COMPUTER SYSTEMS

ALTOS

586
Computer System

XENIX Development
System
Programmer’s
Reference Guide

Part Number: 690-13128-001

aaaaa

ACKNOWLEDGENENTS

Altos is a registered trademark of Altos Computer
Systems,

XENIX is a trademark of Microsoft, Incorporated and
is a 16-bit microcomputer implementation of the
UNIX operating system, version 7,

UNIX is a trademark of Bell Laboratories

UNET is a trademark of 3Com Corporation

The information contained herein is subject to change
without notice. Changes will be incorporated in new
editions of the document as they are published.

Copyright (c) 1983, All rights reserved. Altos Computer Systems

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE
TABLE OF CONTENTS

1. INTRODUCTION

USING THIS MANUAL 1-1
Purpose/Scope 1-1
Organization 1-1
OTHER DOCUMENTATION AVAILABLE 1-4
Altos 586 Operator's Guide 1-4
Altos Introduction to Xenix Manual 1-4
Altos Business Solution 1-4
Bell Laboratories Manuals 1-4
Unix Programmer's Manual 1-4
Unix Reference Card 1-5
Commercially Available Books 1-6

2. INSTALLING XENIX DEVELOPMENT SYSTEM 2-1
3. UTILITY PROGRAMS REFERENCE GUIDE

USEFUL UTILITIES 3-1
UNIX MANUAL CHANGES AND ADDITIONS 3-3

BSH(1) 3-6
CSH(1) 3-10
DIGEST (1) 3-28
EDIT (1) 3-30
EX(1) 3-33
FCOPY (1) 3-36
FORMAT (1) 3-37
FSCK (1) 3-38
LAYOUT (1) 3-41
LS(1) 3-43
MAIL(1) 3-47
MAP (1) 3-53
MULTIUSER(1) 3-54
PRINTENV (1) 3-55
PS(1) 3-56
RESET (1) 3-59
SIZEFS(1) 3-60
TAR (1) 3-61
UA(1) 3-64
VI(1) 3-68
LOCKING(2) 3-69
RDCHK (2) 3-71
CURSES(3) 3-72
MENUS (5) 3-74
TERMCAP (5) 3-79

TTYTYPE (5) 3-87

ALTOS 586 COMPUTER SYSTEM

I.

8886 ASSEMBLY LANGUAGE REFERENCE MANUAL

XENIX PROGRAMMER'S REFERENCE GUIDE

XENIX Software Development Extract from Microsoft Manual

TUTORIAL AND REFERENCE MATERIAL
(UNIVERSITY OF CALIFORNIA, BERKELEY MANUALS)

An Introduction to the C Shell
An Introduction to Display Editing with Vi
Quick Reference for Ex,Vi
Ex Reference Manual
Edit: A Tutorial
Ex/Edit Command Summary (Version 2.0)
Mail Reference Manual
-ME Reference Manual
Screen Updating and Cursor Movement Organization
Screen Updating and Cursor Movement Organization:
Package

iii

A Library

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix B: Floppy Diskette Organization

A brief reference describing how files are allocated
on floppy diskettes.

Appendix C. The Serial Line Printer and Spooler

Information regarding the serial line printer and
spooler, such as hardware connections required,
configuring your system without a printer, connecting
more than one printer, and changing/setting band rates.

Appendix D. List of Terminal Capabilities

A data base listing special capabilities of all
terminals supported by Altos XENIX.

Appendix E. Numeric Formats, C, and Fortran 77

Reference information on the internal format used
for numerical representation in these languages.

Appendix F. Sample List of XENIX Utilities

A sample list of utilities furnished with your
system,

Appendix G. Copying files from the Altos 86060 to the
Altos 586 under the XENIX operating
system.

A description on how to transfer files from an Altos
8600 to an Altos 586 computer system under the XENIX
operating system, or between two 586 computer
systems. It discusses the uucp (UNIX-to-UNIX copy)
Facility.

Appendix H. 8086 Assembly Language
A description of the XENIX 8086 Assembly Language.
Appendix I. Tutorial and Reference Material
(University of California, Berkeley Manuals)
Documentation describing UNIX modifications
developed at the University of California,

Berkeley. The material is supplied from the
Regents of the University.

1-2

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix B: Floppy Diskette Organization

A brief reference describing how files are allocated
on floppy diskettes.

Appendix C., The Serial Line Printer and Spooler

Information regarding the serial line printer and
spooler, such as hardware connections required,
configuring your system without a printer, connecting
more than one printer, and changing/setting band rates.

Appendix D. List of Terminal Capabilities

A data base listing special capabilities of all
terminals supported by Altos XENIX.

Appendix E. Numeric Formats, C, and Fortran 77

Reference information on the internal format used
for numerical representation in these languages.

Appendix F. Sample List of XENIX Utilities

A sample list of utilities furnished with your
system,

Appendix G. Copying files from the Altos 86808 to the
Altos 586 under the XENIX operating
system.,

A description on how to transfer files from an Altos
8600 to an Altos 586 computer system under the XENIX
operating system, or between two 586 computer
systems, It discusses the uucp (UNIX-to-UNIX copy)
Facility.

Appendix H., 8086 Assembly Language
A description of the XENIX 8086 Assembly Language.
Appendix I. Tutorial and Reference Material
(University of California, Berkeley Manuals)
Documentation describing UNIX modifications
developed at the University of California,

Berkeley. The material is supplied from the
Regents of the University.

1-2

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

information on Unix programming (C language).

Volume 2B contains additional reference material, and
includes advanced topics and languages. For example,
this volume includes information or supporting tools
and languages such as yacc, which is a tool for writing
compilers for other languages. It also includes
information on system implementation and maintenance.

UNIX Reference Card

A 36 page concise reference booklet, loosely bound in
order to lie flat. It contains information on UNIX
commands, documentation preparation, and C language
functions.,

Commercially Available Books

There are numerous commercially available books on UNIX that
explain it and give tutorial material. Two such books are:

A User Guide to the UNIX System, by Thomas and Yates
Using the UNIX System, by Richard Gauthier
Two useful programming books related to UNIX are:

The C Programming Language, by Kernighan and Ritchie.
This book describes the C programming language, which is the
language that the UNIX operating system is written 1in, It
provides tutorials as well as a reference section.,

Software Tools, by Kernighan and Plauger.
This books is a guide to good programming techniques and a source
of proven, useful programs written in RatFor (Rational Fortan).
The C language, which is designed for UNIX, provided the model
for RatFor. Many of the tools described in this book are based
on UNIX models.,

1-4

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

information on Unix programming (C language).

Volume 2B contains additional reference material, and
includes advanced topics and languages. For example,
this volume includes information or supporting tools
and languages such as yacc, which is a tool for writing
compilers for other 1languages. It also includes
information on system implementation and maintenance.

UNIX Reference Card

A 36 page concise reference booklet, loosely bound in
order to lie flat. It contains information on UNIX
commands, documentation preparation, and C language
functions,

Commercially Available Books

There are numerous commercially available books on UNIX that
explain it and give tutorial material. Two such books are:

A User Guide to the UNIX System, by Thomas and Yates
Using the UNIX System, by Richard Gauthier
Two useful programming books related to UNIX are:

The C Programming Language, by Kernighan and Ritchie,
This book describes the C programming language, which is the
language that the UNIX operating system is written in, It
provides tutorials as well as a reference section.,

Software Tools, by Kernighan and Plauger.
This books is a guide to good programming techniques and a source
of proven, useful programs written in RatFor (Rational Fortan).
The C language, which is designed for UNIX, provided the model
for RatFor. Many of the tools described in this book are based
on UNIX models,

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Section 2

INSTALLING XENIX DEVELOPMENT SYSTEM

To install the Xenix Development System on your Altos 586
Computer System, you should:

1.

2.
3.

Install the Xenix Run-Time System by following the instruc-
tions in the Altos Introduction to Xenix Manuwal. Do not
shut the system down.

If you interrupt the installation procedure for some reason,
or your system was shut down by a power failure or system
crash, see the Resuming Interrupted Installation section in
the Altos Introduction to XENIX Manual.

Make sure you are logged as super-user (root).

Enter

cd / <cr>

This command causes the system to go to the top directory
(or parent directory) of the XENIX system.

Insert the diskette labeled "Xenix Utilities #2 of n," where
"n" is the total number of utility diskettes.

Enter
tar xv <cr>
This command causes the directories and files on the utility

diskette to be loaded onto the XENIX system. For informa-
tion on the tar utility, see the section SAVING AND

RESTORING FILES in the Altos Introduction to XENIX Manual or
under the entries for Tar(l), DD(2), Dump (1) and Restore
(1) in the UNIX Programmer's Manual.

Repeat step 4 for each utility diskette.

When you have loaded all of the utility diskettes, enter
install <cr>

To load the C compiler onto the XENIX system, you should:
Insert the diskette labeled "C Compiler."

Enter

tar xv <cr>
Enter

2-1

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

9.

install

You have just loaded the C Compiler.

If you wish to load the UNIX Fortran compiler, you should:
Insert the diskette labeled "F77."

Enter

cd /tmp <cr>

Enter

install <cr>

You have just loaded the UNIX Fortran compiler.

If the prior steps were successful, your XENIX Development
System is correctly installed.

If you purchased Altos communication network services, refer
to the Altos 586 UNET User Guide for information on how to
install the communication network services.

If you purchased the ABS package or other Altos application
packages, refer to the Altos XENIX Application Software User
Guide for information on how to install the ABS-586 Menu
Shell and application programs,

If you wish to start a XENIX up, see the "Start-Up XENIX"
section of the Altos Introduction to XENRIX Manual. If the
system has not been shutdown, skip steps 2 and 3.

If you don't plan on using your XENIX system at this time,
you can shut the system down by entering:

etc/haltsys <cr>
** Normal System Shutdown **

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Section 3
UTILITY PROGRAMS REFERENCE GUIDE
USEFUL UTILITIES

Table 3-1 lists some useful utilities that are supplied
with the Altos implementation of XENIX, This list is not intend-
ed to be complete, but merely a summary of those utilities you
will find useful in getting started with XENIX. A complete
listing and description for all utilities may be found in the
UNIX Programmer's Manual, Volume 1,

You may list the full set of utilities supplied with any
particular release of XENIX by displaying the contents of the
/bin, /usr/bin, and /etc directories. Appendix F contains a
sample list of utilities,

The Altos implementation of XENIX provides some utilities
which differ from standard UNIX, and also some new utilities from
various sources. This section documents the changed and new
utilities, as "UNIX Manual Changes and Additions." The material
supplied in this section may be kept in this supplement or
inserted in the UNIX Programmer's Manual, as desired.

In the following pages, "UNIX Manual Changes and Additions,"
many useful utilities are documented, See Table 3-2 for a quick
reference to these utilities, Note in particular: format, fcopy,
multiuser, and ua, and the new version of tar. The Business
Shell, bsh, has two accompanying utilities, menus and digest.

See also the APPENDIX I for reference and tutorial material
on the University of California, Berkeley utilities, such as the
screen editior yj.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Table 3-1 A List of Useful Utilities for Getting Started

UTILITY DESCRIPTION

ar Object library manager and archiver

as XENIX 8086 relocatable assembler

cat Display a file

cc "C" compiler

cd Change directory. Changes your current position
in the File System hierarchy.

chmod Change mode. Changes file protection attributes

chown Change file ownership

cmp Compare two files

cp Copy a file

diff Display the differences between two files

ed The standard UNIX editor

1d XENIX linkage editor

1s List., Displays the contents of the current directory

mkdir Make a new directory

mv Move. Renames files and directories

od Displays an octal dump of a file

ps Display system status

pwd Print working directory. Displays current
position in the directory hierarchy

rm Remove, Deletes a file

rmdir Delete a directory

stty Set terminal options, such as baud rate

tar File system archiver. May be used for file system

dumps and restores

3-2

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

UNIX MANUAL CHANRGES AND ADDITIONS

The material in this section may remain in this supplement
or be inserted in Sections 1 through 5 of Volume 1 of the UNIX
Programmer's Manual, as you wish. If you insert these documents
into the manual, place them in the sections corresponding to the
number in parentheses after the utility name. (Entries within
sections are in alphabetic order.)

Some of the utilities are enhancements or variations of
existing Bell Laboratories UNIX utilities. Others are completely
new,

The origin of each utility is specified (in abbreviated
form) in column 2 of Table 3-2.

Utilities labelled "(altos)" are provided by Altos Computer
Systems.

Utilities labelled "(bell)" were developed by Bell
Laboratories after their current manual was published.

Utilities labelled "(msoft)" were developed by Microsoft, Inc.
Utilities labelled "(uofcb)" were developed at the

University of California, Berkeley. They are supplied under
license from the Regents of the University.

Table 3-2. List of UNIX Manual Changes and Additions
UTILITY SOQURCE DESCRIPTION
bsh (1) (altos) Business Shell. A menu-driven user

system with special guidance and
convenience features. It enables you to
access the more commonly used UNIX
utilities via menus,

csh (1) (uofcb) A shell (command interpreter) with C-
like syntax.

digest (1) (altos) Create menu systems for the Business
Shell,.

edit (1) (uofcb) Text editor (variant of the ex editor
for new or casual users).

ex (1) (uofcb) Text editor.

fcopy (1) (altos) Copy a floppy diskette, while in XENIX.

3-3

ALTOS 586 COMPUTER SYSTEM

Table 3-2.

UTILITY

format (1)

fsck (1)

layout (1)
1s (1)

Mail (1)

map (1)

multiuser (1)
printenv (1)
ps (1)

reset (1)

sizefs (1)

tar (1)

ua(l)

vi(l)
locking(2)
rdchk (2)

XENIX PROGRAMMER'S REFERENCE GUIDE

List of UNIX Manual Changes and Additions (cont.)

SOQOURCE

(altos)

(bell)

(altos)
(uofcb)

(uofcb)

(altos)

(altos)
(uofcb)
(uofcb)
(uofcb)

(altos)

(bell)

(altos)

(uofcb)
(msoft)

(msoft)

DESCRIPTION

Format a floppy diskette, while in

XENIX,

File system consistency check and inter-
active repair.

Configure a hard disk.

List contents of directory

Send and receive mail. (The U.C.B.
"Mail"™ utility goes in front of, and
makes use of, the Bell Labs "mail" util-
ity. The names of the two utilities are
distinguished by whether the first let-
ter is capitalized or lower case.)

Create an alternate sector map for a
hard disk drive.

Bring the system up multiuser.
Print out the environment.
Processor status.

Reset the terminal status bits to a
predefined state.

Determine the size of a logical device
from the layout information associated
with a hard disk.

Tape or floppy archiver,
restores hard disk files.

Dumps and

User administration., Adds and deletes
user accounts on the system,

Screen oriented (visual) display editor.
Lock or unlock a record of a file.

Check if there is data to be read.

3-4

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Table 3.2

UTILITY

curses (3)

menus (5)

termcap(5)

ttytype (3)

List of UNIX Manual Changes and Additions (Cont.)

SOURCE
(uofchb)

(altos)
(uofcbh)

(altos)

DESCRIPTION

Screen functions with "optional" cursor
motion, (Has window capability.)

Develop menus for Business Shell.

Data base which defines cursor-control
sequences for most commonly used CRTs.
It is used by most "screen oriented"
software, such as the Altos shell and
visual screen editor, yi.

Data base for defining terminal type
associated with each 586 serial port.

BSH(1) UNIX (BSH Version 1.8) BSH(1)

NAME

bsh -- Altos Computer Systems Business Shell

SYNOPSIS

bsh [-fhas] [menusystem]

DESCRIPTION

Bsh is a menu-driven command language interpreter. It may
be installed as the "login shell” in the password file, or
it may be invoked directly by the user.

The command is implemented using the termcap and curses
facilities from UC Berkeley. It must be run from a terminal
which is defined within /etc/termcap.

This command should only be run interactively. A user's
terminal may be left in a very strange state if bsh is run
in the background.

In the options described below, either "line feed" or
"return” performs the newline function.

Options

-£ Start bsh in "fast" mode. 1In this mode, a prompt whose
first letter is a lower-case alphabetic or numeric
character is executed immediately when the first letter
is typed. The system does not wait for a terminating
newline, Prompts whose first letter is upper-case
alphabetic wait for a terminating newline before
executing the requested actions, Fast mode is the
default initial mode, if not over-ridden by the command
line or the BSHINIT variable (see below). The current

mode may be changed during execution through use of the
"?mode" command (described below).

-h displays a short help message describing how to invoke

-z displays a one-line descriptive summary of the syntax
used to invoke bsh.

-s Start bsh in "slow" mode. 1In this mode, all prompts
must be terminated by newline before execution occurs.
The current mode may be changed during execution
through use of the "?mode" command (described below).

A menu system may be specified if desired. 1In this case,
bsh utilizes the designated menu system instead of the
default one (/etc/menusys.bin). Prior to use by bsh a menu
system must be "digested" using the digest(l) utility. If
the specified menu system does not exist or if it is not
read-accessible, bsh issues an error message and terminates,

3-6

BSH(1) UNIX (BSH Version 1.8) BSH(1)

How to create a new menu system and how to update or modify
an existing menu system is described in menus(5).

Commands

prompts
Typing any of the prompts on the current menu screen
immediately causes the actions associated with the
prompt to be executed. It is the responsibility of the
menu designer to ensure that reasonable actions exist
for each prompt. Selecting a prompt with no associated
action causes an error message to be displayed.

An action may be any one of the following:

> Go to a specified menu

> Execute a sh(l) script

> Execute a bsh internal command
(e.g. chdir(l))

menuname
Typing the name of a menu causes it to immediately
become the current menu, If the menuname 1is

misspelled, or if it does not exist in the current menu
system, an error message is displayed.

newline
Typing a newline causes the immediately preceding menu
to become the current one, If there is no previous
menu, an error message is displayed. Bsh does not dis-
tinguish between "line feed" and "return" -- both
generate a newline.

[3V]

Typing a question mark (?) causes the "help" menu
associated with the current menu to be displayed. Help
menus are no different from normal menus (except,
perhaps, in the type of information they contain).
When the current menu is named "xyz", typing a question
mark is entirely equivalent to typing "xyz?"

?? Typing a pair of question marks (??) causes the bsh
system help information to be displayed. It contains
much the same information as is presented here.

menuname ?
Typing the name of a menu followed by question mark
causes the designated help menu to become the current
one.

manualpage??
Typing the name of an entry in the Unix manual followed
by two question marks causes the designated manual page
to be displayed. Thus, to see the entry for bsh one

3-7

BSH(1) UNIX (BSH Version 1.8) BSH(1)

may type "bsh??" This is precisely equivalent to
typing "Iman bsh,"

lcommand

The exclamation point (!) allows the user to "escape"
to the standard shell (sh(l)). The command must follow
the usual rules as described in the sh(l) documenta-
tion. In particular, the command may consist of a
sequence of shell commands separated by semicolons --
thus several actions may be invoked. 1If the command is
absent, sh(l) is invoked as a sub-shell with no argu-
ments. In this case, bsh will be resumed as soon as
the sub-shell terminates, (Usually, this is accomp-
lished by sending the sub-shell an end-of-file., End-
of-file is Control-d on most terminals.) You may
escape to the Berkeley C shell (csh(l)) by typing
"icsh,"

?index
This special command causes bsh to display its internal
"index" for the current menu system., The index
contains the names of every accessible menu.

?mode
This special command allows the user to change from
"slow" mode to "fast" mode and vice versa. The user is
asked if he wishes to change to the alternate mode., 1If
your response begins with "y" or "Y", the change is
made, otherwise the current mode remains in effect.

interrupt
Bsh will immediately return to the top-level command
interpreter upon receipt of an interrupt signal. Such
a signal is usually generated via the DEL, RUBOUT or
BREAK key.

backspace
Bsh understands the Backspace function (as obtained
from /etc/termcap).

CANcel
Bsh interprets the CANcel key to mean "restart input.”
The CANcel key is Control-x on many of the more popular
terminals,

ESCape
Typing an ESCape has the same effect as does typing
CANcel.

DC2 If the screen becomes "dirty" for some reason, you can
force bsh to clear it and redisplay the current
contents by transmitting an ASCII "DC2." This is
Control-r on most of the currently popular terminals.

q Typing a "gq", "Q" or "Quit" all have the same effect:

3-8

BSH(1)

bsh is terminated.

UNIX (BSH Version 1.8) BSH(1)

If bsh is your login shell, "quit"

also results in your being logged out,

Environment
BSHINIT

The BSHINIT environment variable contains the initial
value of the default mode ("fast" or "slow"). If this
variable does not exist in the environment, bsh assumes
"fast"™ mode. BSHINIT should be set by inserting the
line BSHINIT="fast" or BSHINIT="slow" into your
.profile file.

Note that even if bsh is designated as the "login
shell"™ in /etc/passwd, your .profile file will be
interpreted correctly. (See login(l) and sh(l).) 1In
particular, any overriding definitions you may have for
the kill and erase characters will be correctly inter-

preted by bsh.

FILES

~/.profile
/etc/menusys.bin
/etc/passwd
/etc/termcap

/usr/lib/bsh.messages

SEE ALSO
digest (1M), login(l), menus(5), sh(l), termcap(5)

DIAGNOSTICS
The diagnostics produced by bsh are intended to be self-

BUGS

explanatory.

contains commands to be executed
during login(1l)

default menu system used by bsh
used to define a user's login name,
password, home directory, shell,
etc.

contains terminal attribute des-
criptions

system warning and error messages

Bsh probably should never allow itself to be run in the

background.

Bsh should detect the fact that the current terminal is not
defined in /etc/termcap and abort gracefully.

CSH(L) UNIX Programmer’s Manual CSH(

)

)

NANE

csh = a shell (commard (ntarpreter) with C-iike syntax
SYNOPSIS

cah [—cefinstyVzX][arg ...]
DESCRIPTICN

Oh is a command language interpreter. It begins by executing commands {rom
the flle ‘.cshre’ {n the Aome directory of the (nvoker. If this {8 a login sheil then
it also executes commands from the file ‘.login' there. In the normal case, the
shell will then begin reading commands {rom the terminal prompting wmith ‘< .
Processing of arguments and the use of the shell to process flles contaiming
command scripts will be described latar.

The shell then repeatedly performs the following actions: a line of command
{nput {8 read and broken into words. This sequencs of words is placed on the

command history list and then parsed. Finally each command in the current
line is executed. '

When a login shell terminates {t executes commands from the file ‘.logout’ in the
users horze directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following
sxcaptions. The characters ‘&’ 'I' ;' ‘<’ >’ ‘(" ')’ form separate words. I dou-
bled in ‘&&’', ‘| [', ‘<< or ‘>>' these pairs form singie words. These parser meta-
characters may be made part of other words, or prevented their special mean-
ing, by precsding them with ‘\'. A newline preceded by a "\’ {s squivalent to a
blank. ' :

In addition strings enclosed {n matched pairs of quotationms, ‘“, *** or '™, form
parta of a word; metacharacters in these strings. including blanks and tabs. do
not form separate words. These quotations have semantics to be described sub-
sequeantly. Within pairs of ** or *** characters a newline preceded by a '\’ gives a
trus newline character.

When the shell's input is not a terminal, the character ‘¢’ introduces a comment
which continues to the end of the {nput line. It {s preveated this special meaning
when preceded by "\' and (n quotations using ***, **, and .

Commands

A simple command {s a sequencs of words, the first of which specifies the com-
mand to be sxecuted. A simple command or a sequence of simple commacds
separated by ‘I’ characters forms a pipeline. The sutput of each sommand in a
pipeline is connectsd to the input of the next. Sequences of pipeiines may be
separatsd by ‘', and ars then exscutad sequentially. A sequence of pipelines
may be sxecuted without waiting lor it to terminats by following it with an ‘%’
Such a sequencse {3 automatically prevented {rom being terminated by a hargup
signai; the noAup command need not be used.

Any of the above may be placed in ‘(" ')’ to form a simpie command (which may
be a component of a pipelins, ete.) It is also possible to separate pipeiines wit2
1|’ or ‘%4’ indicating, as {n the C language, that the second is to be ex=cuted
only if the Arst fails or succeeds respectively. (See Ezpressions.)

Substitutions

ard Serkaiey Distributien 1/18/81 1
3-10

CSH(1!) UNIX Programmer’s Manual CSE(1!)

We now describe the various transformations the shell performs on the input in
the order in which they occur.

History substitutions

History substitutions can be used to reintroduce sequences of words from previ-
ous commeands, possibly performing oodifications on these words. Thus history
substitutions provide a generalization of a redo function.

History substitutions begin with the character ‘'* and may begin anywhere in the
{nput stream if a history substitution is not already {n progress. This ‘" may be
preceded by an "\’ to prevent its special meaning: a ‘!’ is passed unchanged
when it is followed by a blank, tab, newline, '=' or '(*. History substitutions aiso

occur when an input line begins with ‘¢". This special abbreviation wil be
described later.

Any input line which contains history substitution i{s echoed on the terminal
before it is executed as it could have been typed without history substitution.

Commands input from the terminal which consist of one or more words are
saved on the history list, the size of which is controlled by the Aistory variabie.
The previous command is always retained. Commands are numbered sequen-
tially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c

11 cat oidwrits.c
12 diff *writs.c

The commands ars shown with their event aumbers. It i{s not usually necessary
to uss event numbers, but the current event pumber can be made part of the
prompt by placing ao ‘* {n the prompt string.

With the current svent 13 we can refer to previous events by event number "11°,
relatively as in ‘!=2° (referring to the same event). by a prefix of a commard
word as in ''d’ lor event 12 or ‘'w’ for event 8, or by a string contained in a word
in the command as {n '!?mic? also referring to event 9. These forms, without

. further modification. simply reintroducs the words of the specified events, each
separated by a single blank. As a special case 'll’ refers to the previous com-
mand: thus '!'* alone {s essentially a redo. The form ''§f references the current
command (the one being typed in). It allows a word to be selected from further
left in the line. to avoid retyping a long name, as in "1g:1.

To select words from an event we can follow the svent specification by a " and a
designator for the desired words. The words of a input line are numbered rom
0. the first (usually command) word being 0. the second word (first argument)
being . etc. The basic word designators are:

first (command) word

n'th argument

first argument, Le. ‘1’

last argument .
word matched by (immediatsly preceding) ?s? search"
racge of words :

abbreviatss 'O—y’

abbreviatss 't=§', or nothing if only : word in event
abbreaviatss ‘'z-§'

2.41““":0

Srd Berkeley Distribution 1{3 13/l 81 : 2
-1

CSH (1) UNIX Programmer’s Manual c

O%
~~
'
-~

2= like‘'ze but omitting word 'S’
The '’ separating the event specification {rom the word designator can be omit-
ted if the argument selector begins with a '*", 'S’ '%* ‘=' or 'Z’. After the optional
word designator can be placed a sequence of modiflers, each preceded by a *:".
The [ollowing modiflers are defined:

h. Remove a trailing pathname component, leaving the head.

r Remove a trailing ‘.xocx’ component, leaving the root name.
s/l/r/ Substitute ! for r

Remove all leading pathname components, leaving the tail.
Repeat the previous substitution.

Apply the change globally, prefixing the above, e.g. ‘g&'.

Print the new command but do not executs it.

Quote the substituted words, preventing further substitutions.
Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable
word. In any case it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of
the editors. but rather strings. Any character may be used as the delimiter in
place of */*; a "\' quotes the delimiter into the { and r strings. The character ‘&’
in the right hand side {s replaced by the text from the left. A "\’ quotes 'k’ alsoc.
A null { uses the previous string either from a !l or from a contextual scan string
gin ‘"?s”. The trailing delimiter in the substitution may be omitted if a newiine
follows immediately as may the trailing ‘?* in a contextual scan.

A Ristory reference may be given without an event specification. =.g. ‘13’. In this
case the reference is to the previous command unless a previous history refer-
ence occurred on the same line {n which case this form repeats the previous
reference. Thus ‘I7{c0?t !$’ gives the first and last arguments {rom the com-
mand matching ‘?fe0?.

A special abbreviation of a history reference occurs when the first non-biank
character of an input line {s a ‘+. This i{s equivalent to ‘:3t providing a con-
venient shorthand for substitutions on the text of the prewious line. Thus
‘sibtlib’ fixes the spelling of ‘lib’ in the previous command. Finally. a history
substitution may be surrounded with '{" and '}’ if necessary to insulate it {rom
the charactsrs which follow. Thus, after ‘ls =id ~paul' we might do “!{}ja’ to do
‘ls =id ~paula’, while '!la’ would look for a command starting ‘la’.

Quotations with * and

The quotation of strings by ‘“ and '™ can be used to prevent all or some of the
remaining substitutions. Strings enclosed in '“ are praevented any further
interpretation. Strings enclosed in '™ are yet variable and command expanded
as described below. :

In both cases the resulting text becomes (ail or part of) a single word: only in
one special case (see Command Substitition below) does a "™ quoted string neid
parts of more than one word: '“ quoted strings never do.

Alias substitution

The sheil maintains a list of aliases which can be established. displayed and
modified by the aiics and unaiias commands. After a command line is scarnred.
it is parsed into distinct commands and the first word of each command. left-to-
right. is checkad to see if it ha3 an aiias. If it does, then the text which is the

HOD®R R

3rd Berksiey Distribution 1/18/81
3=l

(¢]

(: UNIX Pregrammer’s Manual CSH(:.)

alias for that command is reread with the history mechanism available as
though that command wers the previcus {nput line. The resulting words replace
the command and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for 'ls’ is 'ls =I' the command 'Is /usr’ would map to ‘ls =f /usr,
the argument list hers being undisturbed. Similarly {f the alias for ‘lookup’ was
‘grep !* /etc/passwd’ then ‘loolcup bill’ would map to ‘grsp bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and
the aliasing process begins again on the reformed input line. Looping is
prevented if the first word of the new text {s the same as the old by flagging it to
prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism ailows aliases to introducs parser metasyntax. Thus
we can ‘alias print ‘pr \!® | lpr~ to maks a command which pr'sits arguments to
the line printer.

Variable substitution

The shell maintains a set of variables. each of which has as value a list of zers or
more words. Some of these variables ars set by the shell or referred to by it.
For instance, the argu variable is an image of the shell's argument list, and
words of this variable's value are referrsd to in special ways.

The values of variables may be displayed and changed by using the sef and unset
commands. Of the variables referred to by the shell a number are toggles; the
shell does not cars what their value is, only whether they are set or not. For
{nstance, the verboss variable is a toggle which causes command input to be
echoed. The setting of this variable results from the —v command line option.

Cther operations treat variables numerically. The ‘®' command permits
sumeric calculations to be performed and the result assigned to a variable.
Variabie values are, however, always represented as (2ero or more) strings. For
the purposes of numeric operations. the null string {s considered to be zero, ard
the second and subsequent words of multiword values are {gnored.

Altar the input line is aliased and parsed. and before each command is exe-
cuted, variable substitution {s performed keyed by 'S’ characters. This expan-
sion can be prsvented by preceding the ‘'S’ with a ‘\’ except within **s where |t
always cccurs, and within ‘s where it never occurs. Strings quoted by '™ are
interpreted later (see Oommand subdstitution below) so ‘'S’ substitution does not
occur there until later, if at ail. A 'S’ is passed unchanged if followed by a biank.
tab, or end-of-lins.

Input /output redirections are recognized before variable expansion. and are
variable expanded separately. Otherwise, the command name and entire arzu-
ment list ars expanded together. It is thus possibie for the first (command)
word to this point to generate more than one word, the first of which becomes
the command name. and the rest of which become arguments.

Unless enclosed n *™ or given the ':q’ modifier the results of variabie substitu-
tion may eventually be command and fllename substituted. Within ™ a variable
whose value consists of multiple words expands to a (pertion of) a single word,
with the words of the variables value separated by blanks. When the 'R’ modifler
is applied to a substitution the variable will expand to multiple words with esach
word separated by a blank and quotsd to prevent later command or fllename
substitution.

Srd Berkeley Distribution 1./3 18/81 4
-12

CSH(!) UNIX Programmer's Manual c

i
o
®
-~

The following metasequences are provided for introducing variable values into

the shell input. Except as noted, it is an error to reference a variable which is

not set.

Sname

${name]
Are replaced by the words of the value of variable name, each separated by
a blank. Braces insulats namse from following characters which would oth-
erwise be part of it. Shell variables have names consisting of up to 20
lettars, digits, and undarscorss.

If namae {s not a shell variable, but i{s set {n the environment, then that value is
returned (but : modifiers and the other {orms given below are not availablie i{n
this case).

Sname(selector]

${name(selector]]
May be used to select only some of the words from the value of nams. The
selector {s subjectad to 'S’ substitution and may consist of a single number
or two numbers separated by a ‘=", The first word of a variables value is
pumbered ‘1'. If the first number of a range is omitted it defauits to ‘1. I
the last member of a range is omitted it defaults to ‘$S§name’. The selector
‘s’ gelects all words. It is not an srror for a range to be empty if the second
argument is omitted or {n range.

$#name

S{fname|
Gives the number of words {n the variable. This {3 useful for latar use in a
‘(selsctor]'.

$0 _
Substitutes the name of the flle {rom which command input {s being read.
An error occurs if the name iz not known.

Snumber
${number

Equivalent to ‘Sargviaumber]'.
b £

Equivalent to 'Sargv{e]".
The modifiers &', :t’, “r’, ":q’ and "X’ may be applied to the substitutions above
as may ‘:gh’, “:gt' and *:gr’. If braces ‘{’' '|’' appear in the command form then
the modifiers must appear within the braces. The current impiementation
allows only one °:* modifier on each '$ expansion.

The following substitutions may not be modified with *.’ modifiers.

$?name
${?name|
Substitutes the string ‘1’ if name is set, '0° if it {s not.
$70
Substitutes ‘1’ if the current input fllename i{s know, ‘O’ {f it {3 not.
33
Substitutas the (decimal) process number of the (parent) shell

Command and filename substitution

3rd Berksiey Distribution léil‘qal 5

CSH(:) UNIX Programmer'’s Manual CSH(!.

The remaining substituticns, command and fllename substitution. are applied
selectively to the arguments of builtin commands. This means that portions of
expressions which are not evaluated are not subjected to these expansions. For
~commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-ou‘:ut
Tedirection is performed, and in a child of the main shell

‘Command substitution

‘Command substitution {s indicated by a command enclosed {n ***. The output
from such a command {s normally broken into separate words at blanks. tabs
and newlines, with nuil words being discarded, this text then replacing the orig:-
nal string. Within ‘s, only newlines forcs new words: blanks and tabs are
preserved.

In any case, the single final newline does not force a new word. Note that it is
thus possible for a command substitution to yield only part of a word, even if the
command outputs a compiete line.

Fllename substitution

If a word contains any of the characters '+, '”, ‘(' or '{’ or begins with the char-
acter '~', then that word is a candidate for fllename substitution. aiso known as
‘globbing’. This word is then regarded as a pattern, and replaced with an alpha-
betically sorted list of file names which match the pattern. In a list of words
specifying llenarme substitution it is an error for no pattern to> match an exist-
ing fille name, but it is not requirsd for each pattern to match. Orly the meta-
characters ‘%, ‘? and ‘(" imply pattern matcking, the characters ‘~' and '{’
being more akin to abbreviations.

In matching fllenames, the character ‘.’ at the beginning of a fllename or
immediately tcllowing a '/, as well as the character '/’ must be matched expli-
citly. The character ‘'’ matches any string of characters, inciuding the null
string. The character '” matches any single character. The segquence ‘(..]'
matches any one of the characters enciosed. Within °{...]', a pair of characters
separated by ‘=’ matches any character lexically between the two.

The character '~' at the beginning of a llename is used to refer to home direc-
tories. Standing alons. Ls. '~ it expands to the invokers home dirsctory as
reflected in the value of the variable Aome. When [allowed by a name consisting
of letters, digits and ‘=’ characters the shell searchas for a user with that name
and substitutes their home directory: thus ‘~ken' mught expand to ‘/usr/ken’
and ‘~ksn/chmach’ ts ‘/usr/ken/chmach’. If the character ‘'~' is [ollowed by a
charactsr other than a lsttar or ‘/° or appears not at the beginning of a word, it
is left undisturbed.

The metanotation 'a{b.c.d{e’ is a shorthand for ‘abe ace ade’. Left to right order
is preserved. with results of matches being sorted separately at a low [evel to
preserve this order. This construct may be nested. Thus
‘~sourcs/sl/{oldls.ls{.c’ expands to ‘/usr/source/sl /oldls.c
/usr/source/si/ls.c’ whether or not these flles sxist without any chance of
error if the home directory for ‘source’ is8 ‘/usr/source’.: Similarly
‘../{memo,*box{’ might expand to ‘../memo ../box ../mbox’. (Nots that ‘mero’
was not sorted with the resuilts of matching ‘sbox’.) As a special case '{’, ‘|’ and
‘4§’ are passed undisturbed.

Srd Beriksley Distribution 1/31_5'/581 8

CSH(1) UNIX Programmer’s Manual CSH(1)

Input/output

The standard input and standard output of a command may be redirectad wit:
the following syntax:

< pame

Open file nams (which is fArst variable, command and fllename expanded) as
the standard input.

<< word

Read the shell input up to a line which is idenatical to word. Word is not sub-
jected to variable, fllename or command substitution. and each input line is
compared to word before any substitutions are done on this input line.
Unless a quoting *\', "™, *~ or '* appears {n word variable and command sub-
stitution is performed on the {ntsrvening lines, allowing "\' to quots ‘%", '\’
and ‘. Commands which are substituted have all bianks, tabs, and newlines
preserved, except for the final newline which is dropped. The resultant text
is placed {n an anonymous temporary file which is given to the command as
standard input.

> name

>! name

>& name

>&! name
The file name {s used as standard output. If the flle does not exist then it is
created; if the file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a charac-
ter special flle (e.g. a terminal or ‘/dev/null’) or an error resuits. Ths
heips prevent accidental destruction of files. In this case the °'’ forms can
be used and suppress this check.

The forms invelving ‘&’ route the diagnostic sutput into the specified flle as
well as the standard output. Name is expanded in the same way as ‘<’ input
filenames are.

>> name

>>% name

>>! name

>>&! name .
Uses flle name as standard output like '>’ but places output at the end of
the file. If the variable noclobder is set, then it is an error for the file not to
exist uniess ons of the '’ forms is given. Otherwise similar to '>".

1f a command is run detached (followed by ‘'%’') then the default standard input
for the command is the empty flle ‘/dev/null’. Otherwise the command receives
the environment in which the shell was invoked as modifled by the {nput-output
parametars and the presence of the command in a pipeline. Thus, uniike some
previous shells, commands run from a file of shell commands have no access to
the text of the commands by default; rather they receive the original standard
input of the shell The ‘<<’ mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipelines and
allows the shell to block read its {nput. ‘

Diagnostic output may be directed through a pipe with the standard outpu:.
Simply use the form ‘{ &’ rather than just ‘[.

Srd Berksisy Distribution 1/3 18(21 ?

CSH(1) UNIX Programmer’s Manual CSH(1)

Expressions

A number of the builtin commands (to be described subsequently) take expres-
sions, in which the operators are similar to those of C, with the same pre-
cedence. These expressions appear in the &, exit, if, and while commands. The
following operators are availabie:

'~H&&l?&==!=<=>s<><<>>+--/z!~()

Here the precedencs increases to the right, ‘==’ and "1=’, ‘<=’ '>=' ‘<’ and '>’,
‘<’ and '>>', ‘+' and '~', ' '/* and ‘T being, in groups. at the same level. The
*==' and "!=' operators compare their argurnents as strings, all others operate
on numbers. Strings which begin with ‘0’ are considersd octal numbers. Null or
missing arguments are considered ‘0'. The result of all expressions are strings,
which represent decimal numbers. It is important to note that no two com-
ponents of an expression can appear (n the same word: except when adjacent to
components of expressions which are syntactically significant to the parser (‘&'
T <> (")) they should be surrounded by spaces.

Also available {n expressions as primitive operands are command executions
enclosed (n ‘{" and ‘|’ and file enquiries of the form ‘~{ name’ where ! is one of:

read access
write accass
sxscute accass
sxistence
ownership
zero gize

plain flle
dirsctory

The specified name is command and fllename expanded and then testsd to see if
it has the specified relationship to the real user. If the flle does not exist or (s
inaccessible then all enquiries return faise. Le. ‘0. Command executions
succeed, returning trus, Ls. '1’, if the command exits with status 0. otherwise
they fail, returning faise, {.e. ‘0°. If more detailed status information is required
then the command should be executed outside of an expression and the variabie
status examined.

Control low

The shell contains a number of commands which can be used to regulate the flow
of control in command files (shell scripts) and (in limited but useful ways) {rom
terminal input. These commands all operate by forcing the shell to reread or
skip in its input and, due to the impiementation, restrict the placement of some
of the commands.

The forsach, swilch, and whils statements. as well as the if—-then—eise form of
the if statement require that the major keywords appear in a single simple com-
mand on an {nput line as shown below.

It the shell's input is not seekable, the shell buffers up (nput whenever a loop is
being read and performs seeks in this internal buffer to accomplish the reread-

ing implied by the loop. (To the extent that this allows, backward goto's will
succeed on non-seekable inputs.)

Builtin commands

A~NOBNMg"

3rd Berkeaisy Distribution 1/3 18/81 8
=17

CSH(L) UNIX Programmer’s Manual CSH(:)

Builtin commands ars exscuted within the shell. If a builtin command occurs as

any component of a pipeline except the last then it s executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name.
The final form assigns the specified wordlis? as the alias of name, woralist is
command and fllename substituted. Name is not allowed to be aiizs or
unalias

alloe
Shows the amount of dynamic core in use, broken down into used and iree
core. and address of the last location in the heap. With an argument shows
each used and !ree block on the internal dynamic memory chain indicating
its address, size. and whether it is used or free. Thisis a debugging com-
mand and may not werk in production versions of the shell; it requres a
modified vaersion of the system memory allocator.

break
Causes exscution to resume after the end of the nearest enclosing forall or
while. The remaining commands on the current line are exscuted. Mult-
level breaks are thus possible by writing them all on one line.

breaksw
Causes & break from a swifch, resuming after the endsw.

case label:
A label {n a swifch statement as discusssd below.

ed

cd name

chdir

chdir name
Change the shells working directory to directory nams. If no argument is
given then change to the home directory of the user.

I name is not found as a subdirectory of the current directory (and does not
begin with '/°, './°, or ‘../*), then each component of the variable cdpath is
checked to see {f it has a subdirectory nams. Finally, if all eise fails but name is

a shell variable whose value begins with ‘/°, then this Lv tried to see if it is a
directory.

continue
Continue execution of ‘he nearest enclosing while or Joreach. The rest of
the commands on the currsnt line are exscutad.

default:
Labels the default case {n a swifch statement. The default should come
after all case labels.

echo wordlist
The specified words are writtan to the shells standard output. A "\¢’ causes
the echo to complete without printing a newline, akin to the *\¢' {n nroF ().

A '\’ in wordlist causes a newline to be printed. Otherwise the words are
echoed, separatsd by spacss. '

Srd Berkaley Distribution 1/18/81 9
3-1€

CSE (1) UNIX Programmer’s Manual CSH!:.)

eise
end
endif
endsw
See the description of the foreach, if, swilch, and while statements beiow.

exec command
The specified command is executed in place of the curre=nt shell
exit :
exit(expr)
The shell exits either with the value of the stafus variable (frst form) or
with the value of the specified expr (second form). ‘

foreach name (wordlist)

end -
The variablie name is successively set to each member of wordlist and the
sequencs of commands between this command and the matching end are
executed. (Both foreach and end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop premaea-
turely and the builtin command brezk to terminate it prematurely. When
this command is read {rom the terminal, the loop is read up once prompt-
ing with '?” before any statements in the loop are exscuted. If you make a
mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\' escapes are recognized and words are delimited by null
characters in the output. Useful for programs which wish to use the shell to
filename expand a list of words.

goto word
The specified word {s filename and command expanded to yield a string of
the form ‘label’. The shell rewinds {ts input as much as possibie and
searches for a line of the form ‘label:’ possibly preceded by blarks or tabs.
Execution continues after the specified line.

history
Displays the history event list.

it (expr) command
If the specified expression evaluates true, then the single command with
arguments is executed. Variable substitution on command happens early,
at the same time it does {or the rest of the if command. Command must be
a simple command, not a pipeline, a command list, or a parenthesized com-
mand list. Input/output redirection occurs even {f expr is falss, when com-
mand is not executed (this is a bug).

if (expr) then

eise if (expr2) then
If the specified ezpr i3 true then the commands to the first eiss are exe-
cuted: sise if ezpr2 is true then the commards (o the second eise are

Srd Berksley Distribution 1/38/81 10
-1

CSH(1!) UNIX Programmer’s Manual CSH(1)

executed. stc. Any number of sise-if pairs are possible; only one endif is
peeded. The else part is likewise optional. (The words else and endif must

appear at the beginning of input lines; the if must appear alone on its input
line or after an eise.)

Terminate a login shell, replacing it with an instance of /bin/login. This is
one way to log off, included for compatibility with /bin/sh.

logout

' Terminate a login shell. Especially useful if ignoreeo J is set.

nice

pice +number

nice command

pice +number command
The first form sets the nice for this shell to 4. The gsecond form sets the
nice to the given number. The final two forms run ~ommand at priority 4
and number respectively. The super-user may specify negative niceness by
using ‘nice —number ...". Command is always executed in a sub-shell. and
the restrictions place on commands in simpie if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be ignered
for the remainder of the script. The second form causes the specified com-
mand to be run with hangups ignored. On the Computer Center systems at
UC Berkeley, this also submits the process. Unless the shell is running
detached, noAup has no effect. All processes detached with *“&" are
automatically nohup ed. (Thus, nohup is not really needed.)

onintr

onintr -

onintr label
Control the action of the shell on interrupts. The first form restores the
default action of the shell on interrupts which is to terminate shell scripts
or to return to the terminal command input level. The second form ‘onintr
—' causes all intsrrupts to be {gonored. The final form causes the shell to
execute a ‘goto label’ when an interrupt is received or a child process ter-
minates because it was interrupted.

In any case, if the shell is running detached and interrupts are Ceing
ignored, all forms of oninér have no meaning and interrupts continue to be
ignored by the shell and all invoked commands.

rebhash
Causes the internal hash table of the contents of the directories in the path
variabie to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This shouid only be neces-
sary if you add commands to ons of your own directories, or if a systems
programmer changes the contsnts of one of the system directories.

repeat count command : .
The specified command which is subject to the same restrictions as the
command in the one lins {f statement above, i3 executed count times. 1/0
redirections occurs exactly once, sven if count is 0.

Srd Berksley Distribution 1/18/81 11
1-30

CSHE (1) - UNIX Programmer’s Manual CSH(:)

sst

set name

set name=word

set narce(index]=word

set name={wordlist)
The first form of the command shows the value of ail shell variabies. Vari-
ables which have other than a single word as value print as a parenthesized
word list. The second form sets name to the null string. The third form
sets name to the single word The fourth form sets the inda='th component
of name to word: this component must already exist. The flnal form sets
name to the list of words in wordlist. In all cases the value is command azd
fllename expanded.

These arguments may be repeatsd to set multiple values in a singie set
command. Note however, that variable expansion happens for all argu-
ments before any setting occurs.

setanv name value
(Version 7 systems only.) Sets ths value of environment variable name to be
value, a single string. Useful environment variabies are ‘'TERM’ the type of
your terminal and ‘SHELL' the shell you are using.

shift

shift variable
The members of argu are shiftad to the left, discarding ergui{l]. It is an
error for argv not to be get or to have less than one word as value. The
second form performs the same function on the specified variable.

source name
The shell reads commands from name. Source commands may be nested; if
they are nested too deeply the shell may run out of flle descriptors. An
serror {n a sourcs at any level terminates all nested source commands.
Input during sourcs commands {s never placed on the history list.

switch (string)

case stri:

breaksw
Zérmn;

breaksw
sndsw

Each case label is successively matched, against the specified stming which
is first command and fllename expanded. The flle metacharacters '+, '
and ‘{...]’ may be used in the case labeis, which are variable expanded. If
none of the labels match befors a 'default’ label {s found, then the execu-
tion begins after the defauit label. Each case label and the default label
must appear at the beginning of a line. The command drecksw causes sxe-
cution to continue after the endsw. Otherwise control may fall through case
labels and default labels as in C. If no label matches and there {s no defauit,
sxecution continues after the sndsw.

time

Srd Berkeiey Distribution 1718/81 12
3-al

CSH(!) UNTX Programmer's Manual CSE(:)

tUme command
With no argument, a summary of time used by this shell and its children is
printea. If arguments are given the specified simpie command is timed and
a time summary as described under the time variable i{s printed. If neces-

sary, an extra shell {s created to print the time statistic whea the command
completes.

umask

umask value
The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask
are 002 giving all access to the group and read and execute access to oth-

ers or 022 ziving all access except no write access for users in the group or
others. :

unalias pattesra
All aliases whose names match the specified pattarn are discarded. Thus all
aliases are removed by ‘unalias ¢. It is not an error for nothing to be
unaliased.

unhash

Use of the {nternal hash table to speed location of executed programs is
disabied.

unset pattarn
All variables whose names match the specified pattern are removed. Thus
all variabies are removed by ‘unset ¢; this has noticeably distasteful side-
effects. It is not an error for nething to be unsst.

wait
All child processes are waited for. It the shell is interactive, then an inter-
rupt can disrupt the wait, at which time the shell prints names and process
pumbers of all children known to be outstanding.

while (expr)

end
While the specified expression evaluates non-zero, the commands between
the while and the matching end are evaluatsd. 5Sreak and confinus may be
used to terminate.or continue the loop prematurely. (The while and md
must appear alone on their {nput lines.) Prompting occurs here the first
time through the loop as for the forsach statement if the {nput is a termi-
pal.

o

O name = expr

© name{index] = expr
The first form prints the values of all the shell variables. The second form
sets the specified name to the valus of ezpr. If the expression contains ‘<’
*>', 'k’ or ‘' then at least this part of the expression must be placed withun
*(° ')’. The third form assigns the value of expr to the indez th argument of
namas. Both name and its (ndsz'th component must aiready extst.

The operators ‘s=’, '+=’, stc are available as in C. The space separating the
pame {rom the assignment operator is optional. Spaces are, however, man-
datory in separating components of ezpr which would otherwise be single
words.

Srd Berkeley Distribution "1/718/81 13
2-a%

CSH(1) UNIX Programmer’s Manual CSE(!)

Special postfix ‘¢<+’ and '—" operators increment and decrement name
respectively, i.e. '® {+=+'. ,

Pre-defined variables

The following variables have special meaning to the sheil Of these, argv. chid.
"homc, path, prompt, shell and stotus are always set by the sheil. Except for
jchild and status this setting occurs only at initialization: these variables will not
‘then be modifled unless this is done explicitly by the user.

“The shell copies the environment variable PATH into the variable path, and
copies the valus back into the environment whenever path is set. Thus is is not
pecessary to worry about its setting other than in the file .cshrc as inferior csh
processes will import the definition of path from the environment. (It could be
set once in the .login except that commands through net(1) would not see the

definition.)

argy Set to the arguments to the shell, it is from this variable that posi-
tional parametsrs are substituted, Le. 'S1' is replaced by
‘Sargv{1]’, ste.

cdpath Gives a list of alternate directories searched to find subdirectories
in chdir commands.

child The process number printed when the last command was forked
with ‘%’. This variable is unset when this process terminates.

scho Set when the —x command line option is given. Causes each com-

mand and its arguments to be echoed just before it is executed.
For non-builtin commands all expansions occur before echoing
Builtin commands are echoed before command and Alename sub-
stitution. since these substitutions are then done selectively.

histchars Can be assigned a two character string. The first character is
used as a history character in placs of 1", the second character
is used (n placs of the <" substitution mechanism. For exampie.
vget histcharss",."* wil cause the history characters to be
comma and semicoloa.

history Can be given a numeric value to control the size of the history list.
Any command which has been refersnced in this many events will
not be discarded. Too large values of history rnay run the shell out
of memeory. The last executed command is always saved on the
history list.

home The bhome directory of the {nvoker. {nitialized from the eaviron-
ment. The filename expansion of ‘~' refers to this variable.

fgnoreeof 1f set the shell ignores end-of-file from i{nput devices which are ter-

minals. This prevents shells from accidentally being Kiled by
control-D’'s.

mail The files where the shell checks for mail This is done after each

command compietion which will resuit {n a prompt. if a specified

{nterval has elapssd. The shell says You have new mail’ it the Aale
exists with an access time not greatsr than its modify time.

If the first word of the value of mail is numeric it specifies a
different mail checking interval. in seconds, than the de’ault.
which is 10 minutes.

Srd Berkaley Distribution 1/18/81 14
3-a3

CSH(!:

noclobber

noglod

nonomatch

path

prompt

shell

time

verbose

UNIX Programmer’s Manual CSH(:)

If multiple mail files are specified, then the shell says 'New mail in
name' when there is mail in the fle nams.

As described in the section on /npuf/outpuf, restrictions are
placed on output redirection to insure that flles are not acciden-
tally destroyed, and that ‘'>>' redirections refer to existing files.

If set. fillename expansion is inhibited. This is most useful in shel
scripts which are not dealing with fllenames, or after a list of
filenames has been obtained and further expansions are not desir-
able.

1f set, it is not an error for a fllename expansion to not match any
existing flles: rather the primitive pattern is returned. It is still an
error for the primitive pattern to be malformed, L.e. ‘echo [’ still
gives an error.

Each word of the path variable specifies a directory in which com-
mands ares to be sought for execution A aull word specifies the
current directory. If there is no path variable then only full path
names will execute. The usual search path iz ‘.’ ‘/bin’ and
‘/usr/bin’, but this may vary from system to system. For the
super-user the default search path is ‘/etc’, */bin’ and ‘/usr/bin".
A shell which is given neither the —¢ nor the =t option will nor-
mally bash the contents of the directories in the path variable
after reading .cshre, and each time the path variabie is reset. If
new commands are added to these directories while the shell is
active, it may be nscessary to give the rehash or the commands
may not be found.

The string which is printed before each command is read rom an
interactive terminal input. If a ‘!" appears in the string it wil be
replaced by the current event oumber unless a preceding "\' is
given. Defauitis'X’, or '# ' for the super-user.

The file in which the shell resides. This is used {n forking shells to
interpret flles which have exscute bits set, but which are oot exe-
cutable by the system. (See the description of Non-duiltin Com-
mand Ezecution below.) Initialized to the (system-dependent)
home of the shell.

The status rsturned by the last command. If it terminated aboor-
mally, then 0200 is added to the status. Builtin commands whica
fail return exit status ‘1°, all other builtin commands set status ‘0.

Controls automatic timing of commands. If set, then any comm-
mand which takes more than this many cpu seconds will cause 2
line giving user, system. and real times and a utilization percen-
tage which is the ratio of user plus system times to real time be
printed when it tarminatass.

Set by the —y command line option. causes the words of each com-
mand to be printed after history substitution

Non-builtin command execution

When a command to be sxecuted {s found to not be a builtin command the shell
attampts to execute the command via ez2c(2). Each word in the variable path
names a directory from which the shell will attempt to executse the command. I

Srd Berkeley Distribution 1/18/81 15

3-a4

CSH(1) UNIX Programmer's Manual CSH(:)

it {s given neither a —c nor a =t option, the shell will hash the names {n these
directories into an internal table so that it will only try an s=sc in a directory U
there is a possibility that the command resides there. This greatly speeds com-
mand location when a large number of directories are present {n the searca
path. If this mechanism has been turned off (ia unhash), or if the shell was
given a —c or =t argument, and in any case for each directory component of path
which does not begin with a **/*, the shell concatenates with the given command
pame to form a path name of a flle which it then attempts to executs.

Parenthesized commands are always executed in a subshell. Thus ‘(cd ; pwd) :
pwd’ prints the home directory: leaving you where you were (printing this after
the home directory). while ‘ced ; pwd' leaves you in the homas directory.
Parenthesized commands are most often used to prevent chdir from afecting
the current shell.

If the file has execute permissions but is not an executable binary to the system.

then it {s assurmed to be a flle containing shell commands an a new shell is
spawned to read jt.

If there is an alias for shell then the words of the alias will be prepended to the
argument list to form the shell command. The first word of the alias should be
the full path name of the shell (e.g. ‘Sshell’). Note that this is a special. late
occurring, case of alias substitution. and only allows words to be prepended to
the argument list without modification.

Argument list processing

If argument O to the shell is ‘=’ then this is a login shell. The flag arguments are
interpreted as follows:

=¢ Commands are read {rom the (single) following argument whica must be
present. Any remaining arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a
non-zero exit status.

={ The shell will start faster, because {t will neither search for nor execute
commands {rom the flle ‘.cshre’ {n the invokers home directory.

=i The shell is interactive and prompts for its top-level input, even if it appears
to not be a terminal. Shells are interactive without this option if their
inputs and outputs are terminals.

- Commands are parsed. but not executed. This may aid in syntactic check-
ing of shell scripts.

—s Command {nput is taken from the standard input.

=t A single line of {nput is read and executed. A “\' may be used to escape the
newline at the end of this line and continue onto another line.

—v Causes the verbose variable to be set, with the effect that command {nput is
schoed after history substitution.

—g Causes the scho variable to be set. so that commands are echoed immedi-
ately befors execution .

~¥ Causes the verdose variable {0 be set even before ‘.cshre’ {s exscutad.

-~X Isto —xas~Visto-w.

Srd Berkeley Distribution 1/18/81 18

-3-25

CSH(1) UNIX Programmer’s Manual CSH(1)

After processing of flag arguments if arguments remain but none of the —e, =,
=8, or =t options was given the fArst argument {s taken as the name of a file of
commands to be exscuted. The shell opens this flle, and saves its name for pos-
sible resubstitution by '$0°. Since many systems use either the standard version
8 or version 7 shells whose shell scripts are not compatible with this shell, the
.shtll will exscuts such a ‘standard’ shell if the first character of a script is not a
if < 1.e. U the script does not start Witk a comment. Remaining arguments ini-
Halize the variable argv.

Signal handling

The shell normally ignores quil signals. The inferrupt and quit signals are
ignored for an invoked command it the command is followed by '&'; otherwise
the signals have the values which the shell inherited from its parent. The shells
handling of interrupts can be controlled by onintr. Login shells catch the ter-
minate signal: otherwise this signal is passed on to children from the state (n

the shell’s parent. In no case are interrupts allowed when a login shell is reading
the ale ‘.logout’.

AUTHOR
William Joy
FILES
~/.eshre Read at beginning of execution by each shell.
~/.login Read by login shell. after ‘.cshre’ at login.
~/.logout Read by login shell, at logout.
/din/sh Standard shell, for shell scripts not starting with a ‘§°.
/tmp/she Temporary flle for ‘<<".
/dev/null Source of empty fle.
/etc/passwd Sourcs of home directories for ‘~pams".
LIMTTATIONS

Words can be no longer than 512 characters. The number of characters in an
argument varies from system to system. Early version 8 systems typically have
512 character limits while later version 8 and version 7 systems have 5120 char-
acter limits. The number of arguments to a command which invoives fllename
expansicn {s limited to 1/8°th the aumber of characters allowed {n an argument
list. Also command substitutions may substituts no more characters than are
allowed in an argument list.

To detact looping, the shell restricts the number of alias substititutions on a sin-
gle line to 20.

SEX ALSO
access(2), exec(2), fork(2). pipe(2), signal(2), umask(2), wait(2), a.out(5),
environ(S), ‘An introduction to the C shell’

Control structurs should be parsed rather than being recognized as built-in
commands. This would allow control commands to be placed anywhere, to be
combined with ‘I', and to be used with ‘%’ and ‘;’ metasyntax

Commands within loops, prompted for by '?", are not placed in the Aistory list.

It should be possible to use the *:' modifiers on the output of command substitu-
tions. All and more than one ‘:’ modifier should be allowed on 'S’ substitutions.

Srd Berksley Distribution 1718/81 17
3-a6

CSH(:) UNIX Programmer’s Manual CSH(!)

Some commands should not touch stafus or it may be so transient as to be
almost useiess. Oring in 0200 to siatus on abnormal termination is a kludge.

In order to be able to recover {rom failing e=2c commands on version 8 systems,
the new command inherits several open flles other than the normal standard
input and output and diagnostic output. If the input and output are redirected
and the new command does not close these flles, some flles may be heid open
unnecessarily.

There are a number of bugs associated with the importing/exporting of the
PATH. For example, directories in the path using the ~ syntax are not expanded
in the PATH. Unusual paths, such as (). can cause csh to core dump.

This version of csh does not support or use the process control features of the
4th Berkeley Distribution It contains a number of known bugs which have been
fixed in the process control version. This version is not supported.

Srd Berksley Distribution 1/18/81 18

3-27

DIGEST (1M) UNIX Programmer's Manual DIGEST (1M)

NAME

digest -- create menu system(s) for the Business Shell

SYNOPSIS

digest [options] menufile ...

DESCRIPTION

Digest is used to create a menu system for use by the
Business Shell (bsh(1l)). This program is also used to
modify an existing menu system,

One or more menu systems may be created under control of the
options described below:

-h Display an informative summary of the available options
and defaults, -a is the same as -h.

-1 number

Check for menus longer than pnumber lines in length.,
The default value is 25 if none is specified. This is
the correct maximum number for a conventional 24-line
crt screen. In general, number should be one larger
than the length of the screen area (as defined by "1i"
in termcap) for the terminal to be used. The user is
responsible for ensuring that the width of a menu will
fit onto the terminal(s) he uses. Bsh(l) will truncate
lines which are too wide (without issuing a warning
message) .

- Multiple menu systems: For each menu file (which must
be a directory), produce a separate menu system. The
names for each menu system are created by suffixing
".bin" to the menu file name,

=S Inenu
The starting menu for the generated menu system is the
one specified. This option doesn't make much sense
if used with the -p option. 1If no starting menu is
specified, the alphabetically first menu name is used
for each menu system.

-y Verbose: echo menu names as they are processed.

-0 file
The digested output is sent to the named file. By con-
vention, a digested menu system file name should end
with a ".bin" suffix.

A menu file may contain one or more menus or directories

containing menus. Digest will recursively process all menus
within a directory structure.

3-28

DIGEST (1M) UNIX Programmer's Manual DIGEST (1M)

Note that the -m and -o options are mutually exclusive. The
- option indicates that each menu is to produce a separate
" bin" file: -0 indicates that a single output file is to
be produced with the name given.

The default output file is ™menul.bin" if none is specified
via the -0 option, where "menul" is the first menu file
name,

The recommended way to create a menu system is to create a
tree of directories containing the various portions of the
system. Each subtree contains all the menus related to a
given subject. Thus, a primary menu (directory) is created
for, say, system management functions and subsidiary menus
are placed beneath (within) the directory for each of the
individual system management functions or function areas.
Help menus may be placed wherever appropriate in the

structure,
SEE ALSO
bsh(l), menus(5), termcap(5)
DIAGNOSTICS
The diagnostics produced by digest are intended to be self-
explanatory.
BUGS

No outstanding bugs are known.

Digest might check each menu for validity and each menu
system for consistency.

3-29

EDIT(UCB) UNIX Programmer’s Manual EDIT(UCB)

NANE
edit — text editor (variant of the ex editor for new or casual users)

SYNOPSIS
edit [=r] name ...

DESCRIPTION »
;Edz'.t is a variant of the text editor ez recommended for new or casual users who
‘wish to use a command oriented editor. The following brief introduction should
*help you get started with edit. A more complete basic introduction is provided
by Edil: A tutorial . A £z/edit command summary (version 2.0) is also very use-
ful. See ¢x(UCB) for other useful documents; in particular, if you are using a CRT
terminal you will want to learn about the display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the command *‘edit name"
to the shell. Zdif makes a copy of the flle which you can then edit, and tells you
how many lines and charactars are in the flle. To create a new flle, just make up

a name for the flle and try to run edif on it; you will cause an error diagnostic,
but don't worry.

£dit prompts for commands with the character **, which you should see after
starting the editor. If you are editing an exaisting file. then you will have some
lines {n edif's buffer (its name for the copy of the file you are editing). Most
commands to edif use its “current line'” if you don't tell them which line to use.
Thus { you say print (which can be abbresviated p) and hit carriage return (as
you should after all edif commands) this current line will be printed. If you
delete (d) the current line, ecdit will print the new current line. When you start
editing, edif makes the last line of the file the current line. If you delete this
last line, then the new last line becomes the current one. In general, after a
delete, the next line {n the flle becomes the current lins. (Deleting the last line
is a special case.)

If you start with an empty flle, or wish to add some new lines, then the append
(a) command can be used. After you give this command (typing a carriage
return after the word append) edit will read lines from your terminal until you
give a line consisting of just a ““.", placing these lines after the current line. The
last line you type then becomes the current line. The command iusert (i) is like
append but places the lines you give before, rather than after, the current line.

Edit numbers the lines in the buffer, with the first line having number 1. If you
give the command “1'° then edif will type this first line. If you then give the
command delete ecit will delete the first line, and line 2 will become line 1, and
edit will print the currsnt line (the new line 1) so you can see where you are. In
general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the subesti-
tuts (s3) command. You say “s/oid /new/’ where old is replaced by the oid
characters you want to get rid of and new is the new characters you want to
replace it with.

The command file (f) will tell you how many lines thers are in the buffer you are
editing and will say “{Modified]” if you have changed it. After modifying a flle
you can put the buffar taxt back to replacs the flle by giving a write (w) com-
mand. You can then leave the editor by issuing a quit (q) command. If you run
edit on a fille, but don't change it, it (s not necessary (but does no harm) to write
the flle back. If you try to quit from edi after modifying the buffer without

Tth Edition 4/8/79 1
2-30

EDIT(UCS) UNIX Programmer’s Nanual EDIT(UC3)

writing it out, you will be warned that there has been *“Ne write since last
change” and edi? will await another command. If you wizh not to write the
buffer out then you can {ssue ancther quit command. The buffer is then irre-
trievably discarded, and you return to the shell.

By using the delete and append commands. and giving line numbers to see lines
:mﬁ:e file you can make any changes you desire. You should learn at least a {ew
. more things, however, if you are to use ¢dif more than a few times.

“The change (c) command will change the current line to a sequence of lines you
supply (as in append you give lines up to a line consisting of only a "*.""). Youcan
tell change to change more than ope line by giving the line numbers of the lines
you want to change, Ls. “3.5change’. You can print lines this way too. Thus
**1,23p" prints the Arst 23 lines of the flle.

The undo (u) command will reverse the effect of the last command you gave
which changed the buffer. Thus if give a substitute command which doesn’t do
what you want, you can say undo and the old contents of the line will be
restored. You can also undo an undo command so that you can continue to
change your mind. ZEdif will give you a warning message when commands you do
affect more than one line of the buffer. If the amount of change seems unrea-
sonable, you should corsider doing an unds and looking to see what happened
If you decide that the change is ok, then you can undo again to get it back. Note
that commands such as writs and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage rsturn To look at
a pumber of lines hit ~D (control key and. while it {s heid down D key, then let up
both) rather than carriage return. This will show you a half screen of lines on a
CRT or 12 lines on a hardcopy tarminal. You can look at the text around where
you are by giving the command "2.". The current line will then be the last line
printad: you can get back to the line where you were before the “2." command
by saying “°~°. The £ command can also be given other following characters
“z="" prints a screen of text (or 24 lines) ending where you are: *“z+'" prints the
pext screenful If you want less than a screenful of lines do, e.3.. *2.12" to get
12 lines total This method of giving counts works {n general thus you can
delets S lines starting with the currsnt line with the command ‘‘delste 5°°.

To find things in the Ne you can use line numbers {f you happen to know them:
gincs the line numbers change when you insert and delete lines this {s somewhat
unreliable. You can search backwards and forwards in the Ale for strings by giv-
ing commands of the form /text/ to search forward for te=? or 7text? to searza
backward for te=t. If a search reaches the end of the fle without finding the ltext
it wraps. end around, and continues to search back to the line where you are. A
useful featurs here is a search of the form /~text/ which searcles for fa=: at
the beginning of a line. Similarly /text3/ searches for te=t at the end of a line.
You can leave off the trailing / or ? {n these commands.

The current line has a symbolic name *."; this is most useful in a range of lices
as {n *..Sprint”” which prints the rest of the lines in the file. To get to the last
line {n the flle you can refer to it by itz symbolic name “3$*. Thus the commazd
«g delete’ or “3d'* deletes the last line (n the flle. no matter whick lire was ‘he
current line befors. Arithmetic with line references Is also possibie. Thus ‘ke
line “3—5" {s the Afth before the last, and “.+20" {5 20 lines aftar the present.

You can fAnd out which line you are at by dofng *.=". This i3 useful if you wish %o
move or copy a section of taxt within a fle cr between iles. Find out the arst
and last line numbers you wizh to copy or move (say 10 to 20). For a move you

Tth Edition 4/8/79 2
’ 3-31

EDIT(UCE) UNIX Programmer’s Manual EDIT(UCB)

can then say "“10.20move “a" which deletes these lines from the file and places
them in a buffer named a. £dif has 28 such buffers named a through z. You can
later get these lines back by doing “““a move ." to put the contents of buffer a
after the current line. If you want to move or copy these lines between flles you
can give an edit (e) command after copying the lines, following it with the name
of. the other file you wish to edit, i.e. “edit chapter2”. By changing move to copy
above you can get a pattern for copying lines. If the taxt you wish to move or
copy is all within one file then you can just say “10.20move $'* for example. Itis
ot necessary to use named buffers in this case (but you can if you wish).

SEE ALSO
ex (UCB). vi (UCB). 'Edit: A tutorial’, by Ricki Blau and James Joycse

AUTHOR
William Joy

BUGS
See ex(UCB).

Tth Edition 4/8/79 3

-z

EX(UCB) UNIX Programmer’s Macual EX(UCB)

NANE
ex - text editor

ex{-][—](—ttag][—r][+lineno] name ...
DESCRIPTION
E= is the root of a family of editors: edif, ez and vi Ez (s a superset of ad, with

the most notable extension being a display editing facility. Display basad editing
{s the focus of vi

If you have not used ed, or are a casual user, you will ind that the editor edi? is
convenient for you. It avoids some of the complexities of ez used mostly by sys-
tems programmers and persons very familiar with ed.

If you have a CRT terminal you may wish to use a display based editor: in this
case see vi(UCB), which is a command which focuses on the display editing por-
tion of e=.

DOCUMENTATION
For edit and ez see the E=/edit command summary — Version 2.0. The docu-
ment Edit: A tutormial provides a comprehensive introduction %o edi! assuming Do
previcus knowiedge of computars or the UNX system.

The Ez Rsfersncs Manual - Version 20 is a comprehensive and complete
manual for the command mode features of ez, but you cannot learn to use the
editor by reading it. For an introduction to more advanced forms of editing
using the command meods of ex see the editing documents written by Brian Ker-
nighan for the editor ed; the matarial (n the introductory and advanced docu-
ments works also with e=.

An [niroduction to Display Editing with M introduces the display editor wvi and
provides reference material on vi. The ¥ Quick Referencs card summarizes the
commands of vi in a useful, functional way, and is useful with the niroduciion.

FOR ED USERS

If you have used ¢2 you will ind that ez has a number of new {eatures useful on
CRT terminals. [ntslligent terminals and high speed terminals are very pleasant
to use with vi Generally, the editor uses far more of the capabilities of termi-
pals than sd does, and uses the terminal capability data base tarmcap(UCB) and
the type of the terminal-you are using from the variable TERM in the environ-
ment to determine how to drive your terminal eficiently. The editor makes use
of features such as insert and deiete charactesr and lLile in its visual command
(which can be abbreviated vi) and which is the central mode of editing when
using vi(UCB). There is also an interline editing open (o) command which works
on all tarminais.

Ex contains a number of new {eatures for easily viewing the text of the fle. The
g command gives sasy accass to windows of text. Hitting =D causes the editor to
scroll a half-window of taxt and is more useful for quickly stepping through a lle
than just hitting return. Of course, the screen oriented visual mods gives con-
stant access to editing contaxt.

Ex gives you more help when you make mistakes. The undo (u) command allows
you to reverss any single change which goes astray. Zz gives you a lot of feed-
back. normaily printing changed lines, and indicates when more than a few lines
ars affectsd by a command so that it is easy to detect when a command has
afectad mors lines than it should have.

Tth Edition 4/4/79 1
3-33

EX{UC3) UNIX Programmer’s Manual EX(UCB)

The editor also normally prevents overwriting existing flles unless you edited
them so that you don't accidentaily clobber with a wrife a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally hang
up the phone, you can use the editor recover command to retrieve your work.
This will get you back to within a few lines of where you left off.

E=z has several features for dealing with more than one file at a time. You can
give it a list of Alles on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of flle names, or a
pattern as used by the shell to specify a new set of flles to be dealt with. In gen-
eral. fllenames in the editor may be formed with full shell metasyntax. The
metacharacter ‘%’ is also available in forming fllenames and is replaced by the
pame of the current file. For editing large groups of related flles you can use
ez's tag command to quickly locate functions and other important points in any
of the flles. This is useful when working on a large program when you want to
quickly find the definition of a particular function. The command ctags(UC3)
builds a tags flle or a group of C programs.

For moving text between files and within a flle the editor has a group of buffers,
named g through 2. You can piace taxt in these named buffers and carry it over
when you edit another fils.

There is a command & i(n ez which repeats the last substitute command. In
addition there is a confirmed substitute command. You give a range of substitu-
tions to be done and the editor intsractively asks whether each substitution is
desired.

You can use the substitute command in ez to systematically convert the case of
letters between upper and lower case. It is possible to ignore case of letters in
searches and substitutions. Z= also allows regular expressions which match
words to be constructed. This is convenient, for example, (n searching for the
word “edit’ if your documesnt also contains the word “editor.”

Ex has a set of options which you can set to tailor it to your liking. One option
which is very useful is the sufoindent option which allows the editor to automati-
cally supply leading white space to align text. You can then use the ~D key as a
backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (J) command which
supplies white space between joined lines automatically, commands < and >
which shift groups of lines, and the ability to fllter portions of the buffer through
commands such as gort.

mxs

/usr/lib/ex2.0strings error messages

/usr/lib/ex2.0recover recover command

/asr/lib /ex2.0preserve preserve command

/etc/tarmcap describes capabilities of terminals

-~/ aXre editor startup flle

Amp/Exnnnnn sditor temporary

/tmp/Rannmnn named buffer temporary

/usr/pressrve preservation dirsctory
ALSO

awk(1). ed(1), grep(1). sed(1). edit(UCB), grep(UCS). termcap(UCB). vi(UC3)
Tth Edition 4/4/79 2

3-34

EX(UCB) . UNIX Programmer’s Manual EX(UCB)

AUTHOR

BUGS

William Joy

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed. :

(:’ndo nsver cisars the buffer modified condition.

ha g command prints a number of logical rather than physical lines. More than
a'screen full of output may result if long lines are present.

Flle input/output errors don’t print a name if the command line *=' option is
used.

There is 2o easy way to do a single scan ignoring case.

Because of the implementation of the arguments to ne=zt, only 512 bytes of argu-
ment list are aillowed there.

The format of /eic/tarmcap and the large number of capabilities of terminals
used by the editor causs terminal type setup to be rather siow.

The editor does not warn if text is placad in named buffers and not used before
exiting the editor.

Null characters are discarded in input flles, and cannot appear in resuitant dles.

Tth Edition 4/4/79 3

3-35

{*JBU_L I, 3

FORMAT (1) UNIX Programmer's Manual FORMAT (1)

NAME
format - format a floppy disk while running XENIX

SYNOPSIS
format

DESCRIPTION
Format is a menu-driven program for formatting floppy disks.
Diskettes are formatted in Altos 5-1/4 inch format; double-
density, double-sided.

3-37

LAYOUT (1) UNIX PROGRAMMER'S MANUAL LAYOUT (1)

The options to layout are used to create some very common
layouts.
USAGE
layout /dev/hd@.layout 586

SEE ALSO
map(l), sizefs (1)

3-42

FSCK (1) URIX Programmer's Manual FSCK (1)

-t If f£fsck cannot obtain enough memory to keep its tables,
it uses a scratch file., 1If the -t is specified, the
file named in the next argument is used as the scratch
file., Without the -t option, fsck prompts if it needs
a scratch file. The file should not be on the file
system being checked, and if it is not a special file
or did not already exist, it is removed when fsck
completes.,

If no filesystems are given to f£sck then a default list of
file systems is read from the file /etc/checklist.,

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free
list.

2, Blocks claimed by an i-node or the free list outside
the range of the file system.

3. Incorrect link counts.
4, Size checks:

Incorrect number of blocks in file.
Directory size not a multiple of 16 bytes.

5. Bad i-node format.
6. Blocks not accounted for anywhere.,
7. Directory checks:

File pointing to unallocated i-node,
I-node number out of range.

8. Super Block checks:

More than 65536 i-nodes.
More blocks for i-nodes than there are in the file
system,

9. Bad free block list format.
10, Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the "lost+found" directory. The name assigned is
the i-node number. The only restriction is that the
directory "lost+found" must preexist in the root of the
filesystem being checked and must have empty slots in which
entries can be made. This is accomplished by making
"lost+found", copying a number of files to the directory,
and then removing them (before fsck is executed).

3-39

LS(1)

=u

=C

-9

=m

=C

-q

=X

-R

UNIX PROGRAMMER'S MANUAL LS(1)

Use time of last access instead of last modification
for sorting (-t) or printing (-1).

Use time of file creation for sorting or printing.

Print i-number in first column of the report for each
file listed.

Force each argument to be interpreted as a directory
and list the name found in each slot. This option
turns off -1, -t, -s, and -r, and turns on =-a; the
order is the order in which entries appear in the
directory.

Give group ID instead of owner ID in long listing.
Force stream output format.

Force one entry per line output format, e.g. to a
teletype.

Force multi-column output, e.g. to a file or a pipe.

Force printing of non-graphic characters in file names
as the character '?'; this normally happens only if the
output device is a teletype.

Force printing of non-graphic characters to be in the
*ddd notation in octal.

Force columnar printing to be sorted across rather than
down the page; this is the default if the last
character of the name the program is invoked with is an
'X'.

Cause directories to be marked with a trailing '/' and
executable files to be marked with a trailing '#'; this
is the default if the last character of the name the
program is invoked with is a 'f’'.

Recursively list subdirectories encountered.

The mode printed under the -1 option contains 11 characters
which are interpreted as follows: the first character is

oo

if the entry is a directory;

if the entry is a block-type special file;

if the entry is a character-type special file;

if the entry is a multiplexor-type character special
file;

if the entry is a plain file.

3-44

LAYOUT(1) UNIX PROGRAMMER'S MANUAL LAYOUT (1)

NAME
layout - configure a hard disk
SYNOPSIS
layout layout-device 586
DESCRIPTION
Layout creates a table defining a number of "logical
devices" associated with each physical disk in the XENIX
system. Layvout records this table on cylinder zero of each
disk. Each entry in the table is in the following format:
struct layout {
daddr_t 1_blkoff; /*Block offset to area */
daddr_t 1_nblocks; /*Number of blocks in area */
}i
Layvout defines ten "logical devices" on the hard disk:

(7] The whole disk, with the alternate sector
mechanism disabled.

The swap area.
The root file system.,

-8 Unused.

o W N -

Alternate sector area into which bad disk sectors
are automatically mapped by the XENIX kernel.

The logical device numbers above correspond to device
numbers in the hard disk driver,

Other device numbers are pre-defined in the XENIX kernel as
follows:

10 Future expansion.
11 All of track®.
12 Boot program area.

13 Portion of cylinder zero used for fsck temporary
file.

14 Layout information created by this utility.

15 Alternate sector map (see map(l)).

3-41

LS(1) UNIX PROGRAMMER'S MANUAL LS(1)

NAME

map - create an alternate sector map for a hard disk drive
SYNOPS1IS

map layout mapfile drive
DESCRIPTION

Map creates a bad sector map, on mapfile, using the layout
information, in layout, created by layout(l). The last
argument is the logical device name which references the
whole drive,

The standard invocation is:
map /dev/hd@.layout /dev/hd@.secmap /dev/hdg@

The structure used for the bad sector to alternate sector
mapping is as follows:

struct mapsec {
int bad_cyl; /* Cylinder number of bad sector */
char bad_hed; /* Head number of bad sector */
char bad_sec; /* Sector number of bad sector */
int bad_good; /* Offset into alternate sector
area */

}:

This structure provides a way for the XENIX hard disk driver
to recover from bad sectors it encounters when reading the
hard disk. If a bad sector is read, a search of a table of
the above structures is made. If an exact match of
cylinder, head and sector is found, the corresponding offset
is used as an index into the area reserved on the disk for
alternate sectors.

SEE ALSO

layout (1), sizefs(l)

3-46

LS(1)

NAME

UNIX PROGRAMMER'S MARUAL LS(1)

ls - List contents of directory

SYNOPSIS

ls {-abcdfgilmgrstuxLCFR} name...

DESCRIPTION

For each directory argument, ls lists the contents of the
directory; for each file argument, ls repeats its name and
any other information requested. The output is sorted
alphabetically by defalt. When no argument is given, the
current directory is listed., When several arguments are
given, the arguments are first sorted appropriately, but
file arguments appear before directories and their contents.

There are three major listing formats. The format chosen
depends on whether the output is going to a teletype, and
may also be controlled by option flags. The default format
for a teletype is to list the contents of directories in
multi-column format, with the entries sorted down the
columns. (Files which are not the contents of a directory
being interpreted are always sorted across the page
rather than down the page in columns., This is because
the individual file names may be arbitrarily long.) If the
standard output is not a teletype, the default format is to
list one entry per line. Finally, there is a stream
output format in which files are listed across the page,
separated by '.,' characters. The -m flag enables this
format; when invoked as 1 this format is also used.

There are an unbelievable number of options:

-1 List in long format, giving mode, number of 1links,
owner, size in bytes, and time of last modification for each
file. (See below.) If the file is a special file the size
field will instead contain the major and minor device
numbers.

-t Sort by time modified (latest first) instead of by
name, as is normal.

-a List all entries; usually '.' and ',.' are suppressed.

-Ss Give size in blocks, including indirect blocks, for
each entry.

-d If arqument is a directory, list only its name, not its
contents (mostly used with -1 to get status on
directory).

-r Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate,.

3-43

MATL(1) UNIX Programmer’s Manual MATL (1)

Fersonal and systemwide distribution lists. It is also possible to create a per-
sonal distribution lists so that, for instance, you can send mail to ““coborts’ and
have it go to a group of pecple. Such lists can be defined by placing a line like

alias cohorts bill ozalp skiower jk! mark cory:kridle

in the file .mailre {n your home directory. The current list of such aliases can be

{displayed by the alias (a) command in mail. System wide distribution lists can
ibe created by editing /usr/lib/aliases, see aliases(5) and delivermail(8): these
‘are kept in a slightly different syntax. In mail you send. personal aliases wll de
‘expanded in mail sent to others so that they will be able to reply to the rec:-
pients. System wide aliases are Dot expanded when the mail is sent. but any
reply returned to the machine will have the system wide alias expanded as all
mail goes through delivermail. If you edit /usr/lb/aliases, you must run the
program newaliases(l).

Network mail (ARPA UUCP, Berknat) Mail to sites on the ARPA network and
sites within Bell laboratories can be sent using “named@site” for ARPA-net sites
or “machine/user’* for Bell labs sites, provided appropriate gateways are known
to the systam. (Be sure to escape the!in Bell sites when ziving it on a csA com-
mand line by precsding it with an \. Machines on an instance of the Berkeley
petwork are addressed as “machine:user”, e.g. ‘“csvax:bill”. When addressed
from the arpa-net, ‘“csvax:bill” is known as “esvax.billOberkeley’”.

Mail bas a pumber of options which can be set in the .magilrc file to alter {ts
behavior;: thus “set askcc' enabies the “askcc’ feature. (These opticns are
summarized below.)

STHRARY

(Adapted from the 'Mail Reference Manual') Each command is typed on a line by
itself. and may take arguments following the command word. The command
peed not be typed in its entirety — the first command which matches the typed
prefix is used. For the commands which take message lists as arguments, if no
message list is given, then the next message forward which satisfles the
command’'s requirements is used II there are no messages forward of the
currsnt message, the search proceeds backwards, and if there are no gocd mes-
sages at all, mail types “No applicable messages’ and aborts the command.

- . Goes to the presvious message and prints it out. If given a numeric
argument n , goes to the n th previous message and prints it.

? Prints a brief summary of commands.

! Executes the UNIX shell command which follows.

alias (a) With no arguments. prints out all currently-defined aliases. With

one argument, prints out that alias. With more than one argumesnt.
adds the users named in the second and later arguments to the alias
named in the first argument. .

chdir (e) Changes the user’s working directory to that specifled. if iven. i
. po directory is given. then changes to the user’s login directory.
delete (d) Takes a list of messages as argument and marks them all as

delsted. Deleted messages will not be saved in mboz , nor will they
be available {or most other commands. ‘

dp (also dt) Deletas the current message and prints the next messag=.
If thers is no next message, mail says “at EOF.”
eodit (o) Takes a list of messages and points the text editor at each one in

4th Berksley Distribution 3"'43 2

LS(1)

FILES

BUGS

UNIX PROGRAMMER'S MANUAL LS(1)

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to owner permissions; the
next to permissions to others in the same user-group; and
the last to all others. Within each set the three
characters indicate permission respectively to read,
to write, or to execute the file as a program, For a
directory, 'execute' permission is interpreted to mean
permission to search the directory for a specified file.
The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

I % £

The group-execute permission character is given as g if the
file has set-group-ID mode; likewise the user-execute
permission character is given as g if the file has set-user-
ID mode.

The last character of the mode (normally 'x' or '-') is t if
the 1008 bit of the mode is on. See chmod(l) for the
meaning of this mode.

When the sizes of the files in a directory are listed, a
total count of blocks, including indirect blocks is printed.

/etc/passwd to get user ID's for 'ls-1'
/etc/group to get group ID's for 'ls-g'

Newline and tab are considered printing characters in file
names,

The output device is assumed to be 88 columns wide.

The option setting based on whether the output is a teletype
is undesirable as "ls-s" is much different than "ls-s|lpr".

On the other hand, not doing this setting would make old
shell scripts which used ls almost certain losers.,

3-45

) UNIX Programmer’s Manual MAIL (1)

significance.
undelete (u) Takes a message list and marks each one as not being deleted.
unset Takes a list of option names and discards their remembersd values:

the inverse of set .

Evi:ua.l) (f) Takes a message list and invokes the display editor on each mes-

_ sage.
“write (W) A synonym for save.
xit (x) A synonym for exit.

Here {s a summary of the tilde escapes, which are used when composing mes-
sages to perform special functions. Tlide escapes are only recogmzed at the
beginning of lines.. The name “tilde escape’ is somewhat of a miscomer since
the actual escape charactar can be set by the option escape.

~{command

Exscuts the indicated shell command, then return to the message.
~c name ...

Add the given names to the list of carbon copy recipients.

~d Read ths flle '*dead.letter’” from your home directory into the mes-
’ sage.
~e Invoks the text editor on the message collected so far. After the
editing session is finished, you may continue appending text to the
message.
~h Edit the message header flelds by typing each one in turn and allow-

- ing the user to append text to the end or modify the fleld by using
the current terminal erase and kill characters.

~m messages
Read the named messages into the message being sent, shifted right
one tab. If no messages are specified, read the current message.

~p Print out the message coilectad so far, prefaced by the message
header flelds.

~q Abort the message being sent, copying the message to “dead.letter”
{n your home directory U save is set.

~¢ fllename

Read the named flle into the message.
~g string Cause the named string to become the current subject fleld.

~¢ name ...
Add the given names to the direct recipient list.

~y Invoke an altarnate editor (defined by the VISUAL option) on the mes-
sage collected so far. Usually, the aiternats editor will be a screen
editor. After you quit the editor, you may resume appending text to
the end of your message. .

~w llename
Yrite the message onto the named fle.

~ |command
Pipe the message through the command as a flter. If the command
gives 2o output or tarminates abnormally, retain the original text of

ﬁ&*mymm 3-S0 4

MAIL(1) UNIX Programmer's Manual MAIL (1)

NANE
mail = send and receive mail

SYNOPSIS
mail [= [namme]] [people ...]

INTRODUCTION

.. Mail is a intelligent mail processing system, which has a command syntax remin-
} iscent of ed with lines replaced by messages.

: Sending mail. To send a message to one or more other people, mail can be
{nvoked with arguments which are the names of people to send to. You are then
expected to type in your message, {ollowed by an EOT (control=D) at the begin-
ning of a line. The section below, labeled Replying fo or originating mail,
describes some features of mail available to help you compose your letter.

Reading mail. In normal usage, mcil is given no arguments and checks your
mail out of the post office, then printing out a one line header of each message
there. The current message is initially the first message (numbered 1) and can
be printed using the print command (which can be abbreviated p). You can
move among the messages mudh as you move between lines in ed, with the com-
mands '+’ and ‘=’ moving backwards and forwards, and simple numbers typing
the addressed message.

Disposing of mail. After examining a message you can delete (d) the message or
reply (r) to it. Deletion causes the mail program to forget about the message.
This is not irrsversible, the message can be undeletad (u) by giving its number,
or the mail session can be aborted by giving the exit (X) command. Deletad
messages will, however, usually disappear never to be seen again.

Specifying messages. Commands such as print and delete often can be given a
list of message numbers as argument to apply to a pumber of messages at once.
Thus “delete 1 2'° deletes messages 1 and 2, while ‘“delete 1-5" deletes mes-
sages 1 through 5. The special name “*" addresses all messages, and *'$"
addresses the last message:; thus the command top which prints the first {ew
lines of a message could be used in “top *° to print the first {ew lines of all mes-
sages.

Replying to or orginating mail. You can use the reply command to set up a
response to a message, sending it back to the person who it was from. Text you

then type in. up to an eud-of-fle (or a line consisting only of a ") defines the
contents of the message. While you ars composing a message, magil treats lines
beginning with the character '~' specially. For instance, typing “~m" (alone on
a line) will placs a copy of the current message into the response right shifting it
by a tabstop. Other escapes will set up subject fleids, add and delete recipients
to the message and allow you to escape to an editor to revise the message or to
a shell to run some commands. (These options will be given in the summary
below.)

Bnding a mail procsssing session. You can end a mail session with the quit {(q)
command. Messages which have been examined o to your mboz flle unless they
have been deleted in which case they are discarded. Unexamined messages go
back to the post office. The —f option causes mail to read {n the contents of
your mboz (or the specified flle) for processing: when you quit mail writes
undsieted messages back to this flle.

4th Berkalsy Distribution 247

MAIL(1) UNIX Programmer’s Yazual ()

- /tmp/R# temporary for editor escape

/usr/Uib/Mail. helpe help files
/usr/lib/¥ailre system initialization flle
/bin/mail to do actual mailing
/etc/ delivermail postman

SEE ALSO

piamail(1), ﬁ:ﬁt(l). newaliases(l), aliases(5), delivermail(8)
‘The Mail Re{erence Manual’

AUTHOR
Xurt Shoens

BUGS

L ¥
4t Berkeisy Distribution

MATL (!

from
headers

® -

.

help
hold
mail
next

preserve
print

reply

respond
save

sat

shell

top

UNIX Programmer's Manual MAIL(:)

turn. On return {rom the editor, the message is read back in.

(ex or x) Effects an immediate return to the Shell without modifying
the user’s system mailbox. his mboz flle, or his edit file in £ .

() Takes a list of messages and prints their message headers.

(h) Lists the current range of headers, which is an 8 message group.
It'a “+" argument is given, then the next 13 message group is
printed, and {f a “='" argument is given. the previous 18 message
group is printed.
A synonym for ?

(ho, also preserve) Takes a message list and marks each message
therein to be saved in the user’s system mailbox instead of in mboz.
Does not override the deiete command.

(m) Takes as argument login names and distribution group names
and sends mail to those people.

(n ke + or CR) Goes to the next message in sequence and types it.
With an argument list, types the next matching message.

A synonym for l.'fold.

(p) Takes a message list and types out each message on the user's
terminal.

(q) Terminates the session. saving all undeleted, unsaved messages in
the user’'s mboz file in his login directory. preserving all messages
marked with hoid or preserve or never referenced in his system mail-
box. and removing all other messages from his system mailbox. If
new mail has arrived during the session, the message “You have new
mail” {s given. If given while editing a mailbox file with the —f fag.
then the edit file is rewritten. A return to the Shell is effected, unless
the rewrits of edit flle fails, {n which case the user can escape with
the exit command.

(r) Takes a message list and sends mail to each message author just
lixe the mail command. The default message must not be deleted.

A synonym for reply .

(s) Takes a message list and a filename and appends each message in

turn to the end of the file. The fllename in quotes, followed by the
line count and character count is echoed on the user’'s terminal.

(se) With no arguments, prints all variable values. Otherwise, sets
option. Arguments are of the form “option=value' or “option.”

(sh) Invokes an intsractive version of the shell

Takes a message list and prints out the size in characters of each
message. :

Takes a message lst and prints the top few lines of each The
pumber of lines printed is controlled by the variable toplines and
defauits to five. -

(t) A synonym for print .

Takes a list of names defined by alias commands and discards the
remembered groups of users. The group names no longer have any

4th Berkeley Distribution 3

2-44

PS(1)

NANE

UNIX Programmer’s Manual PS{1)

Ps — process status

SYNOPSIS

ps [acgkirstuvwxf [coretlle] [swaptile][system]]

DESCRIPTION :
‘prints certain indicia about active processes. To get a complete printsut on

-

the conscle or lpr, use '“ps axigw’ For a quick snapshot of system actuwty,
’ps au’ is recommended. A minus may precede options with no effect. The fol-
lowing options may be specified.

asks for {nformation about all processes with terminals (ordinarily only
one's own procsssss are displayed).

causes only the comm fleld to be displayed instead of the arguments.
(The comm fleid s the tail of the path name of the flle the process last
exec’ed.) This option speeds up ps somewhat and reduces the amount of
output. It {s also more reliable since the process can't scribble on top of
it.

Asks for all processes. Without this option. ps only prints “interesting"
processes. Processes are desmed to be uninteresting if they are process
group leaders, or if their arguments begin with a '='. This normally elim-
{nates shells and getly processes.

causes the flle Ausr/sys/core {3 used {n place of /dev. /kmem and
/dsv/mam. This i{s used for postmortem system debugging.

asks for a long lsting. The short listing contains the user name, process
ID. tty, the cumulative execution time of the process and an approxima-
ticn to the command line.

asks for "raw output”. A non-human readable sequence of structures is
output on the standard output. There i{s one structure for sach process,
the format {s defined by <psout.h>

Print the size of the karnel stack of each process. This may only be used
with the short listing, and is for use by system developers.

titynames

L

restricts output to processes whose controlling tty is the specified
ttyname (which should be specified as printed by ps. e.2. tfy2 for tty3,
tconsole for console, f2iydy for ttydD, ¢? for processes with no tty, etc).
This option must be the last ons given '

A user oriented output i{s producsd. This includes the name of the owner
of the process, process {d, nice value, sizs, resident sat size. tty, cpu time
used, and the command.

tells 22 you ars on a wide terminal (132 columns). Ps normally assumes
you are on an 80 column terminal. This information is used to decide how
much of long commands to print. The woption may be repeated, s.3. ww,
and the entire command, up to 128 charactars, will be printad without
regard to tarminal width,

asks even about procssses with no tarminal

A process number may be Ziven, (indicated hers by §). in which case the
output {3 restricted to that process. This option must aiso be last.

3rd Berkasigy Distributian 1713/81 1

MAIL(1) UNTX Programmer's Manual MAIL

vc_f" .

—~
»e
~

the message. The command fmi(l) is often used as command to
rejustify the message.

~~string Insert the string of text ip the message prefaced by a single ~. If you

have changed the escape character, then you should double that
character in order to send it.

“Options are controlled via the set and unset commands. Options may be eitzer

binary. in which case it is only significant to see whether they are set or not, or
string. in which case the actual valuse is of interest. The binary options include
the {ollowing:

append Causes messages saved {n mdoz to be appended to the end rather
 than prepended. (This is set in /usr/lib/Mail.re on version 7 sys-
tems.)

ask Causes magil to prompt you for the subject of each message you
send. If you respend with simply a newline, Do subject Aeld will be
sent.

askce Causes you to be prompted for additional carbon copy recipients
at the end of each message. Responding with a newline indicates
your satisfaction with the current list.

autoprint Causes the delets command to behave like dp — thus, after delet-
ing a message, the pext one will be typed automatically.

ignore Causes interrupt signals from your terminal to be ignored and
echoed as ©'s.
metoo Usually. when a group {s expanded that contains the sender, the

sender is removed {rom the expansion. Setling this option causes
the sender to be included in the group.

quiet Suppresses the printing of the version when first invoked.

save Causes the message collected prior to a interrupt to be saved on
the file "dead.letter’” in your home directory on receipt of two
interrupts (or after a ~q)

The following options have string values:

EDITOR Pathname of the taxt editor to use in the edit command and ~e
escape. If not defined, then a default editor is used.

SHELL Pathname of the shell to use in the | command and the ~! escape.
A default shell is used if this option is not deflned.

VISUAL Pathname of the text editor to use in the visual command and ~v
escape.

escape If defined, the first character of this option gives the character 2
use in the place of ~ to dencte escapes.

record 1t defined. gives the pathname of the flle used to record all outge-
ing mail. If not defined. then outgoing mail is not 3o saved.

toplines It defined, gives the npumber of lines of a message to be printed out
with the top command: pormaily, the drst five lines‘are printed.

/usr /speol/mail/® post offics

~/mbox your old mail

~/ maiire file giving initial mail commands

4th Berksiey Distribution 2-¢| 5

PS(1) : ‘ UNTX Pregrammer’s Manual PS(1)

Processes with large environments, which have all or part of the command (n a
block other than the top block in memory, are not correctly printed by ps,
which only looks at the top block {n memory. Thus, users using the TERMCA?
environment variable will probably only have their command name shown.

Srd Berkelsy Distribution 1/13/81 3

3-5%

PRINTENV(UC3) UNIX Programmer’s Manual PRINTENV (UC3)

NANE

printenv — print out the environment
SYNOPSIS

printenv [name]

Dzscmou
» Printenv prints out the values of the variables in the environment. If a name is
specx.ﬁed only its value is printed.

:lfanameis specified and it is not deflned in the environment, prinfenv returns
" exit status 1, eise it returas status 0.

SEE ALSO
sh(1). environ(5), csh(UCB)

BUGS

-

Tth Editien 2/24/79 :

3"53

——e——— e -t
. -———- - -

e — -
-~ e T s e e cm— - . e - - o -

PS(1) | UNIX Programmer’s Manual PS{:)

A second argument tells ps where to look for core if the k option s given, {nstead
of /vmcore. A third argument s the name of a swap flle to use instead of the
default /dev/drum. If a fourth argurnent is given. it is taken to be the flle con-
taining the system's namelist. Otherwise. “/vmunix"” is used.

The output is sortad by tty, then by process [D.
The long listing {8 columnar and contains

S . Flags associated with the process. These are defined by g#define lines in
:. /usr /{nclude/sys/proc.h

S The stats of the process. 0: nonexistent: S: sleeping: W: waiting; R: run-
ning: I: intermediate: Z: terminated: T: stopped.

UID The user id of the process owner.

PID The process ID of the process; as {n certain cults it is possibie to kill a
process {f you know its true name.

PPID The process ID of the parent process.

CPU Processor utilization for scheduling.

PRI The priority of the process: high numbers mean low priority.

NICE Used in priority computation.

ADDR The memory address of the process if resident. otherwise the disk

address.

Sz The size {n blocks of the memory image of the process.

WCHAN
The event for which the process (s waiting or sieeping: if blank, the pro-
cess is running.

TTY The controlling tty for the process.
TIME The cumulative execution time for the process.

COMMAND
The command and its arguments.

A process that has exited and has a parent, but has not yet been waited for by
the parent is marksd <defunct>. Ps makes an educated guess as to the flle
name and arguments given when the process was created by examining memory
or the swap area. The method is inherently somewhat unreliable and in any
event a process {s entitled to destroy this information, so the names cannot be
counted on too much.

/vymunix system namelist
/dev/kmem kerne! memory
/dev/drum swap device

/vymcore core flle

/dev searched to And swap device and tty names
SEX ALSO

ai(f), w(1)

BUGS :
Things can change while ps is running: the picture it zives is only a close approx-
imation to reality.

3rd Berkeley Distribution 1/13/81 2

FIEL. e’ 1. ol e cemes comemin . meman -

MULTIUSER(1) UNIX Programmer's Manual MULTIUSER(1)

NAME
multiuser - bring the system up multiuser

SYNOPSIS
multiuser

DESCRIPTION
Multiuser prompts the user to set the current system date
and time, and then brings the system up multiuser.
First, multiuser displays the current system date and time
and asks the user to confirm or change the date and then the
time. Confirmation is done by entering Return. The format
for entering the date is "yymmdd." Time is entered as a 24-
hour clock in the form "hhmm.,"

SEE ALSO

date (1)

3-54

p’l
-3

RESZT(UCB) UNIX Programzer's ¥azual RESET(VC3)

NANE
resst — resst the taletype bils to a sezsibie state

SYNOPSIS
reset

DESCRIPTION
Essstf sets the tsletype bits to ‘soft-copy terminal standard mode’ with the erase
:éwacur set to controi-h and the kill character ts ‘@', Aassf is most useful
. when you crap out in raw mods.
SET ALSO
stty(1). stty(2). gtty(2)
AUTBOR '
Xurt Shoens

BUGS
If you are {n a funny state you may well Bave to type “reset’ foliowed by l=
fesd (control-j if thers is 2o such key.)

Tth Edition 2/24/78 :
_ 3-59

= — e — ————————————— - — — o - . -

TAR(1) UNIX Programmer's Manual TAR(1)

NAME

tar - tape or floppy archiver

SYNOPSIS

tar [key] [name ,..]

DESCRIPTION

Tar saves and restores files on magtape or floppy. Its
actions are controlled by the key argument. The key is a
string of characters containing at most one function letter
and possibly one or more function modifiers, Other
arguments to the command are file or directory names
specifying which files are to be dumped or restored. 1In all
cases, appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

Note that XENIX contains a new version of tar, which permits
a file to extend across media boundaries, For compatability
considerations with the previous version of tar, refer to
the BUGS section below,

The function portion of the key is specified by one of the
following letters:

r The named files are written on the end of the tape.
The ¢ function implies this.

X The named files are extracted from the tape. If the
named file matches a directory whose contents had been
written onto the tape, this directory is (recursively)
extracted. The owner and mode are restored (if
possible). If no file argument is given, the entire
content of the tape or floppy is extracted. Note that
if multiple entries specifying the same file are on the
tape, the last version will overwrite all preceeding
versions.

t The names of the specified files are listed each time
they occur on the tape. 1If no file argument is given,
all of the names on the tape are listed.

u The named files are added to the tape if either they
are not already there or have been modified since last
put on the tape.

c Create a new tape; writing begins on the beginning of
the tape instead of after the last file., This command
implies r.

The following characters may be used in addition to the
letter which selects the function desired.

3-61

MAP (1) UNIX PROGRAMMER'S MANUAL MAP (1)

NAME

map - create an alternate sector map for a hard disk drive
SYNOPgIS

map layout mapfile drive

DESCRIPTION

Map creates a bad sector map, on mapfile, using the layout
information, in layout, created by layout(1l). The last
argument is the logical device name which references the
whole drive,

The standard invocation is:
map /dev/hd@.layout /dev/hdf.secmap /dev/hdd

The structure used for the bad sector to alternate sector
mapping is as follows:

struct mapsec {
int bad_cyl; /* Cylinder number of bad sector */
char bad_hed; /* Head number of bad sector */
char bad_sec; /* Sector number of bad sector */
int bad_good; /* Offset into alternate sector
area */

}:

This structure provides a way for the XENIX hard disk driver
to recover from bad sectors it encounters when reading the
hard disk. If a bad sector is read, a search of a table of
the above structures is made. If an exact match of
cylinder, head and sector is found, the corresponding offset
is used as an index into the area reserved on the disk for
alternate sectors.

SEE ALSO

layout (1), sizefs (1)

3-53

TAR(1) UNIX Programmer's Manual TAR (1)

The b option should not be used with archives that are going
to be updated. If the archive is on a disk file, the b
option should not be used at all, as updating an archive
stored in this manner can destroy it.

The current limit on file name length is 100 characters.

EXAMPLES
To dump the directory /usr/john to diskette(s), enter the
command

tar cvf /dev/£fd8/usr/john

Note that if the device /dev/tar has been configured to
reference the floppy disk drive, as desired, the above
command can be abbreviated to:

tar cv /usr/john

3-63

SIZEFS (1) UNIX PROGRAMMER'S MARUAL SIZEFS (1)

NAME

sizefs - determine the size of a logical device from the
layout information associated with a hard disk.

SYNOPSIS
sizefs layout-file logical-device-number

DESCRIPTION
Sizefs prints on the standard output the size in blocks of
the specified area on the disk. It gets its information out
of the structure created by layout(l). 1Its most common use
is in shell scripts for creating a file system on the hard
disk, where its output is used as an argument to mkfs(l).

SEE ALSO

layout (1), map(l), mkfs(1l)

3-60

UA(1M) UNIX Programmer's Manual UA(1M)

exists for a new user, it is not removed, All files under
/etc/newuser are copied to the new directory during the user
installation process. Typically /etc/newuser will contain
the standard versions of the following files: .cshrc,
.dlogin, .logout, .profile. The initial value given to a new
user ID is one more than the maximum user ID currently in
use. The same is true for a new group ID.

Delete allows the deletion of an existing user or group.
Deleting a user optionally also deletes his directory and
all files contained within it., Deleting a user will not
cause all files throughout the system owned by the user to
be deleted -- only those beneath his directory. Thus, some
files may have an "unknown" owner after a user is deleted.
And, if a user is later added with the same user ID as the
deleted user, these files will suddenly belong to the new
user. The same problem may arise with the deletion and
later addition of a group.

Show will show an individual user or group or all users or
groups. The word "show" may be omitted if desired.

Change allows the modification of any existing user or
group. A special display mode is entered with a menu of
fields for selection of the item to be modified. Typing
RETURN or LINE FEED in response to a field change request
will empty the field. Changes to a user or group change the
corresponding entries in the /etc/passwd and /etc/group
files. Changing a user's directory entry will pot cause a
renaming of the actual directory. It is the user's re-
sponsibility to ensure that the /etc/passwd and /etc/group
files remain consistent,.

Help displays a short informative text on the screen, "2"
is equivalent to help. The message is the same one as ob-
tained by invoking ug with the "-h" option,

! escapes to the shell (see sh(l)). If no arguments are
given, a shell is invoked which will continue until it
receives an end-of-file. Then ua resumes., If arguments are
present, a shell is invoked with the "-c" option and the ar-
guments are passed along. Ua resumes immediately there-
after., If csh(l) is desired rather than sh(l), the command
tcsh should be used.

Quit immediately terminates ua and returns to the system.
Any command which is not understood by uma causes an
appropriate message to be displayed. As a side-effect, the
working portion of the screen is cleared.

Ua does not distinguish between RETURN and LINE FEED. They
may be used interchangably.

If the screen becomes "dirty" for some reason, you can force

3-65

TAR(1) UNIX Programmer's Manual TAR(1)

FILES

v Normally tar does its work silently. The v (verbose)
option causes it to type the name of each file it
treats preceded by the function letter. With the t
function, v gives more information about the tape
entries than just the name,

w Causes tar to print the action to be taken followed by
file name, then wait for user confirmation. If a word
beginning with 'y' is given, the action is performed.
Any other input means don't do it.

f Causes tar to use the next argument as the name of the
archive instead of /dev/tar. If the name of the file
is '-', tar writes to standard output or reads from
standard input, whichever is appropriate. Thus, tar
can also be used to move hierarchies with the command

cd fromdir; tar cf - . | (cd todir; tar xf -)

b Causes tar to use the next argument as the blocking
factor for tape records. The default is 1, the maximum
is 8. This option should only be used with raw
magnetic tape archives (see f above). Altos recommends
a blocking factor of 8 when using the cartridge tape.

1 Tells tar to complain if it cannot resolve all the
links to the files dumped. If this is not specified,
no error messages are printed.

] Obsolete. No longer supported. (Was size parameter,
used when files did not cross diskette boundaries.)

/dev/tar default input/output device
/tmp/tar*

DIAGNOSTICS

BUGS

Complains about bad key characters and tape read/write
errors.,

Complains if not enough memory is available to hold the link
tables.

Tar will tell you to change volumes when the current volume
(floppy or tape) becomes full. It expects you to type one
or more characters and then return.

This version of tar can read old style tar disks, and the
old tar program can read new style tar disks, as long as
they do not extend over multiple floppies.

Note that the o0ld version of tar cannot be used to read
multiple volume archives created by the new version of tar.
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.

The u option can be slow,

3-62

UA(1M) UNIX Programmer's Manual UA(1M)

DIAGNOSTICS

BUGS

The diagnostics produced by ua are intended to be self-
explanatory.

Ua should allow specification of alternate passwd and group
files.

Complete consistency checking between the /etc/passwd and
/etc/group files is not done. In particular, it is possible
to install a user with an unknown group in the passwd file
and it is possible to install a group with an unknown user
in the group file. The shells and directories specified in
the /etc/passwd file are not checked for existence or
accessibility.

Ua does not check for duplicated user IDs or duplicated
group IDs.

Impossible user IDs and group IDs are permitted.

Impossible or non-existent names may be specified for a
user's Directory and Shell fields.

The System 3 commands pwck(lM) and grpck(lm) should be in-
corporated into ua.

NOTE:

DO NOT USE ua TO SET A USER'S PASSWORD. The
password would be incorrectly encrypted, and
the user would NOT be able to log in success-
fully. Passwords may only be set with the
passwd command, explained in PASSWD(1l). The
password field displayed by una is the
encrypted version contained in /etc/passwd.

3-67

UA(1M) UNIX Programmer's Manual UA(1N)

NAME

ua -- user administration

SYNOPSIS

ua [-h 1

DESCRIPTION

Ua is used for the addition, deletion and modification of
users and groups. It provides an effective means for
maintaining the system password (/etc/passwd) and system
group (/etc/group) files.

The command is implemented using the termcap and curses
facilities from UC Berkeley. It must be run interactively
from a terminal which is defined within /etc/termcap.

This command should only be run by Super User -- improper
results may occur if it is run by a normal user,

The following option is interpreted by ua:

-h Displays the program's current version and copyright
notice as well as a short description of the program's
functions.

Ua displays its legal commands at the top of the screen.

The "Command?" prompt at the bottom of the screen indicates

that ua is awaiting input., The command language syntax is:

[add|delete |show |change] [user <name> | group <name>]
show [Users | Groups]

[help | 2]

! [<shell command(s)>]

quit

The system responds as soon as the first letter of a command

is typed. Full command words are not acceptable as input.

The case of each word is significant: "group" is not the

same as "Group."

Typing an interrupt (usually RUBOUT or DEL) will cause ya to
immediately return to the top-level command interpreter.

Add allows the addition of a new user or group. After
user/group is specified and a new name provided, the system
immediately enters the change command so as to allow
modification of the new entry. At the conclusion of the
change command the addition is made. If a directory already

3-64

UA(1M) UNIX Programmer's Manual UA(1M)

ua to clear it and redisplay the current contents by
transmitting an ASCII "DC2." This is Control-r on most of
the currently popular terminals.,

Ua understands the Backspace function (as obtained from
/etc/termcap). In addition, any time a word is partially
formed, the ESCape key will cause the partial word to be
discarded and input restarted.

Ua interprets the CANcel key to mean "terminate the current
operation." The CANcel key is Control-x on many of the more
popular terminals, The CANcel key is more powerful than
ESCape, but not so powerful as "interrupt."

Ua will immediately return to the top-level command inter-
preter upon receipt of an interrupt signal. Such a signal
is usually generated via the DEL, RUBOUT or BREAK Kkey.

Ua creates a special user named "standard" in /etc/passwd if
one is not already present. This entry is used as the
template for installing new users. Thus, if it is desired
to have all new users defaulted to the standard UNIX shell
(/bin/sh) for the Shell field, it is only necessary to
update the Shell field in the "standard" user.

Before adding a new user with a new group, the new group
should be added. Otherwise, ua has no way to properly
create the new entry in /etc/passwd since it contains group
numbers rather than group names,

During program initialization ua copies /etc/passwd and
/etc/group to /etc/opasswd and /etc/ogroup, respectively.
Thus, if a mistake or disaster occurs during the use of this
program, the user may recover the prior state of either or
both files.

FILES

/etc/passwd used for login name to user ID conversions

/etc/group used for group name to group ID conversions

/etc/opasswd this file is a copy of /etc/passwd before any
modifications are made

/etc/ogroup this file is a copy of /etc/group before any
modifications are made

/etc/newuser directory containing files which will be in-
stalled in a new user's account

/etc/termcap contains terminal attribute descriptions

/tmp/passwd temporary file

/tmp/group temporary file

/etc/ua.lock lock file

SEE ALSO
group(5), passwd(5)

3-66

LOCKING (2) UNIX Programmer's Manual LOCKING(2)

FILES

/usr/include/user.h contains definitions for EACCESS and
EDEADLOCK.

/usr/include/sys/locking.h contains definitions for UNLOCK,
LOCK, NBLOCK, RLOCK, NBRLOCK.

3-70

Y1{UCE) UNIX Programmer's Mazual V1(TC3)

NANKE
Vi = scrsen orieczted (visual) display ediizr based on ex

SYNOPSS
vi{=ttag][=r] [~ineno] name ...

DESCRIPTICN . .
irt Imisual) is a display oriented text editor based op e=(UC3). £z and wi run the
sarme code; it is possible to get to the command mode of ez from within 1 and
Yice-versa
The ¥ Quick Reference card ard the /nirsduction fo Display Editing with A pro-
vide full details on using vi

FILES
See ex(UC3).

SEX ALSO
ex (UC3), vt (UCB), *"Vi Quick Reference” card. “An Introduction to Display Edit-
{ng with Wi,

BUGS
Scars with / and ? begin on the sext line, skipping the remainder of the current
line. .
Software tabs using ~T work only immediately after the aufsindent.

Left and right shifts on intelligent terminals don't make use of insert and delete
character operations in the termunal

The wrspmar;in option can be fooled since it looks at output eslumns when
blanks are typed. U a long word passes through the margin and onto the next
line without a break. then the line won't be broken.

Insert/delets within a line can be siow if tabs are present on intelligent termi-
nals, since the termunals need help in doing thus correctly.

Occasionally inverse video scrolls up into the flle {rom a diagnostic op the last
line.

Saving taxt on deletes in the named buffers is somewhat (nefficient.

The sourcs command does not work when executed as :sourcs, there is no way
to use the :append :change and :insert commands, since it {s not possible to
give more than ope line of input to a : escape. To use these on a :global you

must Q to ¢z command mode, executs them and ‘hen rsenter the screen editor
with i or cpen.

Tb Zdition | 4/4rT8 .
' R-68

LOCKING (2) UNIX Programmer's Manual LOCKING(2)

NAME

locking - lock or unlock a record of a file

SYNOPSIS

locking(fildes, 1ltype, nbytes); int fildes, ltype, nbytes;

DESCRIPTION

locking performs a locking action ltype on a record of the
open file specified by fildes. The record starts at the
current file position and has a length of nbytes. If the
value of nbytes is @, the entire file is locked. Nbytes may
extend beyond the end of the file, in which case only the
process issuing the lock call may access or add information
to the file within the boundary defined by nbytes. Thus,
lock defines a range in the file controlled by the locking
process, and this control may extend to records that have
yet to be added to the end of the file. The available
values for ltype are:

UNLOCK @ Unlock the record.

LOCK 1 Lock the given record; the calling process
will sleep if any part of the record has been
locked by a different process.

NBLOCK 2 Lock the given record; if any part of the
record is already locked by a different
process, return the error EACCESS.

RLOCK 3 Same as LOCK except that reading is allowed
by other processes.

NBRLOCK 4 Same as NBLOCK except that reading of the
record is allowed by other processes.

Any process that attempts a read or write ona locked record
will sleep until the record is unlocked. If the record is
locked with an RLOCK then reading is permissible. When a
process terminates, all locked records are unlocked.

SEE ALSO

read (2), write (2), open (2)

DIAGNOSTICS

If an error occurs, -1 is returned. The error code EACCESS
is returned if any portion of the record has been locked by
another process for the LOCK & RLOCK actions, The error
code EDEADLOCK is returned if locking the record would cause
a deadlock. This error code is also returned if there are
no more free internal locks.

3-69

CURSZS(3)

savetty()

UNIX Programmer’s Manual CURSES(3)

scanw(fmt.argl.arg2...)

scroll(win)
_ serollok{win.boolf)
- getterm(name)
*, -unetri(ch) -
waddch(win.ch)
s waddstr(win.str)
" welear(win)
welrtobot{win)
welirtoeol(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win) '
wmove(win.y.X)

wpr;ntw(wm.bnt.a.rgl.arzz....)

wref{resh(win)

wscanw(win.fmt.argl.arg2....)

Tth Idition

stored current tty fags

scan! through stdscr

seroll win one line

set scroll dag

set term variables {or name
printable versiocn of ch

add char to win

add string to win

clear win

clear to bottom of win

clear to end of line on win
erase win

get a char through win

get a string through win

get char at current (y.x) in w=n
set current (y.x) co-ordinates on uwin
printf oo win

make screen look like win
scanf through uin

w

RDCHK (2) UNIX Programmer's Manual RDCHK (2)

NAME
rdchk - check if there is data to be read
SYNOPSIS

rdchk (fdes);
int fdes;

DESCRIPTION
Rdchk checks to see if a process will block if it attempts
to read the file designated by fdes. Rdchk returns 1 if
there is data to be read or if it is the end of the file
(EOF). In this context, the proper sequence of calls using
rdchk is:
if (rdchk(fildes) > 8) read(fildes, buffer, nbytes);

SEE ALSO
read(2)

DIAGNOSTICS
Rdchk returns -1 if an error occurs (e.g., EBADF), 8 if the
process will block if it issues a read and 1 if it is okay

to read. EBADF is returned if a rdchk is done on a
semaphore file or if the file specified doesn't exist.

3-71

MENUS (5) ONIX Programmer's Manual MENUS (5)

for this prompt. These are bsh(1)
commands and/or sh(l) commands.

An example menu for Electronic Mail Services is:

|&Mail |
| I
|ldate \ELECTRONIC~MAIL~SERVICES |
| |
| ~a - Receive~mail l
| “b - Send"mail l
I “c - Return~to~starting~menu |
I |
|&Actions |
|~a o] |
| mail |
| I
|~b -1 !
I echo -n "To whom do you wish to send mail?" I
| read x I
I echo "Now type the message." l
| echo "Terminate it by typing a control -4." |
| mail Sx |
[~c l
| Start [
| l

&Menuidentifier must appear beginning in column one.
Menuidentifier is any string having relevance to the
user, A short descriptive string is usually best. The
string may not contain any blanks or punctuation and it
must begin with a capital letter. If the string ends
with a question mark ("?"), the menu is called a "help
menu,"” It will be invoked automatically when bsh is
displaying the base menu and the user types a "?"
command. Thus, the &Admin? menu is invoked when &Admin
is the current menu and "?" is typed. The remainder of

the &Menuidentifier line should be empty.

The body of each menu is composed of text which will be
reproduced on the screen exactly as it appears (with
exceptions as described below).

“prompt may occur one or more times within the body.
This indicates a prompt for which there will be an
associated action within the &Actions portion of the
menu, Usually there will be a short phrase or sentence
describing the action just to the right of the
“prompt. A prompt may be any letter, numeral or string
of characters not containing punctuation. Usually
shorter (1-2 character) prompts are preferred. A
prompt must be separated from its surroundings by one

3-75

CURSES(3)

NAKE

SYNOPSIS

UNIX Programmer’s Manual

curses - screen functions with “*optimal’ cursor motion

ec [flags] files —curses —itermlib [Ubraries]

DESCRIPTION :
{hese routines give the

Image of a new one.
screen look like the new one.

user a method of updating screens with reascnable
‘optimization. They keep an image o

f the current screen, and the user sets up an

Then the refresh

() tells the routines to make the curreat
In order to initialize the routines, the routine

tnilscr() must be called before any of the other routines that deal with windows

and screens are used.

SEE ALSO
Screen Updating and
Arnold,

Cursor Movemant Optimization: A Library Packzge, Kez

termcap (5). stty (2), setenv (3), seteav (3).

AUTHOR
Ken Arnold

FUNCTIONS
addch(ch)
addstr(str)
box(win,vert.hor)
crmode()
clear()
clearck(scr,boolf)
elrtobot()
elrtoeol()
delwin(win)
ecko()
erase()
getch()
getstr(str)
gettmode()
getyx(win.y.x)
fnch()
initser()
leaveok{win.boolf)
longname(termbuf.name)
move(y.X)
mveur(lasty.lastx, newy newx)
m(\)v'wm(n.nes.coln.bogm_y.bcgm_x)
al
pocrmode()
noecho()
nonl()
noraw()
overlay(wini win2)
overwrita(wini,win2)
printw(fmt.argl.arg2.)
raw()
refresh()
rastty()

add a character to sidscr
add a string to stdscr

draw a box around a window
set cbreak mode

clear stdscr

set clear flag f{or scr

elear to bottom on stdscr
clear to end of line on stdscr
delete untn

set echo mode

erase stdscr

get a char through stdser
get a string through stdscr
get tty modes

get (y.x) co-ordinates

get char at current (y.x) co-ordnates
{nitialize screens

set leave flag for win

get long name from fermbuf
move to (y.X) on stdscr
actually move cursor

create a new window

set newline mapping

unset cbreak mode

unset echo mode

unset newline mapping

unset raw mode

overiay winl on win2 _
overvrite winl on top of win2
printf on stdscr

set raw mode

make current scresen look like stdscr
reset tty lags to stored value

(9

MENUS (5)

UNIX Programmer's Manual MENUS (5)

The tilde """ is an "escape character," and may not be
used for any other pur-pose within a menu.

Each of the special escape sequences described above
must be separated from surrounding text by one or more
spaces or tabs,

It is important to know the number of lines and columns
of the terminal(s) to be used with a menu system and to
be certain not to create menus longer or wider than
these values, Their values are specified within the
termcap(5) file for each terminal upon which the
Business Shell may be run.

Actions

&Actions must appear beginning in column one., &Actions
must appear, even if there are no actions.

Each prompt in the actions section must be reproduced
exactly as it appears in the body of the menu. It is
the user's responsibility to ensure that the spelling
of prompts in the body and actions sections match. The
case of characters is significant; so "A"™ is not the
same as "a."

Size is optional. It specifies the length of the
window to be used during execution of the actions. 1If
omitted, the default value is 5, and a window 5 rows by
column columns will be reserved at the bottom of the
screen for output. Column is the terminal column width
as obtained from termcap(5). A size of 8 will reserve
the entire screen. 1In this case, the screen is blanked
prior to execution of the actions; and a prompt
requesting a return or line feed is issued after
execution. A negative size will reserve the entire
screen similarly to the zero case, but after execution,
the Business Shell is immediately resumed without
waiting for a return or line feed. It is the user's
responsibility to ensure that the action window is
large enough,

The actions may be composed of bsh(l) commands or
commands which are executed by the standard shell,
sh(l). The actions should all be indented one tab stop
from the left side of the file.

A bsh(l) command is the instruction to transfer
immediately to a particular menu. This is specified by
writing the name of the destination menu in the
semantics field. Bsh(l) commands must be typed one-
per-line.

Sh(l) commands follow the usual rules as described in
Volume 1 of the Programmer's Reference Manual.

3f77

MENUS (5) UNIX Programmer's Manual MENUS (5)

MENUS
menus -- format of a Business Shell menu system

DESCRIPTION

A menu system is a collection of menus which has been
processed (digested) by digest(lM). The Business Shell,
bsh(l), requires a menu system upon which to operate: it
contains all the menus which are normally displayed to
accomplish some set of functions. As distributed, the
Business Shell includes the default menu system
(/usr/lib/menusys and /etc/menusys.bin).

A menu source file may contain one or more individual menus.
However, in the interest of maintainability, it is
recommended that each menu source file contain only a single
menu, or only very closely related menus, It is aleso
recommended that the name of the menu source file and the
menuidentifier be the same.

A source menu system may be a single menu file (containing
one or more menus) or a directory structure containing menu
files and subordinate directories.

Each menu file is an ASCII file consisting of two logical
parts: the body and the actions. A (digested) menu system
contains an additional part, the index. The index appears
prior to the body. It specifies the byte-offset locations
of each of the body and action sections as well as the
associated menuidentifiers. Users should never attempt to
construct an index by hand =-- that is the function of
digest (1M). Moreover, users should never attempt to edit a
digested menu system; rather, the source menu files should
be edited and then the menu system recreated using
digest (1M).

The precise format of a menu source file is described below:

&Menuidentifier
The substance of the menu represented
essentially as it is to be displayed.
Within this area there usually will be
one or more occurrences of:

~“prompt strings

as well as other special commands as
described below.

&Actions
Zero or more occurrences of:
“prompt size

The sequence of actions to be taken

3-74

MENUS (5)

UNIX Programmer's Manual MENUS (5)

or more spaces or tabs. If a menu name and a prompt
both have the same spelling, the prompt is given
preference in all cases.

idate inserts the current date and time, left-justified
on the "!." The date/time format is "Tue Jul 13 17:10
1982." ldate may appear more than once if desired.

luser inserts the current user id, left-justified on
the "!." luser may appear more than once if desired.

!pwd inserts the current directory, left-justified on
the "!." The full path name is displayed, e.q.
/usr/jones/admin/currwork. !pwd may appear more than
once if desired.

1@ indicates where the cursor is to be placed on the
screen. Usually this should be just slightly to the
right of the current prompt. If !@ is omitted, the
cursor will be placed at the bottom left corner of the
screen. At most, one occurrence of !@ should appear in
each menu.

With the exception of !@, the "!" may appear as a
suffix in which case the string will be right-justified
instead of left-justified.

The "!" is an "escape characater", and may not be used
for any other purpose within a menu,

\string denotes a string which is to be "highlighted”
using the terminal's highlighting capabilities (usually
reverse video). The "\" character must be on the left
of the string, It is converted into the appropriate
highlighting information during display. The string
may be of any length up to the width of the display
screen,

‘string denotes a string which is to be "underlined"
using the terminal's underlining capabilities (usually
true underline). The "'" character must be on the left
of the string., It is converted into the appropriate
underlining information during display. The string may
be of any length up to the width of the display screen.

The backslash "\" and backquote "'" as the initial
letter of a string are "escape characters" and will
always have the interpretations given above,

In order to create a highlighted or underlined string
containing spaces, "significant spaces" may be
represented as tildes (""") within a string. Thus,
\"hi~“there~ will create a highlighted ten-character
string.

3-76

TERMCAP(5) UNIX Programmer’s Manual TERMCAP(S5)

ed str End delete mode
ol str End insert mode: give ":si="" i{ ie
eo str Can erase overstrikes with a blank
g str (P*) Hardcopy terminal page eject (default ~L)
-he boel Hardcopy terminal
8. 1.1 st - Balf-line down (forward 1/2 linefeed)
tho str Home curser (if no em)
bu str Half-line up (reverse 1/2 linefeed)
~hz str Hazeltine: can’t print ~'s
ie str (P) Insert character
it str Name of flle containing is
im bool Insert mode (enter); give ‘:im=:" {f ie
in bool Insert mode distinguishes nulils on display
ip str (Pe*) Insert pad after character inserted
is str Terminal (nitialization string
kO-k9 str Sent by “other’ function keys 0-3
kb str Sent by backspace key
kd str Sent by tarminal down arrow key
ke str Out of “"keypad transmit’’ mode
kh str Sent by home key
ki str Sezt by terminal left arrow key
s 1 num Number of ‘‘other’” keys
ko str Termcap entries for other non-function keys
e str Sent by terminal right arrow ey
ks str Put terminal in '‘keypad transmit’’ mode
ku str Sent by terminal up arrow kay
10-18 str Labels on “other’ function keys
i num Number of lines on screen or page
i} str Last line, first column (if no em)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
mi str Memory lock on above cursor.
mu str Memory unlock (turn off memory lock).
ac bool No correctly working carriage return (DM2500,32000)
nd str Noo-destructive space (cursor right)
al str (P*) Newline character (defauit \n)
ns bool Terminal is a CRT but doesa't scroll
os bool Terminal overstrikes
pe str Pad character (rather than null)
pt bool Has hardware tabs (may nsed to be set with is)
se str End stand out mode
=t str (P) Scroil forwards
g num Number of biank chars left by 3o or se
30 str Begin stand out mode
o str (P) Scroll reverse (backwards)
ta str (P) Tab (other than ~] or with padding)
te str Entry of similar tarminal - must be last o~
ta str String to end programs that use em
u str String to begin programs that use em
uc st Undsrscore ocne char and move past it
us st End underscore mode
ug oum Number of blank chars left by us or us

4th Berksiey Distribution 5/10/80 2
- -——3-80

MENUS(5) UNIX Programmer's Manual MENUS (5)

Since a menu file may contain one or more menus Or
directories containing menus, the recommended way to create
a menu system is to create a tree of directories containing
the various portions of the system. Each subtree contains
all the menus related to a given subject. Thus, a primary
menu (directory) is created for, say, system management
functions: and subsidiary menus are placed beneath (within)
the directory for each of the individual system management
functions or function areas. Help menus may be placed
wherever appropriate in the structure.

FILES
/usr/lib/menusys source directory for /etc/menusys.bin
/etc/menusys.bin digested default menu system for bsh(l)
SEE ALSO

bsh(l), digest (1M), sh(l), termcap(5)

3-78

TERMCAP (5) UNIX Programmer’s Manual _ TERMCAP(S)

as \072. If it is necessary to place a null character in a string capability it must
be encoded as \200. The routines which deal with termczp use C strings. and
sirip the high bits of the output very late so that a \200 comes out as a \000
wouid.

?rgpan’.n.g Descriptions

Ye now outline how to prepare descriptions of terminals. The most efective way
to prepare a terminal description is by imitating the description of a similar ter-
minal in tsrmcap and to build up a description gradually, using partial descrip-
tions with ez to check that they are correct. Be aware that a very unusual ter-
minal may expose deflciencies in the ability of the termcap flle to describe it or
bugs in ez. To easily test a new terminal description you can set the environ-
ment variable TERMCAP to a pathname of a file containing the description you
are working on and the editor will look there rather than in /etc/termcap.
TERMCAP can also be set to the termcap entry itself to aveid reading the ale
when starting up the editor. (This only works on version 7 systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric
capability. If the terminal is a C3T, then the number of lines on the screen is
given by the U capability. U the terminal wraps around to the beginning of the
next line when it reaches the right margin. then it should have the am capabil-
ity. If the terminal can clear its screen, then this is given by the ci string capa-
bility. If the terminal can backspace. then it should have the bs capability.
unless a backspace is accomplished by a character other than ~H (ugh) in whuca
case you should give this character as the be string capability. I it overstrikes
(rather than ciearing & position when & character is struck over) then it should
have the os capability.

A very impertant point here is that the local cursor motions encoded in termcap
are undefined at the left and top edges of a CRT terminal. The editor will never
attempt to backspace around the left edge, nor will it attempt to go up locally
off the top. The editor assumes that {eeding off the bottom of the screend will
cause the screen to scroll up. apd the am capability tells whether the cursor
sticks at the right edge of the screen. I the terminal has swmtch selectable
automatic margins, the tgrmecap flle usually assumes that this is oo. i.e. am.

These capabilities suffice to describe hardcopy and “glass-tty” terminals. Thus
the model 33 talstype is described as

3133 tty33:c0¢72:08
while the Lear Siegler ADM-3 is described as

el |adm3|3(lsi adm3:am:bs:cl=~Z:1i§24:c0§80
Cursor addresszing

Cursor addressing in the terminal is described by a cm string capability, mita
printf(3s) like escapes <z in it. These substitute to encodings of the curreat
line or column position. while other characters are passed through uncharged.
It the em string is thought of as being a function, then its argumexnts are the line
and then the column to which motion (s desired. and the = encodings have the
following meanings:

=d as in printf, O origin

= lixe %24

= like R34

4th Serksisy Distribution 5/10/80 4

e — T ——

— 37t

-

TERMCAP (5) UNIX Programmer’s Manual TERMCAP(S)

NANE
termcap - terminal capability data base

SYNOPSIS
/etc/termecap

DESCRIPTION
Jermcap is a data base describing terminals, used, e.g.. by vi(1) and curses(3).
VTerminals are described in fsrmcap by giving a set of capabilities whick they
."have. and by describing how operations are performed. Padding requiremeats
and initialization sequences are included in termeap.

Entries in {ermcap consist of a number of *:’ separated fleids. The first entry for
each terminal gives the names which are known for the terminal, separated by
‘" characters. The first name is always 2 characters long and is used by oider
version 6 systems which stors the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbreviation for the ter-
miral, and the last name ziven should be a long name fully identifying the termi-
pal. The second name should contain no bianks: the last name may well contain
bianks for readability.

CAPABILITIES .
(P) indicatss padding may be specified -
(Pe) indicates that padding may be based on no. lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (Pe) Add new blank line

am bool Terminal has automatic margins

as str (P) Start alternate character set

be str Backspace if not ~H

bs bool Terminal can backspace with ~H

bt str (P) Backtab

bw bool Backspace wraps from columan 0 to last column

cC str Command character in prototype i terminal settable

ed str (Pe) Clear to end of display

cs stt (P) Clear to end of line

ch str (P) Like cm but horizontal motion only. line stays same
el str (Pe¢) Clear screen

em str (P) Cursor motion

co sum Number of columns in a line

er str (Pe*) Carriage return. (default -X)

cs str (P) Change scroiling region (vt100), like cm

ey str (P) Like ch but vertical only.

da bool Dispiay may be retained above

dB aum Number of millisec of bs deiay needed

db bool Display may be retained below

ac aum Number of millisec of cr delay needed

de str (Pe) Delete character

dr aum Number of millisec of f delay needed

d str (Pe) Delete line

dm str Delete mode (entar)

dN aum Number of millisec of ol delay nseded

do str Down ons line

daT aum Number of millisec of tab delay needed
4th Berksiey Distribution $/10/80 s

3-79

-

TERMCAP(5) UNIX Programmer's Manual TERMCAP(S)

There are two basic kinds of (ntelligent terminals with respect to insert/delete
charactsr which can be described using termczp. The most common
{nsert/delete character operalions affect only the characters on the current
line and shift characters off the end of the line rigidly. Other terminals, such as
the Concept 100 and the Perkin Elmer Owl make a distinction between typed
and untyped bianks on the screen. shifting upon an insert or delete only to an
E:typed biank on the screen which is either eliminated, or expanded to two

typed blanks. You can find out which kind of terminal you have by clearing
the screen and then typing text separated by cursor motions. Type ‘"abc def”™
using local cursor moticns (not spaces) between the “abc” and the “def”. Thea
pesition the cursor befors ths “abc” and put the terminal in insert mode. I
typing characters causes the rest of the line to shift rigidly and characters to
fall off the end, then your terminal does not distinguish between blanks and
untyped positions. If the *“abc’’ shifts over to the “def’ which then move
together around the end of the current line and onto the next as you insert, you
have the second type of terminal and should give the capability in. which stands
for “insert null”’. If your terminal does something different and unusual then
you may have to modify the editor to get it to use the insert mode your terminal
defines. We have seen no terminals which have an insert mode not not falling
{nto one of thess two classes.

The editor can handle both terminals which have an insert mode, and terminais
which send a simple sequence to open a blank position on the current lice. Give
as im the sequence to get into insert mode, or give it an empty value if your ter-
minal uses a sequence to insert a blank position. Give as ei the sequence to
leave insert mode (give this, with an empty value also i{f you gave im so). Now
give as ic any sequence needed to be sent just before sending the character to
be inserted. Most tarminals with a true insert mode will not give ic, terminals
which send a sequences to open a screen position should give it here. (Insert
mode is preferable to the sequence to open a positicn on the screen if your ter-
minal has both.) If post insert padding is nesded, give this as a number of mil-
liseconds in ip (a string opticn). Any other sequence which may need to be sent
after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete char-
actars on the same line (e.g. if thers is a tab after the insertion position). U
your terminal allows motion while in [nsert mode you can zive the capability mi
to speed up inserting in this case. Omitting mi will affect only speed. Some ter-
minais (notably Datamedia’s) must not have mi because of the way their insert
mode works.

Flnaily, you can specify delete mode by giving dm and ed to enter and exit
delete mods, and dc to deiete a single character while in delete mode.

Highlighting, underlining, and vizible beils

If your terminal has sequences to entsr and exit standout mode these can be
given as so and se respectively. If thers are several flavors of standout mode
(such as inverse video, bliniking, or underlining = half bright is not usually an
acceptable “standout” mode uniess the terminal is in (nverse video mode con-
stantly) the preferred mode is inverse video by itsell. If the code to change into
or out of standout mode leaves one or even two blank spaces on the screen. as
the TV] 912 and Teleray 1081 do, this is acceptabie, and although it may confuse
somse programs slightly, it can’t be helped.

425 Berikelsy Distribution §/10/80 8
.. .. 3-%Y

——— e

TERMCAP(S) UNIX Programmer’s Maaual TERMCAP(5)

-

- 1 bool Terminal underiines even though it doesn’t overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
.] str Sequence to end open/visual mode
v str - Sequence to start open/visual mode
- bool Beehive ({1=escape, f2=ctri C)
x bool A newline {s ignored after a wrap (Concept)
¥ bool Return acts like ce \r \n (Deita Data)
xs bool Standout not erased by writing over it (HP 284?)
xt bool Tabs are destructive, magic so char (Teleray 106 1)
A Samplie Entry

The following entry, which describes the Concept—100, is among the more com-
plex entries in the termcap flle as of this writing. (This particular concept entry
{s outdated, and is used as an example only.)

el|ec100|conec eptiOD:is=\EU\E!\B‘?\BS\EB\EI\BNH\EX\B\ZOO\EQ&\ZOO:\
:al=3s\E~R:am:bs:cd=18°\E~C:ce=16\E~S:cl=2*~L:zm=\Ea%+ X+ :co§80:\
:de=18\E~A:dl=3*\E~B:ei=\E\200:80:im=\E~P:in:{p= 18=:li§24. mi:nd=\E=:\
:3¢=\Ed\Es:s0=\ED\EE:ta=8\t:ulup=\E.:vb=\EX\EX:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a
line. and that empty fleids may be included for readability (here between the
last fleld on a line and the first fleid on the next). Capabilities in termcap are of
three types: Booiean capabilities which indicate that the terminal has some par-
ticular feature. numeric capabilities giving the size of the terminal or the size of

) particular delays. and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance. the fact that the Concept
has “automatic margins' (i.e. an automatic return and linefeed when the end of
a line is reached) is indicated by the capability am. Hence the description of
the Concept {nciudes am. Numeric capabilities are followed by the character '§
and then the value. Thus co which indicates the number of columns the termi-
nal bas gives the value ‘80" for the Concept.

Finally. string valued capabilities, such as ce (clear to end of line sequence) are
given by the two character code, an '3’ and then a string ending at the next fol-
lowing ‘:*. A delay in milliseconds may appear after the ‘=’ {n such a capability,
and padding characters are supplied by the editor after the remainder of the
string is sent to provide this delay. The delay can be either a integer, e.g. ‘20",
or an integer followed by an ‘%, Le. ‘3*. A ‘* indicates that the padding
required is proportional to the number of lines affected by the operation. and
the amount given is the per-affected-unit padding required. When a ‘¥ is
specified, it {s sometimes useful to give a delay of the form ‘3.5° specify a delay
per unit to teaths of milliseconds.

A number of escape sequencss ars provided {n the string valued capabilities for
easy encoding of characters there. A \E maps to an ESCAPE character, ~x maps
to a controi-x for any appropriate x. and the sequences \a \r \t \b \f give a
newline, return. tab, backspace and formfeed. Finally, characters may be given
as three octal digits after a \, and the characters =~ and \ may be given as \~
and \\. If it is necsssary to placs a : in a capability it must be escaped in octal

4th Berkeley Distribution §/10/80 3
: 2-C !

R R L e e e comme

Ry AR e - . -
B T ey ————

-

TERMCAP (5) UNIX Programmer’'s Yanual TERMCAP(3)

FILES

If tabs on the terminal require padding, or if the terminal uses a charactar other
than =Ito tab, then this can be given as ta

Hazeltine terminals. which deca’t allow ‘~' characters to be printed should indi-
cate hz. Datamedia terminals, which echo carriage-return linefeed for carriage
return and then ignore a following linefeed should indicate ne. Early Concept
“terminals., which ignore a linefeed immediately after an am wrap, should indi-
cate xn. If an erase-eol is required to get rid of standout (instead of merely
'~ writing on tep of it), xs should be given. Teleray terminals, where tabs tura all
:characters moved over to blanks, should indicate xt Other specific termupaj
‘problems may be corrected by adding more capabilities of the form x=.

Other capabilities include is, an initialization string for tke terminal, and if, the
name of a flle containing long initialization strings. These strings are expectad
to properly clear and then set the tabs on the tarminal, {f the terminal has sett-
able tabs. If both are given. is will be printed before if. This is useful where if is
susr/lib /tobset /std but is clears the tabs Arst.

Similar Terminals

If there are two very similar terminals, one can be deflned as being just like the
other with certain exceptions. The string capability te can be Ziven with the
pame of the similar terminal. This capability must be last and the combined
length of the two entries must not exceed 1024. Since {grmiid routines search
the entry from left to right. and since the tc capability is replaced by the
corresponding entry, the capabilities given at the left override the ones in the
similar terminal. A capability can be cancelled with xx0 where xx is the capabil-
ity. For example, the entry

bn|[2821nl:k3@:ked:tc=2521:

defines a 26211l that does not have the ks or ke capabilities, and hence does not
turn on the function kay labels when in visual mode. This is useful for diferent
modes {or a terminal, or for differeat user prefersnces.

/etc/tarmeap flle containing tsrminal descriptions

SEX ALSO

ex(1), curses(3), termcap(3), tset(1), vi(1), ui(l), more(1)

~ AUTHGR

William Joy
Mark Horton added underlining and keypad support

E= allows only 258 characters for string capabilities, and the rocutines in
termcap(S) do not check for overflow cf this bufer. The total length of a singie
entry (exciuding only escaped newiines) may not exceed 1024.

The ma. vs. and ve entries are specific to the 1t program.

Not all programs support all entries. There are entries that are not supportad
by any prograrm.

4th 3erk=isy Distribution S/10/80 8

i
Il
'l

TERMCAP(S) UNIX Programmer'’s Manual TERMCAP(S)

L

like %c

R+x adds =z to value, then X.

X>xy {f value > x adds y, no output.

reverses order of line and column, no output®
{ncrements line/column (for 1 origin)

gives a single X

exclusive or row and column with 0140 (DM2500)
BCD (18%(x/10)) + (x%10). no output.

Reverse coding (x-2%(x%16)). no output. (Deita Data).

Consider the HP2645, which, to get to row 3 and coiumn 12, needs to be sent
\EXa12c03Y padded for 8 milliseconds. Note that the order of the rows and
columns is {nverted hers, and that the row and column are printed as two digits.
Thus its cm capability {s “cm=6\E&%r%2c22Y"'. The Microterm ACT-IV needs the
current row and column sent preceded by a ~T, with the row and column simply
encoded {n binary, “em=~T%.%.”’. Terminals which use “X.” need to be able to
backspace the cursor (bs or bc), and to move the cursor up one line on the
screen (up introduced below). This {s necessary because it is not always safe to
transmit \t. \n ~D and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus “cm=\E=2+ 2+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving the charac-
ter at the current position unchanged, then this sequence should be given as nd
(non-destructive space). If it can move the cursor up a line on the screen in the
same column, this should be given as up. If the terminal has no cursor address-
ing capability, but can home the cursor (to very upper left corner of screen)
then this can be given as ho: similariy a fast way of getting to the lower left hand
corner can be given as ll: this may involve going up with up from the home posi-
tion. but the editor will never do this itself (uniess Ul does) because it makes no
assumption about the effect of moving up from the home position.

Area clears

It the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this should be given as ce. If the terminal can clear from
the current position to the end of the display, then this should be given as ced
The editor only uses cd {rom the first column of a line.

Insert/delete line

If the terminal can open a new blank line before the line whers the curser is.
this should be given as al: this is done only from the Arst position of a line. The
cursor must then appear on the newly blank line. If the tsrminal can delete the
line which the cursor is on, then this should be given as dl this is done only {rom
the first position on the line to be deleted. If the terminal can scroll the screen
bacicwards, then this can be given as sb, but just al suffices. If the terminal can
retain display memory above then the da capability should be given: if display
memory can be retained below then db should be given. These let the editor
understand that deleting a line on the screen may bring non-blank lines up from
below or that scrolling back with sb may bring down non-blank lines.

Insert/delete charactar

fl

yasues

4th Berkeley Distribution 5/10/80 5
3-83

—— —— — " ——— — . — — —— . e e. s+ = e ——

TERMCAP (5) UNIX Programmer's Manual TERMCAP(S)

Codes to begin underlining and end underlining can be given as us and ue
respectively. If the terminal has a code to underiine the current character and
move the cursor one space to the right, such as the Microterm Mime, this can be
given as uc. (If the underiine code does not move the cursor to the right, give
the code followed by a nondestructive spacs.)

If the termina! has a way of flashing the screen to indicate an error Quietly (a
b¢ll.replacernent) then this can be given as vb; it must not move the curser. If

terminal should be placed in a different mode during open and visual modes
of-ex, this can be given as vs and ve, sent at the start and end of these modes
respectively. These can be used to change, ¢.3.. from a underline to a block cur-
sor and back.)

If the terminal needs to be in a special mode when running a program that
addresses the cursor, the codes to enter and exit this mode can be given as ti
and te. This arises, for example, from terminals like the Concept with more
than one page of memory. If the terminal has only memory relative cursor
addressing and not screen rslative curser addressing, a one screen-sized window
must be fixed into the terminal for cursor addressing to work properly.

If vour terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstriks, then you should give the capa-
bility ul. If overstrikes are erasable with a blank. then this should be {ndicated
by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed,
this information can be given. Note that it is not possible to handle terminals
where the keypad only works in local (this applies. for example, to the unskifted
HP 2821 keys). Uf the keypad can be set to transmit or not transmit, give these
codes as ks and ke. Otherwise the keypad is assumed to always transmit. The
codes sent by the left arrow, right arrow, up arrow, down arrow. and home keys
can be given as ki, kr, ku, kd, and kh respectively. If there are function keys
such as 10, {1, ..., 9, the codes they send can be given as k0, k1. ..., k9. If these
keys have labels other than the default {0 through {9, the labels can be given as
10, 11, ..., 19. If there are other keys that transmit the same code as the termi-
nal expects for the corresponding function, such as cliear scrsen. the {ermcap 2
letter codes can be given In the ko capability, for example, *“:ko=cl.ll.sf.sb:",
which says that the terminal has clear, home down, scroll down. and scroll up
keys that transmit the same thing as the cl, lI, sf. and sb entries. -

The ma entry is also used to indicats arrow keys on terminals which have single
character arrow keys. It is obsclete but still in use in version 2 of vi. which must
be run on some minicomputers due to memory limitations. This fleid is redun-
dant with ki, kr, ku, kd, and kh. It consists of groups of two characters. In each
group. the frst character i{s what an arrow key sends, the second character is
the corresponding vi command. These commands are h for ki,] for kd. k for ku.
lfor kr, and H for kh. For example, the mime would be :ma=~Xj~Zk~Xl: indicat-
ing arrow keys left (~H), down (~K), up (~Z). and right (~X). (There is no home
key on the mime.)

Niscellaneous

If the terminal requires other than a aull (zero) character as a pad. then ths
can be given as pe.

4th Berksisy Distribution 5/10/80 7

2-¢°

TTYTYPE (5) UNIX Programmer's Manual TTYTYPE (5)

NAME

ttytype - data base defining terminal type; used for
associating terminals with serial ports

DESCRIPTION
The ttytype data base is used to associate a manufacturer's
terminal with the different serial ports on the system,
Each line contains the name of a terminal, a tab character,
and then the XENIX device entry for the serial ports
associated with that terminal. The terminal name must
correspond to an entry in /etc/termcap.
Making an entry in the ttytyvpe file for your terminals
allows the system to make maximum use of terminal features
for certain system facilities that use full screen
capabilities. Among these programs are vi(l), bsh(l), and
ua(l).

FILES
/etc/ttytype

SEE ALSO
vi(l), bsh(l), ua(l), termcap(5)

USAGE

A typical line in the ttytype file might look like "dumb
/dev/tty3" or "wyse /dev/tty5." The first says that serial
port 3 is connected to a terminal described in /etc/termcap
as having no special characteristics such as cursor move-
ment., The second entry tells XENIX that serial port 5 is
connected to a terminal manufactured by Wyse Technology that
is described in termcap under the name "wyse." The terminal
name is the name found between the first and second vertical
bars of the appropriate entry in /etc/termcap.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix A
HARD DISK ORGANIZATION
CONFIGURATION

The built-in internal l€-megabyte hard disk on the 586
System is configured as follows:

CYLINDER DSE
) Bootstrap program
1-40 Swap area
40-41 Alternate-sector area
42-end XENIX file system

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

LOGICAL DEVICES

The following logical devices are defined in the Altos
configuration of XENIX.

Logical Devices - Integral Hard Disk

LOGICAL DEVICE DESCRIPTION
) hdoe all of hard disk (without sector
mapping).
1 hdf@a, swap swap area.
2 hd@b, root root file system.
3-8 unused.
9 hd@.spares spare blocks for alternate sector
mapping.
10 future expansion.
11 hd@.track@ all of track #@.
12 hd@.boot primary bootstrap on track 0.
13 hd@.roc# rest of cylinder #. (Consists of

cylinder @ except for track #.)
Used for fsck temporary file,

14 hd@.layout layout information, (See layout
(1)).

15 hd@g. secmap mapping information for alternate
sectors (See map (1)).

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix B
FLOPPY DISKETTE ORGANIZATION

CONFIGURATION

The floppy disk organization for a bootable XENIX File
System is as follows:

IRACK USE
0-54 Xenix file system

55-end Swap area

LOGICAL DEVICES

The following logical devices are defined in the Altos
configuration of XENIX:

LOGICAL DEVICE JRACK DEFINITION
£4e #-end "Pseudo-tape" (see below) or
file system
fde.swarp 55-end swap area

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

BOOTING FROM FLOPPY DISKETTE
XENIX is not setup to be run in multiuser mode after booting

from the floppy diskette. Of course, it is fine to access a file
system on the floppy diskette after booting off hard disk.

DISKETTES AS PSEUDO-TAPE

The floppy disk may be used sequentially as a "pseudo-tape",
for example, by the tar utility. The command:

tar c filel file2<CR>

archives filel and file2 to the device /dev/tar, which is usually
equivalent to the floppy disk device /dev/fdd

These files may be recovered from that diskette with the
command :

tar x<CR>
For information on using this utility, see the section,

"saving and Restoring Files Using tar" in the Altos Introduction
to XENIX Manual.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERERCE GUIDE

RANDOM ACCESS DISKETTE FILES

When diskettes are used with the tar utility, they are treated as
sequential files. Files on those diskettes are read from
beginning to end, as with tape files.

It is also possible to have "Random-Access" files on diskette,
XENIX can use random access diskette files in the same way it

uses the hard disk files. You can have additional files that you
load into the system when needed and unload when not.

Initializing Diskettes as Random-Access Files

To use a diskette in this fashion, you must first initialize it
with an empty file system as follows:

1. If necessary, format the diskette using the format utility.
After the XENIX prompt, enter format <cr>, and follow the
instructions given.,

2, Insert (load) the formatted diskette,

3. Enter

/etc/mkfsé#/dev/£40 1440<cr>

Althouch the newly created file system is physically loaded,
you must "mount" the file system before you can use it.
Mounting gives XENIX the information to link the diskette
with its own file system on your hard disk.

Similarly, you must "dismount" (or unlink) the file system
on the diskette before physically unloading that diskette.
Mounting a Diskette

Whenever a diskette file system is loaded, it must be
mounted:

1. Insert (load) the diskette, if necessary.
2., Enter
/etc/mount /dev/fd# /fd<cr>

You may now access the diskette's file system through the
directory /fd.

You can treat this directory as you would a directory on the
hard disk. You can create files on it, transfer files to
this directory, change or remove these files, etc.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Dismounting a Diskette
Before removing a mounted diskette, it must be dismounted:
1. Enter
/etc/umount /dev/fdf<cr>
2. Remove (unload) the diskette from the drive.
As with tar diskettes, these diskette files should be

labeled with a meaningful description and dated, and kept in
a safe location when not being used.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

APPENDIX C

SERIAL LINE PRINTER AND SPOOLER

STANDARD PRINTER CONFIGURATION

In the Altos implementation of XENIX, serial port 6 is configured
for a serial printer operating at 9608 baud. The logical device
name "/dev/lp" may be used to refer to this port, and the lpr
utility references this device automatically for printing and
spooling.

The lpr utility assumes that only one printer, /dev/lp, is
attached to the system, If you want to connect more than one
printer, refer to the "Connecting More Than One Printer" section
of this appendix.

Printer spooling is a technique that mediates printer activity in
a manner that allows all users of the system to share a printer
without conflict. Files to be printed are copied to a spool
directory (/usr/spool/lpd) and a background process moves those
copies to the line printer device, This device is found in /dev,
and is called "l1lp" (lpl, 1p2, etc). Files in /dev are known as
"special files", and are the interface to UNIX I/O. For an
expanded discussion of special files in specific and I/0 in
general, see sections 29-32 of the UNIX Programmer's Manual,
Volume 2B, A great deal of this material is specific to the PDP-
11, however the mechanisms are the same as those for the Altos
586 computer system.

Any of several programs may be used to copy material to printer
devices. For example:

cat /usr/john/doc > /dev/lp

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

This command copies the file "/usr/john/doc" directly to the
default printer., If you have more than one printer, the default
printer is the one that is most used. This has three possibly
undesirable effects:

1. 1f /usr/john/doc is a big file, this command may
take some time to complete.

2, I1f another user is copying a file to the printer at the same
time, the result is probably not what anyone intended.

3. Since the cat program knows nothing about printers,_and
therefore nothing about baud rates, page sizes, margilns,
etc., the result may not be what is expected.

The lpr utility program is used to control printer requests.,
This program knows something about printers, how to set baud
rates, etc.

To invoke the lpr utility, enter:
1prN [file_list]
Where: "N" is a digit from @ to 5 and selects one of 6 printers.
Lpr may be invoked without entering a valve for "N" by entering:
lpr [file_list]

This command assumes the default printer, lp, and has the same
effect as entering:

lprd [file_ list]

The lpr program copies the files in [file_list] to a spool
directory and returns immediately to the invoker. Sometime
later, perhaps up to 18 seconds, a printer (if not already busy)
will begin printing. The printers themselves are physically
connected to serial ports.

HARDWARE CONNECTIONS

The connection between the 586 computer system and a printer is a
cable which has 25-pin subminiature D-type connectors. The
computer's port hardware is "female", which requires that the
computer side of a cable have a "male" connector. Most printers
also have "female" port connectors; a compatible cable should
have a "male" connector on each end. The most commonly used
cables have at least pins 2, 3, and 208 connected from end to end,

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Printer control of computer output is accomplished by either of
two methods:

1. The printer should be configured to use the X-ON, X-OFF
protocol, because XENIX uses this protocol to control the
flow of data to the serial printer. This method reguires
that the printer send an X-OFF control code to the computer
when overrun is about to occur. An X-ON control code is
sent when it is safe for output to the printer to continue.

2, The second method controls the RS232C DTR (signal 20) signal
to accomplish the same result. If you wish to use this
method, be sure that the cable which connects the printer
and the computer has this conductor,

CONNECTING MORE THAN ONE PRINTER
If you want to connect more than one printer, you should:
1. Log in as super-user (root).

2. You need to create appropriate device files in /dev. This is
done with the ln command. First, select which printer is to
be the default printer. This printer should be the most-
used printer in the system,

To make the default printer device available for reassignment,
enter:

mv /dev/1lp /dev/olp

Next, select the port to which this printer is to be connected,
by entering:

1n /dev/ttyP /dev/lp
Where: "P" is the port number of the serial port.

Next, configure the system for the additional printers to be
supported, selecting which printer number (1-6) they are to be,
and the number of the serial port which they ae to be connected,
and enter:

1n /dev/ttyP /dev/1pR

Where: "P" is the serial port number, and "N" is the printer
number. It is suggested that "P" and "N" be the same number to
alleviate the confusion that occurs when printer 5 is connected
to port 3.

Next, repeat the above ln command for each printer to be
suppor ted,

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

3. You need to make file names for invoking the lpr program.
For each printer device file made in the previous step,
enter:

1n /bin/lpr /bin/lprN
Where: "N" is a printer number.

4, You need to create spool directories, These directories are
used to hold copies of material to be printed for each
printer. For each printer device file made, enter:

mkdir /usr/spool/lpdN
Where: "N", as above, is a printer number.

NOTE: The default directory is already installed, do not try to
create it. If any of the printers have baud rates other than
9600, refer to the next section "Changing/Setting Baud Rates".

CHANGING/SETTIRG BAUD RATES

If you want to change or set a terminal or printer to a a
different baud rate than 9600, you should perform the following
steps.

The /etc/ttys file contains entries of the form:
12ttyP

The above line is interpreted by various system programs. The
first digit ("1" in the above example) tells the system to
attempt to log on ttyP ("P" is a serial port number). The second
digit specifies the baud rate for that particular terminal (see
Baud Rate 1list below or GETTY(8) in volume I of the UNIX Program-
mer's Manual for the baud rates associated with these values.)
For each printer to be supported, type a "disable" command for
the corresponding serial port. This ensures that the system will
not attempt to log on a port which is dedicated to a printer.

For example, if a printer is set up for port 6, enter:
disable tty6

Now, for each printer to be supported, add a line to file
/etc/ttys that has the following format:

#Bl1pN
This line may be anywhere in the file., No spaces are permitted

between portions of the line. "B" is a baud rate argument from
the list below. "N" is the printer number.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

If the default printer's baud rate is other than 9668, add:
#Blp
NOTE:

Printers whose baud rate is 9600 do not require a corresponding
line in /etc/ttys.

Baud Rates

300
158
9600
1200
300
2400
4800

2
3
SouwhHS

CONFIGURING SYSTEM WITHOUT A PRINTER

If you wish to support six terminals (with no printer), you
should:

1. Log in as super-user (root).
2. Remove the lp entry in /dev by entering
rm /dev/1p<CR>
3. Enable the login and shell on port 6 by editing the line

referencing tty6 in the file /etc/ttys from "@2ttyé6" to
"12tty6", before going multiuser.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix D
LIST OF TERMINAL CAPABILITIES

The basic XENIX system works with nearly all the generally
available terminals, by making use of a standard "lowest common
denominator™ of terminal capabilities. However, some of the
XENIX utilities, including many especially useful utilities, can
make use of special terminal capabilites. A major example is the
Business Shell,

For this reason, the /etc/termcap data base has been
developed to describe terminal capabilities. The following pages
give essential information extracted from /etc/termcap, 1in a
form more easily understood that when the file itself is viewed.
The information given describes all terminals currently supported
for special use by the Altos release of the XENIX operating
system.

Customizing Your Altos XENIX System

The following information explains how to inform XENIX of
the special capabilities of the terminals you are using with the
system.,

The XENIX utilities, such as the Business Shell, that make
use of special terminal capabilities access the file
/etc/ttytype, which defines the type of the terminal attached to
each serial port. It may be necessary to edit this file to
provide the correct terminal type for each port. Each line in
/etc/ttytype has two fields; the terminal type, and the assoc-
iated port number.

The "terminal type" used in /etc/ttytype is the second field
of the appropriate terminal entry in the /etc/termcap data base;
that is, it is between the first two vertical bars, "|", in the
entry. On the following list of "Terminals Supported by the

D-1

*310ddng 13w03sSnN) SO3ITVY 10 I9TEIP INOK 3 TNSUO0D
‘bUTSN 21® NOoX TRUTWIS] 3aY3z 103 BUTISTT B purjy 3jou op nok JI

*3T1T3 @yl aiepdn pue ,q@Z6. 03 ‘s3jusuubrsse
310d TTe 10 ‘Bbursn aie nok sjusawubisse 310d ayl abueyd ,°3sim,
y3aTM pajeroosse aie s3iod Tre 3eylz put3y nok ‘adX3k33z/o31s/ burlIpd
wd0Z6. ST A13ua a3etidoiadde 8yl °*OSPTASTSdL 107 sarijud jJo dnoiab
® pUuTy TTITM nOoK 3STT BUTMOTTOF 94yl ITNSU0D nok uaym ‘gge Tapou
JU3IIND ‘TeUuTWiIS]) OSPTIAIT3L © buisn aie nok Jr ‘srduwexs 104

(*adA3X33/038/
jnoge UOT3jRWIOJUT SIoOW IOJF UOTIODIS 20ud3133Iay AK3ITTTan
94yl Uutr (G)3AdALXLL 938S) *sasn wajlsAks inok 3ey3z 310d [eTIdS
9AT30®R yYoea 103 ‘Aiessaoau 3T ‘adk3 Teutwial ay3l abuey) c°pasn
9 UurD 3JUSTUdAUOD ST 3eyl 103Tpd Auy ,*9dA3 Teutwi’al, Ayl se
dweu 3eyyz 3asn ‘adA3X33/o539/ HBurlITPS UIYM °*voudarazaix 1adoiad a9yl
ST ,TeUTWI33 JOo aweu, paTred A13jud ayl ,‘wajzsig burjerado XINIX

JAIND FONIYHITY S, JINWVIDOAd XINIAX WILSXS WHLOIWOO 985S SOLTV

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Terminals Supported by the XENIX Operating System

The material below is derived from the system
file/etc/termcap. This file describes terminal capabilities and
characteristics. The use of this file is to support screen-
oriented programs, such as vi. The /etc/termcap file is compo sed
of a description entry for each supported terminal (and sometimes
more than one, if the terminal has options, or is part of a
family of products).

This document cites the name by which a particular terminal
is known to the system, and contains a short description of the
terminal, including the manufacturer's name, and other useful
information., Included are comments relevant to the use of the
terminal.

an example:

wyse WYSE WY-100

this entry indicates that the WYSE WY-108 terminal is sup-

ported by the system and that its name is 'wyse' (case is

significant).

The 'name' of a terminal is specified to several system
programs. Among them are:

the shell (sh):
¢ TERM = name; export TERM
the C shell (csh):
setenv TERM name
or, for the default definition of a port.
a typical line in /etc/ttytype:
name tty5s
Please reference the appropriate documentation for an
expanded explanation of the capabilities and uses of the above
programs and structures,
Terminal naming conventions:
Terminal names look like:
<manufacturer> <model> - <modes/options>
Certain abreviations (e.g. cl8@ for conceptl@@) are also
allowed for upward compatibility. The part to the left of the

dash, if a dash is present, describes the particular hardware of
the teminal, The part to the right is used for flags indicating

D=3

I9I9 Dad 1616

ZSLA D3d AR Y

Teutw1al ydeirnitd Ndd bq

TOWTIW WISJOIDTN awtw

EWAv IS1 gupe

VEWAVY IST egupe

O9PTA A3I (@To AI-Q@TO

gaT 3dasuo) @oToO

310d 193utad Y3ITM GPIO ddax-gg1o

SMOII® OU Y3ITM @ggIo PUAI-GQPTO

8T 3daouo) MmoOTS S-g@To

gaT 3do0ou0) 3SI93A31 MOTS SAI-@@TO

6TY 3ITYU3I®E3H 6TY

pa33Tys pediay/m 3TyY3Ie3H sq-6T4
1051IN0

9100s19pun/pa3ytrys pediay/m 3ITYYIeIH sn-6TY

I0SINO 9100SI9pun Y3TM ITHYIL3H n-6TY

STeqe1/M 179Z dH TM-TZ92

TZ9¢ 4dH T29C

sSTageT ou Yatm 1292 dH Tu-129¢

pIeyoRd-3393TMIH dy

dnte1p np

PAT-AM ISAM 39S AM

ROTIJTEOSId TENIWIIL J0 JWYN
:STRUTWId} 3yl

(*033 ‘dnTetp) TrTOads :s

9pewawoH :b

(sTeutwial M9J e ATUuOo Y3ITM) °*OSTW W
sTeutwiayl Taaym Astep Adoopaey :v¥

$S9poo 131n3jdoejnueuw [eToads

*ATTeo0T s&9y MmoI1i1e

9Y3 9sn ued 13Sn 3yl OS ‘TRUTWId] 3yl U0 913Yy3z Arren3oe
91 YO TYM sXAay Mmoxie saioubt deowrdl - sA3Y Mmolie ON ’u
*pasn ST YoTym 310d 193uTid e SeH dd
*9pow uwniod ZET UT - 3PTM M
*033 ‘dg ‘dy astmayTIT c*Aaowdu Jo sabed om3 seH de
(93TYM pue 3}doeIq) SpOoW OIPTA 3SISADI UT TRUTWIIL Al

:sbe7y 103 posn ATTRUOTIUSAUOD 31 DBUTMOTIOF dYUL
*butdiy

ut Adous@3STSUOD I0F ‘3SedD I9MOT UT sAemTe 21e saweN °SaouaidJaid
13sn 10 ‘sapow TeuTtwial Iernoriied ‘Kiowsw vIIXD ‘S,HOY TeToads

4dIND IDNIAYAITY S, JANNVIOOHEd XINIAX WALSXS YIALOIHOD 98S SOL'IV

ALTOS 586 COMPUTER SYSTEM

A: DAISY WHEEL PRINTERS

XENIX PROGRAMMER'S REFERENCE GUIDE

The A manufacturer represents Diablo, DTC, Xerox, Qume and

other Daisy wheel terminals.

[}
@ w/8 column left margin
th vDU

acobson
iter 5520
t 5
same as the Diablo 1620

1520

2500

3825a

3945a

dteg/1

dt88/1 in 132 char mode

1600
1552
1552 reverse video
1420
1500
1510
1520
2000

AND INTECOLOR

mpucolor/Intecolor
I1

1620 Diablo 162
1620-m8 Diablo 162
dtc DTC 382 wi
dtc300s DTC 300s
gsi
ajgs3g Anderson J
5520 NEC Spinwr
qume5 Qume Sprin
x1720 Xerox 1720
C: CONTROL DATA
cdcd 56 CDC
cdc456tst CDC
D: DATAMEDIA
dml520 Datamedia
dm2500 Datamedia
dm3625 Datamedia
3045 Datamedia
dt8e Datamedia
dt 80w Datamedia
H: HAZELTINE
hl1660 Hazeltine
h1552 Hazeltine
(be sure auto lf/cr switch is set to cr)
hl552rv Hazeltine
hl420 Hazeltine
hl1500 Hazeltine
hl510 Hazeltine
hl1520 Hazeltine
h2000 Hazeltine
I: IBM, INTERACTIVE SYSTEMS,
8001 ISC8001 Co
compucolor?2 Compucolor
intest Interactiv

(modified PE Owl 12000

ibm

IBM 3101-1

M: MISCELLANEOUS TERMINALS

tabl32
tabl32w
tabl32rv
tabl32wrv

TAB 132/15
TAB 132/15
TAB 132/15
TAB 132/15

D=5

e Systems Corporation

)

SaUTT gy/I0pessequy I0ql1y uuy gy-eee
SaUTT @gp/Iopessequy 10qI¥Y uuy gy-eee
S9UTT 9¢/10peSsequy I0q1y uuy 9¢g-veR
SaUTT gg/Iopessequy I0qIY¥ uuy gc-eee
S9UTT gz/Iopessequy 101y UUy gZ-vee
S9UTT 9z/1opessequy I0QIY uuy 9z-eee
SSUTIT pz/Iopessequy I0q1yY UUY yZ-eee
S3UTT Zz/Iopessequy I10qiI¥y uuy ZZ-eee
S8UTIT @gZ/Iopessequy I0q1y Uuuy gz-eee
SOUTT 8T/I0pESSequWy I0Qqa¥Y Uuuy gT-e®RR

@80y I10q1Y uuy ee

JOodIV NNV N

gg d33ulaz gguaz
@TT-1AW X3u13qAD @TTITPW
#80S 23R ®IT3A B3I TSP
TeUTWId] TeNn3IITA XTUun g4 Ten3ITA
PZST eTpawe3led bBurjeTNWa YOI je133
Z8LD S3O0NPOId TROTUYDSJ 3ISIaMY3Nnos dams
T9ued vuwuseTd euse 1d
H¥GZ@8 U0 IWQ uo I1wo
€8-"TIX X3u13q4) €8TX
Tos

(9sn 103 papusawwod31 3ou °*X3Yy MOl1le UE ST S)
€62T Iad Ipo
€509 Te192U39H e3Rd bp
TI-SL ooT®d ooTRJ
gocc urodeizeq jutodeyep
ZT1s aav Z1Gpae
POCT 3ISUTWISL ID AT TIdUTWIIY
g8gb 3z1odnoaxg gyds
gee borrbta bort5TP
u3aIoseileq 09933T3L 0939193
233
290G JdL g@S033
adoos D41 povyo93
@ZT 20108 D010S
ezel xtydeiaberqa AR
g8 onborerd xaduy xadue
€@€ breid-19yToA €£0€0A
VEQAE BTRID-I3YTOA BEGEDA

skay mo1ie ou

pue apow 3INOpurR3lIS/M gy DBTRID-I3YTOA RUSHPFOA
sA9y MoIIR OU/M pg@gpy DTRID-I3YTOA RUPPYOA
apow jnopueis/M pgy DIRID-I9YTOA sygyoa
70y BIRID-13Y)TOA vayoa
¥/@08 39911d p@8pP
I TSPOW ¥}deys oIpey @P8-SyL 08s 13
¢ I93TIMIITNW ZMu

daINd FAONIAYIITY S, YTNNVEDOAd XINAX WILSXS ¥ALOIWOD 985S SOLTIV

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

aaa-60 Ann Arbor Ambassador/60 lines
aaa Ann Arbor Ambassador
aaa-db Ann Arbor Ambassador 30

(destructive backspace)

T: TELETYPE

33 Model 33 Teletype

43 Model 43 Teletype

37 Model 37 Teletype

V: VISUAL

vi2peo Visual 200 with function keys

vi2@@-rvic Visual 200 revers video using insert
character

vi2pe-£ Visual 208 no function keys

vi2g@-rv Visual 200 reverse video

vi2@g@-ic Visual 2006 using insert character

X: TEKTRONIX

tek Tektronix 4012

tek4@13 Tektronix 4613

tek4dl4 Tektronix 4614

tek4015 Tektronix 4815

tek4fl4-sm Tektronix 4614 in small font

tek40815-sm Tektronix 4615 in small font

tek4@23 Tektronix 4023

4025 Tektronix 4024/4025/4027

4025-17 Tektronix 4625 17 line window

4025-17ws Tektronix 40625 17 line window in
wor kspace

4925ex Tektronix 4025 w/!

a: ADDS

Regent: lowest common denominator, works on all regents.

regent ADDS Regent Series - works on all of
series,

regentl@g ADDS Regent 100

regent20 ADDS Regent 20

regent25 ADDS Regent 25

regent4g@ ADDS Regent 40

regent6fd ADDS Regent 60

regenté6@na ADDS Regent 60 w/no arrow keys

agso ADDS Consul 980

Note: If return acts strangely on a%980, check internal
switch 2 on the top chip on the Control PC board.
viewpoint ADDS Consul 980

AI 193T1T1M03Q Mp

II I93TIMdoad ZMp

(o9pTA paoueape/m) STO0d ZET @ATLA J3d M-ggT3IA
(uot3do o3pTA paoueape oO/M

SauTl $T STOO ZET @ATLA DI S-pgT3IA

@ATLA D3A PTO gaTINO

UgSLA Odd ygsaa

I 133T1Imd3a(Q Mp

ASLA D2dd As3A

gyLd Ddd gvab

ZETIA ZET3IA

ZvLo 2dd Z¥3b

we ou/m ggTIA goT3IA

gOTLA D3d ga813A

‘U0 3q PTNOYS YO3ITMS JJO/UOX 3YL

w'weu-ggriA, 9sn ‘yzo 3T 38S
nok 3T {uo 03 Tu-o3ne 33S nodk 3eyl saunsse STY3l OsSTY *(ssIaT
10 2@g@zZT) 1233w 3,us’aop 3IT 3IeY3l 331 pneq ybnoua MOTS
© 3¢ 91e 10 JJO TTO0I0S yjzoouws aaey nok 3eyl psaunsse sT 3II

(NOILVYOd¥0D INIWAINDI TYLIDIA) J3A :P

*'sue1601d 974A3S u3910S I0J pOsSn ST dwWaYODS
moputrm 3bed suo ® ‘jyI0M 03 3IT 3I3H 0L °*SATIRIdI UIIIDS
J0U ‘BUTSSaIppe 10SIND SATIRIaI Mopurm ATuo aaey s3idaouo)

0./S. pue sabed y/m ggT 3dsouod 8010
0./s. pue sabed g/m ggT 33Idaouo)d 84T

*sSTy3l bHurtuuni 9103I3q
0./S. pu3as 03 8gTd 2Y3 21In6TJU0d pInoys nox °yjbuar-aurt
1330ev1IRUO-ZE€T © Y3ITM TA dn passaw OSTe QU0 PTO 3YL °*SWOMd
95Ul JO UOTSI9A PO ue aaey nok ‘os II °*3T adX3 nok uaym s
® Spuas 3T JT 29s pue 8g[D Inok uo eyl A1l °pneq gg9e6 3e
(spiom/30Tp/Isn/ OYIT) SAUTIT 3I0Ys Jo S3IOT 3Iu3ds nok IT pieoq
-K3y 9yl 3no 3YDO0T PINOM peY 3M JBYJ JUO 3ISITF 3YL °*SWONUd
80TD 9Y3l JO SUOTISISA JUDIDIITP JFO Iaqunu e 3q 03 WIS 313YL

(SWZLSXS QaNDISAA NVWAH) ILJIONOD : 9O

*D_=23 ‘adeosa=13 - 93d 13dnS aATY23g 1qs
S3T13S 33d OIOTW qoIoTu

I330eIRYD 3ISSUT Y3TM 3ad 13adns 5T193qi1adns
WIII3ATUS33d ueyq

29g 13dnS poxT13 zqs

JAIHIZA 9

d44aInd IONAYIITY S, YIWWNVIDO0Ad XINIAX WILSXS YALOdWOD 98S SOLIV

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

h: HEWLETT PACKARD

2621-A 2621 w/new ROM, strap A set
2621-45 HP 2621 with 45 keyboard
(should be used at 4808 baud or less)
hp2645 HP 264x series
hp2626 HP 2626
(should be used at 4800 baud or less)
hp2648 HP 2648a graphics terminal
2640 HP 2640a
2640b HP 264x series
2621-48 HP 48 line 2621
2621-nt HP 2621 w/no tabs

(2621 with no labels ever)

i: INFOTON (GENERAL TERMINAL)

1100 General Terminal 166A
(formerly Infoton 1080)

i400 Infoton 400

addrinfo

infotonKAS

k: HEATHKIT (ZENITH)

hl9-a Heathkit H19 ANSI mode

l: LEAR SIEGLER (ADM)

If the adm3l gives you trouble with standout mode, check the
DIP switch in position 6, bank @cll, 25% from back end of

pc. Should be OFF. If there is no such switch, you have an
cld adm31 and must use oadm3l.

adm31l LSI adm3l
adm2 LSI adm2
adm4?2 LSI admd2
admb LSI admb
adm3a+ ADM3A PLUS
oadm31l old ADM31

m: MICRTOTERM

These mimel entries refer to the Microterm Mime I or Mime
II. The default mime is assumed to be in enhanced act iv
mode,

21-a

jnopuels ou/Mm @G6 IAL SU-gGs6TAY
ST ou gg6 IAL 31eq q-gGS6TA3
sabed 31e/M 056 IAL de-gg6TAl

*TA 10 X9 BUur3lTXa Uaym g abed 03 3a8sai
*IA 10 Xd butidjua uaym T abed o3 33s

sabed z/m o3pTAITAL dz-z16143
@T6 OSPTAITAL M3U TAL qeze
ZT6 O9PTASTAL MdU IAL qz16
O3PTASTAL PTO @Z6IAL ZT6TAY

*@gZ6 dYy3 uo s&ay [ea1 a3yl nqg
216 @yl uo X3y 3ouny ayjz asn noik sayew deowidy °*sbBUTYl UL I3IFIP

JTwx 3ey3 skay uor3zouny Tear snld STIY3} sey @gz6 3YL °,I1/8V_.
S3ITWX 8<3duUng> :33ITYS 3YTT S,3eYy3l A3Y <3Jouni> e sey ZI6 dUL 930N

OFAIAdTIL A

0@8 TUWO IL o813
SPL JUSTTS IL SYLTI
@oL JUSTTS IL T3

SLNAWNILSNI SVYXIL 3

Yd23TMs JUSBTTTI3UT yo3Tms
umouyun qunp
133uTtadautTt 1dTt

3y I0M33U 392uIayla
19x31dTSsnq

¥ I0M33U jauedie

*g@L IL © 9YTT 3Inoge 300 A3Y3 - I0ILUTWOUSP
UOWWOD 3ISIMOT 3Y3l 9Ie [euTwId3 UMUYUN Ue JO SOTISTId3OPL
-I2yd 3YL °*3IT UO ST TRUTWI®] JO PUTY 3IBYM MOUY 3,U0p nok
usym sautr £33 TageT 03 pasn aie IsAYL °,STeuTwal, Teroads

SIVIDALS S

POTT ISWTI-UTH 134 TM0
gATT I2WTI-UTHI3d X0J
§SG ISWTT-UTH I3 gssad

JAIWTI NIM9ag :d

eg pdoueyud burjeTnuwa TOUIW XeE-2uWTW
(ZG3a paoueryua ue burjernua)
BPZOWTIN WIDJOIOTH eZOWTW

(1930®IRYD TTTY B B Pasn 3aq 3,ued ¥X_ 3nqg)
(dZT0I 20105 paoueyua ue HburjzeTnuwa)

RZOUWT WISJOIDTW S-eZOWTW

TPWTW 3ybTIq 3TRY qy-awTw

T3WTW 3IY6TIq TIN3 qI-duTW

dpouw u3310s 3TTds UT A 3IOY¥ - G3oe AuuTtys sg3oe
A 30V WI3IO0IDTW GWId30I0TW

AI 3ID0V WIdJO0IOTW wI330I0TW

eg burjernua TOWTW egowTwW

34100 FIONAYIIIT S, YTWNVIO0dd XINIX WALSXS YALOIWOO 985 SOLTV

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REPERENCE GUIDE

Note: The following TVI descriptions are for all 950's. It sets
the following attributes:

full duplex

write protect off

conversation mode

graphics mode off

white on black

auto page flip off

turn off status line

clear status line

normal video

monitor mode off

edit mode

load blank character to space

line edit mode

enable buffer control

protect mode off

local edit keys

program unshifted send key to send line all
program shifted send key to send line unprotected

set the following to nulls:
field delimiter
line delimiter
start-protected field delimiter
end-protected field delimiter

set end of text delimiter to carriace return/null clear all
column tabs

tvigso TeleVideo 950

Note: tvioS@ sets duplicate (send) edit keys (\E1l) when
entering vi and sets local (no send) edit keys (\EK)
when exiting vi

tvigse-2p TeleVideo 950 w/2 pages

Note: tvig5@-2p is for 9580 with two pages adds the
following: .

set 48 line page

place cursor at page @, line 24, column 1
when entering ex or vi, set 24 line page
when exiting ex or vi, reset 48 line page,
place cursor at 0,24,1

tviogso-4p TeleVideo 950 w/4 pages

D-11

¢T-a

WO¥d 3IsSeJ Y3Tm 99T Aei1dTaL FT19013

1901 Ae1a13% 19913

S9T13S ggge ArIaTaL g08¢€3

ggLE Ae1aTaL qunp 80LE3

AVYIdTaL : 4K

sabed /M O9PTA A91 (PG6 OSPTADTAL dpa1-gGeTAY
sabed z/M 03PTA A91 (G6 OOPTAITSL dzAa1-gG6TAY
O9PTA AS1 g6 OSPTASTISL AI-pG6TAY

T‘v#2’p e 10sando aoerd
abed BaUTIT 96 33Sd®1 ‘TA 10 X3 DBUTITX3 uaym
obed SUTIT #Z 39S ‘TA 10 X3 HBUTISJUD UIYM
T uuntoo ‘pz aurr ‘g 9bed 3@ 10SINO ddERTd
9bed BUIT 96 39S
sbutmoTTOz
9y3 sppe sabed 1no3F Y3 Tm gg6 103 ST dy-pG6TAI 330N

JAINd FIDNAYIIATY S, YAWWVIO0Ud XINIX WILSXS WILOIWNOO 985 SOLIV

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix E

NUMERIC FORMATS, C, AND FORTRAN 77

The following information is for reference only. This
information on the internal formats used for numeric representa-
tion is not necessary for general use of the C language or
Fortran 77. It can be useful when examining actual memory
contents or doing other specialized system programming work.

The same formats are used by both languages.

INTEGER FORMATS

Integers and "short integers” are 16 bits in length. "Long
integers" are 32 bits., For both sizes, the leftmost bit is a
sign bit and the other 15 or 31 bits are magnitude. The sign is
zero for positive, one for negative. Negative numbers are in
twos-complement form,

The range of values is as follows:
Signand 15 bits -32,768 to 32,767
Sign and 31 bits -2,147,483,648 to 2,147,483,647

FLOATING-POINT FORMATS

Single precision floating point is 32 bits in length, double
is 64. The leftmost eight bits consist of an exponent in excess
80 notation. "Excess 80" means that the hexadecimal values from
80 to FF are positive exponents, corresponding to @ through 7F,
Values less than 80 are negative exponents; 7F through @ corre-
spond to -1 through -7E.

The remaining 24 or 56 bits consist of a leading sign bit

E-1

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

and magnitude values. Magnitudes are normalized. "Normalized".
means that the representation of magnitude and exponent is
adjusted so that each magnitude value can be thought of as
starting with .lnnn...

For example, the value of 101, decimal 5, would be .101 with
an exponent of 3. The leftmost digit of magnitude does not need
to be represented, because it is always 1 except for the special
case of a value of zero., Therefore, the leftmost magnitude bit
is not stored but is implied. It is referred to as the "hidden
bit."

Example:
The value 15.25, decimal. 1In binary, this is 1111.01

(In binary, .1 = .5 decimal; .61 = .25, etc., Moving to the
right of the point halves the value at each move, just as moving
to the left of the point doubles the base 2 value.)

So, 1111.81 represents 15,25 decimal., Normalizing our
binary value, we have ,1111081 with an exponent of 4. The
exponent becomes 84 in excess 80 notation, or 1000 0100 in
binary. The sign bit is zero (positive), and the magnitude is
11101000... with as many trailing zeros as needed. Notice that
the leading ".1" has disappeared. It is the unnecessary "hidden
bit." The binary and hexadecimal values are shown below.

1000 0100 0111 0100 0000 PPP0D POCC 0OOO
8 4 s 7 4 0 ()) 0

The example is single-precision. Double precision, in this
case, would be the same with eight bytes (32 bits) of trailing
zeros,

Other examples:

The fractional decimal value .625, In binary, this is .101;
that is, .5 plus .125., The value is normalized as it is, the
exponent is 6, the sign is positive, 0.

1000 0000 0010 00GO ...
8 0 s 2 g o0 0

Negative 5. 1In binary, 5 is 161. Before taking the twos-
complement, we supply a leading zero which will become the
negative sign bit: @101. The twos-complement is 1@11l. Removing
the sign bit, #11. Normalizing, .1108 with the exponent -2, 1In
excess 80, -2 is 7E. Result:

#1111 1110 1100 0000 ...
7 E s C g ...

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Zero, the exception. This is an all zero value.

p000 0000 O0POO POO0 ...
0) g B

All zeros can be thought of as zero by convention., Other-
wise, it would represent the smallest positive number possible in
the scheme.

VALUES IN MEMORY

As with other values in 8086 memory, floating point values
are stored "back-words." The least signficant 16-bit word is
stored first, then the next, and so forth,. If the single-
precision value 84740000 is stored at location x, it will show as
follows when displaying memory contents:

X 000
X + 2 8474

However, long integers are stored in order. The long
integer with a hexadecimal value of 128A34BF will show as:

X 128A
X + 2 34BF

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix F
SAMPLE LIST OF UNIX UTILITIES
The following is a sample listing of the typical utilit

provided in a full Xenix Development System.

You can obtain a list of your Xenix operating system's utilit
by entering:

cd / <cr>
1s -FCR|1lpr<cr>

LIST OF XENIX UTILITIES

bin dev install priboot
boot etc lib pribootfd
boot.fad fd load.hd tmp
boot.fdhd load.hd lost+found usr
./bin:

ac df look refer
adb diff lpr restor
ar du 1s rev
arcv dump m4 rm

as dumpdir mail rmail
at echo make rmdir
awk ed man sa
basename edit mesg sed

bc esrep mkdir sh

bsh enroll mntchk size
cal egn multiuser sleep
calendar ex mv sort
cat expr ncheck sp

cb £77 ndump spell
cc false negn spline
checkeq fgrep newgrp split
chgrp file nice strip
chmod find nm struct
chown flagbad nroff stty
clri fsck od su

cmp graph osh sum
col grep passwd sync
comm icheck pPIr t300
cp join prep t300s
crypt kill prof t450
csh 1 pPs tabs
cu 1d ptx tail
date learn pwd tar

F-1

ies

ies

xenix
xenix.fd

test
time
tk
touch

tp

troff
true
tsort
tty
unig
units
uucp
uulog
uux
vigrep
v7login
v7ls
vips
vi
vplot
vpr
who
write
xset
xsend
yacc
yes

ALTOS 586 COMPUTER SYSTEM

dc
dcheck
dd
deroff

./dev:
altosnet
console
cuaf
culgd
ether
£deo
fdo.swap
fdl

hdo

./etc:
accton
asktime
checklist
cron
ddate

dial-login
dmesg

./etc/newuser :

./fd:

./1lib:
co
cl
c2

cpp
crté.o

./lost+found:

./tmp:

./usr:
adm

altos

bin
./usr/adm:
acct
messages
./usr/altos:
ga. text

./usr/bin:

lex
lint
1n
login

hd@d.boot
hd@.layout
hd@.roc@
hd@. secmap
hd@.spares
hd@. track®d
hdgda

hd@b

kmem

getty
group
haltsys
inir
init

menusys.bin
mkfs

£f77cl
£77c2
£f77crtb.o
f77passl
1libF77.a

dict
games
include

mssbuf
savacct

quot

random
ranlib
ratfor

lp

mem

null

rfdgo

rfdl

rhdgd
rhd@.boot
rhd@.layout
rhd@.rocd

menusys
mknod
motd
mount
mtab

passwd
ttytype

1libI77.a
libc.a
libcurses,a
libdbm, a
libln,a

lib
preserve
spool

usracct
wtmp

F=2

tbl
tc

tee
tek

rhdf.secmap
rhdf.spares
rhd@.track@
rhdb@a

rhdf@b tty4
root tty5
rroot

rswap

swap

newuser
rc
shutdown
systemid
termcap

libm.a
libmp.a
libplot.a
libt300.a
libt300s.a

src
sys
tmp

. XENIX PROGRAMMER'S REFERENCE GUIDE

tar
tty
tty2
tty3

ttyé6

ttys
umount
update
utmp
wall

libt4014.a
libt4508.a
libtermlib,
libunet.a
libvt@.a

unix
user

ALTOS 586 COMPUTER SYSTEM

Mail double
apropos enable
chessclock error
chfn expand
chsh fcopy
ckdir ffmt
clear finser
clock fleece
copy fmt
ctags fola
cxref format
daytime from
decode setNAME
diff3 sets
disest head
disable iul
./usr/dict:

hlista hstop
hlistb papers
./usr/dict/papers:
Ind.ia Ind. ib
./usr/games:
arithmetic fish
backgammon fortune
banner hangman
craps lib
./usr/games/lib:
fortunes mmhow

./usr/games/quiz.k:

africa
america
areas
arith
asia
babies
bard

./usr/include:

a,out.h

ar.h
assert.h
core.h
ctype.h
curses.h
dk.h
dumprestor.h

chinese
collectives
ed

elements
europe
greek

inca

errno,h
execargs.h
grp.h
ident.h
local
math.h
mp.h
mtab.h

./usr/include/local:

layout.h

sspare.h

XENIX PROGRAMMER'S REFERENCE GUIDE

last
layout
leave
lock
lookbib
lorder
makewhatis
map
mkstr
mor e
msgs
nohup
num
page
pcc
pconfig

spellhist
words

Ind.ic

master
number
quiz

quiz.k

snake. log

index
latin
locomotive
midearth
mor se
murders
poetry

olda.out.h
olddump.h
pack.h
psout.h
pwd.h
regexp.h
saio.h
setjmp.h

uparm.h

F-3

plot
print
printenv
reset
script
sddate
see
sendnet
settime
sizefs
soelim
ssp
strings
tod

tra
tset

Rv7man

random
snake
snscore
ttt

snakerawscores

posneg
pres
province
seg-easy
seg-hard
sexes
sov

setty.h
signal.h
stddef.h
stdio.h
symbol.h
sys

SyS.S
sysexits.h

ua
ucp

ul

users
uudecode
uuencode
uusend
uversion
viwc

w

wC
whatis
whereis
whoami
whon
xstr

runinv

wump

spell
state
trek
ucc

time.h
tp-defs.h
utmp. h
varargs.h
whoami.h
xout86.h

ALTOS 586 COMPUTER SYSTEM

./usr/includes/sys:

acct.h file.,h

buf.h filsys.h
callo.h ino.h

chars.h inode.h
conf.h ioctl.h

dir.h locking.h
fblk.h map.h
./usr/lib:

Mail.help crontab
Mail.help.” crontab, noUNET
atrun diff3

bsh ex2.13reserve
bsh.messages ex2.,13recover
calendar ex2.13strings
cign ffmt
./usr/lib/font:

ftB ftCE ftCs ftGI
ftBC ftCI ftCw ftGM
ftcC ftCK ftG ftGR
./usr/lib/learn:

C.a Xinfo

Linfo editor.a
READ_ME eqn.a
./usr/lib/lex:

ncform

./usr/lib/me:

acm,.me eqn.me
chars.me float.me
deltext.me footnote.me
./usr/lib/menusys:

Backup Dir

Backup? Dir?

Commands ? Execute
./usr/lib/refer:

hunt inv
./usr/lib/struct:

beautify structure
./usr/lib/tabset:

beehive std

diablo teleray
./usr/lib/term:

tab300 tab3@0s-12
tab360-12 tab37

tab300s tab45#@

mount.h
mpx.h
mx, h
param.h
pk.h
pk.p
prim.h

font
learn
lex
lintl
lint2
1lib-1lc
l1lib-1m

ftI
ftL
ftLI

files.,a
lcount
macros, a

index.me
local.me
null.me

Execute?
Help
Help?

mkey

vtleo
xeroxl720

tab450-12

tab450-12-8

tab832

F-4

ftpPA
ftPB
ftpPI

proc.h
res.h
sc.h
sites.h
stat.h
systm.h
text.h

llib-port
1lpd

me
menusys
mor e, help
refer
struct

ftR
fts
ftsSB

ftsI
ftsSM
ftuD

makefile
morefiles.a
tee

revisions
sh.me
tbl.me

Mail
Mail?
Start

tabal
tablp
tabn300

XENIX PROGRAMMER'S REFERENCE GUIDE

timeb.h
times.h
tty.h
types.h
user.h

tabset
term
tmac
uucp
yaccpar

ftxM

thesis,me

Start?
SysAdmin
SysAdmin?

ALTOS 586 COMPUTER SYSTEM

./usr/lib/tmac:

tmac.an tmac.help
tmac.e tmac.r
./usr/lib/uucp:
L-devices L.sys
L-dialcodes USERFILE
./usr/preserve:
./usr/spool:

at mail

lpad msgs

./usr/srool/at:
lasttimedone past

./usr/spool/at/past:
./usr/spool/lpd:
./user/spool/mail:

./usr/spool/msgs:
bounds

./usr/spool/uucp:
./usr/spool/uucppublic:

./usr/src:
cmé

./usr/srs/cmd:
decode.cC

./usr/sys:
./usr/tmp:
./usr/unix:

./usr/user:

XENIX PROGRAMMER'S REFERENCE GUIDE

tmac. s
tmac.scover

uucico
uuclean

tunetmail
unetmail

F-5

tmac,.sdisp
tmac.skeep

uuxgt

uucp
uucppublic

tmac,.sref

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix G

COPYING FILES FROM THE ALTOS 86686 TO THE
ALTOS 586 UNDER THE XENIX OPERATING SYSTEM

If you want to transfer files from an Altos ACS 8608 to an Altos
586 system, the best method is through a uucp network. Bell Labs
developed the uucp group of programs to facilitate the regular
transfer of files between systems using the UNIX operating
system, (Uucp stands for Unix-to-Unix Copy.) This appendix
describes how to use uucp for a different purpose: The one-time
transfer of a large number of files from an 8600 to a 586. Two
assumptions are made here about your needs:

-- It's assumed that you don't want to regularly transfer
files.

-- It's assumed that the two systems can be placed together so
they can be directly hooked up.

If these assumptions don't match your needs, then you should turn
to the description of uucp networks in the UNIX Programmer's
Manual that came with your XENIX operating system. You can find
complete documentation of these networks there. This document
describes only those features of uucp needed for a one-time
transfer. '

Both systems must be using the XENIX Development System with the
uucp program installed.

The information in this appendix is organized into four major
sections:

1. Connecting the 8600 and the 586

2, Preparing the Configuration Files

3. Disabling and Enabling the TTY Ports

4, Testing the Uucp Network

5. Copying Files Using Uucp

It's assumed that you are familiar with the XENIX operating sytem
and its major features. 1It's also assumed that you know how to
use at least one of the XENIX editors. If you need more informa-

tion on either Xenix or its editors, refer to the UNIX
Programmer's Manual for more information.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

CONNECTING THE ACS 8608 AND THE 586

The 8600 and 586 systems should be placed close enough together
that they can be directly connected by a single null-modem cable.
You can connect the cable to any port on the two systems that
isn't the port used by the system terminal on that system. You
can have any arrangement of peripheral devices attached to either
system so long as both systems at least have a system terminal
connected to the them,

NOTE

The systems must be connected using a null-
modem cable for the procedure to work.

We suggest that you connect the two systems through their tty>
ports. The examples in this document show the systems connected
through these ports. If you connect the systems through other
ports, be sure to modify the examples to reflect your setup.

Also, ensure that both systems are set up for multiple users. If
either system is in a single-user mode, lop in as super-user and
type in

multiuser <cr>

PREPARING THE CONFIGURATION FILES

The uucp program comes ready to use. It does need, however,
certain information to establish the connection between the 586
and 8600 systems. You provide this information by adding entries
to several files on each system. The following table gives the
steps needed for each system to prepare the files:

TASK: FILE EFFECTED:
Assign a system name /etc/systemid
to the system
Define the communications /usr/lib/uucp/L-devices
line characteristics ’
Give information needed /usr/lib/uucp/L.sys
to login to the other
system
Specify file accessibility /usr/lib/uucp/USERFILE

Unless you have special requirements, you probably can edit the
files on both systems in a few minutes. To make the task simpler,
this section gives recommended entries. Some versions of the
XENIX that comes with the 586 already have the recommended
entries placed in the files. In this case, you don't have to add
anything to the 586 files, but must still modify the 8600 files.

G-2

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

You can use the XENIX editor to check the contents of the 586's
files to see if you must modify them.

In case you have some special requirements, this document also
describes how to prepare your own entries,

You'll use one of the XENIX editors to add the entries to the
files. To edit the files, you must be a XENIX superuser (root).
You can become a superuser either by logging in as root or by
using the gu command.

Recommended Entries

You can use a set of standard entries to set up the 586's files
if your requirements meet these assumptions:

1. You must assign the system name Altos86 to the 860¢ system
and the name Altos586 to the 586 system, If you don't, you
must give different system names in the /usr/lib/uucp/L.sys
and /usr/lib/uucp/USERFILE files.

2. The line connecting the two systems must connect into port
tty5 on the each system. If it doesn't, you must give
different port names in the /usr/lib/uucp/L-devices and
/usr/lib/uucp/L.sys files.

3. The connection between the two systems must be direct., That
is, it can't go through a telephone system. If it isn't a

direct connection, you must give a different baud rate in
the /usr/lib/uucp/L-devices and Jusr/lib/uucp/L.sys files.

If your requirements don't meet these assumptions, read the
instructions in the section "If You Have Special Requirements."
They tell you how to tailor the file entries to yor requirements.

If your requirements do match these assumptions, copy these
entries into the files shown if they are not already there:

FOR THE 586:
EILE 'ENTRY
/etc/systemid Altos586
/usr/lib/uucp/L-devices tty5 8 9608

/usr/lib/uucp/L.sys Altos86 Any ttyS5 9680 tty5 ogin:-"M-
ogin:-"M-ogin:uucp

/usr/lib/uucp/USERFILE root, /
, /usr /tmp

The entry for the /usr/lib/uucp/L.sys file must have the carriage

G-3

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

returns (M) embedded as shown. See the UNIX manuals for
information on how to embed carriage returns within a character
string using your editor,

FOR THE 8600:
FILE ENTRY
/etc/systemid Altos86
/usr/lib/uucp/L-devices tty5 0 9600
/usr/lib/uucp/L. sys Altos586 Never tty5 9660 tty5

/usr/lib/uucp/USERFILE root, /
, /Jusr /tmp

If these recommended entries meet your needs, skip the next
section and go to the section "Testing the Uucp Network."

IF YOU HAVE SPECIAL REQUIREMENTS

If you can't use the suggested entries, the following subsections
give instructions on preparing each file. This section is
organized as follows:

- Assigning System Names
-- Defining the Communications Line Characteristics
- Supplying the Login Information

-- Defining the File Accessibility

Assigning the System Names

Uucp needs a unique name for each system, The names identify each
system in commands and during the login. To assign a system
name, use an editor to add a line to the file /etc/systemid.
This line should contain a single word entry that can be any
legal UNIX name. The name cannot be the same name as any other
system name that this system will communicate with through uucp.
The /etc/systemid file can contain more than one system name
each. Any name in this file can be used with uucp, but we
suggest that you use just one name per system to avoid confusion.

Defining the Communications Line Characteristics

Uucp needs certain information about the communications line it
will use. To provide this information, edit the file
/usr/lib/uucp/L-devices on each system to add a line of this
format:

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

format for both systems:

port call-unit baud-rate

where:

port names the port to be used.

call-unit Enter a @ (zero) for this field.

baud-rate gives the baud rate of the line. If the
?gsgggg.are directly connected, the baud rate

This entry:
tty5 0 9600

states that the line connects through port tty5 and has a baud
rate of 9600,

If the communications line can operate at more than one baud
rate, you must include a separate entry for each baud rate as
done here:

tty5 0 300

tty5 6 600
Supplying the Login Information
Uucp needs certain information to establish a connection between
the systems. To provide this information, edit the file
/usr/lib/uucp/L.sys to add a line of this format:

format for the 586 system:

system-name time port baud-rate phone login

format for the 8600 system:

system-name time port baud-rate phone

where:

system-name gives the name assigned to the other system
in it's /etc/systemid file.

time gives the times that the uucp program is to

try to login to the other system. For 586
system, state Any. This has uucp establish
the connection any time you call it. For the
8600 system, state Never. This prevents the
8600 from ever making the connection.

G-5

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

port names the port through which the connection
is made to the other system. The port name
must match the port name given in the
system's /usr/lib/uucp/L-devices file.

baud-rate gives the baud rate that is to be used. The
baud rate must match one of the baud rates
given for the port in the system's
/usr/lib/uucp/L-devices file.

phone must be the same name given for the port
field of this entry.

login for the 586 only, consists of a series of
fields telling uucp how to login to the 8600
system. The entry should be:

ogin:-"M-ogin:-"M-ogin: uucp

The "M characters in the string are carriage
returns (CONTROL-M) embedded with the strina.
These carriage returns must appear within the
file as shown., See the UNIX documentation
for information on how to embed control
characters within strings using your editor.

Defining the File Accessibility
Uucp needs permission to access files on either system. To
provide permission, edit the file /usr/lib/uucp/USERFILE on each

system to lines of this format:

format for both systems:

root, /
y /usr /tmp
where:
root, / gives the superuser on either system access

to any file in any directory through uucp.

r /usr /tmp gives any non-superuser on either system
access to any file in any daughter directory
of the /usr /tmp directories through uucp.

DISABLING AND ENABLING THE TTY PORTS

Before testing the uucp network and copying files using uucp,
the following steps must be performed:

1. On the 586, enter:
disable /dev/tty5

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Substitute the name of the pot you're using in this command
if the connection to the 8608 isn't through port tty5.

2. On the 8600, enter:
enable /dev/tty5

Substitute the name of the port you're using in this
command.

TESTING THE UUCP NETWORK

Before you begin copying files from the 8600 to the 586, you
should test the network by copying a single file., 1If the copy
succeeds, you can start copying over the bulk of your files., If
it doesn't succeed, you must check your connection and your
configuration files.,

The test copies the file /etc/passwd from the 586 to the the file
/tmp/passwd on the 8686. To conduct the test, follow these steps:

1. Boot and become a superuser (root) on both systems.,
2. On the 586, enter:
uucp /etc/passwd Altos86\!/tmp/passwd

Substitute the system name you gave the 8680 in this command
if you didn't name it Altos860¢ in its /etc/systemid file.

3. The copy takes about one minute to complete., After that
time, on the 86006, enter:

cat /tmp/passwd

If cat shows that the file /tmp/passwd contains the contents
of the file /etc/passwd on the 586, then the uucp copy
worked. If the /tmp/passwd file doesn't exist or is empty,
then the copy didn't work.

If the copy works, then go on to the section "Copying Files Using
Uucp." If the copy didn't work, check the connection between the
two systems. Once you're sure that the cable is properly
connected (and that nothing is wrong with the cable) try the
steps above again. If they still don't work, check the contents
of the configuration files you prepared. Once you're sure that
they are correct, again try the copy.

If you still have problems, use the information below to try to
debug your setup. These steps describe what happens when uucp
performs a copy. By looking at the files mentioned, you should
be able to determine where the problem lies. Then turn to the
UNIX Programmer's Manual. It contains more information on uucp

G-7

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

that should be helpful for solving your problem.

When uucp performs the copy, these steps should occur:

1.

The uucp program creates two files in the 586's
/usr/spool/uucp directory. The first, D.Altos8600nf@01,
contains a copy of the file /etc/passwd. The second file,
C.Altos8600n00PPl, contains control information. (The names
of these files will be different if you didn't assign the
name Altos86 to the 86080.)

Uucp also places the message, "QUEUED (C.Al1tos8600n@@@1)" in
the file /usr/spool/uucp/LOGFILE on the 586.

At the end of this step, the program uucp stops execution.

If a file /usr/spool/uucp/STST* exists on the 586, remove it
before retrying the procedure.

The program uucico then begins execution. 1It's first task
is to examine the 586 file /usr/lib/uucp/L.sys. The entry
in the file tells uucico to immediately login to the 86080.
The following steps occur as part of the login:

- Uucico sends a carriage return to the 8600, which
should respond with login message. Uucico then logs in
on the 8600,

- The uucico program on the 586 executes the uucico
program on the 8600.

- The uucico program on the 586 creates two temporary
files in the 586's /usr/spool/uucp directory that are
prefixed with "LCK".

- Uucico on the 586 places the message "SUCCEEDED (call
to Altos86)" in the 586 file /usr/spool/uucp/LOGFILE.

The uucico program on the 586 checks its spool directory and
learns that it should transfer a file from the 586 to the
86080, The message "REQUEST (S /etc/passwd /tmp/passwd
username) is placed in the /usr/spool/uucp/LOGFILE files on
both systems.

Uucico on the 586 transfers the file D.,Altos8600n@6@801, which
is a copy of /etc/passwd, from the 586 to the 86008, The
uucico program on the 8608 places the file in the directory
/usr/spool/uucp. It then moves the file to the file
/tmp/passwd.

The message "REQUEST (SUCCEEDED)" is placed in the
/usr/spool/uucp/LOGFILE files on both systems.

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

COPYING FILES USING UUCP

After you've tested the connection and the configuration files,
you can begin copying files from the 8688 to the 586, Follow
these steps to do the copying:

1.

2,

Turn on and boot both systems. Log in as the superuser on
both systems.

If any of the 8600 files you want to copy aren't part of the
8600 directories, copy them into a directory. (These typi-
cally would be files that you've copied onto a diskette or
tape using the tar command.)

Use the uucp command on the 586 to copy files from the 8608
to the 586. The last section in this appendix, "Using the
Uucp Command," gives instructions on using the uucp command.
You can use the uucp command as many times as necessary to
copy files.

USING THE UUCP COMMAND

Once you've enabled and disabled the ports, you can begin using
uucp to copy files. The basic format of the uucp command is:

uucp [-d] 86-system-namelsource-file destination-file
where:

-d is an optional parameter that has uucp
create, if necessary, all necessary
directories to place the source file(s) in
the destination file given

8600-system-name

gives the name you assigned to the 86068 in
its /etc/systemid file. You must follow the
system name with an exclamation mark (!).

source-file gives the name of the source file or files to
be copied from the 8600. The name must
include the pathname to the directory that
contains the file or files. The name can
include the metacharaters ? * [] that the
8600 will expand. Uucp will copy every file
that whose name fits in the expanded name.

destination-file
gives the name of the file into which uucp
will place the contents of the source file.

If a pathname is given, uucp places the
copied file into the named directory.

G-9

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Otherwise, the copied file goes into the
current directory. If more than one file is
copied, then the copied files are placed into
files of the same name as the files on the
8600 system,

Let's say that you want to copy the entire contents of the
directory /usr/marketing/reports from the 86068 to a directory of
the same name on the 586. You would use this command:

uucp —-d Altos86!/usr/marketing/reports/* /usr/marketing/reports

The asterick (*) following the Altos8600 pathname has uucp copy all
the files in the directory. The -d has uucp create the directory
/usr/marketing/reports on the 586 if it doesn't already exist.
(Note that in this example, the 8600 has the system name Altos8600.
In your commands, you would substitute the name you assigned the
8600.)

In the next example, let's say that you want to copy the file
y_t_d _sales into the current directory on the 586. You would use
this command:

uucp Altos86!/usr/jane/sales/y_t_d sales

This has uucp place the file into the current directory in a file
of the same name as on the 8600.

G-10

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix H

8886 ASSEMBLY LANGUAGE REFERENCE MANUAL

The following pages represent an 8086 Assembly Language
Reference Manual extracted with permission from a Microsoft, Inc.
publication. The section and page numbers of this excerpt
reflect the enumeration and pagination of the original
publication,

XENIX Software Development

2.5 AS: The XENIX Assembler

This document describes the usage and input syntax of the
XENIX 8086 assembler as. As is an assembler that produces
an output file containing relocaticn information and a
complete symbol table. The ocutput 1is acceptable to the
XENIX loader 1ld, which may be used to combine the outputs of
several assembler runs and to ottain cbject programs from
libraries. The output format has been designed so that if a
program contains no unresolved references to external
symbols, it is executable without further processing.

2.5.1 Usage
As is invoked as follows:

as [=1] [=-o output] file

If the optional “-1' argument is given, an assembly listing
is produced which 1includes the source, the assembled
(binary) code, and any assembly errors. '

The ocutput of the assembler is by default placed on the file

a86.out in the current directory; The “-o' flag causes the
output to be placed on the named file.

2.5.2 Lexical conventions

Assembler tokens include identifiers (altarnatively,
““symbols'' or "“names''), constants, and operators.

2.5.2.1 Identifiers An identifier consists of a sequence
of alphanumeric characters (including period *°.'‘'and
underscore ~°_'' as alphanumeric) of which the first may not
be numeric. Only the first eight characters are
significant. The case of alphabetics 1in identifiers 1is
significant.

2.5.2.2 Constants A hex constant consists of a sequence of
digits and the letters “a', “b', “¢', “d', “e', and “£' (any
of which may be capitalized), preceeded by the <character
“/'. The letters are interpreted with the follow.ng values:

2-69

XENIX Software Develcpment

EX DECIMAL
10
11
12
13
14
15

MO 0Ow»m

An octal constant consists of a series of digits, precaded
- N (]

cy the tilde <character . The digits must be in the
range from 0.to 7.

A'decimal constant consists simply of a sequence of digits.
The magnitude of the constant should be representable in 13
bifs; i.e., be less than 32,768.

2.5.2.3 Blanks Blank and tab <characters may be freely
interspersed between tokens, but may not be used within
tokens (except in character constants). A blank or tab is
required to separate adjacent identifiers or constants not
otherwise separated.

2.5.2.4 Comments The character “*|'' introduces a comment,
which extends through the end of the 1line on which it
appears. Comments are ignored by the assembler.

2.5.3 Segments

Assembled code and data fall into three segments: the text
segment, the data segment, and the bss segment. The text
segment is the one in which the assembly begins, and it |is
the one into which instructions are typically placed. The
XENIX system will, if desired, enforce the purity of the
text segment of programs by trapping write operations into
it. Object programs produced by the assembler must be
processed by the link-editor 1ld (using its “-i' flag) if the
text segment is to be write-protected. A single copy of the
text segment is shared among all processes executing such a
program.

The data segment is available for placing data or
instructions which will be modified during execution.
Anything which may go in the text segment may be put into
the data segment. In programs with write-protected,
sharable text segments, the data segment contains the
initialized but variable ©parts of a program. If the text
segment is not pure, the data segment begins immediately
after the text segment. If the text segment is pure, the

2-70

XENIX Software Development

data segment is in an address space of its own, starting at
location zero (0).

The bss segment may not contain any explicitly initialized
code or data. The length of the bss segment (like that of
text or data) is determined Oy the high-water mark of the
location counter within it. The bss segment is actually an
extension of the data segment and begins immediately after
it. At the start of execution of a program, the bss segment
is sez to 0. The advantage in using the bss segment for
storage that starts off empty is that the initialization
information need not be stored in the output file. See also
location counter and assignment statements below.

2.5.4 The location counterf

The special symbol, t.'', is the location counter. Its
value at any time is the offset within the appropriate
Segment from the start of the statement in which it appears.
The location counter may be assigned to, with the
restriction that the current segment may not change;
furthermore, the wvalue of “*.'! may not decrease. If the
effect of the assignment is to increase the value of ~°, ',
the required number of null bytes are generated (but see

Segments above) .

2.5.5 Statements

A source program is composed of a sequence of Statements.
Statements are separated by new-lines. There are four kinds
of statements: null statements, expression Statements,
assignment statements, and keyword statements.

The format for most 8086 assembly language source statements
is: ’

(<label field>]
op-code [<operand field>] [<comment>]

Any kind of statement may be preceded by one or more labels.

2.5.5.1 Labels There are two kinds of labels: name labels
and numeric labels. A name label consists of a identifier
followed by a colon (:). The effect of a name label is to
assign the current value and type of the location counter
"S.'' to the name. An error is indicated in pass 1 if the
name is already defined; an error is indicated in pass 2 if
the "Y' value assigned changes the definition of the

2-71

XENIX Software Development

label.

A numeric label consists of a string of digits 0 to 9 and
dollar-sign ($) followed by a colon (:). Such a label serves
to define local symbols of the form ““n$'', where n 1is the
digit of the label. The scope of the numeric label is the
labelled block in which it appears. As an example, the
label 95 is defined ‘only between the lables foobar and foo:

foobar . A
9S: .byte 0 -
foo: .word a

As in the case of name labels, a numeric label assigns the
SS o .

current value and type of . to the symbol.

2.5.5.2 Null statements A null statement 1is .- an empty
statement (which may, however, have labels and a comment).
A null statement 1is 1ignored by the assembler. Common
examples of null statements are_empty lines or lides
containing only a label.

2.5.5.3 Expression statements An expression statement
consists of an arithmetic expression not beginning with a
keyword. The assembler computes its value and places it in
the output stream, together with the appropriate relocation
bits.

2.5.5.4 Assignment statements An assignment Statement

consists of an identifier, an equal sign (=), and an
expression. The value and type of the expression are
assigned to the identifier. It is not required that the

type or value be the same in pass 2 as in pass 1, nor is it
an error to redefine any symbol by assignment.

Any external attribute of the expression is lost across an
assignment. This means that it is not possible to declare a
global symbol by assigning to it, and that it is impossible
to define a symbol to be offset from a non-locally defined
global symbol.

As mentioned, it is permissible to assign to the location

counter "~T.''., It 1is required, however, that the type of
the expression assigned be of the same type as ~“.'', and it
is forbidden to decrease the value of ““.''. 1In practice,

XENIX Software Development

the most common assignment to> “".'' has the form ““.=.+n"'
for some number n; this has the effect of generating n null
bytes.

2.5.5.5 Keyword statements Revword statements re
numerically the most common type, since most machine
instructions are of this sort. A keywcrd statement begins
with one of the many predefined keywords of the assembler;
the syntax of the remainder depends on the keyword. All =:e
keywords are listed below with *the syntax they require.

2.5.6 Expressions

An expression is a sequence of symbols representing a valce.
Its constituents are identifiers, constants, and operator:s.
Each expression has a type. :

Arithmetic is two's complement. All operators have equa.
precedence, and expressions are evaluated strictly left cc
right.

2.5.6.1 Expressicn operators The operators are:

Operator Description
(blank) same as +
+ Addition
- Subtraction
* Multiplication
/ Division
- Logical OR
& Logical AND
! Logical NOT
> Right shift
< Left sShift

2.5.6.2 Types The assembler deals with expressions, each
of which may be of a different tvoe. Most types are
attached to the keywords and are used to select the routine
which treats that keyword. The types likely to be met
explicitly are:

undefined
Upon first encounter, each symbol 1is undefined.
It may become wundefined if it 1is assigned an
undefined expression.

XENIX Software Development

undefined external

absolute

text

data

bss

external

A symbol which is declared .globl but not defined
in the current assembly is an undefined external.
If such a symbol is declared, the link editor 1lc&
must be used to load the assembler's output with
another routine that defines the undefined
reference. .

An absolute symbol is defined ultimately from a
constant. Its value is unaffected by any ‘-possible
future applications of the link-editor to the
output file.

The value of a text symbol is measured with
respect to the beginning of the text segment of
the program. 1If the assembler output is link-
edited, its text symbols may change in value since
the program need not be the first in the link
editor's output. Most text symbols are defined by
appearing as labels. At the start of an assembly,
the value of **.'' is text 0.

The value of a data symbol is measured with
respect to the origin of the data segment of a
program. Like text symbols, the value of a data
symbol may change during a subsequent link-editor
run since previously loaded programs may have data
segments. After the first .data statement, the
value of “.'' is data 0.

The value of a bss symbol is measured from the
beginning of the bss segment of a pregram. Like
text and data symbols, the value of a bss symbol
may change during a subsequent link-editor run,
since previously 1loaded progranms may have bss
segments. After the first .bss statement, the
value of “.'' is bss 0.

absolute, text, data, or bss

Symbols declared .globl but defined within an
assembly as absolute, text, data, or bss symbols
may bSe used exactly as if they were not declared
.globl; however, their value and type are
available to the link editor so that the program
may be loaded with others that reference these
symbols. :

2-74

XENIX Software Development

other types
Each keyword known to the assembler has a type
which is used to select the routine which
processes the associated keyword statement. The
behavior of such symbols when not used as keywords
is the same as if they were absolute.

2.5.6.3 Tvpe propagation in expressions When operands are
combined by expression operators, the result has a rype
which depends on the types of the operands and on the
operator. The rules involved are ccmplex to state but were
intended to be sensible and predictable. For purposes of
expression evaluation the important types are

undefined

absolute

text

data

bss

undefined external
other

The combination rules are then: If one of the operands is
undefined, the result is undefined. If both operands are
absolute, the result 1is absolute. If an absolute |is
combined with one of the “other types'mentioned above, the
result has the other type. If two operands of ‘“other
type' are combined, the result has the numerically larger
type. An “other type' combined with an explicitly discussed
type other than absolute acts like an absolute.

Further rules applying to varticular operators are:

+ If one operand 1is text-, data-, or bss-segment
relocatable, or is an undefined external, the result
has the postulated type and the other operand must be
absolute.

- If the first operand is a relocatable text-, data-, or
bss-segment symbol, the second operand may be absolute
(in which case the result has the type of the first
operand) ; or the second operand may have the same tvpe
as the flrst (in which case the result is absolute).
If the first operand is external undefined, the second
must be absolute. All other combinations are illegal.

Others

It is illegal to apply these operators to any but
absolute symbols.

2-75

XENIX Software LCevelopment

2.5.7 Pseudo-overations

The Kkeywords listed below introduce . statements that
influence the later operations of the assembler. The
metanotation

(stuff] ...

means that 0 or more instances of the given stuff may
appear.. Also, boldface tokens are literals, italic words
are substitutable.

2.5.7.1 .even If the location counter “,'' is odd, it is
advanced by one so the next statement will be assembled at a

word boundary. This 1is useful for forcing storage
allocation to be on a word boundary after a .byte or .ascii

directive.

2.5.7.2 L.float, .double

.float 314S9E4

The .float psuedo operation accepts as 1its operand an
optional string of tabs and spaces, then an optional sign,
then a string of digits optionally containing a decimal
point, them an optional ‘e' or “E', followed by an
optionally signed integer. The string is interpreted as a
floating point number. The difference between .float and
.double is in the number of bytes fur the result; .float
sets aside four bytes, while .double sets aside eight bytes.

2.5.7.3 .B .globl

.globl name [, name] ...
This statement makes the names external. If they are

otherwise defined (by assignment or appearance as a label)
they act within the assembly exactly as if the .globl
statement were not given; however, the link editor 1ld may be
used to combine this routine with other routines that refer
to these symbols.

Conversely, if the given symbols are not defined within the
current assembly, the link editor can combine the output of
this assembly with that of others which define the svmbols.
It 1is possible to force the assembler to make all otherwise
undefined symbols external.

XENIX Software Development

2.5.7.4 .text, .data, .bss These three pseudo-operations
Cause the assembler to begin assembling into the text, data,
or bss segment respectively. Assembly starts in the text
segment. It is forbidden to assemble any code or data into
the bss segment, but symbols may be defined and ““.'' moved
about by assignment. '

2.5.7.5 .comm The format of the .comm is:

. Comm ARRAY
Provided the name is not defined elsewhere, this statement

is equivalent to .globl. That 1is, the type of name is
““undefined external'®, and its size is expression. In fact
the name behaves in the current assembly Just like an
undefined external. However, the link-editor ld has been
special-cased so that all external symbols which are not
otherwise defined, and which have a non-zero value, are
defined to lie in the bss segment, and enough space is left
after the symbol to hold expression bvtes. All symbols
which become defined in this way are located before all the
explicitly defined bss-segment locations.

;
- — . B p—

/
2.5.7.6 .insrt The format of a .insrt is:

.insrt "filename"

where filename is any valid XENIX filename. Note that the
filename must be enclosed within double quotes.

The assembler will attempt to open this file for input. If
it succeeds, source lines will be read from it until the end
of file is reached. 1If as was unable to open the file, a
Cannot open insert file error message will be generated.

This statement is useful for including a standard set of
comments Or symbol assignments at the beginning of a
program. It is also useful for breaking up a large source
Program into easily managable pieces.

A maximum depth of 10 (ten) files may be .insrted at any one
time.

System call names are not predefined. They may be found in
the file /usr/include/svs.;.

2=-77

XENIX Software Development

2.5.7.7 .ascii, .asciz The .ascii directive ‘translates
character strings into their 7-bit ascii (represented as
8-bit bytes) equivalents for use in the source program. The
format of the .ascii directive is as follows:

.ascii /character string/

where
character string contains any character valid in a
character constant. Obviously, a <newline> must
not appear within the character string. (It can be
represented by the escape segquence \en).

/ and / are delimiter characters, which may be any
character not appearing in character string

Several examples follow:

§éx Code Generated: Statement:

22 68 65 6C 6C 6F 20 74 .ascii /"hello there"/
68 65 72 65 22

77 61 72 6E 69 6E 67 20 .ascii "Warning-\007\007 \n"
2D 07 07 20 o0a ,
61 62 63 64 65 @3 67 .ascii *abcdefg*

/

The .asciz directive is equivalent to the .ascii directive
with a zero (null) byte automatically inserted as the final
character of the string. Thus, when a list or text string is
to be printed, a search for the null character can terminate
the string. Null terminated strings are used as arguments to
some XENIX system calls.

2.5.7.8 .list, .nlist These pseudo-directives control the
assembler output listing. These, in . effect, temporarily
override the “-1' switch to the assembler. This 1is useful
when certain portions of the assembly output is not
necessarily desired on a printed listing.

.list turns the listing on
.nlist turns the listing off

XENIX Software Development

2.5.7.9 _.blkb, .blkw The .blkb and .blkw directives are
used to reserve blocks of Storage: .blkb reserves bytes,
-blkw reserves words.

The format is:

.blkb [expression]
<blkw [expression]

where. expression is the number of bytes or words to reserve.
If no argument is given a value of 1 is assumed. The
expression must be absolute, and defined during pass 1.

This is equivalent to the statement “S.=.+expression'', but
has a much more transparent meaning.

2.5.7.10 .byte, .word The .bvte and .word directives are
used to reserve bytes and words and to initialize them with
certain wvalues.

The format is:

.byte (expression]
.word [expression]

The .byte directive reserves one byte for each expression in
the operand field and initializes the value of the byte to
be the low-order byte of the corresponding expression.

For example,

.byte 0
reserves an byte, with a value
of zero.
state: .byte 0
' reserves a byte with a zero
value called state.

The semantics for .word are identical, except that 1l6-bit
words are reserved and initialized.

2.5.7.11 .end The .end directive indicates the physical
end of the source program. The format is:

.end (expression]

where expression is an optional argument which, if present,
indicates the entry point of the program, i.e. the starting
point for execution. If the entry point of a program is not
specified during assembly, it defaults to zero.

XENIX Software Develorment

Every source program must be terminated with a .end
statement. Inserted files which contain a .end statement
will terminate assembly of the entire program, not just the
inserted por:ion.

2.5.8 Machine

The 8086 ins+<:uctions treat different types of operands
uniformly. ‘iearly every instruction can operate on either
byte or word 3ata. In the table that follows, with some
notable ex=z=-=sptions, an instruction that operates on a byte
operand will 2ave a b suffix on the opcode.

The 8086 ins:-uction mnemonics which follow are implemented
by the Mic:z=scit 8086 assembler desribed in this document.
Some of the ztccsdes are not found in any other 8086 manual.

For example, ::2.3 document describes branch instructions not
found 1in anrr 3086 manual. The branch instructions expand
into a jump on zhe inverse of the condition specified,
followed by an an unconditional intra-segment jump. The
operand field format for the branch opcodes is the same as
the operand field for the jump long opcodes. The opcodes
which are implemented only 1in this assembler will be
annotated by an asterisk, and will be fully defined and
described in this document.

2-80

aaa
aad
aam
aas
adc
adchb
add
addb
and
andb
*beg
*bge
*bgt
*bhi
*bhis
*ble
*blo
*blos
*blt
*bne
*br
call
calli
cbw
clc
cld
cli
cme
cmp
cmpb
cmps
cmpsb
cwd
daa
das
dec
decbh
div
divb
hlt
idiv
idivb
imul
imulb
in
inc
inch
int

XEN

ascii
ascii
ascii
ascii

IX Software Development

8086 Assembler Opcodes
Opcode Description

adjust for addition
adjust for division
adjust for multiply
adjust for subtraction

add with carry
add with carry

add
add
logic
logic
long
long
long
long
long
long
long
long
long
long
long
intra
inter
conve
clear

al AND
al AND

branch equal

branch grt or equal
branch grt

branch on high
branch high or same
branch les or egqual
branch on low
branch low or same
branch less than
branch not equal
branch

segment call
segment call

rt byte to word
carry flag

clear direction flag
clear interrupt flag
complement carry flag

compa
compa

re
re

compare string
compare string

cover

t word to double word

decimal adjust for addition
decimal adjust for subtraction
decrement by one

decrement by one

divison unsigned

divison unsigned

halt

integer division
integer division
integer multiplication
integer multiplication

input

bvte

increment by one
increment bdv one
interrupt

2-81

jmo
jmpi
jna
jnae
jnb
jnbe
jne
Ing
jnge
jnl
jnle
jno
jnp
jns
jnz
jo

jp
ipe
ipo
js

jz
lahf
lds
lea
les
lock
lodb
lodw
loop
loope
loopne
loopnz
loopz
mov
movb
movs
movsb

XENIX Software Development

interrupt if overflow

input word

interrupt return

short jump

short jump if above

short jump if above or equal
short jump if below

short jump if below or egqual
short jump if CX is zero
short jump on equal

short jump on greater than
short jump greater than or equal
short jump on less than
short jump on less than or equal
jump

inter segment jump

short jump not above

short jump not above or equal
short jump not below '
short jump not below or equal
short jump not equal

short jump not greater

short jump not greater or equal
short jump not less

short jump not less or equal
short jump not overflow
short jump not parity

short jump not sign

short jump not zero

short jump on overflow

short jump if parity

short jump if parity even
short jump if parity odd
short jump if signed

short jump if zero

load AH from flags

load pointer using DS

load effective address -

load pointer using ES

lock bus

load striny bhyte

locad string word

loop sho:rt label

loop if equal

loop if "ot egual

loop is .0t zero

locop if zero

move

move byte

move string

move stri-~y byte

2-82

mul
mulb
neg
negb
nop
not
noth
or
orb
cut
outw
pop
popf
push
pushf
rcl
rclb
recr
rerb
rep
repnz
repz
ret
reti
rol
rolb
ror
rorb
sahf
sal
salb
sar
sarb
sbb
sbbb
scab
shl
shlb
shr
shrb
stc
std
sti
stob
stow
sub

- subb
test
testb
wait
xchg

XENIX Software Development

multipication unsigned
multipication unsigned
negate

negate

no op

logical NOT

logical NOT

Iogical OR

logical OR

output byte

output word

pop from stack

pop flag from stack

push onto stack

push flags onto stack
rotate left through carry
rotate left through carry
rotate right throuch carry
rotate ridht throuch carry
repeat string operation
repeat string operation not zero
repeat string operation while zero
return from procedure
return from intersegment procedure
rotate left

rotate left

rotate right

rotate right

store AH into flagsno operands
shift arithmetic left
shift arithmetic left
shift arithmetic right
shift arithmetic right
subtract with borrow
subtract with borrow

scan string

shift logical left

shift logical left

shidr logical right

shidr logical right

set carry flag

set direction flag

set interrupt enable flag
store byte string

store word string
subtraction

subtraction

test

test

wait while TEST pin
exchange

2-83

XENIX Software Development

xchgb exchange
xlat translate
Xor xclusive OR
xorb xclusive OR

2.5.9 Addressing Modes

The 8086 assembler provides many different ways to access

instruction operands. Operands. may be contained in
registers, within the instruction itself, in memory, or in
I/0 ports. In addition, the addresses of memory and I/0

port operands can be calculated in several different ways.

2.5.9.1 Register Overands Instructions that specify only
register operands are generally the most compact and fastest
executing of all the instruction forms. This is because the
register “addresses' are encoded in the instructions with
just a few bits, and because these operations are performed
entirely within the CPJ. Registers may serve as source
operands, destination operands, or both.

EXAMPLES OF REGISTER ADDRESSING

sub cx,di

mv ax,/3*4
mv /3*4/,ax
mov ax,*l

2.5.9.2 Immediate Operands Immediate operands are constant
data contained in an instruction. The data may be either 8
or 16 bits in length. Immediate operands can be accessed
quickly because they are available directly from the
instruction queue; it is possible that no bus cycles will be
needed to obtain an immediate operand. An immediate operand
is always a constant value and can only be used as a source
operand.

The assembler can accept both 8 and 16 bit operands. It does
not perform any checking on the operand size, but determines
the size of the operand by the following symbols:

*expr an 8 bit immediate
$expr a l6 bit immediate

2-84

XENIX Software Development

EXAMPLES OF IMMEDIATE ADDRESSING

mov cx,*PAGSIZ/2
mov cx, $PAGSIZ/2
mov map, #PAGSIZ/2
mov map, *PAGSIZ/2

2.5.10 Memory Addressing Modes

When reading or writing a memory operand, a value called the
offset 1is required. This offset value, also called the
effective address is the operand's distance in bytes from
the beginning of the segment in which it resides.

2.5.10.1 Direct Addressing Direct addressing is the
simplest memory addressing mode since no registers are
involved. The effective address is taken directly from the
displacement field of the instruction. It is typically used
to access simple (scalar) variables.

EXAMPLES OF DIRECT ADDRESSING

push *6 (bp)
mov cx, %256
add si,*4
2.5.10;2 Register Indirect Addressing The effective

address of a memory operand may be taken from a base or
index register. One instruction can operate on many
different memory locations if the value in the base or index
register is updated appropriately. Indirect addressing is
denoted by an ampersand @ preceding the operand.

EXAMPLES OF INDIRECT ADDRESSING

popl rr0,@rlS
calli @moncall
2.5.10.3 Based Addressing In based addressing, the

effective address is the sum of a displacement value and the
content of register bx or bp. Based addressing also provides
a straightforward way to address structures which may be
located in different places in memory. A base register can
be pointed at the base of the structure and elements of the
structure addressed by their displacements from the base.
Different copies of the same structure can be accessed by
simply changing the base register.

728

XENIX Software Development

EXAMPLE OF BASED ADDRESSING
mov *2(si) ,#/1000

2.5.10.4 Indexed Addressing In 1indexed addressing, the
effective address is calculated from the sum of a
displacement plus the content of an index register. Indexed
addressing often is used to access elements in an array. The
displacement locates the beginnning of the array, and the
value of the index register selects one element. Since all
array elements are the same length, simple arithmetic on the
index register will select any element.

EXAMPLE OF INDEXED ADDRESSING

mov #_cat, (bx)

2.5.10.5 Based Indexed Addressing Based indexed addressing
generates an effective address that is the sum of a base
register, an 1index register, and a displacement. Based
indexed addressing 1is a very flexible mode because two
address components can be varied at execution time.

Based indexed addressing provides a <convenient way for a
procedure to address an array allocated on a stack. Register
bp can contain the offset of a reference point on the stack,
typically the top of the stack after the procedure has saved
registers and allocated local storage. The offset of the
beginning of the array from the reference point can be
expressed by a displacement value, and an index register can
be used to access individual array elements.

EXAMPLES OF BASED INDEXED ADDRESSING

mov (bx) (dx) ,_sym
mov *2 (bx) (dx) ,_sym
mov #2 (bx) (dx) ,_sym

2.5.11 Diagnostics

When syntactic errors occur, the line number and the file in
which they occur 1is displayed. Errors in pass 1l cause
cancellation of pass 2.

ERROR syntax error, line xx
file: yv errors

2-86

XENIX Softwére Development

where xx represents the line number(s) in error, and yv
represents the total number of errors.

2-87

ALTOS 586 COMPUTER SYSTEM XENIX PROGRAMMER'S REFERENCE GUIDE

Appendix I
TUTORIAL AND REFERENCE MATERIAL
(ONIVERSITY OF CALIFORNIA, BERKELEY, BERKELEY MANUALS)

Oon the following pages is informational material developed
at the University of California, Berkeley. The material is
supplied under license from the Regents of the University.

An Introduction to the C Shell

An Introduction to Display Editing with Vi

Quick Reference for Ex, Vi

Ex Reference Manual

Edit: A Tutorial

Ex/Edit Command Summary
Mail Reference Manual

-ME Reference Manual

Screen Updating and Cursor Movement Optimization:
A Library Package

An introduction to the C shell
(Revised for the Third Berkeley Distribution)

William Joy

‘ Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is 2 new command language interpreter for UNIXt systems. It incor-
porates good features of other shells and a /story mechanism similar to the redo
of INTERLISP. While incorporating many features of other shells which make
writing sheil programs (sheil scripts) easier, most of the features unique to cs
are designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic expianation of the sheil here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun to become acguainted with the shell. Later sections introduce features
which are useful, but not necessary for all users of the sheil.

Back matter inciudes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

December 2V, 1979

tUNIX is a Trademark of Bell Laboratories.

An Introduction to Display Editing with Vi
William Joy

Revised for versions 3.5/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using v the
screen of your terminal acts as a window into the file which you are editing.
Changes which you make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of
the commands to w move the cursor around in the file. There are commands
to move the cursor forward and backward in units of characters, words, sen-
tences and paragraphs. A smail set of operators, like d for delete and c for
change, are combined with the motion commands to form operations such as
deiete word or change paragraph, in a simple and natural way. This regularity
and the mnemonic assignment of commands to keys makes the editor com-
mand set easy to remember and to use.

Vi will work on a large number of display terminals, and new lerminals
are easily driven after editing a terminal description fle. While it is advanta-
geous to have an intelligent terminal which can locally insert and delete lines
and characters from the display, the editor will function quite well on dumb ter-
minals over siow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different
display updating algorithms to make best use of the limited speed availabie.

It is also possibie to use the command set of vi on hardcopy terminals,
storage tubes and ‘‘glass tty’s’’ using a one line editing window; thus w's com-
mand set is available on all terminals. The full command set of the more tradi-
tional, line oriented editor ex is available within w; it is quite simple to switch
between the two modes of editing.

September 16, 1980

An Introduction to Display Editing with Vi
William Joy

Revised for versions 3.512.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Scencs
University of California, Berkeley
Berkeley, Ca. 94720

1. Getting started

This document provides a quick introduction to w. (Pronounced vee-eye.) You shouid be
running vi on a file you are familiar with while you are reading this. The first part of this docu-
ment (sections 1 through 5) describes the basics of using w. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document shouid be a quick reference card.
This card summarizes the commands of vi in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start w you must tell the system what kind of terminal you are using.
Here is a (necessarily incompiete) list of terminai type codes. If your terminal does not appear
here, you shouild consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type
2621 Hewiett-Packard 2621 A/P Intelligenat
2645 Hewiett-Packard 264x Intelligent
actd Microterm ACT-IV Dumb
acts Microterm ACT-V Dumb
adm3ia ~ Lear Siegler ADM-3a Dumb
adm3l Lear Siegier ADM-31 Inteiligent
cl100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Inteiligent
fox Perkin-Eimer Fox Dumb
h1500 Hazeitine 1500 Intelligent
hl9 Heathkit h19 Intelligent
100 Infoton 100 Intelligent
mime Imitating a smart act4 Inteiligent

The financial support of an MM Graduate Feilowship and the National Scence Foundation under grants
MCS74-07644- A03 and MCS78-07291 is gratefully acknowiedged.

«2-

1061 Teleray 1061 Intelligent
ws2 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621 A terminal. The code used
by the system for this terminal is ‘2621°. In this case you can use one of the following com-
mands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are using the
standard version 7 shelil then you should give the commands

$ TERM =2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the rser program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .login file (if you use csh) would be

seteny TERM ‘tset — —d mime’
or for your .profile file (if you use sh)
TERM ='tset = —d mime’

Tset knows which terminals, are hardwired to each port and needs only to be toid that when you
dial in you are probably on a mime. Tseris usuaily used to change the erase and kill characters,
too.

1.2. Editing a file
After teiling the system which kind of terminal you have, you shouid make a copy of a
file you are familiar with, and run vi on this file, giving the command
% vi name '

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something eise happens refer to the footnote.

1.3. The editor’s copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor
makes a copy of this file, in a place cailed the byffer, and remembers the fie’s name. You do
not affect the contents of the file uniess and until you write the changes you make back into the
original file.

% If you gave lhe sysiem an incorrect lerminai type code then the editor may have just made a mess out of
your screen. This happens when it sends controi codes for one kind of terminal to some other kind of termi-
nal. In this case hit the keys :g (coion and the q key) and then hit the RETURN key. This shouid get you back
to the command level interpreter. Figure out what you did wrong (ask someone eise if necessary) and try

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an
error diagnostic. In this case you shouid follow the above procedure for getting out of tbe editor, and try
sgain this time speiling the file name correcily.

If the editor doesn’t seem 0 respond 10 the commands which you type here, lry sending an interrupt 10 it
by hirting the DEL or RUB key on your lerminal, and then hitting the :3 command again {ollowed by a aarmiage
return.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in ialics. We will represent spe-
cial characters in SMALL CAPITALS. ’

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys will also work within the editor. If you don’t have cur-
sor positioning keys, or even if you do, you can use the h j k and | keys as cursor positioning
keys (these are labelled with arrows on an admJa). *

(Particular note for the HP2621: on this terminal the function keys must be shified (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it
is in a quiescent state.t Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with Esc. This key is a fairly harmiess one to hit, so
you can just hit it if you don’t know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. [t
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don’t know or don’t like what is going on. Try hitting the
‘/’ key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after & '/’ printed as a
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key: try
this now.* From now on we will simply refer to hitting the DEL or RUB key as ‘‘sending an
interrupt.”**

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as com-
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can stop the editor by sending an interrupt.

1.7. Getting out of the editor

After you have worked with this introduction for a while, and you wish to do something
else, you can give the command ZZ to the editor. This will write the contents of the editor’s
buffer back into the file you are editing, if you made any changes, and then quit from the edi-
tor. You can aiso end an editor session by giving the command :q!CR;t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need 1o know about this command in case you change the editor’s copy of a file you wish

® As we will see later, » moves back 1o the left (ike control-h which is a backspace), / moves down (in the
mme coiumn), k moves up (in the same column), and / moves (o the right.

¢ On smart terminais where it is possibie, the editor will quietly flash the screen rather than ringing the beil.
® Backspacing over the ‘/° will aiso cancel the search.

** On some systems, this interruptibility comes at a price: you cannot lype ahesd when the editor is comput-
ing with the cursor on the bottom line.
?Anmmandsvlﬁd:radfmmmehstdiswyﬁneanmbeu:mimwdvimaacuwﬂnma.

4.

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hitting the control and D keys at the same time, a control-D or *°D’. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled *** on your terminal. This key will be represented as ‘1" in this document;
+=* is exclusively used as part of the ‘*x’ notation for control characters.$

As you know now if you tried hitting "D, this command scroils down in the file. The D
thus stands for down. Many editor commands are maemonic and this makes them much easier
to remember. For instance the command to scroll up is “U. Many dumb terminals can’t scroll
up at all, in which case hitting “U clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hit “E to expose one
more line at the bottom of the screen, leaving the cursor where it is. 33 The command Y
(which is hopelessly non-mnemonic, but next to “U on the keyboard) exposes one more line at
the top of the screen.

There are other ways 10 move around in the file; the keys “F and “B ¢ move forward and
backward a page, keeping a coupie of lines of continuity between screens so that it is possibie to
read through a file using these rather than "D and “U if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting “F to move forward a page will leave you only a little context to look back at.
Scroiling on the other hand leaves more context, and happens more smoothly. You can con-
_ tinue to read the text as scrolling is taking place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character / followed by a string of characters terminated by CR. The editor will posi-
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are, and is
otherwise like /.t -

If the search string you give the editor is not present in the file the editor will print a diag-
postic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search stnng
with an 1. To match only at the end of a line, end the search string with a $. Thus /{searchCr
will search for the word ‘search’ at the beginning of a line, and /lastSCR searches for the word
‘last’ at the end of a line.®

t!fyoudon'thw:‘“ksyonyoumimlmmnlhmhﬂynuyh&ﬂed‘r;inmasm&
characters are one and the same.

$3 Version] only.

$ Not availabie in ail v2 editors dus 1o memory constraints.
T‘Thatsard:um'nnotmlnympmundlheendofmemz.nmmmﬂndlhesuimevenﬂ'itisno(onn
line in the direction you search provided it is anywhere eise in the flle. You can disable this wraparound in
mhﬁﬁmlhmmmﬁmmmmamouhﬂeﬂyam

*Actually, the siring you give to search for here can be a regular axpresson in (e sense of the editors a(1)
and ea(]1). If you don't wish 10 learn about this yet, you can disable this more general faclity by dong
e nemagiccx; by putting this command in EXINIT in your environment, you can have this aiways be in
effect (more sbout EXINIT \aer.)

-5-

The command G, whea preceded by a number will position the cursor at that line in the
file. Thus 1G will move the cursor to the first line of the file. If you give G no count, then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the scresa, the
editor will place only the character ‘™ on each remaining line. This indicates that the last line
in the file is on the screen; that is, the ‘™ lines are past the end of the file.

You can find out the state of the file you are editing by typing a “G. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can aiso get back to a previous position by using the command ™ (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with / or ? and then a ™ to get back to where you were. If you accidentaily hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting .

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourseif that they work.
(On certain terminals using v2 editors, they won't.) If you don’t have working arrow keys, you
can always use h, j, k, and 1. Experienced users of v prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the 4+ key. Each time you do, notice that the cursor advances to the aext line in the
file, at the first non-white position on the line. The = key is like <+ but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possibie) to
bring a line at a time into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many v commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen, and
L. which takes you to the last line on the screen. L also takes counts, thus SL will take you to
the fifth line {rom the bottom.

2.4. Moving within 2 line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and = to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the ead of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar) which moves right one
character and the Bs (backspace or “H) key which moves left one character. The key h works
as “H does and is useful if you don’t have a BS key. (Also, as noted just above, | will move to
the right.)

If the line had puncruation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can aiso go back and forwards words without stopping at
punctuation by using W and B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving
10 2 word on a line below where you are by repeatedly hitting w.

2.5. Summary

SPACE advance the cursor one position
backwards to previous page

scrolls down in the file

exposes another line at the bottom (v3)
forward to next page

tell what is going on

backspace the cursor

next line, same column

previous line, same column

scrolls up in the file

exposes another line at the top (v3)
next line, at the beginning

previous line, at the beginning

scan for a following string forwards
scan backwards

back a word, ignoring punctuation
go to specified line, last defauit
home screen line

middle screean line

last screen line

forward a word, ignoring punctuation
back a word

end of current word

scan for next instance of / or ? pattern
word after this word

4P T grImOW S | tddgZrardu

2.6. View ¢

If you want to use the edilOl: to look at a file, rather than to make changes, invoke it as
view instead of vi. This will set the readoniy option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, every-
thing you type until you hit ESC is inserted into the file. Try this now; position yourseif to
some word in the file and try inserting text before this word. If you are on an dumb terminai it
will seem, for a minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an ‘s’. Position yourself at this
word and type e (move to end of word), then a for append and then ‘sesC’ to terminate the
textual insert. This sequence of commands can be used to easily piuralize a word.

Try inserting and appending a few times to make sure you understand how this works: i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and thea give the com-
mand o lo create a new line after the line you are on, or the command O to create a new line
before the line you are on. After you create a new line in this way, text you type up (o an ESC

tN«nvuﬂablein.ﬂvluﬁmdummmnm

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. In these cases,
the upper case key often differs from the lower case key in its sease of direction, with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac-
ters. To type in more than one line of text, hit a RETURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a siow and dumb ter-
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the il of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normaily use at the sys-
tem command level (usually “H or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, “X, or “U) to erase the input
you have typed on the current line.t The character “W will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in “an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap-
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can’t erase characters which you didn't insert, and that you can’t
backspace around the end of a line. If you need to back up to the previous line to make a
correction, just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character
which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the BS key or “H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x key; this deletes the character from the file. It is
anaiogous to the way you x out characters when you make mistakes on a typewriter (except it's
not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command rc, where c is repiaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character, give the command s which substitutes
a string of characters, ending with ESC, for it. If there are a smail number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are aiso useful with x o specify the number of characters to be deleted.

3.3. More corrections: operators

You aiready know aimost enough to make changes at a higher level. All you need to
know now is that the d key acts as a deiete operator. Try the command dw to deiete a word.
Try hitting . a few times. Notice that this repeats the effect of the dw. The command . repeats
the last command which made a change. You can remember it by analogy with an eilipsis ...

¢ In fact. the character “H (backspace) aiways works to crase the last input characier here, regardless of what
your crase character is.

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE
This deletes a single character, and is equivalent to the x command.

Another very useful operator is ¢ or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character ‘S’ so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to
delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter-
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as 2 place hoider. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the ¢ operator twice; this will change a whole line, erasing its previous con-
tents and replacing them with text you type up !0 an ESC.t

You <2n delete or change more tuian one line by preceding the dd or cc with a count, i.e.
5dd deletes 5 lines. You can also give 28 command like dL to delete all the lines up !0 and
including the last line on the screen, or d3L to delete through the third from the bottom line.
Try some commands like this now.* Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you couid use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides a u (undo) com-
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an u also undoes a u. -

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text which you delets, even if undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

advance the cursor one position

backspace the cursor

erase a word during an insert

your erase (usuaily “H or #), erases a character during an insert
your kill (usually @, “X, or “U), kills the insert on this line
repeats the changing command

opens and inputs new lines, above the current

undoes the changes you made to the current line

appends text after the cursor

changes the object you specify t0 the following text

L Nefok ga idg

tmmstammlmomrwfagbymﬁws. Think of S as s substitute on
lines, while s is a substitute on characiers.
* One subtle point here involves using the / search after 1 &. This will normaily defete characters from the
current position to the point of the match. If what is desired is 1o deiete whoie lines including the two points.
y'vomcpnnmu/nu/+o.nﬁncm

-

-9.

deletes the object you specify

inserts text before the cursor

opens and inputs new lines, below the curreat
undoes the last change

8 0 - a

4. Moving about; rearranging and duplicating text

4.1. Low level character motions

Now move the cursor (o a line where there is a punctuation or a bracketing character such
as a parenthesis or a comma or period. Try the command {x where x is this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit-
ting a ;, which finds the next instance of the same character. By using the f command and then
a sequence of ;s you can often get to a particular piace in a line much faster than with a
sequence of word motions or SPACEs. There is also a F command, which is like f, but searches
backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac-
ters up to, but not inciuding, the first instance of a character. Try dfx for some x now and
notice that the x character is deieted. Undo this with u and then try dtx; the t here stands for
to0, i.e. delete up to the next x, but not the x The command T is the reverse of t.

When working with the text of a single line, an | moves the cursor to the first non-white
position on the line, and a2 $ moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab (“1) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.®* When the cursor is at
a tab, it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is *“’. On the screen non-printing characters resembie a ***
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set-
ting of the beaurify option, if you attempt to insert them in your file. You can get a controi
character in the file by beginning an insert and then typing a "V before the controi character.
The “V quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences, para-
graphs, and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will deiete the rest of the current sentence; like-
wise d(will delete the previous seatence if’ you are at the beginning of the current sentence, or
the current sentence up to where you are if you are not at the beginning of the current sen-
tence.

A sentence is defined to end at a *.", ‘!’ or ‘?° which is followed by either the end of a
line, or by two spaces. Any number of dosmg ‘)' ‘°, *** and *° characters may appear after
the ‘.°, ‘" or ‘7" before the spaces or end of line.

‘l'he operations { and] move over paragraphs and the operations [l and || move over sec-
tions. ¢

* This is settable by 3 command of tbe form :se ts=1Cx, where ris 4 10 set tabstops every four columns.
This has effect on the screen representation within the editor.
¢ The [l and |l operations require the operation character 10 be doubled because they can move the cursor far

.10 -

A paragraph begins after each empty line, and aiso at each of a set of paragraph macros.
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the —ms and —mm macro pack-
ages, i.e. the “.IP’, ‘.LP’, ‘.PP’ and '.QP’, ‘.P’ and ‘LI’ macros.t Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts 1o
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally ‘' NH’, *.SH",
*H’ and ‘. HU’, and each line with a formfeed “L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newiy drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and dup!icating text

The editor has a single unnamed buffer where the last deleted or changed away text is
saved, and a set of named buffers a—z which you can use to save copies of text and to move
text around in your file and between files.

The operator y yanks a copy of the object which foilows into the unnamed buﬂ'er If pre-
ceded by a buffer name, "xy, where x here is repiaced by a letter a=—z, it places the text in the
named buffer. The text can then be put back in the file with the commands p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partiailly spans more than one line, then when you put the text back, it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like a 0 or O
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and piace it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one piace, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in "aSdd deleting S lines into the named buffer . You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you
can switch and edit another file before you put the lines back, by giving a command of the form
:2 nameCR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary deiete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change files, so t0 move text from one file to another you
shoulid use an unnamed buffer.

from where it currently is. While it is easy 0 get back with the command ", these commands wouid still be
frustrating if they were easy 10 hit accidentally.

$ You can easily change or extend this set of macros by assigning a different string to the paragrapas opuon
in your EXINIT. See section 6.2 for details. The °.bp’ directive is aiso considered 10 start 3 paragraph.

.11 -

4.4. Summary.

first non-white on line

end of line

forward sentence

forward paragraph

forward section

backward sentencs

backward paragraph

backward section

find x forward in line

put text back, after cursor or below current line
yank operator, for copies and moves

up to x forward, for operators

f backward in line

put text back, before cursor or above current line
t backward in line

Humpgee == e

5. High level commands

§.1. Writing, quitting, editing new files

So far we have seen how to enter w and to write out our file using either ZZ or :wCR.
The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor’s copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command :e!CR. These
commands shouid be used only rarely, and with caution, as it is not possibie to recover the
changes you have made after you discard them in this manner.

You can edit a differeat file without leaving the editor by giving the command :e nameCRr.
If you have not written out your file before you try to do this, then the editor will tell you this,
and delay editing the other file. You can then give the command :wCR to save your work and
then the :2 nameCR command again, or carefully give the command :e! ngmeCR, which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include ser qutowrite in your EXINTT, and use :n instead of :e.

§.2. Escaping to a sheil

You can get to a sheil to execute a singie command by giving a w command of the form
:icmdcR. The system will run the singie command cmd and when the command finishes, the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can aiso give another : command when it asks you for a
RETURN, in this case the screen will not be redrawn.

If you wish to execute more than one command in the sheil, then you can give the com-
mand :shcR. This will give you a new shell, and when you finish with the shell, ending :t by
typing a "D, the editor will clear the screen and continue.

On systems which support it, “Z will suspend the editor and return to the (top levei)
sheil. When the editor is resumed, the screen will be redrawn.

-12 -

§.3. Marking and returning

The command * returned to the previous place after a motion of the cursor by a com-
mand such as /, ? or G. You can also mark lines in the file with single letter tags and return to
.these marks later by naming the tags. Try marking the current line with the command mx,
where you should pick some letter for x, say ‘a’. Then move the cursor to a different line (any
way you like) and hit ‘a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form “x rather than 'x Used without an operator, "x will move to the first
pon-white character of the marked line; similarly “ moves to the first non-white character of
the line containing the previous context mark .

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a L.
the ascl form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a resuit of line
deletion, you may get rid of these lines by typing "R to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to ‘place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you .want the line to appear at the top of the window, a
. if you want it at the center, or a = if you want it at the bottom. (z., z-, and z+ are not avail-
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the screen (o be
refreshed. We have aiready pointed out how the editor optimizes the updating of the scresn
during insertions on dumb terminais to limit the delays, and how the editor erases lines to @
when they are deieted on dumb terminals.

The use of the siow terminal insertion mode is controlled by the siowopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
slowcr. If your system is sluggish this heips lessen the amount of output coming to your ter-
minal. You can disabie this option by :se noslowcCR. '

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simuiation generates a great deal of output and is generally toierabie only
on lightly loaded systems and fast terminais. You can disabie this by giving the command

:se noredrawCR.

The editor also makes editing more pieasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on inteiligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminais. If possibie, try the editor on an inteiligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument o the commands which cause large screea mouons:

/7200107 _
Thus if you are searching for a particular instance of a common string in a file you can preczde

- 13-

the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose. by
giving a number on a z command, after the z and before the following RETURN, . or —. Thus
the command z5. redraws the screen with the current line in the center of a five line window.t

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. lf'you do this you may partiaily con-
fuse the editor about what is dispiayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a “L; or move or search again, ignoring the
current state of the dispiay.

See section 7.8 on open mode for another way to use the w command set on slow termi-
nais.)

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following tabie.

Name Defauit Description

autoindeat noai Supply indentation automatically

sutowrite noaw Automatic write before :n, :ta, °1, !
ignorecase noic : Ignore case in searching

lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as °“I; end of lines marked with §
magic nomagic The characters . [and * are special in scans
number nonu Lines are dispiayed prefixed with line numbers
paragraphs para=[PLPPPQPbpP LI Macro names which start paragraphs

redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names which start new sections
shiftwidth sww=3 Shift distance for <, > and input "D and T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opr=ya/
and toggie options can be set or unset by statements of one of the forms

set opt
set noopt -

These statements can be piaced in your EXINIT in your environment, or given wiile you are
running w by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the
value of a single option by the command :set opr?CR. A list of ail possible options and the:r
values is generated by :set allCR. Set can be abbreviated se. Multiple options can be piaced on
one line, e.3. :se ai aw nuCR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or v. A

1 Note that the command 5z. has an entirely different effect, piacing line § in the center of 2 aew window.
* All commands which start with : are ex commands.

-14 -

typical list includes a set command, and possibly a few map commands (on v3 editors). Sincs
it is advisable to get these commands on one line, they can be separated with the | character, for
exampie:

set ai aw tersemap @ ddimap # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line,
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file ./ogin in
your home directory:

setenv EXINIT ‘set ai aw tersemap @ ddimap # x’
If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINTIT ="set ai aw tersemap @ ddmap # x’
export EXINIT

On a version 6 system, the concept of environments is not present. In this case, put the line in
the file .exr in your bome directory.

set 2i aw terscinap @ ddmap # X

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1=9. You can get the n’th previous deleted text back in your file by the
command "np. The * here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number 1 for now), and p is the put command, which puts text in the
buffer after the cursor. If this doesn’t bring back the text you wanted, hit u to undo this and
then . (period) to repeat the put command. In general the . command will repeat the last
change you made. As a special case, when the last command refers (0 a numbered text buffer,
the . command incremeats the number of the buffer before repeating the command. Thus a
sequence of the form

*lpu.u.u.

will, if repeated long enough, show vou all the deieted text which has been saved for you. You
can omit the u commands here to gaither up all this text in the buffer, or stop after any . com-
mand to keep just the then recovered icxt. The command P can aiso be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes.
You will normaily receive mail when you next login giving you the name of the file which has
been saved for you. You shouid then change to the directory where you were when the system
crashed and give a command of the form:

% vi —=r name

replacing name with the name of the file which you were editing. This will recover your work
10 a point near where you left off.+

¢ In rare cases. some of the lines of the file may be lost. The editor will give you the numbers of these lines
and the text of the lines will be replaced by the string "LOST". These lines will aimost aiways be among the
last few which you changed. You can either choose o discard the changes which you made (f they are easy
10 remake) or 1o repiace the {ew lost lines by hand

-15-

You can get a listing of the files which are saved for you by giving the command:
% vi =r

If there is more than one instance of a particular file saved, the editor gives you the newest
instance each time you recover it. You can thus get an oider saved copy back by first recover-
ing the newer copies.

For this feature to work, w must be correctly installed by a super user on your system.
and the mail program must exist to receive mail. The invocation **w -7° will not aiways list all
saved files, but they can be recovered even if they are not listed.

6.5. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near
the right margin automatically. You can cause this to happen by giving the command :se
wm=10CR. This causes all lines to be broken at a space at least 10 columns from the right
band edge of the screen.*®

If the editor breaks an input line and you wish to put it back together you can teil it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined lines,
and leaves the cursor at this white space. You can kill the white space with x if you don't want
it.

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distin-
guishes editing of programs from editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has a guroindenr facility for heiping you gen-
erate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening a new line
with o and type some characters on the line after a few tabs. If you now start another line.
notice that the editor supplies white space at the beginning of the line to line it up with the pre-
vious line. You cannot backspacs over this indentation, but you can use "D key to backtab
over the supplied indentation.

Each time you type “D you back up one position, normally to an 8 coiumn boundary.
This amount is settable; the editor has an option called shiftwidth which you can set to change
this value. Try giving the command :se sw=4CR and then expernimenting with autoindeat
again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you specify right or left by one saitwidth. Try << and > > which shift one line left
or right, and <L and >L shifting the rest of the dispiay left and right.

If you have a complicated expression and wish to see how the parentheses match. put the
cursor at a left or right parenthesis and hit %. This will show you the matching parenthesis.
This works also for braces { and }, and brackets [and].

If you are editing C programs, you can use the [[and |l keys to advance or retreat to a
line starting with a {, i.e. a function deciaration at a time. When || is used with an operator it
stops after a line which starts with }; this is sometimes useful with yj].

® This feature s a0t availablie on some v2 editors. In v2 editors where it is availabie. the break can only oc-
cur 0 the right of the specified boundary instead of (o the left.

.16 -

6.7. Filtering portions of the buffer

You can run system commands over portions of the buffer using the operator !. You can
use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words, one per line and ending them with a biank line. Back up
to the beginning of the list, and then give the command '}sortcR. This says to sort the next
paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing LISPt

If you are editing a LISP program you should set the option lisp by doing :se lispCcR. This
changes the (and) commands to move backward and forward over s-expressions. The { and |
commands are like (and) but don’t stop at atoms. These can be used to skip to the next list,
or through a comment quickly. .

The autoindent option works differently for LISP, supplying indent to align at the first argu-

ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmarch option. Try set-
ting it with :se smCR and thea try typing a ‘(" some words and then < ‘)’. Notice that the cur-
sor shows the position of the ‘(* which matches the ‘)’ briefly. This happens only if the match-
ing ‘(" is on the screen, and the cursor stays there for at most one second.

The editor aiso has an operator to realign existing lines as though they had been typed in
with lisp and auroindent set. This is the = operator. Try the command =% at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP,, the [l and]] advance and retreat to lines beginning with a (,
and are useful for dealing with entire function definitions.

6.9. Macros?

Vi has a parameteriess macro facility, which lets you set it up so that when you hit a single
keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from w (typically in your EXIN!7) with a command of the
form:

:map ks rAsCR

mapping /As into rAs. There are restrictions: /as should be one keystroke (either 1 charac-
ter or one function key) since it must be entered within one second (unless notmeout is
set, in which case you can type it as slowly as you wish, and w will wait for you to finish it
before it echoes anything). The /hs can be no longer than 10 characters, the r4s no longer
than 100. To get a space, tab or newiine into ks or ris you should escape them with a V.
(It may be necessary to doubie the “V if the map command is given inside vi, rather than
in ex.) Spaces and tabs inside the rAs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command
:map q :wq V VCR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A “V's is needed because without it the CR wouid end the : command, rather than

4 The Lise features are ot available on some v2 edilors due 1o memory constraints.
$ The macro festure is availabie only in versicn 3 editors.

.17 -

becoming part of the map definition. There are two “V’s because from within v, two “V’s must
be typed to get one. The first CR is part of the ras, the second terminates the : command.

Macros can be deieted with
unmap lhs

If the /As of a macro is *“#0"° through ‘‘#9"°, this maps the particular function key instead
of the 2 character “#° sequence. So that terminals without function keys can access such
definitions, the form ‘‘#x’* will mean function key x on ail terminais (and need not be typed
within one second.) The character **#’° can be changed by using a macro in the usual way:

:map V'VI#
to use tab, for example. (This won't affect the map command, which still uses #, but just the
invocation from visual mode.
The undo command reverses an entire macro call as a unit, if’ it made any changes.
Placing a *!" after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for “T to be the same as 4 spaces in input mode, you can
type:
:map ‘T “V6bbs

where ¥ is a blank. The “V is necessary to prevent the bianks from being taken as white spacs
between the /As and rAs.

7. Word Abbreviations 33

A feature similar to macros in input mode is word abbreviation. This allows you to type a
short word and have it expanded into a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as :map. For exampie:

:ab eecs Electrical Eﬁﬁneen’ni and Computer Sciences

causes the word ‘eecs’ to always be changed into the phrase ‘Electrical Engineering and Com-
puter Sciences’. Word abbreviation is different from macros in that only whole words are
affected. If ‘eecs’ were typed as part of a larger word, it would be left alone. Also, the paruai
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke. as
it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we
have introduced here. You can find these commands easily on the quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the dispiay

The editor foids long logical lines onto many physical lines in the display. Commands
which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command | moves the cursor to a specific column, and may be useful for getting
near the middle of a long line to split it in haif. Try 80{ on a line which is more than 80
columns long.t

The editor only puts fuil lines on the display; if there is not enough room on the dispiay
to fit a logical line, the editor leaves the physical line empty, piacing only an @ on the line as a

33 Version J oniy.
¢ You can make long lines very easily by using J 10 join together short lines.

-18 -

place hoider. When you delete lines on a dumb terminal, the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen by giving the "R command.

If you wish, you can have the editor place line numbers before each line on the dispiay.
Give the command :se nucR to enabie this, and the command :se nonucCR to turn it off. You
can have tabs represented as ‘T and the ends of lines indicated with ‘S’ by giving the command
-se listCR; :se nolistCR turns this off.

Finaily, lines consisting of only the character ‘= are displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past the logical end of
file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

new window size 2R 2 | U | B
scroli amount ‘D ‘U
line/column number z G |
repeat effect most of the rest

The editor maintains a fotion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the
default window size. At 1200 baud the defauit is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen 10 be redrawn. If you anticipate this, but
do not need as large a window as you are currently using, you may wish to change the screen
size by specifying the new size pefore these commands. In any case, the number of lines used
on the screen will expand if you move off the top with 2 = or similar command or off the bot-
tom with a command such as RETURN or “D. The window will revert to the last specified size

the next time it is cleared and refilled.t ,

The scroll commands “D and “U likewise remember the amount of scroll last specified,
using half the basic window size initially. The simpie insert commands use a count to specify a
repetition of the inserted text. Thus 10a+ — — ——gsc will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as “R), the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus Sw advances five
words on the current line, while SRETURN advances five lines. A very useful instance of a
count as a repetition is a count given to the . command, which repeats the last changing com-
mand. If you do dw and then 3., you will delete first one and then three words. You can then

delete two more words with 2..

8.3. More file manipuiation commands

The following tabie lists the file manipulation commands which you can use when you are
in vi. All of these commands are followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end with a2 ZZ command. If you are edit-
ing for a long period of time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file, you can finish with one

?!utnotbya‘].-ﬁchjvmm‘nmcmuith.

.19 -

w write back changes

wq write and quit

x write (if’ necessary) and quit (same as ZZ).
:2 name edit file name

2! reedit, discarding changes

2 + name edit, starting at end

2 +n edit, starting at line n

e # edit alternate file

‘w name write file name

w! name overwrite file name

x,yw name write lines x through y to name

T name read file name into buffer

7 lemd read output of cmd into buffer

b edit next file in argument list

! edit next file, discarding changes to current
m args specify new argument list

ita ag edit file containing tag /ag, at g

with a2 :w and start editing a new file by giving a :2 command, or set gurowrite and use :n
<fle>.

If you make changes to the editor’s copy of a file, but do not wish to write them back.
then you must give an ! after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefuily.

The :e2 command can be given a <+ argument to start at the end of the file, or a +n argu-
ment to start at line 7. In actuality, » may be any editor command not containing a space, use-
fully a scan like +/par or +?pac In forming new names to the e command, you can use the
character % which is replaced by the current file name, or the character # which is replaced by
the aiternate file name. The alternate file name is generally the last name you typed other than
the current file. Thus if you try to do a :e and get a diagnostic that you haven’t written the file,
you can give a :w command and then a :e¢ # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to
be written using "G, and giving these numbers after the : and before the w, separated by ,’s.
You can also mark these lines with m and then use an address of the form "%’y on the w com-
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in turn using the command :n. It is aiso possibie to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial v command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as
c1ags, 10 quickly find a function whose name you give. If the :ta command will require the edi-
tor to switch files, then you must :w or abandon any changes before switching. You can repeat
the :ta command without any arguments to look for the same tag again. (The tag feature is not
available in some v2 editors.)

8.4. More about searching for strings

When you are searching for strings in the file with / and ?, the editor normally placss you
at the next or previous occurrence of the string. [f you are using an operator such as d. c or y,
then you may well wish to affect lines up to the line before the line containing the pattern.

.20 -

You can give a search of the form /pat/=n to refer to the 'th line before the next line con-
taining pat, or you can use <+ instead of = to refer to the lines after the one containing par. If
you don’t give a line offset, then the editor will affect c