VAX Instruction Set
REMQUE

Floating-Point Instructions

Floating-point instructions operate on the following four data types:
* F floating, standard on all VAX processors
¢ D_floating, standard on all VAX processors

e G_floating, optional on the VAX-11/780 and the VAX-11/750, and
standard on the VAX-11/730

e H_floating, optional on the VAX-11/780 and the VAX-11/750, and
standard on the VAX-11/730

To be consistent with the floating-point instruction set, which faults on
reserved operands (see Chapter 8), software-implemented floating-point
functions (for example, the absolute function) should verify that no input
operands are reserved. An easy way to do this is a floating move or test of
the input operands.

To make high-speed, floating-point operations easier, restrictions are
placed on the addressing mode combinations usable within a single
floating-point instruction. These combinations involve the logically
inconsistent simultaneous use of a value as both a floating-point operand
and an address.

If, within the same instruction, you use the contents of register Rn as both
a part of a floating-point input operand (an .rf, .rd, .rg, .rh, .mf, .md, .mg,
or .mh operand) and as an address in an addressing mode that modifies
Rn (autoincrement, autodecrement, or autoincrement deferred), the value
of the floating-point operand is UNPREDICTABLE.

Introduction

Mathematically, a floating-point number may be defined as having the
following form:

(+or—)(2* +K) * f

where K is an integer and f is a nonnegative fraction. For a nonvanishing
number, K and f are uniquely determined by imposing the following
condition:

1/2 LEQ £ LSS 1.

The fractional factor, f, of the number is then said to be binary
normalized. For the number 0, f must be assigned the value zero,
and the value of K is indeterminate.

VAX derives these floating-point data formats from this mathematical
representation for floating-point numbers. Four types of floating-point
data are provided: the two standard PDP-11 formats (F_floating and
D_floating), and two extended-range formats (G_floating and H_floating).
Single-precision, or floating, data is 32 bits long. Double-precision, or
D_floating, data is 64 bits long. Extended-range double-precision, or
G_floating, data is 64 bits long. Extended-range quadruple-precision, or
H_floating, data is 128 bits long. Use sign magnitude notation as follows:

1 Nonzero floating-point numbers:

9-101

VAX Instruction Set

REMQUE

9-102

The most significant bit of the floating-point data is the sign bit: 0 for
positive and 1 for negative.

The fractional factor f is assumed normalized, so that its most
significant bit must be 1. This 1 is the “hidden” bit: it is not stored
in the data word, but the hardware restores it before carrying out
arithmetic operations. The F_floating and D_floating data types use
23 and 55 bits, respectively, for f, which, with the hidden bit, imply
effective significance of 24 bits and 56 bits for arithmetic operations.
The extended-range (G_floating and H_floating) data types use 52 and
112 bits, respectively, for f, which, with the hidden bit, imply effective
significance of 53 and 113 bits for arithmetic operations.

In the F_floating and D_floating data types, 8 bits are reserved for
the storage of the exponent K in excess 128 notation. Thus, exponents
from —128 to +127 could be represented, in biased form, by 0 to 255.
For reasons given later, a biased exponent of zero (the true exponent
of —128) is reserved for floating-point zero. Thus, for F_floating and
D_floating data types, exponents are restricted to the range —127 to
+127 inclusive or, in excess 128 notation, 1 to 255.

In the G_floating data type, 11 bits are reserved for the storage of
the exponent in excess 1024 notation. In the H_floating data type,
15 bits are reserved for the storage of the exponent in excess 16,384
notation. A biased exponent of zero is reserved for floating-point
zero. Thus, exponents are restricted to —1023 to +1023 inclusive

(in excess notation, 1 to 2047), and -16,383 to +16,383 inclusive (in
excess notation, 1 to 32,767) for G_floating and H_floating data types,
respectively.

Floating-point 0:

Because of the hidden bit, the fractional factor is not available to
distinguish between zero and nonzero numbers whose fractional factor
is exactly 1/2. Therefore, the VAX reserves a sign-exponent field of
zero for this purpose. Any positive floating-point number with a biased
exponent of zero is treated as if it were an exact zero by the floating-
point instruction set. In particular, a floating-point operand whose bits
are all zeros is treated as zero, and this is the format generated by all
floating-point instructions for which the result is zero.

The reserved operands:

A reserved operand is defined to be any bit pattern with a sign bit
of 1 and a biased exponent of zero. On the VAX, all floating-point
instructions generate a fault if a reserved operand is encountered.
A reserved operand is never generated as a result of a floating-point
instruction.

VAX Instruction Set
REMQUE

9.2.8.2 Overview of the Instruction Set

The VAX has the standard arithmetic operations ADD, SUB, MUL, and
DIV implemented for all four floating-point data types. The results of
these operations are always rounded, as described in Section 9.2.8.3.

In addition, VAX has two composite operations, EMOD and POLY, also
implemented for all four floating-point data types. EMOD generates a
product of two operands and then separates the product into its integer
and fractional terms. POLY evaluates a polynomial, given the degree, the
argument, and a pointer to a table of coefficients. Details on the operation
of EMOD and POLY are given in their respective descriptions. All of these
instructions are subject to the rounding errors associated with floating-
point operations, as well as to exponent overflow and underflow. Accuracy
is discussed in Section 9.2.8.3. Exceptions are discussed in Appendix E.

The VAX architecture also has a complete set of instructions for conversion
from integer arithmetic types (byte, word, longword) to all floating types
(F_floating, D_floating, G_floating, H_floating), and vice versa. The VAX
architecture also has a set of instructions for conversion between all of the
floating types except between D_floating and G_floating. Many of these
instructions are exact, in the sense defined in Section 9.2.8.3. However, a
few may generate rounding error, floating overflow, or floating underflow,
or induce integer overflow. Details are given in the description of the CVT
instructions.

The following move-type instructions are always exact: MOV, NEG, CLR,
CMP, and TST. The ACB (Add Compare and Branch) instruction is subject
to rounding errors, overflow, and underflow.

All of the floating-point instructions on the VAX architecture fault if they
encounter a reserved operand. Floating-point instructions also fault on
the occurrence of floating overflow or divide by zero, and the condition
codes are UNPREDICTABLE. The FU bit in the processor status word
(PSW) is available to enable or disable an exception on underflow. If the
FU bit is clear, no exception occurs on underflow and zero is returned as
the result. If the FU bit is set, a fault occurs on underflow. Further details
on the actions taken if any of these exceptions occurs are included in the
descriptions of the instructions and discussed in Appendix E.

9.2.8.3 Accuracy

This section discusses general comments on the accuracy of the VAX
floating-point instruction set. The descriptions of the individual
instructions may include additional details on their accuracy.

An instruction is defined to be exact if its result, extended on the right by
an infinite sequence of zeros, is identical to that of an infinite precision
calculation involving the same operands. The prior accuracy of the
operands is ignored. For all arithmetic operations except DIV, a zero
operand implies that the instruction is exact. The instruction is exact
for DIV if the O operand is the dividend. If the 0 operand is the divisor,
division is undefined and the instruction faults.

9-103

VAX Instruction Set

REMQUE

9-104

For nonzero floating-point operands, the fractional factor is binary
normalized with 24 or 56 bits for single-precision (F_floating) or double-
precision (D_floating), respectively; and 53 or 113 bits for extended-range
double-precision (G_floating), and extended-range quadruple-precision
(H_floating), respectively. The ADD, SUB, MUL, and DIV instructions
require an overflow bit (on the left) and two guard bits (on the right) to
guarantee the return of a rounded result identical to the corresponding
infinite precision operation rounded to the specified word length. With
these two guard bits, a rounded result has an error bound of 1/2 LSB
(least significant bit).

Note that an arithmetic result is exact if no nonzero bits are lost in
chopping the infinite precision result to the data length to be stored.
Chopping is defined to mean that the 24 (F_floating), 56 (D_floating),

53 (G_floating), or 113 (H_floating) high-order bits of the normalized
fractional factor of a result are stored; the rest of the bits are discarded.
The first bit lost in chopping is referred to as the “rounding” bit. The value
of a rounded result is related to the chopped result as follows:

* If the rounding bit is 1, the rounded result is the chopped result
incremented by an LSB (least significant bit).

* If the rounding bit is zero, the rounded and chopped results are
identical.

All VAX processors implement rounding to produce results identical to the
results produced by the following algorithm: add a 1 to the rounding bit
and propagate the carry, if it occurs. Note that a renormalization may

be required after rounding takes place. If this occurs, the new rounding
bit will be 0; therefore, it can occur only once. The following statements
summarize the relations among chopped, rounded, and true (infinite
precision) results:

¢ If a stored result is exact:
— roundedvalue = choppedvalue = truevalue
¢ If a stored result is not exact:

— Its magnitude is always less than that of the true result for
chopping.

— Its magnitude is always less than that of the true result for
rounding if the rounding bit is zero.

— Its magnitude is greater than that of the true result for rounding
if the rounding bit is 1.

VAX Instruction Set

REMQUE
9.2.8.4 Instruction Descriptions
The following instructions are described in this section:
Number of

Description and Opcode Instructions

1. Add 2 Operand 4
ADD({F,D,G,H}2 add.rx, sum.mx

2. Add 3 Operand 4
ADD{F,D,G,H}3 add1.rx, add2.rx, sum.wx

3. Clear 3
CLR{L=F,Q=D=G,0=H} dst.wx

4, Compare 4
CMP{F,D,G,H} src1.rx, src2.rx

5. Convert 34

CVT{F,D,G,H{B,W,L,F,D,G,H} src.rx, dst.wy
CVT{B,W,L}{F,D,G,H} src.rx, dst.wy
All pairs except FF,DD,GG,HH,DG, and GD

6. Convert Rounded 4
CVTR{F,D,G,H}L src.rx, dst.wi

7. Divide 2 Operand 4
DIV{F,D,G,H}2 divr.rx, quo.mx

8. Divide 3 Operand 4
DIV{F,D,G,H}3 divr.rx, divd.rx, quo.wx

9. Extended Modulus 4

EMOD({F,D} mulr.rx, mulrx.rb, muld.rx,
int.wi, fract.wx
EMOD{G,H} mulr.rx, mulrx.rw, muid.rx,
int.wl, fract.wx

10. Move Negated 4
MNEG({F,D,G,H} src.rx, dst.wx

11. Move 4
MOV{F,D,G,H} src.rx, dst.wx

12 Multiply 2 Operand 4
MUL{F,D,G,H}2 mulr.rx, prod.mx

13. Multiply 3 Operand 4
MUL{F,D,G,H}3 mulr.rx, muld.rx, prod.wx

14. Polynomial Evaluation F_floating 1
POLYF arg.rf, degree.rw, tbladdr.ab,
{RO-3.wl}

15. Polynomial Evaluation D_floating 1
POLYD arg.rd, degree.rw, tbladdr.ab,
{RO-5.wl}

16. Polynomial Evaluation G_floating 1
POLYG arg.rg, degree.rw, tbladdr.ab,
{RO-5.wi}

9-105

VAX Instruction Set

REMQUE

9-106

Number of
Description and Opcode Instructions
17. Polynomial Evaluation H_floating 1
POLYH arg.rh, degree.rw, tbladdr.ab,
{RO-5.wl,-16(SP):-1(SP).wb}
18. Subtract 2 Operand 4
SUB{F,D,G,H}2 sub.rx, dif.mx
19. Subtract 3 Operand 4
SUB({F,D,G,H}3 sub.rx, min.rx, dif.wx
20. Test 4

TST{F.D,G,H} src.rx

The following floating-point instructions are described in Section 9.2.4.

Number of
Description and Opcode Instructions
1. Add Compare and Branch 4
ACB{F,D,G,H} limit.rx, add.rx, index.mx,
displ.ow

Compare is LE on positive add, GE on
negative add.

VAX Instruction Set

- ADD
Add
-
FORMAT 2operand: opcode add.rx, sum.mx
3operand: opcode addl.rx, add2.rx, sum.wx
condition codes
. N +— sum LSS 0;
z «— sum EQL 0;
\' — 0;
C 0
exceptions floating overflow
floating underflow
reserved operand
opcodes
40 ADDF2 Add F_floating 2 Operand
41 ADDF3 Add F_floating 3 Operand
60 ADDD2 Add D_floating 2 Operand
61 ADDD3 Add D_floating 3 Operand
40FD ADDG2 Add G_floating 2 Operand
41FD ADDG3 Add G_floating 3 Operand
- 60FD ADDH2 Add H_floating 2 Operand
61FD ADDH3 Add H_floating 3 Operand
R
DESCRIPTION In 2 operand format, the addend operand is added to the sum operand,

and the sum operand is replaced by the rounded result. In 3 operand
format, the addend 1 operand is added to the addend 2 operand, and the
sum operand is replaced by the rounded result.

Notes

1 On a reserved operand fault, the sum operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. Zero is stored as the
result of floating underflow only if FU is clear. On a floating underflow
fault, the sum operand is unaffected. If FU is clear, the sum operand
is replaced by zero, and no exception occurs.

3 On floating overflow, the instruction faults, the sum operand is
unaffected, and the condition codes are UNPREDICTABLE.

9-107

VAX Instruction Set

CLR
Clear
FORMAT opcode dst.wx
condition codes
N «—0;
Y4 — 1;
\ «— 0;
C G
exceptions None.
opcodes
D4 CLRF Clear F_floating
7C CLRD Clear D_floating,
CLRG Clear G_floating
7CFD CLRH Clear H_floating
— DR ————
DESCRIPTION The destination operand is replaced by zero.
Note

CLRx dst is equivalent to MOVx SA#0, dst, but is 1 byte shorter.

9-108

VAX Instruction Set
CMP

Compare

FORMAT opcode srcl.rx, src2.rx

condition codes
N «— srcl LSS src2;
z «— src1 EQL src2;
\Y «— 0;
] +— 0;

exceptions reserved operand

opcodes
51 CMPF Compare F_floating
71 CMPD Compare D_floating
51FD CMPG Compare G_floating
71FD CMPH Compare H_floating

DESCRIPTION The source 1 operand is compared with the source 2 operand. The only
action is to affect the condition codes.

9-109

VAX Instruction Set

CVT
CVT
Convert
B
FORMAT opcode sre.rx, dst.wy
condition codes
N «—dstLSSO;
Y4 «— dst EQL 0;
v «— {integer overflow};
C — 0;
exceptions integer overflow
floating overflow
floating underflow
reserved operand
opcodes
4C CVTBF Convert Byte to F_floating
6C CVTBD Convert Byte to D_floating
4CFD CVTBG Convert Byte to G_floating
6CFD CVTBH Convert Byte to H_floating
4D CVTWF Convert Word to F_floating
6D CVTWD Convert Word to D_floating
4DFD CVTWG Convert Word to G_floating
6DFD CVTWH Convert Word to H_floating
4E CVTLF Convert Long to F_floating
6E CVTLD Convert Long to D_floating
4EFD CVTLG Convert Long to G_fioating
6EFD CVTLH Convert Long to H_floating
48 CVTFB Convert F_floating to Byte
68 CVvTDB Convert D_floating to Byte
48FD CVTGB Convert G_floating to Byte
68FD CVTHB Convert H_{loating to Byte
49 CVTFW Convert F_floating to Word
69 CVTDW Convert D_floating to Word
49FD CVTGW Convert G_floating to Word
69FD CVTHW Convert H_floating to Word
4A CVTFL Convert F_floating to Long

9-110

VAX Instruction Set

CVT

4B CVTRFL Convert Rounded F_floating to Long
6A CVvTDL Convert D_floating to Long
6B CVTRDL Convert Rounded D_floating to Long
4AFD CVTGL Convert G_floating to Long
4BFD CVTRGL Convert Rounded G_floating to Long
6AFD CVTHL Convert H_floating to Long
6BFD CVTRHL Convert Rounded H_floating to Long
56 CVTFD Convert F_floating to D_floating
99FD CVTFG Convert F_floating to G_floating
98FD CVTFH Convert F_floating to H_floating
76 CVTDF Convert D_floating to F_floating
32FD CVTDH Convert D_floating to H_{floating
33FD CVTGF Convert G_floating to F_floating
56FD CVTGH Convert G_floating to H_floating
F6FD CVTHF Convert H_floating to F_floating
F7FD CVTHD Convert H_floating to D_floating
76FD CVTHG Convert H_{loating to G_floating

RN]

DESCRIPTION

The source operand is converted to the data type of the destination
operand, and the destination operand is replaced by the result. The

form of the conversion is as follows:

Form Instructions

Exact CVTBF, CVTBD, CVTBG, CVTBH, CVTWF, CVTWD, CVTWG,
CVTWH, CVTLD, CVTLG, CVTLH, CVTFD, CVTFG, CVTFH, CVTDH,
CVTGH

Truncated CVTFB, CVTDB, CVTGB, CVTHB, CVTFW, CVTDW, CVTGW,
CVTHW, CVTFL, CVTDL, CVTGL, CVTHL

Rounded CVTLF, CVTRFL, CVTRDL, CVTRGL, CVTRHL, CVTDF, CVTGF,
CVTHF, CVTHD, CVTHG

Notes

1 Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can result in a
floating overflow fault; the destination operand is unaffected, and the
condition codes are UNPREDICTABLE.

2 Only converts with a floating-point source operand can result in a
reserved operand fault. On a reserved operand fault, the destination
operand is unaffected, and the condition codes are UNPREDICTABLE.

3 Only converts with an integer destination operand can result in integer
overflow. On integer overflow, the destination operand is replaced by
the low-order bits of the true result.

9-111

VAX Instruction Set
CVT

4 Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating
underflow. If FU is set, a fault occurs. On a floating underflow fault,
the destination operand is unaffected. If FU is clear, the destination
operand is replaced by zero, and no exception occurs.

9-112

VAX Instruction Set
DIV

DIV

Divide
FORMAT 2operand: opcode divr.rx, quo.mx
3operand: opcode divr.rx, divd.rx, quo.wx
condition codes
N +«—— quo LSS 0;
Y4 +«— quo EQL 0;
\ «— 0;
C «— 0;
exceptions floating overflow
floating underflow
divide by zero
reserved operand
opcodes
46 DIVF2 Divide F_floating 2 Operand
47 DIVF3 Divide F_floating 3 Operand
66 DIVD2 Divide D_floating 2 Operand
67 DIVD3 Divide D_floating 3 Operand
46FD DIVG2 Divide G_floating 2 Operand
47FD DIVG3 Divide G_floating 3 Operand
66FD DIVH2 Divide H_floating 2 Operand
67FD DIVH3 Divide H_floating 3 Operand
DESCRIPTION In 2 operand format, the quotient operand is divided by the divisor

operand and the quotient operand is replaced by the rounded result. In 3
operand format, the dividend operand is divided by the divisor operand,
and the quotient operand is replaced by the rounded result.

Notes

1 On a reserved operand fault, the quotient operand is unaffected, and
the condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. On a floating
underflow fault, the quotient operand is unaffected. If FU is clear, the
quotient operand is replaced by zero, and no exception occurs.

9-113

VAX Instruction Set
DIV

3 On floating overflow, the instruction faults, the quotient operand is
unaffected, and the condition codes are UNPREDICTABLE.

4 On divide by zero, the quotient operand, and condition codes are
affected as in note 3.

9-114

VAX Instruction Set
EMOD

EMOD

Extended Multiply and Integerize

FORMAT

condition codes

EMODF and EMODD:
opcode mulr.rx, mulrx.rb, muld.rx, int.wi, fract.wx
EMODG and EMODH:
opcode mulr.rx, mulrx.rw, muld.rx, int.wi, fract.wx

N «— fract LSS 0;
Z +— fract EQL 0;
Vv +«— {integer overflow};
C — 0;
exceptions integer overflow
floating underflow
reserved operand
opcodes
54 EMODF Extended Muitiply and Integerize F_floating
74 EMODD Extended Muitiply and Integerize D_floating
54FD EMODG Extended Multiply and Integerize G_floating
74FD EMODH Extended Muitiply and Integerize H_floating
L
DESCRIPTION The multiplier extension operand is concatenated with the multiplier

operand to gain 8 (EMODD and EMODF), 11 (EMODG), or 15 (EMODH)
additional low-order fraction bits. The low-order 5 or 1 bits of the 16-bit
multiplier extension operand are ignored by the EMODG and EMODH
instructions, respectively. The multiplicand operand is multiplied by the
extended multiplier operand. The multiplication result is equivalent to
the exact product truncated (before normalization) to a fraction field of
32 bits in F_floating, 64 bits in D_floating and G_floating, and 128 bits in
H_floating. The result is regarded as the sum of an integer and fraction of
the same sign. The integer operand is replaced by the integer part of the
result, and the fraction operand is replaced by the rounded fractional part
of the result.

9-115

VAX Instruction Set

EMOD

9-116

Notes

1

On a reserved operand fault, the integer operand, and the fraction
operand are unaffected. The condition codes are UNPREDICTABLE.

On floating underflow, if FU is set, a fault occurs. On a floating
underflow fault, the integer and fraction parts are unaffected. If FU
is clear, the integer and fraction parts are replaced by zero, and no
exception occurs.

On integer overflow, the integer operand is replaced by the low-order
bits of the true result.

Floating overflow is indicated by integer overflow; however, integer
overflow is possible in the absence of floating overflow.

The signs of the integer and fraction are the same unless integer
overflow results.

Because the fraction part is rounded after separation of the integer
part, it is possible that the value of the fraction operand is 1.

VAX Instruction Set
MNEG

Move Negated

FORMAT opcode src.rx, dst.wx

condition codes
N «—— dst LSS 0;
Z +«— dst EQL 0;
\" — 0;
C «— 0;

exceptions reserved operand

opcodes
52 MNEGF Move Negated F_floating
72 MNEGD Move Negated D_floating
52FD MNEGG Move Negated G_floating
72FD MNEGH Move Negated H_floating

NN

DESCRIPTION The destination operand is replaced by the negative of the source operand.

9-117

VAX Instruction Set

MOV
Move
FORMAT opcode sre.rx, dst.wx
condition codes
N «— dstLSSO;
Y4 «—— dst EQL 0;
\' — 0;
C G
exceptions reserved operand
opcodes
50 MOVF Move F_floating
70 MOVD Move D_floating
50FD MOVG Move G_floating
70FD MOVH Move H_floating
L . I
DESCRIPTION The destination operand is replaced by the source operand.
Note

On a reserved operand fault, the destination operand is unaffected, and
the condition codes are UNPREDICTABLE.

9-118

VAX Instruction Set
MUL

MUL

Multiply

FORMAT

condition codes

2operand: opcode mulr.rx, prod.mx
3operand: opcode mulr.rx, muld.rx, prod.wx

N +«—— prod LSS 0;
Z +«—— prod EQL O;
\Y — 0;
C —0
exceptions floating overflow
floating underflow
reserved operand
opcodes
44 MULF2 Multiply F_floating 2 Operand
45 MULF3 Multiply F_floating 3 Operand
64 MULD2 Muitiply D_floating 2 Operand
65 MULD3 Multiply D_floating 3 Operand
44FD MULG2 Multiply G_floating 2 Operand
45FD MULG3 Multiply G_floating 3 Operand
64FD MULH2 Multiply H_floating 2 Operand
65FD MULH3 Muitiply H_floating 3 Operand
DESCRIPTION In 2 operand format, the product operand is multiplied by the multiplier

operand, and the product operand is replaced by the rounded result. In 3
operand format, the multiplicand operand is multiplied by the multiplier
operand, and the product operand is replaced by the rounded result.

Notes

1 On a reserved operand fault, the product operand is unaffected, and
the condition codes are UNPREDICTABLE.

2 On floating underfiow, if FU is set, a fault occurs. On a floating
underflow fault, the product operand is unaffected. If FU is clear, the
product operand is replaced by zero, and no exception occurs.

3 On floating overflow, the instruction faults, the product operand is
unaffected, and the condition codes are UNPREDICTABLE.

9-119

VAX Instruction Set

POLY

POLY

Polynomial Evaluation

I .
FORMAT opcode arg.rx, degree.rw, tbladdr.ab
condition codes
N +«— RO LSS 0;
Z +«— RO EQL 0;
Vv «— 0;
C «— 0;
exceptions floating overflow
floating underflow
reserved operand
opcodes
55 POLYF Polynomial Evaluation F_floating
75 POLYD Polynomial Evaluation D_floating
55FD POLYG Polynomiai Evaluation G_floating
75FD POLYH Polynomial Evaluation H_floating
DESCRIPTION The table address operand points to a table of polynomial coefficients. The

9-120

coefficient of the highest-order term of the polynomial is pointed to by the
table address operand. The table is specified with lower-order coefficients
stored at increasing addresses. The data type of the coefficients is the
same as the data type of the argument operand. The evaluation is carried
out by Horner’s method, and the contents of RO (R1’ RO for POLYD and
POLYG, R3'R2'R1'R0 for POLYH) are replaced by the result. The result
computed is:

if d = degree
and x = arg

result = C[0]+x**0 + x*(C[1l] + x*(C[2] + ... x*C[d]))

The unsigned word degree operand specifies the highest-numbered
coefficient to participate in the evaluation. POLYH requires four
longwords on the stack to store arg in case the instruction is interrupted.

Notes

1 After execution:

POLYF:
RO = result
R1=0
R2=0

o

2

3

VAX Instruction Set
POLY

R3 = table address + degree*4 + 4
POLYD and POLYG:

RO = high-order part of result

R1 = low-order part of result

R2=0

R3 = table address + degree*8 + 8
R4=0

R5=0

POLYH:

RO = highest-order part of result

R1 = second-highest-order part of result
R2 = second-lowest-order part of result
R3 = lowest-order part of result

R4=0

R5 = table address + degree*16 + 16

On a floating fault:

If PSL<FPD> = 0, the instruction faults, and all relevant side
effects are restored to their original state.

If PSL<FPD> = 1, the instruction is suspended, and the state is
saved in the general registers as follows:

POLYF:

RO = tmp3 ! Partial result after iteration
! prior to the one causing the
! overflow/underflow

Rl = arg

R2<7:0> = tmpl ! Number of iterations remaining

R2<31:8> = implementation specific

R3 = tmp2 ! Points to table entry causing

! exception

POLYD and POLYG:
R1’RO = tmp3 ! Partial result after iteration
! prior to the one causing the
]

overflow/underflow

R2<7:0> = tmpl ! Number of iterations remaining

R2<31:8> = implementation specific

R3 = tmp2 ! Points to table entry causing
! exception

R5’R4 = arg

POLYH:

R3’R2’'R1'R0O = tmp3 ! Partial result after iteration
! prior to the one causing the
! overflow/underflow

R4<7:0> = tmpl ! Number of iterations remaining

R4<31:8> = implementation specific

R5 = tmp2 ! Points to table entry causing

! exception
arg is saved on the stack in use during the faulting instruction.

Implementation-specific information is saved to allow the
instruction to continue after possible scaling of the coefficients
and partial result by the fault handler.

If the unsigned word degree operand is zero and the argument is not a
reserved operand, the result is C[0].

9-121

VAX Instruction Set

POLY

If the unsigned word degree operand is greater than 31, a reserved
operand fault occurs.

On a reserved operand fault:

* If PSL<FPD> = 0, the reserved operand is either the degree
operand (greater than 31), or the argument operand, or some
coefficient.

* If PSL<FPD> = 1, the reserved operand is a coefficient, and R3
(except for POLYH) or R5 (for POLYH) is pointing at the value
that caused the exception.

* The state of the saved condition codes and the other registers is
UNPREDICTABLE. If the reserved operand is changed and the
contents of the condition codes and all registers are preserved, the
fault can be continued.

On floating underflow after the rounding operation at any iteration
of the computation loop, a fault occurs if FU is set. If FU is clear,
the temporary result (tmp8) is replaced by zero and the operation
continues. In this case, the final result may be nonzero if underflow
occurred before the last iteration.

On floating overflow after the rounding operation at any iteration of
the computation loop, the instruction terminates with a fault.

If the argument is zero and one of the coefficients in the table is
the reserved operand, whether a reserved operand fault occurs is
UNPREDICTABLE.

For POLYH, some implementations may not save arg on the stack
until after an interrupt or fault occurs. However, arg will always be
on the stack if an interrupt or floating fault occurs after FPD is set.
If the four longwords on the stack overlap any of the source operands,
the results are UNPREDICTABLE.

“ IR
EXAMPLE

; To compute P (x)
; where CO = 1.0,

PTABLE:

9-122

POLYF

.FLOAT
.FLOAT
.FLOAT

CO + Cl*x + C2*x**2

Cl =

.5, and C2 = .25

X, #2,PTABLE

P OO
o Ul N

; C2
; C1
; CO

VAX Instruction Set
sSuB

SUB

Subtract

FORMAT

condition codes

exceptions

opcodes

2operand: opcode sub.rx, dif. mx
3operand: opcode sub.rx, min.rx, dif. wx

N «— dif LSS 0;
z «— dif EQL 0;
\'} — 0
C —0

floating overflow

floating underflow

reserved operand
42 SUBF2 Subtract F_floating 2 Operand
43 SUBF3 Subtract F_floating 3 Operand
62 SuBDb2 Subtract D_floating 2 Operand
63 SuBD3 Subtract D_floating 3 Operand
42FD SUBG2 Subtract G_floating 2 Operand
43FD SUBG3 Subtract G_floating 3 Operand
62FD SUBH2 Subtract H_floating 2 Operand
63FD SUBH3 Subtract H_floating 3 Operand

DESCRIPTION

_ _
In 2 operand format, the subtrahend operand is subtracted from the
difference operand, and the difference is replaced by the rounded result.
In 3 operand format, the subtrahend operand is subtracted from the
minuend operand, and the difference operand is replaced by the rounded
result.

9-123

VAX Instruction Set

sSuB

9-124

Notes

1 On a reserved operand fault, the difference operand is unaffected, and
the condition codes are UNPREDICTABLE.

2 On floating underflow, if FU is set, a fault occurs. Zero is stored as the
result of floating underflow only if FU is clear. On a floating underflow
fault, the difference operand is unaffected. If FU is clear, the difference
operand is replaced by zero, and no exception occurs.

3 On floating overflow, the instruction faults, the difference operand is

unaffected, and the condition codes are UNPREDICTABLE.

VAX Instruction Set
TST

TST

Test

FORMAT

condition codes

opcode src.rx

N «—srcLSS0;
Z «—srcEQLO;
V. 0
C — 0;
exceptions reserved operand
opcodes
53 TSTF Test F_floating
73 TSTD Test D_floating
53FD TSTG Test G_floating
73FD TSTH Test H_floating
DESCRIPTION The condition codes are affected according to the value of the source

operand.

Notes

1 TSTx sre is equivalent to CMPx sre, #0, but is 5 (F_floating) or 9
(D_floating or G_floating) or 17 (H_floating) bytes shorter.

2 On a reserved operand fault, the condition codes are
UNPREDICTABLE.

9-125

VAX Instruction Set
TST

9.29 Character String Instructions
A character string is specified by the following two operands:

1 An unsigned word operand that specifies the length of the character
string in bytes.

2 The address of the lowest-addressed byte of the character string. This
is specified by a byte operand of address access type.

Each of the character string instructions uses general registers RO to R1,
RO to R3, or RO to R5 to contain a control block that maintains updated
addresses and state during the execution of the instruction. At completion,
these registers are available to software to use as string specification
operands for a subsequent instruction on a contiguous character string.
During the execution of the instructions, pending interrupt conditions

are tested. If any conditions are found, the control block is updated, a
first-part-done bit is set in the processor status longword (PSL), and the
instruction is interrupted (refer to Appendix E). After the interruption, the
instruction resumes transparently. The format of the control block is as
follows:

LENGTH 1 ‘RO
ADDRESS 1 :R1
LENGTH 2 ‘R2

ADDRESS 2 :R3
LENGTH 3 ‘R4

ADDRESS 3 :R5

ZK-1175A-GE

The fields LENGTH 1, LENGTH 2 (if required), and LENGTH 3 (if
required) contain the number of bytes remaining to be processed in
the first, second, and third string operands, respectively. The fields
ADDRESS 1, ADDRESS 2 (if required), and ADDRESS 3 (if required)
contain the address of the next byte to be processed in the first, second,
and third string operands, respectively.

Memory access faults do not occur when a zero-length string is specified
because no memory reference occurs.

The following instructions are described in this section.

Number of
Description and Opcode Instructions
1. Compare Characters 3 Operand 1
CMPC3 len.rw, src1addr.ab, src2addr.ab,
{RO-3.wl}

9-126

VAX Instruction Set
TST

Number of
Description and Opcode Instructions

10.

11.

Compare Characters 5 Operand 1
CMPCS5 srctlen.rw, srciaddr.ab, fill.rb,
src2len.rw, src2addr.ab, {R0-3.wl}

Locate Character 1
LOCC char.rb, len.rw, addr.ab, {RO-1.wl}

Match Characters 1
MATCHC len1.rw, addri.ab, len2.rw, addr2.ab,
{RO-3.wl}

Move Character 3 Operand 1
MOVCS3 len.rw, srcaddr.ab, dstaddr.ab,
{RO-5.wl}

Move Character 5 Operand 1
MOVCS srclen.rw, srcaddr.ab, fill.rb,
dstlen.rw, dstaddr.ab, {R0-5.wl}

Move Translated Characters 1
MOVTC srclen.rw, srcaddr.ab, fill.rb,
tbladdr.ab, dstlen.rw, dstaddr.ab, {R0-5.wl}

Move Translated Until Character 1
MOVTUC srclen.rw, srcaddr.ab, esc.rb,
tbladdr.ab, dstlen.rw, dstaddr.ab, {R0-5.wl}

Scan Characters 1
SCANC len.rw, addr.ab, tbladdr.ab, mask.rb,

{RO-3.wl}

Skip Character 1
SKPC char.rb, len.rw, addr.ab, {RO-1.wl}

Span Characters 1

SPANC len.rw, addr.ab, tbladdr.ab,
mask.rb, {R0-3.wl}

9-127

VAX Instruction Set

CMPC

CMPC

Compare Characters

FORMAT

condition codes

3operand: opcode len.rw, src1addr.ab,
src2addr.ab

Soperand: opcode srcilen.rw, src1addr.ab, fill. rb,
src2len.rw, src2addr.ab

N +— {first byte} LSS {second byte};

Z +— {first byte} EQL {second byte};

\" +— 0;

C +— {first byte} LSSU {second byte};
exceptions None.
opcodes

29 CMPC3 Compare Characters 3 Operand

2D CMPC5 Compare Characters 5 Operand
DESCRIPTION In 3 operand format, the bytes of stringl specified by the length and

9-128

address1 operands are compared with the bytes of string2 specified by the
length and address2 operands. Comparison proceeds until inequality is
detected or all the bytes of the strings have been examined. Condition
codes are affected by the result of the last byte comparison. In 5 operand
format, the bytes of the stringl operand specified by the lengthl and
addressl operands are compared with the bytes of the string2 operand
specified by the length2 and address2 operands. If one string is longer
than the other, the shorter string is conceptually extended to the length
of the longer by appending (at higher addresses) bytes equal to the fill
operand. Comparison proceeds until inequality is detected or all the bytes
of the strings have been examined. Condition codes are affected by the
result of the last byte comparison. For either CMPC3 or CMPC5, two
zero-length strings compare equal (that is, Z is set and N, V, and C are
cleared).

Notes
1 After execution of CMPC3:
RO = Number of bytes remaining in string1 (including byte that terminated

comparison); RO is zero only if strings are equal

2

3

VAX Instruction Set

CMPC
R1 = Address of the byte in string1 that terminated comparison; if strings are
equal, address of 1 byte beyond string1
R2= RO
R3 = Address of the byte in string2 that terminated comparison; if strings are
equal, address of 1 byte beyond string2
After execution of CMPC5:
RO = Number of bytes remaining in string1 (including byte that terminated

comparison); RO is zero only if string1 and string2 are of equal length and
equal or string1 was exhausted before comparison terminated

R1 = Address of the byte in string1 that terminated comparison; if comparison
did not terminate before string1 exhausted, address of 1 byte beyond
string1

R2 = Number of bytes remaining in string2 (including byte that terminated

comparison); R2 is zero only if string2 and string1 are of equal length or
string2 was exhausted before comparison terminated

R3

Address of the byte in string2 that terminated comparison; if comparison
did not terminate before string2 was exhausted, address of 1 byte beyond
string2

If both strings have zero length, condition code Z is set and N, V, and
C are cleared just as in the case of two equal strings.

9-129

VAX Instruction Set

LOCC

LOCC

Locate Character

FORMAT

condition codes

Y D —

opcode char.rb, len.rw, addr.ab

N 0
z +«— RO EQL 0;
\ «— 0;
C —0
exceptions None.
opcodes
3A LOCC Locate Character
. "
DESCRIPTION The character operand is compared with the bytes of the string specified

9-130

by the length and address operands. Comparison continues until equality
is detected or all bytes of the string have been compared. If equality is
detected, the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes
1 After execution:

RO = Number of bytes remaining in the string (including located one) if byte
located; otherwise, zero

R1 = Address of the byte located if byte located; otherwise, address of 1 byte
beyond the string

2 If the string has zero length, condition code Z is set just as though
each byte of the entire string were unequal to character.

VAX Instruction Set
MATCHC

MATCHC

Match Characters

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

opcode objlen.rw, objaddr.ab, srclen.rw, srcaddr.ab

N «— 0;
4 «— RO EQL 0; Imatch found
V — 0;
C — 0;
None.
39 MATCHC Match Characters

A L M

The source string specified by the source length and source address
operands is searched for a substring that matches the object string
specified by the object length and object address operands. If the substring
is found, the condition code Z-bit is set; otherwise, it is cleared.

Notes

1 After execution:

RO = If a match occurred, zero; otherwise, the number of bytes in the object
string

Ri = If a match occurred, the address of 1 byte beyond the object string; that
is, objaddr + objlen; otherwise, the address of the object string

R2 = If a match occurred, the number of bytes remaining in the source string;
otherwise, zero

R3 = If a match occurred, the address of 1 byte beyond the last byte matched;

otherwise, the address of 1 byte beyond the source string; that is,
srcaddr + srclen

For zero-length source and object strings, R3 and R1 contain the source
and object addresses, respectively.

2 If both strings have zero length, or if the object string has zero length,
condition code Z is set, and registers RO to R3 are left just as though
the substring were found.

3 If the source string has zero length and the object string has nonzero
length, condition code Z is cleared, and registers RO to R3 are left just
as though the substring were not found.

9-131

VAX Instruction Set

MOvC

MOVC

Move Character

FORMAT

condition codes

exceptions

opcodes

IR R
3operand: opcode len.rw, srcaddr.ab, dstaddr.ab
Soperand: opcode srclen.rw, srcaddr.ab, fill.rb,

dstlen.rw, dstaddr.ab

N« 0;!MOVC3
V4 — 1;
\) — 0;
C — 0;
N «— srclen LSS dstlen; IMOVC5
Z «— srclen EQL dstlen;
\' «— 0;
C +— srclen LSSU dstlen;
None.
28 MOVC3 Move Character 3 Operand
2C MOVC5 Move Character 5 Operand

DESCRIPTION

9-132

_
In 3 operand format, the destination string specified by the length and
destination address operands is replaced by the source string specified
by the length and source address operands. In 5 operand format, the
destination string specified by the destination length and destination
address operands is replaced by the source string specified by the source
length and source address operands. If the destination string is longer
than the source string, the highest-addressed bytes of the destination are
replaced by the fill operand. If the destination string is shorter than the
source string, the highest-addressed bytes of the source string are not
moved. The operation of the instruction is such that overlap of the source
and destination strings does not affect the result.

VAX Instruction Set

MOVC
Notes
1 After execution of MOVC3:
RO= O
R1 = Address of 1 byte beyond the source string
R2= 0
R3 = Address of 1 byte beyond the destination string
Ré= O
R5= 0
2 After execution of MOVC5:
RO = Number of unmoved bytes remaining in source string. RO is nonzero only
if source string is longer than destination string
R1 = Address of 1 byte beyond last byte in source that was moved
R2= 0
R3 = Address of 1 byte beyond the destination string
R4= 0
R65= O

MOVCS is the preferred way to copy one block of memory to another.

MOVC5 with a zero source length operand is the preferred way to fill
a block of memory with the fill character.

9-133

VAX Instruction Set

MOVTC

MOVTC

Move Translated Characters

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

opcode srclen.rw, srcadar.ab, fill.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

«— srclen LSS dstlen;
+— srclen EQL dstlen;

— 0

O< N Z

+«— srclen LSSU dstlen;

None.

2E MOVTC Move Translated Characters

]
The source string specified by the source length and source address
operands is translated. It replaces the destination string specified by
the destination length and destination address operands. Translation is
accomplished by using each byte of the source string as an index into
a 256-byte table whose first entry (entry number 0) address is specified
by the table address operand. The byte selected replaces the byte of the
destination string. If the destination string is longer than the source
string, the highest-addressed bytes of the destination string are replaced
by the fill operand. If the destination string is shorter than the source
string, the highest-addressed bytes of the source string are not translated
and moved. The operation of the instruction is such that overlap of the
source and destination strings does not affect the result.

If the destination string overlaps the translation table, the destination
string is UNPREDICTABLE.

Notes

1 After execution:

RO = Number of untranslated bytes remaining in source string; RO is nonzero
only if source string is longer than destination string

R1 = Address of 1 byte beyond the last byte in source string that was
translated

R2= 0

R3 = Address of the translation table

R4 =
R5 =

VAX Instruction Set
MOVTC

0
Address of 1 byte beyond the destination string

9-135

VAX Instruction Set

MOVTUC

MOVTUC

Move Translated Until Character

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-136

opcode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab,
dstlen.rw, dstaddr.ab

+«—— srclen LSS dstlen;

«— srclen EQL dstlen;

+— {terminated by escape};
«— srclen LSSU dstlen;

O< N Z

None.

2F MOVTUC Move Translated Until Character

The source string specified by the source length and source address
operands is translated. It replaces the destination string specified by

the destination length and destination address operands. Translation is
accomplished by using each byte of the source string as an index into

a 256-byte table whose first entry address (entry number 0) is specified
by the table address operand. The byte selected replaces the byte of

the destination string. Translation continues until a translated byte is
equal to the escape byte, or until the source string or destination string is
exhausted. If translation is terminated because of escape, the condition
code V-bit is set; otherwise, it is cleared.

If the destination string overlaps the table, the destination string and
registers RO to R5 are UNPREDICTABLE. If the source and destination
strings overlap and their addresses are not identical, the destination
string and registers RO to R5 are UNPREDICTABLE. If the source and
destination string addresses are identical, the translation is performed
correctly.

Notes
1 After execution:

RO = Number of bytes remaining in source string (including the byte that
caused the escape); RO is zero only if the entire source string was
translated and moved without escape

R1

R2
R3 =
R4 =
R5 =

VAX Instruction Set
MOVTUC

Address of the byte that resulted in destination string exhaustion or
escape; or if no exhaustion or escape, address of 1 byte beyond the
source string

0
Address of the table
Number of bytes remaining in the destination string

Address of the byte in the destination string that would have received
the translated byte that caused the escape or would have received

a translated byte if the source string were not exhausted; or if no
exhaustion or escape, the address of 1 byte beyond the destination
string

9-137

VAX Instruction Set
SCANC

SCANC

Scan Characters

R e}

FORMAT opcode len.rw, addr.ab, tbladdr.ab, mask.rb
condition codes

N «— 0;

Z — ROEQLO;

\Y «— 0;

C «— 0;
exceptions None.
opcodes

2A SCANC Scan Characters

“]
DESCRIPTION The assembler successively uses the bytes of the string specified by the
length and address operands to index into a 256-byte table whose first
entry (entry number 0) address is specified by the table address operand.
The logical AND is performed on the byte selected from the table and

the mask operand. The operation continues until the result of the AND

is nonzero, or until all the bytes of the string have been exhausted. If

a nonzero AND result is detected, the condition code Z-bit is cleared;
otherwise, the Z-bit is set.

Notes
1 After execution:

RO = Number of bytes remaining in the string (including the byte that produced
the nonzero AND result); RO is zero only if there was no nonzero AND

result

R1 = Address of the byte that produced the nonzero AND result; if no nonzero
result, address of 1 byte beyond the string

R2= 0

R3 = Address of the table

2 If the string has zero length, condition code Z is set Just as though the
entire string were scanned.

9-138

VAX Instruction Set
SKPC

SKPC

Skip Character
FORMAT opcode char.rb, len.rw, addr.ab
condition codes
N — 0;
Z «— RO EQL 0;
\ «— 0;
C 0
exceptions None.
opcodes
3B SKPC Skip Character
A
DESCRIPTION The character operand is compared with the bytes of the string specified by

the length and address operands. Comparison continues until inequality
is detected or all bytes of the string have been compared. If inequality is
detected, the condition code Z-bit is cleared; otherwise, the Z-bit is set.
Notes

1 After execution:

RO= Number of bytes remaining in the string (including the unequal one) if
unequal byte located; otherwise, zero

R1 = Address of the byte located if byte located; otherwise, address of 1 byte
beyond the string

2 If the string has zero length, condition code Z is set just as though
each byte of the entire string were equal to the character.

9-139

VAX Instruction Set

SPANC

SPANC

Span Characters

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-140

—

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

N — 0;
Z +«—— RO EQL 0;
\Y — 0;
C — 0;
None.
2B SPANC Span Characters

The assembler successively uses the bytes of the string specified by the
length and address operands to index into a 256-byte table whose first
entry (entry number 0) address is specified by the table address operand.
The logical AND is performed on the byte selected from the table and the
mask operand. The operation continues until the result of the AND is
zero, or until all the bytes of the string have been exhausted. If a zero
AND result is detected, the condition code Z-bit is cleared; otherwise, the
Z-bit is set.

Notes
1 After execution:
RO = Number of bytes remaining in the string (including the byte that produced
the zero AND result); RO is zero only if there was no zero AND result

Address of the byte that produced a zero AND result; if no nonzero result,
address of 1 byte beyond the string

R2= 0
R3 = Address of the table

2 If the string has zero length, the condition code Z-bit is set just as
though the entire string were spanned.

R1

VAX Instruction Set
SPANC

9.2.10 Cyclic Redundancy Check Instruction

This instruction implements the calculation of a cyclic redundancy check
(CRC) string for any CRC polynomial up to 32 bits. Cyclic redundancy
checking is an error detection method involving a division of the data
stream by a CRC polynomial. The data stream is represented as a
standard VAX string in memory. Error detection is accomplished by
computing the CRC at the source and again at the destination, comparing
the CRC computed at each end. The choice of the polynomial minimizes
the number of undetected block errors of specific lengths. The choice of a
CRC polynomial is not given here.

The operands of the CRC instruction are a string descriptor, a 16-longword
table, and an initial CRC. The string descriptor is a standard VAX operand
pair of the length of the string in bytes (up to 65,535) and the starting
address of the string. The contents of the table are a function of the

CRC polynomial to be used. It can be calculated from the polynomial

by the algorithm in the notes. Several common CRC polynomials are

also included in the notes. The system uses the initial CRC to start the
polynomial correctly. Typically, the CRC has the value zero or —1. If the
data stream is represented by a sequence of noncontiguous strings, the
value would vary from 0 to -1.

The CRC instruction scans the string and includes each byte of the data
stream in the CRC being calculated. The instruction includes the byte of
the data stream by performing a logical exclusive OR (XOR) with it and
the rightmost 8 bits of the CRC. Then the instruction shifts the CRC right
1 bit and inserts a zero on the left. The instruction uses the rightmost bit
of the CRC (lost by the shift) to control the logical XOR operation of the
CRC polynomial with the resultant CRC. If the bit is a 1, the instruction
performs a logical XOR with the polynomial and the CRC. The instruction
again shifts the CRC to the right and performs a conditional logical XOR
on the polynomial with the result, for a total of eight times. The actual
algorithm used can shift by 1, 2, or 4 bits at a time using the appropriate
entries in a specially constructed table. The instruction produces a 32-bit
CRC. For shorter polynomials, the result must be extracted from the 32-bit
field. The data stream must be either a multiple of 8 bits in length or
right-adjusted in the string with leading zero bits.

9-141

VAX Instruction Set

CRC

CRC

Calculate Cyclic Redundancy Check

FORMAT opcode tbl.ab, inicre.rl, strlen.rw, stream.ab
condition codes

N «— ROLSSO;

Y4 «— RO EQL 0;

\ «— 0;

C 0
exceptions None.
opcodes

0B CRC Calculate Cyclic Redundancy Check

R

DESCRIPTION The CRC of the data stream described by the string descriptor is

9-142

calculated. The initial CRC is given by inicre; it is normally zero or —

1, unless the CRC is calculated in several steps. The result is left in RO. If
the polynomial is less than order 32, the result must be extracted from the
low-order bits of R0. The CRC polynomial is expressed by the contents of
the 16-longword table. See the notes for the calculation of the table.

Notes

1

After execution:

RO = Result of CRC

Ri= 0

R2= 0

R3 = Address 1 byte beyond the end of the source string

If the data stream is not a multiple of 8 bits, it must be right-adjusted
with leading zero fill.

If the CRC polynomial is less than order 32, the result must be
extracted from the low-order bits of RO.

Use the following algorithm to calculate the CRC table given a
polynomial expressed:

polyn<n> <- {coefficient of x**{order -1-n}}

The following routine is system library routine LIB§CRC_
TABLE (poly.rl, table.ab). The table is the location of the 64-byte
(16-longword) table into which the result will be written.

VAX Instruction Set
— CRC

SUBROUTINE LIBSCRC_TABLE (POLY, TABLE)
INTEGER*4 POLY, TABLE(0:15), TMP, X
DO 190 INDEX = 0, 15

TMP = INDEX
DO 150 I =1, 4
X = TMP .AND. 1
TMP = ISHFT (TMP,-1) !logical shift right one bit
IF (X .EQ. 1) TMP = TMP .XOR. POLY
150 CONTINUE
TABLE (INDEX) = TMP

190 CONTINUE

RETURN
END
T 3 . .
5 The following are descriptions of some commonly used CRC

polynomials:

CRC-16 (used in DDCMP and Bisync)
polynomial: x~16 + x°15 + x°2 + 1
poly: 120001 (octal)
initialize: 0
result: R0<15:0>

CCITT (used in ADCCP, HDLC, SDLC)

a polynomial: x*16 + x*12 + x5 + 1

poly: 102010 (octal)
initialize: -1<15:0>
result: one’s complement of R0<15:0>

AUTODIN-II
polynomial: XN32+x7M26+X723+x722+x716+x712

+xM11+xM104+x78+x N T+X N 5+x M 4+x " 2+x+1

poly: EDB88320 (hex)
initialize: -1<31:0>
result: one’s complement of R0<31:0>

6 The CRC instruction produces an UNPREDICTABLE result unless the
table is well-formed, like the one produced in note 3. Note that for any
well-formed table, entry[0] is always zero and entry{8] is always the
polynomial expressed as in note 3. The operation can be implemented
using shifts of 1, 2, or 4 bits at a time, as follows:

Shift Steps per Table Index Use Table

(s) Byte (limit) Table Index Multiplier (i) Entries

1 8 tmp3<0> 8 [0]=0,[8]

2 4 tmp3<1:0> 4 [0]=0,[4],[8],[12]
4 2 tmp3<3:0> 1 ail

7 If the stream has zero length, RO receives the initial CRC.

9-143

9.2.11

VAX Instruction Set

CRC

Decimal String Instructions

9-144

Decimal string instructions operate on packed decimal strings.

The decimal string instructions in this section operate on the following
data types:

* Packed decimal string
¢ Trailing numeric string (overpunched and zoned)

* Leading separate numeric string

Where the phrase “decimal string” is used, it means any of the three
data types. Conversion instructions are provided between the data types.
Where necessary, a specific data type is identified.

A decimal string is specified by two operands:

1 For all decimal strings, the length is the number of digits in the string.
The number of bytes in the string is a function of the length and the
type of decimal string referenced (see Chapter 8).

2 The address of the lowest-addressed byte of the string. This byte
contains the most significant digit for trailing numeric and packed
decimal strings, as well as a sign for leading separate numeric strings.
The address is specified by a byte operand of address access type.

Each of the decimal string instructions uses general registers RO to R3
or RO to R5 to hold a control block that maintains updated addresses
and state during the execution of the instruction. At completion, the
registers containing addresses are available to the software for use as
string specification operands for a subsequent instruction on the same
decimal strings.

During the execution of the instructions, pending interrupt conditions
are tested; if any is found, the control block is updated. The first part
done is set in the processor status longword (PSL), and the instruction is
interrupted (refer to Appendix E). After the interruption, the instruction
resumes transparently. The format of the control block at completion is as
follows:

31 0

0 :RoO

ADDRESS 1 :R1

0 :R2

ADDRESS 2 :R3

0 :R4

ADDRESS 3 :R5

ZK-1176A-GE

VAX Instruction Set
CRC

The fields ADDRESS 1, ADDRESS 2, and ADDRESS 3 (if required)
contain the address of the byte containing the most significant digit of the
first, second, and third (if required) string operands, respectively.

The decimal string instructions treat decimal strings as integers with the
decimal point assumed immediately beyond the least significant digit of
the string. If a string in which a result is to be stored is longer than the
result, its most significant digits are filled with zeros.

9.2.11.1 Decimal Overflow
Decimal overflow occurs if the destination string is too short to contain
all of the digits (excluding leading zeros) of the result. On overflow, the
destination string is replaced by the correctly signed least significant digits
of the true result (even if the stored result is —0). Note that neither the
high nibble of an even-length packed decimal string nor the sign byte of a
leading separate numeric string is used to store result digits.

9.2.11.2 Zero Numbers
A zero result has a positive sign for all operations that complete without
decimal overflow, except for CVTPT, which does not change a —0 to a +0.
However, when digits are lost because of overflow, a zero result receives
the sign (positive or negative) of the correct result.

P A decimal string with value -0 is treated as identical to a decimal string
with value +0. Thus, for example, +0 compares as equal to —0. When
condition codes are affected on a -0 result, they are affected as if the
result were +0; that is, N is cleared and Z is set.

9.2.11.3 Reserved Operand Exception
A reserved operand abort occurs if the length of a decimal string operand
is outside the range 0 to 31, or if an invalid sign or digit is encountered in
CVTSP or CVTTP. The program counter (PC) points to the opcode of the
instruction causing the exception.

9.2.11.4 UNPREDICTABLE Results
The result of any operation is UNPREDICTABLE if any source decimal
string operand contains invalid data. Except for CVTSP and CVTTP, the
decimal string instructions do not verify the validity of source operand
data.

If the destination operands overlap any source operands, the result of an
operation will be UNPREDICTABLE. The destination strings, registers
used by the instruction, and condition codes will be UNPREDICTABLE
when a reserved operand abort occurs.

9.2.11.5 Packed Decimal Operations
Packed decimal strings generated by the decimal string instructions
always have the preferred sign representation: 12 for “+” and 13 for “-".
An even-length packed decimal string is always generated with a “0” digit
_ in the high nibble of the first byte of the string.

9-145

VAX Instruction Set

CRC

9-146

A packed decimal string contains an invalid nibble if:
* A digit occurs in the sign position
* A sign occurs in a digit position

* A nonzero nibble occurs in the high-order nibble of the lowest-
addressed byte in an even length string

9.2.11.6 Zero-Length Decimal Strings

The length of a packed decimal string can be zero. In this case, the value
is zero (plus or minus) and 1 byte of storage is occupied. This byte must
contain a “0” digit in the high nibble and the sign in the low nibble.

The length of a trailing numeric string can be zero. In this case, no storage
is occupied by the string. If a destination operand is a zero-length trailing
numeric string, the sign of the operation is lost. Memory access faults do
not occur when a zero-length trailing numeric operand is specified because
no memory reference occurs. The value of a zero-length trailing numeric
string is identically zero.

The length of a leading separate numeric string can be zero. In this case,
1 byte of storage is occupied by the sign. Memory is accessed when a
zero-length operand is specified, and a reserved operand abort will occur
if an invalid sign is detected. The value of a zero-length leading separate
numeric string is zero.

Instruction Descriptions

The following instructions are described in this section:

Number of
Description and Opcode Instructions
1. Add Packed 4 Operand 1

ADDP4 addlen.rw, addaddr.ab, sumlen.rw,
sumaddr.ab, {R0-3.wl}

2. Add Packed 6 Operand 1
ADDP6 add1len.rw, add1addr.ab, add2ien.rw,
add2addr.ab, sumlen.rw, sumaddr.ab,
{RO-5.wl}

3. Arithmetic Shift and Round Packed 1
ASHP cnt.rb, srclen.rw, srcaddr.ab,
round.rb, dstlen.rw, dstaddr.ab,

{RO-3.wl}

4, Compare Packed 3 Operand 1
CMPP3 len.rw, src1addr.ab, src2addr.ab,
{RO-3.wi}

5. Compare Packed 4 Operand 1

CMPP4 srcilen.rw, srciaddr.ab, src2len.rw,
src2addr.ab, {R0-3.wi}

6. Convert Long to Packed 1
CVTLP src.r, dstlen.rw, dstaddr.ab,
{RO-3.wl}

VAX Instruction Set
CRC

Number of
Description and Opcode Instructions

10.

11.

12.

13.

14.

15.

16.

Convert Packed to Long 1
CVTPL srclen.rw, srcaddr.ab, {RO-3.wl},
dst.wl

Convert Packed to Leading Separate 1
CVTPS srcien.rw, srcaddr.ab, dstlen.rw,
dstaddr.ab, {RO-3.wl}

Convert Packed to Trailing 1
CVTPT srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab, {RO-3.wl}

Convert Leading Separate to Packed 1
CVTSP srclen.rw, srcaddr.ab, dstlen.rw,
dstaddr.ab, {RO-3.wi}

Convert Trailing to Packed 1
CVTTP srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab, {R0-3.wl}

Divide Packed 1
DIVP divrlen.rw, divraddr.ab, divdien.rw,

divdaddr.ab, quolen.rw, quoaddr.ab,

{RO-5.wl, —16(SP):—1(SP).wb}

Move Packed 1
MOVP len.rw, srcaddr.ab, dstaddr.ab,

{RO-3.wl}

Multiply Packed 1
MULP mulrlen.rw, mulraddr.ab, muldien.rw,

muldaddr.ab, prodien.rw, prodaddr.ab,

{RO-5.wl}

Subtract Packed 4 Operand 1
SUBP4 sublen.rw, subaddr.ab, diflen.rw,
difaddr.ab, {RO-3.wl}

Subtract Packed 6 Operand 1
SUBPS6 sublen.rw, subaddr.ab, minlen.rw,

minaddr.ab, diflen.rw, difaddr.ab,

{RO-5.wl}

9-147

VAX Instruction Set

ADDP
ADDP
Add Packed
FORMAT opcode addlen.rw, addaddr.ab, sumlen.rw,

sumaddr.ab
opcode addllen.rw, add1addr.ab, add2len.rw,
add2addr.ab, sumlen.rw, sumaddr.ab

condition codes

N «— {sum string} LSS 0;
Z +«—— {sum string} EQL 0;
\Y «— {decimal overflow};
C — 0;
exceptions reserved operand
decimal overflow
opcodes
20 ADDP4 Add Packed 4 Operand
21 ADDP6 Add Packed 6 Operand

DESCRIPTION In 4 operand format, the addend string specified by the addend length and
addend address operands is added to the sum string specified by the sum
length and sum address operands, and the sum string is replaced by the
result.

In 6 operand format, the addend1 string specified by the addend1 length
and addendl address operands is added to the addend2 string specified
by the addend2 length and addend2 address operands. The sum string
specified by the sum length and sum address operands is replaced by the

result.
Notes
1 After execution of ADDP4:
RO= 0
R1 = Address of the byte containing the most significant digit of the addend
string
R2= 0
R3 = Address of the byte containing the most significant digit of the sum string

9-148

VAX Instruction Set

ADDP
2 After execution of ADDP6:

RO= O

R1 = Address of the byte containing the most significant digit of the addend1
string

R2= 0

R3 = Address of the byte containing the most significant digit of the addend2
string

R4= 0

R5 = Address of the byte containing the most significant digit of the sum string

3 The sum string, RO to R3 (or RO to R5 for ADDP6) and the condition
codes are UNPREDICTABLE if: the sum string overlaps the addend,
addend1, or addend2 strings; the addend, addendl, addend2, or sum (4
operand only) strings contain an invalid nibble; or a reserved operand
abort occurs.

9-149

VAX Instruction Set

ASHP

ASHP

Arithmetic Shift and Round Packed

FORMAT

condition codes

opcode cnt.rb, srclen.rw, srcaddr.ab, round.rb,
dstlen.rw, dstaddr.ab

N «— {dst string} LSS 0;

Z +«— {dst string} EQL 0;

\ «— {decimal overflow};

C 0
exceptions reserved operand

decimal overflow

opcodes

F8 ASHP Arithmetic Shift and Round Packed
“ S
DESCRIPTION The source string specified by the source length and source address

9-150

operands is scaled by a power of 10 specified by the count operand. The
destination string specified by the destination length and destination
address operands is replaced by the result.

A positive count operand effectively multiplies, a negative count effectively
divides, and a zero count just moves and affects condition codes. When a
negative count is specified, the result is rounded using the round operand.

Notes

1 After execution:

RO= O

R1 = Address of the byte containing the most significant digit of the source
string

R2= 0

R3 = Address of the byte containing the most significant digit of the destination
string

2 The destination string, RO to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string,
the source string contains an invalid nibble, or a reserved operand
abort occurs.

VAX Instruction Set
ASHP

When the count operand is negative, the result is rounded by decimally
adding bits 3:0 of the round operand to the most significant low-order
digit discarded and propagating the carry, if any, to higher-order digits.
Both the source operand and the round operand are considered to be
quantities of the same sign for the purpose of this addition.

If bits 7:4 of the round operand are nonzero, or if bits 3:0 of the

round operand contain an invalid packed decimal digit, the result is
UNPREDICTABLE.

When the count operand is zero or positive, the round operand has no
effect on the result except as specified in note 4.

The round operand is normally 5. Truncation can be accomplished by
using a zero round operand.

9-151

VAX Instruction Set

CMPP

CMPP

Compare Packed

FORMAT

condition codes

N

3operand: opcode len.rw, src1addr.ab,
src2addr.ab

4operand: opcode srcillen.rw, src1addr.ab,
src2len.rw, src2addr.ab

N «— {src1 string} LSS {src2 string};

z +— {src1 string} EQL {src2 string};

\' +— 0;

C — 0;
exceptions reserved operand
opcodes

35 CMPP3 Compare Packed 3 Operand

37 CMPP4 Compare Packed 4 Operand
m e
DESCRIPTION In 3 operand format, the source 1 string specified by the length and

9-152

source 1 address operands is compared to the source 2 string specified by
the length and source 2 address operands. The only action is to affect the
condition codes.

In 4 operand format, the source 1 string specified by the source 1 length
and source 1 address operands is compared to the source 2 string specified
by the source 2 length and source 2 address operands. The only action is
to affect the condition codes.

Notes

1 After execution of CMPP3 or CMPP4:
Ro= 0
R1 = Address of the byte containing the most significant digit of string1
R2= 0

R3 = Address of the byte containing the most significant digit of string2

2 RO to R3 and the condition codes are UNPREDICTABLE if the source
strings overlap, if either string contains an invalid nibble, or if a
reserved operand abort occurs.

VAX Instruction Set
CVTLP

CVTLP

Convert Long to Packed

FORMAT

condition codes

exceptions

opcodes

opcode src.rl, dstlen.rw, dstaddr.ab

+— {dst string} LSS 0;
«—— {dst string} EQL 0;
«— {decimal overflow};

O< N Z

«— 0;

reserved operand
decimal overflow

F9 CVTLP Convert Long to Packed

DESCRIPTION

R
The source operand is converted to a packed decimal string. The
destination string operand specified by the destination length and
destination address operands is replaced by the result.

Notes

1 After execution:

RO= O

Rt= 0

R2= 0

R3 = Address of the byte containing the most significant digit of the destination
string

2 The destination string, RO to R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort.

3 Overlapping operands produce correct results.

9-153

VAX Instruction Set

CVTPL

CVTPL

Convert Packed to Long

FORMAT

condition codes

exceptions

opcodes

opcode srclen.rw, srcaddr.ab, dst.wi

+— dst LSS 0;
«— dst EQL 0;
+«— {integer overflow};

O< N Z

«— 0;

reserved operand
integer overflow

36 CVTPL Convert Packed to Long

DESCRIPTION

9-154

.
The source string specified by the source length and source address
operands is converted to a longword, and the destination operand is
replaced by the result.

Notes

1 After execution:

Ro= 0

R1 = Address of the byte containing the most significant digit of the source
string

R2= 0

R3= 0

2 The destination operand, RO to R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort, or if the string
contains an invalid nibble.

3 The destination operand is stored after the registers are updated as
specified in note 1. You may use RO to R3 as the destination operand.

4 If the source string has a value outside the range —2,147,483,648 to
+2,147,483,647, integer overflow occurs and the destination operand
is replaced by the low-order 32 bits of the correctly signed infinite
precision conversion. On overflow, the sign of the destination may be
different from the sign of the source.

5 Overlapping operands produce correct results.

VAX Instruction Set
CVTPS

CVTPS

Convert Packed to Leading Separate Numeric

FORMAT

condition codes

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

N +— {src string} LSS 0;

4 +«— {src string} EQL 0;

\ +— {decimal overflow};

o] — 0;
exceptions reserved operand

decimal overflow

opcodes

08 CVTPS Convert Packed to Leading Separate Numeric
DESCRIPTION The source packed decimal string specified by the source length and source

address operands is converted to a leading separate numeric string. The
destination string specified by the destination length and destination
address operands is replaced by the result.

Conversion is effected by replacing the lowest-addressed byte of the
destination string with the ASCII character “+” or “-”, determined by the
sign of the source string. The remaining bytes of the destination string are
replaced by the ASCII representations of the values of the corresponding
packed decimal digits of the source string.

Notes

1 After execution:

Ro= 0

R1 = Address of the byte containing the most significant digit of the source
string

R2= 0

R3 = Address of the sign byte of the destination string

2 The destination string, RO to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string,
the source string contains an invalid nibble, or a reserved operand
abort occurs.

9-155

VAX Instruction Set
CVTPS

3 This instruction produces an ASCII “+” or “~” in the sign byte of the
destination string.

4 If decimal overflow occurs, the value stored in the destination might
be different from the value indicated by the condition codes (Z and N
bits).

5 If the conversion produces a —0 without overflow, the destination
leading separate numeric string is changed to a +0 representation.

9-156

VAX Instruction Set
CVTPT

CVTPT

Convert Packed to Trailing Numeric

FORMAT

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,

dstaddr.ab
condition codes
N «— {src string} LSS 0;
4 «— {src string} EQL 0;
\ +— {decimal overflow};
C +— 0;
exceptions reserved operand
decimal overflow
opcodes
24 CVTPT Convert Packed to Trailing Numeric
]
DESCRIPTION The source packed decimal string specified by the source length and source

address operands is converted to a trailing numeric string. The destination
string specified by the destination length and destination address operands
is replaced by the result. The condition code N and Z bits are affected by
the value of the source packed decimal string.

Conversion is effected by using the highest-addressed byte of the source
string (the byte containing the sign and the least significant digit), even if
the source string value is —0. The assembler uses this byte as an unsigned
index into a 256-byte table whose first entry (entry number 0) address

is specified by the table address operand. The byte read from the table
replaces the least significant byte of the destination string. The remaining
bytes of the destination string are replaced by the ASCII representations
of the values of the corresponding packed decimal digits of the source
string.

Notes

1 After execution:

RO= O

R1 = Address of the byte containing the most significant digit of the source
string

R2= 0

R3 = Address of the most significant digit of the destination string

9-157

VAX Instruction Set

CVTPT

9-158

The destination string, RO to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string
or the table; if the source string or the table contains an invalid nibble;
or if a reserved operand abort occurs.

The condition codes are computed on the value of the source string
even if overflow results. In particular, condition code N is set only if
the source is nonzero and contains a minus sign (-).

By appropriate specification of the table, you can convert any form
of trailing numeric string. See Chapter 8 for the preferred form of
trailing overpunch, zoned and unsigned data. In addition, the table
can be set up for absolute value, negative absolute value, or negated
conversions. The translation table may be referenced even if the
length of the destination string is zero.

Decimal overflow occurs if the destination string is too short to contain
the converted result of a nonzero packed decimal source string (not
including leading zeros). Conversion of a source string with zero value
never results in overflow; conversion of a nonzero source string to a
zero-length destination string results in overflow.

If decimal overflow occurs, the value stored in the destination may
be different from the value indicated by the condition codes (Z and N
bits).

VAX Instruction Set
CVTSP

CVTSP

Convert Leading Separate Numeric to Packed

FORMAT

condition codes

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

N +«— {dst string} LSS 0;
p4 «— {dst string} EQL 0O;
\) +— {decimal overflow};
(o] — 0;
exceptions reserved operand
decimal overflow
opcodes
09 CVTSP Convert Leading Separate Numeric to Packed
-
DESCRIPTION The source numeric string specified by the source length and source

address operands is converted to a packed decimal string, and the
destination string specified by the destination address and destination
length operands is replaced by the result.

Notes
1 A reserved operand abort occurs if:

¢ The length of the source leading separate numeric string is outside
the range 0 to 31

¢ The length of the destination packed decimal string is outside the
range 0 to 31

* The source string contains an invalid byte. An invalid byte is
any character other than an ASCII “0” to “9” in a digit byte or an
ASCII “+”, “<space>”, or “~” in the sign byte

2 After execution:

RoO= 0

R1 = Address of the sign byte of the source string

R2= 0

R3 = Address of the byte containing the most significant digit of the destination
string

9-159

VAX Instruction Set
CVTSP

3 The destination string, RO to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string,
or if a reserved operand abort occurs.

4 srclen is the length of the passed string minus the sign byte.

9-160

VAX Instruction Set
CVTTP

CVTTP

Convert Trailing Numeric to Packed

FORMAT

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,

dstaddr.ab
condition codes
N +— {dst string}LSS 0;
z +— {dst string} EQL 0;
Y +— {decimal overflow};
C — 0;
exceptions reserved operand
decimal overflow
opcodes
26 CVTTP Convert Trailing Numeric to Packed
-
DESCRIPTION The source trailing numeric string specified by the source length and

source address operands is converted to a packed decimal string, and the
destination packed decimal string specified by the destination address and
destination length operands is replaced by the result.

Conversion is effected by using the highest-addressed (trailing) byte of
the source string as an unsigned index into a 256-byte table whose first
entry (entry number 0) is specified by the table address operand. The byte
read from the table replaces the highest-addressed byte of the destination
string (the byte containing the sign and the least significant digit). The
remaining packed digits of the destination string are replaced by the
low-order 4 bits of the corresponding bytes in the source string.

Notes
1 Areserved operand abort occurs if:

* The length of the source trailing numeric string is outside the
range 0 to 31

¢ The length of the destination packed decimal string is outside the
range 0 to 31

* The source string contains an invalid byte. An invalid byte is any
value other than ASCII “0” to “9” in any high-order byte (that is,
any byte except the least significant byte)

¢ The translation of the least significant digit produces an invalid
packed decimal digit or sign nibble

9-161

VAX Instruction Set

CVTTP

9-162

After execution:

Ro= 0

R1 = Address of the most significant digit of the source string

R2= 0

R3 = Address of the byte containing the most significant digit of the destination
string

The destination string, RO to R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source string
or the table, or if a reserved operand abort occurs.

If the convert instruction produces a —0 without overflow, the
destination packed decimal string is changed to a +0 representation,
condition code N is cleared, and Z is set.

If the length of the source string is zero, the destination packed
decimal string is set equal to zero, and the translation table is not
referenced.

By appropriate specification of the table, you can convert any form
of trailing numeric string. See Chapter 8 for the preferred form of
trailing overpunch, zoned and unsigned data. In addition, the table
can be set up for absolute value, negative absolute value, or negated
conversions.

If the table translation produces a sign nibble containing any valid
sign, the preferred sign representation is stored in the destination
packed decimal string.

VAX Instruction Set
DIVP

DIVP

Divide Packed

FORMAT

condition codes

exceptions

opcodes

opcode divrlen.rw, divraddr.ab, divdlen.rw,
divdaddr.ab, quolen.rw, quoaddr.ab

«— {quo string} LSS 0;
+— {quo string} EQL 0;
«— {decimal overflow};

O< N Z

— 0;

reserved operand
decimal overflow
divide by zero

27 DIVP Divide Packed

DESCRIPTION

The dividend string specified by the dividend length and dividend address
operands is divided by the divisor string specified by the divisor length and
divisor address operands. The quotient string specified by the quotient
length and quotient address operands is replaced by the result.

Notes

1 This instruction allocates a 16-byte workspace on the stack. After
execution, the stack pointer (SP) is restored to its original contents,
and the contents of {(SP)-16}:{(SP)-1} are UNPREDICTABLE.

2 The division is performed, resulting in the following conditions:

¢ The absolute value of the remainder (which is lost) is less than the
absolute value of the divisor

¢ The product of the absolute value of the quotient times the
absolute value of the divisor is less than or equal to the absolute
value of the dividend

¢ The sign of the quotient is determined by the rules of algebra
from the signs of the dividend and the divisor; if the value of the
quotient is zero, the sign is always positive

9-163

VAX Instruction Set
DIVP

3 After execution:

Ro= 0

R1 = Address of the byte containing the most significant digit of the divisor
string

R2= 0

R3 = Address of the byte containing the most significant digit of the dividend
string

Ra= 0

R5 = Address of the byte containing the most significant digit of the quotient
string

4 The quotient string, RO to R5, and the condition codes are
UNPREDICTABLE if: the quotient string overlaps the divisor or
dividend strings; the divisor or dividend string contains an invalid
nibble; the divisor is zero; or a reserved operand abort occurs.

9-164

VAX Instruction Set
MOVP

MOVP

Move Packed

FORMAT

condition codes

exceptions

opcodes

opcode len.rw, srcaddr.ab, dstaddr.ab

N +«—— {dst string} LSS 0;
Y4 +— {dst string} EQL 0;
\" — 0;
Cc

— C;

reserved operand

34 MOVP Move Packed

DESCRIPTION

The destination string specified by the length and destination address
operands is replaced by the source string specified by the length and
source address operands.

Notes

1 After execution:

RoO= 0

R1 = Address of the byte containing the most significant digit of the source
string

R2= 0

R3 = Address of the byte containing the most significant digit of the destination
string

2 The destination string, RO to R3, and the condition codes are
UNPREDICTABLE if: the destination string overlaps the source
string; the source string contains an invalid nibble; or a reserved
operand abort occurs.

3 If the source is —0, the result is +0, N is cleared, and Z is set.

9-165

VAX Instruction Set
MULP

MULP

Muitiply Packed

FORMAT opcode mulrlen.rw, mulraddr.ab, muldlen.rw,
muldaddr.ab, prodlen.rw, prodaddr.ab

condition codes

N +«— {prod string} LSS 0;
Y4 «—— {prod string} EQL 0;
\' +«— {decimal overflow};
C — 0;

exceptions reserved operand

decimal overflow

opcodes
25 MULP Multiply Packed

DESCRIPTION The multiplicand string specified by the multiplicand length and
multiplicand address operands is multiplied by the multiplier string
specified by the multiplier length and multiplier address operands.
The product string specified by the product length and product address
operands is replaced by the result.

Notes

1 After execution:

RoO= 0

R1 = Address of the byte containing the most significant digit of the multiplier
string

R2= 0

R3 = Address of the byte containing the most significant digit of the
multiplicand string

R4= 0
R5 = Address of the byte containing the most significant digit of the product
string

2 The product string, RO to R5, and the condition codes are
UNPREDICTABLE if: the product string overlaps the multiplier
or multiplicand strings; the multiplier or multiplicand strings contain
an invalid nibble; or a reserved operand abort occurs.

9-166

VAX Instruction Set
SUBP

SUBP

Subtract Packed

FORMAT

4operand: opcode sublen.rw, subaddr.ab,
diflen.rw, difaddr.ab

6operand: opcode sublen.rw, subaddr.ab,
minlen.rw, minaddr.ab,

diflen.rw, difaddr.ab

condition codes

N +— {dif string} LSS 0;

z +«— {dif string} EQL 0;

Vv +— {decimal overflow};

C «— 0;
exceptions reserved operand

decimal overflow

opcodes

22 SUBP4 Subtract Packed 4 Operand

23 SuBPé Subtract Packed 6 Operand

S

DESCRIPTION In 4 operand format, the subtrahend string specified by the subtrahend

length and subtrahend address operands is subtracted from the difference
string specified by the difference length and difference address operands,
and the difference string is replaced by the result.

In 6 operand format, the subtrahend string specified by the subtrahend
length and subtrahend address operands is subtracted from the minuend
string specified by the minuend length and minuend address operands.
The difference string specified by the difference length and difference
address operands is replaced by the result.

Notes
1 After execution of SUBP4:
RO= 0
R1 = Address of the byte containing the most significant digit of the subtrahend
string
R2= 0

9-167

VAX Instruction Set
SUBP

R3 = Address of the byte containing the most significant digit of the difference

string
2 After execution of SUBPS6:

RO= 0

R1 = Address of the byte containing the most significant digit of the subtrahend
string

R2= 0

R3 = Address of the byte containing the most significant digit of the minuend
string

R4= 0

R5 = Address of the byte containing the most significant digit of the difference
string

3 The difference string, RO to R3 (RO to R5 for SUBPS6), and the
condition codes are UNPREDICTABLE if: the difference string
overlaps the subtrahend or minuend strings; the subtrahend, minuend,
or difference (4 operand only) strings contain an invalid nibble; or a
reserved operand abort occurs.

9-168

VAX Instruction Set
SUBP

9.2.12 The EDITPC Instruction and Its Pattern Operators

The EDITPC instruction implements the common editing functions

that occur when handling fixed-format output. The operation consists

of converting an input packed decimal number to an output character
string and generating characters for the output. When converting digits,
options include filling in leading zeros, protecting leading zeros, insertion
of floating sign, insertion of floating currency symbol, insertion of special
sign representations, and blanking an entire field when it is zero. An
example of this operation is a MOVE to a numeric edited (PICTURE) item
in COBOL or PL/I. Many other applications are possible.

The operands to the EDITPC instruction are as follows:

1 A packed decimal string descriptor (as input). This is a standard
VAX operand pair consisting of the length of the decimal string in
digits (up to 31) and the starting address of the string.

2 A pattern specification, consisting of the starting address of a
pattern operation editing sequence. VAX MACRO interprets a pattern
specification in the same way as it interprets normal instructions.

3 The starting address of the output string. The output string is
described by its starting address only, because the pattern defines the
length unambiguously.

The EDITPC instruction manipulates two character registers and the four
condition codes:

The fill register (R2<7:0>) contains the fill character. This is normally
an ASCII blank but could be changed to an asterisk (*), for instance, for
check protection.

The sign register (R2<15:8>) contains the sign character. Initially this
register contains either an ASCII blank or a minus sign (-), depending
upon the sign of the input. You can change the contents of this register
to allow other sign representations such as plus/minus or plus/blank. You
can also manipulate it to output special notations such as CR or DB. To
implement a floating currency sign, you can change the sign register to the
currency sign.

After execution, the condition codes describe the following:
The sign of the input
The presence of a zero source

An overflow condition
The presence of significant digits

O< N Z

Condition code N is determined at the start of the instruction and remains
unchanged (except for correcting a —0 input). The processor computes and
updates the other condition codes as the instruction proceeds.

When the EDITPC instruction completes processing, registers RO to R
contain the values they would normally have after a decimal instruction.

9-169

VAX Instruction Set

EDITPC

EDITPC

Edit Packed to Character String

FORMAT

condition codes

opcode srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab

N «— {src string} LSS 0; IN <- 0 if src is -0

Y4 «— {src string} EQL 0;

Vv «— {decimal overflow}; Inonzero digits lost

C «— {significance};
exceptions reserved operand

decimal overflow

opcodes

38 EDITPC Edit Packed to Character String

_

DESCRIPTION The destination string specified by the pattern and destination address

9-170

operands is replaced by the edited version of the source string specified by
the source length and source address operands. The editing is performed
according to the pattern string, starting at the address of the pattern
operand and extending until a pattern end pattern operator (EO$END) is
encountered.

The pattern string consists of 1-byte pattern operators. Some pattern
operators take no operands. Some take a repeat count that is contained in
the rightmost nibble of the pattern operator itself. The rest take a 1-byte
operand that immediately follows the pattern operator. This operand is
either an unsigned integer length or a byte character.

Table 9-1 lists the pattern operators that can be used with the EDITPC
instruction to form a pattern. Subsequent pages define each pattern
operator in a format similar to that of the normal instruction descriptions.
In each case, if there is an operand, it is either a repeat count (r) from 1 to
15, an unsigned byte length (len), or a character byte (ch). The encoding of
the pattern operators is represented graphically in Table 9-2.

See Appendix E for information about exceptions that affect the EDITPC
instruction.

Notes
1 A reserved operand abort occurs if srclen GTRU 31.

2 The destination string is UNPREDICTABLE if any of the following is
true:

* The source string contains an invalid nibble.

10

VAX Instruction Set
EDITPC

¢ The EO$ADJUST _INPUT operand is outside the range 1 to 31.
* The source and destination strings overlap.
¢ The pattern and destination strings overlap.

After execution, the following general registers have contents as
specified:

RO = Length of source string

Ri = Address of the byte containing the most significant digit of the source
string

R2= 0

R3 = Address of the byte containing the EO$END pattern operator
R4= 0
R5 = Address of 1 byte beyond the last byte of the destination string

If the destination string is UNPREDICTABLE, RO to R5 and the
condition codes are UNPREDICTABLE.

If V is set at the end and DV is enabled, a numeric overflow trap
occurs unless the conditions in note 9 are satisfied.

The destination length is specified exactly by the pattern operators
in the pattern string. If the pattern is incorrectly formed or if it is
modified during the execution of the instruction, the length of the
destination string is UNPREDICTABLE.

If the source is -0, the result may be —0 unless a fixup pattern operator
is included (EO$BLANK_ZERO or EO3REPLACE_SIGN).

The contents of the destination string and the memory preceding it
are UNPREDICTABLE if the length covered by EO$BLANK_ZERO or
EO$REPLACE_SIGN is zero, or if it is outside the destination string.

If more input digits are requested by the pattern than are specified, a
reserved operand abort is taken with RO = —1 and R3 = location of the
pattern operator that requested the extra digit. The condition codes
and other registers are as specified in note 11. This abort can not be
continued.

If fewer input digits are requested by the pattern than are specified, a
reserved operand abort is taken with R3 = location of EO$END pattern
operator. The condition codes and other registers are as specified in
note 11. This abort can not be continued.

On an unimplemented or reserved pattern operator, a reserved
operand fault is taken with R3 = location of the faulting pattern
operator. The condition codes and other registers are as specified in
note 11. This fault can be continued as long as the defined register
state is manipulated according to the pattern operator description and
the state specified as “implementation dependent” is preserved.

9-171

VAX Instruction Set
EDITPC

11 On a reserved operand exception, as specified in notes 8 to 10, FPD is
set and the condition codes and registers are as follows:

N= {src has minus sign}

Z= All source digits zero so far

V= Nonzero digits lost

C= Significance

R0<31:16> = ~(count of source zeros to supply)
R0<15:0> = Remaining srclen

R1 = Current source location
R2<31:16> = Implementation dependent
R2<15:8> = Current contents of sign register
R2<7:0> = Current contents of fill register

R3 = Location of edit pattern operator causing exception
R4 = Implementation dependent

R5 = Location of next destination byte

Table -1 Summary of EDITPC Pattern Operators

Name Operand Summary

Insert operators

EOSINSERT ch Insert character, fill if insignificant
EO$STORE_SIGN — Insert sign
EOS$FILL r Insert fill

Move operators

EO$MOVE r Move digits, fill if insignificant
EOS$FLOAT r Move digits, floating sign
EOS$END_FLOAT — End floating sign

Fixup operators

EO$BLANK_ZERO len Fill backward when 0
EO$REPLACE_SIGN len Replace with fill if -0

Load operators

EO$LOAD_FILL ch Load fill character

Key:

ch—One character
r—Repeat count in the range 1 to 15
len—Length in the range 1 to 255

(continued on next page)

9-172

VAX Instruction Set
EDITPC

Table 91 (Cont.) Summary of EDITPC Pattern Operators

Name Operand

Summary

Load operators

EO$LOAD_SIGN ch
EOS$LOAD_PLUS ch
EO$LOAD_MINUS ch

Load sign character
Load sign character if positive
Load sign character if negative

Control operators

EO$SET_SIGNIF —
EO$CLEAR_SIGNIF —
EO$ADJUST_INPUT len
EOS$END —

Set significance flag
Clear significance flag
Adjust source length
End edit

Key:

ch—One character
r—Repeat count in the range 1 to 15
len—Length in the range 1 to 255

Table 9-2 EDITPC Pattern Operator Encoding

Hex Symbol Notes

00 EO$END —

01 EO$END_FLOAT —

02 EO$CLEAR_SIGNIF —

03 EO$SET_SIGNIF —

04 EO$STORE_SIGN —

05...1F — Reserved to Digital

20...3F — Reserved for all time

40 EO$LOAD_FILL Character is in next byte

41 EO$LOAD_SIGN Character is in next byte

42 EO$LOAD_PLUS Character is in next byte

43 EO$LOAD_MINUS Character is in next byte

44 EOS$INSERT Character is in next byte

45 EO$BLANK_ZERO Unsigned length is in next byte
46 EO$REPLACE_SIGN Unsigned length is in next byte
47 EO$ADJUST_INPUT Unsigned length is in next byte
48 ... 5F — Reserved to Digital

60...7F — Reserved to CSS and customers
80,90,A0 —_ Reserved to Digital

(continued on next page)

9-173

VAX Instruction Set
EDITPC

Table 9-2 (Cont.) EDITPC Pattern Operator Encoding

Hex Symbol Notes

81 ...8F EOS$FILL —

91...9F EO$MOVE Repeat count is <3:0>
Al ... AF EO$FLOAT —

BO...FE — Reserved to Digital
FF — Reserved for all time

9-174

VAX Instruction Set
EO$ADJUST _INPUT

EO$ADJUST_INPUT

Adjust Input Length

FORMAT

pattern operators

opcode pattern len

47 EO$ADJUST_INPUT Adjust Input Length

DESCRIPTION

I L _

The EO$ADJUST_INPUT pattern operator is followed by an unsigned
byte integer length in the range 1 to 31. If the source string has more
digits than this length, the excess leading digits are read and discarded.
If any discarded digits are nonzero, the overflow is set, significance is set,
and zero is cleared. If the source string has fewer digits than this length,
a counter is set of the number of leading zeros to supply. This counter is
stored as a negative number in R0<31:16>.

Note

If the length is not in the range 1 to 31, the destination string, condition
codes, and RO to R5 are UNPREDICTABLE.

9-175

VAX Instruction Set
EO$BLANK_ZERO

EO$SBLANK_ZERO

Blank Backwards when Zero

“

FORMAT opcode pattern len
pattern operators
45 EO$BLANK_ZERO Blank Backwards when Zero
“]

DESCRIPTION The EO$BLANK_ZERO pattern operator is followed by an unsigned byte

integer length. If the value of the source string is zero, then the contents
of the fill register are stored into the last length bytes of the destination
string.

Notes

1 The length must be nonzero and within the destination string already
produced. If it is not, the contents of the destination string and the
memory preceding it are UNPREDICTABLE.

2 Use this pattern operator to blank out any characters stored in the
destination under a forced significance such as a sign or the digits
following the radix point.

9-176

VAX Instruction Set
EOS$END

EOSEND

End Edit

FORMAT

pattern operators

1

opcode pattern

00 EO$END End Edit

DESCRIPTION

The EO$END pattern operator terminates the edit operation.

Notes
1 If there are still input digits, a reserved operand abort is taken.

2 If the source value is —0, the N condition code is cleared.

9-177

VAX Instruction Set

EOS$END_FLOAT

EOSEND_FLOAT

End Floating Sign

“

FORMAT

pattern operators

opcode pattern

01 EO$SEND_FLOAT End Floating Sign

DESCRIPTION

9-178

The EOSEND_FLOAT pattern operator terminates a floating sign
operation. If the floating sign has not yet been placed in the destination (if
significance is not set), the contents of the sign register are stored in the
destination, and significance is set.

Note

Use this pattern operator after a sequence of one or more EO$FLOAT
pattern operators that start with significance clear. The EO$FLOAT
sequence can include intermixed EO$INSERTs and EO$FILLs.

VAX Instruction Set

EOS$FILL
EOS$FILL
Store Fill
FORMAT opcode patternr
pattern operators
8x EO$FItL Store Fill
DESCRIPTION The rightmost nibble of the pattern operator is the re[;:at count. The_

EO$FILL pattern operator places the contents of the fill register into the
destination the number of times specified by the repeat count.

Note
Use this pattern operator for fill (blank) insertion.

9-179

VAX Instruction Set

EO$FLOAT

EOSFLOAT

FORMAT

pattern operators

DESCRIPTION

9-180

Float Sign

opcode patternr

Ax EO$FLOAT Float Sign

_ .
The EO$FLOAT pattern operator moves digits, floating the sign across
insignificant digits. The rightmost nibble of the pattern operator is the
repeat count. For the number of times specified in the repeat count, the
following algorithm is executed:

The next digit from the source is examined. If it is nonzero and
significance is not yet set, then the contents of the sign register are stored
in the destination, significance is set, and zero is cleared. If the digit is
significant, it is stored in the destination; otherwise, the contents of the fill
register are stored in the destination.

Notes

1 Ifris greater than the number of digits remaining in the source string,
a reserved operand abort is taken.

2 Use this pattern operator to move digits with a floating arithmetic
sign. The sign must already be set up as for EO$STORE_ SIGN.
A sequence of one or more EO$FLOATS can include intermixed
EO$INSERTs and EO$FILLs. Significance must be clear before
the first pattern operator of the sequence. The sequence must be
terminated by one EOSEND_FLOAT.

3 Use this pattern operator to move digits with a floating currency sign.
The sign must already be set up with an EO$LOAD_SIGN. A sequence
of one or more EO$FLOATS can include intermixed EO$INSERTSs
and EO$FILLs. Significance must be clear before the first pattern
operator of the sequence. The sequence must be terminated by one
EO$END_FLOAT.

VAX Instruction Set

EO$INSERT
EOSINSERT
Insert Character
FORMAT opcode patternch
pattern operators ,
44 EOSINSERT Insert Character

DESCRIPTION The EO$INSERT pattern operator is followed by a character. If
significance is set, the character is placed into the destination. If
significance is not set, the contents of the fill register are placed into
the destination.

Note

Use this pattern operator for inserts that can be made blank (for example,
comma (,)) and fixed inserts (for example, slash (/)). Fixed inserts require
that significance be set (by EO$SET_SIGNIF or EOSEND_FLOAT).

9-181

VAX Instruction Set

EO$LOAD _

Load Register

—“

FORMAT opcode pattern ch
pattern operators

40 EO$LOAD_FILL Load Fill Register

41 EO$LOAD_SIGN Load Sign Register

42 EO$LOAD_PLUS Load Sign Register If Plus

43 EO$LOAD_MINUS Load Sign Register If Minus

e

DESCRIPTION The pattern operator is followed by a character. For EO$LOAD_FILL,
this character is placed into the fill register. For EO$LOAD_SIGN,
this character is placed into the sign register. For EO$LOAD_PLUS,
this character is placed into the sign register if the source string has a
positive sign. For EOSLOAD_MINUS, this character is placed into the
sign register if the source string has a negative sign.

Notes
1 Use EOSLOAD_FILL to set up check protection (* instead of space).
2 Use EO$LOAD_SIGN to set up a floating currency sign.
3 Use EO$LOAD_PLUS to set up a nonblank plus sign.
4

Use EO$LOAD_MINUS to set up a nonminus minus sign (such as CR,
DB, or the PL/I +).

9-182

VAX Instruction Set
EOSMOVE

EOSMOVE

Move Digits
e
FORMAT opcode patternr
pattern operators
9x EO$SMOVE Move Digits

L _

DESCRIPTION The EO$MOVE pattern operator moves digits, filling for insignificant
digits. The rightmost nibble of the pattern operator is the repeat count.
For the number of times specified in the repeat count, the following
algorithm is executed:

The next digit is moved from the source to the destination. If the digit

is nonzero, significance is set and zero is cleared. If the digit is not
significant (that is, a leading zero), it is replaced by the contents of the fill
register in the destination.

Notes

1 If r is greater than the number of digits remaining in the source string,
a reserved operand abort is taken.

2 Use this pattern operator to move digits without a floating sign. If
leading-zero suppression is desired, significance must be clear. If
leading zeros should be explicit, significance must be set. A string of
EO$MOVEs intermixed with EO$INSERTs and EO$FILLs will handle
suppression correctly.

3 If check protection (*) is desired, EOSLOAD_FILL must precede the
EO$MOVE.

9-183

VAX Instruction Set
EO$REPLACE_SIGN

EO$SREPLACE_SIGN
Replace Sign when Zero

\
FORMAT opcode pattern len

pattern operators
46 EO$REPLACE_SIGN Replace Sign when Zero

S

DESCRIPTION The EO$REPLACE_SIGN pattern operator is followed by an unsigned
byte integer length. If the value of the source string is zero (that is, if
Z is set), the contents of the fill register are stored in the byte of the
destination string that is len bytes before the current position.

Notes

1 The length must be nonzero and within the destination string already
produced. If it is not, the contents of the destination string and the
memory preceding it are UNPREDICTABLE.

2 You can use this pattern operator to correct a stored sign
(EO$END_FLOAT or EO$STORE_SIGN) if a minus was stored and
the source value turned out to be zero.

9-184

VAX Instruction Set
EO$_SIGNIF

EO$_SIGNIF

Significance

FORMAT

pattern operators

opcode pattern

02 EO$CLEAR_SIGNIF Clear Significance
03 EO$SET_SIGNIF Set Significance

DESCRIPTION

_ _ _

The significance indicator is set or cleared. This controls the treatment
of leading zeros (leading zeros are zero digits for which the significance
indicator is clear).

Notes

1 Use EO$CLEAR_SIGNIF to initialize leading-zero suppression
(EO$MOVE) or floating sign (EO$FLOAT) following a fixed insert
(EO$INSERT with significance set).

2 Use EO$SET_SIGNIF to avoid leading-zero suppression (before
EO$MOVE) or to force a fixed insert (before EO$INSERT).

VAX Instruction Set
EO$STORE_SIGN

EO$STORE_SIGN

Store Sign
FORMAT opcode pattern
pattern operators
04 EO$STORE_SIGN Store Sign
R ————————— N

DESCRIPTION The EO$STORE_SIGN pattern operator places contents of the sign
register into the destination.

Note

Use this pattern operator for any nonfloating arithmetic sign. Precede
it with either a EO$LOAD_PLUS or EO$LOAD_MINUS, or both, if the
default sign convention is not desired.

9-186

VAX Instruction Set
EO$STORE_SIGN

9.2.13 Other VAX Instructions
The following table lists other VAX instructions:

Number of
Description and Opcode Instructions
1. Probe {Read, Write} Accessibility 2
PROBE{R,W} mode.rb, len.rw, base.ab
2. Change Mode 4
CHM{K,E,S,U} param.rw, {-(ySP).w"}
Where y=MINU(x, PSL<current_mode>)
3. Return from Exception or Interrupt 1
RE! {(SP)+.r'}
4. Load Process Context 1
LDPCTX {PCB.r*, -(KSP).w"}
5. Save Process Context 1
SVPCTX {(SP)+.r*, PCB.w*}
6. Move to Process Register 1
MTPR src.rl, procreg.rl
7. Move from Processor Register 1
MFPR procreg.rl, dst.wi
8. Bugcheck with {word, longword} message identifier 2

BUG{W,L} message.bx

9-187

VAX Instruction Set

PROBEX
PROBEx

Probe Accessibility

A “
FORMAT opcode mode.rb, len.rw, base.ab
condition codes "
— 0;

4 +«— if {both accessible} then 0 else 1;

Vv «— 0;

C — G;
exceptions translation not valid
opcodes

oC PROBER Probe Read Accessibility

oD PROBEW Probe Write Accessibility

\

DESCRIPTION The PROBE instruction checks the read or write accessibility of the first
and last byte specified by the base address and the zero-extended length.
Note that the bytes in between are not checked. System software must
check all pages if they will be accessed between the two end bytes.

The protection is checked against the larger (and therefore less privileged)
of the modes specified in bits <1:0> of the mode operand and the previous
mode field of the processor status longword (PSL). Note that probing with
a mode operand of zero is equivalent to probing the mode specified in the

previous-mode field of the PSL.

9-188

VAX Instruction Set
PROBEXx

EXAMPLE

MOVL 4 (AP),RO ; Copy the address of first arg so
that it cannot be changed

; Verify that the longword pointed to
by the first arg could be read by
the previous access mode

; Note that the arg list itself must
already have been probed

; Branch if either byte gives an
access violation

; Copy length and address of buffer

’
PROBER #0, #4, (RO) ;
14
’
; arg so that they cannot change
’
’
’
r

BEQL violation

MOVQ 8 (AP) ,RO

PROBER #0,R0, (R1) ; Verify that the buffer described by
the 2nd and 3rd args could be
written by the previous access
mode

; Note that the arg list must already
have been probed and that the 2nd
arg must be known to be less than
512

; Branch if either byte gives an
access violation

BEQL violation

Note that for the PROBE instruction, probing an address returns only the
accessibility of the pages and has no effect on their residency. However,
probing a process address may cause a page fault in the system address
space on the per-process page tables.

Notes

1 If the valid bit of the examined page table entry is set, it is
UNPREDICTABLE whether the modify bit of the examined page
table entry is set by a PROBER. If the valid bit is clear, the modify bit
is not changed.

2 Except for note 1, above, the valid bit of the page table entry,
PTE<31>, mapping the probed address is ignored.

A length violation gives a status of “not-accessible.”

On the probe of a process virtual address, if the valid bit of the system
page table entry is zero, a Translation Not Valid Fault occurs. This
allows for the demand paging of the process page tables.

5 On the probe of a process virtual address, if the protection field of
the system page table entry indicates No Access, a status of “not-
accessible” is given. Thus, a single No Access page table entry in the
system map is equivalent to 128 No Access page table entries in the
process map.

9-189

VAX Instruction Set

CHM

CHM

Change Mode

\

FORMAT

condition codes

exceptions

opcodes

DESCRIPTION

9-190

opcode code.rw

N — 0;
Z — 0;
\ — 0;
C — 0;
halt
BC CHMK Change Mode to Kernel
BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
BF CHMU Change Mode to User

Change mode instructions allow processes to change their access mode in
a controlled manner. The instruction increases privilege only (decreases
the access mode).

A change in mode also results in a change of stack pointers; the old pointer
is saved, and the new pointer is loaded. The processor status longword
(PSL), program counter (PC), and code passed by the instruction are
pushed onto the stack of the new mode. The saved PC addresses the
instruction following the CHMx instruction. The code is sign extended.
After execution, the appearance of the new stack is as follows:

Sign-Extended Code 1 (SP)
PC of next instruction
Old PSL
ZK-1177A-GE

The destination mode selected by the opcode is used to obtain a location
from the system control block (SCB). This location addresses the CHMx
dispatcher for the specified mode. If the vector<1:0> code is NEQU 0, then
the operation is UNDEFINED.

VAX Instruction Set
CHM

Notes

1

As usual for faults, any Access Violation or Translation Not Valid fault
saves the PC and the PSL, and leaves the stack pointer (SP) as it
was at the beginning of the instruction except for any pushes onto the
kernel stack.

The noninterrupt stack pointers may be fetched and stored either in
privileged registers or in their allocated slots in the process control
block (PCB). Only LDPCTX and SVPCTX always fetch and store in the
PCB. MFPR and MTPR always fetch and store the pointers whether in
registers or the PCB.

By software convention, negative codes are reserved to CSS and
customers.

EXAMPLES
CHMK #7
CHME #4
CHMS #-2

.
’

r

’

Request the kernel mode service
specified by code 7

Request the executive mode service
specified by code 4

; Request the supervisor mode service

specified by customer code -2

9-191

VAX Instruction Set

REI

REI

Return from Exception or Interrupt

R

FORMAT opcode
condition codes

N +—— saved PSL<3>;

4 +— saved PSL<2>;

Vv +«— saved PSL<1>;

C +—— saved PSL<0>;
exceptions reserved operand
opcodes

02 REI! Return from Exception or Interrupt
DESCRIPTION A longword is popped from the current stack and held in a temporary

9-192

program counter (PC). A second longword is popped from the current
stack and held in a temporary processor status longword (PSL). Validity
of the popped PSL is checked. The current stack pointer (SP) is saved,
and a new SP is selected according to the new PSL CUR_MOD and IS
fields. The level of the highest privilege asynchronous system trap (AST)
is checked against the current mode to see whether a pending AST can be
delivered. Execution resumes with the instruction being executed at the
time of the exception or interrupt. Any instruction latched in the processor
is reinitialized.

Notes

1 The exception or interrupt service routine is responsible for restoring
any registers saved and for removing any parameters from the stack.

2 As usual for faults, any Access Violation or Translation Not Valid
conditions on the stack pops restore the stack pointer and fault.

3 The noninterrupt stack pointers may be fetched and stored either in
privileged registers or in their allocated slots in the process control
block (PCB). Only LDPCTX and SVPCTX always fetch and store in the
PCB. MFPR and MTPR always fetch and store the pointers, whether
in registers or in the PCB.

VAX Instruction Set
LDPCTX

LDPCTX

Load Process Context

FORMAT opcode
condition codes

N «—N;

Z — Z;

\' — V;

C «— C;
exceptions reserved operand

privileged instruction

opcodes

06 LDPCTX Load Process Context

I 0

DESCRIPTION The process control block (PCB) is specified by the privileged register

PCB base. The general registers are loaded from the PCB. The memory
management registers describing the process address space are also loaded
and the process entries in the translation buffer are cleared. Execution

is switched to the kernel stack. The program counter (PC) and processor
status longword (PSL) are moved from the PCB to the stack, suitable for
use by a subsequent REI instruction.

Notes

1 Some processors keep a copy of each of the per-process stack pointers
(SPs) in internal registers. In those processors, LDPCTX loads the
internal registers from the PCB. Processors that do not keep a copy
of all four per-process stack pointers in internal registers keep only
the current access mode register in an internal register and switch
this with the PCB contents whenever the current access mode field
changes.

2 Some implementations may not perform some or all of the reserved
operand checks.

9-193

VAX Instruction Set

SVPCTX

SVPCTX

Save Process Context

FORMAT opcode
condition codes

N — N;

z — 7,

V o~V

C «— C;
exceptions privileged instruction
opcodes

07 SVPCTX Save Process Context

I e~ 1

DESCRIPTION The process control block (PCB) is specified by the privileged register

9-194

Process Control Block Base. The general registers are saved into the PCB.
The program counter (PC) and processor status longword (PSL) currently
on the top of the current stack are popped and stored in the PCB. If a
SVPCTX instruction is executed when the interrupt stack (IS) is clear,
then IS is set, the interrupt stack pointer (ISP) is activated, and interrupt
priority level (IPL) is maximized with 1 because of the switch to the IS.

Notes

1 The map, ASTLVL, and PME contents of the process control block
(PCB) are not saved because they are rarely changed. Thus, not
writing them saves overhead.

2 Some processors keep a copy of each of the per-process stack pointers
in internal registers. In those processors, SVPCTX stores the internal
registers in the PCB. Processors that do not keep a copy of all four
per-process stack pointers in internal registers keep only the current
access mode register in an internal register and switch this access
mode register with the PCB contents whenever the current access
mode field changes.

3 Between the SVPCTX instruction that saves the state for one process
and the LDPCTX that loads the state of another, the ISPs may not
be referenced by MFPR or MTPR instructions. This implies that
interrupt service routines invoked at a priority higher than the lowest
one used for context switching must not reference the process stack
pointers (SPs).

VAX Instruction Set

MTPR
Move to Processor Register
B A

FORMAT opcode sre.rl, procreg.rl
condition codes

N «—srcLSSO0; ! If register is replaced

Y4 +«— src EQL 0;

\ « 0; | Except TBCHK register

! Please refer to
! Appendix E.

(o] «— C;

N — N; | If register is not replaced

y4 — Z;

\ — V,;

C «— C;
exceptions reserved operand fault

reserved instruction fault

opcodes

DA MTPR Move to Processor Register

.]

DESCRIPTION Loads the source operand specified by sre into the processor register

specified by procreg. The procreg operand is a longword that contains
the processor register number. Execution may have register-specific side
effects.

Notes

1 If the processor internal register does not exist, a reserved operand
fault occurs.

2 A reserved instruction fault occurs if instruction execution is
attempted in other than kernel mode.

3 A reserved operand fault occurs on a move to a read-only register.

9-195

VAX Instruction Set
MFPR

MFPR

Move from Processor Register

E

FORMAT opcode procreg.rl, dst.wl
condition codes -
N «——dstLSSO; I If destination is replaced
Z «+— dstEQLO;
\' «— 0;
C «— C;
N — N; ! If destination is not replaced
Z — Z;
\ —V;
C — C;
exceptions reserved operand fault
reserved instruction fault
opcodes
DB MFPR Move from Processor Register

. A

DESCRIPTION The destination operand is replaced by the contents of the processor
register specified by procreg. The procreg operand is a longword that
contains the processor register number. Execution may have register-
specific side effects.

Notes

1 If the processor internal register does not exist, a reserved operand
fault occurs.

2 A reserved instruction fault occurs if instruction execution is
- attempted in other than kernel mode.

3 A reserved operand fault occurs on a move from a write-only register.

9-196

VAX Instruction Set
BUG

BUG

Bugcheck

FORMAT opcode message.bx
condition codes
N — N;
Y4 — Z;
\) — V;
C — C;
exceptions reserved instruction
opcodes
FEFF BUGW Bugcheck with word message identifier
FDFF BUGL Bugcheck with longword message identifier
L
DESCRIPTION The hardware treats these opcodes as reserved to Digital and as faults.
The VMS operating system treats them as requests to report software
detected errors. The inline message identifier is zero extended to a
longword (BUGW) and interpreted as a condition value (see the VAX
Procedure Calling and Condition Handling Standard in the Introduction
to VMS System Routines). If the process is privileged to report bugs, a log
entry is made. If the process is not privileged, a reserved instruction is
signaled.
L R __J
EXAMPLES
BUGW ; Bugc'heck with word message
.WORD 4 ; identifier 4
BUGL ; Bugcheck with longword
. LONG 5 ; message identifier 5

9-197

	ISA_09_0101
	ISA_09_0102
	ISA_09_0103
	ISA_09_0104
	ISA_09_0105
	ISA_09_0106
	ISA_09_0107
	ISA_09_0108
	ISA_09_0109
	ISA_09_0110
	ISA_09_0111
	ISA_09_0112
	ISA_09_0113
	ISA_09_0114
	ISA_09_0115
	ISA_09_0116
	ISA_09_0117
	ISA_09_0118
	ISA_09_0119
	ISA_09_0120
	ISA_09_0121
	ISA_09_0122
	ISA_09_0123
	ISA_09_0124
	ISA_09_0125
	ISA_09_0126
	ISA_09_0127
	ISA_09_0128
	ISA_09_0129
	ISA_09_0130
	ISA_09_0131
	ISA_09_0132
	ISA_09_0133
	ISA_09_0134
	ISA_09_0135
	ISA_09_0136
	ISA_09_0137
	ISA_09_0138
	ISA_09_0139
	ISA_09_0140
	ISA_09_0141
	ISA_09_0142
	ISA_09_0143
	ISA_09_0144
	ISA_09_0145
	ISA_09_0146
	ISA_09_0147
	ISA_09_0148
	ISA_09_0149
	ISA_09_0150
	ISA_09_0151
	ISA_09_0152
	ISA_09_0153
	ISA_09_0154
	ISA_09_0155
	ISA_09_0156
	ISA_09_0157
	ISA_09_0158
	ISA_09_0159
	ISA_09_0160
	ISA_09_0161
	ISA_09_0162
	ISA_09_0163
	ISA_09_0164
	ISA_09_0165
	ISA_09_0166
	ISA_09_0167
	ISA_09_0168
	ISA_09_0169
	ISA_09_0170
	ISA_09_0171
	ISA_09_0172
	ISA_09_0173
	ISA_09_0174
	ISA_09_0175
	ISA_09_0176
	ISA_09_0177
	ISA_09_0178
	ISA_09_0179
	ISA_09_0180
	ISA_09_0181
	ISA_09_0182
	ISA_09_0183
	ISA_09_0184
	ISA_09_0185
	ISA_09_0186
	ISA_09_0187
	ISA_09_0188
	ISA_09_0189
	ISA_09_0190
	ISA_09_0191
	ISA_09_0192
	ISA_09_0193
	ISA_09_0194
	ISA_09_0195
	ISA_09_0196
	ISA_09_0197

