MINC-11

Book 6:
MINC Lab Module Programming

November 1978

This book describes program routines that control the MINC lab
modules. Part 1 explains conventions and definitions in lab

module programming. Part 2 contains detailed reference
descriptions for the routines.

Order Number AA-D575A-TC
MINC-11

VERSION 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - miaynard, massachusetts

First Printing, November 1978

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright (C) 1978 by Digital Equipment Corporation

The postage-prepaid READER’S COMMENTS form on the last page of this document requests the user’s
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
MINC-11 DECSYSTEM-2020

11/78-14

CONTENTS

PART | INTRODUCTION TO LAB MODULE PROGRAMMING

CHAPTER 1 LAB MODULE CAPABILITIES 1
LAB MODULE ROUTINES 1
Analog Signal Processing 1
Digital Sampling and Control 3
Measuring Time Intervals 3
Controlling Processes 4
Transferring ASCIl Characters 4
Maintenance Tools 4
LOCATING INFORMATION ABOUT LAB MODULES b5
LAB MODULE PROGRAMMING 6
Control Programs 6
Planning a Control Program 6
Program Structure 9
Testing 11

CHAPTER 2 MINC CONVENTIONS AND DEFINITIONS 13
SYNTAX CONVENTIONS 13

Operation 14
Configuration 15
Statement Form 15
Argument Table 17
Example/Result 20
Argument Descriptions 20
Related Routines 20
Restrictions 21
Errors 21
Examples 21

i

CONTENTS

ARGUMENT CONVENTIONS 21
Arrays and Array Elements 21
Mode Strings 22
OPERATING MODES AND MODE DESIGNATORS 23
Standard Mode 23
Default Mode 24
DATA TYPES AND NUMBER SYSTEMS 25
Number Systems 25
Format Conversion 25
BCD 25
Bits and Words 26
Bits and Lines 27
Masking 27
SERVICE SUBROUTINES 29
PROGRAM DYNAMICS FOR CONTROL PROGRAMS 29
Statement Execution 29
Immediate Mode 33
CONTINUOUS DATA TRANSFER 33
Transfer Dynamics 33
Array Partitions 34
Transfer Management Methods 35
WAIT_FOR_DATA 36
CONTINUE 38
ANALOG CHANNEL SPECIFICATION 40
Sequential Channels 40
Random Channels 42
TIME BASE 43
Internal Time Base 44
External Time Base 45
FREQUENCY HISTOGRAMS 45
Definitions 47
Discussion 48
Stored Histogram Arrays 50
ERROR DETECTION 51
Syntax Errors 51
Interaction Errors 53

CHAPTER 3 LAB MODULE PROGRAMMING EXAMPLES 55
EXAMPLE A. ANALOG SWEEP INTEGRATION 56
EXAMPLE B. SIGNAL AVERAGING 58
EXAMPLE C. SAVING CONTINUOUS INPUT 61
EXAMPLE D. DIGITAL ANALYZER CONTROL 62
EXAMPLE E. ARITHMETIC QUIZ 65
EXAMPLE F. ANIMAL TRACKING 67
EXAMPLE G. TIME INTERVAL MEASURING 70
EXAMPLE H. OSCILLOSCOPE CONTROL 71

v

CONTENTS

PART 2 ROUTINES

AIN Collect Analog Input 75

AIN_HIST Generate Analog Input Histogram 86

AIN_SUM Accumulate Sums of Analog Input 93

AOUT Send Analog Output 102

CIN Collect Character String Input 110

CONTINUE Manage Continuous Data Transfer 115

COUT Send Character String Output 119

DIN Collect Digital Input 123

DIN_EVENT Enable Response to Independent Digital Input Lines 131
DIN_MASK Define Digital Input Mask 133

DOUT Send Digital OQutput 136

DOUT_MASK Define Digital Qutput Mask 142

FFT Perform Fast Fourier Transform 144

GET_TIME Read Current Elapsed-Time Count 149
MAKE_BCD Convert Variable to BCD Format 151
MAKE_NUMBER Convert BCD Format to Numeric Value 153
MAKE_TIME Convert DIN Timestamp Values to Numeric Values 155
PAUSE Suspend Program Execution 160

POWER Calculate Power Spectrum Coefficients 164
PST_HIST Generate Post-Stimulus Time Histogram 167
SCAN_BIT Test Condition of All Bitsina Word 172
SCHEDULE Schedule Program Response to a Time Event 174
SCHMITT Enable Program Response to a Schmitt Trigger Event 178
SET_BIT Change Condition of a Single Bitina Word 182
SET_GAIN Set Preamp Gain 184

SET_LINE Change Condition of Digital Output Line 188
START_TIME Start the Elapsed-Time Counter 190
TERMINATE Stop Continuous Data Transfer 193

TEST_BIT Test Condition of a Single Bitin a Word 196
TEST_GAIN Check Gain and Mode of Preamp 198
TEST_LINE Test Condition of Digital Input Line 201
TIME_HIST Generate Histogram of Time Interval Data 203
WAIT_FOR_DATA Wait for Complete Array Partition 207

INDEX 211

Figure

11.

13.
14.
15.
16.
17.
18.
19.
20.
21.

22,
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.

COPNI O oM

Diagram of Counter, Vials, and MINC. 7

Time Line for Measurement Process. 8

Function Diagram for AIN_SUM. 15

Argument Table for AIN. 17

Defining Bits in a Word. 27

Correspondence of Lines and Bits. 27

How a Mask Works. 28

Reading Input Through a Mask Word. 28

Sending Output Through a Mask Word. 29
Checking for Service Requests During Program
Execution. 30

Normal Response to a Service Request. 30

Delayed Response to a Service Request. 31

Array Partitions and Array Indexes. 34

Circular Array Structure. 35

Array Partitioned into Two Linear Arrays. 35
Using WAIT_FOR_DATA to Manage Input Transfers. 37
Using WAIT_FOR_DATA to Manage Output Transfers. 37
Using CONTINUE to Manage Input Transfers. 39
Using CONTINUE to Manage Output Transfers. 39
Sampling Sequential Channels. 41

Sampling Sequential Channels Using an Array
Element. 41

Sampling Order in Channel Array C%. 42
Sampling Order in Channel Array C1%. 43
Sampling Order in Channel Array C2%. 43

How a Routine Selects the Clock Frequency. 44

Age of Employee Histogram Example. 46

Age of Employee Histogram with Fewer Bins. 46
Age of Employee Histogram with More Bins. 47
The Same Range of Interest and Overall Range. 47
Different Endpoints for Range of Interest and Overall
Range. 48

Partitioning the Histogram Ranges into Bins. 48
Histogram of Sample from Sawtooth Wave. 49
Correspondence of Histogram Array and Bar Graph. 50
Instrumentation for Example A. 56
Instrumentation for Example B. 59
Instrumentation for Example C. 61
Instrumentation for Example D. 63
Instrumentation for Example F. 68

7/

CONTENTS

FIGURES

CONTENTS

Figure 39.
40.
41.
42,

43.
44.
45.
46.
47.

Instrumentation for Example G. 70

Instrumentation for Example H. 72

Display of Signal Being Converted. 90

Histogram Generated with Too Narrow a Range of
Interest. 90

Histogram with Appropriate Range of Interest. 91
How Aliasing Occurs. 147

Inferring Elapsed Time from Timestamp Values. 158
Defining Sweeps and Intervals for PST_HIST. 169
Defining Intervals for TIME_HIST. 205

viii

Table 1.

A e

BCD Codes for Decimal Digits. 26

Program Operations Requiring Significant Execution
Time. 32

Routines Requiring Significant Execution Time. 32
Bins and Bin Ranges. 49

Routines Illustrated by Each Example. 55

Inferred Elapsed Time Values. 158

x

CONTENTS

TABLES

PART 1

INTRODUCTION TO
LAB MODULE
PROGRAMMING

CHAPTER 1

LAB MODULE CAPABILITIES

This manual describes the routines that control the MINC lab
modules. Programs use these routines to control data transfer
from an instrument to the MINC workspace or vice versa.

This manual contains two major parts. Part 1 describes the op-
erations performed by the lab module routines, fundamental
programming concepts in transfer and control, the terminology
and conventions used throughout the manual, and some pro-
gram examples. Part 2 describes how to use the routines; these
descriptions are arranged alphabetically for convenient refer-
ence use.

With the appropriate system configuration, the 1ab module rou-
tines provide six general classes of capabilities. These capabili-
ties are analog signal processing, digital sampling and control,
measuring time intervals, controlling processes, transferring
ASCII characters, and providing maintenance functions.

The following paragraphs briefly describe each of these general
capabilities.

Analog signal processing involves data transfer to and from
analog instruments. “Analog” refers only to the characteristics
of the signal and instrument. That is, the value of an analog sig-
nal is continuously varying and capable of assuming any of an
infinite number of values within a small range. A digital valueis
capable of assuming a limited number of discrete values within
a small range. MINC represents the data internally in digital
form, so that analog data transfers require conversion between
the analog value and the digital representation of the value.

>

LAB MODULE
ROUTINES

Analog Signal
Processing

LAB MODULE PROGRAMMING

Input MINC routines read the values of analog signals from in-
struments in a process called analog-to-digital (A /D) conversion.
For example, voltage values are analog signals that MINC can
read. The program can either hold the values in the workspace
for immediate analysis or store them on a storage volume for a
future program to analyze.

Three routines control analog input: AIN (Analog INput),
AIN_HIST (Analog INput HISTogram), and AIN_SUM
(Analog INput SUMmation).

AIN collects input from instruments connected to the A/D con-
verter. It can collect a single data value (a point), a specified
number of values (a sweep), or any number of values
where the number is not specified in advance (a stream).
AIN_HIST collects a sweep of analog values and generates a
histogram using the values. AIN_SUM collects multiple sweeps
and accumulates the values, a process commonly known as sig-
nal averaging.

AIN and AIN_SUM can control the sampling process in several
ways. In one case, a trigger line from the instrument itself
causes each conversion. In another case, they use the clock mod-
ule to control the input, collecting values at regular intervals. In
another case, they use periodic signals from an external source
to control the sampling.

Output MINC routines send values in the workspace to instru-
ments that accept analog signals in a process called digital-to-
analog (D/A) conversion. Storage oscilloscopes and analog plot-
ters are examples of instruments which accept analog signals.

AOQOUT can control the output process in a variety of ways. Inone
case, called burst output, AOUT sends the values as fast as the
D/A converter is capable of converting them. In another case,
AOUT uses the clock module to control the output, sending
values at regular intervals. In another case, AOUT uses periodic
signals from a source other than the D/A converter or the clock
module to control the D/A conversion process. These signals can
come from a function generator connected to Schmitt trigger 1
(ST1) of the clock module.

Analysis MINC routines can perform a Fast Fourier Trans-
form (FFT), an inverse transform (FFT) or a power spectrum
analysis (POWER) on computed values or on data acquired by
A/D conversion routines. The program can transfer the results
2 of the analysis to a storage volume, display the results using

MINC graphic routines, or output the results to analog instru-
ments using AOUT.

Digital sampling and control involves data transfer between
MINC and digital instruments or digital switches. Digital appa-
ratus produces or responds to a limited number of discrete
values, typically binary logic values.

Each MINC digital transfer unit consists of 16 lines. Digital
data transfers can transfer the values of all lines simultaneously
— for example, to or from BCD instruments. They can also con-
trol the states of individual lines independently for reading
status lines or setting control switches.

Input Four routines control input from the digital units: DIN
(Digital INput), DIN_MASK (Digital INput MASK),
DIN_EVENT (Digital INput EVENT enable) and
TEST_LINE (TEST input LINE). DIN collects data from digi-
tal input units in either single points, sweeps, or continuous
streams. DIN can record the time when values are read from the
unit. In combination with DIN_MASK, DIN can screen out un-
wanted signals. In combination with DIN_EVENT, DIN can
respond immediately to an instrument’s change in state. The
preceding routines read all 16 lines simultaneously.
TEST_LINE can determine the state of an individual line.

Output Three routines control output to the digital units:
DOUT (Digital OUTput), DOUT_MASK (Digital OUTput
MASK), and SET_LINE (SET output LINE condition). DOUT
sends values to instruments under clock control or under control
from the instruments. In combination with DOUT_MASK,
DOUT can send signals only to relevant lines. The preceding
routines send information to all 16 output lines simultaneously.
SET_LINE specifies the condition for an individual output line.

MINC routines can measure the time elapsed between two
events. Either of the events can be internal (caused by the pro-
gram) or external (caused by an instrument).

START_TIME and GET_TIME provide capabilities for
measuring elapsed time — for example, the interval between
sending a start signal and receiving a response. DIN, in com-
bination with MAKE_TIME, can automatically measure
elapsed time during digital sampling.

TIME_HIST (TIME interval HISTogram) and PST_HIST
(Post-Stimulus Time HISTogram) measure the time intervals

LAB MODULE CAPABILITIES

Digital Sampling and
Control

Measuring Time
Intervals

LAB MODULE PROGRAMMING

Controlling Processes

Transferring ASCII
Characters

Maintenance Tools

between signals from instruments and construct histograms
based on the interval data.

MINC routines can coordinate program execution with the time
of day or time intervals (time events) or with signals from instru-
ments (external events). SCHEDULE and PAUSE coordinate
the program with time events. Program subroutines can be
scheduled to execute at a specified time of day, regardless of
what is happening in the main program. SCHMITT coordinates
the program with external events on the clock module Schmitt
triggers. For example, signals from an instrument can control
what part of the program executes next and can determine what
control signals are sent to other instruments.

These process control routines are very powerful because they
allow the program to perform several logically distinct opera-
tions apparently simultaneously. For example, a program could
perform computations on data already received and interrupt
those computations only when an instrument signals that it re-
quires attention from the program.

The ASCII character transfer routines control communication
with instruments which transmit characters using the standard
protocol for serial transfer (bit serial transfer). Most terminals
(including the MINC terminal) use this protocol. All MINC sys-
tems include the serial transfer units needed for this kind of
transfer. (The IEEE bus routines also transfer ASCII charac-
ters, the difference being the protocol used in the transfer, which
is known as a bit parallel, byte serial transfer protocol. See Book
5 for description of the IEEE bus routines.)

Input The CIN routine (Character INput) collects character
strings from instruments transmitting serial ASCII characters.

Output The COUT routine (Character OUTput) sends charac-
ter strings to instruments accepting serial ASCII characters.

Conversions For reasons of speed and efficiency, several of the
input routines collect data in nonstandard formats. Other rou-
tines convert the data to standard numeric form so that the pro-
gram can perform computations using the data. (See “Format
Conversion,” page 25.)

MAKE_TIME converts elapsed-time measurements.
MAKE_BCD converts standard numeric values to BCD format
values and MAKE_NUMBER converts BCD format values to
standard numeric values.

Manipulations Several MINC routines require information in
special formats. Other MINC routines provide the formatting
capabilities.

SCAN_BIT, SET_BIT, and TEST_BIT provide capabilities for
inspecting input data (particularly from digital units) in detail
and for creating required output control values (for analog or
digital output).

Two books in the MINC set explain how to use the lab modules.
Book 6 describes how to write programs to control communica-
tions with external instruments. Book 7 describes how to con-
nect external instruments to the devices installed in the chassis.
These two books are closely related. You can start with either,
depending on your preference (programs first, or instruments
first). Throughout, each book provides guidance to relevant sec-
tions in the other.

Book 6 In addition to deseribing how to use the lab module
routines, Book 6 summarizes which lab modules are required by
each routine. The configuration summary appears at the begin-
ning of each routine description as a set of function diagrams. Of
course the function diagrams lack the detail necessary to serve
as instructions for connections. However the configuration de-
scription does serve two important purposes:

1. Ifyou prefer to begin by planning a program, the configura-
tion diagram serves as a reference guide to Book 7 by show-
ing you exactly which modules are necessary. You can then
study only the relevant sections of Book 7 to make proper
connections.

2. When you are using a program, the summary serves as a
convenient way of verifying that no necessary modules are
missing from the chassis.

Book 7 Inaddition todescribing how to connect instruments to
the lab modules, Book 7 summarizes the routines that can con-
trol each module. This serves two important purposes:

1. When you are making connections, Book 7 refers you to the
correct routine so that you can use that routine to verify that
the connections are correct.

2. If you prefer to begin by planning the instrumentation, the
summaries in Book 7 serve as references to Book 6. You can

LAB MODULE CAPABILITIES

LOCATING
INFORMATION
ABOUT LAB
MODULES

LAB MODULE PROGRAMMING

LAB MODULE
PROGRAMMING

Control Programs

Planning a Control
Program

then study only the relevant routines in Book 6 after the con-
nections are complete.

Programs that control data transfer are called control pro-
grams. Control programs differ from programs that perform
only computations. The essential characteristic of a control pro-
gram is that it coordinates its activities with activities outside
the computer system. That is, time, and the time intervals be-
tween events, are fundamental program parameters.

A control program can send signals to start or to stop data
transfer, can start data transfer on receiving signals from in-
struments, or can examine inputs from instruments and modify
the conditions for other instruments based on the results. In
short, when you want to use MINC to control any external pro-
cess, the program you write is a control program.

The tools MINC provides for writing control programs are the
lab module routines and the IEEE bus control routines. The lab
module routines supervise communications between the labora-
tory modules and the instruments connected tothem. The IEEE
bus routines supervise communications between IEEE stan-
dard instruments and MINC via the IEEE bus (see Book 5).

Designing an experiment and writing a control program have
the same prerequisite: planning. Planning the control program
is an integral part of the whole measurement plan. In fact, the
control program itself is an important part of the instrumenta-
tion and must be planned, tested, and calibrated in the same way
as the rest of the instrumentation.

The most difficult step for novices in designing a control pro-
gram is translating the measurement, or instrumentation, plan
into a control program plan. You must identify and characterize
all sources of input to the program and all destinations for output
required by the program.

Three distinct sources provide three fundamental classes of
input. First, input can come from people, who provide the identi-
fiers or parameters unique to a particular run of the program or
experiment. Second, input can come from stored files which can
contain general parameters for an experiment and various se-
quences of codes or stimuli required by the experiment. Third,
input can come from instruments connected to the system,
which provide signals that can be interpreted by the program
either as data or as controlling signals.

The set of possible output destinations is the same: people, stored
files, and instruments. You can send output to people in the
form of messages, requests for input, or summary displays on
the screen. You can store output on files containing records of ex-
periment conditions, raw data, or processed data. You can send
output to instruments in the form of control signals.

To formulate a control program plan, you have to consider the
measurement plan as a sequence of input and output events. By
identifying and diagramming all of the relevant inputs, outputs,
and their interactions, you construct a program plan.

The computational requirements of the program (which we
have not mentioned yet) are completely defined by the input and
output relationships. For example, if one of the output require-
ments is to store the means and standard deviations for the input
data, you know that the program must calculate these statistics
at some point after the input is complete. When you have com-
pleted this planning stage, study the relevant example in Chap-
ter 8 and the appropriate reference sections on routines in order
to translate the plan into a program.

Counter

/ Station

Connections

Scintillation Counter

J
I/,’””/I

"y

MINC

MR-1928

Figure 1. Diagram of Counter, Vials, and MINC.

LAB MODULE CAPABILITIES

LAB MODULE PROGRAMMING

Concrete Example Suppose the measurement plan requires
reading the values from a scintillation counter. The counter
must be connected properly to the MINC system. Someone must
load the counter with full scintillation vials, turn on the counter,
start the control program, and enter parameters (for example,
the number of vials).

One useful way to conceptualize the series of events involved is to
draw a “time line” for the process. One possible representation of
the process described above appears in Figure 2.

Read Value Read Value
t ty
Program Events:
Time
((_ {(4
1) T)] T)
Instrument Events: . .
Trigger Trigger
I Signal l Signal
t1 t3
Vial Arrives Vial Arrives
at counter at Counter
Station Station

MR-1929

Figure 2. Time Line for Measurement Process.

In this case, the time relationships are simple, and the time line
is simple. However, even a simple time line demonstrates some
of the control decisions you must make. For example, how long is
the interval between t, and t;? If the time interval is known, then
the control program can expect to find a valid reading after that
time interval has elapsed. However, if the time interval is varia-
ble, then some other source, perhaps a signal from the counter
itself, must notify the program that a valid value is available.
What controls the interval between t, and t;? In some cases, the
counter itself automatically advances to the next vial.

Decide how to connect the instrument (in this case, the scintilla-
tion counter and the ready signal) to the lab modules. Use both
the module descriptions in Book 7 and the manufacturer’s litera-
ture for the instrument to help you make decisions about
connections.

The series of events identified so far constitute the innermost
loop of the program:

1. Wait for a “ready” signal from the counter.

8 2. When it occurs, get the counter value.

3. Return to step 1.

In isolation, these events handle only the measurement process.
More decisions are necessary to describe the complete input and
output process. For example, is the total number of readings
known in advance? If not, what are the criteria for starting and
ending data collection? While it is waiting for the next signal,
the program could perform calculations on preceding values to
decide whether or not termination criteria have been met. Are
the instruments designed so that they can be turned off by pro-
gram signals, or should the program notify humans that data
collection is finished?

The measurement problem described here is relatively straight-
forward. However, the same principles of planning apply to the
most complex control situations.

Notice that none of the decisions made in the example were pro-
gramming decisions—they are measurement process decisions.
When you have made these decisions, you can begin writing the
program itself. Control programs contain three logical sections:
a beginning (preparation or prologue), a middle (the actual mea-
surement or control process), and an end (shutdown or epilogue).
The middle part performs the measurement loop, the actual
“work” of the program. The beginning and end parts provide
context, record-keeping, and termination procedures.

Beginning The beginning of a well-designed control program
determines the context in which the measurement takes place,
and sets up initial conditions. The beginning section can be very
simple or complex, depending on your requirements. For exam-
ple, the program might request identifying information about
the experiment.

100 PRINT ‘Enter your name please’

110 LINPUT N$

120 PRINT ‘Enter identifier for this experiment’
130 LINPUT E$

140 PRINT ‘Enter file name for the data’

150 LINPUT F$

160 OPEN F$ FOR OUTPUT AS FILE #1
170 PRINT #1,CLK$,DAT$,E$

180 PRINT #1,N$

190 PRINT ‘Enter maximum number of trials’
200 INPUT N

LAB MODULE CAPABILITIES

Program Structure

LAB MODULE PROGRAMMING

10

This program fragment prompts the person running the pro-
gram to enter some essential information about the session. This
is good programming practice for several reasons. It allows the
program to be reused for many sessions, without the danger of
losing data. The person running the program (who might not
have written it) does not have to remember what information to
provide, or in what order to enter it.

Middle The middle of a control program contains the state-
ments for the measurement loop(s), for output transfers, and for
any computations required during the process. The actual de-
sign of the loops depends on your configuration and application,
so it is impossible to state detailed guidelines.

Some general guidelines are possible:

1. The time relationships between events are the most impor-
tant and difficult aspects of the process to control. Verify
that the program in fact meets the timing requirements of
the process. Programs containing the wrong timing rela-
tionships often execute successfully, providing results mis-
leadingly similar to the correct results.

2. The endpoints of the measurement process are more diffi-
cult to control than the middle. Pay close attention to the
mechanism for starting measurements or transfers (and the
time relationships involved) and to the mechanism for deter-
mining the end of the process and terminating it in an or-
derly way.

3. Unlike computational programs, the control program state-
ments themselves convey little information about what they
control or how they do it. Document the time and event rela-
tionships carefully and completely, both in program REM
statements and in written records (like the time line
sketches and instrumentation records in Book 7).

4. The lab module routines report on those erroneous condi-
tions they can detect (see “Error Detection,” page 51). How-
ever, the routines can detect only well-defined, general error
conditions. You must be alert to the specialized error condi-
tions that could occur in your application and monitor the
process and results closely throughout to avoid invalid pro-
gram runs.

End The end of a control program contains the procedures for
terminating the session. The program end must halt any data

transfer still in progress, save any required workspace arrays,
close open file channels, and compute and display any summary
data. For example, the end section of a program might contain
statements like these:

890 CLOSE #1

900 PRINT N1;’ trials completed.’

910 PRINT ‘Session ';E$;' completed at ';CLK$;" on ";DAT$

920 PRINT * — — — — Be sure to reset the equipment - — — —'
930 END

When a control program has been written, it must be tested
thoroughly. The most rigorous way to test a program is to simu-
late the experiment, that is, to run several complete test sessions,
using either computed input or known input signals (for exam-
ple, waveforms from a function generator). Some instruments
supply calibration standards you could use in program testing.

By running a complete session, you test several aspects of the
program. First, you learn whether the values accumulated dur-
ing the session stay within expected limits (for example, dosums
become too large for integer variables?). You also test error-
detection sections of the program by deliberately providing er-
roneous conditions. Most important, you test the end section of
the program. Does the program respond correctly to termina-
tion criteria? Does the program collect exactly the number of
data points you intended (or one too many or one too few)? Does it
save the data correctly? Do the test data correspond properly to
the known input?

Check your data analysis procedure to ensure that it works cor-
rectly with the test data. Don’t believe the numbers just because
they were calculated by a computer system. If possible, run your
analysis program on a specially constructed test file of numbers
for which the correct answers are known. Thorough testing can
only increase your confidence, both in your own programs and in
MINC itself.

LAB MODULE CAPABILITIES

Testing

11

CHAPTER 2

MINC CONVENTIONS AND

The reference descriptions in Part 2 of Books 4, 5, and 6 all share
a common structural framework. Each reference starts at the
top of a new page, headed by the name and title of the routine.

The name of each routine provides information about its func-
tion. For example, “AIN_HIST” indicates that the routine deals
with analog input (AIN) histograms (HIST). Some general
name conventions follow:

1. A at the beginning of a name refers to Analog.
2. C at the beginning of a name refers to Character.
3. D at the beginning of a name refers to Digital.

4. In combination with the above letters, IN refers to
INput transfer and OUT refers to OUTput transfers.

5. The suffix HIST names routines that generate histo-
gram arrays.

6. The suffix TIME names routines that measure elapsed
time.

Many routine names contain the underscore character for ease
of reading, understanding, debugging, and program mainte-
nance. If MINC rejects a program statement, check to be sure
that the routine name contains the underscore character, not a
hyphen.

DEFINITIONS

SYNTAX
CONVENTIONS

13

LAB MODULE PROGRAMMING

Operation

14

The routine title summarizes the routine’s function. For exam-
ple, the title for the AIN routine is “collect analog data.”

The reference for each routine contains the following major sec-
tions.

Operation Short description of the capability of
the routine.

Configuration The lab modules required for the rou-
tine and any optional modules. (Not
applicable in Books 4 and 5.)

Statement form The complete syntactic form of the
statement for using the routine.

Argument table Summary table of the argument de-
scriptions, valid data types and
values, and default values.

Example/Result Description of several sample state-
ments that would be valid in the
proper program context.

Argument Detailed description of each argu-
descriptions ment for the routine.

Related routines List of the other lab module routines
having similar or complementary
function.

Restrictions Collection of interactions, restric-
tions, esoteric details, and hints for us-
ing the routine.

Errors List of error conditions, messages, and
corrective actions for the routine.

Examples A reference to the location in this book
of a short, complete program example
demonstrating use of the routine in a
real problem solution.

Each reference uses this framework. If any section is irrelevant
to the routine, the book says so explicitly. The following para-
graphs discuss both the contents of, and the conventions apply-
ing to, each section.

The operation section is a concise statement of the capability of
the routine, which outlines the routine in the simplest possible
way. It always refers to the sections in Part 1 where relevant con-
cepts are defined and explained.

CONVENTIONS AND DEFINITIONS

The configuration section summarizes the lab modules neces-
sary to use the routine. The summary consists of funection dia-
grams of the modules, in the same left-to-right order as they
must be positioned in the chassis. Diagrams for required mod-
ules appear in black; diagrams of optional modules appear in
blue. You must install the required modules to use the routine.
Install whatever optional modules you need for the capabilities
you want.

For example, the configuration for the AIN_SUM routine
follows:

preamp dual mux
OO

)
i

O -0
040
o0
o b

——0-\4--0

Figure 3. Function Diagram for AIN_SUM.

This means that the A/D converter and Clock 0 (in black) are
both required, and the A/D converter must be to the left of the
clock. The preamp and dual mux (in blue) are both optional, de-
pending on whether the program requires the amplification and
multichannel capabilities they provide. If the program requires
them, they must appear in the order shown, to the left of the A/D
converter.

The statement form shows the valid statement syntax for the
routine. The form consists of the routine name and meaningful
descriptive names for the routine arguments. For example, here
is the statement form for AIN.

AIN(mode,data-name,data-length,trigger, A/D-clannel no.-of-
channels)

required elements The required parts of the form are printed
in black and must always appear as shown in the form. The rou-
tine name is always required and the parentheses are nearly al-
ways required. For some routines, some of the commas are also
required.

Thus, in the above example, AIN, the parentheses, and the first
comma are all required; data-name is the only required argu-
ment. This means that the following short statement is valid.

AIN(,V)

Configuration

Statement Form

15

LAB MODULE PROGRAMMING

16

Many other statements are valid, depending on what the routine
is supposed to do. For example, the following statements are all
valid.

AIN('DISPLAY’,R(),100,,3)
AIN('ST2,RANDOM',V(),50,,C%(),4)
AIN(.T,,.3)

optional elements All of the arguments printed in blue are op-
tional. That is, if you omit one of these arguments from the state-
ment, the routine assumes a predefined value called the default
value. The default values and conditions are summarized in the
argument tables and are discussed in detail in the argument de-
scriptions.

Argument lists for the MINC routines have been designed so
that use of all possible default values provides the most basic
function of the routine. For example, the following statement
specifies the most basic analog sampling function of immedi-
ately reading a single value into variable V from analog
channel 0.

AIN(V)

This statement is completely equivalent to the following one in
which the values for the arguments are specified explicitly in-
stead of by default. (The mode argument does not have an ex-
plicit default value, so no mode value appears in the statement.)

AIN(,V,1,0,0,1)

More complex statements (like those shown earlier) provide
more complex capabilities. In addition, the argument lists have
been designed so that required arguments appear early in the
list and optional arguments appear later.

commas The commas in the argument list serve as argument
separators when the arguments are specified and as “place-
holders” when the arguments have been omitted. Placeholder
commas are necessary only to indicate how many arguments
have been omitted to the left of an explicit argument. They are
never necessary to the right of an argument when that argu-
ment is the last one specified. For example, the following simple
AIN statement specifies analog channel 3 in the fifth argument.

AIN(\V,,.3)

CONVENTIONS AND DEFINITIONS

The commas are placeholders for the mode, data-length, and
rate arguments, which assume their default values. Notice that
no comma is required after 3. That is, the final comma in the fol-
lowing statement is not invalid, but it is also not necessary. (If
there were extra final commas, the program would notify you of
the error.)

AIN(.V,..3,))

It is important to realize that the following statements are not
equivalent. (In fact, the first one is not even valid.)

AIN(V,,,,3)
AIN(,V,,,3)
AIN(,V,,3)
AIN(,V,3)

From this you can see the importance of placeholder commas. In
debugging these statements, one of the first steps is to check the
commas carefully.

descriptors In the statement form, and in the argument table
and descriptions, the arguments are represented by meaningful
descriptors. For example, in the AIN statement form, “A/D-
channel” is a descriptor for the argument in which you specify
the analog channels to sample from. Obviously, a valid program
statement looks very different from the statement form, because
in the program statement you supply valid variable names or
constants in place of the descriptors. (See also the next para-
graph on argument tables and the section on “Argument Con-
ventions,” page 21.)

The argument table lists the argument descriptors for the rou-
tine. The top-to-bottom order in the table is the same as the left-

Figure 4. Argument Table for AIN.

Argument Type of Argument Valid Values Default Value
mode string expression CONTINUOUS,DISPLAY, standard mode
EXTERNAL,FAST,
LINE,RANDOM,ST2
data-name numeric variable -2048 to +2047; required argument
name or array full-scale values
name
data-length numeric expression =1 1
trigger numeric expression 0; > 0 to 655.35; 0
1 to 65,535
A/D-channel numeric expression 0 to 63 0
or array
no.-of- numeric expression 1 to 64 or channel 1
channels array length

Argument Table

17

LAB MODULE PROGRAMMING

18

to-right order in the statement form. (The top argument in the
table and the leftmost argument in the statement are both Argu-
ment 1.) For each descriptor, the table specifies the type of argu-
ment required, the valid values for the argument, and its default
value if it is an optional argument. Figure 4 is an argument table
for the AIN routine.

type of argument The table specifies the data type required
for each argument. The type specifications unambiguously de-
fine the set of valid arguments. For example, the type “string ex-
pression” means either a string literal, a string variable (or
array element), or a string operator expression. (See Book 2 for
full explanations of the data type terms.) The following list sum-
marizes all the data types in MINC BASIC.

Type Meaning
Numeric literal A number, e.g., 5, 3.141, 9%
Numeric variable An integer or real variable, a nu-
meric array element, e.g., A1, Q%,
B(2)

Numeric expression A numeric literal, numeric varia-
ble, or an operator expression with
a numeric result, e.g., 6, B(3),

A1(2)+5%.

Numeric array Integer or real array

String literal A sequence of characters in delim-
iters, e.g., 'george’

String variable A variable whose value is a string
or an element of a string array,
e.g., G§, D$(4)

String expression A string literal, string variable, or

an operator expression with a
string result, e.g., ’'Date’, MS$,
T$+HING

String array Array containing a set of strings

The routines accept numeric values for many arguments, with-
out requiring the values to be either integer or real. If the rou-
tine requires a whole number argument, it discards any frac-
tional part of a real value before using it as an argument.

For some arguments, the table contains an entry like “numeric
variable name.” The notation “name” does not appear in the data

CONVENTIONS AND DEFINITIONS

type table. “Name” is used to indicate that, during execution, the
routine assigns a value to the argument. That is, in most cases,
you do not supply an argument value for the routine to use; the
routine assigns the argument value for your program to use.

The range of values that the argument could contain (after the
routine has executed) appears in the Valid Values column of the
table.

valid values The table summarizes the valid range of values
for each argument. The ranges are always inclusive. The argu-
ment descriptions explain fully the meanings of the different
possible values.

The valid values summary contains several kinds of infor-
mation.

When the valid values have an open-ended range, the routine ac-
cepts any value in that range. For example, a numeric value
greater than 0 means any numeric value greater than 0, up to
the limit for that data type (32,767 for an integer value, and 1.7 X
10°® for a real value). The routine cannot check whether or not
the value you specify is meaningful in the program context.

If valid values have a specific range, the routine always checks
to make sure that the actual argument value is within that
range. See also “Error Detection,” page 51.

The valid values shown for the mode argument (see the AIN
table, Figure 4) are a special case: the commas separating the
values mean that any one, and possibly more than one, of the
values is valid. Refer to the section “Operating Modes and Mode
Designators” for more information (page 23).

When several values appear separated by semicolons, the argu-
ment has several distinct meanings, and each range of values ap-
plies to a separate meaning. This situation occurs for the trigger
argument in the AIN table, where the valid values are as
follows.

0; > 0 to 655.35; 1 to 65,535

This means that the trigger argument has three separate mean-
ings, with a different range of values for each meaning. The
meanings are selected by the values of other arguments. 19

LAB MODULE PROGRAMMING

Example/Result

Argument
Descriptions

Related Routines

20

1. For the first meaning (external trigger control), 0 is the
only valid value.

2. For the second meaning (internal clock module con-
trol), any value greater than 0, up to 655.35 is valid.

8. For the third meaning (external or line mode), any
value in the range 1 to 65,535 is valid.

Each reference section contains a set of example and result
pairs.

example The examples are single program statements that
would be valid in the proper program context. The following ex-
ample is for the AIN routine.

AIN(,V(),50)

In order to run properly, this statement requires (at least) that
the data input array V be described in a DIM statement with ar-
ray length of at least 50 elements.

The examples vary in complexity to show the range of capability
of the routine.

result For each example statement, the manual describes
what the statement would do, given the proper program context.
The result describes the effects of most of the arguments as con-
cisely as possible. The result description tries to capture the
spirit of the operation rather than to provide complete detail.

The descriptions for all arguments have a common organization
which includes meaning, values, default, and discussion.

A single phrase defines the meaning of the argument and in
most instances is simply an expansion of the argument descrip-
tor. This phrase is often followed by a reference to an explana-
tory section in Part 1. Next, the section defines the full set of
valid values for the argument and summarizes the meanings of
the different values. The default value for the argument follows
the set of values. The paragraphs following the definitions ex-
plain complex argument meanings and relationships between
arguments.

The related routines section lists the related lab module rou-
tines. It does not mention any other kinds of MINC routines (for
example, graphics). It lists the operation of each related routine,
and describes the nature of its relationship to the routine.

CONVENTIONS AND DEFINITIONS

The restrictions section is a collection of usage hints, perfor-
mance information, and restrictions on the applicability of the
routine. It sometimes reiterates explanations of interactions be-
tween arguments.

The errors section lists all of the error conditions possible for the
routine and the text of the error messages. Where necessary, it
discusses how to correct errors, and how to recover from errors
that stop the program. (See also “Error Detection,” page 51,
and the complete discussion of error messages in Book 8.)

The examples section refers to the location of the example pro-
gram relevant to the routine.

Throughout this manual, the term “array” refers only to arrays
in the workspace. You cannot use a virtual array file as an argu-
ment for any of the lab module routines. A virtual array file ele-
ment is a permissible argument only if the routine does not at-
tempt to assign a value to it.

If the data type for an argument is an array, designate the array
by its name, followed by empty parentheses, for example, A().
The empty parentheses show that we are talking about the array
A, starting with array element 0.

Suppose the array F has 10 elements.

50 DIM F(9)

You want to specify F' as the data-name argument for the AIN
routine. The AIN statement would look like the following.

100 AIN(,F().10)

In this situation, the parentheses distinguish the array F from
the variable F. Notice that the following three statements are all
valid and all have different meanings.

100 AIN(F)
100 AIN(,F(0))
100 AIN(,F().10)

The first statement reads one value into variable F, the second
statement reads one value into array element F(0), and the
third statement reads ten values into the array F (elements 0
through 9).

Restrictions

Errors

Examples

ARGUMENT
CONVENTIONS

Arrays and Array
Elements

21

LAB MODULE PROGRAMMING

Mode Strings

22

In addition, you can specify arrays which are part of a whole
array. To do this, you specify an array element which is to be
treated as if it were the first element in the array. For example,
you can specify F(5) as an array name. The following statement
reads three values into the array starting with F(5) (that is, F(5),
F(6), and F(7)).

100 AIN(F(5),3)

(In fact, this means that as array names F() and F(0) are equiva-
lent.)

Many routines contain a mode argument which requires a
string value. The section on “Operating Modes and Mode Des-
ignators,” (page 23) and the individual routine sections explain
the meaning and use of the modes. The conventions for specify-
ing mode strings are as follows.

1. The string can contain more than one mode des-
ignator. (Valid combinations of modes appear in the
table with each routine.)

2. Mode designators must be unique; that is, a mode
designator cannot appear more than once in a mode
string.

3. Multiple mode designators must be separated by
commas.

4. Multiple mode designators can appear in any order.

5. Either uppercase or lowercase characters are valid.

6. The routine interprets only the first character of each
mode designator. In this book, designators are shown as
full word mnemonics for ease of reading and under-
standing.

The following three examples are all equivalent.

1. MAKE_TIME(ST2,CHz,1%,R)

2. MAKE_TIMEC(S,C,1%,R)

3. P$= 'ST2,CHZ
MAKE_TIME(P$,1%,R)

CONVENTIONS AND DEFINITIONS

It is good programming practice to use a full word form for
mode designators so that you (and others) can read, understand,
and modify your programs easily.

The mode designators for the lab module routines are all “posi-
tive.” You cannot use a minus sign to cancel or reverse the mode
designator as you can with the graphic routines (see Book 4). The
minus sign does not cause an error but it has no effect.

For many of the lab module routines, the string argument called
“mode” designates an operating mode for the routine. For exam-
ple, the mode designator EXTERNAL designates external
mode, in which timebase signals on ST1 provide a time base for a
transfer.

The meaning of the absence of a mode string depends on the na-
ture of the routine. Some routines have a standard mode of
operating which cannot be specified by any of the mode designa-
tors. Other routines have a default mode of operating which as-
sumes one of the possible mode designators. (The reference sec-
tion for each routine specifies how the routine operates in the ab-
sence of a mode string.)

For the standard mode case, the reference section for the routine
describes its standard operating mode. The mode designators
specify additions or changes to the normal operating mode for
the routine.

The mode designators specify modes of operation that are either
expansions of standard mode or fundamentally different from
standard mode. For example, AIN_HIST in standard mode
generates a histogram using values collected from an analog
channel. One of the optional mode designators for AIN_HIST is
DISPLAY (for display mode operation) which results in stan-
dard mode operation plus the play of the histogram. In this case,
the optional mode designator augments the function of standard
mode to provide display mode.

In other cases, the optional mode designator changes standard
mode rather than adding to it. For example, AIN_SUM in stan-
dard mode accumulates data under internal clock control from
successive sweeps of an analog channel (or channels). The mode
designator EXTERNAL changes AIN_SUM so that it operates
in external mode, accumulating data under external timebase
control from successive sweeps of an analog channel (or chan-
nels).

OPERATING
MODES AND
MODE
DESIGNATORS

Standard Mode

23

LAB MODULE PROGRAMMING

Default Mode

24

It is important to realize that mode designators like
EXTERNAL are incompatible with standard mode because
you cannot have both internal clock control and external time-
base control at the same time. Therefore, the EXTERNAL
mode designator does not simply add external timebase control
to standard mode but instead fundamentally changes how
AIN_SUM interacts with the outside environment.

With some routines, you can specify several optional mode des-
ignators together. For example, with AIN_SUM you could com-
bine DISPLAY, ZERO, and EXTERNAL to add display and
zeroing to external mode. However, you could not combine
EXTERNAL and LINE because these modes request mutually
incompatible changes to standard mode.

The reference sections contain two-way contingency tables
showing the valid pairs of mode combinations. The mode des-
ignators are independent. Therefore, you ean determine the va-
lidity of any multiple combination by examining the validity of
its component two-way combinations.

The routines with standard mode are AIN, AIN_HIST
AIN_SUM, AOUT, CIN, COUT, DIN, DOUT, PST_HIST
SET_GAIN, and TIME_HIST.

In the default mode case, default mode is the mode assumed by
the routine when no optional mode has been specified. That is,
leaving out the mode designator is exactly the same as specify-
ing a particular mode designator. (See the discussion of default
values on page 16.)

For example, the SCHEDULE routine has designators for in-
terval mode (INTERVAL) and absolute mode (ABSOLUTE). If
you do not specify a mode designator, SCHEDULE assumes in-
terval mode by default. That is, the following statements have
the same effect.

SCHEDULE('INTERVAL',60,L)
SCHEDULE(,60,L)

These routines do not have a standard mode that is different
from that obtained with the mode designators. In addition, the
designators for these routines are mutually exclusive, that is,
only one designator can be specified at a time.

The routines with default mode are FFT, MAKE_TIME,
SCHEDULE, START_TIME, and TERMINATE.

CONVENTIONS AND DEFINITIONS

Internally, MINC represents all information using the binary
number system. In the binary number system there are two
states: O (for off or clear) and 1 (for on or set). MINC contains a
large number of elements that can assume only the values 0 and
1. These elements are called bits (meaning binary digits).

Everything in MINC—all numeric values, string values, and
programs—is represented by codes consisting of bit strings of
I'sand 0’s. For example, the number 29 is stored as a sequence of
bits (representing 0’s and 1s), not as the decimal digits 2 and 9.
The command DEL is stored as a sequence of bits (representing
0’s and 1’s), not as the characters D, E, and L.

Integers, real numbers, and characters each have their own
standard representation format. That is, the integer 3, the real
number 3, and the character 3 are represented internally by dif-
ferent patterns of bits.

The value of an integer must lie within the range -32,768 to
+32,767 (inclusive). The value of a real number must lie within
the range 0.29 X 107" to 1.7 X 10*® (inclusive). The value of a char-
acter must be one of 128 ASCII characters (see Book 2 and Book
3). These limits are imposed by the number of bits and the cod-
ing scheme used to represent the values.

In most cases, the details of the internal representation of
numbers and strings are invisible, and irrelevant, to MINC pro-
grammers.

In some cases, you do need to be aware that the internal differ-
ences exist, although knowing details of the internal representa-
tion is not necessary. For reasons of speed and efficiency, several
MINC routines represent values in nonstandard data formats.
In such cases, the program must use a conversion routine to con-
vert from the particular nonstandard format used to a standard
representation format.

One common nonstandard format is Binary Coded Decimal
(BCD). Many instruments transmit and receive information
represented in BCD format. If a BCD instrument is connected
to a digital input unit, the values read by the DIN routine are
in BCD format. The program must then call the
MAKE_NUMBER routine to convert the BCD format values to
standard numeric format. If a BCD instrument is connected to a
digital output unit, the values sent by the DOUT routine must be
in BCD format. The program must first call the MAKE_BCD
routine to convert standard numeric values to BCD format
values.

DATA TYPES AND
NUMBER SYSTEMS

Number Systems

Format Conversion

BCD

25

LAB MODULE PROGRAMMING

Bits and Words

26

In BCD, each decimal digit in a number is represented by four
binary digits. For example, the number 29 is represented by two
groups of four bits, one group representing the digit 2 and the
next group representing the digit 9:

decimal digit 2 9
BCD format 0010 1001

Table 1 shows the BCD code and decimal equivalents for each of
the digits.

Table 1. BCD Codes for Decimal Digits.

Dectmal
digit BCD code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 0-IJHN U WN O

MINC can transmit and receive BCD values in the range 0 to
9999 (inclusive).

It is usually unnecessary to consider bit sequences when pro-
gramming MINC. However, for digital input and digital output,
it can be useful or necessary to consider the condition of a single
bit.

The following conceptualization is simplified, but it is valid for
the situations in which you might have to encounter bits. You
cannot refer directly to any individual bit in the MINC work-
space, but you can refer to it indirectly as a component of some
named value. For example, you can refer to a single bit “within”
variable A. We will call each named group of bits aword. A word
is like an array of 16 bits. Any time you need to refer to a bit, you
must specify both the word containing the bit, and the position
of the bit within the word (much like referring to an array
element).

The 16 bit positions within a word are numbered 0 to 15, from
right to left.

CONVENTIONS AND DEFINITIONS

WORD
_—

r N

[ofofo[ofofjofo[ofofof1]ofoo]1]0] sitcondition
151413121110 9 8 7 6 6 4 3 2 1 0 BitPosition

MR-1573

Figure 5. Defining Bits in a Word.

The routines which access bits within a word are TEST_BIT,
SCAN_BIT, and SET_BIT.

You must understand the concepts of bits and words in order to
understand how to use the digital input and digital output units
and the routines DIN, DIN_EVENT, DIN_MASK, DOUT,
DOUT_MASK, and the bit manipulation routines.

Each digital input unit or digital output unit contains 16 physi-
cal lines. You connect instruments to the lines at the connector
block terminals, which are labeled D00 through D15, and which
stand for lines 0 to 15. As with bits, the conditions of the lines can
be clear (0), or set (1). For the correspondence between set, clear,
and voltage levels, see Book 7.

For the digital transfer routines DIN and DOUT, lines within a
physical unit correspond directly to the bits within a word.

nomemit L2101 [T 0[O0 1 [1[0] 0] 1[1]0[0 1] 1] Line Condition
151413121110 9 8 7 6 5 4 3 2 1 0 LinePosition

swa L LEEEL L

DataWord {olof1f1folof1]1[o]of1{1]ofo]1]1] Bitcondition
1514131211109 8 7 6 5 4 3 2 1 0 BitPosition

MR-1574

Figure 6. Correspondence of Lines and Bits.

When DIN reads a digital input unit into a data input word, the
data input word contains the same value as the digital input
unit. (The value of the unit changes whenever any of the signals
from the external instruments changes, but the value of the
word remains the same unless the program changes it.)

Masking is the name of a technique that allows you to disregard
the conditions of certain lines in a digital input or output unit.
Without masking, it would be possible for the program to disre-
gard line values by clearing the bit values in the variable (using
SET_BIT, for example). However, to change all the variables in

Bits and Lines

Masking

27

LAB MODULE PROGRAMMING

28

a sweep of data, this technique would become tedious and time-
consuming. The masking technique produces the same effect
automatically.

A mask is logically like a filter or screen, imposed between the
unit and the corresponding word, which allows the conditions in
certain positions to pass through, but stops the conditions in
other positions.

oDt [ole]n[[olo[1[+Jolo[1] olo]]T]

DIN Reads the
Unit Through l l l l l l l l— Mask
a Mask

pataword [0]o]1]1JoJoJ1]1JoJoJoJojo]ofofo]

MR-1675

Figure 7. How a Mask Works.

Specifically, the mask itself is a word. The bit conditions of the
mask word define whether or not the corresponding line condi-
tions can pass. A set bit allows the condition to pass and a clear
bit stops the condition from passing.

Digital
mputunie (0101 1] 1]0Jof 11 JoTo T To o]]1]

PobLL LR

DINMaskWord [1]1]1[3]1]1[1]1]oJoJoJoJofo]o] 0]
PLULEELEEREE
pataword [0J0]1]1]oJof1[1JoJoJoJoJo[o]o]0o]

MR-1576

Figure 8. Reading Input Through a Mask Word.

Notice that all the bits in the data word corresponding to the
masked lines (masked bit clear) in the unit are clear. The
masked bits are always clear, regardless of their condition be-
forethe data transfer. Also, the bits in the data word correspond-
ing to unmasked lines (mask bit set) have the same conditions as
their equivalent lines.

The examples so far have shown masking digital input units.
The concepts apply similarly to digital output units.

The DIN_MASK and DOUT_MASK routines define mask
words for digital input and output.

CONVENTIONS AND DEFINITIONS

output unie (O[O [T[o[oT 1[0 o]0 oo e o 0]
REREERERARRRRRE

pouT MaskWord [1[1[1][1]1]J1]1]1JoJoJoJo o o]o]0]}
RERRERERARRRENE

Dataword fofoj1[1}ofof1|1]ofof1]1]o]of1]1]

MR-1577

Figure 9. Sending Output Through a Mask Word.

A service subroutine is a subroutine in your program which is in-
voked by one of the lab module routines. With normal
subroutines, a GOSUB statement transfers control to the
subroutine. With service subroutines, one of the lab module rou-
tines sets up the conditions which result in transferring control
to the service subroutine.

Service subroutines provide a mechanism for your program to
respond to the occurrence of external events and time events.
The lab module routines which invoke service subroutines are
CONTINUE, SCHEDULE, and SCHMITT.

A service subroutine has the same form as a normal subroutine.
The last statement executed in a service subroutine is a
RETURN statement. With normal subroutines, the RETURN
statement transfers control back to the statement following the
GOSUB statement. With service subroutines, the RETURN
statement transfers control back to the statement following the
one which was executing when the external event or time event
occurred.

In most programs, a service subroutine executes immediately in
response to the external or time event causing it. However, ser-
vice subroutine execution can be delayed if the event occurs
while a long duration statement or another service subroutine is
executing. See “Program Dynamics for Control Programs,”
below, and Table 3 (page 32) for details.

In MINC BASIC, the current statement has control of the pro-
gram for as long as it requires to execute. While it is executing,
no other statements, signals, or service subroutines can get the
attention of the program. When the current statement finishes,
the program can check whether any requests for service have
arrived during the time while the statement was executing.

SERVICE
SUBROUTINES

PROGRAM
DYNAMICS FOR
CONTROL
PROGRAMS

29

LAB MODULE PROGRAMMING

30

Statement Statement Statement Statement Statement Statement

XX » Time

f ! t ! !

Program
Checks for
Service

Request
que: MR-1561

Figure 10. Checking for Service Requests During Program
Execution.

If no requests have arrived, the program passes control to the
next statement (physically next, or logically next).

If a service request has arrived, the program does not move on to
the next statement but instead transfers control to the appropri-
ate service subroutine or data transfer routine.

Most program statements execute very quickly, so that you
aren’t really aware that external signals can get the program’s
attention only between statements. For example, consider the
sequence of execution for statements in the following program.
This program schedules a service request for one second later
and then begins executing a FOR/NEXT loop that requires
longer than one second to finish.

10S=0\1J= -1
20 SCHEDULE('Interval’,1,100)
30 FOR I =0 TO 499 ‘——>100J=|

40S=S+1 110 RETURN
50 NEXT 1€ 120 END

60 PRINT ’Interrupted at index’;) l———-'

70 STOP

The program can respond almost immediately to the
SCHEDULE service request that occurs while one of the state-
ments in the FOR/NEXT loop is executing. Suppose the current
statement is statement 40 and the end of the scheduled interval
occurs. As soon as statement 40 finishes (which is almost imme-
diately), the program transfers control to the service subroutine
for SCHEDULE.

Service Service
Request Subroutine
Occurs Starts

Statement Statement Statement Statement Statement Statement
30 40 50 30 ‘ 40 100
XX Time
Program Program
Checks for Finds
Service Service
Request Request

MR-1562

Figure 11. Normal Response to a Service Request.

CONVENTIONS AND DEFINITIONS

Some statements for the lab module routines can require a long
time to finish executing. For example, if you collect a sweep of
analog data using AIN, the AIN statement remains the current
statement until all of the points in the sweep have been collected.
The program cannot honor any service requests until the AIN
statement finishes. The time relationship could look something
like the following.

Service Service

Request Subroutine
Occurs Starts
Statement I AIN Statement Statement
T T Time
Program Program

Checks for Finds
Service Service

Request Request MA1563

Figure 12. Delayed Response to a Service Request.

The following example program contains time relationships
like those shown in Figure 12.

10 PRINT ‘Time: ‘;CLK$

20 DIM A(9)

30 SCHEDULE('Interval’,1,100)

40 AIN(,AQ).10,1)

50 FORI= 0TO 9 \ PRINT A(l) \ NEXT I
60 STOP

100 PRINT ‘Time: ';CLK$

110 RETURN

120 END

In statement 30, the program schedules a service subroutine for
onesecond later and then, in statement 40, starts an analog input
sweep of 10 data points, one point per second. The time event re-
quested by SCHEDULE occurs during execution of the AIN
statement, but the service subroutine (at statement 100) cannot
begin executing until statement 40 finishes. When you run the
program, you see two clock values, followed by the converted
analog values. This indicates that the service subroutine (which
prints the second clock value) has executed between statements
40 and 50.

Most program statements involving terminal input and output
or data transfer require a significant amount of time to execute.
It is important for you to be aware of these time constraints
when you are writing programs to sample at high rates, or pro-
grams with very precise timing requirements. Try to avoid slow
statements (like file channel transfers) during portions of the
program where the time relationships are critical.

31

LAB MODULE PROGRAMMING

32

Tables 2 and 3 list program operations and routines that can re-
quire significant amounts of time. The tables do not indicate
how much time these require because the operating speed var-
ies, depending on the nature of the operation and on a complex
interaction of factors.

Table 2. Program Operations Requiring Significant

Execution Time.

Statement Verb

PRINT

PRINT USING

INPUT

INPUT #

INPUT # with double buffering
Virtual array file operations

Table 3. Routines Requiring Significant Execution Time.

Routine Name
AIN

AIN_HIST

AIN_SUM
AOUT

CIN

COouT

DIN

DOUT

FFT

PAUSE

Limating Factor

Applies to point and sweep transfers.
The time relationships differ for continu-
ous mode; see page 33.

Finishes when all required points have
been collected.

Finishes when all sweeps are complete.

Applies to point and sweep transfers.
The time relationships differ for continu-
ous mode; see page 33.

Finishes when all required characters
have been received or when termination
character arrives.

Finishes when the last character has
been sent (in wait mode).

Applies to point and sweep transfers.
The time relationships differ for continu-
ous mode; see page 33.

Applies to point and sweep transfers.
The time relationships differ for continu-
ous mode; see page 33.

Computation time depends on length of
arrays.

Waits until a time interval is over.

CONVENTIONS AND DEFINITIONS

POWER Computation time depends on length of
arrays.

PST_HIST Finishes when all sweeps are complete.

TIME_HIST Finishes when all required intervals are
complete.

WAIT_FOR_DATA Finishes when current array partition is
ready for processing.

This list is not exhaustive. The same concept applies to routines
in Books 4 and 5 as well.

In control programs, you should remain aware of the dynamics
of program execution so that you don’t design programs with
impossible or impractical time relationships (like the example
in Figure 12). It is equally important to test the programs care-
fully so that you can be confident of collecting valid data.

Like the other MINC statements and routines, many of the lab
module routines work in immediate mode. In general, the only
routines that do not work in immediate mode are those which in-
volve service requests, elapsed-time measurement, and continu-
ous mode transfers. (All standard mode transfers do operate in
immediate mode.) The Restrictions sections note those routines
which do not operate in immediate mode.

Analog and digital data transfers can operate in a mode called
continuous mode where they can transfer an unspecified
number of values. In continuous mode, data transfers begin and
continue until the program stops the transfer by executing a
TERMINATE statement. The following discussion applies
to the routines AIN, AOUT, DIN, and DOUT with the
CONTINUOUS mode designator.

Continuous data transfers are more complex than point or
sweep transfers. The major differences between a sweep
transfer and a continuous transfer involve program dynamics
and the workspace.

In standard mode, a data transfer statement (for example,
AOUT) remains in control until all of the data values specified
have been transferred. No other statement can execute until the
data transfer statement finishes. However, in continuous mode,
the data transfer statement passes control to other statements
which execute while the transfer is in progress.

Immediate Mode

CONTINUOUS
DATA TRANSFER

Transfer Dynamics

33

LAB MODULE PROGRAMMING

Array Partitions

34

Unlike the standard mode case, AIN, AOUT, DIN, DOUT in
continuous mode do not actually perform the transfers. The con-
tinuous transfer statement prepares the program and the work-
space for a continuous transfer, and then finishes, passing con-
trol to the next program statement. The data transfer process
actually begins when one of two transfer management routines
(CONTINUE or WAIT_FOR_DATA) executes. The manage-
ment routine monitors the transfer and provides the mechanism
for stopping the transfer. The process is explained in more detail
in the following pages.

Continuous transfers give the program the capability to start a
data transfer without specifying in advance how many values to
transfer. However, as you know, the amount of workspace
available for data arrays is limited. What if the experiment re-
quires that you collect more data points than the workspace can
hold?

The continuous transfer process treats its data array as a tempo-
rary array containing two array partitions, as shown in the fol-
lowing figure.

First Partition Second Partition
aray |]] HERE []
Array Index 0 1 _nzi n

MR-1636

Figure 13. Array Partitions and Array Indexes.

The transfer process continuously reads values into the array
(with AIN or DIN) or sends values from the array (with AOUT
or DOUT). The transfer management routine transfers control
to your program whenever a transfer is complete for either par-
tition. Then your program processes that just-completed parti-
tion while the data transfer continues, using the other partition.

For input transfers, your program can either store in a file or
process the data in one partition while the routines continueto fill
the other partition with data. For output transfers, your pro-
gram fills the partition with the values to be output, while the
routines continue to send the values from the other partition. That
is, the partition being transferred and the partition being pro-
cessed alternate, as if the data array were circular.

CONVENTIONS AND DEFINITIONS

SECOND PARTITION
-

MR-1637

Figure 14. Circular Array Structure.

Array element 0 follows array element n. Therefore, if an output
transfer routine has just sent the value from array element n, it
sends the next value from array element 0.

Your program treats the data array as if it were two indepen-
dent arrays of equal length, as shown in Figure 15. (If the array
contains an odd number of elements, the transfer routines do not
use the final element.)

FIRSTPARTITION [| | |]
0 1 n+i

seconp PARTITION [|] [[|
n+1 n
2

MR-1638

Figure 15. Array Partitioned into Two Linear Arrays.

During the transfer, the management routine passes control to
your program at regular intervals while the transfer continues.
Your program processes one partition and passes control back to
the management routine.

The transfer management routines (CONTINUE and
WAIT_FOR_DATA) provide two conceptually distinet pro-
gram design options. Basically, with WAIT_FOR_DATA, the
program simply waits until an array partition is ready for pro-
cessing. With CONTINUE, the program continues executing
statements unrelated to the data transfer until an array parti-
tion is ready for processing.

Transfer Management
Methods

35

LAB MODULE PROGRAMMING

WAIT_FOR_DATA

36

With either method, the program processes an array partition
as soon as it is ready for processing. With either method, data
transfer continues regardless of what the program is doing. The
important conceptual difference lies in whether the program
waits or continues executing in the interval between processing
array partitions.

The technical difference between the two methods lies in the lo-
cation of the statements which process the array partitions.
With WAIT_FOR_DATA, the statements processing the parti-
tion immediately follow the WAIT_FOR_DATA statement.
With CONTINUE, the statements processing the partition are
in a service subroutine. (See “Service Subroutines,” page 29.)

With WAIT_FOR_DATA, the program dynamics are very simi-
lar to normal program dynamics. (See “Program Dynamics for
Control Programs,” page 29.) Figure 16 diagrams how con-
tinuous input should be managed using WAIT_FOR_DATA.
Figure 17 diagrams how continuous output should be managed
using WAIT_FOR_DATA.

The following short program shows the statement sequence.

The WAIT_FOR_DATA statement (statement 50) finishes ex-
ecuting and passes control to the statement following it when the
current array partition is ready to be processed by your pro-
gram. The statements following WAIT_FOR_DATA process
the current partition (statement 60 through 100). The program
then must execute a WAIT_FOR_DATA statement again to
wait until the next array partition is ready (statement 110).

10 REM Collect data from A/D channel 5 and
20 REM display the average of every 50 points
30 DIM A(99)

40 AIN ('CONTINUOUS',A(),100,1/10,5)

50 WAIT_FOR_DATA (A(),))

60 S=0

70 FOR =1 TO 1149

80 S=A()+S

90 NEXT |

100 PRINT ‘AVERAGE=";S/50

110 GO TO 50

The program example shown above is designed to keep running
until someone enters CTRL/C on the keyboard. For many appli-
cations, it is preferable to have the program itself stop the
transfer. In that case, the statements processing the partition

CONVENTIONS AND DEFINITIONS

‘SJa)suBd],
ndinQ d8euey 03 VIVA JOd~ LIVM Suis() LT 8an31g
LE6L-HW
VIVG-HO4-1IVM)
a1ndex3
awiy yig awll Wy awl] pig awill puz awlj sy
ﬁ sjuang
weibouay
— | —— 1 i
$59004d ! yepm ! $5320.d i HEM m $50204d I 1epm ! $5800.1d ! $5800.d i

-]
prtrrrrrptet ettt wong

WSQSO
J — _\ v U\ —— o
uolllIed 1| uonilied pug uoniuied 1sy
-
.whwwmgﬁ&rﬁ
mduj d8euey 0} VIVA YO~ LIVM SuIs[) "91 oIn3iyg
0E€6L-HW
V1va-40d4-11vm)
21n3ax3
awl] pig awl] pug awi] 18|
S1Uang
weibouy
5530044 m uem i $5900.4d i Hem ; $5900.d i 1em
o
EESEEEEEEEEEEREREREEREEEREE [oo
bulldweg
J o v J \ -~ J \ v J
uonned 15| uonied puz uonIeg 15|

37

LAB MODULE PROGRAMMING

CONTINUE

38

would include statements which determine when and how to
terminate the transfer.

With CONTINUE, the program flow is more complex, but
again the program dynamics are very similar to normal pro-
gram dynamics. Figure 18 diagrams how continuous input
should be managed using CONTINUE. Figure 19 diagrams
how continuous output should be managed using CONTINUE.

The following short program shows statement sequence with
CONTINUE.

The CONTINUE statement (statement 70) prepares for the
transfer to the service subroutine and then passes control tn the
program statements which follow (statement 80). The example
has a single dummy statement here. Normally, you would do

something here, like starting another transfer with
CONTINUE and a different device.

The program executes normally until an array partition is
ready. It then transfers control to the service subroutine (state-
ments 100 through 200) as soon as the current statement finishes
executing.

The service subroutine processes the current partition, and
must, in addition, execute another CONTINUE statement
(statement 190) to prepare for the response to the next array par-
tition. In returning from the service subroutine, the program
transfers control to the program statement following the one
that was executing when the array partition became ready
(statement 80).

10 REM Generate an output function F=(T*T) mod 1024
20 REM on D/A channel 0, where T increases

30 REM by 1 every 0.1 seconds

40 DIM A(100)

50 AOUT ('CONTINUOUS',A(),100,1/10)

60 T=0

70 CONTINUE(A(),1,100)

80 GO TO 80 \ REM other program statements go here
1I0REM - - - - — — — — — — — - — —
110 REM Service subroutine for continuous mode AOUT
120 REM

130 FOR J=ITO | + 49

140 F=T*T

150 T=T+1 \ IF F << 1024 THEN 170

160 F=0\ T=0

170 A())= F

CONVENTIONS AND DEFINITIONS

‘saeysued], ndinQ a3vury 01 Y NILLNOD 3uis[) "6T 21031

EE6L-HN
INNILNOD
a1noaxg
awl] yig awlt] yiy awi] pig awl] pug awi] Is|
+*-— —
s$8004d | 91Nn2%ax3 : $5890.4d ! aindax3y 1t $5920.4 Tz:umxmm $5300.14 ! $5320.1d '

LA O O O R O O

Y —Y g
uoniued is| uollied pug uolled 15|

‘SI9JsuBL], Induy a3rvuRy 03 HNNILNOD 3uis[] ‘8T 9..31 4

ZEBL-HIN
INNILNOD
a1n2%ax 3y
awn| pig awl] pug awy 15|
-— — ——
§$300.1d 1 91Ndax3 “ $§$920.d i 91NnJdax3 i §53004d “ a1ndax3

) LA T A A O R AR O O O

J J J J
Y Y Y

uolled 1s| uollineq pug uoiined is|

>

ﬁ. s1uang
wesboud

SULTE|

e ndinp

Sluangy
weibouy

sjuan3
Buijdweg

39

LAB MODULE PROGRAMMING

ANALOG CHANNEL
SPECIFICATION

Sequential Channels

40

180 NEXT J

190 CONTINUE (A().1,100)
200 RETURN

210 END

The first time the CONTINUE routine executes for an output
transfer, it passes control to the service subroutine. The service
subroutine then prepares the first partition for transfer and ex-
ecutes CONTINUE again. The output transfer starts at this
point (see Figure 19).

The program example shown above is designed to keep running
until someone presses CTRL/C. For many applications, it is
preferable to have the program stop the transfer. In that case,
the service subroutine would include statements which specify
when and how to terminate the transfer. (Example C shows an
input transfer using CONTINUE.)

The analog processing routines require you to specify the chan-
nels for analog transfer.

The AIN_HIST routine samples from one channel only. You
specify the channel number for the channel carrying the input
signal.

The other analog transfer routines (AIN, AIN_SUM, AND
AOUT) permit multichannel analog transfers. If a transfer re-
quires more than one channel, you specify a conversion sequence
of channels. Whenever the transfer routine detects a trigger
event and starts a conversion, it performs the transfer for the
full conversion sequence as quickly as possible. Thus, with
multichannel transfers, the transfers occur in groups, each
group consisting of one conversion sequence, and each conver-
sion sequence initiated by a trigger event (specified in the
transfer routine arguments).

Two arguments in the transfer routines define the conversion se-
quence, the channel argument and the no.-of-channels argu-
ment. In standard mode, the conversion sequence consists of se-
quential channels. In random mode (using the RANDOM mode
designator), the conversion sequence consists of nonsequential
channels.

For sequential conversion sequences, you specify the number of
the first channel, and the number of channels to use.. For exam-
ple, suppose you are collecting analog input on a system with 16

CONVENTIONS AND DEFINITIONS

channels (numbered 0 to 15) and need to sample channels 4, 5,
and 6. Define the starting channel number (4) and the number of
channels (3) as shown in the following program fragment.

130 DIM A(11)
140C= 4
150 N1 = 3

160 AIN(,A().12,,C.N1)

This program fragment defines a conversion sequence which
starts with channel 4 and continues with the next two channels
in the sequence, channels 5 and 6. When statement 160 executes,
AIN collects one conversion sequence on each trigger event. Fig-
ure 20 shows the sequential sampling order.

SRRRNENNIY
HEEEEEEREN

ARRAYA | |

CHANNEL
SAMPLED

MR-1578

Figure 20. Sampling Sequential Channels.

The starting channel argument can be an array element instead
of a simple variable. Suppose there is an array of channel
numbers, C%, filled with values 0, 2, 4, through 14.

130 DIM C%(7),A(11)
140 FOR 1= 0TO 7\ C%()=I*2 \ NEXT |
150 N1 = 3

160 AIN(,AQ),12.,C%(2),N1)

This program fragment defines a conversion sequence that
starts with the channel specified in array element C%(2) (that is,
channel 4) and continues with the next two channels in sequence,
channels 5 and 6. When statement 160 executes, AIN collects
one conversion sequence on each trigger event. Figure 21 shows
the sequential sampling order.

ARRAYC% |o2[4]6]s][10]12]14]

arrava | I T T T T TTTTT]
s VLTI

Figure 21. Sampling Sequential Channels Using an Array
Element.

41

LAB MODULE PROGRAMMING

Random Channels

42

Notice that both of these program fragments specify the same
conversion sequences.

The random method for specifying a conversion sequence allows
you to specify nonsequential channel order. (The SET_GAIN
routine, as well as the AIN, AIN_SUM, and AOUT routines, ac-
cepts the RANDOM mode designator.) In random mode, the
channel order is contained in an integer array. As for sequential
conversion sequences, the starting channel number is in an ar-
ray element, and the no.-of-channels argument specifies the
number of channels in the sequence.

For random mode, you include the mode designator RANDOM.
The transfer routine then defines the rest of the conversion se-
quence using successive elements of the channel array.

For example, consider the array C% that we defined above, and
the last program fragment. To specify random mode using the
channel array C%, add the RANDOM designator to the AIN

statement.
160 AINCRANDOM',A(),12,,C%(2),N1)

Now the program fragment defines a conversion sequence that
starts with the channel number specified in array element
C%(2), and continues with the channels in the next two array ele-
ments, C%(3) and C%(4). Figure 22 shows the effects of this ran-
dom mode sampling.

ArRrayc % [o]2]4]s6]8[10]12]14]

ARRAYA |]

HEEEEEEEER
T

Figure 22. Sampling Order in Channel Array C%.

) —p

CHANNEL T
SAMPLED

Array elements C%(2) through C%(4) contain the values 4, 6, and
8 and therefore, the AIN conversion sequence is channels 4, 6,
and 8.

It is important to realize that AIN treats the channel array se-
quentially, and that you control the order of channels in the con-
version sequence by changing the values in the array, not by

CONVENTIONS AND DEFINITIONS

changing the order in which AIN takes the values from the ar-
ray. For example, consider the following two channel arrays:

C1% 10 6 2 0 15 1 7 8
C2% 15 13 11 9 7 5 3 1

The same basic AIN statement now results in completely differ-
ent sampling because the two arrays are different and thus the
two conversion sequences are different. Figure 28 diagrams the
result of executing the following statement:

160 AINCRANDOM",A(),12,,C1%(2),N1)

ARRAY C1% [10[6] 2] 0[15] 1] 7] 8]

|
T

ARRAYA | | 1
15 5

2
MR-1581

Figure 23. Sampling Order in Channel Array C1%.

HERREEER
I

15 15

O —

CHANNEL
SAMPLED

1

Figure 24 diagrams the result of executing the following state-
ment in which only the channel array changes.

160 AIN('RANDOM' A(),12,,C2%(2),N1)

ARRAY C2% [15[13[11]9 7[5 [3[1]

arraya | T[T T TP T TT
e W]

MR-1582

Figure 24. Sampling Order in Channel Array C2%.

In the MINC lab module routines, you often see references to
controlling or specifying the time base for some process. The
term “time base” refers to periodic signals for controlling
events. The time base rate determines the smallest interval de-
tectable between two events (that is, the time resolution). MINC

TIME BASE

43

LAB MODULE PROGRAMMING

Internal Time Base

44

has several possible sources for time base signals, two internal
and one external.

The internal time base can be provided by the MINC system
clock, or by the MINC clock module. These different time base
sources have different uses.

The MINC system clock is located in the chassis. It isa fixed, un-
removable part of the system. The system clock runs at local line
frequency, either 50 or 60 Hz, depending on the location. The sys-
tem clock runs whenever MINC is on, maintaining the time of
day. When you use the CLK$ function or the TIME command,
you are interacting with the system clock. The PAUSE,
SCHEDULE, and CIN routines also use the system clock, so
that the time resolution of these routines is limited by the line
frequency.

The MINC clock module provides the time base for most of the
lab module routines. Its potential resolution is much higher than
that of the system clock (up to 1 microsecond). The lab module
routines adjust the time base of the clock module according to
your program’s needs. Therefore, the programs (and the pro-
grammer) need not be aware of the time base chosen by the
routine.

Figure 25 shows which of five time base frequencies is chosen by

2 7
£ 106 v / / - 106
3
2 % %
7

Z 105 4 — 105
el
[
2
3 104 / - 104
-
8 L7
S 103 v L 103
g 7
w

%
3 102 - 7 [102
S iz

! | | | 1 { [| I !
102 10" 100 10-1 102 103 104 105 106
Transfer Period Requested by Program

MR-1934

Figure 25. How a Routine Selects the Clock Frequency.

CONVENTIONS AND DEFINITIONS

the routines for any clock trigger interval you specify in a pro-
gram. You could use this information in evaluating the precision

of your measurements.

For example, the following statement specifies 50 samples per
second:

DIN(,A(),100,1/50)
The DIN routine would select a clock frequency of 10°.

You can specify line-frequency time base with the LINE des-
ignator in several of the transfer routines (AIN, AIN_SUM,
AOUT DIN, DOUT, MAKE_TIME, and START_TIME). The
clock module itself then runs at line frequency (50 Hz or 60 Hz)
independently of the system clock.

There are only two situations in which you can specify a time
base explicitly. The START_TIME and MAKE_TIME routines
provide the mode designators CHZ (centiHertz) and KHZ (kilo-
Hertz) for 100 Hz and 1000 Hz (respectively). In all other inter-
nal time base situations, you specify the transfer interval and let
the routines select the time base.

Several of the transfer routines permit you to specify an exter-
nal source for the time base signals. You connect the external
timebase source to Schmitt trigger 1 of the clock module and
specify the EXTERNAL designator. As a result, the transfer
routine uses the external signals, rather than an internal time
base, to determine intervals between events. The external time
base can run at any frequency required, up to a maximum of 1
MHz.

The routines which permit an external time base are AIN,
AIN_SUM, AOUT, DIN, DOUT, MAKE_TIME, and
START_TIME.

Three MINC routines (AIN_HIST, PST_HIST, TIME_HIST)
generate frequency histograms. A frequency histogram is a bar
graph that summarizes a sample frequency distribution. For
example, Figure 26 is a histogram summarizing the ages of em-
ployees in a department.

The vertical axis represents frequency, that is, the number of oc-
currences of the measured characteristic, age. The horizontal
axis represents the measured characteristic itself. The contin-
uum of age is partitioned into nine age groups (called bins). The

External Time Base

FREQUENCY
HISTOGRAMS

45

LAB MODULE PROGRAMMING

46

20 —+

NUMBER OF PEOPLE
IN EACH AGE GROUP

I I I I T I T I T
<21 21-25 26-30 31-35 36-40 41-45 46-50 51-55 >55
AGE GROuP
MR-1564

Figure 26. Age of Employee Histogram Example.

number of bins in a histogram is arbitrary. If there were fewer
bins, the histogram would lose detail:

30

20

NUMBER OF PEOPLE
IN EACH AGE GROUP

10 —

T T T T T >
<21 21-30 31-40 41-50 >50

AGE GROUP

MR-1565

Figure 27. Age of Employee Example with Fewer Bins.

Alternatively, if there were many more bins, the histogram
would lose its effectiveness as a summary (Figure 28):

CONVENTIONS AND DEFINITIONS

NUMBER OF PEOPLE
IN EACH AGE GROUP

|——|__|[_1_F—I

M A e A A A A I I I I I I
| 21-22 [25-26 | 29-30 l 33-34] 37-38 | 41-42 | 45.46 | 49-50 | 53-54 |
<21 2324 2728 3132 3536 3940 4344 4748 5152 >54

AGE GROU™

MR-1566

Figure 28. Age of Employee Histogram with More Bins.

One convention holds that for statistical summaries 10to 20 bins
provide a good balance between summary and detail. However,
the final choice depends upon the application, the overall range
of values possible, the range of interest, and the number of obser-
vations summarized by the histogram.

The overall range is the set of values between the highest possi-
ble value and the lowest possible value (inclusive). In Figure 26,
the overall range consists of the ages between the minimum em-
ployment age and retirement age (neither of which appears on
the figure). The range of interest is the set of values between the
highest data value of interest and the lowest data value of inter-
est (inclusive). In the age of employee example, the highest age
of interest wes 55; the lowest age of interest was 20.

In many cases, the endpoints of the overall range of values and
the range of interest are the same (Figure 29).

Lower Upper
Endpoint Endpoint
{ RANGE OF INTEREST %
AL
r N
I L e
t
A J
- Y

OVERALL RANGE

MR-1567

Figure 29. The Same Range of Interest and Overall Range.

In other cases, the endpoints of the range of interest lie within
the overall range (Figure 30).

Definitions

47

LAB MODULE PROGRAMMING

Lower Endpoint Upper Endpoint

i RANGE OF INTEREST %
AL
r R

1 i i Il >

v T 1 Ll
/\/\ J
P—
OVERALL RANGE %

Lower Endpoint

Upper Endpoint

MR-1568

Figure 30. Different Endpoints for Range of Interest and
Overall Range.

The histogram routines in MINC partition the range of interest
into bins of equal width.

range of interest
number of bins

bin width =

In the program, you specify both the number of bins and the
endpoints of the range of interest. Figure 31 shows how the
range is partitioned for a hypothetical histogram.

Lower Upper

Endpoint Endpoint
§ RANGE OF INTEREST %
r -A— N

N, BIN I.BINZ'BIN3'BIN4IBIN5.BIN6‘BIN7IBIN8. X A

L2 T T T T T T T T T

<
LOWER UPPER
OVERFLOW BIN OVERFLOW BIN
(BIN 0} (BIN 9)

\ 7

~
OVERALL RANGE

MR-1569

Figure 31. Partitioning the Histogram Ranges into Bins.

In Figure 31, the region of interest contains eight bins. The his-
togram routines count the number of data values occurring
within each bin range.

In Figure 81, there are two extra bins. Bin 0 contains the
number of values between the lower limit of the overall range
and the lower limit of the range of interest. This bin is called the
lower overflow bin. Similarly, bin 9 contains the number of
values occurring between the upper limit of the range of interest
and the upper limit of the overall range. This bin is called the
upper overflow bin.

Discussion Consider generating a histogram by sampling analog values.
Suppose that the input signals are voltages, and that the pro-
48 gram statement defining the histogram specified 10 bins in the

range of interest. If

CONVENTIONS AND DEFINITIONS

the range of interest were 10.24 volts, then

the voltage range would be divided into 10 bins of width 1.024
volts. The following table shows how a histogram routine would
define the bin ranges for this case.

Table 4. Bins and Bin Ranges.

Bin
0

== O 00 =3O UL WD -

0
1

Endpoints of Bin Range
<-5.12
-5.12 to -4.0975
-4.095 to -3.0725
-3.07 to -2.05
-2.0475 to -1.025
-1.0225 to -0.0025
0 to 1.0225
1.025 to 2.0475
2.05 to 3.07
3.0725 to 4.095
4.0975 to 5.1175
= 5.12

Figure 32 shows a short segment of a sawtooth wave and the his-
togram generated by sampling 30 evenly-spaced points from the
waveform. The statistical variation apparent in the figure

5.12 -
w
5 0 .
(@]
>
-5.12
TIME
20 1
[
£
2
g 10
Z —
o
R S B R R R B 3 78 90T T
BIN NUMBER

MR-1571

Figure 32. Histogram of Sample from Sawtooth Wave. 49

LAB MODULE PROGRAMMING

Stored Histogram
Arrays

50

would disappear with prolonged sampling from the same wave-
form and the histogram would arproach being a uniform distri-
bution.

The example demonstrates one important point about histo-
grams: the shape of the histogram is not the same as the wave-
form of the data values. The histogram preserves only the
frequency of occurrence of values within specified limits;
the histogram does not preserve actual data values or their
sequence.

The histogram routines accumulate frequency counts in a one-
dimensional array, with one array element corresponding to one
histogram bin (Figure 33).

Array
) Element
Histogram 0o 1 2 3 4 5 6 7 8 9 10 11 Index
A
" 0102241266020\/3'“”{
Element
.
. 10—
f=4
3 —
Histogram { &3
15 A
E —
- — 1 |
o 1 2 3 4 5 6 7 8 9 10 N

Bin Numbers

Figure 33. Correspondence of Histogram Array and Bar
Graph.

The array must contain enough elements for all bins in the range
of interest, and two extra elements for the lower and upper over-
flow bins. These extra elements are required even if the overall
range and the range of interest have the same endpoints. For ex-
ample, if there are 15 bins in the range of interest, the array
must contain 17 elements.

DIM A(16)

The histogram routines treat element A(0) as the lower overflow
bin, and A(16) as the upper overflow bin. If the overall range and
the range of interest had the same endpoints, then both A(0) and
A(16) would contain the value 0.

CONVENTIONS AND DEFINITIONS

MINC checks all statements and commands for errors both be-
fore and during execution. Whenever it detects a problem,
MINC displays an error message on the screen. The error mes-
sages have been designed to help you locate and correct errors.

Book 6 explains in detail the error messages issued by the lab
module routines. All MINC error messages are summarized in
Book 8.

The error messages fall roughly into three categories, depend-
ing on what the error condition is or on when the error condition
is detected. Syntax errors are those errors detected during a pre-
liminary validity check of the arguments in a statement. In-
teraction errors are those that arise as a result of conflicts in in-
teractions among routines and processes, rather than as a result
of any particular routine. Execution errors are those occurring
as a result of problems in attempting to execute a particular
statement.

The syntax error messages and interaction error messages ap-
pear in this section accompanied by a short explanation. The ex-
ecution error messages specific to each routine appear in the
error section for the routine in Part 2. Where applicable, the
messages are accompanied by further explanation and sugges-
tions for correcting the problem.

Whenever a message appears while a program is executing,
MINC appends the phrase “at line nnn” to the message. The
number nnn is the number of the statement which was execut-
ing when the error condition occurred. The problem causing the
error is usually in the indicated statement for syntax and execu-
tion errors. However, the statement number in interaction er-
rors bears no necessary relationship to the location of the condi-
tion causing the error.

In immediate mode, the statement executing does not have a
statement number, and hence, the phrase “at line nnn” does not
appear for error messages in immediate mode.

?MINC-F-Invalid character or duplicate modes requested

This message applies to the mode argument. It can occur for any
routine which has a mode string. This message appears when
the first character in a mode designator is invalid. The valid
characters are the letters A through Z (upper or lower case). It
can also occur if the same initial character appears twice in the
string.

ERROR
DETECTION

Syntax Errors

51

LAB MODULE PROGRAMMING

52

?MINC-F-Invalid data type for argument #

This message appears whenever a statement contains an invalid
data type for an argument. Only the PAUSE routine (for which
all data types are valid) cannot cause this message. The syntax
check replaces the # shown above with the list position of the
argument causing the message.

?MINC-F-Missing argument # is required

This message appears whenever the syntax check discovers that
arequired argument is missing from the argument list. The syn-
tax check replaces the # shown above with the list position of the
argument causing the message. This message cannot arise from

SCHMITT, START_TIME, and TERMINATE, for which there
are no required arguments.

?MINC-F-Previous routine is already using the module requested

This message appears whenever the syntax check discovers that
the statement requires a lab module that is already busy. Most
such conflicts occur with the clock module during continuous
mode transfers. The routines which do not require any modules
cannot cause this message, for example, MAKE_BCD,
TEST_BIT, TERMINATE, PAUSE, and FFT.

?MINC-F-System does not contain the module requested

This message appears when a statement requires a module that
is not installed in the system. The routines which do not require
any modules cannot cause this message.

?MINC-F-Too many arguments in the statement

This message appears when the syntax check finds more argu-
ments in the argument list than the routine can interpret. This
condition can arise as a result of extra commas in the argument
list.

?MINC-F-Variable name required for argument #

The message appears when an argument is a literal instead of a
variable or array name. The argument must be a name rather
than a literal when the routine being called assigns a value to the
argument. The syntax check replaces the # shown above with
the list position of the argument causing the message. This con-
dition can arise as a result of missing or extra placeholder com-

CONVENTIONS AND DEFINITIONS

mas in the argument list.

The following messages arise from problems in interactions be-
tween routines and processes, rather than from argument er-
rors in a particular statement. Some of these error messages
never appear when MINC is functioning properly.

?MINC-F-Data transfer or pending service request terminated

This message appears whenever you could not resume executing
because some ongoing process has been terminated. If a pro-
gram finishes without executing a TERMINATE statement to
terminate all continuous transfers, the message appears. If you
press CTRL/C to abort a program, the message appears if there
is a pause in progress, if a Schmitt trigger is active, if a sched-
uled time event has not occurred, or if a continuous transfer is
still in progress.

?MINC-F-Notify DIGITAL: Internal error trap

This message does not appear when MINC is functioning prop-
erly. It indicates a serious problem in the MINC routines.

?MINC-F-Notify DIGITAL: Mark time failure

This message does not appear when MINC is functioning prop-
erly. It indicates a serious problem in the MINC routines.

?MINC-F-Notify DIGITAL: Memory pool exhausted

This message does not appear when MINC is functioning prop-
erly. It indicates a serious problem in the MINC routines.

?MINC-F-Notify DIGITAL: Protection failure

This message does not appear when MINC is functioning prop-
erly. It indicates a serious problem in the MINC routines.

?MINC-F-Too many response requests pending

The message appears when more response requests have oc-
curred than MINC can respond to. MINC can delay responding
to response requests until previous requests have been re-
sponded to, but at most eight response requests can be pending
at one time. SCHMITT, SCHEDULE, and CONTINUE all

cause response requests.

Interaction Errors

53

CHAPTER 3

LAB MODULE PROGRAMMING

Chapter 3 contains example programs for several classes of
common laboratory applications. In each case, the example de-
scribes the objective for the experiment and the measurement
plan that forms the basis for the program design. It outlines the
instrumentation assumed by the program and the design of the
program.

The examples are designed to serve as models for valid program
design using the lab module routines. However, if you have an
instrument whose characteristics match those of the hypotheti-
cal instruments in the examples, you can connect the instrument
and run the example program. All example programs are
stored on the demonstration diskette.

The examples illustrate the major classes of function provided
by the lab module routines. The example section for each routine
in Part 2 contains the reference to the relevant example for the
routine. The following table contains the names of the routines
used in each example.

Table 5. Routines Illustrated by Each Example.

FExample Example Title Routines Illustrated

A Analog Sweep Integration AIN, TEST_GAIN,
SET_GAIN

B Signal Averaging AIN_SUM,
TEST_LINE,
SET_LINE,

PAUSE

EXAMPLES

b5

LAB MODULE PROGRAMMING

EXAMPLE A.
ANALOG SWEEP
INTEGRATION

56

G
H

Saving Continuous Input

Digital Analyzer Control

Arithmetic Quiz

Animal Tracking

Time Interval Measuring

Oscilloscope Control

AIN, CONTINUE,
TERMINATE

DIN, DOUT,
SET_LINE,
TEST_LINE,
MAKE_NUMBER,
MAKE_BCD,
PAUSE

START_TIME,
GET_TIME

DIN, DIN_EVENT,
WAIT_FOR_DATA,
SCHEDULE

TIME_HIST
AOUT

Example A illustrates AIN, TEST_GAIN, and SET_GAIN.
The program name is AGINT.BAS on the demonstration disk-

ette.

Experimental Model

We have asourceof analog data which we

want to collect and integrate. The sampling rate is slow (50Hz)
and 513 points will be sufficient. The conditions of the experi-
ment itself determine when sampling should begin, so the ex-
periment provides a signal indicating when the input sweep be-

Instrument

Analog Data Signal

Sweep Start Line

preamp

b

asd

clock

COUNTER

cLk oV
st1
st2

ST 10UT

MR-1935

Figure 34. Instrumentation for Example A.

gins. We shall use this signal to initiate the collection of analog
data.

The source of the analog data provides a voltage whose full scale
range is considerably less than the full scale of the A/D con-
verter. Therefore we need to connect the data source to a preamp
module. Figure 34 shows a diagram of the instrumentation.

Program Description The program first asks for an input
channel and a gain code. After obtaining these parameters, the
program collects the analog data (with the beginning of the
sweep triggered by a signal on ST2) and displays the values on
the screen. After the data have been collected, the integral is
calculated using Simpson’s Rule. The result is printed on the
screen and then the whole process repeats for another acquisi-
tion sweep. The program continues indefinitely until we press
CTRL/C twice.

10 REM EXAMPLE A. AIN, TEST_GAIN, SET_GAIN

20 REM Identify the program to the user.

30 PRINT "“Analog sweep integration example.”” \ PRINT

40 REM Define the error message format strings.

50 DIM M$(3)

60 DATA ""Channel ## must be programmable.”

70 DATA ""Channel ## must have a preamp.”

80 DATA "'Channel ## must be installed in system.”

90 FOR I=1 TO 3 \ READ M$(I) \ NEXT |

100 REM Prompt for the channel number and gain.

110 PRINT "Enter the channel number of the input:""; \ INPUT C

120 PRINT "Enter the gain code (0-4): "\ INPUT G

130 REM Verify that the preamp is properly set [P mode and volts]

140 TEST_GAIN(C,A A$)

150 IF A<<0 THEN 200

160 IF A$<>'V' THEN 210

170 SET_GAIN(,G,C)

180 GO TO 250

190 REM The channel parameters are wrong. Print a message.

200 PRINT USING M$(-A),C \ GO TO 220

210 PRINT USING "The mode on channel ## must be volt.",.C

220 GOSUB 20000 \ REM Execute the ready dialog.

230 IF A=-1 THEN GO TO 130 \ REM If channel has preamp, recheck until correct.
240 GO TO 100 \ REM Otherwise ask for another channel.

250 REM Collect 513 point sweep, displaying data as they are acquired.
260 PRINT

270 PRINT 513 points will be collected. Connect the start signal to ST2.”
280 GOSUB 20000 \ REM Execute the ready dialog.

290 REM Allocate the data array.

300 DIM R%(512)

310 REM Collect the data.

320 AIN('Display,ST2',R%().513,1/50,C)

330 REM Simpsons rule for the numerical integration of a 513 point array:
340 REM

350 REM

PROGRAMMING EXAMPLES

57

LAB MODULE PROGRAMMING

EXAMPLE B.
SIGNAL
AVERAGING

58

512
360REMS = - - — — — - -~ *R% [0] +4*Ro% [1] +2*R% [2] +...4%R% [511] + R% [512]

370 REM 6 * 256

380 REM

390 S=R%(0)+R%(512)

400 FOR =1 TO 511 STEP 2 \ S=S+4*R%(l) \ NEXT |
410 FOR I=2 TO 510 STEP 2 \ S=S+2*R%(l) \ NEXT |
420 S=(S*512)/(6%256)

430 REM Print the integral value under the displayed data.
440 PRINT "Calculated integral:"",S

450 REM Repeat the program.

460 GO TO 100

20000 REM Wait for Y instruction

20010 PRINT "Enter Y when you are ready to start”; \ LINPUT T$
20020 IF T$="y' THEN RETURN

20030 IF T$="Y' THEN RETURN

20040 GO TO 20010

Example B illustrates AIN_SUM, TEST_LINE, SET_LINE,
and PAUSE. The program name is AGAVER.BAS on the dem-
onstration diskette.

Experimental Model We have an instrument which provides a
somewhat noisy signal of the form Y = C*EXP(-K*T), that is, an
exponentially decaying signal from time (T) zero. We wish to de-
termine the value of the two constants C and K. In addition, we
wish to reduce the effects of the signal noise on our results. To do
this we shall repeat the experiment 100 times, averaging the re-
sults, and then we shall fit the data to the equation using the
method of least squares.

Assume that the instrument supplies the five connections shown
in Figure 35.

1. The exponentially decaying analog data signal.

2. Aninput control signal from the instrument (trigger signal)
to trigger the analog data sampling.

3. An input control signal from the instrument (sweep start)
indicating that the instrument has begun a sweep and that
data are available on the first connection.

4. An input control signal from the instrument (ready signal)
indicating that the instrument is ready to begin.

5. An output control signal to the instrument (start signal) in-
dicating that it should begin its operation. If the instrument
is ready then it will repeatedly provide the required data on

the analog connector until this signal is cleared.

Analog Data Signal Instrument Trigger Signal

Ready Signal
% ? Sweep Start Signal

PROGRAMMING EXAMPLES

‘_Ymstru ment Start Signal

a/d digital in digital out clock

DATA DATA
STROBE Oz
REPLY STROBE

O O

REPLY

[X)

st1

st2
-

ST10UT

st1 st2

L1
]

MR-1936

Figure 35. Instrumentation for Example B.

We connect the analog data signal to channel 3 of the A/D con-
verter. We connect the trigger signal to ST1 of the clock module
to trigger each A/D conversion. The sweep start signal is con-
nected to ST2 of the clock module and marks the beginning of
each sweep for the AIN_SUM routine. The ready signal indi-
cating that the instrument is ready is connected to line 0 of digi-
tal input unit 0. By testing this line, we can determine when the
instrument is ready and can proceed automatically. The instru-
ment start signal is connected to line 0 of digital output unit 0.
By setting this line, we start the experiment.

Program Description The program first prompts the operator
to prepare the experiment and then waits for keyboard verifica-
tion from the operator to proceed. Next, it waits for the instru-
ment ready signal and sends the start signal. The program then
collects 100 sweeps of 512 points each from the instrument and
stops the instrument.

Using the method of least squares, the program fits the data col-
lected (divided by 100) to the exponential decay equation and
prints out the two values computed. The program repeats the ac-
quisition sequence indefinitely until the operator enters
CTRL/C.

59

LAB MODULE PROGRAMMING

10 REM EXAMPLE B. AIN_SUM, TEST_LINE, SET_LINE, PAUSE
20 REM Identify the program to the user.
30 PRINT "Signal averaging example.”” / PRINT
40 REM Initialize the channel, lines, and number of sweeps.
50 C=17 \ N=100 \ REM Channel, C = 17; Number of sweeps, N = 100.
60 U=0 \ S0=0 \ R0O=0 \ REM Unit, U =0; Start line, SO, and ready line, RO = 0
70 P=512 \ DIM D(511) \ REM Allocate space for 512 points.
80 PRINT "'Prepare the instrument for computer control.”
90 GOSUB 20000 \ REM Execute the ready dialogue.
100 REM Now wait for the instrument ready signal.
110 TEST_LINE(RO,I,U)
120 IF I>>0 THEN 160
130 PRINT CHR$(7); "'The instrument is not yet ready.”
140 PAUSE(15)
150 GO TO 110
160 REM Start the instrument.
170 SET_LINE(SO0,1,U)
180 PRINT ""Acquisition now beginning.”
190 AIN_SUM('Display’.D(),P..C..N) \ REM Display, 512 points, Chan. C, N sweeps
200 PRINT ""Acquisition complete.” / PRINT
210 SET_LINE(S0,0,U) \ REM Stop the instrument.
220 REM Average the data.
230 FOR =0 TO P-1 \ D()=D(1)/N \ NEXT |
240 REM
250 REM Assume data fits D(T)=C*EXP(-K*T)
260 REM or the relation LOG(D(1))=LOG(C)-K*T
270 REM Which is equivalent to Y = A + B*T
280 REM A least squares fit to the linear form follows.
290 REM TO is the average of T. T2 is the average of T2
300 REM YO is the average of Y. Z is the average of Y*T.
310 REM B = (TO*YO-Z)/(TOAQ—XZ)
320 REM A = Y0 - B*TO
330 REM
340 T0=0 \ T2=0 \ Z=0 \ Y0=0 \ REM Initialize the accumulators.
350 FOR T7=0 TO 511
360 Y=LOG(D(T))
370 TO=TO+T \ T2=T2+T1"2
380 YO=YO+Y \ Z=Z+Y*T
390 NEXT T
400 REM Calculate the averages.
410 TO=TO/P \ T2=T2/P
420 YO=YO/P \ Z=Z/P
430 REM Calculate the slope and intercept.
440 B=(T0*Y0-2)/(T0" 2-T2)
450 A=Y0-B*TO
460 REM Convert the intercept to the exponential form.
470 A=EXP(A)
480 REM Print the results
490 PRINT 'Y = C * EXP(-K * T)"";
500 PRINT USING "C = H##H#H HAHA K = #HHH#H #H#HA-B
510 PRINT
520 GO TO 80 \ REM Repeat the program
20000 REM Wait for Y instruction
20010 PRINT "Enter Y when you are ready to start”’; / LINPUT T$
20020 IF T$='y’ THEN RETURN
20030 IF T$="Y' THEN RETURN
60 20040 GO TO 20010

Example C illustrates AIN, CONTINUOUS, and
TERMINATE. The program name is A6SAVE.BAS on the
demonstration diskette.

Experimental Model We have an instrument which provides a
signal consisting of peaks and valleys. In a later analysis pro-
gram, we want to detect the locations of the peaks and valleys in
the waveform. To do this, we will require 20,000 points. There-
fore, we know we cannot collect all the points in the workspace
but must save them in a virtual array file.

Figure 36 diagrams the instrumentation.

Analog Data Signal Instrument

asd clock

L111

MR-1937

Figure 36. Instrumentation for Example C.

Program Description The program prompts the operator for
the name of the file for the data points. The program then
collects 25 data points per second and terminates when 20,000
points have been collected. During the data collection, the pro-
gram monitors the progress of the acquisition by printing the
number of samples collected.

When the stream is complete, the program saves the file and re-
peats the acquisition sequence indefinitely until the operator en-
ters CTRL/C.

10 REM EXAMPLE C. AIN, CONTINUE, TERMINATE

20 REM ldentify the program to the user.

30 PRINT ""Saving continuous input example.”

40 REM Initialize the channel [C], trigger interval [R] and counter [J]
50 C=5 \ R=25 \ J=0 \ K=0

60 REM Accept the file specifications.

PROGRAMMING EXAMPLES

EXAMPLE C.
SAVING
CONTINUOUS
INPUT

61

LAB MODULE PROGRAMMING

EXAMPLE D.
DIGITAL ANALYZER
CONTROL

62

70 PRINT “Enter the file name of the data file: "; / LINPUT D$
80 REM Allocate the virtual array file and open its channel.

90 DIM #1,D(19999) \ S=19999

100 OPEN D$ FOR OUTPUT AS FILE 1

110 REM Allocate the array used for the continuous acquisition.
120 DIM R(199) \ B=99

130 REM Setup the continuous acquisition process.

140 AIN('Display,Continuous’,R(),200,1/R,C)

150 REM Start the acquisition and specify RO as the array index.
160 CONTINUE(R(),R0,2000)

170 PRINT

180 PRINT ""Number of data points requested:”;S+1

190 PRINT "Number of data points collected:";

200 GET__CURSOR(C0,C1)

210 PRINT

220 HTEXT(,C0,C1+1,STR$())) \ REM print the number of points collected.
230 IF J<<S THEN 220

240 HTEXT(,C0,C11+1,STR$(J)) \ REM print the number of points collected.
250 CLOSE #1

260 PRINT

270 GO TO 70

2000 REM Transfer the data to the virtual array.

2010 FOR 19=R0 TO Ro+B

2020 D())=R(19)

2030 NEXT 19

2040 |=J+B

2050 IF J<<S THEN 2080

2060 TERMINATE('Immediate’ . R()) \ PRINT “TRANSFER HALTED."
2070 RETURN

2080 CONTINUE(R(),R0,2000)

2090 RETURN

Example Dillustrates DIN, DOUT, SET_LINE, TEST_LINE,
MAKE_NUMBER, MAKE_BCD, and PAUSE. The program
name is D6MCA.BAS on the demonstration diskette.

Experimental Model We need to control a multichannel ana-
lyzer, an instrument which performs its own data acquisition at
very high speed and often with greater precision than most com-
puters. Essentially it is an instrument which performs the same
function as the AIN_HIST call except that it is very fast. We
shall assume that the analyzer has 512 channels. The analyzer
can be started and stopped by the computer, can be directed to
take a particular number of samples, can tell the computer how
many samples it has taken so far, and can be directed to dump its
results out to the computer. Because all numeric quantities used
to communicate with the analyzer are expressed in BCD format,
the digital input and output routines can control the analyzer.

The analyzer has a set of digital control lines, one set for accept-
ing commands and the other for sending status values. We con-
nect the analyzer’s status lines to digital input unit 0 and the
analyzer’s command lines to digital output unit 0.

Two other sets of lines carry data values to and from the ana-
lyzer. The analyzer expects 16-bit values to specify its sweep
length. We connect the sweep length lines to digital output unit
1. The analyzer stores its data internally temporarily and can
send all the stored data at once when it receives a dump com-
mand. We connect the analyzer’s 16-bit data lines to digital input
unit 1.

Figure 37 diagrams the instrumentation.

Data Lines Command Lines
to MINC from MINC

Multichannet
Analyzer

Status Lines Sweep-length
to MINC Lines

digital in digitalin digitalout digital out

DATA DATA
DATA DATA
wol___> vl >0 0t
SYROBE STROBE NO) 2 O 2
STROBE STROBE
O REPLY O REPLY O O
REPLY REPLY

Unit 1 Unit 0 Unit 1 Unit 0
MR-1938

Figure 37. Instrumentation for Example D.

This analyzer can acquire up to 99,999,999 samples. The max-
imum BCD values that the sweep length lines can transmit is
9,999. Therefore, the analyzer can accept the sweep length spec-
ification in two parts, the four least significant digits and the
four most significant digits. Similarly, the analyzer can present
values up to 99,999,999 on the data lines. Therefore, it sends data
values in two parts, first the four least significant digits and
then the four most significant digits.

The analyzer status lines are connected to terminals on the digi-
tal input unit O connector block as follows:

PROGRAMMING EXAMPLES

63

LAB MODULE PROGRAMMING

64

Terminal D00. Ready line. Set when the analyzer is ready.

Terminal DO1. Busy line. Set while the analyzer is acquiring
data.

The analyzer control lines are connected to terminals D00, D01,
and D02 of the connector block for digital output unit 0. The ana-
lyzer performs whatever function is specified by the condition of
the lines. It performs the function as soon as the condition of any
of the control lines changes. The following table defines the func-
tions performed as a result of the various line conditions.

000 Initialize the analyzer.

001 Load the four least significant digits of the sweep
length.

010 Load the four most significant digits of the sweep
length.

011 Present the four least significant digits of the count on
the data lines.

100 Present the four most significant digits of the count on
the data lines.

101 Start data acquisition.

110 Stop data acquisition.

111 Dump the data acquired on the data lines.

Program Description The program prompts the operator for
the number of samples to acquire. It then waits for the analyzer
to set its ready line, sends the number of samples to acquire, and
starts the analyzer. The program monitors the progress of the
acquisition by checking the data lines every 10 seconds to see
how many samples have been acquired since the beginning of
the sweep and by checking the condition of the busy line. When
the busy line is clear, the program commands the analyzer to
dump the data values to an array and stores them in a file.

10 REM EXAMPLE D. DIN, DOUT, SET_LINE, TEST_LINE, MAKE_NUMBER, MAKE_BCD, PAUSE

20 REM lIdentify the program to the user.

30 PRINT "'Digital analyzer control example.” \ PRINT

40 PRINT "How many data samples do you want to take:"; \ INPUT N \ N=INT(N)
50 TEST_LINE(0,R) \ REM Test the analyzer's ready line.

60 IF R=>0 THEN 100

70 PRINT "Analyzer not ready.”

80 PAUSE(15)

90 GO TO 50

100 DOUT(,BIN('000")) \ REM Initialize the analyzer.

110 TO=N/10000 \ T1=T-(T0*10000) \ REM Split the count into two 4 digit halves.
120 MAKE_BCD(T0,70) \ MAKE_BCD(T1,T1) \ REM Convert the halves to BCD.
130 DOUT(,T1,,,1) \ DOUT(,BIN('001")) \ REM Set the lower half.

140 DOUT(.T0.,,1) \ DOUT(,BIN('010')) \ REM Set the upper half.

150 PRINT "'Acquisition begun.” TAB(50);CLK$

160 DOUT(,BIN('1017)) \ REM Start the analyzer.

170 ERASE_TEXT('TEXT',1) \ REM Erase the first line for the sample counter.
180 REM Loop until the acquisition is done.

190 GOSUB 1000 \ REM Go get the counts done so far.

200 TEST_LINE(1,R) \ REM Check the analyzer acquiring bit.

210 IF R=0 THEN 240 \ REM Exit this loop if done.

220 PAUSE(10)

230 GO TO 180

240 REM Data has been acquired but print the sample count once more.
250 GOSUB 1000

260 PRINT "Acquisition complete.” TAB(50),CLK$

270 REM Allocate a working array and save the data on the disk.

280 DIM D%(1023)

290 DOUT(,BIN('111")) \ DIN(,D%(),1024,,1)

300 REM Accept the file name from the user.

310 PRINT “Enter the filename for the data storage:"; \ LINPUT F$
320 OPEN F$ FOR OUTPUT AS FILE #1

330 REM Store the data in the file.

340 FOR I=0 TO 1022 STEP 2

350 REM Convert from BCD and store in file F$.

360 MAKE_NUMBER(D%(I),T0} \ MAKE_NUMBER(D%(I+1),T1)

370 PRINT #1,71*10000+T0

380 NEXT |

390 REM Close the output file, print the end message and repeat program.
400 CLOSE #1

410 PRINT \ PRINT “Data saved in file “;F$ \ PRINT

420 GO TO 40

1000 REM Get the number of samples taken and display them.

1010 DOUT(,BIN('011°)) \ DIN(,T0,,,1) \ MAKE_NUMBER(T0,T0)

1020 DOUT(.BIN('1007) \ DIN(.T1,,,1) \ MAKE_NUMBER(T1,T1)

1030 C=T1*10000+T0

1040 T$=CLK$+" Samples requested: "+STR$(N)+" Samples taken: "+STR$(C)
1050 HTEXT(,1,1,T$)

1060 RETURN

Example E illustrates START_TIME and GET_TIME. The
program name is T6QUIZ.BAS on the demonstration diskette.

Experimental Model We wish to present simple arithmetic
problems to a subject and measure solution latencies. We need to
record both the number of correct and incorrect responses and
the latencies for correct and incorrect responses.

The problems appear on the terminal screen. The subjects enter
their responses on the keyboard. To measure the response laten-
cies, we need the clock module. No connections are needed to the
clock module.

Program Description The program creates arithmetic prob-
lem items consisting of two numbers and an operator, for exam-
ple, 7+ 2. It chooses all three elements of the item using the RND

PROGRAMMING EXAMPLES

EXAMPLE E.
ARITHMETIC QUIZ

65

LAB MODULE PROGRAMMING

66

function to generate a random number. It chooses the operator
using a random number in the range 0 to 2 for the operators +, -,
and * and chooses the two digits from the set of digits 0 to 9.

The program presents the item on the screen, starts the elapsed-
time clock and waits for the subject to enter the answer on the
keyboard (ended by either the RETURN key or the ENTER
key). When the response arrives, the program collects the
elapsed time and evaluates the answer. It provides feedback to
the subject concerning latency and correctness.

The program presents a sequence of 20 problems to the subject
and then prints a summary of proportion correct and mean la-
tency.

10 REM EXAMPLE E. START_TIME, GET_TIME, PAUSE

20 REM Identify the program to the users.

30 PRINT "Arithmetic quiz example.” \ PRINT

40 PRINT "This program presents you with simple arithmetic problems to solve.”
50 PRINT ""The program records your score and how long you took to enter the”
60 PRINT “answer for each problen.”

70 PRINT ""There are 20 problems in each set.”

80 PRINT

90 REM Define a MOD [or REM] function.

100 DEF FNR(X,Y)=X-(INT(X/Y)*Y)

110 GOSUB 20000 \ REM Execute the ready dialogue.

120 REM Initialize the result counters and then repeat 20 times.

130 C=0 \ W=0 \ G=0 \ B=0 \ REM Score counters, correct/wrong elapsed times.
140 FOR I=1 TO 20

150 REM Get three random numbers

160 X=FNR(INT(10*RND),3) \ REM X is in range O to 2.

170 Y=FNR(INT(10*RND),10) \ REM Y, Z are in range 0 to 9.

180 Z=FNR(INT(10*RND),10)

190 REM Create the problem to present.

200 ON X+1 GO TO 210,230,250

210 R=Y+2

220 GO TO 270

230 R=Y-Z

240 GO TO 270

250 R=Y*Z

260 REM Display the problem.

270 PRINT

280 PRINT USING "## ' #="Y SEG$(+-*" X+1,X+1).Z;

290 START_TIME('KHZ') \ REM Start the elapsed-time counter in msec

300 INPUT A \ REM Wait for the answer.

310 GET_TIME(T) \ REM Determine the latency of the answer.

320 START_TIME('Halt’) \ REM Stop the elapsed-time counter.

330 IF R<_>A THEN 380 \ REM Score the answer.

340 PAUSE(.1)

350 PRINT TAB(40);"CORRECT.”

360 C=C+1 \ G=G+T \ REM Increment the number correct and accumulate the times.
370 GO TO 400

380 PRINT TAB(40);"WRONG! The correct answer is "";R

390 W=W+1 \ B=B+T \ REM Increment the number wrong and accumulate the times.

400 PRINT USING "Your response took ### H# seconds.”, T \ PRINT
410 PAUSE(2) \ REM Give person time to read the results

420 NEXT |

430 REM Display the results of the quiz.

440 PRINT bk ckdxe

450 PRINT "There were 20 problems.”

460 PRINT USING "You answered ## problems correctly’”,.C

470 PRINT USING and ## incorrectly.” W

480 PRINT

490 PRINT "Your average response times were:"

500 PRINT USING " #H#4# ## seconds for correct answers” G/C
510 IF B0 THEN 540

520 PRINT USING " and you had no incorrect answers.”

530 GO TO 550

540 PRINT USING and ### ## seconds for incorrect answers.”",B/W
550 PRINT

560 GOSUB 20000

570 PRINT

580 GO TO 120 \ REM Repeat with another problem set.

20000 REM Wait for Y instruction

20010 PRINT "Enter Y when you are ready to start’”; \ LINPUT T$
20020 IF T$="y’ THEN RETURN

20030 IF T$="Y' THEN RETURN

20040 STOP

Example F illustrates DIN, DIN_EVENT,
WAIT_FOR_DATA, and SCHEDULE. The program name is
D6TRAK.BAS on the demonstration diskette.

Experimental Model We have an activity-monitoring experi-
ment in which we need to know how much time an animal
spends in different areas of a region over a five hour period. The
region is divided into 16 zones and we have sensors in each zone
which detect the presence of the animal. For the sake of simplic-
ity we assume that the sensors detect the arrival of an animal
immediately and that the sensors themselves resolve the prob-
lems arising when the animal straddles zone boundaries.

Each sensor is wired to one line of digital input unit 0. We ac-
quire data from the sensors continuously for five hours using the
timestamp mode. Therefore, we can determine the time the ani-
mal stays in each zone by the difference in times between sue-
cessive arrival times in zones. The timestamp clock is driven by
an external timebase with a period of 1 second. Figure 38 dia-
grams the instrumentation.

During the acquisition, a continuous plot of the zones is main-
tained on the screen, including the current position of the animal
and how much time it has spent so far in each zone. The zones are

PROGRAMMING EXAMPLES

EXAMPLE F.
ANIMAL TRACKING

67

68

LAB MODULE PROGRAMMING

displayed as a four-by-four square with no attempt to preserve a
one-to-one spatial relationship between the screen zones and the
physical zones.

After five hours, the results of the experiment are saved in afile.

digital in clock

| pata , [
e m—

c STROBE liol

: REPLY

Zone Sensor
Lines

Time Base

MR 1939

Figure 38. Instrumentation for Example F.

Program Description The program prompts the operator for
the name of a file in which to save the results of the experiment.
It draws the zones on the screen and initializes all of the times to
zero. It then waits for an operator signal to proceed and begins
collecting digital input with independent event control. Because
the program runs for five hours, it repeatedly prints out a mes-
sage informing any onlookers that it is busy. When the data col-
lection period expires, the program stores the time data in the
file and stops executing.

10 REM EXAMPLE F. DIN, DIN_EVENT, WAIT_FOR_DATA, SCHEDULE
20 REM lIdentify program to user.

30 PRINT "Animal tracking example.” \ PRINT

40 REM Request filename from user.

50 PRINT "Enter name of data file:"; \ LINPUT F$

60 REM Draw the boxes on the screen using the following constants:
70 X9=18 \ Y9=5 \ X0=1 \ Y0=1 \ X1=73 \ Y1=21

80 REM Initialize display strings A$ and B$.

90 A$:"*****” \ B$:u "

100 REM Initialize the occupancy times, T(l)

110 DIM T(15)

120 FOR I=0 TO 15 \ T(I)=0 \ NEXT |

130 REM Initialize the screen display

140 DISPLAY_CLEAR

150 ROLL_AREA(22,24)

160 PRINT TAB(31);"ZONE SUMMARY"

170 FOR I=X0 TO X1 STEP X9 \ TEXT_LINE(!,R",YO0,l,Y1,1) \ NEXT |
180 FOR I=Y0 TO Y1 STEP Y9 \ TEXT_LINE(I,R",1,X0,1,X1) \ NEXT I
190 REM Number the boxes and set the starting accumulation to 0.
200 GET_CURSOR(A.B)

210 FOR I=1 TO 4 \ FOR |=1 TO 4

220 X=(I-1)*X9+2 \ Y=(-1)*Y9+2

230 MOVE_CURSOR(Y.X) \ PRINT USING "##",(J-1)*4+(-1)

240 MOVE_CURSOR(Y+3,X+9) \ PRINT USING “#H#H##HAH#HA" 0
250 NEXT J \ NEXT |

260 MOVE_CURSOR(A,B)

270 REM Track an animal using DIN and DIN_EVENT

280 REM Set the experiment timer.

290 K9=0 \ SCHEDULE('Interval’,’5:00:00',2000)

300 REM Set the event-enable word.

310 DIN_EVENT(BIN(C11111111111111117))

320 REM Allocate an array for acquisition of the events and timestamp values.

330 DIM S%(3) \ REM Allocate space for two events.
340 REM Start the elapsed-time counter.

350 START_TIME('External’)

360 REM Start the acquisition.

370 DIN('Time,Continuous’,S%(),4)

380 WAIT_FOR_DATA(S%().Q)

390 SCAN_BIT(R,S%(Q+1)) \ REM Find the line that caused the event.

400 IF R<<0 THEN 440

410 T=S%(Q) \ REM Get the time.

420 MAKE_TIME(,T,T)

430 GOSUB 1000 \ REM Update the display.

440 IF K9=0 THEN 380 \ REM If K9=1, the time is up.

450 REM Terminate process, 5 hours are up.

460 TERMINATE('Immediate’',.S%())

470 REM Save the results.

480 OPEN F$ FOR OUTPUT AS FILE #1

490 FOR I=0 TO 15 \ PRINT #1,7(1) \ NEXT |

500 REM Close the file and stop with the final data on the screen.
510 CLOSE #1

520 STOP

1000 REM Plot the animal position and update the occupancy time.
1010 REM Old zone is in RO, new zone is in R.

1020 P=RO \ GOSUB 1200

1030 REM clear old mark

1040 HTEXT(,Y+1,X+6,B$) \ HTEXT(,Y+2,X1+6,B$)

1050 REM Update the occupancy time of the zone just exited.
1060 T(RO)=T(R0)+T-TO

1070 T$=STR$(T(RO))

1080 HTEXT(,Y+3,X+9,SEGS$(” " 1,8-LEN(T$)+T$)
1090 REM Display new mark.

1100 P=R \ GOSUB 1200

PROGRAMMING EXAMPLES

69

LAB MODULE PROGRAMMING

EXAMPLE G.
TIME INTERVAL
MEASURING

70

1110 HTEXT(,Y+1,X+6,A$) \ HTEXT(,Y+2,X+6,A$)
1120 TO=T \ RO=R

1130 RETURN

1200 REM Convert P into X and Y coordinates.
1210 YO=INT(P/4) \ Y=Y0*Y9+2

1220 X0=P-(Y0*4) \ X=X0*X9+2

1230 RETURN

2000 REM Set the timeout flag.

2010 K9=1

2020 RETURN

Example G illustrates TIME_HIST. The program name is
T6SPIN.BAS on the demonstration diskette.

Experimental Model We have a machine with a spinning rotor
and we wish to monitor its speed over a long period of time. We
expect some variations in its rotation rate but wish to verify that
variation is within our tolerance limits over long periods of time.

We have a sensor on the machine which tells us each time the ro-
tor has turned exactly once. Therefore, we can monitor the time
interval between the signals from the sensor. We would like to
observe the behavior of the the machine for about 24 hours. Fig-
ure 39 diagrams the instrumentation.

Machine

Sensor

MR-1940

Figure 39. Instrumentation for Example G.

The basic rotation rate is 360 rpm and we expect no variations
greater than 10 percent in either direction.

Program Description The program prompts the operator for
the name of a file in which to save the data. The program then
begins the acquisition of the data. It cannot execute
TIME_HIST for 24 hours because the counts in the histogram

bins would overflow. Instead, it executes TIME_HIST 26 times
with a 20,000-point sweep each time. After each sweep, it adds
the counts in the histogram bins to a separate real array. After
the final sweep is complete, it saves the histogram counts in a file
for later processing.

10 REM EXAMPLE G - TIME_HIST

20 REM lIdentify the program to the user.

30 PRINT "'Time interval measurement example.” \ PRINT
40 REM Request a filename.

50 PRINT "Enter a data filename in which to save the results:”"; \ LINPUT F$
60 REM Open the file.

70 OPEN F$ FOR OUTPUT AS FILE #1

80 REM Allocate the histogram and storage arrays.

90 DIM H%(511),S(511)

100 REM Begin the acquisition

110 FOR I=1 TO 26

120 TIME_HIST('Zero,Display’,H%(),5,20000,15152,18520)
130 FOR J=0 TO 511 \ S()=H%(})+S(J) \ NEXT J

140 NEXT |

150 FOR |I=0 TO 511

160 PRINT #1,5(1)

170 NEXT |

180 CLOSE #1

Example H illustrates AOUT. The program name is
A6SCOP.BAS on the demonstration diskette.

Experimental Model We have previously calculated a set of
X-Y coordinate pairs and stored them in a file. We need to plot
them on a storage oscilloscope because the coordinates represent
a complex, nonwaveform function which could not be plotted on
the MINC screen.

We connect the oscilloscope intensify line to Bit 0 of D/A channel
3. We connect the erase line to Bit 1 of D/A channel 3. In addition,
we connect the X axis to D/A channel 0 and the Y axis to D/A
channel 1. Figure 40 diagrams the instrumentation.

The coordinate file contains pairs of numbers in the range -5000
to +5000. The oscilloscope expects values in the range -5 volts to
+5 volts.

Program Description The program prompts the operator for
the name of the data file and issues instructions for setting the
D/A voltage ranges of channels 0 and 1 to the =5 volt range. It
waits for an operator signal to proceed with the display. The pro-
gram first erases the screen. It then retrieves the coordinate

PROGRAMMING EXAMPLES

EXAMPLE H.
OSCILLOSCOPE
CONTROL

71

LAB MODULE PROGRAMMING

72

pairs from the file, converts them to the range required by the
D/A converter, and sends them to the D/A converter. When it
reaches the end of the file, the program closes the file and
prompts the operator for a new file name. It repeats indefinitely
until the operator enters CTRL/C.

Erase
+15T 24 Line

-16T 23
BIT3L 22
BIT2L 21

logicgnd 20
BIT1L 19
logicgnd 18
BITOL 17
logicgnd 16
BIT3H 156
logicgnd 14
BIT2H 13
logicgnd 12
BITTH 11+
logicgnd 10
BITOH 9+
analoggnd 8
DAC3 7
analog gnd 6
DAC2 5
analog gnd 4
3
2
1

Oscilloscope

Intensify
Line

Y-Axis Output
to Scope
X-Axis Output to Scope

DAC 1
analog gnd
DACO

_n._r*/

Figure 40. Instrumentation for Example H.

MR-1941

10 REM EXAMPLE H. AOUT

20 REM Identify program to user

30 PRINT "Analog output example.” \ PRINT

40 REM Request a data filename.

50 PRINT "Enter data filename:"; \ LINPUT F$

60 REM Tell user to set the channels.

70 PRINT \ PRINT "'Set channels 0 and 1 to bipolar mode, 5 volt range.” \ PRINT
80 GOSUB 20000 \ REM Execute the ready dialogue.

90 REM Open the user specified file.

100 OPEN F$ FOR INPUT AS FILE #1

110 REM Erase the oscilloscope screen by sending control bit 1 of channel 3.
120 AOUT(,BIN("10'),,,3)

130 REM Repeat until end of file on #1

140 IF END #1 THEN 220

150 INPUT #1,V(0),V(1)

PROGRAMMING EXAMPLES

160 IF ABS(V(0))>5000 THEN 250

170 IF ABS(V(1))>5000 THEN 250

180 REM 5000/1000 = VOLTS. VOLTS/2.5E-3 = DAC output value.
190 V(0)=V(0)/2.5 \ V(1)=V(1)/2.5

200 AOUT(,V(),2,,0,2)

210 GO TO 140

220 PRINT ""Data have been plotted.”

230 PRINT

240 GO TO 50

250 PRINT "Value exceeds range +/-5000. X: "";X;" Y: ;Y

260 GO TO 140

20000 REM Wait for Y instruction.

20010 PRINT "Enter Y when you are ready to start’”; \ LINPUT T$
20020 IF T$='y’ THEN RETURN

20030 IF T$="Y' THEN RETURN

20040 GO TO 20010

73

PART 2
ROUTINES

74

Part 2 contains the reference descriptions for the lab module
routines. The reference sections appear alphabetically for con-
venient reference use. The structure within each reference sec-
tion is explained in “Syntax Conventions,” page 13, and “Argu-
ment Conventions,” page 21.

AIN collects analog data using the A/D converter. AIN can
collect a single sample point, a sweep of data, or a continuous

stream of data. (See “Analog Signal Processing,” page 1.)

preamp

o
i

£
g
3
§

—O-—-O
—O-*¢+-0
—O-1"-0
I o-¢+-0

AIN(mode,data-name,data-length,trigger,A/D-zhannel no.-of-

channels)
Argument Type of Argument Valid Values Default Value
mode string expression CONTINUOQUS,DISPLAY, standard mode
EXTERNAL,FASTLINE,
RANDOM,ST2
data-name numeric variable -2048 to 2047,; required argument
or array name full-scale values
data-length numeric expression =1 1
trigger numeric expression 0; > 0 to 655.35; 0
1 to 65,535
A/D-channel numeric expression 0 to 63 0
or integer array
no.-of- numeric expression 1 to 64 or channel 1
channels array length

Example AIN(V)

Result Collect one value from channel 0 immediately.
Put the value in variable V.

Example AIN(V(),4,,,4)

Result Collect four values from the conversion se-
quence channels 0, 1, 2, and 3, starting the con-
version sequence immediately. Put the values in
array V.

Example AIN(,V(),100,1/100,8,4)

Result Collect 100 values from the conversion se-

quence channels 8, 9, 10, 11, one sequence every
one-hundredth of a second. Put the values in ar-
ray V. .

AIN

Collect Analog Input

Operation

Configuration

Statement Form

75

AIN

Argument mode The character string selecting optional modes for AIN.
Descriptions (See “Operating Modes and Mode Designators,” page 23.)
Values Meaning
CONTINUOUS Use continuous mode. (See “Con-
tinuous Data Transfers,” page 33.)
DISPLAY Use display mode to monitor the

data collected with a stripchart
display on the screen.

EXTERNAL Enable external source connected
to ST1 to provide the time base (see
“Time Base,” page 43.)

FAST Use fast mode. No autogain.
Collects bipolar integer data arrays
only.

LINE Use line frequency time base (50 or
60 Hz).

RANDOM Use random mode for sampling

nonsequential channels. (See “Ran-
dom Channels,” page 42.)

ST2 Start data collection process with a
signal on Schmitt trigger 2.

Default: Standard mode (point or sweep
transfer with either instrument
trigger control of sampling, trigger
= 0, or clock module control of sam-
pling, trigger > 0 to 655.35).

Some combinations of modes are valid and some are not. In the
following table, invalid mode combinations are marked with an
“X-”

(mode = DISPLAY) In display mode, AIN produces a plot of
the data which appears to move across the screen. (The display is
similar to the stripchart displays produced by the GRAPH rou-
tine with the MOVE option. See Book 4.) The screen holds 512
data points at a time. New data points are added from the right,
and old data points are lost from the left of the display. (Note: the
data array contains all of the points collected, not just the points
currently shown on the screen.) The maximum rate of move-
ment of the trend display is lower than the maximum data col-
76 lection rate. In order to keep pace with the data being collected,

CONTINUOUS DISPLAY EXTERNAL FAST LINE RANDOM sT2
CONTINUOUS X X
DISPLAY X X
EXTERNAL X X
FAST X X X X
LINE X X
RANDOM X X
ST2 X

MR.1925

AIN drops points from the display. Therefore, with rapid sam-
pling, not all points collected appear on the screen display.

The first AIN statement with display mode clears the screen be-
fore beginning the display. Subsequent display mode use of AIN
appends points to the existing display. To clear the screen, use
DISPLAY_CLEAR (see DISPLAY_CLEAR, Book 4).

The display includes a horizontal axis but no vertical axis or
units. The data are displayed in bipolar mode without any gain
conversion. Full vertical scale on the display corresponds to full
scale of the A/D converter. For autogain conversions, full scale
on the display corresponds to a gain of 0.5. Therefore, with auto-
gain, the display shows the relative magnitude of the signal be-
fore conversion, not the result of the conversion.

Display mode produces a display suitable for monitoring pur-
poses. Use the specialized graphic routines for labelled displays.
(See Book 4.)

(mode = FAST) In fast mode, AIN collects the points within a
conversion sequence faster than normal. Therefore, collecting
each sequence is somewhat faster and the trigger intervals can

AIN

77

AIN

78

be shorter. The actual increase depends on the values of other
arguments. The fastest case is single-channel sampling with ex-
ternal signal control (trigger =0). The slowest case is multichan-
nel sampling with clocked control (internal or external, trigger
> 0). Fast mode is not valid in combination with many mode op-
tions (see the table above). Fast mode is further limited because
the data array must be integer and the A/D channels must be
set for fixed gain. AIN terminates execution if it encounters
an autogain channel in fast mode. (See also the Restrictions
section.)

data-name The numeric variable or array to contain the data
collected.

Values: -2048 to 2047 for integer data-name argument

Actual value of the input signal for real data-
name argument (appropriate to gain and mode
selected)

Default: Required argument. AIN assigns data values to
the argument.

Ifthedata-name argument is a variable name, then AIN collects
a single sample point and stops sampling. If the data-name
argument is an array name, AIN collects a sweep of data (con-
taining the number of points in data-length) in standard mode,
and a stream of data (with no length specified) in continuous
mode.

If the data-name argument is a real variable or array, AIN
collects the data in units appropriate to the gain and mode se-
lected by the preamp controls. If there is no preamp, the data
values are in the range £5.12 volts. Refer to Book 7 for descrip-
tion of the ranges and units obtainable with the preamp controls.

If the data-name argument is an integer variable or array, AIN
collects the data as bipolar integers. For integer data names,
AIN does not permit autogain because the range of values pos-
sible (the dynamic range) is too great to be represented by
integers.

data-length The length of the data-name argument.
Values Meaning

1 The data-name argument is a numeric expres-
sion.

>1 The data-name argument is an array name and
the data-length argument specifies the number
of array elements to be filled with data.

Default: 1

If the data-length argument is greater than 1, the data-name
argument must be an array name. For a sweep of data, the data-
length argument is the total number of data points to be col-
lected.

For continuous mode transfer, the data-length argument con-
tains the number of elements in the data-name array. (See “Ar-
ray Partitions,” page 34.)

The data-length argument need not be an even multiple of the
number of channels in a conversion sequence. If it is not, AIN
stops when the array is full regardless of whether or not the con-
version sequence is complete.

trigger The code which specifies how to control the data

transfer.
Values Meaning

0 External signal control. (Signal line con-
nected either to the external start terminal
of the A/D connector block or to ST1 of the
clock module.)

> 01t0655.35 Internal clock control (without mode des-
ignators for external control).

1 to 65,535 External time base (with EXTERNAL or
LINE designators).

Default 0

(trigger =0) When the trigger argument is zero, A/D conver-
sion sequences are triggered by external signals. If the data-
length argument is greater than 1, AIN collects a conversion se-
quence whenever a signal occurs on an external signal line. AIN
collects the first conversion sequence when the first external sig-
nal occurs. The signal line can be connected either to the exter-
nal start terminal of the A/D converter or to ST1. (See Book 7.)

An exception to this occurs when only one conversion sequence is
to be collected. If the data-length argument is less than or equal
to the no.-of-channels argument, AIN collects the sequence im-
mediately (no external signal required). If you need external

AIN

79

AIN

80

signal control for a single conversion sequence, connect the
trigger line to ST1 of the clock and use external mode with
trigger argument value 1.

(trigger > 0 to 655.35) When the trigger argument is greater
than zero, and none of the mode designators specifies an alterna-
tive time base, the clock module triggers the conversion se-
quence. In this case, the trigger argument specifies the trigger
interval in seconds. The trigger interval is the time from one
trigger event to the next. The longest trigger interval possible is
655.35 seconds. The shortest trigger interval possible depends
on the operating mode, the length of the conversion sequence,
and on values of the other arguments.

(trigger =110 65,535) In external mode, an external time base
connected to ST1 provides the trigger events for AIN. In line
mode, the line frequency mode of the clock module provides the
trigger events for AIN. The time base can have a regular rate
(for example, line mode) or a varying rate. In either case, the
trigger argument specifies the number of external signals re-
quired before a conversion sequence occurs. The maximum
number possible is 65,535. For example, if the trigger argument
is 1, every external signal triggers a conversion sequence. If the
trigger argument is 15, every fifteenth signal triggers a conver-
sion sequence.

A/D-channel The first channel in the conversion sequence.

Values: 0 to the highest-numbered channel installed in
the system
Default: 0

The valid channel numbers depend on which analog modules
are installed in the system, and on how the instruments are con-
nected to the A/D-channels (Book 7). The program halts with an
error if you specify a channel that is not present.

The A/D channel argument can be either a numeric expression
or an integer array name. If it is a numeric expression, the con-
version sequence consists of that channel and as many higher-
numbered channels as are specified by the no.-of-channels argu-
ment. If it is an integer array in random mode, the conversion
sequence consists of as many channels in the array as specified
by the no.-of-channels argument. (see “Random Channels,” page
42).

no.-of-channels The number of channels defining a conver-
sion sequence for AIN.

Values: 1 to the maximum number of channels on the
system (for sequential channels).

1 to the length of the channel array (in random
mode).

Default: 1

The no.-of-channels argument defines the number of points in a
conversion sequence. AIN collects the number of points in a con-
version sequence each time a trigger event occurs.

If the A/D channel argument is a numeric expression, then the
conversion sequence is defined by that channel and the number
of sequential channels specified by no.-of-channels. For exam-
ple, if the channel number is 2 and the number of channels is 6,
then the conversion sequence is channels 2 through 7.

If the A/D channel argument is an integer array and random
mode is specified, the conversion sequence is defined by the
channel numbers contained in the array. For example, suppose
the channel array contains the values 6, 0, 1, 4, 7, 5, and 3, the
A/D-channel argument is C(2), and the number of channels is 4.
Then the AIN conversion sequence is channels 1, 4, 7, and 5.

CONTINUE CONTINUE allows the program to resume ex-
ecution during a continuous mode transfer and to continue ex-
ecuting until the current array partition fills. When an array
partition fills, CONTINUE transfers control to its service
subroutine which processes the full array partition while the
other partition continues to fill. (See “Continuous Data
Transfers,” page 33, and CONTINUE.)

TEST_GAIN, SET_GAIN TEST_GAIN and SET_GAIN test
and set the condition of the preamp connected to any A/D
channel.

TERMINATE TERMINATE terminates continuous mode
data collection.

WAIT_FOR_DATA WAIT_FOR_DATA stops the program
during a continuous mode transfer and the program waits until
the current array partition fills. When the array partition fills,
the program resumes executing to process the full array parti-
tion while the other one continues to fill. See “Continuous Data
Transfers,” page 33 and WAIT_FOR_DATA.

AIN

Related Routines

81

AIN

Restrictions

82

Autogain No autogain in fast-sweep mode.
No autogain if the data-name argument is integer.

In autogain conversion, the A/D converter does two conversions
for each data point collected (see SET_GAIN). (The first conver-
sion determines the gain range to use; the second conversion
produces the data point). If the amplitude of the data signal is
varying more rapidly than the conversion rate, the signal could
have changed to a value outside the gain range selected by the
first conversion.

CONTINUE Only one continuous transfer using the A/D con-
verter can be in progress.

If the array partition length is not an even multiple of the con-
version sequence length, then the conversion sequence points
cross the array partition boundaries. AIN takes longer to ac-
quire those conversion sequences which cross partition bound-
aries than those conversion sequences which do not.

Data type and gain For an integer data-name argument, the
values collected are always in the range -2048 to +2047, regard-
less of the fixed gain specified. For example, with againof 5, the
full input range is -1.024 volts to +1.0235 volts. The data value
-2048 corresponds to input signal -1.024 volts; the data value
42047 corresponds to input signal +1.0235 volts; the data value 0
corresponds to input signal 0 volts. The program must convert
the values to restore the original signal scale.

If the data are collecting in a real array, the values always re-
flect the actual input signal range. That is, with a gain of 5, the
full input signal range is -1.024 volts to +1.024 volts. The data
collected have values in the range -1.024 to +1.0235 with resolu-
tion of 0.5 millivolts. With autogain, the resolution ranges from 5
microvolts to 5 millivolts (depending on the absolute value of the
signal).

In either case, the values in the data-name argument have the
units specified by the front panel switch on the preamp. If there
is no preamp connected to the channel, the units for that channel
are volts. If the channel is connected to a preamp, then the units
for the data can be volts, milliamps, or kiloohms, depending on
the front panel setting (see also TEST_GAIN). That is, if the
data value is 1, that value could represent 1 mA, 1 volt, or 1
kohm, depending on the front panel setting of the preamp
module.

External Do not confuse external signal control (trigger = 0)
with external mode (mode designator = EXTERNAL and
trigger > 1). They are similar methods of controlling transfer
but not the same. With a trigger argument of 0, every external
signal triggers a conversion sequence. In external mode, the
trigger argument specifies how many time base signals are nec-
essary to trigger a conversion sequence.

It is easy to confuse these cases because both can use ST1 to con-
nect the trigger line. In fact, external signal control and exter-
nal mode have exactly the same effect in the case where every
signal on ST1 triggers a conversion sequence. For example, the
following two statement have exactly the same effect (when the
signal line is connected to ST1, not to the external start terminal
of the A/D connector block).

AIN (,V(),10)
AIN ('EXTERNAL',V(),10,1) .

Fast mode In some cases, fast mode attains its higher-than-
normal speeds because AIN can use all of the system’s comput-
ing resources. In these cases, all of the system time-keeping
functions are suspended until AIN is finished. This means that
the system clock loses time if AIN runs often or for long in fast
mode.

During a fast mode transfer, entering a single CTRL/C stops
program execution.

Immediate mode Point and sweep AIN transfers operate in
immediate mode; continuous mode transfers do not.

Resolution The positive full scale and negative full scale of the
A/D converter are not symmetric around 0. Although the book
refers to voltage ranges like “+5.12 volts,” the actual range of
values is -5.12 volts to +5.1175 volts. See Book 7 for further
details.

Sampling rates The arguments for AIN allow you to specify
the trigger intervals, that is, the interval from the beginning of
one conversion sequence to the beginning of the next. However,
you have no direct control over the sampling rate within a con-
version sequence. (The rate of conversion within a conversion se-
quence is always higher than the rate you could obtain with the
shortest trigger interval possible for single-channel sampling.)

The conversions within a sequence always occur as fast as possi-

AIN

83

AIN

Errors

84

ble given the length of the conversion sequence, the number of
autogain channels, the data type of the data-name argument,
and the operating modes specified. The CONTINUOUS,
RANDOM, and DISPLAY mode designators all slow the con-
version rate possible within a conversion sequence and their ef-
fects are additive.

Given the number of variables involved, you cannot predict eas-
ily whether or not any particular sampling rate would execute
without error. The feasibility of particular desired rates must be
determined empirically.

ST1 conflict The A/D converter and the clock module interact
during most forms of analog sampling. The elapsed-time rou-
tines (START_TIME and GET_TIME) use the clock module so
that all clock-controlled A/D sampling is incompatible with
elapsed-time measurement in systems with only one clock
module.

Most externally-controlled A/D sampling is also incompatible
with elapsed-time measurement. One class of externally
controlled A/D sampling is compatible with elapsed-time mea-
surement, that is, direct triggering of the A/D converter
(trigger =0). The external signal line must be connected to the
external start terminal of the A/D converter (not to ST1 of the
clock module).

?MINC-F-Another transfer is in progress for the array specified
?MINC-F-Channel or unit # not in system for the routine

?MINC-F-Data lost—transfer rate too high

The conversion sequence takes longer than the trigger interval.

?MINC-F-Data-name array is shorter than sweep length requested

The number of elements available for data is less than the length
of the sweep.

?MINC-F-Invalid or conflicting options requested
One of the mode designators specified is invalid for AIN.

The AIN statement specifies incompatible mode designators.
Refer to the table of valid mode designator combinations.

One of the mode designators specified is incompatible with an-
other argument value.

?MINC-F-No autogain channels permitted
?MINC-F-No. of channels exceeds length of integer channel array

The number of elements in the channel array must be greater
than or equal to the no.-of-channels argument.

?MINC-F-Too many transfers in progress simultaneously

See Example A, page 56 and Example C, page 61.

AIN

Examples

85

AIN_HIST

Generate Analog Input Histogram

Operation

AIN_HIST collects a sweep of data from a single A/D channel

and generates a frequency histogram array using the data
values. The beginning of the sweep and each point in the sweep
are triggered by signals on a trigger line connected to ST1 or to
the external start terminal of the A/D converter. (See “Fre-
quency Histograms,” page 45.)

Configuration

Statement Form

)]

(s
o

preamp

NS

H
g

i
i

AIN_HIST(mode,histogram-name,A/D-channel,sweep-

length,lower-endpoint,upper-endpoint)

86

lower-endpoint

upper-endpoint

numeric expression
numeric expression

Argument Type of Argument Valid Values Default Value
mode string expression DISPLAY,ZERO standard mode
histogram-name integer array name 0 to 32,767 required argument
A/D-channel numeric expression 0 to 63 required argument
sweep-length numeric expression 1 to 32,767 required argument

within channel range negative full scale
within channel range positive full scale

Example AIN_HIST(,V%(),0,100)
Result

Example
Result

Example
Result

Collect a 100-point sweep from channel 0. Gen-
erate the histogram using the full channel
range, and store the histogram in array V%.

AIN_HIST(CDISPLAY’,H%(),1,256)

Collect a 256-point sweep from channel 1. Gen-
erate the histogram using the full channel
range, display the histogram and store it in ar-
ray H%.

AIN_HIST(,A%(),4,512,-5.0,5.0)

Collect a 512-point sweep from channel 4. Gen-
erate the histogram using the range -5.0 volts to
+5.0 volts, and store the histogram in array A%.

mode The character string selecting an optional mode for
AIN_HIST. (See “Operating Modes and Mode Designators,”
page 23.)

Values Meaning
DISPLAY Display the generated histogram on the
screen.
ZERO Set all elements of the histogram array to
zero before starting.
Default: Standard mode (no display; use existing ar-
ray)

The combination of mode designators is valid.

(mode = DISPLAY) In display mode, AIN_HIST displays the
contents of up to 512 elements of the histogram array on the
screen.

AIN_HIST clears the screen before beginning the display. If the
screen already contains a histogram display, AIN_HIST clears
only the graph region and leaves the scrolling area unchanged.
The display includes a horizontal axis. The count data are con-
tinuously redisplayed with the data scaled so that the full verti-
calscaleof the screen represents the largest current count value.
Therefore, the display indicates the relative counts in the histo-
gram bins, but not the absolute counts. The count values are
shaded.

histogram-name The name of the integer histogram array to
be generated. (See “Frequency Histograms,” page 45.)

Values: 0 to 32,767

Default: Required argument. AIN_HIST assigns values
to the histogram.

AIN_HIST uses the full length of the array to store the histo-
gram. There is no argument for specifying the number of bins in
the histogram. The number of elements in the array is the
number of bins in the histogram. The histogram array must con-
tain at least four elements.

AIN_HIST reserves the first and last elements in the array as
the upper and lower overflow bins. Therefore, the array must
contain two elements more than required for the range of
interest.

AIN_HIST

Argument
Descriptions

87

AIN_HIST

88

A/D-channel The A/D channel carrying input data.

Values: 0 to the highest-numbered channel installed in
the system.

Default: Required argument

The valid channel numbers depend on which analog modules
are installed in the system, and on how the instrument is con-
nected to the A/D channel. (See Book 7.)

sweep-length The number of data points to be collected to gen-
erate the histogram.

Values: 1 to 32,767

Default: Required argument

lower-endpoint The minimum signal value expected (lower
endpoint of the range of interest).

Values: The minimum value must be greater than or
equal to the negative full scale value, and
within the range of values for the specified
channel.

Default: Negative full scale at the current channel gain
and mode setting.

The minimum value specified must be within the current chan-
nel range. The current channel range depends on the gain and
mode settings for the channel. See the full discussion under “Re-
strictions” in this section.

upper-endpoint The maximum signal value expected (upper
endpoint of the range of interest).

Values: The maximum value must be less than or equal
to the positive full scale value, and within the
overall range for the specified channel.

Default: Positive full scale at the current channel gain
and mode setting.

The maximum value specified must be within the current chan-
nel range. The current channel range depends on the gain and
mode settings for the channel. See the full discussion under “Re-
strictions” in this section.

AIN AIN is the general analog data collection routine. It per-
forms operations not available with AIN_HIST, for example,
multichannel sampling, continuous sampling, autogain, and
clock-controlled sampling. If these more powerful analog collec-
tion operations are necesary, then you can collect the data with
AIN and generate the histogram with program statements after
the data have been collected. (See “Frequency Histograms” for
general histogram principles, page 45.)

TEST_GAIN, SET_GAIN AIN_HIST permits fixed-gain data
conversions, but not autogain. Use TEST_GAIN to test the cur-
rent gain and mode settings on the required channel. Use
SET_GAIN to select the required fixed gain. (See SET_GAIN,
TEST_GAIN, and Book 7.)

Autogain AIN_HIST does not permit autogain sampling.
Fixed-gain sampling is valid.

External control AIN_HIST expects a signal on a line con-
nected to the external start terminal of the A/D converter or on
ST1. Thatis, AIN_HIST sampling is controlled only by external
signals, not by time base signals.

Maximum counts When an element of the histogram array
reaches 32,767, AIN_HIST locks the bin. No further counts can
be recorded for that bin. Thus, the bin count cannot cause an er-
ror by exceeding the integer range.

Range of values The valid minimum and maximum values de-
pend on the current gain and mode settings for the specified A/D
channel. The front panel controls (or SET_GAIN) define the
overall range. Set the gain with SET_GAIN (or with the front
panel control) and set the mode with the front panel control. For
example, if the front panel controls specify volts at range 10,
then the A/D channel range is -10.24 volts to +10.235 volts. (See
Book 7.) The specified minimum and maximum values must fall
within this range.

AIN_HIST tests only whether the minimum and maximum
values are valid, not whether they are sensible. That is, with the
current channel range set to *5.12 volts, the following
AIN_HIST statement is still valid:

AIN_HIST('DISPLAY",H%(),C,200,-.9,.9)

In this situation, the equipment configuration defines the over-
all range as -5.12 volts to +5.12 volts but the statement defines

AIN_HIST

Related Routines

Restrictions

89

AIN_HIST

the range of interest as -0.9 to +0.9 volts.

Suppose the signal shown in Figure 41 is being converted. (This
is the triangle wave signal supplied by A/D channel 3 when the
front panel knob is set to TEST.)

4)
\ _
Figure 41. Display of Signal Being Converted. 7
~ D
READY
J

Figure 42. Histogram Generated with Too Narrow a Range of
90 Interest.

AIN_HIST

The AIN_HIST statement specifies a histogram range of -.9 to
+.9 volts. Therefore, almost all of the points being sampled lie
outside of the range of interest and their occurrences increase
the counts in the overflow bins. The histogram obtained from

this statement looks like the one in Figure 42.

A histogram in which the range of interest corresponds to the
full scale voltage looks like the one in Figure 43.

e)

TN (N ST T RS TN TN e

READY
\— /

MR-1944

Figure 43. Histogram with Appropriate Range of Interest.

It is good programming practice to check the A/D channel with
TEST_GAIN before starting the data collection sweep with
AIN_HIST.

?MINC-F-Channel or unit # not in system for the routine Errors

?MINC-F-Data lost—transfer rate too high

?MINC-F-Existing display conflicts with display requested

A prior AIN statement specified continuous display mode.
AIN_HIST cannot erase this display.

?MINC-F-Histogram arrays must contain at least 4 elements
91

AIN_HIST

Examples

92

?MINC-F-Invalid or conflicting options requested

One of the mode designators is invalid for AIN_HIST,
?MINC-F-No autogain channels permitted

?MINC-F-Value of argument # exceeds valid range

The range of interest specified exceeds the maximum range for
the A/D converter. The endpoints must be within the range
-10.24 to +10.24 volts.

The lower-endpoint must be less than the upper-endpoint.

No example included.

AIN_SUM accumulates the data from a series of A/D sweeps.
On each sweep, AIN_SUM adds the newly acquired digitized
values to the previous sums. This process is commonly known as
“signal-averaging,” although no averaging actually occurs.
AIN_SUM expects asignal on ST2 to start each new sweep. (See

“Analog Signal Processing,” page 1.)

AIN_SUM

Accumulate Sums of Analog Input

preamp dual mux

G
Al

5646 bbb

AIN_SUM(mode,data-name,sweep-length,trigger,A/D-
channel,no.-of-channels,no.-of-sweeps,sweep-delay)

Argument Type of Argument Valid Values Default Value
mode string expression DISPLAY,EXTERNAL, standard mode
FASTLINE,
RANDOM,ZERO
data-name numeric array name numeric range required argument
sweep-length numeric expression =1 1
trigger numeric expression 0; > 0 to 655.35; 0
1to 65,535
A/D-channel numeric expression 0 to 63 0
or integer array
no.-of-channels numeric expression 1 to 64 or channel 1
array length
no.-of-sweeps numeric expression 1 to 32,767 1
sweep-delay numeric expression =0 sec 0 sec

Example AIN_SUM(CDISPLAY’,V(),50,0.1,1,,4)
AIN_SUM collects 4 sweeps of data, each
sweep 50 points long, from channel 1. On each
sweep, AIN_SUM adds the data points to the
appropriate elements of the array V. The array
V is continuously redisplayed on the screen.
AIN_SUM collects one point every 0.1 seconds
(for a total sampling duration of 5 seconds).

Result

Example

N1,N2)

AIN_SUM(CEXTERNAL',D(),N,10,C(2),

Operation

Configuration

Statement Form

93

AIN_SUM

Result

Example

Result

In external mode, AIN_SUM collects N2
sweeps of data, using the sequential conversion
sequence starting with channel C(2).
AIN_SUM adds the data points to the appro-
priate elements of array D. AIN_SUM collects
one conversion sequence on every tenth ST1
signal.

AIN_SUM(CEXTERNAL,RANDOM’,D(),N,
100,C%(2),N1,N2)

In external mode, AIN_SUM collects N2
sweeps of data, using the conversion sequence
defined by N1 channel numbers from array C%,
starting with C%(2). AIN_SUM collects one
conversion sequence on every hundredth ST1
signal.

Argument mode The character string selecting optional modes for
Descriptions AIN_SUM. (See “Operating Modes and Mode Designators,”
page 23.)
Values Meaning
DISPLAY Monitor the data collected with a screen
display.
EXTERNAL Enable an external source connected to
ST1 to provide the time base.
FAST Use fast mode. No autogain. Collects bi-
polar integer data arrays only.
LINE Line mode. Use line-frequency time base
(50 or 60 Hz). (See “Time Base,” page
43.)
RANDOM Use random mode. (See “Random Chan-
nels,” page 42.)
ZERO Zero all elements in the data array before
starting.
Default: Standard mode (accumulates values from

the specified number of sweeps, with ei-
ther instrument trigger control of sam-
pling, trigger =0, or clock module control
of sampling, trigger > 0 to 655.35).

Some combinations of modes are valid and some are not. In the
following table, invalid mode combinations are marked with an

94 ‘X

DISPLAY EXTERNAL FAST LINE RANDOM ZERO
DISPLAY X X
EXTERNAL X X
FAST X X X
LINE X X
RANDOM X X
ZERO X

MR-1924

(mode = DISPLAY) In display mode, AIN_SUM displays the
contents of the first 512 elements of the data array on the screen.
If the sweep length is less than 512 points, you see a short display
with a full-length horizontal axis. AIN_SUM clears the screen
before beginning the display.

After each display, AIN_SUM calculates a scale factor approxi-
mately 25% greater than the maximum for that display and uses
the scale factor to make the next display fill the screen. (Note:
the values in the data array itself are not scaled.)

The data are continuously redisplayed. Values that exceed the
maximum scaled value do not appear in the display. The max-
imum display rate possible is lower than the maximum data col-
lection rate. If data are being acquired faster than the screen is
being updated, the data being acquired are displayed with the
scale factor intended for the previous values.

The DISPLAY mode produces a display suitable for monitoring
purposes. Use the specialized graphic routines for labelled
displays and other purposes. (See Book 4.)

(mode = FAST) In fast mode, AIN_SUM collects the points
within a conversion sequence faster than normal. Therefore, col-

AIN_SUM

95

AIN_SUM

96

lecting each sequence is somewhat faster and the trigger inter-
vals can be shorter.

The actual increase depends on the values of other arguments.
The fastest case is single-channel sampling with external trig-
gering (trigger =0). The slowest case is multi-channel sampling
with clocked control (internal or external, trigger > 0).

Fast mode is further limited because the data array must be in-
teger and the A/D channels must be set for fixed gain.
AIN_SUM terminates execution if it encounters an autogain
channel. (See also “Restrictions” in this section.)

data-name The numeric data array in which the data from
multiple sweeps are summed.

Values: -32,768 to 32,767 for integer data-name
argument.

Real number range for real data-name
argument.

Default: Required argument. AIN_SUM assigns data
values to the argument.

The data array can be either real or integer except in fast mode.
Fast mode requires an integer array. (See also “Restrictions” in
this section.)

The range of conversion values collected on each sweep depends
on the data type of the data-name array. If the data-name array
is integer, the range of values possible on each sweep is -2048 to
+2047. If the data-name array is real, the range of values possi-
ble on each sweep depends on the gain and mode selected for
each channel. For example, without a preamp, the range of
values possible for each channel is -5.12 to +5.1175 volts.

sweep-length The number of data points in each sweep.

Values: 1 to the maximum length of the data-name
array.
Default: 1

The sweep length need not be an even multiple of the number of
channels in the conversion sequence. If it is not, AIN_SUM stops
the sweep after the specified sweep-length regardless of
whether the conversion sequence is complete.

trigger The code which specifies how to control data transfer.

(See also “Time Base,” page 113.)
Values Meaning

0 External signal control (signal line con-
nected either to the external start ter-
minal of the A/D converter or to ST1)

> 0t0655.35 Clock module control (without mode des-
ignators for external control)

1 to 65,535 External time base (with EXTERNAL or
LINE designators)

Default: 0 (external signal control)

The beginning of each sweep is triggered by a signal on ST2.

(trigger =0) When the trigger argument is zero, A/D conver-
sion sequences are triggered by signals connected to the exter-
nal start line of the A/D converter or to ST1 of the clock module.

(trigger =>0to 655.35) When the trigger argument is greater
than zero and none of the mode designators specifies an alter-
nate time base, the internal clock control triggers each conver-
sion sequence within the sweep. A signal on ST2 starts each
sweep.

In this case, the trigger argument specifies the trigger interval
in seconds. The trigger interval is the time from one trigger
event to the next.

The longest trigger interval possible is 655.35 seconds. The shor-
test trigger interval possible depends on the operating mode, the
length of the conversion sequence, and on the values of other
arguments.

(trigger =110 65,5635) Inexternal mode, an external time base
connected to ST1 provides the trigger events for AIN_SUM. In
line mode, the line frequency mode of the clock module provides
the trigger events for AIN_SUM.

The time base can have a regular rate (for example, line mode)
or a varying rate. In either case, the trigger argument specifies
the number of external signals required before a conversion se-
quence occurs. The maximum number possible is 65,535. If the
trigger argument is 1, every external signal triggers a conver-
sion sequence. If the trigger argument is 10, every tenth exter-
nal signal triggers a conversion sequence.

AIN_SUM

97

AIN_SUM

98

A/D-channel The first channel in the conversion sequence.
(See also the next paragraph on no.-of-channels.)

Values: 0 to the highest-numbered channel installed in
the system.
Default: 0

The valid channel numbers depend on which analog modules
are installed in the system, and on how the instruments are con-
nected to the A/D-channels (see Book 7). The program halts with
an error if you specify a channel which is not present.

The channel number can be either a numeric expression or an
integer array name. If it is a numeric expression, the conversion
sequence consists of that channel and as many higher-numbered
channels as are specified by the no.-of-channels argument. If it
is an integer array in random mode, the conversion sequence
consists of as many channels from the array as specified by the
no.-of-channels argument.

AIN_SUM reuses the conversion sequence defined by A/D-
channel and no.-of-channels until it has collected all the points in
the sweep.

no.-of-channels The number of channels defining a conver-
sion sequence for AIN_SUM.

Values: 1 to the maximum number of channels on the
system (for sequential channels)

1 to the length of the channel array (in random
mode)

Default: 1

The no.-of-channels argument defines the number of points in a
conversion sequence. AIN_SUM collects that number of points
each time a trigger event occurs. AIN_SUM reuses the channel
sequence defined by A/D-channel and no.-of-channels until it
has collected all the points in the sweep.

If the A/D-channel argument is a numeric expression, the con-
version sequence is defined by that channel and the number of
sequential channels defined by no.-of-channels. For example, if
the channel number is 16, and the number of channels is 8, then
the conversion sequence is channels 16 through 23.

\

If the A/D-channel argument is an integer array and the state-

ment specifies random mode, then the contents of the channel
array define the conversion sequence. For example, suppose the
channel array contains the elements 21, 1, 13, 2, and 9, and the
number of channels requested is 3. If the A/D-channel argu-
ment is the second element of the array, the conversion sequence
is channels 1, 13, and 2. See also “Random Channels,” page 42.

no.-of-sweeps The number of data sweeps performed.

Values: 1 to 32,767
Default: 1

sweep-delay The time interval delay of the beginning of the
sweep (after the start signal on ST2).

Values Meaning

0 No delay. Sweep starts on ST2 signal as usual.

>0 Delay interval in seconds (between ST2 and
first conversion).

Default: 0

The first point in the sweep is delayed after the occurrence of the
ST2 signal. The sweep-delay argument defines the interval be-
tween ST2 and the first point in the first conversion sequence. It
affects only when the sweep begins, not any of the time intervals
or trigger events within the sweep.

For timing the delay, AIN_SUM uses the clock module. There-
fore, the timing resolution is high. However, with very short de-
lays, the variability of the interval increases. For example, de-
lays of 100 microseconds are less likely to be accurate.

TEST_GAIN, SET_GAIN TEST_GAIN and SET_GAIN test
and set the condition of the preamp connected to any A/D chan-
nel. AIN_SUM does not permit any autogain channels, so these
routines can be used before the AIN_SUM statement to prevent
errors.

CONTINUE If the array partition length is not an even multi-
ple of the conversion sequence length, then the data points in the
conversion sequence cross the array partition boundaries.
AIN_SUM needs longer to acquire those conversion sequences
which cross partition boundaries than those conversion se-
quences which do not.

AIN_SUM

Related routines

Restrictions

99

AIN_SUM

100

DISPLAY Display mode can produce visually peculiar results.
AIN_SUM displays the first 512 physical array elements, re-
gardless of whether the array has one or two dimensions. (See
discussion of the DIM statement in Books 2 and 3.) The display
shows the data in the order in which they were collected, regard-
less of the channel numbers from which they were collected. For
a small number of channels, with distinct values, the display ap-
pears reasonable. However, with many channels or similar
values, it may require a practised eye to make any sense of these
displays.

FAST Insome cases, fast mode attains its higher-than-normal
speeds because AIN_SUM can use all of the system’s computing
resources. In these cases, all of the system time-keeping func-
tions are suspended until AIN_SUM is finished. This means
that the system clock loses time if AIN_SUM runs often or for
long in fast mode.

During a fast mode transfer, entering a single CTRL/C stops
program execution.

Gain AIN_SUM does not permit any autogain channels.

Range of values With high data values and many sweeps, it is
possible that the sums in integer array elements could exceed
the range for integers (-32,768 or +32,767). AIN_SUM “locks”
these array elements at the limit values so that further sweeps
do not cause errors. You can determine whether any array ele-
ments overflowed by inspecting a display of the final array.
Values at either limit (-32,768 or 32,767) probably indicate over-
flow. Overflow is not a problem with real arrays because in
practice the values never reach the limits for real numbers.

Sampling rates The arguments for AIN_SUM allow you to
specify the trigger intervals, that is, the interval from the begin-
ning of one conversion sequence to the beginning of the next.
However, you have no direct control over the sampling rate
within a conversion sequence. (The rate of conversion within a
conversion sequence is always higher than the rate you could ob-
tain with the shortest trigger interval possible for single-
channel sampling.)

The conversions within a sequence always occur as fast as possi-
ble given the length of the conversion sequence, the data type of
the data-name argument, and the operating modes specified.
The CONTINUOUS, RANDOM, and DISPLAY mode designa-

tors all slow the conversion rate possible within a conversion se-
quence and their effects are additive.

Given the number of variables involved, you cannot predict eas-
ily whether or not any particular sampling rate would execute

without error. The feasibility of particular desired rates must be
determined empirically.

?MINC-F-Channel or unit # not in system for the routine
?MINC-F-Data lost—transfer rate too high

The time required for a conversion sequence is longer than the
trigger interval.

?MINC-F-Data-name array is shorter than sweep length requested

The number of elements available for data must be greater than
or equal to the length of the sweep.

?MINC-F-Invalid or conflicting options requested
One of the mode designators specified is invalid for AIN_SUM.

The AIN_SUM statement specifies incompatible mode designa-
tors. Refer to the table of valid mode designator combinations.

One of the mode designators is incompatible with one of the
other arguments.

?MINC-F-No autogain channels permitted
?MINC-F-No. of channels exceeds length of integer channel array

The number of elements in the channel array must be greater
than or equal to the no.-of-channels argument.

See Example B, page 58.

AIN_SUM

Errors

Examples

101

AOUT

Send Analog Output

Operation

Configuration

Statement Form

Argument
Descriptions
102

AOUT sends data to analog instruments using the D/A con-
verter. AOUT can send a single data point, a sweep of data, or a
continuous stream of data. (See “Analog Signal Processing,”

page 1.)

-z
avvvv
Q0000
avvvv %
Q0000

AOUT(mode,data-name,data-length,trigger,D/A-channel,no.-

of-charnels)

Argument Type of Argument
mode string expression
data-name numeric expression
or numeric array
data-length numeric expression
trigger numeric expression

D/A-channel numeric expression
or integer array
no.-of-channels numeric expression

Valid Values

CONTINUOUS,
EXTERNAL,LINE,
RANDOM,ST2

-2048 to 2047

=1

0; > 0 to 655.35;
1to 65,535

Oto 15

1 to 16 channel
array length

Default Value
standard mode

required argument
1
0
0

1

Example AOUT(,D,1,0,2,1)
Result Send the contents of variable D to D/A channel
2 immediately.

Example AOUT(,300)
Result Send the value 300 to channel 0 immediately.

Example AOUT(,V(),512,,2)
Result Send the contents of array V in pairs to chan-
nels 0 and 1. Send the conversion sequences as
burst output.

mode The character string selecting optional modes for
AOUT. (See “Operating Modes and Mode Designators,” page

23.)

Values
CONTINUOUS

EXTERNAL

LINE

RANDOM

ST2

Default:

Meaning

Continuous mode. (See “Continuous
Data Transfers,” page 33.)

Enable an external source connected to
ST1 to provide the time base.

Use line-frequency time base. (See
“Time Base,” page 43.)

Random mode. (See “Random Chan-
nels,” page 42.)

Start data output process with a signal
on ST2.

Standard mode (point or sweep transfer
with either burst output or clock module
control of output, trigger > 0 to 655.35).

Some combinations of modes are valid, and some are not. In the
following table, invalid mode pairs are marked with an “X.”

CONTINUOUS EXTERNAL LINE RANDOM ST2
CONTINUOUS X

EXTERNAL X X

LINE X X

RANDOM X

ST2 X

data-name The values to be sent to the instrument connected

to the D/A module.

Values: -2048 to 2047

Default: Required argument

If the data-name argument is a single value, AOUT sends only

AOUT

103

AOUT

104

the single value to the D/A converter. If the data name is an ar-
ray name, AOUT sends either a sweep of output values, or, in
continuous mode, a continuous stream of output values.

The values can be either integer or real. In either case, therange
of output values allowed is -2048 to +2047.

data-length The length of the data-name argument.

Values Meaning
1 The data-name argument is a single value.
>1 The data-name argument is an array name and

the data-length argument is the number of ar-
ray elements to output.

Default: 1

If the data-length argument is greater than 1, the data-name
argument must be an array name. The data-length argument
need not be an even multiple of the number of channels in a con-
version sequence. In standard mode, AOUT stops sending data
after the specified number of points regardless of whether the
conversion sequence is complete. In continuous mode, a conver-
sion sequence can straddle an array partition boundary.

trigger The code specifying how to control data transfer.

Values Meaning

0 Burst output. The conversion sequences are
sent to the D/A converter as fast as possible.

>0 to 655.35 Clock module control (when there are no
mode designators for external control).

1 to 65,5635 External time base (with EXTERNAL or
LINE mode designators).

Default: 0
(trigger =0) When the trigger argument is zero, AOUT sends
the conversion sequences to the D/A converter as fast as possi-

ble. This is called burst output. Burst output transfers are not
controlled by trigger events.

Burst output is not allowed in continuous mode.

(trigger = > 0t0655.35) When the trigger argument is greater

than zero and none of the mode designators specifies an alterna-
tive time base, the clock module triggers the analog output con-
version sequences. In this case, the trigger argument specifies
the trigger interval in seconds. The trigger interval is the time
from one trigger event to the next, that is, the beginning of one
conversion sequence to the beginning of the next.

The longest trigger interval possible is 655.35 seconds. The
shortest trigger interval possible depends on the operating
mode, the length of the conversion sequence, and the values of
the other arguments. For example, the minimum trigger inter-
val for single-channel conversion sequences is shorter than for
multi-channel conversion sequences.

(trigger =110 65,535) Inexternal mode, an external time base
connected to ST1 provides the trigger events for AQUT. In line
mode, line frequency mode of the clock module provides the
trigger events for AOUT.

The time base can have a regular rate (for example, line mode)
or a varying rate. In either case, the trigger argument specifies
the number of external signals required before a conversion se-
quence occurs. The maximum number possible is 65,535. If the
trigger argument is 1, every external signal triggers a conver-
sion sequence. If the trigger argument is 20, every twentieth sig-
nal triggers a conversion sequence.

D/A-channel The D/A channel or channels to receive output
data.

Values: 0 through 15
Default: 0

The D/A-channel argument defines the channels in a conversion
sequence. AOUT reuses the conversion sequence defined by
D/A channel and no.-of-channels until it has sent all of the
output values.

The channel number can be either a numeric expression or an
integer array name. If it is a numeric expression, the conversion
sequence consists of that channel and as many higher-numbered
channels as are specified by the no.-of-channels argument. If it is
an integer array in random mode, the conversion sequence con-
sists of the channel numbers in the array. (See also the next
paragraph.)

AOUT

105

AOUT

Related Routines

106

no.-of-channels The number of D/A channels defining a con-
version sequence for AOUT.

Values: 1
1 to 16 (for sequential channels)

1 to the length of the channel array (in random
mode)

Default: 1

The no.-of-channels argument defines the number of points in a
conversion sequence. AQOUT sends that many points each time a
trigger event occurs. AOUT reuses the conversion sequence de-
fined by D/A-channel and no.-of-channels until it has sent all of
the output values.

If the D/A-channel argument is a numeric expression, the con-
version sequence consists of that channel and as many sequen-
tial channels as are specified by the no.-of-channels argument.
For example, if the channel number is 1 and the number of chan-
nels is 2, then the conversion sequence is channels 1 and 2.

If the D/A-channel argument is an integer array in random
mode, the conversion sequence consists of the channels in the ar-
ray. For example, suppose the channel array contains the values
2 1,0, 3, 2, 1, the D/A-channel argument is the first element in
the array, and the no.-of-channels argument is 6. Then, the con-
version sequence is channels 2, 1, 0, 3, 2, and 1. If the number
requested is 4, the conversion sequence is channels 2, 1, 0, and 3.
(See “Random Channels,” page 42.)

CONTINUE CONTINUE allows the program to resume ex-
ecuting during a continuous mode transfer and to continue ex-
ecuting until the currrent array partition has been transferred.
Whenever an array partition becomes empty, CONTINUE
transfers control to the service subroutine which refills that par-
tition with data, while AOUT continues to output from the other
partition. On returning from the subroutine, the program
continues executing the statements following the CONTINUE
statement. (See “Continuous Data Transfers,” page 33, and
CONTINUE))

SET_BIT SET_BIT specifies the condition (set or clear) for a
single bit in anumeric variable. You can use SET_BIT to specify
the control signal values.

TERMINATE TERMINATE terminates continuous mode
data output.

WAIT_FOR_DATA WAIT_FOR_DATA stops the program
during a continuous mode transfer and the program waits for
the current array partition to be output. When the array parti-
tion is empty, the program resumes executing to fill the empty
array partition while AOUT continues to send values from the
other one.

CONTINUE Only one continuous AOQUT transfer can be in
progress.

If the array partition length is not an even multiple of the con-
version sequence length, then the data points in the conversion
sequence cross the array partition boundaries. AOUT needs
longer to send those conversion sequences which cross partition
boundaries than those conversion sequences which do not.

Control signals Four instrument control signals are available
from the D/A converter for plotter or scope control. You can view
the D/A converter as corresponding to a word composed of 16
bits. (See “Bits and Words,” page 26.) For D/A channels 3, 7, 11,
and 15, you can connect instrument control lines to the terminals
labelled Bits 0 through 3 on the D/A converter connector block.
(See Book 7.)

Suggested conventions follow for using the instrument control
bits.

Bit 0 The intensify line.
For channel 3, AOUT automatically sets and
then clears Bit 0 about 80 usec after each com-
plete conversion sequence. The duration of the
Bit 0 pulse is about 10 usec. (AOUT does not
supply Bit 0 automatically for channels 7, 11,
and 15.)

You can use Bit 0 to supply the intensify strobe
signal required by an oscilloscope. You can con-
nect the intensify line of an oscilloscope to one of
the Bit 0 terminals on the D/A converter con-
nector block (see Book 7). The output sequence
can be two channels (the X and Y values for the
scope) or any number of channels required.

Bit1 Suggested as the erase line.

AOUT

Restrictions

107

AOUT

Errors

108

You can use Bit 1 to erase an oscilloscope display
by setting Bit 1 in the data value going to chan-
nel 3 (see SET_BIT). Connect the oscilloscope
erase line to one of the Bit 1 terminals on the
D/A converter connector block (see Book 7).

Bit 2 No suggested function. Connect the instrument
to one of the Bit 2 terminals on the D/A con-
verter connector block (see Book 7). Set Bit 2 in
the data value going to channel 3 (see
SET_BIT).

Bit 3 Suggested as the pen position line for an analog
plotter. The use of the control bit depends on the
plotter. For some plotters, each transition on
the line changes the up/down position of the
pen; for others, one logic level represents pen up
and the other represents pen down.

Connect the plotter pen position line to one of
the Bit 3 terminals on the D/A converter con-
nector block. Set Bit 3 in the data value going to
channel 3 (see SET_BIT).

Immediate mode Point and sweep AOUT transfers operate in
immediate mode; continuous transfers do not.

Range of values All output data sent to the D/A converters
must have values in the range -2048 to +2047. The D/A converter
front panel has controls for output range and output mode, uni-
polar or bipolar (see Book 7). Set range and mode to the desired

values with the front panel controls; AOUT cannot set range and
mode.

?MINC-F-Another transfer is in progress for the array specified
?MINC-F-Channel or unit # not in system for the routine
?MINC-F-Clock too fast for system to respond

The trigger interval requested is too short.
?MINC-F-Data lost—transfer rate too high

The trigger interval is too short to process the array partitions in
continuous mode.

?MINC-F-Data-name array is shorter than sweep length requested

The number of elements available for data must be greater than
or equal to the length of the sweep.

?MINC-F-Invalid or conflicting options requested
One of the mode designators specified is invalid for AOUT.

The AOUT statement specifies incompatible mode designators.
Refer to the table of valid mode designator combinations.

One of the mode designators is incompatible with one of the
other arguments.

?MINC-F-No. of channels exceeds length of integer channel array

The number of elements in the channel array must be greater
than or equal to the no.-of-channels argument.

?MINC-F-Value exceeds valid range for argument
Output values must be in the range -2048 to +2047.

See Example H, page 71.

AOUT

Examples

109

CIN

Collect Character String Input

Operation

Configuration

Statement Form

110

CIN receives characters transmitted in serial ASCII format via
a serial transfer channel. (See “Transferring ASCII Charac-
ters,” page 4.)

The serial transfer channels are an integral part of the MINC
physical system. The serial transfer unit, containing four chan-
nels, is not one of the removable MINC modules. It is per-
manently installed in the chassis (see Book 7).

Two of the channels are reserved, one for the terminal, and the
other for an optional DECwriter printer. Make connections to
the other two channels through the connectors on the MINC
back panel.

CIN(mode,string-name,string-length,channel-no.,timeout-
interval)

Argument Type of Argument Valid Values Default Value
mode string expression RETRIEVE standard mode
string-name string variable name ASCII characters required argument
string-length numeric expression 0; 1 to 255

channel-no. numeric expression 0Oor 1 0

timeout-interval numeric expression 0; >0.1 sec 0

Example CIN(,S$,5)
Result Collect.a string of five characters from channel
0, and assign the string to variable S§.

Example CIN(,S$)

Result Collect character input from channel 0 until a
carriage return character occurs (or until 255
characters have been received). Assign the
string to variable S$.

Example CIN(,S$,20,1,60)

Result Collect up to 20 characters from channel 1. Can-
cel the request after 60 seconds if 20 characters
have not arrived, and assign whatever has ar-
rived to variable S$.

Example CINCRETRIEVE’,SS$,,,30)
Result Collect up to 255 characters from channel 0,

starting with the first one after the last CIN
statement. Stop receiving characters after 255
characters, or when a carriage return charac-
ter is found, or when the timeout interval of 30
seconds has elapsed.

mode The character string selecting an optional mode for
CIN. (See “Operating Modes and Mode Designators,” page 23.)

Values Meaning
RETRIEVE Retrieve any characters arriving since the
last CIN statement.
Default: Standard mode (ignore characters arriv-

ing between CIN statements).

In standard mode, the first character assigned to the string is
the first character that arrives after the current CIN statement
starts executing. Any intervening characters (arriving since the
last CIN statement finished executing) are lost.

(mode = RETRIEVE) In retrieve mode, CIN goes back to re-
trieve any characters that have arrived since the most recent
CIN statement finished executing. (That is, retrieve mode
cannot retrieve any characters unless CIN has executed pre-
viously because if CIN has not executed there cannot be any
characters to retrieve.)

The first character assigned to the string is the first character
that arrived after the most recent CIN statement finished ex-
ecuting. The contents of the rest of the string are determined by
string-length argument, just as in standard mode.

At most 128 characters can be retrieved in retrieve mode. If
more than 128 characters have arrived, then CIN can retrieve
up to 128 characters before the program halts with a fatal error.

In retrieve mode, CIN collects as many characters as specified
by the string-length argument. For example, if the string length
is 10, then CIN collects 10 characters starting with the first one
after the most recent CIN statement. If more than 10 characters
have already arrived, CIN still collects only 10 characters. If
fewer than 10 characters have arrived, CIN collects all those
characters and waits for the remaining characters necessary to
satisfy the count before finishing executing.

For a variable-length string (string-length argument of 0), CIN

CIN

Argument
Descriptions

CIN

112

collects characters until it finds the first carriage return charac-
ter (or until the limit of 255 characters occurs or until the
timeout interval expires). If a carriage return has already ar-
rived, that carriage return defines the end of the string and CIN
completes executing. (The character following that carriage
return is the first one retrieved by the next retrieve mode CIN
statement.) Otherwise, it collects those characters that have ar-
rived and continues until a carriage-return character arrives.

string-name The variable name for the data collected.

Values: ASCII characters (or any 8-bit codes).

Default: Required argument. CIN assigns the value to
the argument.

CIN requires the string-name argument to be a string variable,
for example, B$, or string array element, for example, B$(0).
You cannot collect an array of strings using one CIN statement.

string-length The length of the character string to be col-
lected.

Values Meaning

0 Collect a variable-length string.
1to 255 Collect a fixed-length string.
Default: 0 (variable-length string)

(variable-length strings) With variable-length strings, CIN
collects characters until a carriage-return character arrives, or
until the maximum string length of 255 characters has been
reached. The carriage-return character is not included in the
string.

(fixed-length strings) If the string-length argument is a
number from 1 to 255, CIN collects that number of characters.
There are no terminator characters for fixed-length strings.
CIN can accept a carriage-return character as one of the charac-
ters in a fixed-length string. CIN continues executing until all of
the characters specified have arrived. (Thus, the timeout argu-
ment can be useful to ensure that CIN eventually stops execut-
ing in case not enough characters arrive.)

channel-no. The serial channel carrying input characters.

Values Meaning

0 9600 baud serial channel
1 1200 baud serial channel
Default: 0

The baud rates for the serial channels are fixed. They are not
programmable. Under normal warranty conditions, only Digi-
tal Field Service can alter the baud rate.

Choose the channel with the baud rate you require. If the baud
rate for the channel does not match the baud rate of the instru-
ment connected to it, the characters received by CIN are not the
same as the ones sent by the instrument. CIN halts the program
with an error.

timeout-interval The time interval after which CIN considers
the current string to be complete.

Values Meaning
0 No timeout
=0.1 Timeout interval in seconds

Default: 0 (No timeout)

CIN begins timing the timeout interval when the CIN statement
starts executing. If the timeout interval elapses before the speci-
fied number of characters arrives, or before a carriage-return
terminator arrives, CIN considers the current string to be com-
plete. The transfer is therefore complete, and the program
continues executing with the statement following the CIN state-
ment.

The shortest time interval guaranteed to be precise is 0.1 sec-
onds. The resolution on the timeout interval is one tick of the Sys-
tem clock.

COUT COUT sends character strings to an instrument con-
nected to a serial channel. COUT can send fixed-length or
variable-length character strings.

RETRIEVE Unlike other kinds of transfers, character input
can continue for up to 128 more characters after the CIN state-
ment finishes executing. In standard mode, CIN ignores any in-
tervening characters, and starts the string with the next charac-

CIN

Related Routines

Restrictions

113

CIN

Errors

Examples

114

ter that arrives. In retrieve mode, CIN can retrieve characters
that have arrived since the most recent CIN statement. There-
fore, you can use CIN in retrieve mode to handle essentially con-
tinuous character input because you can process each string as it
arrives without losing intervening characters.

The 128-character maximum imposes a practical limit on the
character input rate. At 9600 baud, 128 characters can arrive in
approximately 135 milliseconds. At 1200 baud, 128 characters
can arrive in approximately one second.

Response CIN does not echo characters. That is, it does not au-
tomatically transmit the received character back to the sender
for display or verification.

2MINC-F-Channel or unit # not in system for the routine

?MINC-F-Data lost—transfer rate too high

More than 128 characters have arrived since the last CIN state-
ment finished executing (retrieve mode).

The characters are arriving too quickly for CIN to receive them
properly.

Characters are arriving at the wrong baud rate.
?MINC-F-Invalid or conflicting options requested
RETRIEVE is the only valid mode designator.
?MINC-F-No workspace available for the string specified
?MINC-F-Use array element instead of array for argument #

No example included.

CONTINUE

Manage Continuous Data Transfer

CONTINUE designates a service subroutine for continuous
input or output. The program continues executing until the data
transfer routine has processed one array partition. At that point,
program control transfers to the service subroutine. (See “Con-
tinuous Data Transfers,” page 33.)

The configuration depends on which data transfer routine is as-
sociated with the CONTINUE statement.

CONTINUE(data-name,index,subroutine)

Argument Type of Argument Valid Values Default Value

data-name numeric array transfer array required argument
index numeric variable name 0,(n+1)/2 required argument
subroutine numeric expression 1 to 32767 required argument

Example CONTINUE(V(),11%,1000)

Result Designate the service subroutine beginning at
statement number 1000 to execute when one
partition of array V has been transferred. The
array index for the current partition is as-
signed to variable 11%.

Example CONTINUE(D%(),I,L)

Result Designate the service subroutine (whose begin-
ning statement number is in variable L) to ex-
ecute when one partition of array D% has been
transferred. The array index for the current
partition is assigned to variable I.

data-name The data array being used for the continuous data
transfer.

Values: The array appearing in a previous transfer
statement.
Default: Required argument
CONTINUE itself allows any numeric array name. The asso-

ciated data transfer routine might have some restriction on the
data type allowed for the array.

The data-name array must already have appeared in a data

Operation

Configuration

Statement Form

Argument
Descriptions

115

CONTINUE

Related Routines

116

transfer statement specifying continuous mode. If the data-
name array is not involved in a continuous transfer,
CONTINUE halts with an error.

index The variable to contain the array index for the next par-
tition to be processed by the service subroutine.

Values: 0 or (n+1)/2 (where n is the array dimension)

Default: Required argument. CONTINUE assigns the
value to the index argument.

CONTINUE assigns the value of the index argument as the in-
dex of the first element in the next array partition for the pro-
gram to process. If continuous output is in progress, the index
points to the beginning of the array partition to be filled with
output data to be transferred. If continuous input is in progress,
the index points to the beginning of the array partition contain-
ing valid data to be processed.

subroutine The statement number of the service subroutine
for this data transfer.

Values: 1 to 32,767 (any valid program statement
number)

Default: Required argument

CONTINUE designates a service subroutine statement
number. MINC transfers program control to the statement des-
ignated whenever an array partition is ready for processing.
With output transfers, the service subroutine must contain the
statements to fill the array partition with output data (see also
“Restrictions”). For input transfers, the service subroutine must
contain the statements to retrieve data from the full array parti-
tion. In both cases, the service subroutine must execute
CONTINUE again to prepare for the next array partition
transfer. (See “Continuous Data Transfers,” page 33.)

The subroutine argument can be any numeric expression.
CONTINUE truncates any fractional statement numbers. For
example, if the value of the subroutine argument were 125.8,
CONTINUE would transfer control to statement 125.

AIN, DIN The input transfer routines AIN and DIN can oper-
ate in continuous mode. MINC transfers program control to the
service subroutine (designated in CONTINUE) whenever an ar-
ray partition fills and is ready for processing.

AOUT, DOUT The output transfer routines AOUT and DOUT
can operate in continuous mode. MINC transfers program con-
trol to the service subroutine (designated in CONTINUE) when-
ever an array partition requires filling with output data.

WAIT_FOR_DATA WAIT_FOR_DATA synchronizes
data transfer and program execution. (See “Continuous
Data Transfers,” page 33, and WAIT_FOR_DATA.)
WAIT_FOR_DATA waits until the next array partition is ready
for processing before allowing the program to continue past the
WAIT_FOR_DATA statement.

TERMINATE TERMINATE stops a specified continuous data
transfer. The statements processing the array partition must
test for a condition that defines the end of the data transfer.

Index argument The index argument must be a variable
name. Do not use that variable name for any other purpose else-
where in the program. With transfers managed by
CONTINUE, erroneous results could result if the program uses
the index variable for any other purpose during the data
transfer.

Immediate mode CONTINUE does not operate in immediate
mode.

Multiple transfers Multiple transfers with CONTINUE man-
agement can operate simultaneously. Only one transfer at a time
can be controlled by the clock module and all must use different
MINC devices.

Output transfers The first time the CONTINUE routine ex-
ecutes for an output transfer, it immediately passes control to
the service subroutine. The service subroutine then prepares the
first partition for transfer and executes CONTINUE again. The
output transfers actually start at this point (see Figure 19).

Starting transfers The program must call CONTINUE before
the data transfer routine can start transferring data. Even
when the data transfer statement specifies an external start sig-
nal, the routine does not start transferring data when the signal
occurs unless the CONTINUE statement has executed. There-
fore, the CONTINUE statement must closely follow the data
transfer statement, either physically or logically.

RESEQ The resequencing command, RESEQ, resequences
normal program statement numbers. It does not resequence the

CONTINUE

Restrictions

17

CONTINUE

Errors

Examples

118

service subroutine statement number in the CONTINUE state-
ment. When you resequence a program, you have to determine
the new statement number of the service subroutine and change
that number in the CONTINUE statement.

For this reason, you might find it more convenient to use varia-
ble names for subroutine arguments. Put the variable assign-
ment statement and an explanatory remark at the beginning of
the program where you can locate it quickly. Then, each time
you resequence the program, assign new values to the statement

number variables, and save searching for all occurrences of the
CONTINUE statement.

?MINC-F-Continuous transfer not in progress for array specified

?MINC-F-Could not find service subroutine #H#### requested

?MINC-F-Service subroutine request pending. Cannot use CONTINUE

The array partition transfer being managed by the last
CONTINUE statement is still in progress. You cannot execute
CONTINUE again until the program has entered the service
subroutine requested by the previous CONTINUE statement.

?MINC-F-Subroutine ####; Clock too fast for system to respond

The transfer associated with the subroutine #### requested
trigger intervals that are too short.

?MINC-F-Subroutine ####; Data lost—transfer rate too high
The transfer associated with the subroutine #### has failed.
?MINC-F-Subroutine ####; Value exceeds valid range for argument

The transfer associated with the subroutine #### tried to
transfer an invalid data value.

See Example C, page 61.

COUT

Send Character String Output

COUT sends characters in serial ASCII format via a serial
transfer channel. (See “Transferring ASCII characters,” page
4))

The serial transfer channels are an integral part of the MINC
physical system. The serial transfer unit, containing four chan-
nels, is not one of the removable MINC modules. It is per-
manently installed in the chassis.

Two of the channels are reserved, one for the terminal, and the
other for an optional DECwriter printer. Make connections to
the other two channels through the connectors on the MINC
back panel (see Book 7).

COUT(mode,string-name,string-length,channal-no.)

Argument Type of Argument Valid Values Default Value
mode string expression WAIT standard mode
string-name string expression ASCII characters required argument
string-length numeric expression 0; 1 to 255

channel-no. numeric expression Oorl 0

Example COUT(,S$,5)

Result Send a string of five characters to channel 0,
and start executing the next statement without
waiting for the transfer to be complete.

Example COUT(,S$)

Result Send the whole string S$ to channel 0, adding a
carriage-return character to the end of the
string. Start executing the next statement
without waiting for the transfer to be complete.

Example COUT(,S$(2),10)

Result Send a string of 10 characters to channel 0
(without appending a carriage-return charac-
ter) and start executing the next statement
without waiting for the transfer to complete.

Example COUT(CWAIT’, Attention’,,1)
Result Send the whole string Attention to channel 1,
adding a carriage-return character to the end

Operation

Configuration

Statement Form

19

couT

of the string. Start executing the next state-
ment only after the transfer is complete.

Argument mode The character string selecting an optional mode for
Descriptions COUT. (See “Operating Modes and Mode Designators,” page
23.)
Values Meaning

WAIT Wait until the transfer is complete before ex-
ecuting the next statement.

Default: Standard mode (start the transfer and pass con-
trol to the next statement when at most 32 char-
acters remain to be transferred).

In standard mode, COUT sets up and starts the transfer and
then finishes executing. The transfer then completes by itself
while the program continues.

(mode = WAIT) In wait mode, the COUT statement does not
finish executing until the transfer is complete, that is, until the
final character has been sent over the serial channel.

string-name The variable name for the data sent.

Values: String of ASCII characters (or any 8-bit code).
Default: Required argument
COUT requires the string-name argument to be a string expres-

sion. You cannot send a complete string array using one COUT
statement.

string-length The number of characters to send.
Values Meaning

0 Send as many characters as the string contains
(variable-length string) with a carriage return
character appended.

1to255 Send a fixed number of characters from the
string (fixed-length string) without any car-
riage return character appended.

Default: 0 (variable-length string)

120 (variable-length string) With variable-length strings, COUT

sends as many characters as the string contains (up to the string
maximum of 255 characters). COUT appends a carriage-return
character to the string.

(fixed-length string) If the string-length argument is a number
from 1 to 255, COUT sends that number of characters beginning
with the first one in the string. If the string does not contain
enough characters, COUT sends only as many as are in the
string. COUT does not append a carriage-return character to a
fixed-length string.

channel-no. The serial channel carrying output characters.

Values Meaning

0 9600 baud serial channel
1 1200 baud serial channel
Default: 0

The baud rates for the serial channels are fixed. They are not
programmable. Under normal warranty conditions, only Digi-
tal Field Service can alter the baud rate.

Choose the channel with the baud rate you require. If the baud
rate for the channel does not match the baud rate of the instru-
ment connected to it, the instrument receives characters that
are different from the ones sent by COUT. (This causes errors at
the receiver end; COUT cannot detect this situation.)

CIN CIN collects character strings from an instrument con-
nected to a serial channel. CIN can receive fixed-length or
variable-length character strings.

WAIT Inwait mode, COUT operates with normal program dy-
namics. That is, the COUT statement finishes executing when
the character transfer is complete. In standard mode, COUT
starts the transfer and then finishes executing before all the
characters arrive at the receiver. COUT in standard mode can
finish executing when up to 32 characters are awaiting transfer.
Another standard mode COUT statement can start executing
before the transfer completes. However, it cannot finish execut-
ing until at most 32 characters (total) remain to be transferred.

?MINC-F-Channel or unit # not in system for the routine

couTt

Related Routines

Restrictions

Errors

121

CcouT

?MINC-F-Invalid or conflicting options requested
WALIT is the only valid mode designator.

?MINC-F-Use array element instead of array for argument #

Examples No example included.

122

DIN collects data from the digital input unit specified. DIN can
collect a single value, a sweep of data, or a continuous stream of
data. (See “Digital Sampling and Control,” page 3.)

digital in

digital in

digital in

clock clock

comren ©~ coren

| cucen
o’ st1 sTieuT sti
LTrz st2

DIN(mode,data-name,data-length,trigger,unit)

Argument Type of Argument Valid Values Default Value
mode string expression CONTINUOUS, standard mode
EXTERNAL
LINE,ST2,TIMESTAMP
data-name numeric variable -32,768 to 32,767 required argument
or array name
data-length numeric expression =1 1
trigger numeric expression 0; 0 to 655.35 0
1 to 65,535
unit numeric expression 0to 3 0
Example DIN(V,1,0,2)
Result DIN reads the value of digital input unit 2 as
soon as the DIN statement executes, and puts
the single value in variable V.
Example DIN(STZ2,A(),50,1)
Result DIN starts collecting a sweep of 50 values from

digital input unit 0 when a signal occurs on
ST2. It puts one point into array A every second.

mode The character string selecting optional modes for DIN.
(See “Operating Modes and Mode Designators,” page 23.)

Values

CONTINUOUS

Meaning

Continuous mode sampling. (See
“Continuous Data Transfers,” page
33.)

DIN

Collect Digital Input

Operation

Configuration

Statement Form

Argument
Descriptions

123

DIN

124

EXTERNAL Enable an external source con-
nected to ST1 to provide the time
base. (See “Time Base,” page 43.)

LINE Use line-frequency time base (50 or
60 Hz). (See “Time Base,” page 43.)

ST2 Start data collection process with a
signal on ST2.

TIMESTAMP Timestamp the input values.

Default: Standard mode (point or sweep

transfer with either instrument
triggering, independent event con-
trol, trigger = 0, or clock module
control, trigger > 0 to 655.35).

Some combinations of modes are valid, and some are not. In the
following table, “X” marks invalid mode pairs and “?” marks
mode pairs whose validity depends on the configuration. The
mode pairs marked with “?” are valid if the system contains two
clock modules and invalid otherwise.

CONTINUOUS EXTERNAL LINE ST2 TIMESTAMP
CONTINUOUS X
EXTERNAL X X ?
LINE X X 2
sT2 X
TIMESTAMP ? ? X

MR-1922

(mode = TIMESTAMP) In timestamp mode, DIN records
both the time when a value was read from the digital input unit
(the time stamp) and the value itself. Timestamp mode is in-
tended for data collection in which the data collection is con-
trolled by an external time base (for example, external mode) or
strobe signals (trigger = 0). (Note: In external mode, time-
stamping requires two clocks.)

Timestamp mode uses the elapsed-time counter. The elapsed-
time counter must already be running at the required rate.
(Start the elapsed-time counter with START_TIME.)

DIN uses a nonstandard format to record the timestamp values.
Convert timestamp values to standard numeric format using
MAKE_TIME. (See “Number Systems,” page 25.)

In timestamp mode, DIN collects two values for every data
point. Therefore, the input data name must always be an array
name. DIN stores the value pairs sequentially in the array as
they are collected, the timestamp value first, then the digital
input value.

The length of the array must always be twice the number of data
points that the array will hold. That is, if you want to collect 50
digital input values, the data array length must be 100—50 of
the array elements contain timestamp values, and 50 contain
digital input values.

data-name The numeric variable to contain the data collected
by DIN.

Values: -32,768 to 32,767

Default: Required argument. DIN assigns the value(s)
to the data-name argument.

In timestamp mode, the data array must be an integer array.

The data-name values represent the conditions of the digital
input lines when the trigger signal occurs. If you use these
values as standard numeric values, you find that they have
values in the integer range (because MINC interprets these
16-bit values as if they were integers). Normally, you need to in-
terpret the data-name values either as BCD fdrmat values (us-
ing MAKE_NUMBER) or as individual line conditions (using
SCAN_BIT or TEST_BIT). (See “Bits and Lines,” page 27.)

data-length The amount of workspace allocated for digital
input data.

Values Meaning

1 The data-name argument is a numeric variable
or single array element.

>1 The data-name argument is an array name and

DIN

125

DIN

126

the data-length argument is the number of ar-
ray elements to be filled with data.

Default: 1

If the data-length argument is greater than 1, the data-name
argument must be an array name.

If timestamp mode is specified, data-length must be twice the
number of digital input values required, in order to accommo-
date the timestamp readings in the same array.

trigger The code which specifies how to control the data
transfer.
Values Meanaing

0 Collect the digital input reading immedi-
ately if data length is 1.

Collect a digital input reading on every sig-
nal from the instrument to the strobe ter-
minal on the connector block for the digital
input unit.

Collect a digital input reading whenever a
signal occurs on an enabled line (for lines
enabled with DIN_EVENT).

> 0 to 655.35 Internal clock control of sampling (without
mode designators for external control)

1 to 65,5635 External control of sampling (with
EXTERNAL or LINE designators)

Default: 0

(trigger = 0) When the trigger argument is zero, individual
digital input samples are triggered by signals from the instru-
ment. The signal line is connected to the strobe terminal on the
digital input unit connector block or to any of terminals D00
through D15 (for lines enabled with DIN_EVENT) (see Book 7).

(trigger > 0 to 655.35) When the trigger argument is greater
than zero and none of the mode designators specifies an alterna-
tive time base, the rate of digital input is under internal clock
control. DIN chooses the appropriate clock module frequency
(see “Time Base,” page 43.)

The trigger argument specifies the sample period in seconds.
The sample period is the time from reading one input value to
reading the next.

The longest sample period possible is 655.35 seconds. The
shortest sample period possible depends on the operating mode
and the values of other arguments.

The sampling frequency is the inverse of the sample period
(trigger argument). For example, if the trigger argument is
.015, the sampling frequency is 66 Hz; if the trigger argument is
.002, the sampling frequency is 500 Hz. If the sample period is 5,
DIN reads the unit every 5 seconds (0.2 Hz).

(trigger = 1t065,535) In external mode, DIN collects data un-
der the control of an external time base connected to ST1. Inline
mode, DIN collects data using the line frequency mode of the
clock module as the time base. The time base can have a regular
rate (for example, line mode) or a varying rate. In either case,
the trigger argument specifies the number of input signals re-
quired for DIN to read the digital input unit. The maximum
number possible is 65,535. If the trigger argument is 1, DIN
reads the digital input unit on every input signal. If the trigger
argument is 5, DIN reads the digital input unit on every fifth
input signal.

If the input signals have a regular rate, the trigger argument
acts as a rate divisor (or, equivalently, as a period multiplier).
For example, if input signals are coming from a 60 Hz line fre-
quency clock, then a trigger argument of 6 specifies a rate of 60/
6 or 10 Hz, and a period of (1/60)*6 or 0.1 seconds (one sample
every 0.1 seconds).

unit The number of the digital input unit carrying input data.

Values: 0 through 3
Default: 0

The digital input units are independent. Use multiple DIN
statements to sample from multiple digital input units. (See also
Restrictions in this section.) Note: Each DIN statement must
contain a different data name. Multiple digital input units
cannot collect data into the same array at the same time.

CONTINUE CONTINUE allows the program to resume ex-
ecuting during a continuous mode transfer and to continue ex-
ecuting until the current array partition fills. Whenever an ar-
ray partition fills, CONTINUE transfers control to a service

DIN

Related Routines

127

DIN

128

subroutine which processes the full array partition while the
other one continues to fill. (See “Continuous Data Transfers,”
page 33, and CONTINUE.)

DIN_EVENT DIN_EVENT enables individual lines in the
digital input to control data collection. If the trigger argu-
ment in DIN is zero (indicating external control of sampling),
then DIN can read the contents of the whole digital input unit
into the data array each time the condition of an enabled line
changes. (Note: The DIN_EVENT routine itself does not read
the digital input unit.) If DIN_EVENT has not executed, the
event-enable word for each unit has the bits for all lines clear.

DIN_MASK DIN_MASK specifies a mask for a digital input
unit. If a line is masked with 0, then the condition of the corre-
sponding bit in the data input word is always 0, regardless of the
actual condition of the line. If a line is masked with 1, then the
condition of the corresponding bit in the data input word is the
actual condition of the line (0 or 1). (See “Masking,” page 27 and
DIN_MASK.)

MAKE_NUMBER MAKE_NUMBER converts BCD format
data to standard numeriec format. If the instrument connected to
the digital input unit is sending BCD data, your program must
use MAKE_NUMBER to convert the BCD data to a numeric
format that MINC can use. (See MAKE_NUMBER, “Number
Systems,” page 25.)

MAKE_TIME MAKE_TIME converts nonstandard format
timestamp values collected by DIN tostandard numeric format.
(See “Number Systems” page 25, and MAKE_TIME.)

START_TIME START_TIME sets the rate of the elapsed-time
clock and starts the clock counting from zero. If you have not
started the elapsed-time clock, timestamp mode does not work.
DIN halts the program with an error.

TEST_LINE TEST_LINE readsthe condition of asingle speci-
fied line in a digital input unit.

TERMINATE TERMINATE terminates continuous mode

data collection. (See “Continuous Data Transfers,” page 33, and
TERMINATE.)

WAIT_FOR_DATA WAIT_FOR_DATA stops the program
during a continuous mode transfer and the program waits until

DIN

the current array partition fills. When the array partition fills,
the program resumes executing to process the full array parti-
tion while the other one continues to fill. (See “Continuous Data
Transfers,” page 33, and WAIT_FOR_DATA.)

Array structure In timestamp mode, DIN reads two values on Restrictions
each trigger—the timestamp value and the digital input unit

value. Therefore, the data-name array contains alternating time

and digital values. The even-numbered array elements contain

times and the odd-numbered array elements contain digital

values.

You can use a two-dimensional data-name array to make the
subsequent array processing easier. As Book 2 explained, MINC
stores arrays in row-magor order. That is, if you could examine
the elements in a two-dimensional array sequentially, you would
find them arranged in row order, one row after the other. There-
fore, you can dimension the data-name array so that it contains
two columns and as many rows as there are input points. Then
column 0 contains all the timestamp values and column 1 con-
tains all the digital input values.

DIN_EVENT In sampling from lines enabled by
DIN_EVENT, DIN cannot produce the error message: Data
lost—transfer rate too high.

Immediate mode Point and sweep DIN transfers operate in
immediate mode; continuous transfers do not.

Multiple units The digital input units are independent of each
other. Use one DIN statement for each unit being used. Differ-
ent units must use different data arrays, and different service
subroutines.

4
Multiple continuous mode DIN statements can all use time-
stamp mode. All of the DIN statements use the same elapsed-
time counter.

Multiple continuous mode DIN transfers must be managed by
CONTINUE statements. (WAIT_FOR_DATA management is
impossible in this case.)

Only one such transfer can use the clock module (ST1 time base,

internal clock control, or line mode). The other transfers must be

using external strobe sampling (trigger = 0) or independent

event control (with lines enabled by DIN_EVENT). 129

DIN

Errors

Examples

130

?MINC-F-Another transfer is in progress for the array specified
?MINC-F-Channel or unit # not in system for the routine
?MINC-F-Data-name array is shorter than sweep length requested

The number of elements available for data must be greater than
or equal to the length of the sweep.

?MINC-F-Data lost—transfer rate too high
?MINC-F-Invalid or conflicting options requested
One of the mode designators specified is invalid for DIN.

The DIN statement specifies incompatible mode designators.
Refer to the table of valid mode designator combinations.

?MINC-F-Previous routine is already using the module requested

The statement specifies timestamp mode but the trigger argu-
ment has some value other than 0.)

See Example D, page 62, and Example F, page 67.

DIN_EVENT

Enable Response to Independent Digital Input Lines

DIN_EVENT enables single data lines in a specified digital
input unit to control data transfer in DIN. The specified data
lines act as independent events. Each bit set in the event-enable
word enables DIN to read the whole unit when a transition oc-
curs on the line corresponding to the bit. (See “Digital Sampling
and Control,” page 3.)

digital in digital in digital in digital in

DIN_EVENT (event-enable-word,unit)

Argument Type of Argument Valid Values Default Value
event-enable-word numeric expression -32,768 to 32,767 all bits set (-1)
unit numeric expression 0to3 0

Example DIN_EVENT(,2)
Result Enable DIN to sample when a signal occurs on
any line of unit 2.

Example DIN_EVENT(BIN(1111 0000 0000 1111%),1)
Result Enable DIN to sample when a signal occurs on
any of lines 0 to 3 and 12 to 15.

Example DIN_EVENT
Result Enable DIN to sample when a signal occurs on
any line of unit 0.

event-enable-word The word specifying which lines of the
specified unit can function as independent events. (See “Bits and
Lines,” page 27.)

Values: Whole number in the range -32,768 to 32,767.
(The event-enable word can contain any com-
bination of 16 bits.)

Default: Bits for all lines are set (-1).

Operation

Configuration

Statement Form

Argument
Descriptions

131

DIN_EVENT

Related Routines

Restrictions

Errors

Examples

132

The event-enable word must have a whole number value in the
range -32,768 to 32,767. You can calculate the numeric value for
a given set of bits. However, all but the simplest values are most
conveniently specified with the BIN function (Book 3) or, if only
a few lines are involved, with SET_BIT.

unit The digital input unit whose lines are being enabled.

Values: 0 through 3
Default: 0

The digital input units are independent. Use one DIN_EVENT
statement for each unit. The event-enable words for different
units can all be different.

If no event-enable word has been specified for a unit, the event-
enable bits for all lines in that unit are clear. That is, the lines in
the unit function as a unit and cannot function as independent
events.

DIN DIN collects data from the specified digital input unit. If
the trigger argument in DIN is zero, and DIN_EVENT has
enabled individual lines, then DIN reads the whole contents of
the digital input unit into the data array whenever a transition
occurs on an enabled line.

Immediate mode DIN_EVENT operates within a multistate-

ment line in immediate mode. The system utility which
produces the READY message clears the event-enable word.

Multiple units The digital input units are independent of each
other. Use one DIN_EVENT statement for each unit to be con-
trolled this way.

?2MINC-F-Channel or unit # not in system for routine

See Example F, page 67.

DIN_MASK

Define Digital Input Mask

DIN_MASK specifies a mask word for the specified digital Operation
input unit. DIN uses the mask word to mask the data collected

from the unit. (See “Masking,” page 27.)

digital in

digital in digital in digital in clock clock

B o]
ST 10l r

axov | ~— | beewov
1 st “rroor| St1 10
Lsi 2 st2}¢-0

DIN_MASK(mask-word,unit)

Argument Type of Argument Valid Values Default Value
mask-word numeric expression -32,768 to 32,767 all bits set (-1)
unit numeric expression 0to3 0
Example DIN_MASK(1)
Result Specify a mask word for unit 1 that has the bits
for all lines set.
Example DIN_MASK(16,1)
Result Specify a mask word for unit 1 that has the bit
for line 4 set.
Example DIN_MASK(BIN(0000 0000 1111 1111°),2)
Result Specify a mask word for unit 2 that has bits set
for lines 0 to 7.
Example DIN_MASK
Result Specify a mask word for unit 0 that has the bits

for all lines set.

mask-word The value used by DIN to mask data from the digi-
tal input unit.

Values: Whole number in the range -32,768 to 32,767.
The mask-word value can be any combination
of 16 bits.

Default: Bits for all lines are set (-1).

Each mask word is composed of 16 ‘bits. (See “Bits and Words,”

Configuration

Statement Form

Argument
Descriptions

133

DIN_MASK

Related Routines

Restrictions

134

page 26.) The most convenient method for specifying mask
word values is to use the BIN function (see Book 3) or, if only a
few bits are involved, SET_BIT.

Each bit corresponds to a line of the digital input unit. When the
bit for a line is clear, then DIN always reads the value of that line
as 0, regardless of the actual condition of the line. When the bit
for a line is set, then DIN reads the actual condition of the line (0
if clear, and 1 if set).

unit The digital input unit for which the mask is specified by
the DIN_MASK statement.

Values: 0 through 3
Default: 0

The digital input units are independent. Use one DIN_MASK
statement for each digital input unit to be masked. The mask
words can all be different.

If no mask has been specified for a unit, DIN collects data from
that unit as if a default mask word with all bits on had been
specified.

DIN DIN collects data from a specified digital input unit. If no
mask word has been specified, or if the default mask word of all
bits set was specified, DIN reads the condition of each line of the
unit. If a mask word was specified, DIN reads the condition only
of the lines for which the corresponding bit in the mask word
was set. The data bits corresponding to clear mask bits are all
clear.

DIN_EVENT DIN_EVENT enables individual lines to funec-
tion as independent events. When DIN reads the digital input
under independent event control, the bit for the line causing the
event is always on (by definition). You can use DIN_MASK to
suppress reading the event bit.

Immediate mode DIN_MASK operates within a multistate-
ment line in immediate mode. The system utility which
produces the READY message clears the mask words.

Multiple units DIN_MASK specifies a mask word for one digi-
tal input unit. Use one DIN_MASK statement for each digital
input unit whose input you want to mask.

DIN_MASK

Channel or unit # not in system for routine Errors

No example included. Examples

135

DOUT

Send Digital Output

Operation

Configuration

Statement Form

Argument
Descriptions

136

DOUT sends data to the digital output unit specified. DOUT can
send a single value, a sweep of data, or a continuous stream of
data. (See “Digital Sampling and Control,” page 3.)

cigitalout digital out digital out clock

DOUT(mode,data-name,data-length,trigger,unit)

Argument Type of Argument Valid Values Default Value
mode string expression CONTINUOUS, standard mode
EXTERNAL,
LINE,ST2
data-name numeric expression -32,768 to 32,767 required argument
data-length numeric expression =21
trigger numeric expression 0; > 0 to 655.35 0
1 to 65,535
unit numeric expression 0to3 0

Example DOUT(V,1,0,2)

Result DOUT sends the contents of variable V to digi-
tal output unit 2 as soon as the DOUT statement
executes.

mode The character string selecting optional modes for
DOUT. (See “Operating Modes and Mode Designators,” page
23.)

Values Meaning

CONTINUOUS Continuous mode transfer. (See
“Continuous Data Transfers,” page
33.)

EXTERNAL Enable an external source con-
nected to ST1 to provide the time
base. _

LINE Use line-frequency time base (50 or

60 Hz). (See “Time Base,” page 43.)

ST2 Start the output process with a sig-
nal on ST2.
Default: Standard mode (point or sweep

transfers with either instrument
triggering, trigger = 0, or clock
module control, trigger > 0 to
655.35).

Some combinations of modes are valid and some are not. In the
following table, “X” marks invalid mode pairs.

CONTINUOUS EXTERNAL LINE sT2
CONTINUOUS X

EXTERNAL X X

LINE X X

ST2 X

MR.1921

data-name The numeric data values to be sent by DOUT.

Values: -32,768 to 32,767
Default: Required argument

The data-name values represent the conditions for the digital
output lines. DOUT interprets values in the integer range as 16
bit conditions. You can use SET_BIT or the BIN function to as-
sign conditions to specified bits in the data word. If the output is
going to a BCD instrument, use MAKE_BCD to create the nec-
essary data-name values.

data-length The length of the data-name argument.

Values Meaning
1 The data-name argument is a numeric expres-
sion.

>1 The data-name argument is a numeric array

DOUT

137

DOUT

138

and the data-length argument is the number of
array elements to be sent to the unit.

Default: 1

If data-length is greater than 1, data-name must be an array
name.

trigger The code which specifies how to control the data
transfer.

Values Meaning

0 Send the digital output value immediately if
data-length is 1.

Send a digital output value as soon as a signal
occurs on the reply terminal of the digital
output unit.

> 0 to 655.35 Clock module control (without mode designa-
tors for external control)

1 to 65,535 External time base (with EXTERNAL or
LINE designators)

Default: 0

(trigger =0) When the trigger argument is zero, output to the
digital output unit is controlled by signals on the reply line con-
nected to the reply terminal of the digital output unit connector
block. DOUT always sends the first value immediately. DOUT
sends the next value as soon as the previous one has been ac-
knowledged by the reply line (see Book 7).

(trigger > 0 to 655.35) When the trigger argument is greater
than zero and none of the mode designators specifies an alterna-
tive time base, the rate of digital output is under internal clock
control. DOUT chooses the appropriate clock module frequency
(see “Time Base,” page 43.)

In this case, the trigger argument specifies the transfer period
in seconds. The transfer period is the time from the completion
of one output transfer to the completion of the next.

The longest transfer period possible is 655.35 seconds. The
shortest transfer period possible depends on the operating mode
and on values of the other arguments.

The transfer frequency is the inverse of the transfer period

(trigger argument). For example, if the trigger argument is
.015, the transfer frequency is 66 Hz; if the trigger argument is
.002, the transfer frequency is 500 Hz. If the transfer period is 5,
DOUT sends an output value every 5 seconds (0.2 Hz).

(trigger = 1t065,5635) Inexternal mode, DOUT sends data un-
der the control of an external time base connected to ST1. Inline
mode, DOUT sends data using the line frequency mode of the
clock module as the time base. The time base can have a regular
rate (for example, line mode) or a varying rate. In either case,
the trigger argument specifies the number of external signals
necessary to cause each transfer. The maximum number possi-
ble is 65,535. If the trigger argument is 1, DOUT sends an
output value on every timebase signal. If the trigger argument
is 5, DOUT sends an output value on every fifth timebase signal.

If the external signals have aregular rate, the trigger argument
acts as a rate divisor (or, equivalently, as a period multiplier).
For example, if external signals are coming from a 60 Hz line
frequency clock, then a trigger argument of 6 specifies a rate of
60/6 or 10 Hz, and a period of (1/60)*6 or 0.1 seconds (one
transfer every 0.1 seconds).

unit The number of the digital output units carrying output
data.

Values: 0 through 3
Default: 0

The digital output units are independent. Use multiple DOUT
statements to send data to multiple digital output units.

CONTINUE CONTINUE allows the program to resume ex-
ecuting during a continuous mode transfer and to continue ex-
ecuting until the currrent array partition has been transferred.
Whenever an array partition becomes empty, CONTINUE
transfers control to the service subroutine which refills that par-
tition with data, while DOUT continues to output from the other
partition. On returning from the subroutine, the program
continues executing the statements following the CONTINUE
statement. (See “Continuous Data Transfers,” page 33, and
CONTINUE))

DOUT_MASK DOUT_MASK specifies a mask for lines in a
digital output unit. If a line is masked with 0, then the condition
of that line in the digital output unit is always cleared, regard-

DOUT

Related routines

139

DOUT

Restrictions

Errors

140

less of the value in the output word. If a line is masked with 1,
then the condition of that line in the digital output unit (set or
clear) depends on the actual value in the output word (1 or 0).
(See “Masking,” page 27, DOUT_MASK, and Book 7.)

MAKE_BCD MAKE_BCD converts standard numericdatato
BCD data format. If the instrument connected to the digital
output unit expects to receive BCD data, your program must use
MAKE_BCD to convert the numeric data to BCD format.

SET_LINE SET_LINE specifies the condition of a single
output line in a specified digital output unit.

TERMINATE TERMINATE terminates continuous mode
data output.

WAIT_FOR_DATA WAIT_FOR_DATA stops the program
during a continuous mode transfer and the program waits for
the current array partition to be output. When the array parti-
tion is empty, the program resumes executing to fill the empty
array partition while DOUT continues to send values from the

other one. (See “Continuous Data Transfers,” page 33 and
WAIT_FOR_DATA))

Immediate mode Point and sweep DOUT transfers operate in
immediate mode; continuous transfers do not.

Multiple units Thedigital outputunits are independent of each
other. Use one DOUT statement for each unit being used. Differ-
ent units must use different data arrays and, with CONTINUE,
different service subroutines.

Multiple continuous mode DOUT transfers must be managed by
the CONTINUE routine. (WAIT_FOR_DATA management is
impossible in this case.)

Only one such transfer can use the clock module (internal clock
control, line mode, or ST1 time base). The other DOUT
transfer(s) must be using reply line control (trigger = 0).

Unit numbers The unit number specified in the DOUT state-

ment must match the number of the unit installed in the system
(see Book 7).

?MINC-F-Another transfer is in progress for the array specified

?MINC-F-Channel or unit # not in system for the routine

?MINC-F-Data-name array is shorter than sweep length requested

The number of elements available for data must be greater than
or equal to the length of the sweep.

?MINC-F-Invalid or conflicting options requested
One of the mode designators specified is invalid for DOUT.

The DOUT statement specifies incompatible mode designators.
Refer to the table of valid mode designator combinations.

?MINC-F-Value exceeds valid range for argument

The output values must be in the integer range, -32,768 to
+32,767. p

See Ex'ample D, page 62. Examples

141

DOUT_MASK
Define Digital Output Mask

Operation DOUT_MASK specifies a mask word for the specified digital
output unit. DOUT uses the mask word to mask the data sent
from the unit. (See “Masking,” page 27.)

Configuration digitalout digital out digitalout digitalout

uuuuu

Statement Form DOUT_MASK(mask-word,unit)
Argument Type of Argument Valid Values Default Value
mask-word numeric expression -32,768 to 32,767 all bits set (~1)
unit numeric expression 0 through 3

Example DOUT_MASK(,2)
Result Specify a mask word for unit 2 that has the bits
for all lines set.

Example DOUT_MASK(15,1)
Result Specify a mask word for unit 1 that has bits set
for lines O to 3.

Example DOUT_MASK(BIN(1111 1111 0000 0000’),2)
Result Specify a mask word for unit 2 that has bits set
for lines 8 to 15.

Example DOUT_MASK
Result Specify a mask word for unit 0 that has the bits
for all lines set.

Argument mask-word The value used by DOUT to mask data sent to the
Descriptions digital output unit.

Values: Whole number in the range -32,768 to 32,767.
The mask-word argument can be any combina-
tion of 16 bits.

Default: Bits for all lines are set (-1).

142 If the mask-word argument is a numeric expression, its range of

values is from -32,768 to 32,767. If the mask-word argument is a
real value, it must be a whole number in the integer range. Any
fractional part is truncated.

The most convenient method for specifying a mask-word value
is to use the BIN function (see Book 3) or, if only a few bits are
involved, the SET_BIT routine.

Each mask word is composed of 16 bits. (See “Bits and Words,”
page 26.) Each bit corresponds to a line of the digital output
unit (see Book 7). When the mask bit for a line is clear, then
DOUT always clears that line, regardless of the value for that
line in the output word. When the mask bit for a line is set, then
DOUT sets the condition of the line according to the value for
that line in the output word (0 if clear, and 1 if set).

unit The digital output unit for which the mask is specified by
the DOUT_MASK statement.

Values: 0 through 3
Default: 0

The digital output units are independent. Use one
DOUT_MASK statement for each digital output unit to be
masked. The mask words can all be different.

If no mask has been specified for aunit, DOUT sends data to that
unit as if a default mask word with all bits on had been specified.

DOUT DOUT sends data to a specified digital output unit. If
no mask word has been specified, or if the default mask word of
all bits set was specified, DOUT sets the condition of each line of
the unit. If a mask word was specified, DOUT sets the condition
only of the lines for which the corresponding bit in the mask
word was set.

Immediate mode The DOUT_MASK routine operates within
a multistatement line in immediate mode. The system utility
which produces the READY message clears the mask words.

Multiple units DOUT_MASK specifies a mask word for one
digital output unit. Use one DOUT_MASK statement for each
digital output unit that requires a mask word.

?MINC-F-Channel or unit # not in system for routine

No example included.

DOUT_MASK

Related Routines

Restrictions

Errors

Examples
143

FFT

Perform Fast Fourier Transform

Operation

Configuration

Statement Form

144

FFT performs a discrete Fourier transform on adata array. The
fast Fourier transform algorithm provides an efficient method
for numerically approximating a continuous Fourier trans-
form.

The continuous Fourier transform converts functions in the
time domain to expressions in the frequency domain. Although
the FFT routine is based on the discrete Fourier transform algo-
rithm, it takes advantage of certain computational shortcuts to
reduce the time required to produce the results.

FFT calculates the real and imaginary parts of the Fourier coef-
ficients.

FFT is a valid statement in any MINC program. It has no con-
figuration requirements.

FFT(rode,data-length,real-component,imag-
component,scale-factor)

Argument Type of Argument Valid Values Default Value

mode string expression FORWARD or FORWARD
REVERSE

data-length numeric expression 2'(n=3to 11) required argument

real-component integer array name input data required argument

imag-component integer array name input data required argument

scale-factor integer variable name integer range required argument

Example FFT(,128,R%(),C%(),S%)

Result Perform a discrete Fourier transform of the
first 128 values in the integer arrays R% and
C%, storing the results of the transform in ar-
rays R% and C%. Store the scale factor in varia-
ble S%.

Example FFT(CREVERSE’,128,R%(),C%(),S1%)

Result Perform a reverse (or inverse) discrete Fourier
transform of the first 128 values in the integer
arrays R% and C%, storing the results of the
transform in arrays R% and C%. Store the scale
factor in variable S1%.

mode The character string specifying the direction of the
transform. (See “Operating Modes and Mode Designators,”
page 23.)

Values Meaning

FORWARD Perform a forward transform.

REVERSE Perform a reverse transform (also called an
inverse transform).

Default: FORWARD (forward transform)

Provided the appropriate scale factors are applied to the results,
a forward transform followed by a reverse transform produces
results exactly the same as the input to the forward transform.

After a reverse transform, you must divide each element of the
resulting arrays by data-length.

data-length The number of points in each of the component ar-
rays to use as input to the Fourier transform.

Values: 2" (where n =3 to 11)
Default: Required argument

The real-component and imag-component arrays must each con-
tain at least data-length elements. The maximum value permit-
ted for data-length is 2048. The actual maximum array length
depends on the workspace available for arrays (see Book 3,
LENGTH).

real-component The name of the integer array containing the
real component of the (complex) input data to be transformed.

Values: -32,768 to 32,767

Default: Required argument. FFT replaces the input
data with the calculated frequency coefficients.

The nature of the FFT algorithm requires that the data satisfy
certain conditions (see Restrictions).

imag-component The name of the integer array containing
the imaginary component of the (complex) input data to be
transformed.

Values: -32,768 to 32,767

FFT

Argument
Descriptions

145

FFT

Related Routines

Restrictions

146

Default: Required argument. FFT replaces the input
data with the calculated frequency coefficients.

The nature of the FFT algorithm requires that the data satisfy
certain conditions (see Restrictions). If the input data are real
rather than complex, all elements in the imag-component array
are 0.

scale-factor The integer scale factor used to scale the real and
imaginary components of the result to provide the final result.

Values: Integer range

Default: Required argument. FFT assigns the value to
the scale-factor argument.

For efficient calculations, FFT requires integer input arrays.
However, because integer values are limited in range, FFT re-
quires a mechanism for keeping the data values within the inte-
ger range during its calculations. It does this by dividing all the
values by 2 whenever necessary to keep within the range. There-
fore, the results are proportionally correct but need to be scaled
in order to restore the original absolute values. After FFT has
finished, the scale-factor argument contains the number of divi-
sions. Create final results in two real arrays by multiplying each
element of the integer result arrays by 2" (where n is the scale
factor).

POWER POWER calculates the power spectrum of a set of
data by using the real and imaginary coefficient arrays calcu-
lated by FFT.

Conditions The discrete Fourier transform algorithm pro-
vides an approximation to the theoretically desired continuous
Fourier transform. The goodness of the approximation is
highly dependent on how well the input data satisfy the follow-
ing conditions:

1. The function to be transformed must be periodic.

2. The function to be transformed must be band-limited.
That is, the highest frequency component of the func-
tion must be finite.

3. When you collect the input data, the sampling rate
must be higher than twice the highest frequency com-
ponent of the function.

4. Theinput data sampling must collect an exact multiple
number of the periodic waveforms.

When the above conditions are not met, discrepancies begin to
accumulate between the continuous Fourier transform and its
discrete numerical approximation. If the function is not peri-
odic and band-limited, then the other conditions cannot be satis-
fied, by definition. If the sampling does not result in an exact in-
teger multiple of the period of the input waveform, then the FFT
results are distorted by leakage.

If the sampling rate is too slow, then the FFT results exhibit

altasing. That is, the FFT coefficients identify frequency com-
ponents that are not present in the input waveform. The follow-

ing figure illustrates the meaning of aliasing.

ANV
\VARVERRVERV/

a) Actual Signat b) Insufficient Sampling

Y

c¢) Apparent Signal MR-1945

Figure 44. How Aliasing Occurs.

It is important to recognize causes of discrepancy between the
discrete Fourier transform and the continuous transform in or-
der to use the FFT routine effectively. Consult a good general
text for a complete, formal description of the discrete transform
itself, the diserepancies that can occur, and the methods neces-
sary to minimize the discrepancies. (For example, see The Fast
Fourier Transform by E. Oran Brigham, Prentice-Hall, 1974,
or the manual for the Laboratory Subroutines Package, Order
No. AA-C984A-TC, from Digital Equipment Corporation.)

Scaling Two different scale factors affect FFT results.

FFT

147

FFT

Errors

Examples

148

1. If you want absolute values (rather than proportional
values), multiply all elements of the real-component
and imag-component arrays by 2" (where n is the
scale-factor argument).

2. After a reverse transform, you must divide each ele-
ment of the real-component and imag-component ar-
rays by data-length.

?MINC-F-Arrays must be as large as number of points requested
?MINC-F-Fewer than 8 points requested

?MINC-F-Invalid or conflicting options requested

FFT permits only one mode designator.
?MINC-F-More than 2048 points requested

?MINC-F-Notify DIGITAL: FFT argument failure

?MINC-F-Number of points must be a power of 2

See F6FFT.BAS on the demonstration diskette.

GET_TIME

Read Current Elapsed-Time Count

GET_TIME reads the current value in the elapsed-time
counter. GET_TIME interprets the counter value either as time
or as number of external signals, depending on the operating
mode of the elapsed-time counter. (See “Measuring Time Inter-
vals,” page 3.)

GET_TIME(current-value)

Argument Type of Argument Valid Values Default Value
current-value numeric variable name =0 required argument

Example GET_TIME(V)
Result Read the current elapsed time or signal count
into variable V.

Example GET_TIME(A(5))
Result Read the current elapsed time or signal count
into element 5 of array A.

current-value The name of the variable that is to contain the
current elapsed time or external signal count.

Values: =0
Default: Required argument. GET_TIME assigns the

value to the argument.

The current-value argument contains either the time elapsed or
the number of external signals occurring since the elapsed-time
counter started. The operating mode of the elapsed-time counter

Operation

Configuration

Statement Form

Argument
Descriptions

149

GET_TIME

Related Routines

Restrictions

Errors

Examples

150

(set by START_TIME) determines whether the current value is
a time or a count. If the elapsed-time counter is set for a regular
rate (that is, any one of the LINE, CHZ, or KHZ mode designa-
tors) the current-value argument contains the time in seconds
since the elapsed-time counter started. If the elapsed-time
counter is set for a varying rate (that is, external mode), the cur-
rent value contains the number of external signals occurring
since the counter started.

START_TIME START_TIME sets the operating mode for the
elapsed-time counter and starts the counter at zero.

DIN The timestamp mode in DIN provides a special case of
time measurement for recording when digital input events oc-
curred.

Clock conflict GET_TIME and START_TIME use clock 0 if
only one clock module is present in the system. If GET_TIME is
using clock 0, you cannot request any clock-controlled data
transfers. If the system contains two clock modules (clock 0 and
clock 1), GET_TIME uses clock 1 and any data transfer routine
uses clock 0.

Immediate mode The GET_TIME routine does not operate in
immediate mode.

Integer result The current-value argument can be an integer
variable. If the elapsed-time value is a time interval, the varia-
ble contains time truncated to integral seconds. That is, if the ac-
tual elapsed time is 5.62 seconds, the integer current value is 5
seconds. If the elapsed-time value is counts, the variable con-
tains the number of counts, just as it would if the variable were
real. However, the maximum number of counts possible with an
integer variable is 32,767. If more than 32,767 counts have
elapsed since the elapsed-time counter started, the count is too
large for an integer variable and the program halts with an er-
ror.

?MINC-F-START_TIME statement must precede the time request

See Example E, page 65.

MAKE_BCD

Convert Variable to BCD Format

MAKE_BCD converts a standard numeric value to BCD for-
mat. (See “Format Conversion,” page 25.) Its usual application
is to convert numeric values to BCD format for digital output

with DOUT.

MAKE_BCD is a valid statement in any program. It has no con-
figuration requirements.

MAKE_BCD(numeric-value,BCD-value)

Argument Type of Argument Valid Values Default Value
numeric-value numeric expression 0 to 9999 required argument
BCD-value numeric variable name 0 to 9999 BCD required argument

Example MAKE_BCD(100,B)
Result Assigns 100 in BCD format to variable B.

Example MAKE_BCD(G%,B)
Result Converts the value in G% to BCD format, and
assigns the BCD value to variable B.

Example MAKE_BCD(V,C%)
Result Converts the value in V to BCD format, and as-
signs the BCD value to variable C%.

numeric value The number to be converted to BCD format.

Values: 0 to 9999

Default: Required argument
BCD-value The variable to contain the BCD value.

Values: 0 to 9999 in BCD format
Default: Required argument. MAKE_BCD assigns a
value to the argument.

MAKE_NUMBER MAKE_NUMBER reverses the effect of
MAKE_BCD. MAKE_NUMBER converts a value in BCD for-
mat to a numeric value.

DOUT DOUT sends data to digital output units. The digital

Operation

Configuration

Statement Form

Argument
Descriptions

Related Routines

151

MAKE_BCD

output unit could be connected to an instrument that sends and
receives BCD format data. Use MAKE_BCD to convert nu-
meric data to BCD format data before sending it to these instru-

ments.
Restrictions None included
Errors ?MINC-F-Value exceeds BCD range for argument #
Examples See Example D, page 62.

1562

MAKE_NUMBER

Convert BCD Format to Numeric Value

MAKE_NUMBER converts a value in BCD format to a stan-
dard numeric value. (See “Format Conversion,” page 25.)

MAKE_NUMBER is a valid statement in any program. It has
no configuration requirements. However, it does require BCD
values, which are often acquired from digital input units (with
DIN).

MAKE_NUMBER(BCD-value,numeric-value)

Argument Type of Argument Valid Values Default Value
BCD-value numeric expression 010 9999 BCD required argument
numeric-value numeric variable name 0 to 9999 required argument

Example MAKE_NUMBER(B%,N%)
Result Converts the BCD value in variable B% to nu-
meric format and assigns the new value to N%.

Example MAKE_NUMBER(V,V1)
Result Converts the BCD value in variable V to nu-
meric format and assigns the new value to V1.

BCD-value The value in BCD format which is to be converted
to numeric format.

Values: BCD values whose numeric equivalents are in
the range 0 to 9999

Default: Required argument

numeric-value The variable to contain the numeric equivalent
of the BCD value.
Values: 0 to 9999
Default: Required argument. MAKE_NUMBER as-
signs a value to the argument.

MAKE_BCD MAKE_BCD reverses the effect of
MAKE_NUMBER. MAKE_BCD converts a numeric value to
BCD format.

DIN DIN collects data from digital input units. If an input unit

Operation

Configuration

Statement Form

Argument
Descriptions

Related Routines

163

MAKE_NUMBER

Restrictions
Errors

Examples

154

"is connected to an instrument that sends and receives BCD

values, then DIN collects data from that instrument in BCD for-
mat. Use MAKE_NUMBER to convert the BCD format data to
numeric values that the program can use.

None

?MINC-F-Invalid BCD value specified in argument #

See Example D, page 64.

MAKE_TIME

Convert DIN Timestamp Values to Numeric Values

MAKE_TIME converts the DIN format timestamp values col-
lected by DIN to standard numeric values. (See “Number Sys-
tems,” page 25.)

MAKE_TIME is a valid statement in any program. It has no
configuration requirements.

MAKE_TIME(,old-value,result)

Argument Type of Argument Valid Values Default Value

rate string expression CHZ,EXTERNAL, current rate
KHZ,LINE,ST2

old-value integer expression -32,768 to 32,767 required argument

result real variable name 0 to 65,535 counts required argument
0 tad092.2 seconds

Example MAKE_TIME(CCHZ,ST2,1%,R)

Result Convert the DIN format value contained in 1%
to time in seconds and assign it to variable R.
(The ST2 mode designator has no effect.)

Example MAKE_TIMECEXTERNAL'I%,R)

Result Convert the DIN format value in 1% tostandard
numeric format and assign the count value to
variable R.

Example MAKE_TIME(,I%,R)

Result Convert the DIN format value in 1% to standard
numeric format. Interpret 1% either as time or
counts depending on the operating mode most
recently set for the elapsed-time counter. As-
sign the value to variable R.

Example MAKE_TIMECLINE’,P%(8),V(4))

Result Convert the DIN format value in array element

P%(8) to time in seconds and assign the time
value to element 4 of array V.

rate The character string specifying the operating mode of the
elapsed-time counter when DIN collected the timestamp values.
(See “Operating Modes and Mode Designators,” page 23, and

DIN.)

The values have the same meanings as for START_TIME,

Operation

Configuration

Statement Form

Argument
Descriptions

155

MAKE_TIME

which starts the elapsed-time counter.

Values
CHZ

EXTERNAL

KHZ

LINE

ST2

Default:

Meaning

Assume 100 Hz time base; values are
times in seconds

Assume ST1 signals provided the time
base; values are counts

Assume 1000 Hz time base; values are
times in seconds

Assume line-frequency time base; values
are times in seconds

Use for compatibility with the
START_TIME mode string if required

The current timestamp counter operat-
ing mode, or the one most recently speci-
fied (excluding HALT designator).

The rate string can contain more than one mode designator.
However, many combinations of modes are invalid. Any rate
string specifying more than one rate designator is invalid. In the
following table, “X” marks the invalid mode combinations.

CHZ

EXTERNAL

KHZ

LINE

§T2

CHz EXTERNAL KHZ LINE sT2
X X X X
X X X X
X X X X
X X X X
X

MR-1920

MAKE_TIME uses the rate argument to interpret the time-
stamp values collected by DIN. If the elapsed-time counter used
156 a regular time base with mode designator LINE, CHZ, or

KHZ, MAKE_TIME converts the values to time in seconds. If
the elapsed-time counter used an external signal source
(EXTERNAL mode designator), MAKE_TIME converts the
values to counts.

If no rate argument appears, then MAKE_TIME assumes that
the timestamp values were collected using the most-recently
specified elapsed-time counter rate. If the timestamp values
were collected in a previous program, then MAKE_TIME halts
with an error if no rate argument appears in the statement (or
earlier in the program). That is, if the values were collected by a
previous program, the rate argument must specify the operat-
ing mode of the elapsed-time counter when the values were col-
lected.

old-value The nonstandard integer timestamp value collected
by DIN.

Values: -32,768 to 32,767

Default: Required argument

DIN collects timestamp values in a nonstandard integer format.
(See “Number Systems,” page 25.) The program cannot per-
form valid arithmetic operations on these nonstandard values.

result The converted timestamp value ready for use by the pro-
gram.

-

Values: 0 to 65,535 counts
0 to 1092.25 seconds

Default: Required argument. MAKE_TIME assigns a
value to the argument.

The converted value contains time in seconds if the operating
mode had a regular rate or a signal count if the elapsed-time
counter was counting external signals. The signal count values
canrange from 0 to 65,5635. The time value range depends on the
operating mode of the elapsed-time counter, as shown in the fol-
lowing chart.

Operating Mode Time Range
CHZ 0 to 655.35 seconds (about 11 min-
utes)

KHZ 0 to 65.535 seconds (about 1 minute)

MAKE_TIME

167

MAKE_TIME

LINE 0 to 1092.25 seconds (about 18 min-
utes)
Related Routines DIN DIN can collect digital input data in timestamp mode. In

timestamp mode, DIN time stamps every sample by reading the
value of the elapsed-time counter (when it happened) and read-
ing the value of the digital input unit (what happened). DIN
reads the elapsed-time counter in a nonstandard integer format
that the program must later convert to numeric format in order
to perform arithmetic on the timestamp values.

START_TIME, GET_TIME You can collect elapsed-time data
using GET_TIME after a START_TIME statement starts the
elapsed-time counter. GET_TIME collects data in standard nu-
meric format, with no limit on the maximum time or number of
counts. Therefore, do not use MAKE_TIME for elapsed-time
values collected with GET_TIME.

Restrictions Timestamp limits DIN and MAKE_TIME produce values
within ranges limited by the operating mode of the elapsed-time
counter. It is possible to infer longer times or larger count values
by inspecting the whole series of timestamp values.

For example, consider the timestamp series shown in Figure 45.

0 65535~ 0 65535~ - 0
)/ \ \1/

20 30 40 50 60 20 30 40 50 60

T

Figure 45. Inferring Elapsed Time from Timestamp Values

The five circled numbers represent five timestamp points. Table
6 shows timestamp values for each of the points and the elapsed-
time values that you could infer.

Table 6. Inferred Elapsed Time Values
Point Value of Result Argument Inferred Elapsed Time

1 26.1 26.1
2 46.8 46.8
3 3.9 69.4
4 51.9 1174
158 5 6.5 137.6

Inferring total elapsed time is reasonably safe if you can assume
that the variance of the timestamp distribution is small and that
the timestamp intervals themselves are short relative to the
maximum timestamp interval. (Note: For the purposes of illus-
tration, the example above violates both of these assumptions.)

?MINC-F-Invalid or conflicting options requested

One of the mode designators specified is invalid for
MAKE_TIME.

The MAKE_TIME statement specifies incompatible mode
designators. Refer to the table of valid mode designator com-
binations.

?MINC-F-Must specify clock operating mode

No example included.

MAKE_TIME

Errors

Examples

159

PAUSE

Suspend Program Execution

Operation PAUSE suspends program execution for a specified time inter-
val. After the time interval expires, program execution
continues with the statement following the PAUSE statement.
(See “Program Dynamics for Control Programs,” page 29.)

Configuration PAUSE is a valid statement in any MINC program. It has no
configuration requirements because it uses the internal system
clock, not the clock module.

Statement Form PAUSE(delay-interval)

Argument

delay-interval

Type of Argument Valid Values Default Value

numeric expression 0 to 86,400 sec required argument
or
string expression 0 to 24:00:00

Example
Result

Example
Result

Example
Result

Example
Result

Example
Result

Argument delay-interval
Descriptions ecution.

Values
numeric

string
160

PAUSE(0.5)
The program waits half a second before con-
tinuing.

PAUSE(120)

The program waits two minutes before continu-
ing.

PAUSE(’1:5:30")

The program waits one hour, 5 minutes, and 30
seconds before continuing.

PAUSE('12:)
The program waits twelve hours before con-
tinuing.

PAUSE('10’) or PAUSE(10)
The two statements are equivalent. The pro-
gram waits 10 seconds before continuing.

The length of time to wait before continuing ex-

Meaning

0 to 86,400 seconds.

0 to 24:00:00 (time interval in hours:
minutes:seconds format).

Default: Required argument

(numeric expressions) When the delay interval is a numeric
expression, 0.1 seconds is the shortest interval guaranteed to be
precise. Intervals shorter than 0.1 seconds are accurate to the
nearest system clock tick.

(string expression) When the delay interval is a string expres-
sion, one second is the shortest possible interval. The time string
has the frame “hours:minutes:seconds”. Each of the slots in the
frame (hours, minutes, seconds) can hold up to two digits, or can
be empty (null). The maximum interval possible in the time
string is 24:00:00. The string itself can contain only digits and
colons; blanks are invalid in the time string.

If the string contains only one number, PAUSE assumes that the
number specifes seconds, unless the number is followed by one
or two colons. The colons indicate the position of the number in
the string frame. For example, the string ‘5’ means 5 seconds,
the string ‘6 means 5 minutes, and the string ‘5::’ means 5 hours.
Thus, the string :10:” is equivalent to ‘0:10:0’ and also to ‘10:’.

SCHEDULE SCHEDULE designates a service subroutine
and schedules it to execute after a specified time interval or at a
specified time of day. The program continues executing during
the time interval.

CTRL/C The CTRL/C key combination works normally dur-
ing a pause. In fact, CTRL/C is the only method available
for aborting a pause. It is probably not advisable to use the
RCTRL/C function (see Book 3) to disable CTRL/C during
pauses.

During a pause While the program is waiting, it does not rec-
ognize any external signals, or perform any scheduled service
subroutines. Continuous mode data transfers continue until
both array partitions have been transferred (and then halt with
an error if the pause is still in progress).

Response to external signals or requested events is postponed
until the delay interval completes. That is, the response is de-
layed, not lost. The program can delay responding to up to eight
intervening requests. If more than eight signals or events re-
quiring response occur during a pause, the program halts with
an error.

Long pauses PAUSE accepts long time intervals. Therefore, if

PAUSE

Related Routines

Restrictions

161

PAUSE

162

you initiate a long pause, the system might appear broken or
someone else might mistakenly enter CTRL/C and start using
the system for something else, destroying your program. To
avoid problems like these, you could print a message on the
screen before beginning the pause, for example,

110 PRINT T$' hour delay in progress, started at 'CLK$
120 PAUSE(TS)

or

110 PRINT T’ second delay in progress was started at ";CLK$
120 PAUSE(T)

With valid long delays that span midnight, MINC correctly
changes the time from 24:00 to 00:00. Except at the end of a
month, when MINC also automatically changes the date.

Time of day PAUSE accepts only time interval arguments. As
a result, you cannot specify an absolute time of day as the end of a
pause. There are two solutions to the problem.

1. You can compute the time interval between the current time
and the desired time and use that interval in a PAUSE state-
ment.

2. Youcanuse SCHEDULE with the desired time of day as the
argument and follow the SCHEDULE statement with a
loop which continues to execute until the time of day arrives.
For example:

50F =0
60 SCHEDULE('Absolute’,'12::",200)
70 IF F =0 GOTO 70

200 REM Service subroutine for SCHEDULE
210 F =1
220 RETURN

PAUSE

?MINC-F-Time string format must be hh:mm:ss Errors
?MINC-F-Value of argument # exceeds valid range

See Example B, page 58, and Example D, page 62. Examples

163

POWER

Calculate Power Spectrum Coefficients

Operation

Configuration

Statement Form

Argument
Descriptions

164

POWER calculates the power spectrum for a set of complex
Fourier coefficients. The power spectrum is the relationship be-
tween power level and signal frequency.

POWER is valid in any MINC program. It has no specific con-
figuration requirements.

POWER(data-length,real-component,imag-component,
spectrum-array)

Argument Type of Argument Valid Values Default Value

data-length numeric expression =1 required argument
real-component integer array array from FFT required argument
imag-component integer array array from FFT required argument
spectrum-array real array name result array required argument

Example POWER(128,R%(),C%(),P())

Result Calculate the power spectrum using the real-
coefficient array R% and the imaginary-
coefficient array C% as input. Put the power
spectrum in array P.

data-length The number of elements in each of the three ar-
rays.

Values: =1

Default: Required argument

The destination array for the power spectrum must contain at
least data-length elements. In practice, the length of the arrays
is limited by the workspace available for arrays (see Book 3,
LENGTH).

real-component The integer array containing one set of coeffi-
cients.

Values: Integer range

Default: Required argument

The real-component array can contain any set of coefficients.

One such set of coefficients is the real component coefficients
produced by the FFT routine.

imag-component The integer array containing one set of coef-
ficients.

Values: Integer range

Default: Required argument
The imag-component array can contain any set of coefficients.

One such set of coefficients is the imaginary coefficients pro-
duced by the FFT routine.

spectrum-array The real array to contain the power spectrum
coefficients.

Values: Real number range
Default: Required argument. POWER assigns values to
the array.

FFT FFT calculates complex Fourier coefficients given a set of
complex data, using a discrete fast Fourier transform algo-
rithm.

Relative power Each power spectrum coefficient is the sum of
the squares of the corresponding real and imaginary coeffi-
cients.

The traditional definition of power is the square root of the sum
of the squares of the coefficients.

P.=V(R’ + 1)

Therefore, to obtain actual power coefficients, take the square
root of each element in the spectrum array.

In general, POWER and FFT are used to obtain proportionally
correct values, not absolute values.

Generality The POWER routine is not limited to power spec-

tra for FFT coefficients. You can use POWER to calculate the
sums of the squares of any pairs of values.

?MINC-F-Arrays must be as large as number of points requested

?MINC-F-Number of points requested must be positive

POWER

Related Routines

Restrictions

Errors

165

POWER

Examples None included.

166

PST_HIST

Generate Post-Stimulus Time Histogram

PST_HIST generates a post-stimulus time histogram. Operation
PST_HIST measures the time intervals between an initial

(sttmulus) signal on ST1, and subsequent (response) signals on

ST2. For each response signal, PST_HIST measures the

elapsed time relative to the stimulus signal. PST_HIST collects

multiple sweeps of time interval data (one sweep for each stimu-

lus signal) and generates a histogram array using all the time

interval data. (See “Frequency Histograms,” page 45.)

clock Configuration

PST_HIST(mode,histogram-name,tick-rate, no.-of- Statement Form
sweeps,lower-endpoint,upper-endpoint)

Argument Type of Argument Valid Values Default Value
mode string expression DISPLAY,ZERO standard mode
histogram-name integer array name 0 to 32,767 required argument
tick-rate numeric expression 2t06 required argument
no.-of-sweeps numeric expression 1to 32,767 required argument
lower-endpoint numeric expression 0 to 65,535 ticks 0

upper-endpoint numeric expression 0 to 65,535 ticks 65,535

Example PST_HIST(,H%(),2,10)

Result Collect 10 sweeps of time interval data with a
time base of 100 Hz. Generate the frequency
histogram H% using the full time range.

Example PST_HIST(DISPLAY’,H%(),3,100,1,500)

Result Collect 100 sweeps of time interval data with a
time base of 1 KHz. Generate the frequency his-
togram H% for time intervals in the range 1 to

500 msec.
mode The character string selecting an optional mode for Argument
PST_HIST. (See “Operating Modes and Modes Designators,” Descriptions

page 23.) 167

PST_HIST

168

Values Meaning
DISPLAY Display the generated histogram on the
screen.
ZERO Set all elements of the histogram array to
zero before starting.
Default: Standard mode (no display; use existing
array)

Combining the two mode designators is valid.

(mode = DISPLAY) In display mode, PST_HIST displays on
the screen the contents of the first 512 elements of the histogram
array. Each element contains the count for the corresponding
bin of the histogram. That is, the value shown on the screen for a
bin represents the number of occurrences of time intervals
within that bin range.

PST_HIST clears the screen before beginning the display. The
display includes a horizontal axis, but no vertical axis. The count
data are displayed so that the full vertical scale of the screen rep-
resents the largest current count value. No units are shown.
Therefore, the display shows the relative counts in the histo-
gram bins, but not the absolute counts.

PST_HIST produces a display suitable for monitoring pur-
poses. Use the specialized graphic routines for final, labeled
displays (see Book 4).

histogram-name The name of the integer histogram array.

Values: 0 to 32,767 counts

Default: Required argument. PST_HIST assigns values
to the histogram array.

PST_HIST uses the full length of the array to store the histo-
gram. The number of elements in the array definition deter-
mines the number of bins in the histogram. (See “Frequency
Histograms,” page 45.) The histogram array must contain at
least four elements.

PST_HIST reserves the first and last elements of the array as
overflow bins to accumulate the counts for intervals outside the
range of interest. That is, for an interval shorter than the speci-
fied minimum, PST_HIST increments the first element in the
array. For an interval longer than the specified maximum, it in-

crements the last element in the array. The remaining array ele-
ments contain the number of occurrences of intervals in the cor-
responding bin ranges.

tick-rate The time base for measuring time intervals.

Value Time Base

2 100 Hz

3 1 KHz (1000 Hz)

4 10 KHz (10,000 Hz)

5 100 KHz (100,000 Hz)
6 1 MHz (1,000,000 Hz)

Default: Required argument

The values for tick rates are the powers of ten for the rates ex-
pressed in Hz. For example, a tick rate of 4 specifies 10 to the
power 4, that is, 10,000 Hz.

no.-of-sweeps The number of time interval sweeps required.

Values: 1 to 32,767

Default: Required argument

PST_HIST measures the time of occurrence of a response signal
on ST2 relative to an initial stimulus signal on ST1.

The occurrence of the stimulus signal on ST1 defines the begin-
ning of the sweep. The occurrence of the next stimulus signal on
ST1 defines the end of the current sweep, and the beginning of
the next sweep. Therefore, the number of ST1 signals occurring
must be one greater than the number of sweeps required, be-
cause the final ST1 signal defines the end of the last sweep and
the end of sampling.

ST1 ST1 ST1 ST1
(Start Sweep 1) (Start Sweep 2) (Start Sweep 3) (End of Sweeps)
ST2 ST2 ST2 ST2 ST2 ST2 ST2
L I !
[E— — |
Interval 1 Interval 4 Interval 6
— L]

H
Interval 2 Interval 5 Interval 7

Interval 3
MR-1947

Figure 46. Defining Sweeps and Intervals for PST_HIST

PST_HIST

169

PST_HIST

Related routines

170

lower-endpoint The lower-endpoint of the range of interest
(shortest time interval of interest).

Values: 0 to 65,535 ticks
Default: 0 ticks

The lower-endpoint argument defines the lower endpoint of the
histogram range of interest. Any time intervals shorter than the
minimum increase the count in the lower overflow bin (element
0) of the histogram array. If the minimum interval is zero, then
the first element of the array is always empty (because no time
interval can be shorter than zero, by definition).

upper-endpoint The upper-endpoint of the range of interest
(longest time interval of interest).

Values: 0 to 65,535 ticks
Default: 65,535 ticks

The upper-endpoint argument defines the upper-endpoint of the
histogram range of interest. Any time intervals longer than the
maximum increase the count in the upper overflow bin (last ele-
ment) of the histogram array. If the maximum interval is 65,535,
then the last element of the histogram array contains the
number of time intervals that exceeded the capacity of the clock
counter.

The longest valid interval is 65,5635 clock ticks. The absolute
value of this interval depends on the tick rate.

Tick Rate Time Interval Range

0 to 655.35 seconds
0 to 65.535 seconds
0 to 6.5535 seconds
0 to 0.65535 seconds
0 to 0.06554 seconds

SOk W

If the maximum interval elapses before the stimulus signal for
the next sweep occurs, then the last element of the histogram
could contain a large count if many ST2 signals occur before the
next ST1 signal starts the next sweep.

TIME_HIST TIME_HIST measures the time intervals be-
tween successive signals on ST2, and generates a frequency his-
togram using the time interval values. TIME_HIST measures

the time elapsed since the most recent ST2 signal, unlike
PST_HIST which measures the time elapsed since the initial
ST1 signal.

Bin countlimit The maximum count possible in any histogram
bin is 32,767. This places an upper limit on the number of sweeps
and intervals. When any count reaches the upper limit,
PST_HIST “locks” the value at the limit. In practice, the limit
should rarely be reached unless you have very wide histogram
bins and large samples and do repeated histograms without
using the ZERO mode designator.

DISPLAY PST_HIST displays the histogram array contin-
uously so that you can monitor the progress of the data acquisi-
tion. However, the display rate is different from the acquisition
rate and the screen display could be updated before the full
sweep of response signals has been collected. This occasionally
results in displays that are hard to interpret because the full ver-
tical scale of the display is based on the largest count in the last
complete sweep.

?MINC-F-Clock too fast for system to respond
?MINC-F-Histogram arrays must contain at least 4 elements
?MINC-F-Existing display conflicts with display requested

A prior AIN statement specified continuous display mode.
PST_HIST cannot erase this display.

?MINC-F-Value of argument # exceeds valid range

No example included.

PST_HIST

Restrictions

Errors

Examples

171

SCAN_BIT

Test Condition of All Bits in a Word

Operation SCAN_BIT examines the condition of the bits in a specified
word sequentially. SCAN_BIT scans the bits in the word, start-
ing with bit 0. It assigns to an argument the bit position of the
first bit it encounters that has been set and clears that bit. (See
“Bits and Words,” page 26.)

Configuration SCAN_BIT is valid in any program. It has no configuration
requirements.
Statement Form SCAN _BIT(bit-position,word)
Argument Type of Argument Valid Values Default Value
bit-position numeric variable name -1;0t0 15 required argument
word numeric variable name -32,768 to 32,767 required argument

Example SCAN_BIT(B1,B)

Result Assume that B contains the value 2. The state-
ment scans the value 2 starting with bit 0, finds
the first bit set in bit 1, clears that bit in B, and
assigns 1 as the value of variable B1. The varia-
ble B now contains the value 0.

Example SCAN_BIT(P%,E)

Result Assume that E contains the value 5. The state-
ment scans the value 5 starting with bit 0, finds
the first bit set in bit 1, clears that bit in E, and
assigns 1 as the value of variable P%. The varia-
ble E now contains the value 4.

Example SCAN_BIT(V,V%)

Result Scans the value in V%, starting with bit 0, and
assigns to V the bit position of the first bit set (if
any have been set). If the value of V% were 0, the
value of V after the statement executed would

be -1.
Argument bit-position The variable name receiving the value deter-
Descriptions mined by SCAN_BIT.
Values Meaning
-1 All bits were clear; the value in the word argu-

172 ment was 0.

Values Meaning

0to15 The bit position of the first set bit encountered
within the word.

Default: Required argument. SCAN_BIT assigns a
value to the argument.

word The numeric value whose bits are to be tested.

Values: Whole number in the range -32,768 to 32,767

Default: Required argument. SCAN_BIT changes the
value in the argument.

SCAN_BIT clears the set bit immediately after detecting it.

DIN DIN reads the value of a specified digital input unitinto a
variable. You can then use SCAN_BIT within a loop to deter-
mine which lines were set in the digital input unit at the time it
was read in.

SET_BIT SET_BIT specifies the condition of a single bit in a
word.

SET_LINE SET_LINE specifies the condition of a single line
in a digital output unit.

TEST_BIT TEST_BIT tests the condition of a single bit in a
specified word.

TEST_LINE TEST_LINE tests the condition of a single line in
a specified digital input unit.

Range of values The word argument can be either integer or
real but must be a whole number. If the value of the word argu-

ment is outside the integer range, the program halts with an
error.

?MINC-F-Value of argument # exceeds valid range

No example included.

SCAN_BIT

Related Routines

Restrictions

Errors

Examples

173

SCHEDULE

Schedule Program Response to a Ttme Event

Operation SCHEDULE designates aservice subroutine and schedules it to
execute when a specified time event occurs. The time event is ei-
ther the completion of a specified time interval or the occurrence
of a specified time of day. The program continues executing un-
til the time event occurs. (See “Service Subroutines,” page 29.)

Configuration SCHEDULE is a valid statement in any MINC program. It has
no configuration requirements because it uses the system clock,
not the clock module.

Statement Form SCHEDULE (mode,time,subroutine)
Argument Type of Argument Valid Values Default Value
mode string expression ABSOLUTE or INTERVAL
INTERVAL
time numeric expression 0 to 86,400 sec 0
or
string expression 0 to 24:00:00
subroutine numeric expression 0;1 to 32,767 0

Example SCHEDULE(CINTERVAL’,30,640)
Result Execute the service subroutine which begins at
statement 640 after 30 seconds.

Example SCHEDULE(CINTERVAL’,’2:’,1100)
Result Execute the service subroutine which begins at
- statement 1100 after two hours.

Example SCHEDULE(ABSOLUTE’,30,640)

Result Execute the service subroutine which begins at
statement 640 at 30 seconds after midnight
(12:00:30 a.m.).

Example SCHEDULE(CABSOLUTE’’16:30:,L)

Result Execute the service subroutine which begins at

the statement specified in variable L at 16:30:0
(4:30 in the afternoon).

Example SCHEDULE
Result Cancel the pending request.

Argument mode The character string specifying whether the time event
Descriptions is a time interval or an absolute time of day (see “Operating
174 Modes and Mode Designators,” page 23.)

Values Meaning
ABSOLUTE Absolute time of day
INTERVAL Time interval
Default: INTERVAL (Time interval)

The longest time interval possible with either mode is 24 hours.
In interval mode, you can schedule a time event for 24 hours
(86,400 seconds) later. In absolute mode, if the time string repre-
sents a time earlier than the current time, SCHEDULE
schedules the time event for the next day.

(mode=ABSOLUTE) Absolute time of day is expressed using
the 24-hour format, that is, time measured relative to midnight.
Five o’clock in the morning is 5 hours past midnight; five o’clock
in the afternoon is 17 hours past midnight.

time The time of day or time interval required.
Values Meaning

numeric 0 to 86,400 seconds

string 0 to 24:00:00 (time interval in hours:
minutes:seconds format).

Default: 0

(numeric expression) When the time argument is a numeric
expression, 0.1 is the shortest interval guaranteed to be precise.
SCHEDULE does not consider times shorter than 0.1 to be er-
rors, but these times are not precise. If the time argument is 0,
SCHEDULE schedules the time event for the next tick of the
system clock. (See “Time Base,” page 43.)

(string expression) When the time argument is a string ex-
pression, the string has the frame “hours:minutes:seconds”.
Each of the slots (hours, minutes, seconds) can hold up to two
digits, or can be empty (null). The longest time that can be speci-
fied is ‘24:00:00’. The string itself can contain only digits and co-
lons; blanks are invalid in the time string.

If the string contains only one number, SCHEDULE assumes
that the number specifies seconds, unless the nugnber is followed
by one or two colons. The colons indicate the position of the
number in the string frame. For example, the string ‘8’ means 8
seconds, the string ‘8" means 8 minutes, and the string ‘8:’

SCHEDULE

175

SCHEDULE

Related Routines

Restrictions

176

means 8 hours. Thus, the string “8: is equivalent to the
string ‘8:’.

subroutine The statement number of the service subroutine to
execute when the time event occurs.

Values Meaning

0 Cancel the scheduled request
1 to 82,767 Statement number of service subroutine
Default: 0 (Cancel the scheduled request.)

SCHEDULE designates the statement number of the begin-
ning of aservice subroutine. MINC transfers program control to
this statement at the end of the time interval or at the specified
time of day. (See “Service Subroutines,” page 29.)

PAUSE PAUSE suspends program execution for a specified
time interval. After the time interval expires, program execu-
tion continues with the statement following the PAUSE
statement.

ABSOLUTE With absolute time specifications, if the current
time is greater than the time requested, the event is scheduled
for the next day. As aresult, no event can be scheduled more than
24 hours in advance.

Cancelrequest A SCHEDULE statement with the subroutine
argument defaulted cancels a pending request. The cancellation
request executes without error (but does nothing) if no request is
pending.

Immediate mode The PAUSE routine does not operate in im-
mediate mode.

Replace request To replace a pending request, you cancel the
first request and then schedule the new request.

RESEQ The resequencing command, RESEQ, resequences
normal program statement numbers. It does not resequence the
service subroutine statement numbers in the SCHEDULE
statement. When you resequence a program, you have to deter-
mine the new statement number of the service subroutine, and
change that number in the SCHEDULE statement.

For this reason, you might find it more convenient to use a varia-

ble name for the subroutine argument. Put the variable assign-
ment statement and an explanatory remark at the beginning of
the program where you can locate it quickly. Then, each time
you resequence the program, assign new values to the statement
number variables, and save searching for all occurrences of the
SCHEDULE statement.

SCHEDULE limit SCHEDULE schedules only one time event
at a time.

Successive events SCHEDULE schedules only one time
event at a time. When the requested time event occurs, the re-
quest has been satisfied and there is no longer any request pend-
ing. Therefore, to schedule repetitive time events, use a
SCHEDULE statement in the service subroutine to reschedule
the event.

- TIME Set the system time with the TIME command (see
TIME, Book 3). If the system time is not the actual time of day,

then time interval requests operate correctly but absolute time
of day requests operate incorrectly.

?MINC-F-Could not find service subroutine #### requested
?MINC-F-Invalid or conflicting options requested

The mode designator specified is invalid for SCHEDULE.
SCHEDULE permits only one mode designator.

?MINC-F-Previously scheduled event pending. No new request

Only one time event request can be active at a time. You cannot
schedule multiple time events.

?MINC-F-Time string format must be hh:mm:ss
?MINC-F-Value of argument # exceeds valid range

The longest valid time interval is 86,400 seconds.

See Example F, page 67.

SCHEDULE

Errors

Examples

177

SCHMITT

Enable Program Response to a Schmitt Trigger Event

Operation

Configuration

Statement Form

178

SCHMITT enables the program to respond immediately to an
event occurring on either of the Schmitt triggers. When a signal
event occurs on the specified Schmitt trigger, MINC transfers
program control to the specified service subroutine in the pro-
gram. SCHMITT can cancel response requests for the specified
trigger. (See “Service Subroutines,” page 29.)

SCHMITT itself requires only the clock module. The rest of the
program and the service subroutine might have their own con-
figuration requirements.

uuuuu

SCHMITT(Schmitt-trigger,subroutine,ST1-count)

Argument Type of Argument Valid Values Default Value
Schmitt-trigger numeric expression lor2 1
subroutine numeric expression 0;1 to 32,767 0
ST1-count numeric expression 1 to 65,535 1

Example SCHMITT(1,650)

Result When a signal occurs on ST1, start executing
the service subroutine that begins at statement
number 650. "

Example SCHMITT(2,S%)

Result When a signal occurs on ST2, start executing

the service subroutine whose beginning state-
ment number is in variable S%.

Example SCHMITT(,1000,10)
Result After every tenth signal on ST1, start executing
the service subroutine that begins at statement

number 1000.
Example SCHMITT
Result Cancel the response request for Schmitt trig-

ger 1.

SCHMITT

Schmitt-trigger The Schmitt trigger whose signals the pro- Argument
gram is to respond to. Descriptions
Values: lor2
Default: 1
subroutine The number of the first statement in the service
subroutine.
Values Meaning
0 Cancel Schmitt trigger response request

1 to 32,767 Statement number of service subroutine

Default: 0 (Cancel the response request)

(subroutine = 0) When no subroutine argument appears, the
SCHMITT statement cancels the response request for the speci-
fied trigger. That is, the system ignores any further signals on
the specified SCHMITT trigger.

(subroutine = 1 to 32,767) SCHMITT designates a service
subroutine by the statement number of the first statement in the
subroutine. When a signal occurs on the specified Schmitt
trigger, MINC transfers program control to the service
subroutine as soon as the current statement finishes executing.
(See “Program Dynamics for Control Programs,” page 29.) Af-
ter the service subroutine, the program returns to the statement
following the one it was executing when.the Schmitt trigger sig-
nal occurred.

ST1-count The number of signals occurring on Schmitt
trigger 1 between transfers to the service subroutine.

Values: 1 to 65,535
Default: 1

The ST1-count argument specifies the number of signals that
occur on Schmitt trigger 1 before the service subroutine ex-
ecutes. Therefore, you can have a service subroutine execute
periodically rather than in response to every signal.

Schmitt trigger 2 does not allow a count argument. However,
you could simulate the ST1-count argument in a service
subroutine for ST2 by counting the signals and by ignoring all
but the relevant signals. (This procedure would work only if the 179

SCHMITT

Related Routines

Restrictions

180

Schmitt trigger frequency were low. MINC can execute at most
300 service subroutines per second.)

DIN_EVENT DIN_EVENT enables the system to respond im-
mediately to a signal event on a single digital input line. DIN
then collects a single digital input unit value every time a signal
occurs on one of the enabled lines. Both DIN_EVENT and
SCHMITT allow the program to respond to similar signals.
(Connect the signal line either to a line on a digital input unit or
to one of the Schmitt triggers on the first clock; see Book 7.)

However, SCHMITT permits a more general response to a sig-
nal than do DIN_EVENT and DIN. With DIN_EVENT and
DIN, the only response to the signal is to collect the value of the
digital input unit. With SCHMITT, the response to the signal
is contained in the service subroutine and can be anything
required.

ClockOonly SCHMITT refers tothe Schmitt triggers on clock
0. If the system has two clocks installed, SCHMITT refers only
to the triggers on the left-most clock.

Immediate mode The SCHMITT routine does not operate in
immediate mode.

Multiple events When you enable a Schmitt trigger, it remains
active until you cancel it. If a second Schmitt trigger event oc-
curs while the service subroutine for the first is still executing,
the program delays responding until the service subroutine
finishes. The program can delay responding to at most eight
events. If eight event requests are pending, the program halts
with an error when the next event occurs.

Multiple triggers Both triggers can be active at the same time.
The triggers can be independent or both can use the same ser-
vice subroutine.

RESEQ Theresequencing command, RESEQ, resequences
normal program statement numbers. It does not resequence the
service subroutine statement number in the SCHMITT state-
ment. When you resequence a program, you have to determine
the new statement number of the service subroutine, and change
that number in the SCHMITT statement.

For this reason, you may find it more convenient to use a varia-
ble name for the subroutine argument. Put the variable assign-
ment statement and an explanatory remark at the beginning of

SCHMITT

the program where you can locate it quickly. Then, each time
you resequence the program, assign new values to the statement

number variables and save searching for all occurrences of the
SCHMITT, CONTINUE, and SCHEDULE statements.

?MINC-F-Could not find service subroutine #### requested

Errors
?MINC-F-Schmitt trigger must be 1 or 2
?MINC-F-Schmitt trigger # is already active. No new request
No example included. Examples

181

SET_BIT

Change Condition of a Single Bit in a Word

Operation SET_BIT specifies the condition (set or clear) for asingle bitina
numeric variable. It can also set all bits or clear all bits in a vari-
able. (See “Number Systems,” page 25.)

Configuration SET_BIT is valid in any program. It has no configuration
requirements.
Statement Form SET_BIT(bit-position,condition,word)
Argument Type of Arqument Valid Values Default Value
bit-position numeric expression -1;0to 15 required argument
condition numeric expression Qor>0 required argument
word numeric variable name -32,768 to 32,767 required argument

Example SET_BIT(0,0,W)
Result Clears bit 0 of variable W.

Example SET_BIT(7,1,V%)
Result Sets bit 7 of variable V%.

Example SET_BIT(-1,1,M)
Result Sets all bits of variable M.

Argument bit-position The position of the bit whose condition is to be
Descriptions changed.

Values Meaning

-1 All bits of the specified word.

0to 15 The bit position.
Default: Required argument

See “Bits and Words,” page 26.
condition The condition to assign to the bit specified.
Values Meaning

0 Clear the specified bit or bits
182 >0 Set the specified bit or bits

Default: Required argument

word The word containing the bit whose condition is being
changed.

Values: Whole number in the range -32,768 to 32,767

Default: Required argument. SET_BIT changes the
value of the word argument.

AOUT AOUT sends control signals to the D/A converter as
part of the output word. Use SET_BIT to set the required con-
trol bit values. ~

BIN The BIN function provides the capability for specifying
the conditions of all bits in a word. See BIN, Book 3.

DIN_EVENT, DIN_MASK, and DOUT_MASK
DIN_EVENT, DIN_MASK, and DOUT_MASK all require
specially constructed mask words. SET_BIT assigns the condi-
tion of single bits in a word. You can use SET_BIT in statements
which calculate dynamic masks for digital input and digital
output sampling.

SCAN_BIT SCAN_BIT tests the conditions of the bits in a
specified word starting with bit 0. It returns the bit position of
the first bit it finds set and clears the bit in the word.

SET_LINE SET_LINE assigns the condition of a single line in
a specified digital output unit.

TEST_BIT TEST_BIT tests the condition of a single bit in a
specified word.

TEST_LINE TEST_LINE tests the condition of a single line in
a specified digital input unit.

None included
?MINC-F-Value of argument # exceeds valid range

No example included.

SET_BIT

Related Routines

Restrictions
Errors

Examples

183

SET_GAIN

Set Preamp Gain
Operation

Configuration

Statement Form

Argument
Descriptions
184

SET_GAIN sets the gain on the preamp module. SET_GAIN
sets the specified channels to the specified gains. (See Book 7.)

dual mux and

L o0
L o0
OO0
—O-1+-0

i

3

SET_GAIN(mode,gain-code,A/D-channel,no.-of-channels)

Argument Type of Argument Valid Values Default Value
mode string expression RANDOM standard mode
gain-code numeric expression =>0;0to 4 1

or numeric array
A/D-channel integer expression 8 to 63 required argument

no.-of-channels numeric expression

or integer array

1 to 56 or channel 1
array length

Example
Result

Example
Result

Example
Result

Example
Result

Example
Result

SET_GAIN(0,8,1)
Set channel 8 to autogain.

SET_GAIN(,,8,2)
Set the gain on channels 8 and 9 to 1.

SET_GAIN(,G(),8;8)
Set channels 8 through 15 to the gains specified
in array G. .

SET_GAIN(,G(),C(),4)

Set the four sequential channels beginning
with the channel whose number is in array ele-
ment C(0) to the gains whose codes are in array
G.

SET_GAINCRANDOM’,G(3),C(1),4)

Set the four channels whose numbers are in ar-
ray elements C(1), C(2), C(8), and C(4) to the
gains whose codes are in array elements G(3),
G(4), G(5), and G(6).

mode The character string specifying an operating mode for
SET_GAIN. (See “Operating Modes and Mode Designators,”
page 23.)

Values Meaning

RANDOM Use random mode to set the gain for nonse-
quential channels. (See “Random Channels,”
page 42.)

Default: Standard mode

gain-code The code for the channel gain (see Book 7).
Values Meaning

<0 No gain specification for the corresponding
channel. A

Autogain (Determines optimal gain for each

conversion)

Gain = 0.5 (Multiplies input signal by 0.5)

Gain = 5 (Multiplies input signal by 5)

Gain = 50 (Multiplies input signal by 50)

Gain = 600 (Multiplies input signal by 500)

Default: Gain code = 1. That is, input gain is 0.5.

S

INQEOCN

The gain code can be either a numeric expression or a numeric
array. If the gain code is a numeric expression, all of the chan-
nels specified are set to the same gain. If the gain-code argument
is an array and the no.-of-channels argument is greater than 1,
SET_GAIN sets each channel to the gain code specified in the
corresponding array element. That is, the first channel specified
is set to the first gain specified, the second channel specified is
set to the second gain specified, and so on for as many channels as
are required.

(gain-code = autogain) You can specify a wide dynamic range
for analog sampling with a procedure called autogain. With
autogain, the input transfer routine determines the gain to use
for each conversion. It does this by actually performing two con-
versions for each data value. (Therefore, the maximum sam-
pling rate with autogain is less than for fixed gain.)

The first conversion, called the ranging conversion, always oc-
curs at minimum gain (0.5). The transfer routine uses the result
of this conversion to select the gain for the second conversion.
The second conversion thus uses the highest gain possible for the
current input signal.

A/D-channel The A/D channel whose gain is to be set.

Values: 8 through 63

SET_GAIN

185

SET_GAIN

Related Routines

Restrictions

186

Default: Required argument

The A/D-channel argument can be either an integer expression
or an integer array. If it is an integer expression, SET_GAIN
sets the gain for that channel and for as many higher-numbered
channels as are specified by the no.-of-channels argument. If it is
an array and the RANDOM designator is specified, SET_GAIN
sets the gains for the channels specified in the array. (See “Ran-
dom Channels,” page 42.)

The valid channel numbers depend on which of the analog mod-
ules are installed in the system, and on how the instruments are
connected to the A/D channels (see Book 7).

no.-of-channels The number of channels to be set.

Values: 1 to the maximum number of channels installed
(for sequential channels).

1 to the length of the channel array (for random
mode).

Default: 1

If the A/D-channel argument is a single expression, then
SET_GAIN sets the specified number of channels, beginning
with the channel specified. For example, if the A/D-channel
argument is 4, and the number requested is 3, then SET_GAIN
sets the gain for channels 4, 5, and 6. If the A/D-channel argu-
ment is an array name and the RANDOM designator is speci-
fied, then SET_GAIN sets the gain for the specified number of
channels, beginning with the first one specified in the array. For
example, suppose the array contains the elements 6, 2, 5, 0, and
1, and the number requested is 4. Then SET_GAIN sets the gain
for channels 6, 2, 5, and 0.

AIN, AIN_HIST, and AIN_SUM AIN, AIN_HIST, and
AIN_SUM collect data from A/D channels.

TEST_GAIN TEST_GAIN tests the condition of any A/D
channel. Use TEST_GAIN to determine whether the preamp is
actually connected and has been set to programmable mode.

Configuration All of the channels whose gain is to be changed
must be connected to a preamp module.

Negative gain-code If the gain-code argument is negative,
SET_GAIN does not change the gain for the corresponding

SET_GAIN

channel. This is needed for situations in which you want to use a
channel array in which some of the channels in the array are not
connected to a preamp module.

Programmable mode The front panel control on the preamp
module must be set to programmable mode (P setting) for each

channel whose gain is to be set. Otherwise, the program halts
with an error.

?MINC-F-Cannot set gain with no preamp connected to channel # Errors
?MINC-F-Channel or unit # not in system for routine -

?MINC-F-No. of channels must match size of gain array

?MINC-F-Set front panel switch to P mode for channel # requested

?MINC-F-Value of argument # exceeds valid range

-

The gain code must be negative or a value between 0 an 4
(inclusive).

See Example A, page 56. Examples

187

SET_LINE

Change Condition of Digital Output Line

Operation

SET_LINE specifies the condition (set or clear) of a single digi-

tal output line on a specified digital output unit. It can alsoset all
lines or clear all lines of the unit. (See “Digital Sampling and
Control,” page 3.)

Configuration

digitalout

digital out digital out

uuuuu

Statement Form

SET_LINE(line-number,condition,unit)

Argument Type of Argument Valid Values Default Value
line-number numeric expression -1;0to 15 -1

condition numeric expression Qor>0 0

unit numeric expression Oto3 0

Example
Result

Example
Result

Example
Result

Example
Result

Argument

Descriptions specified.

Values
-1
0tolb
Default:

SET_LINE
Clear all lines of digital output unit 0.

SET_LINE(,1)
Set all lines of digital output unit 0.

SET_LINE(0,,1)
Clear line 0 of digital output unit 1.

SET_LINE(Q)
Clear line 1 of digital output unit 0.

line number The digital output line whose condition is being

Meaning

All lines of the specified unit.
The single digital output line.
1

The line numbers appear on the connector-block labels as ter-

188

minals D00 through D15 (for lines 0 through 15, respectively).

condition The specified condition for the line, or lines.

Values Meaning
0 Clear the specified line, or lines.
>0 Set the specified line, or lines.

Default: 0 (Clear the lines)

”~
unit The digital output unit containing the line to be set or
cleared.

Values: 0to3

Default: 0
DOUT DOUT can set the conditions of all lines of a digital
output unit. DOUT is more useful for situations when you need
to specify different conditions for different lines. However,
SET_LINE is more convenient for changing the condition of a
single line.
None
?MINC-F-Channel or unit # not in system for the routine

?MINC-F-Value of argument # exceeds valid range

See Example B, page 58, and Example D, page 62.

SET_LINE

Related Routines

Restrictions

Errors

Examples

189

START_TIME

Start the Elapsed-Time Counter

Operation START_TIME starts the elapsed-time counter with a specified
rate or stops the elapsed-time counter. (See “Measuring Time In-
tervals,” page 3.)

Configuration clock

uuuuu

Statement Form START_TIME rate)
Argument Type of Argument Valid Values Default Value
rate string expression CHZ,EXTERNAL, HALT

HALTKHZ,LINE,ST2

Example START_TIME(CCHZ,STZ2’)
Result Set the clock module rate to 100 Hz, and start
the elapsed-time counter when a signal occurs

on ST2.
Example START_TIME(CLINE’)
Result Set the clock module to line frequency, and start

the elapsed-time counter immediately.
Example START_TIMECHALT’)

Result Stop the elapsed-time counter immediately.
Argument rate The character string specifying the operating mode for
Descriptions the elapsed-time counter. (See “Operating Modes and Mode

Designators,” page 23.)

Values Meaning

CHZ Set the elapsed-time counter rate to 100
190 Hz.

START_TIME

Values Meaning

EXTERNAL Use signals from external source con-
nected to ST1 as the time base for the
elapsed-time counter.

HALT Halt the clock.

KHZ Set the elapsed-time counter to 1000 Hz.

LINE Use line frequency (50 to 60~Hz) as the
time base for the elapsed-time counter.

ST2 Start the elapsed-time counter when a sig-
nal occurs on ST2.

Default: HALT

The rate string can contain more than one mode designator.
However, many combinations of modes are invalid. Essentially,
any rate string that specifies more than one rdte designator is
invalid. The ST2 mode designator is invalid alone and must be
paired with an explicit rate. In the following table, “X” marks
the invalid mode combinations.

CHZ EXTERNAL HALT KHZ LINE ST2
I
cHZ X X X X X
EXTERNAL X X X X X
HALT X X X X X X
KHZ X X X X X
LINE X X X X X
sT2 X X
DIN DIN permits timestamp mode. Intimestamp modeT::;ry Related Routines

DIN sample consists of two values, the value of the elapsed-time
counter (when it happened) and the value of the digital input
unit (what happened). Use START_TIME to start the elapsed-
time counter before using DIN in timestamp mode. 191

START_TIME

GET_TIME GET_TIME reads the current value of the
elapsed-time counter.

MAKE_TIME MAKE_TIME converts DIN-format elapsed-
time counter values to standard numeric values. (See “Number
Systems,” page 25, and “Format Conversion,” page 25.)

Restrictions Counter rate START_TIME increments the elapsed-time
counter value every time a time base signal occurs. When the
time base has a regular rate (for example, with the line fre-
quency time base), the elapsed-time count corresponds directly
to time. When the time base can be varying (for example, with
the time base supplied on ST1), the elapsed-time count repre-
sents the number of timebase signals received.

With an external time base (external mode), the maximum sig-
nal rate is 1 MHz.

Immediate mode The START_TIME routine does not operate
in immediate mode.

Initial value START_TIME sets the initial value of the
elapsed-time counter to zero. You cannot select any other initial
value, or reset the value while the elapsed-time counter is run-
ning.

ST2 start The ST2 mode designator specifies when to start the
elapsed-time counter but it does not specify a rate. You must in-
clude an explicit rate designator.

Which clock START_TIME uses clock 0 if only one clock is
present in the system. In this case, if START_TIME is using
clock 0, you cannot request any clock-controlled data transfers.
If the system contains two clocks (clock 0 and clock 1),
START_TIME uses clock 1 and any data transfer routine uses
clock 0.

Errors ?MINC-F-Invalid or conflicting options requested

One of the mode designators specified is invalid for
START_TIME.

The START_TIME statement specifies incompatible mode
designators. Refer to the table of valid mode designator com-
binations.

Examples See Example E, page 65.
192

TERMINATE

Stop Continuous Data Transfer

TERMINATE stops a specified continuous data transfer, either
immediately or after transfer of the current array partition is
complete. TERMINATE can also stop all of the continuous mode
transfers in progress. (See “Continuous Data Transfers,” page
33.)

The configuration depends on the kind of data transfer in
progress.

TERMINATE(mode,data-name)

Argument Type of Argument Valid Values Default Value
mode string expression DEFER or IMMEDIATE DEFER
data-name numeric array transfer array all transfers

Example TERMINATE(CDEFER’,D%())
Result Stop the data transfer involving array D% as
soon as the current array partition is ready for

processing.

Example TERMINATE(,A())

Result Stop the data transfer involving array A assoon
as the current array partition is ready for pro-
cessing.

Example TERMINATECIMMEDIATE’, V()

Result Stop the data transfer involving array V imme-
diately.

Example TERMINATE

Result Stop all continuous transfers after each active

transfer has finished transferring its current
array partition.

mode The mode code specifying when to stop the continuous
transfer.

Values Meaning
DEFER Stop the specified transfer when the
transfer of the current array partition is
complete.

IMMEDIATE Stop the specified transfer immediately.

Operation

Configuration

Statement Form

Argument
Descriptions

193

TERMINATE

Related Routines

Restrictions

194

Default: DEFER

data-name The name of the data array being used for the con-
tinuous transfer that is to be stopped.

Values: Name of a numeric array.

Default: All arrays currently involved in continuous
transfers.

AIN, DIN, AOUT, and DOUT The data transfer routines AIN,
DIN, AOUT, and DOUT can operate in continuous mode. The
program must usea TERMINATE statement to stop continuous
mode transfers.

CONTINUE, WAIT_FOR_DATA The CONTINUE and
WAIT_FOR_DATA routines manage continuous mode data
transfers. With CONTINUE management, the TERMINATE
statement must appear in the service subroutine. With
WAIT_FOR_DATA management, the end-of-transfer test and
the TERMINATE statement must appear with the statements
processing the array partitions. (See “Continuous Data
Transfers,” page 33, CONTINUE, and WAIT_FOR_DATA.)

Array index As part of the termination process with the
DEFER designator, TERMINATE assigns a negative value to
the array partition index. The statements that process the array
partition (service subroutine or WAIT_FOR_DATA service
statements) should include a test of the index variable. If the in-
dex variable is negative, then the transfer is complete. The state-
ments which process the array partition must not execute the
transfer management statement again.

IMMEDIATE With immediate termination, TERMINATE
stops the transfer process and immediately removes all traces of
the relationship between the array and the transfer. You must
design the program carefully so that it cannot attempt to ex-
ecute CONTINUE or WAIT_FOR_DATA again. If a transfer
management routine does execute after an immediate termina-
tion, the program halts with an error.

Immediate mode The TERMINATE routine does not operate
in immediate mode.

Normal stopping The TERMINATE statement stops only con-
tinuous mode transfers. It does not stop program execution. The
portion of the program following the TERMINATE statement

continues to execute normally.

Timing collision In defer mode, TERMINATE always stops
the transfer process at the end of the next partition. Under very
unusual conditions, the TERMINATE(CDEFER’) statement can
execute at exactly the same time as one partition fills and the
next partition becomes the current one. This highly unlikely sit-
uation is a ttming collision. It can happen only when the service
subroutine or the WAIT_FOR_DATA service statements re-
quire exactly as long to execute as the array partition requires to
fill.

The result of the timing collision is that you transfer and process
one more partition of values than you expected. In cases where
transferring an extra partition could cause a serious problem,
you can try to design your program to avoid the problem. For
example, you could count the number of partitions to be trans-
ferred. You could assign a special flag value to a variable when
the transfer is complete and then test that variable to see
whether or not to process another partition.

Transfer errors If a continuous transfer encounters any prob-
lems, the management routine terminates the transfer with an
error message indicating the problem.

?MINC-F-Continuous transfer not in progress for array specified.

?MINC-F-Invalid or conflicting options requested

One of the mode designators specified is invalid for
TERMINATE.

TERMINATE permits only one mode designator.

See Example C, page 6.

TERMINATE

Errors

Examples

195

TEST_BIT

Test Condition of a Single Bit in a Word

Operation

Configuration

Statement Form

Argument
Descriptions

196

TEST_BIT tests the condition of specific bit in a specified word.
It can also test in general whether at least one of the bits is set
(but does not report which one). (See “Bits and Words,” page
26.)

TEST_BIT is a valid statement in any MINC program. It hasno
configuration requirements.

TEST_BIT(bit-position,condition,word)

Argument Type of Argument Valid Values Default Value
bit-position numeric expression -1;0t015 -1

condition numeric variable name 0Oor>0 required argument
word numeric variable -32,768 to 32,767 required argument

Example TEST_BIT(15,C,W)
Result Test the condition of bit 15 in word W and assign
the condition of bit 15 to variable C.

Example TEST_BIT(-1,C,W1)

Result Test the conditions of all bits in variable W1 and
assign a positive value to variable C if one or
more of the bits in W1 is set.

Example TEST_BIT(0,C,V%)
Result Test the condition of bit 0 in variable V%, and
assign the condition of bit 0 to variable C.

bit-position The position of the bit whose condition is to be
tested.

Values Meaning

-1 Test all of the bits

0to 15 Test the single bit specified
Default: -1

See “Bits and Words,” page 26.

condition The condition (clear or set) of the bit being tested.

Values Meaning
0 The bit was clear.
>0 The bit was set.

Default: Required argument. TEST_BIT assigns a
value to the condition argument.

word The numeric value to be tested.

Values: Whole number in the range -32,768 to 32,767

Default: Required argument

DIN DIN readsthe value of a specified digital input unitinto a
specified variable. You can then use TEST_BIT to determine
the condition of any set of lines in the unit because bit position in
the word corresponds to line number in the unit.

SCAN_BIT SCAN_BIT examines the condition of bits in a
specified word, starting with bit 0, reports the position of the
first bit it finds set, and clears the bit.

SET_BIT SET_BIT specifies the condition of a single bit in a
word.

SET_LINE SET_LINE specifies the condition of a single line
in a digital output unit.

TEST_LINE TEST_LINE tests the current condition of a sin-
gle line in a specified digital input unit.

Bits and lines When DIN collects a value from a digital input
unit, it puts the value into a variable. Bit positions in the word
correspond to line numbers in the unit. Remember that the word
contains the condition of the lines at the point in time when DIN
read the value from the digital input unit. At any time later, the
conditions of the bits are not necessarily the same as the current
conditions of the lines, because the arrival of external signals
could have changed the conditions of the lines.

?MINC-F-Value of argument # exceeds valid range

No example included.

TEST_BIT

Related Routines

Restrictions

Errors

Examples

197

TEST_GAIN
Check Gain and Mode of Preamp

Operation TEST_GAIN obtains the current status of the specified A/D
channel. The channel status consists of the gain and the operat-
ing mode.

preamp Qdual mux ad
. . op——o- O —O-
Configuration ;% — § %
X =2
00
o+
' hhhh

Statement Form TEST_GAIN(:A/D-channel,gain-code,mode-code)

Argument Type of Argument Valid Values Default Value
A/D-channel numeric expression 0 through 63 0

gain-code real variable name -3to4 required argument
mode-code string variable name *V,LR required argument

Example TEST_GAIN(8,G,M$)
Result Determine the current status of channel 8. Re-
port the current gain in variable G and the cur-
rent mode in variable MS$.

Example TEST_GAIN(C,G,M$)
Result Determine the current status of channel C. Re-
port the current gain in variable G and the cur-
rent mode in variable M$.

Argument A/D-channel The A/D-channel whose status is being checked.

Descriptions

Values: 0 to the highest-numbered channel in the sys-

tem
Default: 0

The valid values depend on which analog modules are installed
in the system, and on how the instruments are connected to the
A/D channels. (See Book 7.)

gain-code The gain currently selected for the channel.

Values Meaning

198 -3

Specified channel is not in system

-2 No preamp connected to the channel

-1 Gain control on the front panel is not set to pro-
grammable (P) setting

Autogain selected (see SET_GAIN)

Gain = 0.5 (Multiplies input signal by 0.5)
Gain = 5 (Multiplies input signal by 5)

Gain = 50 (Multiplies input signal by 50)
Gain = 500 (Multiplies input signal by 500)

Default: Required argument. TEST_GAIN assigns a
value to the argument.

=N -=O

mode-code The operating mode currently selected by the
front panel switches.

Values Meaning

Channel not connected to preamp
Channel set to measure voltage
Channel set to measure current
Channel set to measure resistance

U< *

Default: Required argument. TEST_GAIN assigns a
value to the argument.

TEST_GAIN assigns a one-character string to the string varia-
ble specified.

AIN, AIN_HIST, and AIN_SUM AIN, AIN_HIST and
AIN_SUM collect data from A/D channels.

SET_GAIN SET_GAIN sets the gain for any A/D channel
which is set for program control.

P setting TEST_GAIN requires that the channel be set for
program control, with the preamp front panel switch set to P
(see Book 7).

Preamp needed TEST_GAIN returns actual status informa-
tion only if the A/D channel is connected to a preamp module.
Without a preamp connection, the program cannot test or set the
gain and the channel operates with a fixed gain of 1 in voltage
measuring a mode.

?MINC-F-Use array element instead of array for argument #

?MINC-F-No workspace available for the string specified

TEST_GAIN

Related Routines

Restrictions

Errors

199

TEST_GAIN

Examples See Example A, page 56.

200

TEST_LINE

Test Condition of Digital Input Line

TEST_LINE tests the condition of one line of a digital input Operation
unit. (See “Digital Sampling and Control,” page 3.)

digitalin digitalin digitalin digitalin Configuration

TEST_LINE(line-number,line-condition,unit) Statement Form
Argument Type of Argument Valid Values Default Value

line-number numeric expression -1;0to 15 -1

line-condition numeric variable name Oor>0 required argument

unit numeric expression 0to3 0

Example TEST_LINE(,C%,1)

Result Test all lines of digital input unit 1 and assign a
value greater than 0 to variable C% if one or
more lines is set.

Example TEST_LINE(7,C,3)
Result Test line 7 of digital input unit 3 and put the line
condition code in variable C.

Example TEST_LINE(0,C%)
Result Test line 0 of digital input unit 0 and put the line
condition code in variable C%.

line-number The number of the digital input line to be tested. Argument
Descriptions
Values Meaning
-1 Test whether any of the lines are set
0to 15 Test the digital input line specified
Default: -1

The line numbers appear on the connector-block labels as ter-
minals D00 through D15 (lines 0 through 15, respectively).

line-condition The condition (set or clear) of the line being
tested. 201

TEST_LINE

Values Meaning
0 The line was clear when tested.
>0 The line was set when tested.

Default: Required argument. TEST_LINE assigns a
value to the argument.

unit The digital input unit containing the line to be tested.

Values: 0Oto3

Default: 0
Related Routines SCAN_BIT SCAN_BIT examines the conditions of bits in a
data word starting with bit 0, reports the positions of the first bit
it finds set, and clears the bit.

SET_BIT SET_BIT specifies the condition (set or clear) of a
single bit in a word.

SET_LINE SET_LINE specifies the condition (set or clear) of
a single line in a digital output unit.

TEST_BIT TEST_BIT tests the condition (set or clear) of asin-
gle bit in a word.

Restrictions None
Errors 2MINC-F-Channel or unit # not in system for the routine
?MINC-F-Value of argument # exceeds valid range
The line-number argument must be in the range -1 to 15.

Examples See Example B, page 58, and Example D, page 62.

202

TIME_HIST

Generate Histogram of Time Interval Data

TIME_HIST measures the time intervals between successive Operation
signals on ST2, and generates a frequency histogram using the

time interval values. The time intervals are specified in clock

tick units. (See “Frequency Histograms,” page 45.)

clock Configuration

cucov
TiouT O
o

A.1581

TIME_HIST(mode,histogram-name,tick-rate,sweep-length, Statement Form
lower-endpoint,upper-endpoint)

Argument Type of Argument Valid Values Default Value
mode string expression DISPLAY,ZERO standard mode
histogram-name integer array name 0 to 32,767 required argument
tick-rate numeric expression 2t0 6 required argument
sweep-length numeric expression 1 to 32,767 required argument
lower-endpoint numeric expression 0 to 65,535 ticks 0

upper-endpoint numeric expression 0 to 65,535 ticks 65,635

Example TIME_HIST(,H%(),2,100)

Result Collect a sweep of 100 points with each clock
tick measuring 1/100 second (100 Hz). Generate
the frequency histogram using the full time
range, and store the histogram in array H%.

Example TIME_HIST(‘DISPLAY’,H%(),5,1 £6,2,2 E8)

Result Collect a sweep of 1,000,000 points (1 E6 points)
with the clock running at 10,000 Hz. Generate
and display the histogram for time intervals in
the range of interest 2 to 256, and store the his-
togram in array H%.

mode The character string selecting an optional mode for Argument
TIME_HIST. (See “Operating Modes and Mode Designators,” Descriptions
page 23.)

Values Meaning

DISPLAY Display the generated histogram on the
screen. 203

TIME_HIST

204

ZERO Set all elements of the histogram array to
zero before starting.
Default: Standard mode

Combining the DISPLAY and ZERO designators is valid.

(mode = DISPLAY) In display mode, TIME_HIST displays
on the screen the contents of up to 512 elements of the histogram
array. Each element contains the count for the corresponding
bin of the histogram. That is, the value shown on the screen for a
bin represents the number of occurrences of time intervals
within that bin range.

TIME _HIST clears the screen before beginning the display.

The display includes a horizontal zero axis, but no vertical axis.
The count data are displayed so that the full vertical scale of the
screen represents the largest count value. No units are shown.
Therefore, the display shows the relative counts in the histo-
gram bins, but not the absolute counts.

TIME _HIST produces a display suitable for monitoring pur-
poses. Use the specialized graphic routines for final, labeled
displays (see Book 4).

histogram-name The name of the integer histogram array.

Values: 0 to 32,767 counts

Default: Required argument. TIME_HIST assigns
values to the histogram array.

TIME_HIST uses the full length of the array to store the histo-
gram. The number of elements in the array determines the
number of bins in the histogram. (See “Frequency Histograms,”
page 45.) The histogram array must contain at least four ele-
ments.

TIME _HIST reserves the first and last elements of the array as
overflow bins to count the occurrences of intervals outside the
range of interest. That is, if TIME_HIST receives an interval
shorter than the specified minimum, it increments the first ele-
ment in the array. If it receives an interval longer than the speci-
fied maximum, it increments the last element in the array. The
remaining array elements contain the counts for intervals in the
corresponding bin ranges.

tick-rate The time base for measuring time intervals
Values Time Base

100 Hz

1 KHz (1000 Hz)

10 KHZ (10,000 Hz) -
100 KHZ (100,000 Hz)

1 MHz (1,000,000 Hz)

Default: Required argument

SO W N

The values for tick rates are the powers of ten for the rates ex-
pressed in Hertz. For example, a rate of 5 specifies 10 to the
power 5, that is, 100,000 Hz.

sweep-length The number of time intervals to be measured.

Values: 1 to 32,767

Default: Required argument

TIME _HIST measures the intervals between successive signals
on ST2. Therefore, the total number of ST2 signals occurring
must be one greater than the number of intervals to be measured
because the first ST2 signal defines only the beginning of the
first interval. All other signals define both the end of the preced-
ing interval, and the beginning of the next.

ST2 ST2 ST2 ST2 ST2 ST2 ST2
Time
L JL I JL Il 11l]

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6

MR-1948

Figure 47. Defining Intervals for TIME_HIST.

lower-endpoint Lower-endpoint of the range of interest
(shortest time interval of interest).

Values: 0 to 65,535 ticks
Default: 0 ticks

The lower-endpoint argument defines the lower endpoint of the
range of interest. Any time intervals shorter than the minimum
increase the frequency in the first element of the histogram ar-
ray. If the minimum interval is zero, then the first element of the

TIME_HIST

205

TIME_HIST

Related Routines

Restrictions

Errors

Examples

206

histogram array is always empty (because, by definition, noth-
ing can be out of range).

upper-endpoint Upper-endpoint of the range of interest
(longest time interval of interest).

Values: 0 to 65,535 ticks
Default: 65,535 ticks

The upper-endpoint argument defines the upper endpoint of the
range of interest. Any time intervals longer than the maximum
increase the frequency in the last element of the histogram ar-
ray. If the maximum interval is 65,535, then the last element of
the histogram array contains the number of intervals which ex-
ceeded the capacity of the clock (65,535 ticks).

PST_HIST PST_HIST generates a post-stimulus time fre-
quency histogram. PST_HIST measures the time intervals be-
tween an initial (stimulus) signal on ST1, and subsequent (re-
sponse) signals on ST2. PST_HIST measures the time elapsed
since the initial signal, unlike TIME_HIST which measures the
time elapsed since the most recent ST2 signal. PST_HIST
collects multiple sweeps of time interval data (one sweep for
each stimulus signal) and generates a frequency histogram us-
ing all the time interval data.

DISPLAY TIME_HIST displays the histogram array con-
tinuously so that you can monitor the progress of the data ac-
quisition. However, the display rate differs from the acquisition
rate. Thus, the screen display can be difficult to interpret be-
cause the full vertical scale of the display is based on the largest
count in the histogram at the beginning of the display.

?MINC-F-Clock too fast for system to respond
?MINC-F-Existing display conflicts with display requested

A prior AIN statement specified continuous display mode.
TIME _HIST cannot erase this display.

?MINC-F-Histogram arrays must contain at least 4 elements

?MINC-F-Value of argument # exceeds valid range

See Example G, page 70.

WAIT_FOR_DATA

Wait for Complete Array Partition

WAIT_FOR_DATA manages data transfer and program ex- Operation
ecution in continuous mode transfers. WAIT_FOR_DATA holds
program execution until the current array partition is ready for
processing. When the partition is ready, program execution re-
sumes with the statement following the WAIT_FOR_DATA

statement. (See “Continuous Data Transfers,” page 33.)

The configuration depends on which data transfer routine is Configuration
associated with the WAIT_FOR_DATA statement.

WAIT_FOR_DATA (data-name,index) Statement Form
Argument Type of Argument Valid Values Default Value

data-name numeric array transfer array required argument

index numeric variable name 0,(n+1)/2 required argument

Example WAIT_FOR_DATA(S(),1%)

Result Wait until the next partition of array S is ready
for processing. The array index of the partition
is in variable 1%.

Example WAIT_FOR_DATA(V%(),I)

Result Wait until the next partition of array V% is
ready for processing. The array index of the
partition is in variable I.

data-name The data array being used for the continuous data Argument
transfer. Descriptions
Values: Name of numeric array.

Default: Required argument

WAIT_FOR_DATA itself allows any numeric array name. The
data transfer routine might have some restriction on the data
type allowed for the array.

The data-name array must already have appeared in a data
transfer statement specifying continuous mode. If no transfer is
in progress for the data-name array, then WAIT_FOR_DATA
halts with an error.

index The variable name containing the array index for the 207

WAIT_FOR_DATA

Related Routines

Restrictions

208

next partition to be processed by the program.

Values: 0 or (n+1)/2 (where n is the array dimension for
data-name)

Default: Required argument. WAIT_FOR_DATA as-
signs the value of the index argument.

WAIT_FOR_DATA changes the value of the index variable so
that it always contains the index of the first element in the next
available array partition. If continuous output is in progress, the
index points to the next array partition to be filled with data for
output. If continuous input is in progress, the index points to the
next array partition containing valid data to be stored.

AIN, DIN The input transfer routines AIN and DIN can oper-
ate in continuous mode. WAIT_FOR_DATA holds program ex-
ecution at the WAIT_FOR_DATA statement until the current
array partition is full of input data. Then, MINC continues pro-
gram execution with the statement following the
WAIT_FOR_DATA statement.

AOUT, DOUT The output transfer routines AOUT and DOUT
can operate in continuous mode. WAIT_FOR_DATA holds pro-
gram execution at the WAIT_FOR_DATA statement until all
data in the current partition have been output. Then MINC
continues program execution with the statement following the
WAIT_FOR_DATA statement.

CONTINUE CONTINUE allows the program to execute dur-
ing the data transfer. (See “Continuous Data Transfers,” page
33, and CONTINUE.) CONTINUE transfers control to a ser-
vice subroutine whenever the array partition involved in the
data transfer is ready for processing.

TERMINATE TERMINATE stops a specified continuous data
transfer. The statements processing the array partition must
test for some condition which defines the end of the transfer and
then transfer control to a TERMINATE statement if the
transfer is complete.

Immediate mode The WAIT_FOR_DATA routine does not
operate in immediate mode.

Index argument The index argument must be a variable
name. The portions of the program which process the array par-
tition must not use the index variable for any purpose other than
the array index.

Output transfers The first time WAIT_FOR_DATA executes
for an output transfer, it immediately passes control to the parti-
tion processing statements which follow it. Those statements
then prepare the first partition for the transfer and must ex-
ecute WAIT_FOR_DATA again. The output transfer then
starts at this point (see Figure 17).

Starting transfers The program must call WAIT_FOR_DATA
before the data transfer routine can start transferring data.
Even when the data transfer statement specifies an external
start signal, the routine does not start transferring data when
the signal occurs unless the WAIT_FOR_DATA statement has
been executed. The program ignores any external signals that
occur before the WAIT_FOR_DATA statement executes. The
WAIT_FOR_DATA statement should logically follow the data
transfer statement. The program statements following the
WAIT_FOR_DATA statement must process the array parti-
tions involved in the transfer.

?MINC-F-Clock too fast for system to respond

The continuous transfer associated with this
WAIT_FOR_DATA statement has requested trigger intervals
that are too short.

?MINC-F-Continuous transfer not in progress for array specified

?MINC-F-Data lost—transfer rate too high

The continuous transfer associated with this
WAIT_FOR_DATA statement cannot process the array parti-
tions quickly enough for the triggering rate.

?MINC-F-Value exceeds valid range for argument

The continuous transfer associated with this
WAIT_FOR_DATA statement tried to transfer an invalid data
value.

See Example F, page 67.

WAIT_FOR_DATA

Errors

Examples

209

LAB MODULE PROGRAMMING

10

This program fragment prompts the person running the pro-
gram to enter some essential information about the session. This
is good programming practice for several reasons. It allows the
program to be reused for many sessions, without the danger of
losing data. The person running the program (who might not
have written it) does not have to remember what information to
provide, or in what order to enter it.

Middle The middle of a control program contains the state-
ments for the measurement loop(s), for output transfers, and for
any computations required during the process. The actual de-
sign of the loops depends on your configuration and application,
so it is impossible to state detailed guidelines.

Some general guidelines are possible:

1. The time relationships between events are the most impor-
tant and difficult aspects of the process to control. Verify
that the program in fact meets the timing requirements of
the process. Programs containing the wrong timing rela-
tionships often execute successfully, providing results mis-
leadingly similar to the correct results.

2. The endpoints of the measurement process are more diffi-
cult to control than the middle. Pay close attention to the
mechanism for starting measurements or transfers (and the
time relationships involved) and to the mechanism for deter-
mining the end of the process and terminating it in an or-
derly way.

3. Unlike computational programs, the control program state-
ments themselves convey little information about what they
control or how they do it. Document the time and event rela-
tionships carefully and completely, both in program REM
statements and in written records (like the time line
sketches and instrumentation records in Book 7).

4. The lab module routines report on those erroneous condi-
tions they can detect (see “Error Detection,” page 51). How-
ever, the routines can detect only well-defined, general error
conditions. You must be alert to the specialized error condi-
tions that could occur in your application and monitor the
process and results closely throughout to avoid invalid pro-
gram runs.

End The end of a control program contains the procedures for
terminating the session. The program end must halt any data

A/D channel gain, 198
A/D conversion, 2
A/D converter
full scale values, 83
A6AVER.BAS example program, 58
AGINT.BAS example program, 56
AG6SAVE.BAS example program, 61
A6SCOP.BAS example program, 71
ABSOLUTE mode designator, 175
AIN routine
reference for, 75
related to
AIN_HIST, 89
CONTINUE, 116
SET_GAIN, 186
TERMINATE, 194
TEST_GAIN, 199
WAIT_FOR_DATA, 208
AIN_HIST routine
reference for, 86
related to
SET_GAIN, 186
TEST_GAIN, 199
AIN_SUM routine
reference for, 93
related to
SET_GAIN, 186
TEST_GAIN, 199
Aliasing
definition of, 147
Analog
definition of, 1
Analog channels
sequence of, 40
Analog output, 2, 102

INDEX

burst, 104
triggering, 104
Analog sampling, 75, 86, 93
data type
restrictions on, 82
definition of, 2
sweep delay, 99
triggering, 79, 97
Analog sampling rates, 83, 96, 100
AOUT routine
reference for, 102
related to
CONTINUE, 116
SET_BIT, 183
- TERMINATE, 194
WAIT_FOR_DATA, 208
Argument conventions, 21
Argument data types, 18
Argument descriptors, 17
Argument tables
definition of, 17
Arguments
arrays as, 21
assigning values to, 18
defaulting, 16
required, 15
whole number, 18
Array partition indexes, 207-208
Array partition processing, 116
Array partition size
restrictions on, 82, 99, 107
Array partitions, 34, 116
indexes
restrictions on, 117
processing, 36 211

INDEX

212

size, 35
Arrays
digital input with timestamping, 129
gain specification, 185
histogram, 50, 168, 204
negative indexes, 194
partition indexes
restrictions on, 194
row-major order, 129
two-dimensional
data transfer, 129
Arrays as arguments, 21
ASCII character transfer
definition of, 4
Autogain
definition of, 185
restrictions on, 78, 82, 89, 100

Baud rate
serial transfer units, 113
BCD format, 25, 128, 140, 151, 153
BIN function
related to
DIN_EVENT, 132
DIN_MASK, 134
DOUT, 137
SET_BIT, 183
Bin limits
histogram, 89
Binary coded decimal, 25
Binary number system, 25
Bins
histogram, 45
lower overflow, 48
upper overflow, 48
Bit positions, 26
Bits, 25-26
corresponding to lines, 27
D/A control, 107
scanning, 172
specifying conditions of, 182
testing conditions of, 196
Burst output, 104

Cancelling Schmitt trigger events, 179
Cancelling service requests, 176
Capabilities

lab module routines, 1
Carriage-return character

input strings, 112

output strings, 120-121
Channels

analog

specifying, 40

Characters
ASCII input routine, 110
ASCII output routine, 119
carriage-return
serial output, 120-121
terminating input, 112
minus sign, 23
transferring serial ASCII, 4
underscore, 13
CHZ mode designator, 156, 190
CIN routine
reference for, 110
related to
COUT, 121
Clear condition
definition of, 25
Clearing line conditions, 188
Clock
system, 44, 174
Clock conflict, 84
Clock module, 44
conflicts
analog sampling, 84
digital output, 140
digital sampling, 129
elapsed-time, 150
elapsed-time
restrictions on, 192
histogram time base, 169
restrictions on, 117
SCHMITT restrictions, 180
Schmitt trigger events, 178
selecting frequency, 44
Coefficients
Fourier, 144
power spectrum, 165
Color conventions, 15

Combinations
mode, 24, 76, 94, 103, 124,
137, 156, 191
Commas

argument table, 19
placeholder, 16
Configuration summaries, 5, 15
CONTINUE management, 38
CONTINUE routine
reference for, 115
related to
AIN, 81
"AOUT, 106
DIN, 127-128
DOUT, 139
TERMINATE, 194
WAIT_FOR_DATA, 208
Continuous analog sampling, 76

Continuous mode, 33
multiple digital input units, 129
multiple transfers, 140
output transfers, 117
restrictions on, 82, 107
starting transfers, 117

CONTINUOUS mode designator, 76,

103, 123, 136
Continuous transfers
managing, 33, 207
starting, 209
Control
transferring, 30
continuous mode, 34
Control programs, 6
Control programs
definition of, 6
structure, 9
testing, 11
Controlling processes, 4
Conventions, 13-14, 20
argument, 21
valid values, 19
color, 15
mode strings, 22
naming routines, 13
statement form, 15
Conversion
A/D, 2
BCD to numeric, 26, 1563
D/A, 2
format, 4, 25
numeric to BCD, 26, 151
ranging, 185
timestamp to numeric, 155
Conversion routines, 25
Conversion sequences, 40
random, 42
sequential, 40
Counter
elapsed-time, 125, 149, 190
Counting events, 149-150
Counts
elapsed-time, 192
COUT routine
reference for, 119
related to
CIN, 113
CTRL/C key
during a pause, 161
fast mode restrictions on, 83, 100
Current statement
definition of, 29
Current time
fast mode restrictions on, 83, 100

INDEX

D/A control signals
restrictions on, 107
D/A conversion, 2
D/A output values, 108
D6MCA.BAS example program, 62

Data formats
timestamp values, 125
Data transfer or pending service request
terminated, 53
Data types, 18
Debugging programs, 11, 13, 17
Decwriter printer, 110, 119
Default mode, 24
Default values
definition of, 16
DEFER mode designator, 193
Delay intervals
analog sweep, 99
PAUSE, 161
Demonstration programs, 55
Designing control programs, 10
Digital
definition of, 3
Digital output, 3
multiple units, 139-140
triggering, 138
Digital sampling
definition of, 3
restrictions on, 129
triggering, 126
Digital sampling and control, 3
DIN routine
reference for, 123
related to
CONTINUE, 116
DIN_EVENT, 132
DIN_MASK, 134
GET_TIME, 150
MAKE_NUMBER, 153-154
MAKE_TIME, 158
SCAN_BIT, 173
START_TIME, 191
TERMINATE, 194
TEST_BIT, 197
WAIT_FOR_DATA, 208
DIN_EVENT routine
reference for, 131
related to
DIN, 128
DIN_MASK, 134
SCHMITT, 180
SET_BIT, 183
DIN_MASK routine
reference for, 133 213

INDEX

214

related to
DIN, 128
SET_BIT, 183
Display mode
AIN, 76
restrictions on, 100, 206
TIME_HIST, 204
DISPLAY mode designator, 76, 87, 94,
168, 203
Displaying data, 95
DOUT routine
reference for, 136
related to
CONTINUE, 116
DOUT_MASK, 143
MAKE_BCD, 151-152
SET_LINE, 189
TERMINATE, 194
WAIT_FOR_DATA, 208
DOUT_MASK routine
reference for, 142
related to
DOUT, 139
SET_BIT, 183
Dynamic range, 78, 185

Elapsed time, 190
measuring, 3, 149
Error detection, 51
Errors
execution, 51
interaction, 53
syntax, 51
Event-enable word, 131
Events
independent, 131
multiple Schmitt triggers, 180
scheduling successive, 177
Schmitt trigger, 178
time, 174
Examples
description of, 565
elapsed time and timestamping, 158
histogram bins, 49
input with WAIT_FOR_DATA, 36
output with CONTINUOUS, 38
program
AGAVER.BAS, 58
AGINT.BAS, 56
AGSAVE.BAS, 61
A6SCOP.BAS, 71
D6MCA.BAS, 62
F6FFT.BAS, 148
T6QUIZ.BAS, 65
T6SPIN.BAS, 70

T6TRAK.BAS, 67
program planning, 8
Execution time, 31-32
External mode
compared to external signal
control, 83
EXTERNAL mode designator, 45, 76,
94, 103, 124, 136, 156, 191
External signal control
compared to external mode, 83
External start terminal
A/D triggering, 79

F6FFT.BAS example program, 148
Fast mode

AIN, 77

restrictions on, 83, 96, 100
FA ST mode designator, 76, 94
FFT processing, 2
FFT routine

reference for, 144

related to

POWER, 165

restrictions on input, 146
Files

virtual array, 21
Fixed-length strings

input, 111-112

output, 120-121
Format conversion, 25
Formats

BCD, 25, 128, 140

data

elapsed-time, 150

timestamp values, 125, 128, 157
FORWARD mode designator, 145
Forward transform, 145
Fourier transform, 144
Function diagrams, 5, 15

Gain
codes for, 185
controlling, 184
determining channel, 198
GET_TIME routine
reference for, 149
related to
MAKE_TIME, 158
START_TIME, 192

HALT mode designator, 191
Histogram bins, 45
Histograms

analog, 86

arrays, 50

definition of, 45
frequency, 45

overall range, 47
range of interest, 47
time interval, 167, 203

Immediate mode, 33

AIN, 83

AOUT, 108

CONTINUE, 117

DIN, 129

DIN_EVENT, 132

DIN_MASK, 134

DOUT, 140

DOUT_MASK, 143

error messages, 51

GET_TIME, 150

SCHEDULE, 176

SCHMITT, 180

START_TIME, 192

TERMINATE, 194

WAIT_FOR_DATA, 208
IMMEDIATE mode designator, 193
Immediate stopping

restrictions on, 194
Independent digital events, 131
Independent events

digital sampling, 128

restrictions on, 129
Indexes

array partition, 34, 116, 207-208

restrictions on, 117, 194, 208

negative array, 194
Input

analog, 2

digital, 3

identifying program, 6
Instrument control bits, 107
INTERVAL mode designator, 175
Invalid character or duplicate modes

requested, 51

Invalid data type for argument #, 52
Inverse transform, 145

KHZ mode designator, 156, 191

Lab module routines
capabilities of, 1
Leakage
restrictions on FFT input, 147
Line conditions
digital input, 201
Line frequency, 44
LINE mode designator, 76, 94, 103, 124,
136, 156, 191

INDEX

Line printer, 119
Lines
digital
clear, 188
set, 188
digital input
condition, 27
corresponding to bits, 27
testing conditions, 201

MAKE_BCD routine
reference for, 151
related to
DOUT, 140
MAKE_NUMBER, 153
MAKE_NUMBER routine
reference for, 153
related to
DIN, 128
MAKE_BCD, 151
MAKE_TIME routine
reference for, 155
related to
DIN, 128
START_TIME, 192
Managing continuous transfers, 35, 207
CONTINUE, 38
WAIT_FOR_DATA, 36
Masking, 128, 133, 142, 183
definition of, 27
Masks
defining, 128, 133, 142
definition of, 28
multiple, 134, 143
Messages
error
description of, 51
Minus sign
in mode string, 23
Missing argument # is required, 52
Mode
absolute, 175
CHZ, 156, 190
continuous, 33-35, 76, 103, 106, 115,
123, 136, 207
multiple transfers, 140
restrictions on, 107
stopping, 193
default, 24
defer, 193
display, 76, 87, 94-95, 168, 203
restrictions on, 100, 171, 206
external, 76, 94, 103, 124, 136, 156, 191
fast, 76-77, 94-95
halt, 191 215

INDEX

216

immediate, 33
immediate (with TERMINATE), 193
interval, 175
KHZ, 156, 191
line, 76, 94, 103, 124, 136, 156, 191
multiple mode designators, 24
operating
for routine, 23
preamp operating, 199
preamp programmable, 187, 199
random, 76, 94, 103, 185
retrieve, 111
ST2, 76, 103, 124, 137, 156, 191
standard, 23-24
compared to continuous, 33
timestamp, 124
wait, 120
zero, 87, 94, 168, 204
Mode arguments, 22
Mode combinations, 24, 76, 94, 103, 124,
137, 156, 191
Mode designators, 23
EXTERNAL, 45
RANDOM, 42
Modules
clock, 44
Multiple analog channels, 40
Multiple events
Schmitt trigger, 180
Multiple triggers, 180

Notify DIGITAL: Mark time failure, 53

Notify DIGITAL: Memory pool
exhausted, 53

Notify DIGITAL: Protection failure, 53

Notify DIGITAL: Internal error trap, 53

Operating modes, 23
Output
analog, 2
digital, 3
identifying program, 6
Output transfers
continuous
restrictions on, 209
Overall range
histogram
definition of, 47
Overflow bins
histogram
definition of, 48

Partitions
array, 34, 116
indexes, 207-208

restrictions on indexes, 194
PAUSE routine
reference for, 160
related to
SCHEDULE, 176
Pauses
continuous mode restrictions, 161
CTRL/C during, 161
service requests during, 161
Period
sample
definition of, 126-127
Placeholder commas, 16
Planning programs, 6
Point
definition of, 2
Post-stimulus time histogram, 206
POWER routine
reference for, 164
related to
FFT, 146
Power spectrum calculation, 164
Preamp module
controlling, 184
operating mode, 199
Previous routine is already using the
" module requested, 52
Printer, 110, 119
Process control, 4
Processing array partitions, 36, 116, 208
Program input and output
identifying, 6
Programmable mode, 187
Programmable preamp mode, 199
Programs
control
definition of, 6
structure, 9
testing, 11
debugging, 11, 13
demonstration, 565
planning, 6
resequencing
restrictions on, 117-118, 176, 180
stopping, 194
suspending execution, 160
PST_HIST routine
related to
TIME_HIST, 206
reference for, 167

Random channels
analog, 40

Random mode
definition of, 42

RANDOM mode designator, 42, 76, 94,
103, 185
Range of interest
histogram
definition of, 47
Ranging conversion, 185
Rates
analog sampling, 83, 100
fast mode, 78, 96
baud
serial transfer units, 113
digital output, 139
digital sampling, 127
elapsed-time counter, 192
CHZ, 156, 190
external, 156, 190
halt, 190
KHZ, 156, 190
line, 156, 190
ST2, 190
RCTRLC function
pause restrictions on, 161
Relationships
bits and digital input lines, 197
time, 8, 31, 33
timestamping and elapsed time, 158
Reply terminal
digital output units, 138
Representation
digital, 3
internal, 2, 25
RESEQ command
service subroutines, 117-118, 176, 180
Resequencing programs
restrictions on, 117-118, 176, 180
Resolution
time, 43-44
Retrieve mode
restrictions on, 113-114
RETRIEVE mode designator, 111
REVERSE mode designator, 145
Routines
AIN, 75
AIN_HIST, 86
AIN_SUM, 93
AOUT, 102
CIN, 110
CONTINUE, 115
conversion, 25
COUT, 119
DIN, 123
DIN_EVENT, 131
DIN_MASK, 133
DOUT, 136
DOUT_MASK, 142

FFT, 144

GET_TIME, 149
MAKE_BCD, 151
MAKE_NUMBER, 153
MAKE_TIME, 155
naming conventions, 13
PAUSE, 160

POWER, 164
PST_HIST, 167
SCAN_BIT, 172
SCHEDULE, 174
SCHMITT, 178
SET_BIT, 182
SET_GAIN, 184
SET_LINE, 188
START_TIME, 190
TERMINATE, 193
TEST_BIT, 196
TEST_GAIN, 198
TEST_LINE, 201
TIME_HIST, 203
WAIT_FOR_DATA, 207

Sample period
definition of, 126-127
Sampling
capabilities, 1
continuous analog, 76
Sampling rates, 83, 96, 100
Scale factors
FFT, 145-146
power spectrum, 165
SCAN_BIT routine
related to
TEST_LINE, 202
TEST_BIT, 197
SET_BIT, 183
reference for, 172
SCHEDULE routine
reference for, 174
related to
PAUSE, 161
Scheduling successive events, 177
SCHMITT routine
reference for, 178
Schmitt trigger 1
time base, 45
Schmitt triggers, 178
Sequential channels
analog, 40
Serial ASCII transfers, 110
character limit, 111
Service requests
delayed response, 31
external events, 29

INDEX

217

INDEX

218

normal response, 30
program response to, 30
time events, 29
Service subroutines, 29
definition of, 29
delayed response, 180
example, 38
SCHEDULE routine, 176
SCHMITT routine, 179
Set condition
definition of, 25
Setting line conditions, 188
SET_BIT routine
reference for, 182
related to
AOUT, 106
DIN_EVENT, 132
DIN_MASK, 134
DOUT, 137
SCAN_BIT, 173
TEST_BIT, 197
TEST_LINE, 202
SET_GAIN routine
reference for, 184
related to
AIN, 81
AIN_HIST, 89
AIN_SUM, 99
TEST_GAIN, 199
SET_LINE routine
reference for, 188
related to
DOUT, 140
SCAN_BIT, 173
SET_BIT, 183
TEST_BIT, 197
TEST_LINE, 202
Signal averaging, 93
Size
array partitions, 35
ST1
restrictions on, 84
ST1 triggering
analog sampling, 83, 86
ST2
triggering sweeps, 93

ST2 mode designator, 76, 103, 124, 137,

156, 191
Standard mode, 23-24
compared to continuous, 33
START_TIME routine
reference for, 190
related to
DIN, 128
GET_TIME, 150

MAKE_TIME, 158
Statement form
description of, 15
Stopping continuous transfers, 193
Stream
definition of, 2
Stream transfers, 115
Strings
fixed-length
input, 111-112
output, 120-121
variable-length
input, 111-112
output, 120-121
Stripchart display
AIN, 76
Strobe terminal
digital input units, 126
Structure
array
data transfer, 129
Subroutines
service, 29
Sweep
definition of, 2
System clock, 44, 174
System does not contain the module
requested, 52
System time .
fast mode restrictions on, 83, 100

T6QUIZ.BAS example program, 65
T6SPIN.BAS example program, 70
T6TRAK.BAS example program, 67
TERMINATE routine
reference for, 193
related to
AIN, 81
AOUT, 107
CONTINUE, 117
DIN, 128
DOUT, 140
WAIT_FOR_DATA, 208
Testing programs, 11
TEST_BIT routine
reference for, 196
related to
SCAN_BIT, 173
SET_BIT, 183
TEST_LINE, 202
TEST_GAIN routine
reference for, 198
related to
AIN, 81
AIN_HIST, 89

AIN_SUM, 99
SET_GAIN, 186
TEST_LINE routine
reference for, 201
related to
DIN, 128
SCAN_BIT, 173
SET_BIT, 183
TEST_BIT, 197
Time
measuring, 3
system
restrictions on, 83, 100
Time base
definition of, 43
external, 94, 103, 124, 136, 156, 191
definition of, 45
histogram, 205
internal
definition of, 44
KHZ, 191
line, 94, 156, 191
line frequency, 103, 124, 136
Time base sources
external, 44
internal, 44
TIME command
related to
SCHEDULE, 177
Time events
definition of, 174
Time for execution, 31-82
Time interval measurement, 167
Time interval string, 175
Time intervals
measuring, 149
suspending program execution, 160
Time line, 8
Time resolution, 43-44
Time strings, 161
TIMESTAMP mode designator, 124
Timestamp values, 158
Timestamping, 124, 155
array structure, 129
range of values, 157
TIME_HIST routine
reference for, 203
related to
PST_HIST, 170-171
Timing collision, 195
Too many arguments in the
statement, 52
Too many response requests pending, 53
Transfer period
definition of, 138

INDEX

Transferring control, 30
continuous mode, 34
Transfers
analog
multichannel, 40
continuous data, 33
managing, 35
multiple
restrictions on, 117
starting continuous, 209
stream, 115
Transform
forward, 145
reverse, 145
Trigger events, 40
Trigger interval, 80, 104
definition of, 97
Triggering analog output, 104
Triggering analog sampling, 79, 89, 97
Triggering digital output, 138
Triggering digital sampling, 126
Types
data, 18

Underscore character, 13

Valid values
description of, 19
Values
analog input, 78
analog output, 104
analog sampling, 83
gain, 82
limits, 100
D/A output, 108
digital output, 137
elapsed-time, 150
restrictions on, 192
histogram, 87
histogram limits
restrictions on, 89
mask words, 142-143
time histogram limits, 171
time interval
restrictions on, 176
time interval formats, 175
timestamp, 157-158
Variable name required for
argument #, 52
Variable-length strings
input, 111-112
output, 120-121
Virtual array files, 21 219

INDEX

Wait mode
restrictions on, 121
WAIT mode designator, 120
WAIT_FOR_DATA routine
reference for, 207
related to
AIN, 81
AOUT, 107
CONTINUE, 117
DIN, 128-129
DOUT, 140

220

TERMINATE, 194
WAIT_FOR_DATA management, 36
Whole numbers, 18
Word

event-enable, 131

multiple, 132

Words, 26
corresponding to digital input
units, 27

ZERO mode designator, 87, 94, 168, 204

MINC Lab Module
Programming

AA-D57SA-T
READER’S COMMENTS TSATC

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
0O Higher-level language programmer
O Occasional programmer (experienced)
O User with little programming experience
O Student programmer
O Other (please specify)
Name Date
Organization
Street Telephone
City State Zip Code

or
Country

dlilgliltla i

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	B6MLMP_00_0001
	B6MLMP_00_0002
	B6MLMP_00_0003
	B6MLMP_00_0004
	B6MLMP_00_0005
	B6MLMP_00_0006
	B6MLMP_00_0007
	B6MLMP_00_0008
	B6MLMP_00_0009
	B6MLMP_00_0010
	B6MLMP_00_0011
	B6MLMP_00_0012
	B6MLMP_01_0001
	B6MLMP_01_0002
	B6MLMP_01_0003
	B6MLMP_01_0004
	B6MLMP_01_0005
	B6MLMP_01_0006
	B6MLMP_01_0007
	B6MLMP_01_0008
	B6MLMP_01_0009
	B6MLMP_01_0010
	B6MLMP_01_0011
	B6MLMP_01_0012
	B6MLMP_02_0013
	B6MLMP_02_0014
	B6MLMP_02_0015
	B6MLMP_02_0016
	B6MLMP_02_0017
	B6MLMP_02_0018
	B6MLMP_02_0019
	B6MLMP_02_0020
	B6MLMP_02_0021
	B6MLMP_02_0022
	B6MLMP_02_0023
	B6MLMP_02_0024
	B6MLMP_02_0025
	B6MLMP_02_0026
	B6MLMP_02_0027
	B6MLMP_02_0028
	B6MLMP_02_0029
	B6MLMP_02_0030
	B6MLMP_02_0031
	B6MLMP_02_0032
	B6MLMP_02_0033
	B6MLMP_02_0034
	B6MLMP_02_0035
	B6MLMP_02_0036
	B6MLMP_02_0037
	B6MLMP_02_0038
	B6MLMP_02_0039
	B6MLMP_02_0040
	B6MLMP_02_0041
	B6MLMP_02_0042
	B6MLMP_02_0043
	B6MLMP_02_0044
	B6MLMP_02_0045
	B6MLMP_02_0046
	B6MLMP_02_0047
	B6MLMP_02_0048
	B6MLMP_02_0049
	B6MLMP_02_0050
	B6MLMP_02_0051
	B6MLMP_02_0052
	B6MLMP_02_0053
	B6MLMP_02_0054
	B6MLMP_03_0055
	B6MLMP_03_0056
	B6MLMP_03_0057
	B6MLMP_03_0058
	B6MLMP_03_0059
	B6MLMP_03_0060
	B6MLMP_03_0061
	B6MLMP_03_0062
	B6MLMP_03_0063
	B6MLMP_03_0064
	B6MLMP_03_0065
	B6MLMP_03_0066
	B6MLMP_03_0067
	B6MLMP_03_0068
	B6MLMP_03_0069
	B6MLMP_03_0070
	B6MLMP_03_0071
	B6MLMP_03_0072
	B6MLMP_03_0073
	B6MLMP_04_0073a
	B6MLMP_04_0073b
	B6MLMP_04_0074
	B6MLMP_04_0075
	B6MLMP_04_0076
	B6MLMP_04_0077
	B6MLMP_04_0078
	B6MLMP_04_0079
	B6MLMP_04_0080
	B6MLMP_04_0081
	B6MLMP_04_0082
	B6MLMP_04_0083
	B6MLMP_04_0084
	B6MLMP_04_0085
	B6MLMP_04_0086
	B6MLMP_04_0087
	B6MLMP_04_0088
	B6MLMP_04_0089
	B6MLMP_04_0090
	B6MLMP_04_0091
	B6MLMP_04_0092
	B6MLMP_04_0093
	B6MLMP_04_0094
	B6MLMP_04_0095
	B6MLMP_04_0096
	B6MLMP_04_0097
	B6MLMP_04_0098
	B6MLMP_04_0099
	B6MLMP_04_0100
	B6MLMP_04_0101
	B6MLMP_04_0102
	B6MLMP_04_0103
	B6MLMP_04_0104
	B6MLMP_04_0105
	B6MLMP_04_0106
	B6MLMP_04_0107
	B6MLMP_04_0108
	B6MLMP_04_0109
	B6MLMP_04_0110
	B6MLMP_04_0111
	B6MLMP_04_0112
	B6MLMP_04_0113
	B6MLMP_04_0114
	B6MLMP_04_0115
	B6MLMP_04_0116
	B6MLMP_04_0117
	B6MLMP_04_0118
	B6MLMP_04_0119
	B6MLMP_04_0120
	B6MLMP_04_0121
	B6MLMP_04_0122
	B6MLMP_04_0123
	B6MLMP_04_0124
	B6MLMP_04_0125
	B6MLMP_04_0126
	B6MLMP_04_0127
	B6MLMP_04_0128
	B6MLMP_04_0129
	B6MLMP_04_0130
	B6MLMP_04_0131
	B6MLMP_04_0132
	B6MLMP_04_0133
	B6MLMP_04_0134
	B6MLMP_04_0135
	B6MLMP_04_0136
	B6MLMP_04_0137
	B6MLMP_04_0138
	B6MLMP_04_0139
	B6MLMP_04_0140
	B6MLMP_04_0141
	B6MLMP_04_0142
	B6MLMP_04_0143
	B6MLMP_04_0144
	B6MLMP_04_0145
	B6MLMP_04_0146
	B6MLMP_04_0147
	B6MLMP_04_0148
	B6MLMP_04_0149
	B6MLMP_04_0150
	B6MLMP_04_0151
	B6MLMP_04_0152
	B6MLMP_04_0153
	B6MLMP_04_0154
	B6MLMP_04_0155
	B6MLMP_04_0156
	B6MLMP_04_0157
	B6MLMP_04_0158
	B6MLMP_04_0159
	B6MLMP_04_0160
	B6MLMP_04_0161
	B6MLMP_04_0162
	B6MLMP_04_0163
	B6MLMP_04_0164
	B6MLMP_04_0165
	B6MLMP_04_0166
	B6MLMP_04_0167
	B6MLMP_04_0168
	B6MLMP_04_0169
	B6MLMP_04_0170
	B6MLMP_04_0171
	B6MLMP_04_0172
	B6MLMP_04_0173
	B6MLMP_04_0174
	B6MLMP_04_0175
	B6MLMP_04_0176
	B6MLMP_04_0177
	B6MLMP_04_0178
	B6MLMP_04_0179
	B6MLMP_04_0180
	B6MLMP_04_0181
	B6MLMP_04_0182
	B6MLMP_04_0183
	B6MLMP_04_0184
	B6MLMP_04_0185
	B6MLMP_04_0186
	B6MLMP_04_0187
	B6MLMP_04_0188
	B6MLMP_04_0189
	B6MLMP_04_0190
	B6MLMP_04_0191
	B6MLMP_04_0192
	B6MLMP_04_0193
	B6MLMP_04_0194
	B6MLMP_04_0195
	B6MLMP_04_0196
	B6MLMP_04_0197
	B6MLMP_04_0198
	B6MLMP_04_0199
	B6MLMP_04_0200
	B6MLMP_04_0201
	B6MLMP_04_0202
	B6MLMP_04_0203
	B6MLMP_04_0204
	B6MLMP_04_0205
	B6MLMP_04_0206
	B6MLMP_04_0207
	B6MLMP_04_0208
	B6MLMP_04_0209
	B6MLMP_04_210
	B6MLMP_99_0211
	B6MLMP_99_0212
	B6MLMP_99_0213
	B6MLMP_99_0214
	B6MLMP_99_0215
	B6MLMP_99_0216
	B6MLMP_99_0217
	B6MLMP_99_0218
	B6MLMP_99_0219
	B6MLMP_99_0220
	B6MLMP_99_0221
	B6MLMP_99_0222

