COMPUTER SYSTEMS

ALTOS 586 and ACS 8600
Computer Systems

XENIX Development
System
Programmer’s
Reference Guide

Part Number : 690-13500-001 May 1983






Mariral prgin w;ul
TR XY ’7@

ALTOS 586 AND ACS 8688 COMPUTER SYSTEMS
XENIX DEVELOPMENT SYSTEM

PROGRAMMER'S REFERENCE GUIDE

Altos Computer Systems
2641 Orchard Park Way
San Jose, CA 95134

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO
CHANGE WITHOUT NOTICE. NEW EDITIONS OF THIS
DOCUMENT WILL INCORPORATE CHANGES AS THEY ARE
PUBLISHED.

Copyright ©1983. All rights reserved. Altos Computer Systems.

ALTOS Manual Number: 696-13580-801 May 1983



ACKNOWLEDGEMENTS

ALTOS 1is a registered trademark of Altos Computer
Systems.

XENIX is a trademark of Microsoft, Incorporated and
is a 16-bit microcomputer implementation of the
UNIX operating system, version 7.

UNIX is a trademark of Bell Laboratories

UNET is a trademark of 3Com Corporation



TABLE OF CONTENTS

1. INTRODUCTION

USING THIS MANUAL
Purpose/Scope
Organization

OTHER DOCUMENTATION AVAILABLE
Altos 586 or ACS 8600 Operator's Guide
Altos Introduction to XENIX Manual
XENIX Reference Card
Altos Application Software Guide
Altos UNET User Guide
Bell Laboratories Manuals
UNIX Programmer's Manual
Commercially Available Books

2. USING XENIX
TOPICS COVERED IN INTRODUCTION TO XENIX MANUAL
INSTALLING XENIX DEVELOPMENT SYSTEM

LEARN PROGRAM
Installing Learn
Running Learn

CREATING NEW MENUS

3. UTILITY PROGRAMS REFERENCE GUIDE
USEFUL UTILITIES

UNIX MANUAL CHANGES AND ADDITIONS

ADD.CT(1)
ADD.HD (1)
AEMAIL(1)
APROPOS(1)
BSH(1)
CSH(1)
CXREF (1)
DATE (1)
DIGEST(1)
DISABLE(C)
DUMP.HD(1)
ENABLE (C)
EDIT(1)

EX (1)
FCOPY (1)
FINGER(1)
FLEECE(1)

1
N

Pt b b b ot b b e
1
(6, [T O R N G O Y )



TABLE OF CONTENTS

3. UTILITY PROGRAMS REFERENCE GUIDE (Continued)

FOLD (1) 3-49C
FORMAT (1) 3-50
FROM(1) 3-50A
FSCK(1) 3-51
FTP(1) 3-54
HEAD (1) 3-55A
IUL(1) 3-55B
LAST(1) 3-55C
LAYOUT (1) 3-56
LEAVE(1) 3-57A
LS(1) 3-58
MAIL(1) 3-61
MAKE.HD(1) 3-68A
MAKEWHATIS(1) 3-68B
MAP (1) 3-69
MKCONF (1M) 3-69A
MODEM(1) , UNMODEM(1) 3-69C
MORE (1) 3-69D
MULTIUSER(1) 3-790
PAGE(1) 3-70A
PRINTENV (1) 3-71
PS(1) 3-72
RANLIB(1) 3-74A
RESET (1) 3-75
RESTORE.HD (1) 3-75A
SDDATE (1M) 3-75B
SETMODE (1) 3-76
SIZEFS(1) 3-77
TAR(1) 3-78
TRANSP(1) 3-80A
UA(1) 3-81
VI(1l) 3-85
LOCKING (2) 3-87
RDCHK ( 2) 3-89
CURSES(3) 3-90
MENUS (5) 3-92
TERMCAP(5) 3-97
TTYTYPE(S) 3-108

ii



A.

C.

APPENDICES:
NUMERIC FORMATS, C, AND FORTRAN

INTEGER FORMATS
FLOATING-POINT FORMATS
VALUES IN MEMORY

SAMPLE LIST OF XENIX DEVELOPMENT SYSTEM UTILITIES

TRANSFERRING FILES BETWEEN ACS 8688 AND ALTOS 586 OR OTHER
COMPUTER SYSTEMS (ASYNCHRONOUS COMMUNICATIORS)

USING CU FACILITY
TRANSFERRING FILES UNDER UUCP FACILITY
CONNECTING THE ACS 8680 AND THE 586
PREPARING THE CONFIGURATION FILES
Recommended Entries
IF YOU HAVE SPECIAL REQUIREMENTS
Assigning the System Names
Defining the Communications Line Characteristics
Supplying the Login Information
Defining the File Accessibility
DISABLING AND ENABLING THE TTY PORTS
TESTING THE UUCP NETWORK
COPYING FILES USING UUCP
USING THE UUCP COMMAND
USING MODEMS WITH ALTOS XENIX SYSTEMS

8686 ASSEMBLY LANGUAGE REFERENCE HANUAL
XENIX Software Development Extract from Microsoft Manual

TUTORIAL AND REFERENCE MATERIAL
(ONIVERSITY OF CALIFORNIA, BERKELEY MANUALS)

An Introduction to the C Shell

An Introduction to Display Editing with Vi
Quick Reference for Ex,Vi

Ex Reference Manual

Edit: A Tutorial

" Ex/Edit Command Summary (Version 3.6)

Mail Reference Manual

-ME Reference Manual

Screen Updating and Cursor Movement Optimization: A Library
Package






OTHER DOCUMENTATION AVAILABLE

The following documentation is furnished with your XENIX
operating system. The only commercially-available book that is
provided is A User Guide to the UNIX System.

Altos 586 or ACS 8688 Operator's Guide

This manual describes the Altos computer system and its operating
specifications., It provides step-by-step procedures on how to
unpack and set up the computer system, how to install
peripherals, how to verify proper functioning of the system, and
briefly describes how to use the Altos diagnostics software.

Altos Introduction to XENIX Manual

This manual, describes the Altos implementation of the XENIX
operating system on the Altos 586 and ACS 8600 computer systems.
It provides background information and step-by-step procedures,
which are primarily aimed at a first-time computer user, on how
to install XENIX, how to log on/off, how to shut down the system
properly, how to save and restore files, and describes system
maintenance.

XENIX Reference Card

A concise reference card, which contains information on how to
use the Altos implementation of XENIX, describes the XENIX
commands, and lists the Business Shell (BSH) menus.

Altos Application Software Guide

(The ABS Shell is an optional package.) The Altos XENIX Applica-
tions Software Guide provides information on how to install the
optional ABS Menu Shell and the application programs, and how to
access the ABS menus.

Altos UNET User Guide

(The communication network services is an optional package.)
This document provides information on how to install the optional
communication network services and how to use them.

Bell Laboratories Manuals

UNIX Programmer's Manual, Seventh Edition. This is a three-
volume set.

Volume 1 provides general information about UNIX and
about the manual set. It contains reference informa-
tion on utilities and system calls, organized into
chapters.

1-4



USING THIS MANUAL
Purpose/Scope

This manual describes items that are unique to the Altos
implementation of the XENIX operating system or that are useful
for the programmer or advanced system user. It also serves as a
guide to the other documentation that is available on XENIX/UNIX.

Organization
This manual is divided into three chapters:

Chapter 1 lists other Altos documents that you receive as part of
your XENIX operating system. It also lists commercially-avail-
able documentation.

Chapter 2 provides instructions for installing the XENIX Develop-
ment System, and discusses the online tutorial, learn, and tells
you how to create new menus.

Chapter 3 lists useful utilities and describes the changes and
additions that exist between the Altos implementation of XENIX
and the Bell Laboratories Standard Version 7 of the UNIX
operating system.

The variations and additions are documented in the standard Bell
Laboratories format. The Altos documentation can be left in this
supplement or can be inserted into the Bell Laboratories UNIX
Programmer's Manual.

The Appendices contain general reference material.
Appendix A. Numeric Formats, C, and Fortran 77:

Reference information on the internal format used
for numerical representation in these languages.

Appendix B. Sample List of XENIX Utilities:

A sample list of utilities furnished with your
system. '

Appendix C. Transferring Files Between ACS 8600 and
ALTOS 586 or Other Computer Systems
(Asynchronous Communications):

A description on how to transfer files between the
ACS 8600 and Altos 586 XENIX computer systems, or
between two Altos XENIX computer systems which
support asynchronous (serial) communications. It
discusses the cu (call UNIX) and uucp (UNIX-to-UNIX
copy) facilities. For ACS 8600 versions 2.2d and
Altos 586 versions 2.3 and higher, refer to a
description of the File Transfer Utility for Xenix-

1-2



to-Xenix (ftp), discussed in Appendix H of the
Introduction to Xenix manual. It also discusses how

to use modems with your Altos XENIX systems.
Appendix D. 8086 Assembly Language Reference Manual:
A description of the XENIX 8086 Assembly Language.

Appendix E. Tutorial and Reference HMaterial
(University of California, Berkeley Manuals):

Documentation describing UNIX modifications
developed at the University of California,
Berkeley. The material is supplied from the
Regents of the University.



Volume 2A contains supplementary and tutorial
information. For example, this volume includes an index
to volume 2A and 2B, tutorials for the UNIX text
editor, information on document preparation, and
information on Unix programming (C language).

Volume 2B contains additional reference material, and
includes advanced topics and languages. For example,
this volume includes information or supporting tools
and languages such as yacg, which is a tool for writing
compilers for other 1languages. It also includes
information on system implementation and maintenance.

Commercially Available Books

There are numerous commercially available books on UNIX that
explain it and give tutorial material. Two such books are:

A User Guide to the UNIX System, by Thomas and Yates.

(This book is supplied with the XENIX operating system.) It
explains UNIX concepts and provides tutorials for getting started
with UNIX and for the most useful commands. All the utilities
listed in the book may not be provided with your XENIX operating
system. Refer to Appendix B, Sample Listing of XENIX Development
System Utilities, for a listing of utilities provided with your
system.

Using the UNIX System, by Richard Gauthier.

This book is more like a textbook than the Thomas and Yates'
book. It presents a more in depth explanation of UNIX, which is
of value to the programmer and those who are already familiar
with A User's Guide to the UNIX System.

Three useful programming books related to UNIX are:

The C Programming Language, by Kernighan and Ritchie.
This book describes the C programming language, which is the
language that the UNIX operating system is written in. It
provides tutorials as well as a reference chapter.

Software Tools, by Kernighan and Plauger.
This books is a guide to good programming techniques and a source
of proven, useful programs written in RatFor (Rational Fortan).
The C language, which is designed for UNIX, provided the model
for RatFor. Many of the tools described in this book are based
on UNIX models.

Learning to Program in C, by Thomas Plum. This book teaches
the C programming language from the ground up. With or without
pPrevious experience, anyone acquainted with computers will find a
clear description of how the language works from this book.

1-5






CHAPTER 2:
USING XENIX

The Altos Introduction to XENIX Manual covers the XENIX Run-Time
and portions of the Development System. Topics that are unique
to the development system are described in this chapter.

2-1



TOPICS COVERED IN INTRODUCTION TO XENIX MANUAL

This manual covers the basic XENIX utilities and how to use the
business shell menu system. Topics covered include:

Introduction to Operating System Concepts
Introduction to XENIX Operating System Concepts
Introduction to the Business Shell Menu System
Introduction to System Administration and Maintenance
Installing XENIX Run-Time System
Upgrading Older Versions of XENIX
Getting Started with XENIX
Configuring the Ports
Creating and Changing User Accounts
Starting Up XENIX (Booting from Hard Disk)
Log In, Log Off, and Quit
Setting and Changing Passwords
Using XENIX on a Regular Basis
Using the Business Shell Menu System
Basic Utilities
System Administration Utilities
Saving and Restoring Files
Random-Access Diskette Files
Checking and Cleaning Up Files
Shutting Down System
Using the ED Text Editor
Appendices:
Hard Disk Organizatin
Floppy Disk Organization
Cartridge Tape Organizatio
Printer Information
Terminal Capabilities
File Transfer Program

For more information, refer to the Introduction to XENIX Manual.

2-2



INSTALLING XENIX DEVELOPMENT SYSTEM

To install the XENIX Development System on your Altos Computer
System, you should:

1.

Install the Xenix Run-Time System by following the instruc-
tions in the Altos Introduction to Xenix Manual. Do not
shut the system down.

If you interrupt the installation procedure for some reason,
Or your system was shut down by a power failure or system
crash, see the Resuming Interrupted Installation section in
the Altos Introduction to XENIX Manual.

Make sure you are logged in as super-user (root).

Enter

# cd / <CR>

This command causes the system to go to the top directory
(or parent directory) of the XENIX system.

Insert the diskette labeled "XENIX DEVELOPMENT SYSTEM
UTILITIES #1 of n," where "n" is the total number of utility
diskettes.

Enter

# tar xv <CR>

This command causes the directories and files on the utility
diskette to be loaded onto the XENIX System. As files are
copied from diskette to hard disk, you will see messges of
the form:

x "Filename", nnnnn bytes, nn tape blocks

X "Filename", nnnnn bytes, nn tape blocks
NOTE
DO NOT TOUCH ANY KEYS ON THE KEYBOARD OR

REMOVE DISKETTE UNTIL YOU SEE THE SUPER-USER
PROMPT CHARACTER (#).



When you see the super-user prompt character (#), remove the
diskette and store it in a safe place.

Repeat steps 4 through 6 for each XENIX Development System
Utility diskette.

NOTE:

IF AVAILABLE DISK SPACE IS A PROBLEM ON YOUR
SYSTEM, YOU CAN INSTALL PORTIONS OF THE XENIX
DEVELOPMENT SYSTEM RATHER THAN THE ENTIRE
PACKAGE. IF YOU DESIRE, YOU CAN DISPLAY THE
CONTENTS OF A DISKETTE BY ENTERING tar tv
<CR>. NOTE THE UNWANTED FILES YOU WANT TO
REMOVE AFTER INSTALLING DISKETTE PER ABOVE
INSTRUCTIONS.

When you have loaded all of the utility diskettes, enter

# install <CR>
This step is optional.
An optional unlinked kernel can be installed. It contains a
new swapping algorithm, which swaps out processes that are
waiting for other processes first. The o0ld swapping
algorithm swapped out the largest process that wasn't
actually running. This would occur even if the process was
a large application that was just waiting for terminal
input.
If you wish to load the "Unlinked Kernel," you should:
Insert the diskette labeled "UNLINKED KERNEL.,"

Enter

# tar xv <CR>

Enter

# install <CR>
Unlinked Kernel installed.

Remove the diskette and store it in a safe place.

You have just installed the Unlinked Kernel.

2-4



10.

11.

12,

To load the C compiler onto the XENIX system, you should:
Insert the diskette labeled "C COMPILER."

Enter

# tar xv <CR>

Enter

# install <CR>
C compiler installed.

Remove the diskette and store it in a safe place.
You have just loaded the C Compiler.
If you wish to load the XENIX Fortran compiler, you should:
Insert the diskette labeled "F77."

Enter

# cd /tmp <CR>

Enter

# tar xv <CR>

Enter

# install <CR>
F77 installed/Remove diskette and store it in a safe
place.

You have just loaded the UNIX Fortran compiler.

If the prior steps were successful, your XENIX Development
System is correctly installed.

If you purchased the optional Altos communication network

services, refer to the Altos UNET User Guide for information
on how to install the communication network services.,

2-5



If you purchased the ABS package or other Altos application
packages, refer to the Altos XENIX Application Software
Guide for information on how to install the ABS Menu Shell
and application programs.

If you wish to start up XENIX, see the Getting Started with
XENIX chapter in the Altos Introduction to XENIX Manual.

If you don't plan on using your XENIX system at this time,
you can shut the system down by entering:

# sync <CR>
# etc/haltsys <CR>
** Normal System Shutdown **

2-6



LEARN PROGRAM

The learn program is an automated instructional facility which
provides tutorial information about the XENIX system and some of
the programs that run under it. Learn is especially useful for
the first-time user because it is interactive and requires no
prior UNIX experience.

At present, the learn program covers the following topics:

Basic File handling commands

The UNIX ed text editor

Advanced file handling

The eqgn language for typing mathematics

The "-ms" macro package for document formatting
The C programming language

For more information, refer to the UNIX Programmer's Manual,
Seventh Edition, Volume 2A, chapter 7, LEARN - Computer Aided
Instruction of UNIX (Second Edition).

Installing Learn

After you have installed the XENIX Development System, install
learn as follows:

1) Log in as root.

2) Enter:

# cd /usr/lib/learn <CR>
# make <CR>
# make play log <CR>

3) When the prompt (%) appears, the learn program is completely
activated.

4) To check that the required files are set up properly, enter:

# make check <CR>

2-7



Running Learn

Learn may be run by any user, from any directory in the systenm,
by entering:

(system prompt) learm <CR>
OR
(system prompt) learn Filename <CR>

where: Filename = lesson desire, such as "editor."



CREATING NEW MENUS

A menu system is defined as a collection of menus, each of which
is an ASCII text file. It is relatively easy to create a new,
customized Business Shell (BSH) menu system or to modify the
default menu system. The procedure to create a menu system is as
follows:

Create a text file containing the source menu in the following
format:

&Menuidentifier
e« « o the substance of the menu . .
e o o DOt over 24 lines length

&Actions
e « o Zero or more sequences of . . .
<> prompt size
« o « Sequences of actions . . .
e « « for this prompt o o o

This sequence may be repeated as often as desired. The amper-
sand (&) and tilde (~) must appear in the first column. &Actions
must appear, even if there are no actions.

The substances of each menu is composed of text which will be
reproduced exactly as it appears in the location where it
appears. There are five exceptions where characters have special
meanings:

"<">string" denotes a valid "prompt" string (it is the text of
the actual prompt)

"ldate" inserts the current date and time:

Fri Oct 28 16:28 1983

"luser" inserts the current user id: Don
"1pwd" inserts the current directory: /user/don/2
"iE" indicates where to leave the cursor

The "!" may appear as a suffix, in which case the string will be
right-justified instead of left-justified.

The prompts must be reproduced as they are expected to be typed,
in the Actions chapter. The actions may be composed of BSH
commands or commands which are executed by the standard XENIX
shell (/bin/sh). The actions should all be indented one tab
stop. "Size" rows will be reserved at the bottom of the screen
for output. If size is omitted, a value of 5 will be used. If
size is @, the entire screen will be used. After executing the
actions, the message

2-9



[Type return to continue]

will appear at the bottom of the screen. If size is -1 the
entire screen is used, but no message [Type return to continue]
is issued; and BSH resumes without pause after all the actions
have been executed.

Transfer to another menu is specified by writing the name of the
destination menu in the semantics field.

Commands to be executed by the BSH interpreter must be typed one-
per-1line.

Commands to be executed by UNIX follow the usual conventions.
See the UNIX Programmer's Manual.

For example, the the menu for Electronic Mail can be created as
follows:

&Mail
!date \ELECTRONIC~MAIL~SERVICES
“a - Receive~mail
“b - Send"mail
“c - Return~to~starting~menu
&Actions
~a /]
mail
~b -1
echo -n "To whom do you wish to send mail?"
read x
echo "Now type the message."
echo "Terminate it by typing a control -4."
mail S$x
~“c
Start

See the bsh, digest, menus, and fermcap utilities in the UNIX
Programmer's Manual and Chapter 3, Utility Programs Reference
Guide, for more information.

2-10



CHAPTER 3:
UTILITY PROGRAMS REFERENCE GUIDE

USEFUL UTILITIES

Table 3-1 lists some useful utilities that are supplied with
the Altos implementation of XENIX. This list is not intended to
be complete, but merely a summary of those utilities you will
find useful in getting started with XENIX. A complete listing
and description for all utilities may be found in the UNIX
Programmer's Manual, Volume 1.

You may list the full set of utilities supplied with any
particular release of XENIX by displaying the contents of the
/bin, /usr/bin, and /etc directories. Appendix F contains a
sample list of utilities.

The Altos implementation of XENIX provides some utilities which
differ from standard UNIX, and also some new utilities. This
chapter documents the changed and new utilities. See Table 3-2
for a quick reference. Note in particular: format, fcopy,
multiuser, and ua, and the new version of tar. The Business
Shell, bsh, has two accompanying utilities, menus and digest.

See also Appendix I for reference and tutorial material on the
University of California, Berkeley utilities, such as the screen
editior yi.



Table 3-1.
UTILITY

ar
as
cat
CccC

cd

chmod
chown
cmp
cp

ed
ftp
1d

1s
mkdir
mv

od

ps
pwd

rm
rmdir
setmode

stty

tar

wall

write

A List of Useful Utilities for Getting Started

Object library manager and archiver
XENIX 8086 relocatable assembler
Display a file

"C" language compiler

Change directory. Changes your current position
in the File System hierarchy.

Change mode. Changes file protection attributes
Change file ownership

Compare two files

Copy a file

The standard UNIX editor

XENIX file transfer program

XENIX linkage editor

List. Displays the contents of the current directory
Make a new directory

Move. Renames files and directories

Displays an octal dump of a file

Display system status

Print working directory. Displays current
position in the directory hierarchy

Remove. Deletes a file

Delete a directory

Sets mode for serial printer not run at 960¢ baud
Set terminal options, such as baud rate

File system archiver. May be used for file system
dumps and restores

Write to all users.

Write to other logged in users.

3-2



UNIX MANUAL CHANGES AND ADDITIONS

The material in this chapter may remain in this supplement or be
inserted in Chapters 1 through 5 of Volume 1 of the UNIX
Programmer's Manual, as you wish. If you insert these documents
into the manual, place them in the chapters corresponding to the
number in parentheses after the utility name. (Entries within
chapters are in alphabetic order.)

Some of the utilities are enhancements or variations of existing
Bell Laboratories UNIX utilities., Others are completely new.

The origin of each utility is specified (in abbreviated form) in
column 2 of Table 3-2.

Utilities labelled "(altos)" are provided by Altos Computer
Systems.

Utilities labelled "(bell)" were developed by Bell
Laboratories after their current manual was published.

Utilities labelled "(msoft)" were developed by Microsoft, Inc.
Utilities labelled "(uofcb)" were developed at the

University of California, Berkeley. They are supplied under
license from the Regents of the University.

Table 3-2, List of UNIX Manual Changes and Additions

UTILITY SOURCE DESCRIPTION

add.ct (1) (altos) Optional. Add cartridge tape to system.

add.hd (1) (altos) Optional. Add additional hard disk to
system,

aemail (1) (altos) Optional. Altos Electronic Mail Facili-

ty is an intelligent, screen-oriented
"user friendly" mail processing system.

bsh(1) (altos) Business Shell. A menu-driven user
system with special guidance and
convenience features. It enables you to
access the more commonly used UNIX
utilities via menus.

csh (1) (uofcb) A shell (command interpreter) with C-
like syntax.

digest (1) (altos) Create menu systems for the Business
Shell.

3-3



UTILITY
edit (1)

ex (1)
fcopy (1)
format (1)

fsck (1)

ftp(1)
layout (1)
1s (1)
Mail (1)

map (1)

multiuser (1)

printenv(1)
ps(1)
reset (1)

setmode (1)

sizefs(1)

tar (1)

List of UNIX Manual Changes and Additions (cont.)

SOURCE
(uofcb)

(uofcb)
(altos)

(altos)

(bell)

(altos)
(altos)
(uofcb)

(uofcb)

(altos)

(altos)
(uofcb)
(uofcb)

(uofcb)

(altos)

(altos)

(bell)

DESCRIPTION

Text editor (variant of the ex editor
for new or casual users).

Text editor.
Copy a floppy diskette, while in XENIX.

Format a floppy diskette, while in
XENIX.,

File system consistency check and inter-
active repair.

File transfer program.

Configure a hard disk.

List contents of directory.

Send and receive mail. (The U.C.B.
"Mail" utility goes in front of, and
makes use of, the Bell Labs "mail" util-
ity. The names of the two utilities are
distinguished by whether the first let-
ter is capitalized or lower case.)

Create an alternate sector map for a
hard disk drive.

Bring the system up multiuser.
Print out the environment.
Processor status.

Reset the terminal status bits to a
predefined state.

Sets mode for serial printer not run at
9600 baud.

Determine the size of a logical device
from the layout information associated
with a hard disk.

Tape or floppy archiver.
restores hard disk files.

Dumps and



Table 3.2.

UTILITY
ua(l)

vi(l)
locking(2)
rdchk (2)

curses(3)

menus (5)

termcap(5)

ttytype (5)

List of UNIX Manual Changes and Additions (Cont.)

SOURCE

(altos)

(uofcb)
(msoft)
(msoft)

(uofcb)

(altos)

(uofcb)

(altos)

DESCRIPTION

User administration. Adds and deletes
user accounts on the system.

Screen oriented (visual) display editor.
Lock or unlock a record of a file.

Check if there is data to be read.
Screen functions with "optional" cursor
motion. (Has window capability.)
Develop menus for Business Shell.

Data base which defines cursor-control
sequences for most commonly used CRT
terminals., It is used by most "screen
oriented" software, such as the Altos

shell and visual screen editor, wi.

Data base for defining terminal type
associated with each serial port.

3-5



ADD.CT(1) ADD.CT(1)

NAME
add.ct - add a cartridge tape drive

SYNOPSIS
add.ct

DESCRIPTION

Add.ct is a shell script which assists the installer of a
cartridge tape drive under XENIX. This script requires no
interaction with the installer.

The purpose of this script is to produce a device entry for
the cartridge tape drive in the /dev directory. When this

script is invoked, a device named /dev/ct® will be created
in /dev for the ACS 8604.

NOTE

Add.ct is an option on the ACS 8668 only; it
is only provided with the cartridge tape.
The 586 Kernel includes cartridge tape
devices named /dev/ct, /dev/rct, /dev/nct,
and /dev/nrct in the /dev directory.

3-6



ADD.HD(1) ADD.HD(1)

NAME

add.hd - add a second hard disk

SYNOPSIS

add.hd

DESCRIPTION

Add.hd is a shell script that helps the user to install a
second hard disk under XENIX. You must be super user to
execute add.hd. The first thing that the script does is
prompt the user for the size of the second drive. It asks
you whether you have a 10, 20, 30, or a 40 megabyte drive.
Once you reply with a correct number it will tell you that
it is making the appropriate sized disk.

Part of the process of making the extra disk is to run the
layout(l) program, which divides the disk into two areas.
One area is reserved for spare sectors (in case of bad
spots), and the other area is ready to be made into a file
system. The layout program is immediately followed by the
map(l) program, which checks the second drive for bad spots.
If there are any, it maps them into the spare area. When
the map(l) program is complete (10-20 minutes), a file
system is created on the second drive and checked.

Then add.hd adds fsck and /etc/mount commands to the /etc/rc
file (so that the add-on hard disk is checked and mounted
each time that the multiuser command is run), and makes the
lost+found directory for subsequent use by the fsck command.

The directory used for the add-on hard disk is /usr2. The
add-on hard disk remains mounted as /usr2 when add.hd exits
and when the multiuser command is executed.

SEE ALSO

layout (1) , make.hd(1l), map(l), sizefs(1)



- AEMAIL(1) AEMAIL(1)

NAME

aemail - send and receive mail

SYNOPSIS

aemail -

DESCRIPTION

The Altos Electronic Mail facility is an intelligent, screen
oriented, "user friendly" mail processing system. It incor-
porates the delivery facilities of both Mail(l) and umtp(l),
as well as letting the user specify which editor to use for
text composition.

Aemail is designed around boxes and files. Commands are
shown on the top of the screen, boxes or files are numbered.
When a command or box/file is chosen it is highlighted (if
the users terminal has reverse video). In addition to the
commands listed, "L and "R (control-L and -R) cause the
screen to be cleared and redrawn, backspace (usually “H)
unselects the chosen command, and interrupt (the RUB or DEL
key) stops the current command. The message "Status: ..."
that appears on the bottom right part of the screen always
states what the program is currently doing.

Reading mail. Incoming mail is automatically picked up and
put in the Inbox. It remains here until it is deleted by
the user.

Sending mail. The send command invokes the editor (see
Options below) on a file with the header lines "To:", "Sub-
ject:" and "Archive-a-copy (y/n) ? n". The user must put at
least one addressee on the "To:" 1line. (See Addresses
below.) The "Subject:" line is optional, and the last line
tells whether or not to save a copy of this in the users
Arhive Box. The user adds whatever text they desire to the
rest of the file. When the user exits from the editor,
aemail checks the addressee(s) to make sure they exist. If
it finds one (or more) addressees that it doesn't recognize,
it asks if the user wishes to invoke the editor again to
correct this. If not, the piece of mail is undeliverable
and is left in the users Outbox. If all addresses are
recognized, it is temporarily put in the users Outbox and
then delivered.

Addresses and Distribution lists. There are three types of

addresses: a local name, (account name on this machine), a
UNET machine and name (of the form "user_name on machine" or
"user_name at machine"). Any or all of these three types
can be used in the same distribution list or one "To:" line.
The "To:" line can also have Distribution list names mixed
in, but a Distribution list cannot have any other distribu-
tion list names in it. A distribution list has the form:

3-8



AEMAIL (1)

list names in it.

XENIX Programmer's Manual

AEMAIL(1)

A distribution list has the form:

DistName: address {, address, address, ... } o

Note the colon (':') after the DistName,
ing addresses and the ending period ('
list can extend over several lines.

the commas seperat-
.'). Distribution
A file in the users

Distribution List Box can contain several Distribution

lists.,

Archive of Saved Mail Box. When the user archives a piece
of mail, a copy of it is put in this box.

Recipient List Box.

This box contains two 1lsts,
addresses the gemail systems knows about.
the users on this machine,

of all the
One is a list of
the other is a list of all the

other machines this machine has UNET connections to.

Options.

The user can set four options, either by editing

them once the user is running the gemail program, or by set-

ting the appropriate environment variables.

They are: Edi-

tor (environment variable "EDITOR"), a program that takes

one argument,

the name of a file to edit, Maildrops ("MAIL-

DROP"), filename(s) of where incoming mail is to be picked
up, Printer ("PRINTPROG"), program that takes one argument,

the name of the file to be printed; and Shell,

(See below for defaults.)

~/.aemail_dir/Inbox/*
~/.aemail_dir/Outbox/*

~/.aemail_dir/SavedMail/*
~/.aemail_dir/DistLists/*
/etc/passwd
/etc/UNET/UNET.routes

/usr/bin/vi (8600/586)
/usr/ucb/v1 (68000)
/usr/bin/lpr

/bin/csh

Mail

mail

/etc/UNET/umtp (8600/586)
/usr/UNET/umtp (68000)
/usr/bin/aedeliver

/usr/bin/aepickup

SEE ALSO

vi, Mail (1)

("SHELL") .

users incoming mail
outgoing mail and undeliverable
mail
mail that is "archived”
distribution lists
to identify recipients
to identify UNET machine con-
nections
default editor
default editor
default print program
default shell
to deliver local or UUCP mail
used by Mail to send things
to deliver UNET mail

" n " "

figures out whether to call Mail
or umtp

transfers mail from "maildrops"
0o “/.aemail_dir/Inbox



AEMAIL (1) XENIX Programmer's Manual AEMAIL (1)

BUGS
Addresses can not be a mixture of UNET, UUCP and distribu-
tion list names.

Distribution list entries should be able to contain other
distribution names.

The locking mechanism has Mail(l)'s imperfections.

The users PATH environment variable must have the proper
path for Mail, vi and lpr.

Due to a curses bug the screen must be redrawn after high-
lighting.

3-18



APROPOS(1) APROPOS(1)

NAME
apropos - locate commands by keyword lookup

SYNOPSIS
apropos keyword ...

DESCRIPTION
Apropos shows which manual sections contain instances of any
of the given keywords in their title. Each word is consi-
dered separately and case of letters is ignored. Words
which are part of other words are considered, thus looking
for compile will hit all instances of 'compiler' also. Try

apropos password
and
apropos editor

If the line starts ‘name(section) ...'" you can do “man
section name' to get the documentation for it. Try ‘apropos
format' and then “man 3s printf' to get the manual on the
subroutine printf.
Apropos is actually just the -k option to the man(l) com-
mand.

FILES
/usr/lib/whatis data base

SEE ALSO

makewhatis(l), man(l), catman(8)

3-16A






BSH(1) BSH(1)

NAME

bsh -- Altos Computer Systems Business Shell

SYNOPSIS

bsh [ -fhgs ] [ menusystem ]

DESCRIPTION

Bsh is a menu-driven command language interpreter. It may
be installed as the "login shell" in the password file, or
it may be invoked directly by the user.

The command is implemented using the termcap and curses
facilities from UC Berkeley. It must be run from a terminal
which is defined within /etc/termcap.

This command should only be run interactively. A user's
terminal may be left in a very strange state if bsh is run
in the background.

In the options described below, either "line feed" or
"return" performs the newline function.

Options

-£ Start bsh in "fast" mode. In this mode, a prompt whose
first letter is a lower-case alphabetic or numeric
character is executed immediately when the first letter
is typed. The system does not wait for a terminating
newline. Prompts whose first letter is upper-case
alphabetic wait for a terminating newline before exe-
cuting the requested actions. Fast mode is the default
initial mode, if not over-ridden by the command line or
the BSHINIT variable (see below). The current mode may
be changed during execution through use of the "?mode"
command (described below).

-h displays a short help message describing how to invoke

-q displays a one-line descriptive summary of the syntax
used to invoke bsh.

-s Start bsh in "slow" mode. In this mode, all prompts
must be terminated by newline before execution occurs.
The current mode may be changed during execution
through use of the "?mode" command (described below).

A menu system may be specified if desired. 1In this case,
bsh utilizes the designated menu system instead of the
default one (/etc/menusys.bin). Prior to use by bsh a menu
system must be "digested" using the digest(l) utility. If
the specified menu system does not exist or if it is not
read—-accessible, bsh issues an error message and terminates.

3-11



BSH(1) BSH(1)

How to create a new menu system and how to update or modify
an existing menu system is described in menus(5).

Commands

prompts
Typing any of the prompts on the current menu screen
immediately causes the actions associated with the
prompt to be executed., It is the responsibility of the
menu designer to ensure that reasonable actions exist
for each prompt. Selecting a prompt with no associated
action causes an error message to be displayed.

An action may be any one of the following:

> Go to a specified menu

> Execute a sh(l) script

> Execute a bsh internal command
(e.g., chdir(1l))

menuname
Typing the name of a menu causes it to immediately
become the current menu. If the menu name is mis-
spelled, or if it does not exist in the current menu
system, an error message is displayed.

newline
Typing a newline causes the immediately preceding menu
to become the current one. If there is no previous
menu, an error message is displayed. Bsh does not dis-
tinguish between "line feed" and "return" -- both
generate a newline.

-~

Typing a question mark (?) causes the "help" menu
associated with the current menu to be displayed. Help
menus are no different from normal menus (except,
perhaps, in the type of information they contain).
When the current menu is named "xyz", typing a question
mark is entirely equivalent to typing "xyz?"

)
~

Typing a pair of question marks (?2?) causes the bsh
system help information to be displayed. It contains
much the same information as is presented here.

menuhame?

Typing the name of a menu followed by question mark

causes the designated help menu to become the current
one,

manualpage??
Typing the name of an entry in the Unix manual followed
by two question marks causes the designated manual page
to be displayed. Thus, to see the entry for bsh one

3-12



BSH(1) BSH(1)

may type "bsh??" This is precisely equivalent to
typing "!man bsh."

!command

The exclamation point (!) allows the user to "escape"
to the standard shell (sh(l)). The command must follow
the usual rules as described in the sh(l) documenta-
tion. In particular, the command may consist of a
sequence of shell commands separated by semicolons --
thus several actions may be invoked. If the command is
absent, sh(l) is invoked as a sub-shell with no argu-
ments. In this case, bsh will be resumed as soon as
the sub-shell terminates. (Usually, this is accomp-
lished by sending the sub-shell an end-of-file. End-
of-file is Control-d on most terminals.) You may
escape to the Berkeley C shell (csh(l)) by typing
"icsh.,"

?index
This special command causes bsh to display its internal
"index" for the current menu system. The index
contains the names of every accessible menu.

?mode
This special command allows the user to change from
"slow" mode to "fast" mode and vice versa. The user is
asked if he wishes to change to the alternate mode. If
your response begins with "y" or "Y", the change is
made, otherwise the current mode remains in effect.

interrupt
Bsh will immediately return to the top-level command
interpreter upon receipt of an interrupt signal. Such

a signal is usually generated via the DEL, RUBOUT or
BREAK key.

backspace

Bsh understands the Backspace function (as obtained
from /etc/termcap).

CANcel
Bsh interprets the CANcel key to mean "restart input.”
The CANcel key is Control-x on many of the more popular
terminals.

ESCape

Typing an ESCape has the same effect as does typing
CANcel.

DC2 1If the screen becomes "dirty" for some reason, you can
force bsh to clear it and redisplay the current
contents by transmitting an ASCII "DC2." This is
Control-r on most of the currently popular terminals.

q Typing a "q", "Q" or "Quit" all have the same effect:

3-13



BSH(1)

BSH(1)

bsh is terminated. If bsh is your login shell, "quit"
also results in your being logged out.

Environment

BSHINIT

The BSHINIT environment variable contains the initial
value of the default mode ("fast" or "slow"). If this
variable does not exist in the environment, bsh assumes
"fast" mode. BSHINIT should be set by inserting the
line BSHINIT="fast" or BSHINIT="slow" into your
.profile file.

Note that even if bgsh is designated as the "login
shell" in /etc/passwd, your .profile file will be
interpreted correctly. (See login(l) and sh(l).) 1In
particular, any overriding definitions you may have for
the kill and erase characters will be correctly inter-

preted by bsh.

FILES

~/.profile contains commands to be executed
during login(1)

/etc/menusys.bin default menu system used by bsh

/etc/passwd used to define a user's login name,
password, home directory, shell,
etc.

/etc/termcap contains terminal attribute des-

/usr/lib/bsh.messages

SEE ALSO
digest (1M), login(l), menus(5), sh(l), termcap(5)

DIAGNOSTICS
The diagnostics produced by bsh are intended to be self-

BUGS

explanatory.

criptions
system warning and error messages

Bsh probably should never allow itself to be run in the

background.

Bsh should detect the fact that the current terminal is not
defined in /etc/termcap and abort gracefully.

3-14



CSH (1) XENIX Programmer's Manual CSH (1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [ -cefinstvVxX ] [ arg ... ]

DESCRIPTION

Csh is a command language interpreter. It begins by execut-
ing commands from the file ‘.cshrc' in the home directory of
the invoker. If this is a login shell then it also executes
commands from the file ‘.login' there. 1In the normal case,
the shell will then begin reading commands from the termi-
nal, prompting with “% ', Processing of arguments and the
use of the shell to process files containing command scripts
will be described later.

The shell then repeatedly performs the following actions: a
line of command input is read and broken into words. This
sequence of words is placed on the command history list and
then parsed. Finally each command in the current line is
executed.

When a login shell terminates it executes commands from the
file “.logout' in the users home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs
with the following exceptions. The characters ‘&' ‘|' ;!
KPP (' %) form separate words. If doubled in t&&',
"I, “<<' or *>>' these pairs form single words. These
parser metacharacters may be made part of other words, or
prevented their special meaning, by preceding them with ‘\'.
A newline preceded by a ‘\' is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations,
Trv, YU oor "', form parts of a word; metacharacters in
these strings, including blanks and tabs, do not form
separate words. These quotations have semantics to be
described subsequently. Within pairs of ‘' or ‘"' charac-

ters a newline preceded by a “\' gives a true newline char-
acter.

When the shell's input is not a terminal, the character Y#

introduces a comment which continues to the end of the input

line. It is prevented this sgecial meaning when preceded by
L

"\' and in quotations using ° Y'Y, and "',
Commands

A simple command is a sequence of words, the first of which
specifies the command to be executed. A simple command or a

3-15



CSH (1) XENIX Programmer's Manual CSH (1)

Sequence of simple commands separated by ‘|' characters
forms a pipeline. The output of each command in a pipeline
is connected to the input of the next. Sequences of pipe-
lines may be separated by ‘;', and are then executed sequen-
tially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with an ‘&'.
Such a sequence is automatically prevented from being ter-
minated by a hangup signal; the nohup command need not be
used.

Any of the above may be placed in (" Y)' to form a simple

command (which may be a component of a pipeline, etc.) It is
also possible to separate pipelines with ‘||' or ‘&&'° indi-
cating, as in the C language, that the second is to be exe-
cuted only if the first fails or succeeds respectively. (See

.)
Substitutions

We now describe the various transformations the shell per-
forms on the input in the order in which they occur.

History substitutions

History substitutions can be used to reintroduce sequences
of words from previous commands, possibly performing modifi-
cations on these words. Thus history substitutions provide
a generalization of a redo function.

History substitutions begin with the character ‘1!°' and may
begin anywhere in the input stream if a history substitution
is not already in progress. This “!! may be preceded by an
"\' to prevent its special meaning; a ‘!' is passed
unchanged when it is followed by a blank, tab, newline, ‘="'
or “('. History substitutions also occur when an input 1line
begins with “T'. This special abbreviation will be
described later.

Any input line which contains history substitution is echoed
on the terminal before it is executed as it could have been
typed without history substitution.

Commands input from the terminal which consist of one or
more words are saved on the history list, the size of which
is controlled by the history variable. The previous command
is always retained. Commands are numbered sequentially from

For definiteness, consider the following output from the
history command:

3-16



CSH (1) XENIX Programmer's Manual CSH (1)

9 write michael
16 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not
usually necessary to use event numbers, but the current
event number can be made part of the prompt by placing an
*1' in the prompt string.

With the current event 13 we can refer to previous events by
event number “!11', relatively as in “!-2' (referring to the
same event), by a prefix of a command word as in ‘!d' for
event 12 or ‘!w' for event 9, or by a string contained in a
word in the command as in “!?mic?' also referring to event
9. These forms, without further modification, simply rein-
troduce the words of the specified events, each separated by
a single blank. As a special case ‘!!' refers to the previ-
ous command; thus ‘!!' alone is essentially a redo. The form
“1#' references the current command (the one being typed
in), It allows a word to be selected from further left in
the line, to avoid retyping a long name, as in “!#:1°',.

To select words from an event we can follow the event
specification by a ‘:' and a designator for the desired
words. The words of a input line are numbered from @, the
first (usually command) word being @, the second word (first
argument) being 1, etc. The basic word designators are:

[} first (command) word

n n'th argument

T first argument, i.e. ‘1!

$ last argument

% word matched by (immediately preceding) ?g? search
X-y range of words

-y  abbreviates ‘@-y'

* abbreviates ‘T-$', or nothing if only 1 word in event
X* abbreviates ‘x-$'

Xx- like ‘x*' but omitting word ‘$'

The ‘:' separating the event specification from the word
designator can be omitted if the argument selector begins
with a “T', *$', **' *—' or ‘', After the optional word
designator can be placed a sequence of modifiers, each pre-
ceded by a “:'., The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing '.xxx' component, leaving the root nai
s/1l/c/ Substitute 1 for

t Remove all leading pathname components, leaving the tai.

& Repeat the previous substitution.
g Apply the change globally, prefixing the above, e.g. ‘g

3-17



CSH (1) XENIX Programmer's Manual CSH(1)

P Print the new command but do not execute it.
q Quote the substituted words, preventing further substitution
X Like g, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g' the modification is applied only to
the first modifiable word. 1In any case it is an error for
no word to be applicable.

The left hand side of substitutions are not regular expres-
sions in the sense of the editors, but rather strings. Any
character may be used as the delimiter in place of “/'; a
"\' quotes the delimiter into the 1l and  strings. The
Character ‘&' in the right hand side is replaced by the text
from the left., A “\' quotes ‘&' also. A null 1l uses the
previous string either from a 1l or from a contextual scan
string s in ‘1?g?', The trailing delimiter in the substitu-
tion may be omitted if a newline follows immediately as may
the trailing ‘?' in a contextual scan.

A history reference may be given without an event specifica-
tion, e.g. ‘!$'., 1In this case the reference is to the pre-
vious command unless a previous history reference occurred
on the same line in which case this form repeats the previ-
ous reference. Thus “!?f00?T7 !$' gives the first and last
arguments from the command matching ‘?foo0?',

A special abbreviation of a history reference occurs when
the first non-blank character of an input line is a ‘T°',
This is equivalent to “!:sT' providing a convenient short-
hand for substitutions on the text of the previous line,
Thus ‘T1bTlib' fixes the spelling of ‘lib' in the previous
command. Finally, a history substitution may be surrounded
with “{' and “}' if necessary to insulate it from the char-
acters which follow. Thus, after ‘ls -1d “paul' we might do
“1{1}a' to do ‘1s -1d “paula', while “!la' would look for a
command starting ‘la’.

Quotations with ' and "

The quotation of strings by *'' and ‘"' can be used to
prevent all or some of the remaining substitutions. Strings
enclosed in ‘'' are prevented any further interpretation.
Strings enclosed in "' are yet variable and command
expanded as described below.

In both cases the resulting text becomes (all or part of) a

single word; only in one special case (see Command Substiti-
tion below) does a ‘"' quoted string yield parts of more
than one word; ' quoted strings never do.

Alias substitution

3-18



CSH(1) XENIX Programmer's Manual CSH(1)

The shell maintains a list of aliases which can be esta-
blished, displayed and modified by the alias and unalias
commands. After a command line is scanned, it is parsed
into distinct commands and the first word of each command,
left-to-right, is checked to see if it has an alias. If it
does, then the text which is the alias for that command is
reread with the history mechanism available as though that
command were the previous input line. The resulting words
replace the command and argument list. If no reference is
made to the history list, then the arqument list is left
unchanged.

Thus if the alias for ‘l1s' is ‘1s -1' the command ‘ls /usr'
would map to “1s -1 /usr', the argument list here being
undisturbed. Similarly if the alias for ‘lookup' was ‘grep
!T /etc/passwd' then “lookup bill' would map to ‘grep bill
/etc/passwd’.,

If an alias is found, the word transformation of the input
text is performed and the aliasing process begins again on
the reformed input line. Looping is prevented if the first
word of the new text is the same as the old by flagging it
to prevent further aliasing. Other loops are detected and
cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus we can ‘alias print 'pr \!* | 1lpr'' to
make a command which pr's its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as
value a list of zero or more words. Some of these variables
are set by the shell or referred to by it. For instance,
the argv variable is an image of the shell's argument list,

and words of this variable's value are referred to in spe-
cial ways.

The values of variables may be displayed and changed by
using the set and unset commands. Of the variables referred
to by the shell a number are toggles; the shell does not
care what their value is, only whether they are set or not.
For instance, the verbose variable is a toggle which causes
command input to be echoed. The setting of this variable
results from the -v command line option.

Other operations treat variables numerically. The ‘@' com-
mand permits numeric calculations to be performed and the
result assigned to a variable., Variable values are, how-
ever, always represented as (zero or more) strings. For the
purposes of numeric operations, the null string is con-
sidered to be zero, and the second and subsequent words of

3-19



CSH (1) XENIX Programmer's Manual CSH(1)

multiword values are ignored.

After the input line is aliased and parsed, and before each
command is executed, variable substitution is performed
keyed by ‘$' characters. This expansion can be prevented by
preceding the “$' with a *\' except within “"'s where it
always occurs, and within ‘'s where it never occurs.

Strings quoted by ‘' are interpreted later (see Command
substitution below) so “$' substitution does not occur there
until later, if at all. A “$' is passed unchanged if fol-
lowed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable
expansion, and are variable expanded separately. Otherwise,
the command name and entire argument list are expanded
together., It is thus possible for the first (command) word
to this point to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments,

Unless enclosed in "' or given the ‘:q' modifier the
results of variable substitution may eventually be command
and filename substituted. Within "' a variable whose value
consists of multiple words expands to a (portion of) a sin-
gle word, with the words of the variables value separated by
blanks. When the ‘:q' modifier is applied to a substitution
the variable will expand to multiple words with each word
separated by a blank and quoted to prevent later command or
filename substitution.

The following metasequences are provided for introducing
variable values into the shell input. Except as noted, it
is an error to reference a variable which is not set.

$name

S{name}
Are replaced by the words of the value of variable
name, each separated by a blank. Braces insulate npame
from following characters which would otherwise be part
of it., Shell variables have names consisting of up to
20 letters, digits, and underscores.

If pame is not a shell variable, but is set in the environ-
ment, then that value is returned (but : modifiers and the
other forms given below are not available in this case).

Sname [selector]

${name[selector]}
May be used to select only some of the words from the
value of pname. The selector is subjected to ‘$' substi-
tution and may consist of a single number or two
numbers separated by a ‘-', The first word of a

3-20



CSH (1) XENIX Programmer's Manual CSH(1)

variables value is numbered ‘1'. If the first number
of a range is omitted it defaults to ‘1', If the last
member of a range is omitted it defaults to "S$#name’'.
The selector ‘*' selects all words. It is not an error
for a range to be empty if the second argument is omit-
ted or in range.

$S#name

${#name}
Gives the number of words in the variable. This is
useful for later use in a ‘[selector]’'.

S0
Substitutes the name of the file from which command
input is being read. An error occurs if the name is
not known,

Snumber

${number}
Equivalent to ‘$argv[number]’'.

$*

Equivalent to ‘Sargv[*]°'.

The modifiers ‘:h', “:t', “:r', ‘:q' and ‘:x' may be applied
to the substitutions above as may ‘:gh', ‘:gt' and “:gr’'.

If braces ‘{' '}' appear in the command form then the modif-
iers must appear within the braces. The current implementa-
tion allows only one “:' modifier on each ‘$' expansion.

The following substitutions may not be modified with ‘:'
modifiers.,

$?name

${?name}
Substitutes the string ‘1' if name is set, ‘@' if it is
not.

$?20
Substitutes '1' if the current input filename is know,
*g' if it is not.

$$
Substitute the (decimal) process number of the (parent)
shell.

Command and filename substitution
The remaining substitutions, command and filename substitu-
tion, are applied selectively to the arguments of builtin

commands. This means that portions of expressions which are
not evaluated are not subjected to these expansions. For

3-21



CSH(1) XENIX Programmer's Manual CSH(1)

commands which are not internal to the shell, the command
name is substituted separately from the argument list. This
occurs very late, after input-output redirection is per-
formed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in
*Y'. The output from such a command is normally broken into
separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original
string. Within “"'s, only newlines force new words; blanks
and tabs are preserved.

In any case, the single final newline does not force a new
word. Note that it is thus possible for a command substitu-
tion to yield only part of a word, even if the command out-
puts a complete line.

Filename substitution

If a word contains any of the characters ‘*', 20, Y[ or
*{'" or begins with the character *~', then that word is a
candidate for filename substitution, also known as ‘glob-
bing', This word is then regarded as a pattern, and
replaced with an alphabetically sorted list of file names
which match the pattern. 1In a list of words specifying
filename substitution it is an error for no pattern to match
an existing file name, but it is not required for each pat-
tern to match. Only the metacharacters k1, 2V and C[!
imply pattern matching, the characters ‘~' and “{' being
more akin to abbreviations.

In matching filenames, the character ‘.' at the beginning of
a filename or immediately following a ‘/', as well as the
character /' must be matched explicitly. The character “*!
matches any string of characters, including the null string.
The character ‘?' matches any single character. The
sequence “[...]' matches any one of the characters enclosed.
Within “[...]', a pair of characters separated by *-'
matches any character lexically between the two.

The character ‘"' at the beginning of a filename is used to
refer to home directories. Standing alone, i.e. ‘™' it
expands to the invokers home directory as reflected in the
value of the variable home. When followed by a name consist-
ing of letters, digits and ‘-' characters the shell searches
for a user with that name and substitutes their home direc-
tory; thus '“ken' might expand to ‘/usr/ken' and
"“ken/chmach' to ‘/usr/ken/chmach'. If the character "' is
followed by a character other than a letter or /' or
appears not at the beginning of a word, it is left

3-22



CSH(1) XENIX Programmer's Manual CSH(1)

into the specified file as well as the standard output.
Name is expanded in the same way as ‘<' input filenames
are.

>> name

>>& name

>>! name

>>&! name
Uses file pame as standard output like ‘>' but places
output at the end of the file. If the variable
noclobber is set, then it is an error for the file not
to exist unless one of the “!' forms is given., Other-
wise similar to *>'.

If a command is run detached (followed by “&') then the
default standard input for the command is the empty file
‘/dev/null', Otherwise the command receives the environment
in which the shell was invoked as modified by the input-
output parameters and the presence of the command in a pipe-
line. Thus, unlike some previous shells, commands run from
a file of shell commands have no access to the text of the
commands by default; rather they receive the original stan-
dard input of the shell. The ‘<<' mechanism should be used
to present inline data. This permits shell command scripts
to function as components of pipelines and allows the shell
to block read its input.

Diagnostic output may be directed through a pipe with the

standard output. Simply use the form ‘|&' rather than just
\l'.

Expressions

A number of the builtin commands (to be described subse-
quently) take expressions, in which the operators are simi-
lar to those of C, with the same precedence. These expres-
sions appear in the @, exit, if, and wyhile commands. The
following operators are available:

Il & | T & == 1= <= >= < > <K& > + = *
/% LT ()
Here the precedence increases to the right, ‘==' and ‘“!=',
<= T>=' <" and *>', ‘<" and ‘>>', ‘+' and ‘-', ‘%' /1
and “%' being, in groups, at the same level. The ‘==' and

‘1=' operators compare their arguments as strings, all oth-
ers operate on numbers. Strings which begin with ‘@' are
considered octal numbers. Null or missing arguments are
considered “@'. The result of all expressions are strings,
which represent decimal numbers. It is important to note
that no two components of an expression can appear in the
same word; except when adjacent to components of expressions

3-24



CSH(1) XENIX Programmer's Manual CSH(1)

which are syntactically significant to the parser (‘&' |
KPS Y'Y ) ') they should be surrounded by spaces.

Also available in expressions as primitive operands are com-
mand executions enclosed in “{' and ‘}' and file enquiries
of the form ‘-1 name' where 1 is one of:

read access
write access
execute access
existence
ownership

zero size
plain file
directory

OQFMNO®MNXZEHR

The specified name is command and filename expanded and then
tested to see if it has the specified relationship to the
real user., If the file does not exist or is inaccessible
then all enquiries return false, i.e. ‘0#', Command execu-
tions succeed, returning true, i.e. ‘1', if the command
exits with status @, otherwise they fail, returning false,
i.e. @', If more detailed status information is required
then the command should be executed outside of an expression
and the variable status examined.

Control flow

The shell contains a number of commands which can be used to
regulate the flow of control in command files (shell
scripts) and (in limited but useful ways) from terminal
input. These commands all operate by forcing the shell to
reread or skip in its input and, due to the implementation,
restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the
if-then-else form of the if statement require that the major
keywords appear in a single simple command on an input line
as shown below,

If the shell's input is not seekable, the shell buffers up
input whenever a loop is being read and performs seeks in
this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto's
will succeed on non-seekable inputs.)

Builtin commands
Builtin commands are executed within the shell. If a buil-

tin command occurs as any component of a pipeline except the
last then it is executed in a subshell.

3-25



CSH(1) XENIX Programmer's Manual CSH(1)

alias

alias name

alias name wordlist
The first form prints all aliases. The second form
prints the alias for name. The final form assigns the
specified wordlist as the alias of pame; wordlist is
command and filename substituted. Name is not allowed

to be alias or unalias

alloc
Shows the amount of dynamic core in use, broken down
into used and free core, and address of the last loca-
tion in the heap. With an argument shows each used and
free block on the internal dynamic memory chain indi-
cating its address, size, and whether it is used or
free. This is a debugging command and may not work in
production versions of the shell; it requires a modi-
fied version of the system memory allocator.

break
Causes execution to resume after the end of the nearest
enclosing forall or while. The remaining commands on
the current line are executed. Multi-level breaks are
thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a gwitch statement as discussed below.

cd

cd name

chdir

chdir name
Change the shells working directory to directory name.
If no argument is given then change to the home direc-
tory of the user.

If pame is not found as a subdirectory of the current direc-
tory (and does not begin with ‘/', *./', or ‘../'), then
each component of the variable cdpath is checked to see if
it has a subdirectory name. Finally, if all else fails but
name is a shell variable whose value begins with ‘/', then
this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing wyhile or

foreach. The rest of the commands on the current line
are executed.

3-26



CSH (1) XENIX Programmer's Manual CSH (1)

default:
Labels the default case in a gswitch statement. The
default should come after all case labels.

echo wordlist
The specified words are written to the shells standard
output. A ‘\c' causes the echo to complete without
printing a newline, akin to the ‘\c' in nroff(l). A
*\n' in wordlist causes a newline to be printed. Oth-
erwise the words are echoed, separated by spaces.

else
end
endif
endsw

See the description of the foreach, if, switch, and
while statements below.

exec command
The specified command is executed in place of the
current shell.

exit

exit (expr)
The shell exits either with the value of the gtatus
variable (first form) or with the value of the speci-
fied expr (second form).

foreach name (wordlist)

end

The variable pame is successively set to each member of
wordlist and the sequence of commands between this com-
mand and the matching end are executed. (Both foreach
and end must appear alone on separate lines.)

The builtin command continue may be used to continue
the loop prematurely and the builtin command break to
terminate it prematurely. When this command is read
from the terminal, the loop is read up once prompting
with “?' before any statements in the loop are exe-
cuted., If you make a mistake typing in a loop at the
terminal you can rub it out.

glob wordlist

Like echo but no ‘\' escapes are recognized and words
are delimited by null characters in the output. Useful
for programs which wish to use the shell to filename
expand a list of words.

goto word
The specified word is filename and command expanded to

3-27



CSH (1) XENIX Programmer's Manual CSH(1)

yield a string of the form ‘label'. The shell rewinds
its input as much as possible and searches for a line
of the form ‘label:' possibly preceded by blanks or
tabs. Execution continues after the specified line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, then the
single command with arguments is executed. Variable
substitution on command happens early, at the same time
it does for the rest of the if command. Command must
be a simple command, not a pipeline, a command list, or
a parenthesized command list. Input/output redirection
occurs even if expr is false, when command is not exe-
cuted (this is a bug).

if (expr) then

else.if (expr2) then

else

endif
If the specified expr is true then the commands to the
first else are executed; else if expr2 is true then the
commands to the second else are executed, etc. Any
number of else-if pairs are possible; only one endif is
needed, The else part is likewise optional. (The
words else and endif must appear at the beginning of
input lines; the if must appear alone on its input line
or after an glse.)

login
Terminate a login shell, replacing it with an instance
of /bin/login. This is one way to log off, included for
compatibility with /bin/sh.

logout
Terminate a login shell. Especially useful if
ignoreeof is set.

nice

nice +number

nice command

nice +number command
The first form sets the pice for this shell to 4. The
second form sets the pice to the given number. The
final two forms run command at priority 4 and pumber
respectively. The super-user may specify negative
niceness by using ‘nice -number ...'. Command is

3-28



CsH (1)

XENIX Programmer's Manual CSH(1)

always executed in a sub-shell, and the restrictions
place on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause
hangups to be ignored for the remainder of the script.
The second form causes the specified command to be run
with hangups ignored. On the Computer Center systems
at UC Berkeley, this also submits the process. Unless
the shell is running detached, nohup has no effect.
All processes detached with '‘&'' are automatically
nohup'ed. (Thus, nohup is not really needed.)

onintr
onintr -
onintr 1label

Control the action of the shell on interrupts. The
first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to
return to the terminal command input level. The second
form ‘onintr -' causes all interrupts to be ignored.
The final form causes the shell to execute a ‘goto
label' when an interrupt is received or a child process
terminates because it was interrupted.

In any case, if the shell is running detached and
interrupts are being ignored, all forms of onintr have
no meaning and interrupts continue to be ignored by the
shell and all invoked commands.

rehash

Causes the internal hash table of the contents of the
directories in the path variable to be recomputed.

This is needed if new commands are added to directories
in the path while you are logged in. This should only
be necessary if you add commands to one of your own
directories, or if a systems programmer changes the
contents of one of the system directories.

repeat count command

set
set
set
set
set

The specified command which is subject to the same res-
trictions as the command in the one line if statement
above, is executed count times, I/0O redirections
occurs exactly once, even if count is 0.

name

name=word

name [index]=word

name=(wordlist)

The first form of the command shows the value of all

3-29



CSH(1) XENIX Programmer's Manual CSH(1)

shell variables. Variables which have other than a
single word as value print as a parenthesized word
list. The second form sets pame to the null string.
The third form sets pame to the single word. The fourth
form sets the jindex'th component of name to word; this
component must already exist. The final form sets name
to the list of words in wordlist. In all cases the
value is command and filename expanded.

These arguments may be repeated to set multiple values
in a single set command. Note however, that variable
expansion happens for all arguments before any setting
occurs.,

setenv name value
(Version 7 systems only.) Sets the value of environment
variable pame to be value, a single string. Useful
environment variables are ‘TERM' the type of your ter-
minal and ‘SHELL' the shell you are using.

shift

shift variable
The members of argv are shifted to the left, discarding
argv[l]. It is an error for argy not to be set or to
have less than one word as value. The second form per-
forms the same function on the specified variable.

source name
The shell reads commands from pame. Source commands may
be nested; if they are nested too deeply the shell may
run out of file descriptors. An error in a source at
any level terminates all nested source commands. Input

during source commands is never placed on the history
list.

switch (string)
case strl:

breaksw

default:
breaksw

endsw
Each case label is successively matched, against the
specified string which is first command and filename
expanded. The file metacharacters “*', *?' and ‘[...]"
may be used in the case labels, which are variable
expanded. If none of the labels match before a
‘default' label is found, then the execution begins
after the default label. Each case label and the
default label must appear at the beginning of a line.

3-39



CSH(1) XENIX Programmer's Manual CSH(1)

The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case
labels and default labels as in C. If no label matches
and there is no default, execution continues after the
endsw.

time

time command
With no argument, a summary of time used by this shell
and its children is printed. If arguments are given
the specified simple command is timed and a time sum-
mary as described under the time variable is printed.
If necessary, an extra shell is created to print the
time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set
to the specified value (second form). The mask is
given in octal. Common values for the mask are 002
giving all access to the group and read and execute
access to others or 022 giving all access except no
write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are
discarded. Thus all aliases are removed by ‘unalias
*!', It is not an error for nothing to be unaliased.

unhash

Use of the internal hash table to speed location of
executed programs is disabled.

unset pattern
All variables whose names match the specified pattern
are removed. Thus all variables are removed by ‘unset
*!'; this has noticeably distasteful side-effects. It
is not an error for nothing to be unset.

wait
All child processes are waited for. It the shell is
interactive, then an interrupt can disrupt the wait, at
which time the shell prints names and process numbers
of all children known to be outstanding.

while (expr)

end

While the specified expression evaluates non-zero, the
commands between the while and the matching end are
evaluated. Break and continue may be used to terminate
or continue the loop prematurely. (The while and end

3-31



CSH(1) XENIX Programmer's Manual CSH(1)

must appear alone on their input lines.) Prompting
occurs here the first time through the loop as for the
foreach statement if the input is a terminal.,

@
@ name = expr
@ name[index] = expr

The first form prints the values of all the shell vari-
ables. The second form sets the specified pname to the
value of expr. If the expression contains “<', *>', ‘&'
or ‘|' then at least this part of the expression must
be placed within (' ‘)'. The third form assigns the
value of expr to the index'th argument of pname. Both
name and its index'th component must already exist.

The operators ‘*=', “+=', etc are available as in C.
The space separating the name from the assignment
operator is optional. Spaces are, however, mandatory
in separating components of expr which would otherwise
be single words.

Special postfix “++' and ‘--' operators increment and
decrement pame respectively, i.e. @ i++',

Pre-defined variables

The following variables have special meaning to the shell.
Of these, argv, child, home, path, prompt, shell and status
are always set by the shell. Except for c¢child and status
this setting occurs only at initialization; these variables
will not then be modified unless this is done explicitly by
the user.

The shell copies the environment variable PATH into the
variable path, and copies the value back into the environ-
ment whenever path is set. Thus is is not necessary to
worry about its setting other than in the file .cghrc as
inferior ¢sh processes will import the definition of path
from the environment. (It could be set once in the .login
except that commands through pnet(l) would not see the defin-

ition.)

argv Set to the arguments to the shell, it is from
this variable that positional parameters are
substituted, i.e. ‘$1' is replaced by
‘Sargv([l]', etc.

cdpath Gives a list of alternate directories
searched to find subdirectories in c¢chdir com-
mands.

child The process number printed when the last

3-32



CSH (1)

echo

histchars

history

home

ignoreeof

mail

XENIX Programmer's Manual CSH (1)

command was forked with ‘&'. This variable
is unset when this process terminates.

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For non-
builtin commands all expansions occur before
echoing. Builtin commands are echoed before
command and filename substitution, since
these substitutions are then done selec-
tively.

Can be assigned a two character string. The
first character is used as a history charac-
ter in place of ‘‘!'', the second character
is used in place of the '‘"'' substitution
mechanism. For example, ' “set
histchars=",;"'' will cause the history char-
acters to be comma and semicolon.

Can be given a numeric value to control the
size of the history list. Any command which
has been referenced in this many events will
not be discarded. Too large values of his—
tory may run the shell out of memory. The
last executed command is always saved on the
history list.

The home directory of the invoker, initial-
ized from the environment. The filename
expansion of ‘"' refers to this variable.

If set the shell ignores end-of-file from
input devices which are terminals. This
prevents shells from accidentally being
killed by control-D's,

The files where the shell checks for mail.
This is done after each command completion
which will result in a prompt, if a specified
interval has elapsed. The shell says ‘You
have new mail,' if the file exists with an
access time not greater than its modify time.

If the first word of the value of pail is
numeric it specifies a different mail check-
ing interval, in seconds, than the default,
which is 10 minutes.

If multiple mail files are specified, then

the shell says ‘New mail in pame' when there
is mail in the file pname.

3-33



CSH(1)

noclobber

noglob

nonomatch

path

prompt

shell

XENIX Programmer's Manual CSH(1)

As described in the section on Input/output,
restrictions are placed on output redirection
to insure that files are not accidentally
destroyed, and that *>>' redirections refer
to existing files.

If set, filename expansion is inhibited.
This is most useful in shell scripts which
are not dealing with filenames, or after a
list of filenames has been obtained and
further expansions are not desirable.

If set, it is not an error for a filename
expansion to not match any existing files;
rather the primitive pattern is returned. It
is still an error for the primitive pattern
to be malformed, i.e. ‘echo [' still gives
an error,

Each word of the path variable specifies a
directory in which commands are to be sought
for execution. A null word specifies the
current directory. 1If there is no path vari-
able then only full path names will execute.
The usual search path is ‘.', ‘/bin' and
‘/usr/bin', but this may vary from system to
system, For the super-user the default
search path is ‘/etc', ‘/bin' and ‘/usr/bin’'.
A shell which is given neither the -c nor the
-t option will normally hash the contents of
the directories in the path variable after
reading .cshrc, and each time the path vari-
able is reset. If new commands are added to
these directories while the shell is active,
it may be necessary to give the rehash or the
commands may not be found.

The string which is printed before each com-
mand is read from an interactive terminal
input, If a ‘!' appears in the string it
will be replaced by the current event number
unless a preceding ‘\' is given. Default is
‘$ ', or “# ' for the super-user.

The file in which the shell resides. This is
used in forking shells to interpret files
which have execute bits set, but which are
not executable by the system. (See the
description of Non-builtin Command Execution
below.) Initialized to the (system-dependent)
home of the shell.

3-34



CSH(1) XENIX Programmer's Manual CSH(1)

status The status returned by the last command. If
it terminated abnormally, then 0200 is added
to the status. Builtin commands which fail
return exit status ‘1', all other builtin
commands set status ‘0°'.

time Controls automatic timing of commands. If
set, then any command which takes more than
this many cpu seconds will cause a line giv-
ing user, system, and real times and a utili-
zation percentage which is the ratio of user
plus system times to real time to be printed
when it terminates.

verbose Set by the -v command line option, causes the
words of each command to be printed after
history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin
command the shell attempts to execute the command via
exec(2). Each word in the variable path names a directory
from which the shell will attempt to execute the command.
If it is given neither a -c nor a -t option, the shell will
hash the names in these directories into an internal table
so that it will only try an exec in a directory if there is
a possibility that the command resides there. This greatly
speeds command location when a large number of directories
are present in the search path. If this mechanism has been
turned off (via unhash), or if the shell was given a -c or
-t argument, and in any case for each directory component of
path which does not begin with a *'/'', the shell concaten-
ates with the given command name to form a path name of a
file which it then attempts to execute.

Parenthesized commands are always executed in a subshell,
Thus ‘(cd ; pwd) ; pwd' prints the home directory; leaving
you where you were (printing this after the home directory),
while ‘cd ; pwd' leaves you in the home directory.
Parenthesized commands are most often used to prevent chdir
from affecting the current shell.

If the file has execute permissions but is not an executable
binary to the system, then it is assumed to be a file con-
taining shell commands an a new shell is spawned to read it.

If there is an alias for shell then the words of the alias
will be prepended to the argument list to form the shell
command. The first word of the alias should be the full
path name of the shell (e.g. “$shell'). Note that this is a
special, late occurring, case of alias substitution, and

3-35



CSH (1)

XENIX Programmer's Manual CSH(1)

only allows words to be prepended to the argument list
without modification.

Argument list processing

If argument @ to the shell is °-' then this is a login
shell. The flag arguments are interpreted as follows:

=C

-e

=n

-V

=X

-V

-X

Commands are read from the (single) following argument
which must be present. Any remaining arguments are

placed in argv.

The shell exits if any invoked command terminates
abnormally or yields a non-zero exit status.

The shell will start faster, because it will neither
search for nor execute commands from the file ‘.cshrc'
in the invokers home directory.

The shell is interactive and prompts for its top-level
input, even if it appears to not be a terminal. Shells
are interactive without this option if their inputs and
outputs are terminals.

Commands are parsed, but not executed. This may aid in
syntactic checking of shell scripts.

Command input is taken from the standard input.
A single line of input is read and executed. A \' may

be used to escape the newline at the end of this line
and continue onto another 1line.

Causes the yerbose variable to be set, with the effect
that command input is echoed after history substitu-
tion.

Causes the echo variable to be set, so that commands
are echoed immediately before execution.

Causes the yerbose variable to be set even before
*.cshrc' is executed.

Is to -x as -V is to -v,

After processing of flag arguments if arguments remain but
none of the -c¢, -i, -s, or -t options was given the first
argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for
possible resubstitution by “$6'. Since many systems use
either the standard version 6 or version 7 shells whose
shell scripts are not compatible with this shell, the shell

3-36



CSH (1) XENIX Programmer's Manual CSH(1)

will execute such a ‘standard' shell if the first character

of a script is not a “#', i.e. if the script does not start

with a comment. Remaining arguments initialize the variable
argyv.

Signal handling

The shell normally ignores guit signals. The interrupt and
quit signals are ignored for an invoked command if the com-
mand is followed by “&'; otherwise the signals have the
values which the shell inherited from its parent. The
shells handling of interrupts can be controlled by onintr.
Login shells catch the terminate signal; otherwise this sig-
nal is passed on to children from the state in the shell's
parent. In no case are interrupts allowed when a login
shell is reading the file “.logout'.

AUTHOR
William Joy
FILES
~/.cshrc Read at beginning of execution by each shell.
~/.login Read by login shell, after ‘.cshrc' at login.
~/.logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not starting with a
/tmp/sh* Temporary file for <K',
/dev/null Source of empty file.
/etc/passwd Source of home directories for '~name',
LIMITATIONS

Words can be no longer than 512 characters. The number of
characters in an argument varies from system to system.
Early version 6 systems typically have 512 character limits
while later version 6 and version 7 systems have 5120 char-
acter limits. The number of arguments to a command which
involves filename expansion is limited to 1/6'th the number
of characters allowed in an argument list. Also command
substitutions may substitute no more characters than are
allowed in an argument list.

To detect looping, the shell restricts the number of glias
substititutions on a single line to 20.

SEE ALSO

access(2), exec(2), fork(2), pipe(2), signal(2), umask(2),
wait(2), a.out(5), environ(5), ‘An introduction to the C
shell’

BUGS

Control structure should be parsed rather than being recog-
nized as built-in commands. This would allow control com-
mands to be placed anywhere, to be combined with ‘|', and to

3-37



CSH(1) XENIX Programmer's Manual CSH(1)

be used with ‘&' and ;' metasyntax.

Commands within loops, prompted for by ‘?', are not placed

in the history list.

It should be possible to use the ‘:' modifiers on the output
of command substitutions. All and more than one ‘:' modif-
ier should be allowed on “$' substitutions.

Some commands should not touch gtatus or it may be so tran-
sient as to be almost useless. Oring in 0209 to status on
abnormal termination is a kludge.

In order to be able to recover from failing exec commands on
version 6 systems, the new command inherits several open
files other than the normal standard input and output and
diagnostic output. If the input and output are redirected
and the new command does not close these files, some files
may be held open unnecessarily.

There are a number of bugs associated with the
importing/exporting of the PATH. For example, directories
in the path using the ~ syntax are not expanded in the PATH,
Unusual paths, such as (), can cause csh to core dump.

This version of ¢sh does not support or use the process con-
trol features of the 4th Berkeley Distribution.

3-38



CXREF (1) CXREF (1)

NAME

cxref - a simple C routine referencing program

SYNOPSIS

cxref file ...

DESCRIPTION

Cxref is a simple shell script which uses grep(l) and ex(l)
and sort(l) to make a listing of the routines in the speci-
fied C program files and the lines on which they are
defined. It is useful as a summary when prowling in a large
program, especially since cref has a habit of looping on
large program input.

SEE ALSO

BUGS

cref(l)

Cxref assumes that routines begin in the first column of
lines, and that type names are given on different lines than
the routine names. If you have a program which is in a
different format than this, cxref will fail miserably. The
operating system, C compiler, Pascal translator, ex editor,
etc. all work with cxref.

3-38a



DATE (1) DATE(1)

NAME

date - print and set the date

SYNOPSIS

date [-cms] [ yymmddhhmm [.ss] ]

DESCRIPTION

FILES

If no argument is given, the current date and time are
printed. If an argument is given, the current date is set.
YY is the last two digits of the year; the first mm is the
month number; dd is the day number in the month; hh is the
hour number (24 hour system); the second mm is the minute
number; .ss is optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month, and day
may be omitted, the current values being the defaults. The
system operates in GMT (Greenwich Mean Time). Date takes
care of the conversion to and from local standard and day-
light time.

The -c option causes date to use the hardware real-time
clock. Thus, date -c prints the current date and time from
the hardware real-time clock, and date -c yymmddhhmm sets
the real-time clock.

The -s option sets the system (i.e., the software) clock to
the current time and date from the hardware real-time clock.

The -m option should be used at midnight. Its primary
function is to update the year on the hardware real-time
clock if it is January 1 and to make adjustments to the
real-time clock if it is February 29 in a leap year. (The
hardware real-time clock does not automatically increment
the year on January 1, and it does not allow February 29.)
If -m is specified, date waits for the hardware real—-time
Clock to reach midnight (if it hasn't already), handles
January 1 and February 29, and then sets the software system
clock to the current time on the hardware real-time clock.
For the -m option to work correctly, the software clock and
the hardware clock should be within twelve hours of one
another, and date -m should be executed approximately at
midnight. Use cron(8) to execute date -m at midnight each
day.

Xenix normally uses only the system (i.e., software) clock.
The only time that Xenix uses the hardware real-time clock
is with the date command.

/usr/admwtmp to record time-setting

3-38B



DATE(1) : DATE(1)

SEE ALSO .
cron(8), utmp(5)

DIAGNOSTICS
'No permission' is you aren't the super-user and you try to
change the date; 'bad conversion' if the date is syntacti-
cally incorrect; 'waiting for midnight...' if date -m is
executed before the hardware clock reaches midnight.

3-38C






DIGEST(1M) DIGEST (1M)

NAME

digest -- create menu system(s) for the Business Shell
SYNOPSIS

digest [ options ] menufile ...
DESCRIPTION

Digest is used to create a menu system for use by the
Business Shell (bsh(l)). This program is also used to
modify an existing menu system.

One or more menu systems may be created under control of the
options described below:

-h Display an informative summary of the available options
and defaults. =-a is the same as -h.

-1 number

Check for menus longer than number lines in length.
The default value is 25 if none is specified. This is
the correct maximum number for a conventional 24-line
crt screen. 1In general, number should be one larger
than the length of the screen area (as defined by "1i"
in termcap) for the terminal to be used. The user is
responsible for ensuring that the width of a menu will
fit onto the terminal(s) he uses. Bsh(l) will truncate
lines which are too wide (without issuing a warning
message) .

-m Multiple menu systems: For each menu file (which must
be a directory), produce a separate menu system. The
names for each menu system are created by suffixing
".bin" to the menu file name.

—S menu
The starting menu for the generated menu system is the
one specified. This option doesn't make much sense
if used with the -m option. If no starting menu is
specified, the alphabetically first menu name is used
for each menu system.

-¥ Verbose: echo menu names as they are processed.

-0 file
The digested output is sent to the named file. By con-
vention, a digested menu system file name should end
with a ".bin" suffix.

A menu file may contain one or more menus or directories
containing menus. Digest will recursively process all menus
within a directory structure.

3-39



DIGEST (1M) DIGEST(1M)

Note that the -m and -o options are mutually exclusive. The
-m option indicates that each menu is to produce a separate
".bin" file: -0 indicates that a single output file is to
be produced with the name given.

The default output file is "menul.bin" if none is specified
via the -9 option, where "menul” is the first menu file
name.

The recommended way to create a menu system is to create a
tree of directories containing the various portions of the
system. Each subtree contains all the menus related to a
given subject. Thus, a primary menu (directory) is created
for, say, system management functions and subsidiary menus
are placed beneath (within) the directory for each of the
individual system management functions or function areas.
Help menus may be placed wherever appropriate in the

structure.
SEE ALSO
bsh(1l), menus(5), termcap(5)
DIAGNOSTICS
The diagnostics produced by digest are intended to be self-
explanatory.
BUGS

No outstanding bugs are known.

Digest might check each menu for validity and each menu
system for consistency.

3-48



DISABLE (C) DISABLE (C)

NAME
disable - turns off terminals.

SYNOPSIS
disable [-d] [[-e] tty ...

DESCRIPTION
This program manipulates the /etc/ttys file and signals init
to disallow logins on a particular terminal. The -d and -e
options "disable" and "enable" terminals, respectively.

EXAMPLES
A simple example follows:

disable ttyf1

Multiple terminals can be disabled or enabled using the
-d and -e switches before the appropriate terminal
name:

disable tty@l -e tty#2 -d tty#3 tty@4

FILES
/dev/tty*
/etc/ttys

SEE ALSO
login(C), enable(C), ttys(F), getty(M), init (M)

CAUTION

Be absolutely certain to pause at least one
minute before reusing this command or before
using the enable command. Failure to do so
may cause the system to crash.

3-48A



DUMP.HD(1) DUMP.HD(1)

NAME
dump.hd - dump a hard disk to tape

SYNOPSIS
dump. hd

DESCRIPTION
The dump.hd command dumps the entire file system from the
hard disk to the cartridge tape. Dump.hd should be run in
single-user mode in order to guarantee that the hard disk is
not being used by any other users while dump.hd is running.

Dump.hd produces a level # dump tape with today's date.
Refer to date(l) for further information about dump levels.

Dump.hd only dumps the file system from the first hard disk
to tape; it does not dump the second hard disk. If you want
to dump the second hard disk (i.e., the add-on hard disk) to
tape, use dump(l).

SEE ALSO
dump(1l) , dump(5), dumpdir(1l), restore.hd(1), restor (1)

3-49B



ENABLE (C) ENABLE (C)

NAME
enable - turns on terminals.
SYNOPSIS
enable [-d] [[-e] tty ...
DESCRIPTION
This program manipulates the /etc/ttys file and signals init
to allow logins on a particular terminal. The -e and -d
options may be used to allow logins on some terminals and
disallow logins on other terminals in a single command.
EXAMPLES
A simple command to enable tty#l follows:
enable ttyfl
Multiple terminals can be disabled or enable using the
-d and -e switches before the appropriate terminal
name:
enable ttyfl -e ttyf2 -d tty0f3 ttyd4
FILES
/dev/tty*
/etc/ttys
SEE ALSO

login(C), disable(C), ttys(F), getty(M), init(M)
CAUTION

Be absolutely certain to pause at least one
minute before reusing this command or before
using the disable command. Failure to do so
may cause the system to crash.

3-48C






EDIT (1)

NAME

YENTY Frogrammer's Manual EDIT (1)

edit - text editor (variant of the ex editor for new or
casual users)

SYNOPSIS

edit [ -r ] name ...

DESCRIPTION

Edit is a variant of the text editor ex recommended for new
or casual users who wish to use a command oriented editor.
The following brief introduction should help you get started
with edit. A more complete basic introduction is provided by
Edit: A tutorial . A Ex/edit command summary (version 2.8)
is also very useful. See ex(l) for other useful documents;
in particular, if you are using a CRT terminal you will want
to learn about the display editor yij.

BRIEF INTRODUCTION

To edit the contents of an existing file you begin with the
command "‘edit name'' to the shell. Edit makes a copy of
the file which you can then edit, and tells you how many
lines and characters are in the file. To Create a new file,
just make up a name for the file and try to run edit on it;
you will cause an error diagnostic, but don't worry.

Edit prompts for commands with the character ‘:'
should see after starting the editor.

existing file, then you will have some
buffer (its name for the copy

¢ which you
If you are editing an
lines in edjt's

of the file you are editing).

Most commands to edit use its °

tell them which line to use.

can be abbreviated p) and hit
after all edit commands) this
If you delete (d) the current
current line. When you start

line of the file the current line.
line, then the new last line becomes the current one.

‘current line'' if you don't
Thus if you say print (which
carriage return (as you should
current line will be printed.
line, edit will print the new
editing, edit makes the last
If you delete this last
In

general, after a delete, the next line in the file becomes

the current line.
case,)

(Deleting the last line is a special

If you start with an empty file, or wish to add some new

lines, then the append (a) command can be used.
give this command (typing a carriage return after

After you
the word

append) edit will read lines from your terminal until you

give a line consisting of just a “>.'!

after the current line.
the current line.

current line.

3-41

¢+ Placing these lines

The last line you type then becomes
The command insert
Places the lines you give before,

(i) is like append but
rather than after, the



EDIT (1) XENIX Programmer's Manual EDIT (1)

undo again to get it back. Note that commands such as yrite
and guit cannot be undone.

To look at the next line in the buffer you can just hit car-
riage return. To look at a number of lines hit “D (control
key and, while it is held down D key, then let up both)
rather than carriage return. This will show you a half
screen of lines on a CRT or 12 lines on a hardcopy terminal.
You can look at the text around where you are by giving the
command "‘z,.''. The current line will then be the last line
printed; you can get back to the line where you were before
the *‘z.'' command by saying ‘*'''', The z command can also
be given other following characters " "z-'' prints a screen
of text (or 24 lines) ending where you are; “‘z+'' prints
the next screenful. If you want less than a screenful of
lines do, e.g., " 'z.12'' to get 12 lines total. This method
of giving counts works in general; thus you can delete 5
lines starting with the current line with the command
*‘delete 5''.

To f£ind things in the file you can use line numbers if you
happen to know them; since the line numbers change when you
insert and delete lines this is somewhat unreliable. You
can search backwards and forwards in the file for strings by
giving commands of the form /text/ to search forward for
text or ?text? to search backward for text. If a search
reaches the end of the file without finding the text it
wraps, end around, and continues to search back to the line
where you are. A useful feature here is a search of the
form /"text/ which searches for text at the beginning of a
line. Similarly /text$/ searches for ftext at the end of a
line. You can leave off the trailing / or ? in these com-
manas.

The current line has a symbolic name “°,''; this is most
useful in a range of lines as in ‘‘.,$print'' which prints
the rest of the lines in the file. To get to the last line
in the file you can refer to it by its symbolic name *$'',
Thus the command *'$ delete'' or "'$d'' deletes the last
line in the file, no matter which line was the current line
before., Arithmetic with line references is also possible.
Thus the line *‘$-5'' is the fifth before the last, and
“Y.+20'' is 20 lines after the present.

You can find out which line you are at by doing *‘.='"'.

This is useful if you wish to move or copy a section of text
within a file or between files. Find out the first and last
line numbers you wish to copy or move (say 10 to 20). For a
move you can then say ''10,20move "a'' which deletes these
lines from the file and places them in a buffer named a.
Edit has 26 such buffers named a through z. You can later
get these lines back by doing ‘'"a move .'' to put the

3-42



EDIT (1) XENIX Programmer's Manual EDIT(1)

Edit numbers the lines in the buffer, with the first line
having number 1., If you give the command "‘1'' then edit
will type this first line. If you then give the command
delete edit will delete the first line, and line 2 will
become line 1, and edit will print the current line (the new
line 1) so you can see where you are. In general, the
current line will always be the last line affected by a com-
mand,

You can make a change to some text within the current line
by using the substitute (s) command. You say " ‘s/old/new/''
where 0ld is replaced by the old characters you want to get
rid of and new is the new characters you want to replace it
with.

The command file (f) will tell you how many lines there are
in the buffer you are editing and will say ' ‘[Modified]'' if
you have changed it. After modifying a file you can put the
buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit
(g) command. If you run edit on a file, but don't change
it, it is not necessary (but does no harm) to write the file
back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there
has been ‘‘No write since last change'' and edit will await
another command. If you wish not to write the buffer out
then you can issue another quit command. The buffer is then
irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line

numbers to see lines in the file you can make any changes
you desire. You should learn at least a few more things,
however, if you are to use edit more than a few times.

The change (c) command will change the current line to a
sequence of lines you supply (as in append you give lines up
to a line consisting of only a “*,''). You can tell change
to change more than one line by giving the line numbers of
the lines you want to change, i.e. ‘°3,5change''. You can
print lines this way too. Thus "‘1,23p'' prints the first
23 lines of the file.

The undo (u) command will reverse the effect of the last
command you gave which changed the buffer. Thus if give a
substitute command which doesn't do what you want, you can
say undo and the o0ld contents of the line will be restored.
You can also undo an undo command so that you can continue
to change your mind. Edit will give you a warning message
when commands you do affect more than one line of the
buffer. If the amount of change seems unreasonable, you
should consider doing an undo and looking to see what hap-
pened. If you decide that the change is ok, then you can

3-43



EDIT (1) XENIX Programmer's Manual EDIT(1)

contents of buffer a after the current line., If you want to
move or copy these lines between files you can give an edit
(e) command after copying the lines, following it with the
name of the other file you wish to edit, i.e. "“edit
chapter2''. By changing move to copy above you can get a
pattern for copying lines. If the text you wish to move or
copy is all within one file then you can just say
*Y10,20move $'' for example. It is not necessary to use
named buffers in this case (but you can if you wish).

SEE ALSO
ex (1), vi (1), ‘Edit: A tutorial', by Ricki Blau and James
Joyce
AUTHOR
William Joy
BUGS
See ex(1).

3-44



EX (1) XENIX Programmer's Manual EX(1)

NAME
ex - text editor
SYNOPSIS )
ex [ =] [ -v] [ -ttag ] [ -r ] [ +lineno ] name ...
DESCRIPTION . .
Ex is the root of a family of editors: edit, ex and vi. Ex
is a superset of ed, with the most notable extension being a
display editing facility. Display based editing is the
focus of yi.
If you have not used ed, or are a casual user, you will find
that the editor edit is convenient for you. It avoids some
of the complexities of ex used mostly by systems programmers
and persons very familiar with ed.
If you have a CRT terminal, you may wish to use a display
based editor; in this case see yi(l), which is a command
which focuses on the display editing portion of ex.
DOCUMENTATION

For edit and ex see the Ex/edit command summary - Version
2.0. The document Edit: A tutorial provides a comprehensive
introduction to edit assuming no previous knowledge of com-
puters or the UNIX system,

The Ex Reference Manual - Version 2.8 is a comprehensive and
complete manual for the command mode features of ex, but you

cannot learn to use the editor by reading it. For an intro-
duction to more advanced forms of editing using the command
mode of ex see the editing documents written by Brian Ker-
nighan for the editor ed; the material in the introductory
and advanced documents works also with ex.

An Introduction to Display Editing with Vi introduces the
display editor yi and provides reference material on vi. The
Vi OQuick Reference card summarizes the commands of yi in a
usetul, functional way, and is useful with the Introduction.

FOR ED USERS
If you have used ed you will find that ex has a number of
new features useful on CRT terminals. 1Intelligent terminals
and high speed terminals are very pleasant to use with vi.
Generally, the editor uses far more of the capabilities of
terminals than ed does, and uses the terminal capability
data base termcap(l) and the type of the terminal you are
using from the variable TERM in the environment to determine
how to drive your terminal efficiently. The editor makes
use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and
which is the central mode of editing when using yi(l).

3-45



EX (1) XENIX Programmer's Manual EX (1)

There is also an interline editing open (o) command which
works on all terminals.

Ex contains a number of new features for easily viewing the
text of the file. The z command gives easy access to win-
dows of text. Hitting "D causes the editor to scroll a
half-window of text and is more useful for quickly stepping
through a file than just hitting return., Of course, the
screen oriented visual mode gives constant access to editing
context.

Ex gives you more help when you make mistakes. The undo (u)
command allows you to reverse any single change which goes
astray. Ex gives you a lot of feedback, normally printing
changed lines, and indicates when more than a few lines are
affected by a command so that it is easy to detect when a
command has affected more lines than it should have.

The editor also normally prevents overwriting existing files
unless you edited them so that you don't accidentally
clobber with a write a file other than the one you are edit-
ing. If the system (or editor) crashes, or you accidentally
hang up the phone, you can use the editor recover command to
retrieve your work. This will get you back to within a few
lines of where you left off.

Ex has several features for dealing with more than one file
at a time. You can give it a list of files on the command
line and use the next (n) command to deal with each in turn.
The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files
to be dealt with. In general, filenames in the editor may
be formed with full shell metasyntax. The metacharacter %'
is also available in forming filenames and is replaced by
the name of the current file. For editing large groups of
related files you can use gx's tag command to quickly locate
functions and other important points in any of the files.
This is useful when working on a large program when you want
to quickly find the definition of a particular function.,

The command ctags(l) builds a tags file or a group of C pro-
grams,

For moving text between files and within a file the editor
has a group of buffers, named g through z. You can place
text in these named buffers and carry it over when you edit
another file,

There is a command & in ex which repeats the last substitute
command, In addition there is a confirmed substitute com-
mand. You give a range of substitutions to be done and the
editor interactively asks whether each substitution is
desired.

3-46



EX (1)

XENIX Programmer's Manual EX(1)

You can use the substitute command in ex to systematically
convert the case of letters between upper and lower case.

It is possible to ignore case of letters in searches and
substitutions. Ex also allows regular expressions which
match words to be constructed. This is convenient, for
example, in searching for the word ‘‘edit'' if your document
also contains the word "‘editor.''

Ex has a set of options which you can set to tailor it to
your liking. One option which is very useful is the autoin-
dent option which allows the editor to automatically supply
leading white space to align text. You can then use the "D

key as a backtab and space and tab forward to align new code
easily.

Miscellaneous new useful features include an intelligent
join (j) command which supplies white space between joined
lines automatically, commands < and > which shift groups of
lines, and the ability to filter portions of the buffer
through commands such as sort.

FILES
/usr/lib/ex2.0strings error messages
/usr/lib/ex2.@recover recover command
/usr/lib/ex2.0preserve preserve command
/etc/termcap describes capabilities of terminals
~/.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory

SEE ALSO

awk (1) , ed(1), grep(l), sed(l), edit(l), grep(l),
termcap(1l), vi(1l)

AUTHOR

BUGS

William Joy

The undo command causes all marks to be lost on lines
changed and then restored if the marked lines were changed.
Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physi-

cal lines. More than a screen full of output may result if
long lines are present.

File input/output errors don't print a name if the command
line ‘-' option is used.

3-47



EX (1) XENIX Programmer's Manual EX (1)

There is no easy way to do a single scan ignoring case.

Because of the implementation of the arguments to pext, only
512 bytes of argument list are allowed there.

The format of /etc/termcap and the large number of capabili-
ties of terminals used by the editor cause terminal type
setup to be rather slow.

The editor does not warn if text is placed in named buffers
and not used before exiting the editor.

Null characters are discarded in input files, and cannot
appear in resultant files.

3-48



FCOPY (1) PCOPY (1)

NAME
fcopy - copy a floppy diskette

SYNOPSIS
fcopy

DESCRIPTION
Fcopy is used to make duplicate copies of a floppy diskette.
Fcopy is menu driven and will ask whether you wish to copy a
diskette or quit. After one copy has been made, it will ask
if you desire to make more copies of the same diskette. All
diskettes must have been previously formatted. See for-
mat(l) to prepare diskettes (format) before making copies.
Also check to verify there is enough disk space available by
entering the df command.

586 OUTPUT
1440+0 records in
1440+0 records out

BUGS
Since the routine was written for a single floppy disk
system, it copies the entire diskette to the hard disk and
then copies it from the hard disk to the new diskette re-
quiring 1440 blocks of space on the hard disk (for the 586
system) .

FILES

./junk.????2? Temporary working file, created and subse-
quently removed by fcopy.

3-49



FINGER(1) FINGER(1)

NAME

finger - user information lookup program

SYNOPSIS

finger [ options ] name ...

DESCRIPTION

By default finger lists the login name, full name, terminal
name and write status (as a '*' before the terminal name if
write permission is denied), idle time, login time, and
office location and phone number (if they are known) for
each current UNIX user. (Idle time is minutes if it is a
single integer, hours and minutes if a ':' is present, or
days and hours if a 'd' is present.)

A longer format also exists and is used by finger whenever a
list of people's names is given. (Account names as well as
first and last names of users are accepted.) This format is
multi-line, and includes all the information described above
as well as the user's home directory and login shell, any
plan which the person has placed in the file .plan in their
home directory, and the project on which they are working
from the file .project also in the home directory.

Finger options include:

-m Match arguments only on user name.
-1 Force long output format.

-p Suppress printing of the .plan files

-s Force short output format.

FILES
/etc/utmp who file
/etc/passwd for users names, offices, ...
/usr/adm/lastlog last login times
~/.plan plans
~/ .project projects
SEE ALSO
who (1)
BUGS

Only the first line of the .project file is printed.
The encoding of the gcos field is UCB dependent - it knows

that an office “197MC' is 'l197M Cory Hall', and that ‘529BE'
is ‘529B Evans Hall'.

3-49A



FLEECE(1) FLEECE (1)

NAME .
fleece - look for files in home directories

SYNOPSIS
fleece name

DESCRIPTION '
Fleece looks for the named file in every home directory on
the system and makes a list on standard output of those
which exist.

FILES
/etc/passwd to find home directories

3-49B



FOLD(1) FOLD(1)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [ -width ] [ file ... ]

DESCRIPTION
Fold is a filter which will fold the contents of the
specified files, or the standard input if no files are
specified, breaking the lines to have maximum width width.
The default for width is 86. Width should be a multiple of
8 if tabs are present, or the tabs should be expanded using
expand(l) before coming to fold.

BUGS

If underlining is present it may be messed up by folding.

3-49C



FORMAT (1) ' FORMAT (1)

NAME
format - format a floppy diskette while running XENIX
SYNOPSIS
format
DESCRIPTION
Format is a menu-driven program for formatting floppy
diskettes.

For the Altos 586 computer systems, diskettes are formatted
in Altos 5-1/4 inch, double-density, double-sided format.

To use the format utility, enter:

format <CR>

You are then prompted by the menu to format (and to insert a
diskette) or to quit.

3-50



FROM(1) FROM(1)

NAME
from - who is my mail from?

SYNOPSIS
from

DESCRIPTION

From prints out the mail header lines in your mailbox file
to show you who your mail is from

FILES
/usr/spool/mail/*

SEE ALSO
mail(l), Mail(l), aemail(1l)

3-58A



FSCK(1) FSCK(1)

NAME

fsck - file system consistency check and interactive repair
SYNOPSIS

fsck [option] ... [filesystem] ...
DESCRIPTION

Esck audits and interactively repairs inconsistent condi-
tions for the named file systems. If a file system is
consistent, then the number of files, number of blocks used,
and number of blocks free are reported. If the file system
is inconsistent, the operator is prompted for concurrence
before each correction is attempted. Most corrections lose
data; all losses are reported. The default action for each
correction is to wait for the operator to respond 'yes' or
"no". Without write permission fsck defaults to -n action.

These options are recognized:
-y Assume a yes response to all questions
-n Assume a no response to all questions

-sX Ignore the actual free list and (unconditionally)
construct a new one by rewriting the super-block of the
file system. The file system should be unmounted while
this is done, or extreme care should be taken that the
system is quiescent and that it is rebooted immediately
afterwards. This precaution is necessary so that the
old, bad, in-core copy of the superblock will not
continue to be used, or written on the file system.

The free list is created with optimal interleaving
according to the specification X:

-sc:s space free blocks g blocks apart in
cylinders of ¢ blocks each.

If X is not given, the values used when the filesystem
was created are used. If these values were not
specified, then ¢ = 400, s = 9 is assumed.

-SX Conditionally reconstruct the free list. This option
is like -sX except that the free list is rebuilt only
if there were no discrepancies discovered in the file
system. It is useful for forcing free 1list

reorganization on uncontaminated file systems. -S
forces -n.

3-51



FSCK(1) FSCK(1)

-t If fsck cannot obtain enough memory to keep its tables,
it uses a scratch file. If the -t is specified, the
file named in the next argument is used as the scratch
file. Without the -t option, fsck prompts if it needs
a scratch file. The file should not be on the file
system being checked, and if it is not a special file
or did not already exist, it is removed when fsck
completes.

If no file systems are given to fsck, then a default list of
file systems is read from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free
list.

2, Blocks claimed by an i-node or the free list outside
the range of the file system.

3. Incorrect link counts.
4, Size checks:

Incorrect number of blocks in file.
Directory size not a multiple of 16 bytes.

5. Bad i-node format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated i-node.
I-node number out of range.

8. Super Block checks:

More than 65536 i-nodes.
More blocks for i-nodes than there are in the file
system,

9. Bad free block list format.
10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the "lost+found" directory. The name assigned is
the i-node number. The only restriction is that the
directory "lost+found" must preexist in the root of the
filesystem being checked and must have empty slots in which
entries can be made. This is accomplished by making
"lost+found", copying a number of files to the directory,
and then removing them (before fsck is executed).

3-52



FSCK(1) FSCK(1)

Checking the raw device is almost always faster.

FILES
/etc/checklist contains default list of file systems to
check.

SEE ALSO
dcheck(l), icheck(l), checklist(5), £fs(5), crash(8)

BUGS
I-node numbers for . and .. in each directory should be
checked for validity.
The -b option of icheck(l) should be available.

3-53



FTP(1) FTP(1)

NAME

ftp - transfer files between machines

SYNOPSIS

ftp [ -f device ] [ -s speed ] [ name ]

DESCRIPTION

BUGS

EFtp allows file transfer between two Altos Computer Systems
via an asynchronous serial channel. On the sending side,
name is a file or list of files to be sent. If pname is "-",
standard input is sent. On the receiving side, name is an
existing directory into which the files are received. 1If
name is omitted, files are received into the current direc-
tory. If name is "--", received files are written to stan-
dard output.

The following options are interpreted by ftp:

-£ The special file device is used to transfer files
between the machines. The ports associated with the
devices on each machine should be connected via a null
modem cable. The default device is /dev/tty6, which
uses port 6.

-s The transmission rate is set to gpeed. Currently sup-
ported speeds are 1200, 2400, 4800, and 9600 bits per
second. The default transmission rate is 9600 baud.

Ftp is compatible with the EFtp program available for Altos
CP/M and MP/M systems, so files can be transferred betwen
CP/M-MP/M systems and Xenix systems. See the CP/M-MP/M
documentation for details of the CP/M-MP/M Ftp.

Ftp must be run on both the sending and receiving computer.
The port that ftp is running on must have login disabled
(see disable(l)). Either side may be started first, but
both sides must be started within about 1 minute of each
other. The sending side will output 's' every few seconds
until communication is established with the other side;
likewise, the receiving side will output 'w' every few
seconds. During file transfer, ftp will output a '*' every
time a 128 byte block is successfully transmitted, and a '?'
every time a block is retransmitted to overcome a transmis-
sion error.

Since MP/M and CP/M pad files with control-z's (octal 32),
control-%'s are deleted from the end of files sent to Xenix
systems.

Files sent to MP/M and CP/M systems must have filenames

which are legal on those systems, Files sent from MP/M and
CP/M systems to Xenix systems may end up with filenames

3-54



FTP(1) PTP(1)

containing and sometimes ending with spaces; the Xenix
shells can deal with these filenames if the entire name is
enclosed in double quotes.

If the cable gets disconnected during transmission, you must
wait for ftp to die (which might take up to a minute) before
you can restart on the same port, otherwise the first ftp
will interfere with the second.

3-55



HEAD(1) HEAD(1)

NAME
head - give first few lines

SYNOPSIS
head [ -count ] [ file ... ]

DESCRIPTION
This filter gives the first count lines of each of the
specified files, or of the standard input. If count is
omitted it defaults to 10.

SEE ALSO

tail(1)

3-55A



IOL(1) I0L(1)

NAME .
iul - do underlining

SYNOPSIS
jul [ -1 ] [ -t terminal ] [ name ... ]

DESCRIPTION

Iul reads the named files (or standard input if none are
given) and translates occurrences of underscores to the
sequence which indicates underlining for the terminal in
uses, as specified by the environment variable TERM. The -t
option overrides the terminal kind specified in the environ-
ment. The file /etc/termcap is read to determine the appro-
priate sequences for underlining. If the terminal is in-
capable of underlining, but it capable of a standout mode
then that is used instead. If the terminal can overstrike,
or handles underlining automatically, iul degenerates to
cat(l). If the terminal cannot underline, underlining is
ignored.

The -i option causes iul to indicate underlining onto a
separate line containing appropriate dashes '-'; this is
useful when you want to look at the underlining which is
present in an nroff output stream on a crt-terminal.

SEE ALSO
man(l), nroff(l)

BUGS
Nroff usually outputs a series of backspaces and underlines
intermixed with the text to indicate underlining. No
attempt is made to optimize the backward motion.

3-55B



LAST(1) LAST(1)

NAME

last - indicate last logins of users and teletypes

SYNOPSIS

last [ -N ] [ name ... ] [ tty ... ]

DESCRIPTION

Last will look back in the wtmp file which records all
logins and logouts for information about a user, a teletype
or any group of users and teletypes. Arguments specify
names of users or teletypes of interest. Names of teletypes
may be given fully or abbreviated. For example ‘last ' is
the same as ‘last tty@'. If multiple arguments are given,
the information which applies to any of the arguments is
printed. For example ‘last root console' would list all of
"root's" sessions as well as all sessions on the console
terminal. Last will print the sessions of the specified
users and teletypes, most recent first, indicating the times
at which the session began, the duration of the session, and
the teletype which the session took place on. If the ses-
sion is still continuing or was cut short by a reboot, last
so indicates.

The pseudo-user reboot logs in at reboots of the system;
thus

last reboot
will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and
logouts, in reverse order. The -N option limits the report
to N lines.

If last is interrupted, it indicates how far the search has
progressed in wimp. If interrupted with a quit signal
(generated by a control-1l) last indicates how far the search
has progressed so far, and the search continues.

FILES

/usr/adm/wtmp login data base
/usr/adm/shutdownlog which records shutdowns and reasons
for same

SEE ALSO

wtmp(5) , ac(8),

3-55C



LAYOUT(1)

NAME

LAYOUT(1)

layout - configure a hard disk

SYNOPSIS

layout layout-device cyls heads sectors swapblocks | @

DESCRIPTION

LQXQLI.'C C
devices"

system.

reates a table defining a number of "logical
associated with each physical disk in the XENIX
Layout records this table on cylinder zero of each

disk. Each entry in the table is in the following format:

struct layout {

}i

daddr_t 1_blkoff; /* Block offset to area */
daddr_t 1_nblocks; /* Number of blocks in area */

Layout defines ten "logical devices" on the hard disk:

The whole disk, with the alternate sector mecha-
nism disabled.

The swap area.
The root file system.
Unused.

Alternate sector area into which bad disk sectors
are automatically mapped by the XENIX kernel.

The logical device numbers correspond to device numbers in
the hard disk driver.

Other device numbers are pre-defined in the XENIX kernel as

follows:
10
11
12
13

14
15

Future expansion.
All of track®.
Boot program area.

Portion of cylinder zero used for f£sck temporary
file. '

Layout information created by this utility.

Sector to sector map (see map(l)).

3-56



LAYOUT(1) LAYOUT(1)

The ¢yls, heads, sectors, and swapblocks options must be

_ specified. They represent the number of cylinders, heads,
sectors per track and number of blocks in the swap area,
respectively. -

If swapblocks = @, the add-on hard disk (i.e., the second
hard disk on the system) is initialized.

SEE ALSO
map(l) , sizefs(1)

EXAMPLES
layout /dev/hd@.layout 306 6 16 5000

For a 2@ megabyte hard disk with 5000 blocks of swap area.
layout /dev/hd@.layout 512 8 16 4500

For a 4@ megabyte hard disk with 4508 blocks of swap area.
layout /dev/hdl.layout 512 8 16 @

For a 40 megabyte add-on hard disk.

3-57



LEAVE (1) | LEAVE (1)

NAME v
leave - remind you when you have to leave

SYNOPSIS
leave [ hhmm ]

DESCRIPTION
Leave waits until the specified time, then reminds you that
you have to leave. You are reminded 5 minutes and 1 minute
before the actual time, at the time, and every minute
thereafter. When you log off, leave exits just before it
would have printed the next message.
The time of day is in the form hhmm where hh is a time in
hours (on a 12 or 24 hour clock). All times are converted
to a 12 hour clock, and assumed to be in the next 12 hours.
If no argument is given, leave prompts with "When do you
have to leave?". A reply of newline causes leave to exit,
otherwise the reply is assumed to be a time. This form is
suitable for inclusion in a .login or .profile.
Leave ignores interrupts, quits, and terminates. To get rid of
it you should either log off or use "kill -9" giving its process
id.

SEE ALSO

calendar (1)

3-57A



LS(1)

NAME

LS(1)

ls - List contents of directory

SYNOPSIS

ls [-1ltasdrucifgmnlCgbxFRA] [Filenames]

DESCRIPTION

For each directory argument, ls lists the contents of the
directory; for each file argument, ls repeats its name and
any other information requested. The output is sorted
alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but
file arguments appear before directories and their contents.

There are three major listing formats. The format chosen
depends on whether the output is going to a teletype, and
may also be controlled by option flags. The default format
for a teletype is to list the contents of directories in
multi-column format, with the entries sorted down the
columns. (Files which are not the contents of a directory
being interpreted are always sorted across the page
rather than down the page in columns. This is because
the individual file names may be arbitrarily long.) If the
standard output is not a teletype, the default format is to
list one entry per line. Finally, there is a stream
output format in which files are listed across the page,
separated by "." characters. The -m flag enables this
format; when invoked as 1 this format is also used.

The following options are available:

-1 List in long format, giving mode, number of links,
owner, size in bytes, and time of last modification for
each file, (See below.) If the file is a special
file, the size field contain instead the major and
minor device numbers.

-t Sort by time modified (latest first) instead of by
name, as is normal.

-a List all entries; usually '.' and '..'" are not sup-
pressed.

-s Give size in blocks, including indirect blocks, for
each entry and total blocks.

-d If argument is a directory, list only its name, not its
contents (mostly used with -1 to get status on
directory).

-r Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate.

3-58



LS(1)

=u

-9
-m

-n

=X

~-R

-A

LS(1)

Use time of last access instead of last modification
for sorting (-t) or printing (-1).

Use time of file creation for sorting or printing.

Print i-number in first column of the report for each
file listed.

Force each argument to be interpreted as a directory
and list the name found in each slot. This option
turns off -1, -t, -s, and -r, and turns on =-a; the
order is the order in which entries appear in the
directory.

Give group ID instead of owner ID in long listing.

Force stream output format.

List in long format (similary to 1 option), except that
it lists user number rather than file owner.

Force one entry per line output format, e.g., to a
teletype.

Force multi-column output, e.g., to a file or a pipe.

Force printing of non-graphic characters in file names
as the character '?'; this normally happens only if the
output device is a teletype.

Force printing of non-graphic characters to be in the
*ddd notation in octal.

Force columnar printing to be sorted across rather than
down the page; this is the default if the last
character of the name the program is invoked with is an
'x'.

Cause directories to be marked with a trailing '/' and
executable files to be marked with a trailing '*'; this
is the default if the last character of the name the
program is invoked with is a 'f’'.

Recursively list subdirectories encountered.

List all entries; usually '.' and '..' are suppressed.

The mode printed under the -1 option contains 11 characters
which are interpreted as follows: the first character is

d
b
c

if the entry is a directory;
if the entry is a block-type special file;
if the entry is a character-type special file;

3-59



LS(1) LS(1)

m if the entry is a multiplexor-type character special
file;
- if the entry is a plain file.

The next nine characters are interpreted as three sets of
three bits each. The first set refers to owner permissions;
the next to permissions to others in the same user-group;
and the last to all others. Within each set the three
characters indicate permission respectively to read, to
write, or to execute the file as a program., For a
directory, "execute" permission is interpreted to mean
permission to search the directory for a specified file.
The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

I X Er

The group-execute permission character is given as g if the
file has set-group-ID mode; likewise, the user-execute
permission character is given as g if the file has set-user-
ID mode.

The last character of the mode (normally 'x' or '-') is "t"
if the 1000 bit of the mode is on. See chmod(l) for the
meaning of this mode and instructions on changing the file
mode.,

When the sizes of the files in a directory are listed, a
total count of blocks, including indirect blocks is printed.

FILES
/etc/passwd to get user ID's for 'ls -1'
/etc/group to get group ID's for 'ls -g'

BUGS
Newline and tab are considered printing characters in file
names.

The output device is assumed to be 80 columns wide.
The option setting based on whether the output is a teletype
is undesirable as "ls =-s" is much different than "ls -

s|lpr". On the other hand, not using this setting would make
old shell scripts which used ls ineffective.

3-60



MATIL (1) XENIX Programmer's Manual MAIL (1)

NAME

mail - send and receive mail
SYNOPSIS

mail [ -f [ name ] ] [ people ... ]
INTRODUCTION

Mail is a intelligent mail processing system, which has a
command syntax reminiscent of ed with lines replaced by mes-
sages,

Sending majl. To send a message to one or more other peo-
ple, mail can be invoked with arguments which are the names
of people to send to. You are then expected to type in your
message, followed by an EOT (control-D) at the beginning of
a line. The section below, labeled Replying to or originat-
ing mail, describes some features of mail available to help
you compose your letter.

Reading mail. In normal usage, mail is given no arguments
and checks your mail out of the post office, then printing

out a one line header of each message there. The current
message is initially the first message (numbered 1) and can
be printed using the print command (which can be abbreviated
P). You can move among the messages much as you move
between lines in ed, with the commands ‘+' and ‘-' moving
backwards and forwards, and simple numbers typing the
addressed message.

Disposing of mail. After examining a message you can delete
(d) the message or reply (r) to it. Deletion causes the
mail program to forget about the message. This is not
irreversible, the message can be undeleted (u) by giving its
number, or the mail session can be aborted by giving the
exit (x) command. Deleted messages will, however, usually
disappear never to be seen again,

messages. Commands such as print and delete
often can be given a list of message numbers as argument to
apply to a number of messages at once. Thus '‘delete 1 2'!
deletes messages 1 and 2, while *‘delete 1-5'' deletes mes-
sages 1 through 5., The special name *'*'' addresses all
messages, and " '$'' addresses the last message; thus the
command top which Qrints the first few lines of a message
could be used in " "top *'' to print the first few lines of
all messages.

Replying to or originating mail. You can use the reply com-
mand to set up a response to a message, sending it back to
the person who it was from. Text you then type in, up to an
end-of-file (or a line consisting only of a “'.'') defines
the contents of the message. While you are composing a

3-61



MAIL(1) XENIX Programmer's Manual MAIL(1)

Ny

message, mail treats lines beginning with the character
specially. For instance, typing '*“m'' (alone on a line)
will place a copy of the current message into the response
right shifting it by a tabstop. Other escapes will set up
subject fields, add and delete recipients to the message and
allow you to escape to an editor to revise the message or to
a shell to run some commands. (These options will be given
in the summary below.)

Ending a mail processing session. You can end a mail ses-
sion with the quit (g) command. Messages which have been
examined go to your mbox file unless they have been deleted
in which case they are discarded. Unexamined messages go
back to the post office. The -f option causes mail to read
in the contents of your mbox (or the specified file) for
processing; when you quit mail writes undeleted messages
back to this file,

Personal and systemwide distribution lists. It is also pos-
sible to create a personal distribution lists so that, for
instance, you can send mail to "‘cohorts'' and have it go to
a group of people. Such lists can be defined by placing a
line like

alias cohorts bill ozalp sklower jkf mark cory:kridle

in the file .mailrc in your home directory. The current
list of such aliases can be displayed by the alias (a) com-
mand in mail. System wide distribution lists can be created
by editing /usr/lib/aliases, see gliases(5) and deliver-
mail(8); these are kept in a slightly different syntax. 1In
mail you send, personal aliases will be expanded in mail
sent to others so that they will be able to reply to the
recipients. System wide gliases are not expanded when the
mail is sent, but any reply returned to the machine will
have the system wide alias expanded as all mail goes through
delivermail. If you edit /usr/lib/aliases, you must run the
program newaliases(l).

Network mail (ARPA, UUCP, Berkpnet) Mail to sites on the
ARPA network and sites within Bell laboratories can be sent
using ‘‘name@site'' for ARPA-net sites or ‘‘machinel!user''
for Bell labs sites, provided appropriate gateways are known
to the system. (Be sure to escape the ! in Bell sites when
giving it on a ¢sh command line by preceding it with an \.
Machines on an instance of the Berkeley network are
addressed as " ‘machine: user", e.g. ‘csvax:bill'', When
addressed from the arpa-net, '’‘csvax:bill'' is known as
‘csvax.bill@berkeley'’'.

Mail has a number of options which can be set in the .mailrc
file to alter its behavior; thus "‘set askcc'' enables the

3-62



MAIL (1)

*"askcc''!

SUMMARY

XENIX Programmer's Manual MAIL(1)

feature. (These options are summarized below.)

(Adapted from the ‘Mail Reference Manual') Each command is
typed on a line by itself, and may take arguments following
the command word. The command need not be typed in its

entirety - the first command which matches the typed prefix

is used.

For the commands which take message lists as argu-

ments, if no message list is given, then the next message
forward which satisfies the command's requirements is used.
If there are no messages forward of the current message, the
search proceeds backwards, and if there are no good messages
at all, mail types '‘No applicable messages'' and aborts the

command,

~

(T

alias

chdir

delete

dp

edit

exit

from

Goes to the previous message and prints it out.
If given a numeric argument n , goes to the n th
previous message and prints it.

Prints a brief summary of commands.
Executes the UNIX shell command which follows.

(a) With no arguments, prints out all
currently-defined aliases. With one argument,
prints out that alias. With more than one argu-
ment, adds the users named in the second and
later arguments to the alias named in the first
argument.

(c) Changes the user's working directory to that
specified, if given., If no directory is given,
then changes to the user's login directory.

(d) Takes a list of messages as argument and
marks them all as deleted. Deleted messages
will not be saved in mbox , nor will they be
available for most other commands.,

(also dt) Deletes the current message and prints
the next message. If there is no next message,
mail says ‘‘at EOF,.''

(e) Takes a list of messages and points the text
editor at each one in turn. On return from the
editor, the message is read back in.

(ex or x) Effects an immediate return to the
Shell without modifying the user's system mail-
box, his mbox file, or his edit file in -f .,

(f) Takes a list of messages and prints their

3-63



MAIL (1)

headers

help
hold

mail

next

preserve

print

quit

reply

respond

save

XENIX Programmer's Manual MAIL(1)

message headers.

(h) Lists the current range of headers, which is
an 18 message group. If a ''+'' argument is
given, then the next 18 message group is
printed, and if a “'-'' argument is given, the
previous 18 message group is printed.

A synonym for ?

(ho, also preserve) Takes a message list and
marks each message therein to be saved in the
user's system mailbox instead of in mbox. Does
not override the delete command.

(m) Takes as argument login names and distribu-
tion group names and sends mail to those people.

(n 1ike + or CR) Goes to the next message in
sequence and types it. With an argument list,
types the next matching message.

A synonym for hold.

(p) Takes a message list and types out each mes-
sage on the user's terminal.

(g) Terminates the session, saving all
undeleted, unsaved messages in the user's mbox
file in his login directory, preserving all mes-
sages marked with hold or preserve or never
referenced in his system mailbox, and removing
all other messages from his system mailbox. If
new mail has arrived during the session, the
message ' 'You have new mail'' is given. If
given while editing a mailbox file with the -f
flag, then the edit file is rewritten. A return
to the Shell is effected, unless the rewrite of
edit file fails, in which case the user can
escape with the exit command.

(r) Takes a message list and sends mail to each
message author just like the mail command. The
default message must not be deleted.

A synonym for reply .

(s) Takes a message list and a filename and
appends each message in turn to the end of the
file., The filename in quotes, followed by the
line count and character count is echoed on the
user's terminal.

3-64



MAIL (1)

set

shell

size

top

type

unalias

undelete

unset

visual

write

Xit

XENIX Programmer's Manual MAIL (1)

(se) With no arguments, prints all variable
values., Otherwise, sets option. Arguments are
of the form ‘‘option=value'' or ‘‘option.''
(sh) Invokes an interactive version of the
shell.

Takes a message list and prints out the size in
characters of each message.

Takes a message list and prints the top few
lines of each. The number of lines printed is
controlled by the variable toplines and defaults
to five.

(t) A synonym for print .

Takes a list of names defined by alias commands
and discards the remembered groups of users.,

The group names no longer have any significance.

(u) Takes a message list and marks each one as
not being deleted.

Takes a list of option names and discards their
remembered values; the inverse of set .

(v) Takes a message list and invokes the display
editor on each message.

(w) A synonym for save .

(x) A synonym for exit .

Here is a summary of the tilde escapes, which are used when

composing messages to perform special functions.

Tilde

escapes are only recognized at the beginning of lines. The
name " ‘tilde escape'' is somewhat of a misnomer since the
actual escape character can be set by the option escape.

~lcommand

“C name <e.e.

~d

Execute the indicated shell command, then return
to the message.

Add the given names to the list of carbon copy
recipients.

Read the file "‘dead.letter'' from your home
directory into the message.

Invoke the text editor on the message collected

so far. After the editing session is finished,
you may continue appending text to the message.

3-65



MAIL (1)

“h

“m messages

“r filename

“s string

“t name ...

“w filename

~ | command

“~string

Options are
Options may
nificant to

XENIX Programmer's Manual MAIL(1)

Edit the message header fields by typing each
one in turn and allowing the user to append text
to the end or modify the field by using the
current terminal erase and kill characters.

Read the named messages into the message being
sent, shifted right one tab. If no messages are
specified, read the current message.

Print out the message collected so far, prefaced
by the message header fields.

Abort the message being sent, copying the mes-
sage to ‘‘dead.letter'' in your home directory
if save is set.

Read the named file into the message.

Cause the named string to become the current
subject field.

Add the given names to the direct recipient
list.

Invoke an alternate editor (defined by the
VISUAL option) on the message collected so far.
Usually, the alternate editor will be a screen
editor. After you quit the editor, you may
resume appending text to the end of your mes-
sage.

Write the message onto the named file.

Pipe the message through the command as a
filter. If the command gives no output or ter-
minates abnormally, retain the original text of
the message. The command fmt(l) is often used
as command to rejustify the message.

Insert the string of text in the message pre-
faced by a single . If you have changed the
escape character, then you should double that

character in order to send it.

controlled via the set and unset commands.
be either binary, in which case it is only sig-
see whether they are set or not, or string, in

which case the actual value is of interest. The binary
options include the following:

append

Causes messages saved in mbox to be appended
to the end rather than prepended. (This is

3-66



MAIL (1)

ask

askcc

autoprint

ignore

metoo

quiet

save

XENIX Programmer's Manual MAIL(1)

set in /usr/lib/Mail.rc on version 7 sys-
tems,)

Causes mail to prompt you for the subject of
each message you send. If you respond with
simply a newline, no subject field will be
sent,

Causes you to be prompted for additional car-
bon copy recipients at the end of each mes-
sage. Responding with a newline indicates
your satisfaction with the current list.

Causes the delete command to behave like dp -
thus, after deleting a message, the next one
will be typed automatically.

Causes interrupt signals from your terminal
to be ignored and echoed as @'s.

Usually, when a group is expanded that con-
tains the sender, the sender is removed from
the expansion., Setting this option causes
the sender to be included in the group.

Suppresses the printing of the version when
first invoked.

Causes the message collected prior to a
interrupt to be saved on the file
*‘*dead.letter'' in your home directory on
receipt of two interrupts (or after a "q.)

The following options have string values:

EDITOR

SHELL

VISUAL

escape

record

Pathname of the text editor to use in the
edit command and ~e escape. If not defined,
then a default editor is used.

Pathname of the shell to use in the ! command
and the ~! escape. A default shell is used
if this option is not defined.

Pathname of the text editor to use in the
visual command and ~v escape.

If defined, the first character of this
option gives the character to use in the
place of © to denote escapes.

If defined, gives the pathname of the file
used to record all outgoing mail. If not

3-67



MAIL (1) XENIX Programmer's Manual MAIL (1)

defined, then outgoing mail is not so saved.

toplines If defined, gives the number of lines of a
message to be printed out with the top com-
mand; normally, the first five lines are

printed.

FILES
/usr/spool/mail/*
~/mbox
~/.mailrc
/tmp/R#%
/usr/lib/Mail.help*
/usr/lib/Mail.rc
/bin/mail
/etc/delivermail

SEE ALSO

post office

your old mail

file giving initial mail commands
temporary for editor escape

help files

system initialization file

to do actual mailing

postman

binmail(l), fmt(l), newaliases(l), aliases(5), deliver-

mail (8)

‘The Mail Reference Manual'

AUTHOR
Kurt Shoens

BUGS

3-68



MAKE.HD(1) MAKE.HD(1)

NAME

make.hd - initialize a hard disk

SYNOPSIS

make.hd [ swapblocks [inodes] ]

DESCRIPTION

The make.hd command initializes the hard disk for use with
Xenix. The operator is prompted for the size of the hard
disk (1@, 20, 38, or 40 megabytes), and then make.hd creates
the layout table, builds the bad sector map, makes the
special files, and then asks the operator to re-boot the
system. The load.hd command can then be used to copy the
rest of the utilities to the hard disk.

The gwapblocks option specifies the number of blocks in the
swap area; if not specified, the default value of swapblocks
depends on the size of the hard disk as shown below.
Likewise, the jinodes option specifies the number of i-nodes
and if it is not specified, the default value of inodes
depends on the size of the hard disk as shown below:

default default

hard disk size swap blocks i-nodes
10 megabytes 3320 6000
20 megabytes 3320 6000
30 megabytes 5120 10000
40 megabytes 5120 10000

SEE ALSO

layout (1) , map(l), sizefs(1l)

EXAMPLE

make.hd 3000 5000

3-68A



MAKEWBATIS(1) MAKEWBATIS (1)

NAME
makewhatis - describe what a command is
SYNOPSIS
makewhatis command ...
DESCRIPTION
Makewhatis makes a data base that whatis uses. Makewhatis looks
up a given command and gives the header line from the manual
section. You can then run the man(l) command to get more infor-
mation. If the line starts 'name(section...' you can do 'man
section name' to get the documentation for it. Try 'whatis ed’
and then you should do 'man 1 ed' to get the manual.
Whatis is actually just the -f option to the man(l) command.
FILES
/usr/lib/whatis Data base
SEE ALSO
man (1)

3-68B



MAP (1) MAP (1)

NAME
map - create an alternate sector map for a hard disk drive

SYNOPSIS
map layout mapfile drive

DESCRIPTION
Map creates a bad sector map, on mapfile, using the layout
“information, in layout, created by layout(1l). The last
argument is the logical device name which references the
whole drive.

The standard invocation is:
map /dev/hdd.layout /dev/hdf.secmap /dev/hdo

The structure used for the bad sector to alternate sector
mapping is as follows:

struct mapsec {
int bad_cyl; /* Cylinder number of bad sector */
char bad_hed; /* Head number of bad sector */
char bad_sec; /* Sector number of bad sector */
int bad_good; /* Offset into alternate sector
area */

“};

This structure provides a way for the XENIX hard disk driver
to recover from bad sectors it encounters when reading the
hard disk. If a bad sector is read, a search of a table of
the above structures is made. If an exact match of
- cylinder, head and sector is found, the corresponding offset
is used as an index into the area reserved on the disk for
alternate sectors.

SEE ALSO
layout (1) , sizefs(1)

3-69



MKCONF (1M) MKCONF (1M)

NAME

mkconf - generate configuration tables

SYNOPSIS

mkconf

DESCRIPTION

Mkconf examines a machine configuration table on its stan-
dard input. Its output is a file c¢.c, which contains a
vectored interrupt switch, block and character device switch
tables and declarations for system variables.

Input to mkconf is a sequence of lines. The following
describe devices on the machine:

c8 (Central Data 8 line serial interface)
1p (Line printer)

cf (Central Data floppy controller)

cd (Central Data cartridge disk controller)
mf (Codata mini-floppy controller)

mw (Codata mini-winchester controller)

wp (IMI disk interface)

sa (sA 1000 disk controller)

The Codata console is automatically included. Also included
automatically are several pseudo device drivers.

The following lines are also accepted.

root dev minor
The specified block device (e.g., hp) is used for the
root. minor is a decimal number giving the minor
device. This line must appear exactly once.

swap dev minor
The specified block device is used for swapping. If
not given the root is used.

pipe dev minor
The specified block device is used to store pipes. If
not given the root is used.

swplo number

nswap number
Sets the origin (block number) and size of the area
used for swapping. By default, the not very useful
numbers 40006 and 872.

time zone dst

Change the default timezone to be zone. JZone may be
the name of any timezone in the continental U.S, or the

3-69A



MKCONF (1M) MKCONF (1M)

number of minutes westward of Greenwich. Dst should be

1 if the daylight savings time conversion should be
done.

nbufs num
The number of system buffers is set to num. The
default value is taken from the parameter DNBUF in
param.h.
FILES
c.C output file

SEE ALSO

Device driver descriptions in section 4.
Setting up XENIX, in Volume 2B.

3-69B



MODEM(1) MODEM(1)

NAME
modem - set up tty port to be used with a modem
unmodem - unset modem port

SYNOPSIS
/etc/modem /dev/ttyn
/etc/unmodem /dev/ttyn

DESCRIPTION
The modem command is used to set up /dev/ttyn to be used
with a compatible modem. The modem command should be exe-
cuted for every port that has a modem attached, every time
the system is- booted.
The modem command ensures that a dial-up tty will be logged
out if the user simply hangs up while logged onto the sys-
tem.
The XENIX tty device ignores the state of the RTS signal
(Pin 4) by default. This works well with terminals, which
may become momentarily disconnected. However, modems must
be made aware of the RTS signal to maintain system security.
The use of the modem command ensures that a particular tty
will be logged out if the RTS signal goes inactive.
The unmodem command does the opposite of the modem command,
i.e., it tells the kernel to ignore the state of the RTS
signal.

SEE ALSO
disable(l) , tty(4)

DIAGNOSTICS
The modem(l) command will hang if run on a port that has
already been declared a modem port. Do not run modem(1l)
twice for the same port.

EXAMPLE

/etc/modem /dev/tty3
/etc/modem tty3

These commands are equivalent and tell the system that a
modem is being used on serial port 3.

3-69C



MORE(1) MORE(1)

NAME
more - file perusal filter for crt viewing

SYNOPSIS
more [-cdflsu] [-n] [+linenumber] [+/pattern] [name ... ]
page more options

DESCRIPTION

More is a filter which allows examination of a continuous
text one screenful at a time on a soft-copy terminal. It
normally pauses after each screenful, printing --More-- at
the bottom of the screen. If the user then types a carriage
return, one more line is displayed. If the user hits a
space, another screenful is displayed. Other possibilities
are enumerated later. :

The command line options are:

-n An integer which is the size (in lines) of the window
which more will use instead of the default.

-C More will draw each page by beginning at the top of the
screen and erasing each line just before it draws on
it. This avoids scrolling the screen, making it easier
to read while more is writing. This option will be
ignored if the terminal does not have the ability to
clear to the end of a line.

-d More will prompt the user with the message "Hit space
to continue, Rubout to abort" at the end of each
screenful. This is useful if more is being used as a
filter in some setting, such as a class, where many
users may be unsophisticated.

-f This causes more to count logical, rather than screen
lines. That is, long lines are not folded. This
options is recommended if nroff output is being piped
through ul, since the latter may generate escape
sequences. These escape sequences contain characters
which would ordinarily occupy screen positions, but
which do not print when they are sent to the terminal
as part of an escape sequence. Thus more may think
that lines are longer than they actually are, and fold
lines erroneously.

-1 Do not treat "L (form feed) specially. If this option
is not given, more will pause after any line that
contains a "L, as if the end of a screenful had been
reached. Also, if a file begins with a form feed, the
screen will be cleared before the file is printed.

3-69D



MORE(1) MORE(1)

-S Squeeze multiple blank lines from the output, producing
only one blank line. Especially helpful when viewing
nroff output, this option maximizes the useful informa-
tion present on the screen.

-u Normally, more will handle underlining such as produced
by nroff in a manner appropriate to the particular
terminal: if the terminal can perform underlining or
has a stand-out mode, mQre will output appropriate
escape sequences to enable underlining or stand-out
mode for underlined information in the source file.
The -u option suppresses this processing.

+linenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the
regular expression pattern.

If the program is invoked as page, then the screen is
cleared before each screenful is printed (but only if a full
screenful is being printed), and k - 1 rather than k - 2
lines are printed in each screenful, where k is the number
of lines the terminal can display.

More looks in the file /etc/termcap to determine terminal
characteristics, and to determine the default window size.
On a terminal capable of displaying 24 lines, the default
window size is 22 lines.

More looks in the environment variable MORE to pre-set any
flags desired. For example, if you prefer to view files
using the -c mode of operation, the csh command setenv MORE
-c or the sh command sequence MORE='-c'; export MORE would
cause all invocations of more, including invocations by
programs such as man and msgs, to use this mode. Normally,
the user will place the command sequence which sets up the
MORE environment variable in the .cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a
percentage is displayed along with the --More-- prompt.
This gives the fraction of the file (in characters, not
lines) that has been read so far.

Other sequence<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>