SHOOTING STARS

Willard | Nico

Delta t

11020 Old Katy Rd, Suite 204
Houston TX 77043

Figure 1: Three special patterns of stars and black holes. The game begins
with a single star representing the Big Bang theory (left), and is won when the
pattern of only one central black hole is achieved (center). The pattern shown
on the right represents a loss and terminates the game.

There are probably as many reasons to
have a computer in the home as there are
computers in homes. For whatever reason
you have one though, it’s only human nature
to want to show it off to other people.

Say you have a super program called
“Investment Portfolio Analysis and
Statistical Summary” (IPASS) up and
running on your Scelbi 8H or whatever. It
took months to write and debug the pro-
gram and it involved several unique concepts
of which you are justifiably proud. You can
picture the furious activity going on inside
the little heart of the computer and would
dearly love to show off your skill to Mr and
Mrs Nexdor and bask in their admiration.
So you invite them over for cocktails.

The program runs flawlessly and, as the
results flash on the display screen, you step
back slightly to receive your praise. Mr
Nexdor looks at you with a blank expression
and says, “But will it grind pepper?”

That actually happened to me. One way
around this problem is to save IPASS for
your own enjoyment and have a game
program or two available to ‘show off. Of
course, for some people game programs are
the primary interest in having a home
computer. Whatever your games interest, |

42

think you’ll find SHOOTING STARS an
interesting addition to your library.

| started my quest for a “show-off’’ game
about a year ago, searching everywhere for
one that was just right. | learned a very
interesting fact quickly: My computer
doesn’t speak BASIC, and to date many
games have been written and published in
that language.

So | had to do it myself. The result is
SHOOTING STARS, a game with enough
challenge to intrigue, enough variables to
make learning to win difficult (but not
impossible), and a couple of goodies thrown
in to involve the player with the computer.

A complete program listing for 8008
computer is included, as well as the various
messages that allow the computer to interact
with the player.

The Game

Nine dot or asterisk characters are
arranged in a 3 by 3 matrix on the playing
field which may be shown on a CRT screen.
The matrix represents the universe; asterisks
are stars and dots are black holes. The player
shoots stars which die and turn into black
holes. When a star dies, it affects other stars
and black holes in its particular galaxy.

How To Play

Each position in the universe is assigned a
number (see figure 2). The computer
outputs the current composition of the
universe and asks YOUR SHOT? The player
responds by typing the position number of
the star he decides to shoot. Then the new
constellation is displayed for the next shot.

Effect Of Shooting A Star

When a star dies, it affects the stars and
black holes of its particular galaxy. The
effect is that fragments of the star move into
black holes to become new stars and other
fragments collide with other stars and knock
them out of orbit producing black holes.
Each star has its own galaxy as shown in
figure 3.

The Program

The game proceeds in an orderly manner
which is shown in the Flow Chart of figure 4.
The heading, rules and interactive messages
require approximately 1600 B of memory. |
use a Delta t Digital Recorder for message
storage and retrieval since it operates in the
reverse as well as forward incremental
modes. Each message is prefaced with a

Figure 3: A complete set
of galaxies which -are
associated with every star
or black hole position.
Stars or black holes within
a galaxy are affected
whenever the respective
position has been chosen.

message number surrounded with STX and
ETX characters. A search routine in the
main program finds the first address, decides
whether the desired message is ahead or
behind the current tape position, and
rewinds or spins forward as necessary.

Table 1 is a list of the interactive
messages. For computers with limited
memory the essential messages are in the
first portion of the table; the fancy heading
is next, and the rules of the game occupy the
largest number of bytes at the end of the
text.

When the program is entered at address
014000, the 8008’s H and L pointers are set
to the beginning of the heading. Then the
message control routine is called. It outputs
sequentially each character of the message
until the EM delimiter is encountered which
returns control to the main program.

The status of the universe is stored in the
B and C registers. Universe positions 1
through 4 and 6 through 9 are represented
by the eight bits in the B register. A one bit
represents a star, and a zero a black hole. Bit
0 of the C register keeps track of position 5.

The universe is set up in the beginning by
clearing the B register and setting C to 001

Figure 2: Positions in the
universe are identified by
numabers.

octal. The D register, which will tally the
number of shots fired, is also cleared as part
of the initialization process. Each time the
print universe routine is entered after a valid
shot, the D register is incremented to count
the shot.

Displaying The Universe

First, the print universe routine is
entered. This routine sets the E register to
octal 012 and will decrement the register
cach time the print loop is executed. The E
register tells the program when it needs to
insert a couple of linefeeds for spacing, when

it needs to branch to the position 5 special.

routine, and when it has finished printing
the universe. These events occur at the
following E register exception counts:

006 — Insert two linefeeds
005 — Go to position 5 subroutine

003 — Insert two linefeeds
000 — Done Print; exit

In normal processing, the positions repre-
sented by the bits in the B register are
inspected one-by-one for star or black hole
status, and the corresponding symbol is
printed. It’s done like this: The B register is
loaded to A and rotated one place to the
right. The rotated byte is loaded into B to be
ready for the following position next ‘time
around in the loop. The carry flag is then
tested for a one or zero. If the carry is zero,
the program jumps to the dot output
section. A one in the carry bit causes the
asterisk output to be executed.

At the exception counts, further pro-
cessing is required.

Thus when the E register count indicates
that position 5 is the next one to be printed,
the program loads the C register to A and

Figure 4: A flow chart of the SHOOTING STARS program acts as a guide to the listing. The labels indicated on this flow chart
correspond to the labels found in table 3.

SHOOTSTR

BEGIN

BINARY TO

'YOU WIN' ASCII RESULTS
DECIMAL
CONVERSION

'YOU LOSE'

'SHOOT
AGAIN P!

44

GOTSTAR

- ‘E

SEARCH E
IN
MASKTAB
e 'BAD SHOT'
FOUND
NO YES
NEXBYT
CHANGE COUNT
GALAXY SHOTS 3

INVAL |

'YOU GIVE
UP TOO EASY'|

NOTVAL

—

rotates the least significant bit to carry. The
program then jumps back to the asterisk and
dot output portion of the loop. Note that
the rotated C register content is not loaded
again to C, since we are only interested in
the least significant bit.

Shoot A Star

When the universe has been displayed, the
message YOUR SHOT? is printed and the
computer waits for the player to type a
number from 1 to 9 which indicates the star
he wants to shoot. The ASCII code for the
number the player types is compared to the
first byte in each group of four contained in
the MASKTAB table 2. The number of tries
at the table is monitored by the E register,
which starts at 011 and is decremented each
time around the ‘“‘test for match’ loop. If
the E register gets to 000 without finding a
match, the input is tested for code 177
(delete), indicating that the player gives up
and wants to start over. If a match still can’t
be found, the NOT A VALID STAR
NUMBER message is printed, and the
universe displayed again. If this happens, the
print universe routine is entered just after
the instruction that causes the shot to be
counted, so the player won’t be charged for
his mistake.

When a find is made in the MASKTAB
table, the program is ready to process the
player’s shot. First, it must make sure the
player is following the rules and hasn’t shot
a black hole. The second byte of the four
byte group is used as a “‘mask” to blank out
all the positions of the universe except the
one that has been shot. Figure 5 shows how
the mask is used with the Boolean AND
function to isolate the bit representing the
shot position from among the eight bits of
the B register. After masking out all but the
selected position, the resultant byte is tested
to see if it is zero. If it is, the shot position
was a black hole and the message HEY!
YOU CAN ONLY SHOOT STARS, NOT
BLACK HOLES! is printed. If this happens,
the universe is displayed again without
counting the shot.

If the mask itself is zero, it indicates that
position 5 was selected, and so the program

Table 1: Program Messages.

This table lists all the messages used by

SHOOTING STARS. Each message entry in the table starts with a symbolic

name and an absolute address.

The text should be stored at ascending

memory address locations, and terminated with an end of message (EM)
delimiter of octal 031, which is printed as . The symbolic names in this table

are referenced by table 3.

MESS1:
016000

HEY! YOU CAN ONLY SHOOT STARS,
NOT BLACK HOLES.

TRY AGAIN!

MESS2:
016077
THAT WASN'T A VALID STAR NUMBER!
TRY AGAIN!

MESS3:
016156
YOU LOST THE GAME!
WANT TO SHOOT SOME MORE STARS? =

MESS4:
016243
YOU WIN! GOOD SHOOTING!
YOUFIRED =
MESSS:
016310

SHOTS.
BEST POSSIBLE SCORE IS 11 SHOTS.

WANT TO SHOOT AGAIN, DEADEYE? @

MESS6:
017022
YOU GIVE UP TOO EASILY!
WANT TO SHOOT SOME MORE STARS?, =

MESS7:
017114
YOUR SHOT? =

HMESS:
017131
S HO SSS ST AAA RRR
S e A A R R
() 1 SSS T AAA RRR
S r A A RR
NG SSS T A A R R
............ SHOOTING STARS®*"****

A BRAIN TEASER GAME
WANT THE RULES? =

PAGE1:
020147

THERE ARE STARS:
AND BLACK HOLES:
IN THE UNIVERSE:

YOU SHOOT A STAR
(NOT A BLACK HOLE)
BY TYPING ITS NUMBER 123

456

748 1O
THAT CHANGES THE STAR TO A BLACK HOLE!
(TO SEE MORE RULES, TYPE ANY KEY.) =

45

.....

PAGE2:
021277
EACH STAR IS IN A GALAXY. WHEN YOU
SHOOT A STAR, EVERYTHING IN ITS GALAXY
CHANGES. ALL STARS BECOME BLACK HOLES
AND ALL BLACK HOLES BECOME STARS.

GALAXIES:

3 JS e b g7 A

.. N L

B - b
TAN N ERE A

(TYPE ANY KEY FOR LAST PAGE OF RULES.) =

PAGE3:
023137

THE GAME STARTS
WITH THE UNIVERSE
LIKE THIS

YOU WIN WHEN YOU
CHANGE IT TO THIS

YOU LOSE IF YOU
GET THIS

READY TO PLAY. TYPE ANY KEY TO START
THE GAME. GOOD LUCK! =

DATA1 0 110
MASKo 0 0 00
RESULTO O 0 0 O

LOCATION
MASKTAB 015070
015074
015100
015104
015110
015114
015120
015124
015130

Table 2: MASKTAB, a table of masks to test and alter galaxies. This table
gives the data needed for memory locations 015/070 to 015/133 in the
SHOOTING STARS program. This table is used to check the shot fired for a
valid star number and to change the portion of the universe which is affected

by the star’s change.

10 110 001
00 000 100

00 000 00O

Figure 5: The AND function of Boolean
logic is used to mask the current universe in
order to select one position for testing each
shot,

POSITION GALAXY CENTER
SHOT MASK MASK MASK
061 001 013 001
062 002 007 000
063 004 026 001
064 010 051 000
065 000 132 001
066 020 224 000
067 040 150 001
070 100 340 000
071 200 320 001

POSITIONS IN GALAXY

MASK10 110 101

DATAOO 010 110

RESULT1 0 100 011

764 321

Figure 6: The EXCLU-
SIVE OR function of
Boolean logic is used to
complement bits selected
according to the galaxy
information stored for the
position just shot.

46

tests the C instead of the B register for a
star.

Change A Galaxy

Once the program has determined that
the shot was valid, it can use the next byte
in the MASKTAB table to change the dots
and stars in the galaxy of the ‘“‘shot” star.
Again, the table entry is a mask, but this
time the Boolean EXCLUSIVE OR function
is used. The result is that the selected
positions are complemented; one bits are
changed to zero bits and the zeros are
changed to ones. Figure 6 shows how the
mask does this neat trick. After the change is
made, the new universe is stored in the B
register.

Byte four of the MASKTAB table entry
contains a mask that is used to EXCLUSIVE
OR the C register to change position 5 if
required. If star 5 is to be complemented,
the mask will be octal 001; if not, it will be
octal 000.

After the universe in the B and C registers
is changed, the new universe is displayed and
the cycle repeats until a win or a loss is
detected, or until the player gives up.

Win Or Loss Test

Each time the universe is displayed, it is
tested for a win or a loss. If both the B and
C registers contain the octal number 000,
the YOU LOST THE GAME message is
printed, and the opportunity to play again is
offered.

If the B register contains octal 377 and C
is octal 000 a win is detected. After display-
ing the proper message, the binary content
of the D register is converted to decimal
numbers and the number of shots fired is
printed. The calculation is performed by the
binary to decimal conversion subroutine.

Binary To Decimal Conversion

The B, C and E registers are assigned the
functions of summing the hundred, ten and
unit digits of the score respectively. The
process is one of repetitively adding a one to
the three digit number while subtracting a
one from the shots fired register (D).
Looping continues until all shots fired have
been counted in the 3 digit decimal form.

The somewhat unusual feature of the
binary to decimal conversion is that it is
done directly in ASCIl numeric code. The
three registers B, C and E are intially loaded
with octal 060, which is the ASCII numeric
character zero. After each increment, the
least significant digit register (E) is tested to
see if it contains octal 072. If it does, the
register has counted 060, 061 071,
which is O through 9 in ASCII, and has just
been incremented one more to 072. When

the register has 072, a carry condition
exists. When this condition is detected, the
register is reset to 060 and the next register
in line (C) is incremented. After incre-
menting, the second register is tested for a
carry in the same manner, and so on. When
all the shots have been counted, the
registers B, C and E will not only represent
the decimal equivalent of the shots fired, but
will contain the proper ASCII codes for the
decimal digits of the count.

Print The Shots

To suppress leading zeros, the hundreds
digit (B) is tested for octal 060. If it contains
any other code, the contents of all three
registers will be printed. If it contains octal
060, the tens register (C) is similarly tested
and the output will be one digit if it is at
zero (code 060) and two digits if it is not.

Figure 7 contains a flow chart of the
binary to decimal conversion program. You
may find usc for it in some of your other
programs.

Program Listing Conventions

Table 3 contains the complete program as
it was implemented in my 8008 system using
the SCELBI 8H computer. The listing is in
symbolic assembly language with absolute
octal address and memory contents.

The 8008 computer has 8 possible restart
instructions which are one byte calls to
locations in the first portion of memory
address spacc. These are used to access
utility subroutines neceded by the
SHOOTING STARS program. The required
restarts arc as follows:

RSTO: User’s input routine, starting at
location 000/000 which is used to wait for
one character input from the keyboard
device.

RST1: Exit Routine, starting at location
000/010. This is a return address to the
system monitor for the computer.

octal

address octal code label
014/000 006 012
014/002 025

014/003 066 131
014/005 056 017
014/007 106 134 015
014/012 106 151 015
014/015 074 116
014/017 150 052 014
014/022 066 147
014/024 056 020
014/026 106 134 015
014/031 075

014/032 066 277
014/034 056 021
014/036 106 134 015
014/041 075

014/042 066 137
014/044 056 023
014/046 106 134 015
014/051 075

014/052 006 012

014/054 025
014/055 025
014/056 025
014/057 016 000
014/061 026 001

MORE DEC]|

SHOOTSTR

ASTART

VES!
D=0
NO
2

Ci=CHl
YES
ci='0'
NO
Bi=B+I
TALLYHO
Di=D-1
NO
op. operand commentary
LAI 012 display a linefeed to
RST 2 initialize display;
LL! L(HMESS) set address pointers
LHI H(HMESS) to heading message;
CAL OUTPUT print message & return;
CAL INPUT call input looper;
CPI ‘N’ is first letter ‘N‘?
JTzZ ASTART if so then plunge into game;
LLl L(PAGE1) if not then point to first
LHI H(PAGE1) page of rules text;
CAL QUTPUT and go output rules message;
RST 7 wait for goahead;
LLi L(PAGE2) point to second page of
LHI H(PAGE2) rules text;
CAL OUTPUT display second page of rules;
RST 74 wait for goahead;
LLl L(PAGE3) point to third page of
LHI H(PAGE3) rules text;
CAL OUTPUT display third page of rules;
RST 7 wait for goahead;
LAI 012 set up linefeed;
RST 2 display one linefeed,
RST 2 then a second linefeed,
RST 2 then a third;
LBI 0 initialize the universe
LCI 1 to starting pattern;

47

—2)

THREED

Figure 7: A binary to dec-
imal conversion is per-
formed to output 3 dec-
imal digits encoded as
ASCII numeric characters.
This is a flow chart of the
conversion routine, -with
labels referring to table 3.

Table 3: The SHOOTING
STARS program specified
in symbolic assembly lan-
guage with an absolute list-
ing of addresses and codes
for the author’s system.

octal
address

014/063
014/064
014/065
014/067
014/070
014/073
014/074
014/076
014/101
014/103
014/106
014/110
014/113
014/114
014/115
014/116
014/117
014/122
014/124
014/125
014/130
014/132
014/133
014/135
014/136
014/137
014/142
014/144
014/145
014/146
014/151
014/152
014/153
014/154
014/157
014/161
014/162
014/163
014/164
014/165
014/166
014/170
014/172
014/175
014/176
014/177
014/200
014/202
014/203
014/204
014/205
014/206
014/210
014/212
014/214
014/215
014/220
014/221
014/224
014/225
014/226
014/227
014/230
014/233
014/234
014/235
014/237
014/242
014/243
014/245
014/250
014/253
014/254
014/255
014/260
014/261
014/262
014/263
014/264
014/265
014/266
014/267
014/270
014/273
014/275
014/300
014/302
014/304
014/307
014/311
014/313
014/316
014/321
014/322
014/324
014/327
014/330
014/332
014/335
014/337
014/341
014/344
014/346
014/347
014/350
014/351
014/352
014/354

014/357
014/361
014/362
014/363
014/366
014/370

octal code

331

074

130
052

133
056

067
012

117
012

114
017
134

011
070
015

233
273

000
253

001
165
260

064
177
307
022
017
034
077

134
065

377
050
000
157
243
016

060

000
026

072

000
060

014
014
014

014

014

014

014

014

014

015
014

015

014

014

015
014

015

014

label

CNTSHOT
SETCNT
DISLOOP

NEDOT

PSEUDOT

LOADOT
SPCNOW

LINFEED

FIVTST

GOTSTAR

NEXGRUP

FOUND

UNIV2A

NEXBYT

INVAL

NOTVAL
OUTMES

WINTEST

MOREDEC

JFZ
LAC
CPI
JFZ
JMP
LAB
NDM
AR
INL
LAB
XRM
LBA
INL
LAC
XRM
LCA
JMP
CPI
JFZ
LLl
LHI
JMP
Lel
LHI
CAL

LAB
CPI
JFZ
LAC
CPI
JFZ
Ll
LHI
CAL
LEI
LBE
LCE
DGD
LAD
CPI
JTZ

LAI
INE
CPE
JFZ
LEI
INC

operand

10D

WINTEST

6
LINFEED
3
LINFEED
5

FIVTST

LOADOT

2
SPCNOW
2

2

2
DISLOOP
012

2

2
NEDOT

PSEUDOT
012

2

2

%

2

2
L(MESS7)
H(MESS7)
OQUTPUT

9D
L(MASKTAB)
H(MASKTAB)

FOUND

INVAL

NEXGRUP

0
UNIV2A

1
BADFELO
NEXBYT

BADFELO

CNTSHOT
177
NOTVAL
L(MESS6)
H(MESS6)
PRNTIT
L(MESS2)
L(MESS2)
QUTPUT
SETCNT

111111118
LOSSTST

0
GOTSTAR
L(MESS4;
H(MESS4)
QUTPUT
0’

0
LSTSIG

TALLYHO
0’

commentary

then clear shot counter;
count a shot (anticipatory);
loop count 10 iterations;
is the loop done?
if so then go to win testing;
if not then continue display;
is it fourth cycle?
if so then new line needed;
is it seventh cycle?
if so then new line needed;
is it star number 52
if so then go test star 5;
clear the carry (and A too);
move universe to A;
rotate next place into carry;
save it in B for a while;
if dot then go output dot;
otherwise load a star;
then print the star;
branch around dot logic;
load a dot;
then print the dot;
load a space;
print one space,
then print a second;
waltz around loop once more;
load a line feed;
display a line feed,
then a second one;
back to print next dot or star;
no operation intended — leftover;
get position 5 status;
put status into carry;
rejoin main line after RRC;
load a line feed;
have finished universe print,
S0 print several
line feeds
to separate
successive rounds;
point to the ‘your shot”
message;
then go print it;
call input for character;
immediately echo the input;
save input temporarily in E;
load a line feed;
print three line feeds to
space out the response
a bit more;
recover input for testing;
loop count for table search;
set up pointer to the
the mask table;
is input equal table character?
if so then go alter structure of
the universe otherwise just
check end of loop;

increment the L
register pointer
four times to get
to next table entry;
then go test next entry;
point to position mask
and load mask into A;
is it zero?
if not then fringe position;
otherwise the center position;
Is a star in center?
if not then have wrong move;
if so then go process star;
rest of universe to A;
AND with mask to isolate star;
if not star then wrong move;
point to the galaxy mask;
fetch universe again;
and complement the universe
on a fine performance;
point to center mask ;
fetch center of universe;
complement center if required;
save center of universe;
go display a new universe;
was invalid shot a ‘delete’?
if not then recycle bad star;
otherwise point to giving up
message;
display then test for restart;
point to the invalid star
number message
output a message then
go display the universe again;
move universe to A;
are all fringe stars present?
if not see if player has lost;
fetch center of universe;
is center of universe empty?
is full then not win;
no star! got a win, folks
S0 POint to win message;
then display win message;
begin binary to decimal conversion
by setting all three working
register to (ASCII) zero;
get rid of last shot;
move shot count to A for test;
test for zero (not needed in
SHOOTING STARS but generally
useful with conversions);
need compare to ASCII ‘9" + 1;
count up one in 1.s. digit;
is it equal to overflow code?
if not then tally and continue;
else reset 1's digit to zero
and carry into next digit;

48

RST2: User’s output routine, starting at
location 000/020. This routine prirts or
displays one character on the output device
for the system. The character to be output is
in the A register when RST2 is entered.

RST7: A ‘““do Nothing” keyboard input
acknowledgement routine, starting at loca-
tion 000/070. Any character typed on the
keyboard causes return from this subroutine.

For the optimum use of the program, the
output device should be a cathode ray tube
terminal with a scrolling feature.

Game Background

I first saw the SHOOTING STARS game
in the September, 1974, issue of PCCt as a
program called TEASER. If you are an
analytical person, you can figure out all of
the possible positions.

PCC Editor, Bob Albrecht, told me that
the program was contributed to the
Hewlett-Packard software library, and orig-
inally written in BASIC.®

TPCC is People’s Computer Company which pub-
lishes a tabloid size computer hobbyist newspaper
five or more times during the school year. It's filled
with games written in BASIC, art, and computer
news. If you are interested, write to People’s
Computer Company, PO Box 310, Menlo Park CA
94025.

Symbol table, in order of appearance

SHOOTSTR 014 000
ASTART 014 052
CNTSHOT 014 064
SETCNT 014 065
DISLOOP 014 066
NEDOT 014 113
PSEUDOT 014 117
LOADOT 014 130
SPCNOW 014/133
LINFEED 014142
FIVTST 014151
GOTSTAR 014 157
NEXGRUP 014:214
FOUND 014233
UNIV2A 014/253
NEXTBYT 014260
INVAL 014273
NOTVAL 014-307
OUTMES 014:313
WINTEST 014/321
MOREDEC 014/361
TALLYHO 015000
THREED 015/023
MIDPRNT 015/025
LSTSIG 015026
HEEYE 015/032
PRNTIT 015/034
LOSSTST 015/050
MASKTAB 015/070
OUTPUT 015/134
INPUT 015/151
GETNEXT 015/154
BADFELO 015/165
MESS1 016/000
MESS2 016/077
MESS3 016/156
MESS4 016/243
MESS5 016/310
MESS6 017/022
MESS7 017144
HMESS 017/131
PAGE1 020/147
PAGE2 0217277
PAGE3 023/137

y

octal

address octal code label
014/371 272

014/372 110 000 015

014/375 026 060

014/377 010

015/000 031 TALLYHO
015/001 110 361 014

015/004 301

015/005 074 060

015/007 110 023 015

015/012 302

015/013 074 060

015/015 110 025 015

015/020 104 026 015

015/023 025 THREED
015/024 302

015/025 025 MIDPRNT
015/026 304 LSTSIG
015/027 025

015/030 066 310

015/032 056 016 RECYC
015/034 106 134 015 PRNTIT
015/037 106 151 015

015/042 074 131

015/044 150 052 014

015/047 015

015/050 074 000 LOSSTST
015/052 110 157 014

015/055 302

015/056 074 000

015/060 1116 167014

015/063 066 156

015,065 104 032 015

015/070 see Table 11 MASKTAB
015/134 307 QUTPUT
015/135 074 031

015/137 053

015/140 025

015/141 060

015/142 110 134 015

015/145 050

015/146 104 134 015

015/151 005 INPUT
015/152 340

015/153 025

015/154 005 GETNEXT
015/155 025

015/156 074 012

015/160 110 154 015

015/163 304

015/164 007

015/165 066 000 BADFELO
015/167 056 016

015 171 104 313 014

op.
CpPC
AEZ
LCI
INB
DCD
JFZ
LAB
CPI
JFZ
LAC
CPI
JFZ
JMP
RST
LAC
RST
LAE
RST
LLl
LHI
CAL
CAL
CPI
JTZ
RST
CPI
JFZ
LAC
CPI
JFZ
LLl
JMP

BLK

LAM
CPI
RTZ
RST
INL
JEZ
INH
JMP

RST
LEA
RST
RST
RST
CP!
JEZ
LAE
RE

LLt
LHI
JMP

operand commentary
is it equal to overflow code too?

TALLYHO if not then tally and continue;

0 else reset middle digit to zero

and carry into m.s. digit;

decrement score counter for tally;

MOREDEC if not zero then keep loopin;
fetch leading digit to A;

{8} is it (ASCII) zero?

THREED if not go display three digits;
fetch middle digit to A;

o) is it (ASClI) zero too?

MIDPRNT if not go display two digits;

LSTSIG if so display only one;

2 display three digits, left first;
fetch middle digit to A;

2 display two digits, left first;
fetch 1's digit;

2 display remaining digit;

L(MESS5) point to first part of you win;

H(MESS5) second part of MESS5/MESS6 pointer;

OUTPUT display the message;

INPUT fetch a character for continue

(Y query, is it "'yes"?

ASTART if so then continue game;

1 otherwise call EXIT;

0 is fringe universe all black holes?

GOTSTAR if not then continue game;

if so then test center position;
0 is center also black hole?

GOTSTAR if not then continue game;
L(MESS3) else point to loss message;
RECNE and go print loss;
036D 36 bytes of mask table;
fetch next message byte;
031 15 1t a delimiter?
return when delimiter found;
2 otherwise display byte;
point to next byte;
QUTPUT 1s 1t page boundary?
if so increment page;
OUTPUT and then recycle;
0 get next character;
save it in E;
2 echo on display;
0 get next character;
2 echo on display;
012 was it a line feed?
GETNEXT if not continue scan;
if so, restore first input;
and then return to caller;
L(MESS1) point to the error message
H(MESS1) admonishing bad ‘star’;
OUTMES and go display error;

Notation:

L(HMESS) = low order 8 bits

of address of HMESS;
H(HMESS) = high order 8 bits
of address of HMESS;
‘N’ = the ASCIl character
N

2] the decimal number 9;
7 = the octal number 7 (with

high order zeros as needed);

mnemonics are from original
8008 documentation;

Intel

octal code is shown in ascend-
ing address order top to bot-

tom, left to right;

MODEL CC-7 SPECIFICATIONS:

A. Recording Mode: Tape saturation binary.
This is not an FSK or Home type recorder.
No voice capability. No Modem.

B. Two channels (1) Clock, (2) Data. OR, Two
data channels providing four (4) tracks on
the cassette. Can also be used for NRZ,
Bi-Phase, etc.

C. Inputs: Two (2). Will accept TTY, TTL or
RS 232 digital.

D. Outputs: Two (2). Board changeable from
RS 232to TTY or TTL digital.

E. Runs at 2400 baud or less. Synchronous or
Asynchronous. Runs at 4800 baud Synchro-
nous (simple external synchronizer diagram
furnished.) Runs at 3.1"‘/sec. Speed regula-
tions + .5%.

F. Compatability: Will interface any computer
or terminal with a serial 1/0. (Altair, Sphere,
M6800, PDP8, LSI 11, etc.)

G. Other Data: (110-220 V), (5060 Hz); 2
Watts total; UL listed 955D; three wire line
cord; on/off switch; audio, meter and light
operation monitors. Remote control of mo-
tor optional. Four foot, seven conductor
remoting cable provided. Uses high grade
audio cassettes.

H. Warrantee: 90 days. All units tested at 110
and 2400 baud before shipment. Test cas-
sette with 8080 software program included.
This cassette was recorded and played back
during quality control.

ALSO AVAILABLE: MODEL CC-7A with vari-
able speed motor. Uses electronic speed control
at 4'/sec. or less,

Runs at 4800 baud Synchronous or Asynchro-
nous without external circuitry.

Recommended for quantity users who ex-
change tapes. Comes with speed adjusting tape
to set exact speed.

DIGITAL DATA RECORDER $149.95

FOR COMPUTER or TELETYPE USE
Any baud rate up to 4800

Uses the industry standard tape satura-
tion method to beat all FSK systems ten to
one. No modems or FSK decoders required.
Loads 8K of memory in 17 seconds. This
recorder, using high grade audio cassettes,
enables you to back up your computer by
loading and dumping programs and data fast
as you go, thus enabling you to get by with
less memory. Can be software controlled.

Master Charge & BankAmericard accepted.

On orders for Recorders and Kits please add
$2.00 for Shipping & Handling.
(N.J. Residents add 5% Sales Tax)

NATIONAL multiplex

CORPORATION

3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
(201) 561-3600

NOW AVAILABLE
RECORD/PLAYBACK AMPLIFIER KIT

This expanded version of our Computer
Aid board can be used with your own deck
(cassette or reel to reel). Go to 9600 baud
on reel to reel with suitable heads. Digital
in, digital out, serial format. Kit includes all
parts, case and power supply. Includes high
baud rate synchronizer. $59.95

COMING SOON — IN KIT FORM

* 1/O Board for use with Computer Aid or
other digital recorders. Variable baud rate
selectable on externally located unit by
one knob. Can load computer or accept
dumps without software, thus providing
Turnkey Operation. For any 8 bit compu-
ter.

*

Hexadecimal or Octal Keyboard — Load
programs direct from keyboards’ 20 keys
and verifying display. Does not use Com-
puter 1/0. Can be wired Octal or Hex. —
Your choice.

*

Interested in these? Send your name and
address for brochure when released.

Send One dollar for Cassette Operating and
Maintenance Manual with Schematics and
Software control data for 8080 and 6800.
Also applies to Kit above. (Postpaid)

49

