Lo CANSY A i the real values.
000A * ENDM
0012 OO0A ¥ INT oo My LOOF
DOOA 1A ¥ LunF: LD feiDE) 7 Macro INT is expanded.
O00R DLO2 * <IIB z “ Error message U is
0000 Q0FE * JR NC LOOF ' printed in the message
GOOF 220000 I Ex Lo (24),A column due to lack of a
~ . oolz * ENLM ~ parameter value.
0013 001D H
0014 0012 » STRING AL BC
00tz 4% * DEFM “ABL Y 7 Macro STRING is expan-
0n1s * ENDM 1 ed.
0015 0015 A0 Div: DEFE +OH
0014A: OD1TA OF ANZ 2 LEFR 1
NpL7: 0017 END

46

— IF, IFF, IFT, IFD, IFU /ENDIF —

The IF directives instruct the assembler whether or not the text following them is tc te assembl-
ed. If the condition is met, the instructions between the IF directive and the END directive are
assembled. Otherwise, they are ignored.

Following five IF directives are provided for setting different conditions.

IF operand If the operand is zero, instructions following the IF directive are
assembled.
Otherwise, they are ignored.

[FF operand The function is the same as IF. (IF False)

IFT operand If the operand is not zero, instructions following the IFT directive are
assembled. Otherwise, they are ignored. (IF True)

IFD operand If the operand is defined, instructions following the IFD directive are

‘ assembled.

Otherwise, they are ignored. (IF Defined)

IFU operand If the operand is not defined, instructions following the IFU directive
are assembled. Otherwise, they are ignored. (IF undefined)
This directive is used in a macro.

When a label symbol is used as the operand of the IF, IFF, or IFT directive, it must be defined
before the IF directive. That is, the value of the label symbol must be determined before the
assembler reads the IF directive. It is also possible to use an expression in which a numeric is added
or subtracted to/from a label symbol as the operand of the IF, IFF and IFT directives.

SAMPLE#:

CONDe El!
IF CONG
AL ALM Assembled as COND =0.
LD (DEY s A
ENLIF 7
iF COND+1
1 OE " Not assembled as COND +1#0.

{DEY A |

ENDIF 7
IFF COND
XOR M Assembled as COND =0.
Lo {DEY- A
ENDIF
IFT CIOND
OF M Not assembled as COND =0.
Lo (DEY A
ENDIF .]
END

47

0001
00Oz

3 OZAMFLE#RZ

MACRD PLSHNM

[s1a1v]V]
Q000
Qo000
Q000

o R ¥k ok

LI

+ 4

+.

H
EMDIF
* ENDM

D019

*

DE . HL

[P u =1

*

Lhon
+

L)

Assembled as parameter
3 is defined.

ra
IR
2]

|

71 Not assembled as para-

| meter 4 is undefined.
ODES ,."] Assembled as para.aeter
FLDES

+

4 is undefined.

+ b A

— DEFB n (DEFine Byte) —

This directive sets constant n (1-byte numeric) in the address of the line on which this dirctive is
written. A label symbol equated to a 1-byte constant with the EQU directive may be used in place of
n.

This directive as well as DEFW and DEFM described below is often used to generate message,
graphic data, code conversion table, data table and so on.

The following example generates message ERROR in ASCII code with the DEFB directives.

¢ OLFF3 OR A
0014: 1FF4 £ JF IyREADY
0015 1FF7 LD DE MESGOD
0014 1FFA CDISOO0 CALL MSG
. 0017 1IFFD C30000 E JF MAIN1
GOLE: 2000 (0015 MZG: Eq OC1%H

ENT i "ERRORY

— DEFB ‘S’, DEFB “S” (DEFine Byte) —
This directive sets the ASCII code corresponding to the character enclosed in single or double
quotation marks in the address of the line on which this directive is written.

Since this directive converts characters to corresponding ASCII codes, the above program
MESGO can also written as follows with this directive.

ENT T OERRD
DEFE
DEFE /
DEFER
DEFE
LEFE !
DEFE
MESGL DEFE Please notice the way in
NECE which single and double
ENE quatation marks are us-
ed.

A A Tmmn

L

49

— DEFW nn’ (DEFine Word) —

This directive set n’ in the address of the line on which this directive is written and n in the follow-
ing address; in other words, it sets two bytes of data. A label symbol equated to a 2-byte constant with

the EQU directive may also be used in place of nn’.

SEFY CMET: ENT
SFF1 CEFE A1H
SFFZ LEFis MDA
SFF4 LEFE 42H
SFFS DEFW CMOB+3
SFF7 DEFE g
SFFEE £ DEFW MOz
SFFA DEFEB alH
SFFE CONSTO: ENT
SFFR OFCd DEFW 1OFH
SFFD CONTTLD ENT
o SFFEDR & ! DEC ChnsaH
11 SFFF ENT

— DEFMW’S’, DEFM “S” (DEFine Message) —

COMMAND

TABL

This directive sets the character string (S) enclosed in single or double quation marks in ASCII
code in addresses starting at that of the line on which this directive is specified. The number of
characters must be within the range from 1 to 16. On the assembly listing, codes for 4 characters are

output on each line.

50

2 X MESGIT ENT

o D 4SS2T AR DEFM EREDES
2004 52

200% 00 DEFE O0H
TO0A MEZG1: [DEFM CATRID
200A 4327

2000 0D UEFE 2DH
00D EMND

CEEROR"

=

— DEFS nn’ (DEFine Storage) —
This directive reserves nn’ bytes of memory area starting at the address of the line on which this
directive is written. That is, this directive adds nn’ to the reference counter contents; the contents of

addresses skipped are not defined.

TEMRTL ENT i BUFFER A
DEFS :
TEMFL: ENT i BUFFER B
DEF: Z
TEMPZ: ENT i BUFFER C
0007 DEFZ z
0008 : TEMFZ: ENT 3 BUFFER D
0009 4BERD DEF= 2%
00103 4C3D0 BFFR: ENT s BUFFER E
OO11: 403D DEFZ DAH
. 0012: 4C87 BUFFER: ENT 3 BUFFER F
0013: 4547 DEFS z
GC1as ACAE IND

—_—
The addresses are increased by amounts corresponding to the values indicated by the

respective DEFS statements.

51

— LIST, UNLIST —

These directives control output of the assembly list.

LIST Outputs the assembly list following this directive. If neither LIST nor UNLIST is

specified, this directive is executed implicitly.
Suppresses output of the assembly list following this drirctive.

UNLIST

The example below shows the text in the edit buffer and its assembly listing to illustrate fhe functions
of the LIST and UNLIST directives.

GETCHR:CALL GETI!C
LE EyA
RET

UNLIST

GETEUF:LD DE.BUFFEF
CALL GETIL

RET

LIST
PUTBUF:LD DE,RBUFFER
CALL FUTIL

RET

END

D001 DOHO
QOO

QOO0 CDGOO0
o003 47
0008 ¢
QO0%

OOCS

COOC 1100600
DOOF CLOCOO
D015 D012 9
GOLes CGOL13

Actual text in the edit buffer

E GETCHR:

.
?

E FPUTBRUF:
E

CALL
Lo
RET

UNLIST
Lo
CALL
RET
END

52

—] Assembly listing of the text
1 above.
Although the assembly
listing of the GETBUF
routine following the
UNLIST directive are not

0E,BUFFER |Output, discontinuous

change of the address in-
dicates that the GETBUF
routine is assembled.

— SKP n (SKiP n lines) —

This directive feeds n lines and leaves a space between the preceding and following parts of the listing
to make the listing easy to read.

NORMAL RETUEREN

COMMON:T ENT H
XOR A A --00
€ Lo (TEMFD) A s CLEAR oMl BUFFER
E Lo DE s MESSU s "READY"
RET
SKF T,
{3 line feeds are made.
i
|
7 ABNORMAL RETURN
ABNRET: ENT s SET INVALID MOOD

END

— SKP H (SKiP Home) —

This directive starts a new page.

— END (end) —
This disective marks the end of the source program. All source programs must be ended with this

directive. Assembly operation is not completed if this directive is missing. The assember outputs
END?

when it reads a source file which does not include an END directive.

53

2.4 ERROR MESSAGES

The monitor and editor-assembler detect errors. Errors detectd by the text-editor are indicated with
sings (—) preceding the error messages. Those detected by the assembler arc output in the message col-
umn of the assembly list.

2.41 Monitor error messages

FError message Meaning
System in The type of the system dxsx is wrong.

PFiIe not found The speuhé;iit:ﬂi-\;d; not !;):ﬁg“ I
Hardware An error_(;x.:czl-';egu-l_(k:cZ;é;;;gg{g S o h
Already exist ;A't“;l_e“:wr-ixh the same name aﬂc;gy" exists. o T
Already open The file is already opened. "
Not open An attempt was made to referece a Ix{;r;(;x yet opened. o

_Wrile protect The ;;le or device is wm;pro(eued. o
Not ready The disk drivcﬁis not rcad;a o
Too many files The number of files exceeds 32. T
No file space o H;eidl;k:p;;eilis insufficient l;t;e the file. o o
Unformat The disk is not formatted (nitalizedy.
Dev. name The device name is wong.

[Camtexcaute 1 Anauempt was made 10 make the device exccute impossible operation.
Illegal filename TIcwtixleAr;‘aAme is wrong. T o T
Tllegal filemode Thewfrniliein;x;«;n”wrona, S -

LPT: not ready The printer iy not connected.
Check sum o Ci1énk sum crmri(gais;e’t;c; ;:De rcadWeArrA(i)r) - o

2.4.2 Text editor error messages

. Relevant
Error message Meaning
commands
Full buffer Fdn buffer is full R, A
22? A nezanve numher is specified for n nf nT nJ and SO on. T, .
Large n greater than 655 35 is specified. T. 1, L, .VI, K,
D, B.Z
Not found The string (or strint 'l) \peklhkd in Smn (smn'l.g string 2, or S. C. O
Qﬂ(rmvl E\lrmsl was not ‘.ound !nllox\uw xlv o P
Invalid ; An illegul mmnmnd was cmcud OF 4N incorrect formul was used. iy cases
; Ex. #H CR_: There is no H command.
*S CR ,\ string searchcd for is not >pc‘uhtd
Not same The contents ol lhc edit buﬂer and thal of the specified flle are dif- V
ferent.
Bad command The formm of the file xomrol wmmand enl;red is incorrect. \ preceded
commands

54

2.4.3 Assembler error messages

Definition status

gram unit.

not defined in the current source pro- !

Meaning Example
message
E Indicates that a label symbol is being | E LD B, CONSTO
(External) - referenced extrnally; that is, the label is b The data byte CONSTO is undefined.

E CALL SORT

" L The address SORT is undefined.
EE BIT TOP, (IY+FLAG)

i *‘ *——The data byte FLAG is undefined.

| ———The data byte TOP is undefined.

|

processing.

Error message Meaning Example
C (illegal Indicates that illegal characters are used |
Character errer) | in the operand. i
F (Format error) ! Indicates that the instruction format is
} incorrect.
N (Non label | Indicates that no label symbol is | N EQU 0012H
symbol) i specified for ENT or EQU. : No label symbol
L (erroneous]l Indicates that an illegal label symbol is | L JR XYZ
Label error) i specified. ! XYZ is not defined in the current program.
I ‘ No external symbol can be referenced in
‘ : the JR and DJNZ instructions.
! ‘ If such a label symbol is specified, the L
l message is displayed.
M (Multiple Indicates that the label symbol or macro | M ABC: LD DE, BUFFER
label error) name is defined two or more times. M ABC: END
L—ABC is defined twice.
O (erroneous Indicates that an illegal operand is| O JP +100 - ABC
Operand) specified.
Q (Questionable | Indicates that the nmemonic code is in- | Q CAL XYZ
. AL
mnemonic) correct. CALL XYZ is correct.
S (String error) Indicates that single or double quation | S DEFM GAME OVER
S eV A= YYES
. marks are missing. DEFM ‘GAME OVER'’ is correct.
V (Value over) Indicates that the value of the operand | V LD A, FF8H
is out of the prescribed range. v SET 8,A
\Y JR -130
U (Undefined Indicates that the value required are not | U JR Z, @3
parameter) » specified in the macro call instruction or ‘ U IF ABC
| the operand of the IF directive is not ‘
defined. !
END? Indicates that the END directive is miss- °
E ing from the source program.
Pass-1 error Assemble is aborted during the pass-1 } The operand of ORG, EQU, DEFS, IF, IFT

or IFF was not defined.
e Two or more macros were defined under the
same label name.

55

The following messages are output in a symbol table.

Indicates that the symbol is a label defined with the ENT directive.

= Indicates that the symbol is a label defined with the EQU directive.

M (Muiti-defined) Indicates that the symbol is defined two or more times.

U (Undifine) Indicates that the symbol is not defined.

56

