Le microprocesseur Micral

André Raynaud
Directeur du Marketing de R.2.E.

En six ans
une société française a conçu, construit et installé
plus de 1500 ordinateurs

C'est en 1972 que la société française R2E a créé le concept du micro-ordinateur ou ordinateur complet réalisé autour d'un microprocesseur : le MICRAL.

A ce jour plus de 1 500 exemplaires sont installés en France et à travers le monde dans les applications les plus diverses telles que industrielles, scientifiques et de gestion. Plus de 200 sont des systèmes multiprocesseurs. Micral se compose de deux lignes de produits, l'une industrielle et scientifique avec l'optimal S-80, le Micral S et le Micral M, l'autre de gestion avec la Série 80 et le Micral V. La gamme s'étend de l'ordinateur complet sur une carte au système transactionnel multiposte équipé de 200 millions de caractères sur disques et de lignes de télétransmis-

R2E a développé un jeu de module matériel standard (plus de 700 au catalogue) pour relier les Micral à des systèmes industriels ou pour les connecter à des périphériques. Cet effort a été accompagné d'une politique de développement de logiciels de base compatibles sur toute la gamme : moniteurs temps réel, operating systems, compilateurs, procédures de télécommunications, langages de haut niveau spécialisés.

Monoprocesseurs et multiprocesseurs

Le traitement simultané de plusieurs tâches sur un ordinateur monoprocesseur est généralement confié à un programme du Système, le moniteur temps réel, qui multiplexe les tâches sur le processeur. Ce processeur doit alors partager son temps-machine entre les tâches en fonction de leur urgence. Il doit constamment abandonner les tâches, puis les reprendre, etc. Il perd également beaucoup de temps dans sa propre exécution.

L'avènement de la technique LSI a permis d'envisager d'autres techniques qui n'étaient jusque là utilisées que sur les plus puissants des ordinateurs scientifiques (par exemple Control Data 6600/7600). En effet, le processeur, l'élément le plus noble d'un ordinateur, est devenu le moins cher. Son prix n'atteint plus que quelques
En septembre 1977, le MICRAL V. Un ordinateur dans une valise.

Pour cent du prix des mémoires et des périphériques. Dans ces conditions la diffusion de systèmes multiprocesseurs où chaque tâche est confiée à un processeur particulier devenait industriellement possible. Le traitement est strictement parallèle, donc la puissance globale est accumulative, donc en fonction du nombre de tâches traitées elle ne décroît plus vers l'asymptote zéro, comme dans le cas de système fonctionnant sous le contrôle de moniteur temps réel ou de « temps partagé » (time-sharing).

Un système de traitement global peut être décomposé en un ensemble de tâches distinctes. Chaque tâche ne connaissant que les liens de fonctionnement qui la relient aux autres, seul l'ensemble de ces tâches interconnectées constitue l'intelligence globale du système (théorie des automates synchrones rejetée non plus au niveau des états, mais des fonctions). Les liens entre les tâches transitent sous forme de données dans la mémoire commune sous le contrôle d'un operating system spécialisé. La programmation en raison de sa modularité par tâche atteint une efficacité maximum. Les programmes sont ré-entrants sans difficulté et l'accroissement de taille de la machine n'entraîne pas la nécessité de modifier les programmes existants.

Le multimicroprocesseur MICRAL M

Le multimicroprocesseur Micral M se caractérise par une organisation horizontale - non hiérarchisée - de processeurs de traitement de tâches et de processeurs de gestion de ressources périphériques communes ou privées.
Le Micral M supporte jusqu'à 8 processeurs travaillant en parallèle, la communication entre eux étant assurée par un système : le « PROTOCOL » qui gère les échanges à travers une mémoire commune à l'ensemble des processeurs connectés.

Les unités de traitement sont des microprocesseurs en technologie LSI offrant un haut degré de fiabilité et les mémoires — en technologie MOS (Metal Oxide Semiconductor) — ont un cycle de base de 330 monosecondes pour un octet. Les bus d'interconnexion sont banalisés et permettent une adaptation de configurations sur le site.

Dans sa version générale le Micral M se présente comme un ensemble de micro-ordinateurs indépendants (jusqu'à 8), possédant chacun leur propre mémoire locale, leur propre système d'interemption. Ils sont reliés entre eux, par le simple fait que chaque machine a dans son champ d'adresses, sa mémoire locale (inaccessible aux autres) et la mémoire commune.

Parmi les avantages de cette architecture on peut noter :

— pas de conflit mémoire entre les différents processeurs, tant que ceux-ci travaillent sur leur tâche particulière, donc aucun ralentissement : les processeurs travaillent en parallèle ;

— l’encombrement mémoire des tâches est le même que dans une structure centralisée avec monoprocessor ;

— les tâches se passent les arguments en mémoire commune ; donc une procédure de communication complexe n’est pas nécessaire, du fait de la transparence totale de la mémoire commune ;

— à condition qu’un processeur connaisse l’implantation des variables des autres tâches en mémoire commune, il peut travailler avec ces variables sans que les tâches en soient averties ;

— si les programmes sont en mémoires communes et les données en mémoires locales : les programmes sont par principe ré-entrants et peuvent être exécutés simultanément par plusieurs processeurs.

Un tel système est donc « ouvert », l'utilisateur peut rajouter des traitements ou même des processeurs, sans être obligé de reprendre la programmation de ce qui existe et cela même sans interrompre le fonctionnement de l'ordinateur.

Pour résoudre les problèmes temps réel de synchronisation/désynchronisation inter-tâches, un bus d'interruption inter-processeur a été créé. Il permet à chaque processeur d'interrompre ou d'être interrompu des sept autres.

Logiciel de base orienté multiprocesseur

Au niveau Système un logiciel de communication établit un véritable dialogue entre un processeur et une ressource décrétée partageable et gérée par un autre processeur. Plus que de programmes, il se compose surtout de protocoles utilisés par tous les processeurs. L'espace mémoire commune, lors de la transmission d'informations entre processeurs, est géré par un système « libre service ». Les ordres et les informations sont transférés sous forme de fiches standardisées. La création de ces fiches, ainsi que leur concentration en paquet, sont effec-
tuées par un programme système, lui-même partagé par tous les processeurs.

Structure du MICRAL M

La capacité d’adressage de chaque processeur de traitement est de 65 K octets. Lorsqu’une requête d’accès à la mémoire correspond à une adresse qui n’est pas en mémoire locale, la requête est transmise pour l’exécution en mémoire commune. Chaque processeur a donc, devant lui, un champ d’adresse continu de 65 K octets, répartis dans un certain rapport entre sa mémoire particulière et la mémoire commune, cette répartition pouvant être différente d’un processeur à l’autre.

Cette structure permet d’avoir, naturellement, une transparence complète en ce qui concerne l’exécution des instructions de la lecture ou d’écriture des informations, entre la mémoire commune et la mémoire particulière. On voit donc que, contrairement à certaines architectures multiprocesseurs, l’exécution des programmes en mémoire commune ne nécessite aucun transfert d’informations par blocs ou par mots.

Les programmes communs sont exécutés directement depuis la mémoire commune et non pas transférés avant exécution, dans une mémoire tampon. En outre, il est possible de faire exécuter le même programme par plusieurs processeurs, ce qui conduit à économiser de la mémoire dans les systèmes où plusieurs processeurs travaillent sur des tâches identiques mais non simultanées.

Interconnections de système multiprocesseur

La réalisation de conglomérats de Micral M à l’aide de liaison multiple permet de bâtir simplement des architectures en anneaux ou en étoile.

Le processeur 7 a de la mémoire commune dans M C 1 et dans M C 2, celle-ci est déclarée comme ressource commune au protocole des Micral M 1 et M 2.

Les échanges d’un des processeurs du système M 1 avec la mémoire commune M 2, se fait par un simple appel du protocole (donc par un seul relais).

Cette structure n’est pas limitative. Chaque processeur peut être connecté à 8 mémoires communes différentes.

Avec une structure à un seul niveau, 56 Micral peuvent dialoguer entre eux par un seul appel (ou relais) au protocole (figure ci-contre).
Le nombre de niveaux n’est pas limité. On obtient pour un système :
- à un niveau : 56 processeurs exécutants - 1 processeur communicuant,
- à deux niveaux : 2 744 processeurs exécutants - 57 processeurs communiquants,
- à n niveaux (n > 2) : 56 × 49 (n-1) processeurs exécutants - 57+49 (n-2) processeurs communicants.

Répartition des ressources

La répartition des ressources - qu’elles soient matérielles (par exemple les unités de disques) ou logicielles (par exemple les programmes d’interrogation de fichiers) - peut se concevoir à deux niveaux.

Au niveau élémentaire d’utilisation de la machine, par analyse et distribution sur les différents processeurs des programmes, des tâches et des périphériques.

Au niveau supérieur de partage de zones de mémoires de périphériques et de mémoires de masse. Cette fonction peut être réalisée par le logiciel de base ou par des logiciels spécifiques pour certaines applications. Les modèles 50, 60, 70 de la série 80 représentent un choix de répartition de ressources adaptées aux applications de gestion transactionnelles.

Sur le schéma 1, on remarque que chaque poste de travail est associé à un processeur de traitement et qu’un processeur est spécialisé pour le traitement des fichiers.

Le schéma 2 est une décomposition du schéma 1. On notera le bus mémoire commune et le bus spécialisé pour les mémoires de masses et périphériques.

Le schéma 3 présente la configuration générale du modèle 70 de la série 80.