LIFE Line

by
Carl Helmers
Editor, BYTE

What Is This Process
Designing A Program?

For the readers who are
only just now beginning to
learn the programming of
computers, an elementary
acquaintance with some
machine’s language, a BASIC
interpreter, or high level
languages would tend to give
the impression that
programming is
fundamentally simple. It is!
To write a program which
fills a single page of listing —
whatever the language or
machine architecture involved
— is not a tremendously
difficult task. When it comes
to more complex projects —
say 1000 or more words of
hand or machine-generated
code on your microcomputer
— the problem is how to
preserve the blissful
innocence of simplicity in the
face of the worldly forces of

complexity.
When you begin to talk
about programs more

complex than a one page
assembly or machine code

LIFE Line 1 (BYTE #1) presented the general picture of
the LIFE program application of your computer. That picture
includes the rules of the game, methods of interactively
entering graphic data, major software components in verbal
description and some of the hardware requirements of the
game. In this installment, the discussion turns to some of the
program design for the LIFE application. The discussion starts
“at the top’’ (overall program flow) and works down to more
detailed levels of design, concentrating upon the “evolution
algorithm” which generates new patterns from old patterns.

As in the previous LIFE Line, the goal of the article series is
as much to explain and instruct as it is to elaborate upon this

one particular system. This article concentrates

on the

program design process as illustrated by a real LIFE example.

34

listing of some specialized
service routine or simple
“gimmick” program (see the
Kluge Harp article in this
issue), the complexities and
subtleties of scale begin to
enter into the programming
art. For an application such
as the LIFE program,
proceeding from the vague

notion ‘‘l want this
application” to a working
program can be done in

innumerable ways — many of
which will work quite well.
This is the first ambiguity of
scale — where do you head as
you start programming?
Unless you have a unique
parallel processing mind, you
can’t possibly concentrate on
the whole problem of
programming at once.

In order to make a big
application program work,
you have to select “bits and
pieces’”’ of the desired result,
figure out what they do and
how they fit into the big
picture, then program them
one by one. These little
pieces of the program — its
“modules” — are like the
multiple layers of stone
blocks in a pyramid. In fact,
defining what to do is very
much like the tip of some
Egyptian tyrant’s tomb in the
spring flood . . . as the murky
generalities recede, more and
more of the structure of the
program is defined and
clarified. Fig. 1 illustrates the
pyramid of abstractions at
the start of a program design
process. The top layer is clear
— a LIFE program is the
desired goal. The next layer

down is for the most part
visible through the obscuring
water. But the details of the
base of the pyramid — while
you know they have to be
there in some form — are not
at all visible at the start. The
design process moves the
logical ‘‘water level”
surrounding the pyramid
lower and lower as you figure
out more and more of the
detail content of the
program.

Start at the Top . ..

[l N EEE S8 e =]]
mentioned two major
functions which compose a
practical LIFE program —
data entry and manipulation
is one, the LIFE evolution
algorithm is the second.
Together, these functions
define the “program control”’
layer of the LIFE pyramid.
Fig. 2 is a flow chart
illustrating the program
control algorithm which is
the top level of the program
structure. Although the

diagram — and the algorithm
— are extremely simple, they

DESIGN

£

serve a very useful purpose in
the program design process:
This high level design has split
most of the programming
work into two moderately
large segments, each of which
is less complicated than the
whole program. This view of
the problem now gives us two
major components upon
which to concentrate
attention once the top level
routine is completed. The
program control algorithm of
Fig. 2, elaborated in Fig. 3, is
the “mortar” which cements
together these two blocks of
function. ;

The LIFE program s
entered by one of a number
of methods. Fig. 2 illustrates
branch or jump possibilities
from a systems program
callied: ais “ monitonsi
“executive’”’ or “operating
system” — the preferred way
once you get such a system
generated. If your system
runs “bare bones” with little
system-resident software, you
might select the starting point
and activate the program
through use of hardware

LIFE

restart mechanisms and a
front panel console.

The first module of the
LIFE application to be
entered is the KEYBOARD_
INTERPRETER, a set of

routines which is used to

define the initial content of
using

thiesL L EE L vorid

’\T,
START (JUMP OR

CALL) FROM SYSTEM
EXECUTIVE OR MONITOR, ETC.

interactive commands and the
scope display output. The
KEYBOARD INTER-
PRETER eventually will
receive a “GO’”’ command or
an “END” command from
the user — whereupon it will
return to the main routine
with the parameters “DONE”

KEYBOARD
INTERPRETER
(DEFINE DATA)

EVO

N
GENERATIONS

LVE

RETURN TO
MONITOR OR HALT

Fig. 1. Defining what to do is like
the tip of some Egyptian tyrant’s
tomb in the spring flood . . . as
the murky generalities recede
more and more of the structure
is defined and clarified . . .

and “N” defined. If “N” is
greater than zero, control
flows to the evolution process
— and “N” generations of
LIFE will be computed and
displayed as they are
completed. After the “N”
generations have been
completed, the scope display
and the LIFE grid have the
last completed results. If the
program is not ‘“DONE,”
control flows back to the
KEYBOARD_INTER-
PRETER for modification of
the data, clearing the screen
and starting over, or other
operations. If the program is
“DONE” then the control
flows back to the systems
programs — or to a halt point.

This program control
algorithm is elaborated in
more explicit detail in Fig. 3.

Fig. 2. LIFE program flow of
control.

35

Fig. 3. The main control routine of LIFE specified in a procedure-

oriented language . . .

1 LIFE

2 PROGRAM;

3 DONE = FALSE;

L DO UNTIL DONE = TRUE;

5 CALL KEYBOARD_INTERPRETER (N,DONE);
6 DO FOR T = 1 TO N;

7 CALL GENERATION;

8 END;

9 END;
10 RETURN; / * TO EXECUTIVE, MONITOR, OR JUST HALT */
11 CLOSE LIFE;

Subroutines Referenced by LIFE:

KEYBOARD INTERPRETER . .. This is the routine which
looks at the interactive keyboard and interprets user actions
such as specifying initial patterns, modifying patterns, etc. N is
defined by the GO command which causes return from this

subroutine to LIFE.

GENERATION . .. This is the routine which is used to evolve
one generation of the life matrix and display the result. Since
the entire matrix is kept in software by GENERA TION until
after a new matrix has been evolved, there will never be any
partially updated patterns on the scope.

Data (8 bit bytes) used by LIFE at this level:

FALSE — the value “0”.
TRUE — the value 1.

DONE — variable set by KEYBOARD INTERPRETER
after a user command (GO) to start execution.

N — a variable set by user interaction in KEYBOARD _
INTERPRETER giving the number of generations to evolve.

[— a temporary loop index variable.

... the problem is how
to preserve the blissful
innocence of simplicity
in the face of the wordly
forces of complexity.

36

Fig. 3 uses a ‘‘procedure-
oriented language” (see the
box accompanying this
article) to specify the
program in a more explicit
and compact form than is
possible with a flow chart.
Each line of the program as
specified in Fig. 3 could
potentially be compiled by an
appropriate compiler — but
for the purposes of most
home computer systems,
generation of code from this
model would be done by
hand. The outer loop is
performed by a “DO UNTIL”
construct starting at line 4
and extending through line 9.
The program elements found

on lines 5 to 8 are executed
over and over again until
DONE is found to be equal to
logical 1 or “TRUE” when a
test is made at the END
statement of line 9. A “DO
FOR’’ loop is wused to
sequence ‘“N” calls to a
siubiriou titnie de'aliliend
GENERATION which does
the actual work of computing
the next generation content
and then displaying it on the
scope. The remainder of Fig.
3 summarizes the data and
subroutines referenced by
EIEE:

From this point, the LIFE
Line can extend in two
directions. In order to have a
complete LIFE program,
both areas have to be
traversed — the
KEYBOARD_INTER-
PEREENEESRIENa i d= it hite
GHESNERRIASTI QRN
roluitiiinie 0 DUt e
partitioning has nicely
separated the two problems.
The simpler and most
self-contained of the two
siefoimuesnttis Shits N tilte
GENERATION algorithm, so
I’ll turn attention to it next.

Grid Scanning Strategies

The GENERATION
subroutines of the LIFE
program has as its design goal
the transformation of one

complete LIFE grid pattern
into the ‘“‘next” complete
pattern. The rules of the
Game of LIFE — the “facts
of life”” — must be applied to
each location in the grid to
compute the next value of
that location. Fig. 4
illustrates two potential
strategies for computing the
next generation — methods of
scanning the grid to compute
one location at a time.

The first strategy, Fig.
4(a), is to employ alternate
copies of a complete LIFE
grid of 64 by 64 points. If
generations are numbered
consecutively, the generation
algorithm would transform
copy A into a “next” copy in
B on odd generations, and
complete the cycle by
transforming copy B into a
“next’” copy in the A grid on
even generations. Since each
grid requires 4096 bits —
which can be packed into 512
bytes — a total of 1024 bytes
is required for data storage if
this method is used. The
primary advantages of this
method are its ‘‘straight-
forward” nature and its
separation of old and new
data at all times.

A second strategy is
illustrated in Fig. 4(b), the
strategy of using alternate
row-buffers with only one

Fig. 4. The LIFE evolution algorithm — matrix scanning techniques
which preserve relevant old information while creating new information

in overlapping storage areas.

A.

ODD GENERATIONS

EVEN GENERATIONS

MAIN GRID ROW-BUFFERS
64 x 64 64 BITS
BITS
64 BITS————— CURRENT

ADVANTAGES

1. STRAIGHTFORWARD.

2. ONLY “NEW" BITS
ARE UPDATED IN
ALTERNATE MATRIX.

DISADVANTAGES

1. TWO 512-BYTE R.A.M.
AREAS REQUIRED FOR
64 x 64 LIFE GRID.

ADVANTAGES
1. ONE 512-BYTE LIFE
GRID PLUS TWO 8-BYTE
BUFFERS.
OoLD DISADVANTAGES
1. LESS “INTUITIVE.”
2. MO'VEMENT OF DATA
TAKES TIME.
3. EXTRA CODE.

main grid copy. Two 64 bit
rows must be maintained —
the last previous row and the
current row — as 8 byte
copies. These copies contain
information prior to updating
in the row by row scan down
the matrix. The main
advantage is a saving of data
areas (partially offset by
more complicated software).
The main disadvantages are
its less “intuitive” nature, the
extra time required to make
data copies, and a slightly
larger program.

The choice between these
two methods is primarily one
of the amount of storage to
be devoted to data. The
tradeoff is in favor of the
double matrix method when
very small LIFE matrix sizes
are considered. The extra 8
bytes required for a second
copy of an 8 by 8 grid of bits
hardly compares to the
programming cost of the
alternate row-buffer strategy.
When large matrices are
considered, however, the
memory requirements of an
extra copy of the data are
considerable, but the
programming involved is no
more difficult. For example,
consider the limit of an 8 bit
indexing method — a 256 by
256 grid. This will require a
total of 8192 bytes for each
copy of the LIFE grid. Two
copies of the LIFE grid
would use up 16k bytes, or

one fourth of the addressing

space of a typical
contemporary micro-
computer, and all of the

addressing space of an 8008
microcomputer! At the 64 x
64 bit level, the tradeoff is
much closer to the break-even
point, but | expect to find at
least 100 bytes saved as a
result of using the row-buffer
method. An assumption
which is also being made
when the alternate row-buffer
method is used is that the
scope display or TV display
you use for output will have
its own refresh memory so
that the “old” pattern can be
held during computation of

An objective: Split the processing into moderately large
segments, each of which is less complicated than the program
taken as a whole.

the new. If this is not the
case, a less desirable output in
which partially updated
patterns are seen will be the
result. (Counting the CRT
refresh, the method of Fig.
4(a) thus requires three full
copies of the matrix
information, and the method
of Fig. 4(b) requires two full
copies.)

Active Area Optimization

With the choice of a
matrix scanning strategy —
the alternate row-buffer
method — another
consideration in designing the
generation algorithm is a
computation time
optimization method. There
is no real need to calculate a
new value of every cell in a
mostly empty LIFE grid. If |
only have one glider with its
corner at location (34, 27) of
the grid, why should |
compute any new generation
information outside the area
which could possibly be
affected by the present
pattern’s evolution? Again,
the savings in computation
time using active area
optimization depend upon
the size of the grid. If most
patterns occupy the full grid,
then very little will be saved
— for the small 8 x 8 grid
‘“‘straw man’’ used in
discussing scanning strategy,
there would also be no point
to active area optimization.
But with a huge 256 by 256
grid, and an 8 by 8 active
area, this optimization might
mean the difference between
a 15 minute computation and

a 1 or 2 second computation .

of the next generation.

Fig. 5 illustrates
concept of active area
optimization in a LIFE
program. The current
generation’s active area is

the

defined as the set of X and Y
limits on the extent of live
cells in the grid. In Fig. 5, the
active area is the inner square
of 7 x 7 =49 grid locations.
In computing the next
generation, a box which is
one location wider in each of
the four cardinal directions is
the ‘‘zone of possible
expansion” for the pattern.
In Fig. 5, this zone is the
outer box of 9 by 9 locations.
The computation of ‘“‘next
generation” values need only
be carried out for the 81 grid
locations bounded by the
outer limits of the zone of

Fig. 5. Active area optimization — never compute more than the
absolute minimum if speed is at a premium.

ZONE
OF POSSIBLE
EXPANSION
i —OF PATTERN
IN NEXT
=== GENERATION
@ []
[[
“Y"LIVE] (oee .
[
' 1 leelele D
PRESENT | :
ACTIVE ! 1
AREA to—uy—sl
LIVE CELL
LIMITS

possible expansion. Thus in
the case of the 64 by 64
matrix of LIFE points, this
optimization for the pattern
of Fig. 5 will limit the
program to calculation of 81
new points versus the 4096
points which would be
calculated if at least one cell
was found at each of the
minimum (0) and maximum
(63) values of the X and Y

37

The “facts of life’”’ must be applied to each location in the grid
to compute the next value — cell or no cell — of that location.

coordinates. This case yields a
savings of 98% of the
maximum generation to
generation computing time.

The GENERATION
Subroutine

Fig. 6 illustrates the code
of the GENERATION
routine, specified in a
procedure-oriented language,

Fig. 6. The GENERATION routine specified in a procedure-oriented
language . . .

1 GENERATION:

2 PROCEDURE ;
3 THIS = 0; /* INITIALIZE POINTERS TO TEMPORARY ROW */
L THAT = 1; /% COPY VARIABLE "TEMP" %/
5 DO FOR I = 0 TO 7;
6 IF NROWMIN = O THEN
7 TEMP (THAT,TI) = LIFEBITS(63,I);
8 ELSE

9 TEMP (THAT,I) = O;

10 /% THIS ESTABLISHED WRAP-AROUND BOUNDARY CONDITION */
11 END;

12 NRMIN = 09; /% THEN INITIALIZE ACTIVE AREA LIMITS */

13 NRMAX = O;

1L NCMIN = 99;

15 NCMAX = 0;

16 ROW_LOOP:

17 DO FOR TROW = NROWMIN TO NROWMAX; /% SCAN ACTIVE ROWS ONLY */

18 DO FOR I = 0 TO 7; /% COPY THIS ROW TO TEMPORARY */

19 TEMP (THIS,I) = LIFEBITS (IROW,I);

20 END;

21 DO FOR ICOL = NCOLMIN TO NCOLMAX; /* SCAN ACTIVE COLUMNS ONLY */
22 CALL FACTS_OF LIFE (IROW, TCOL)Y

23 END;

2L X = THIS;

25 THIS = THAT;

26 THAT = X; /* THIS SWITCHES BUFFERS */

27 END;

28 CALL LIMITCHECK;
29 CALL DISPLAY;

30 CLOSE GENERATION;

Subroutines Referenced by GENERATION:

EVOLVER ... This is the routine used to calculate the next
value of the ICOLth bit in the IROWth row of LIFEBITS
using the current value of the next row, the saved value in

38

along with notes on further
subroutines and data
requirements. The procedure
starts by initializing the data
used for the scan of the
matrix, in lines 3 through 15.
THIS and THAT are used to
alternately reference the O

(Subscripts, like in XPL and
PL/M are taken to run O
through the dimension minus
1.) NRMIN, NRMAX,
NCMIN, and NCMAX are
used to keep track of the new
active area limits after this
generation is computed;
NROWMIN, NROWMAX,
NCOLMIN and NCOLMAX
are originally initialized by
the KEYBOARD_INTER-
PRETER and are updated by
LIMITCHECK after each
generation is calculated —
using the new active area
limits.

and 1 copies of an 8 byte
data item called a 2 by 8 byte
data area called “TEMP”.

The actual scan of the grid
of LIFE, stored in the data
area _called <LIEEBIES," ‘s

TEMP of the previous row, and the saved value in TEMP of the
current row before updating.

LIMITCHECK . .. This is the routine used to calculate the
next values of NROWMIN, NROWMAX, NCOLMIN,
NCOLMAX using the current values of NRMIN, NRMAX,
NCMIN and NCMAX.

DISPLAY . .. This routine transfers the LIFEBITS data to the
display, on whatever kind of device you have.

Data (8 bit bytes) used by GENERATION at this level:

X = TEMPORARY

I = temporary index (not the same as the I in Fig. 3)
ICOL = index for column scanning . . .

IROW = index for row scanning . . .

NCMAX = current maximum column index of live cells
NCMIN = current minimum column index of live cells
NRMA X = current maximum row index of live cells
NRMIN = current minimum row index of live cells

Data (8 bit bytes) used by GENERATION but shared with the
whole program:
THIS = current line copy index into TEMP.
THAT = previous line copy index into TEMP.
TEMP = 2 by 8 array of bytes containing 2 64-bit rows.
NROWMIN = minimum row index of live cells.
NROWMAX = maximum row index of live cells.
NCOLMIN = minimum column index of live cells.
NCOLMAX = maximum column index of live cells.
LIFEBITS = 64 by 8 array of bytes containing 64 rows of

. 64 bits.
Assumptions:

LIFEBITS, NROWMIN, NROWMAX, NCOLMIN,
NCOLMAX are initialized in KEYBOARD INTERPRETER
for the first time prior to entry — and retain old values across
multiple executions of GENERATION thereafter.

Fig. 7. The LIMITCHECK routine specified in a procedure-oriented

language . . .

LIMITCHECK:
PROCEDURE ;

/% CALCULATE NEXT ROW LIMITS */

IF NRMIN-1 < NROWMIN THEN NROWMIN = NRMIN-1;

IF NROWMAX >63 THEN NROWMAX = 63;

IF NROWMIN < O THEN NROWMIN = O;

/% CALCULATE NEXT COLUMN LIMITS */

it
2
3
L
5 IF NRMAX+1 > NROWMAX THEN NROWMAX = NRMAX+1;
6
7
8
(o}

IF NCMIN-1 < NCOLMIN THEN NCOLMIN = NCMIN-1;

10 IF NCMAX+1 >NCOLMAX THEN NCOLMAX = NCMAX+1;

11 IF NCOLMAX > 63 THEN NCOLMAX = 63;

12 IF NCOLMIN < O THEN NCOLMIN = 0%

13 CLOSE LIMITCHECK:

Subroutines Referenced by LIMITCHECK:

None.

Data (8 bit bytes) used by LIMITCHECK but shared with the

whole program:

NCOLMAX, NCOLMIN, NROWMAX, NROWMIN

NRMAX, NRMIN, NCMAX, NCMIN

Assumptions:

(see Fig. 6)

The arithmetic of the comparisons in this routine is done
using signed two’s complement arithmetic — thus a negative
number results if O - 1 is calculated .. . this is consistent with
code generation on most 8 bit micros.

performed by the set of DO
groups beginning ‘with
ROW_ LOOP at line 16. For
each row of the matrix,
ROW_LOOP first copies the
row into TEMP as the THIS
copy (the THAT copy is left
over from initialization the
first time at lines 5 to 11, or
from the previous
ROW_LOOP iteration
thereafter). Following the
copying operation, another
DO FOR loop goes from
NCOLMIN to NCOLMAX
applying the FACTS_OF_
LIFE to each grid position in
the current (THIS) row as
saved in TEMP. New data is
stored back into 'LIFEBITS

by FACTS_OF LIFE. At
the end of the row loop, prior
to reiteration, the THIS and
THAT copies of temp are
switched by changing the
indices. What was THIS row
becomes THAT row with
respect to the next row to be
computed.

After all the rows have
been computed, line 28 is
reached. Line 28 calls
subroutine LIMITCHECK to
compute the next
generation’s active area
computation limits using the
results of this generation.
Line 29 then calls a module
named DISPLAY to copy the
results of GENERATION

into the output display
device. The LIMITCHECK
routine simply performs

comparisons and updating —
Fig. 7 illustrates the high level
language description of its
logic.

Computing The Facts of
EIFE < ..
Fig. 8 contains the

information on implementing
the Facts of LIFE in a
programmed set of
instructions. The
computation is divided into
two major parts. The first
part is to determine the
STATE of the bit being
updated, where “STATE” is a
number from 0 to 8 as
described in LIFE Line 1 last
month. The second major
step is to evolve the grid
location using its current
value and the STATE.
FACTS_OF_LIFE begins
by performing left and
bottom boundary
wrap-around checks by
adjusting indices. Lines 8 to
18 determine the current
STATE by referencing all 8
grid locations surrounding the
location being computed at
(IROW, ICOL). In
determining the state, the
subroutines TGET and LGET

Two copies of a 256 by
256 grid would require
more memory than (for
example) an 8008 can
address if you want to
have programs along
with your data.

Why should I compute any new generation information
outside the area which could possibly be affected by the
present pattern’s evolution?

Fig. 8. The FACTS_ OF LIFE routine specified in a procedure-
oriented language. FACTS OF LIFE does the actual calculation of
the next value for the LIFEBITS location at the IROW! row and
ICOLth column based upon the previous value of the 8 neighboring
locations. (The state defined in LIFE Line 1, last month.) This routine

implements the rules described in BY TE #1, page 73.

FACTS_OF LIFE:
PROCEDURE (TROW,TCOL);
‘M = IROW + 1;
IF M >63 THEN M = 0; /% BOTTOM BOUNDARY WRAP CONDITION */

1
2

3

L

5 N = ICOL - 1;
6 IF N < O THEN N = 63; /* LEFT BOUNDARY WRAP CONDITION */
7 DETERMINE_STATE:

8 STATE = TGET (THAT,N);

9 STATE = STATE + TGET (THIS,N);

10 STATE = STATE + LGET (M,N);

11 N = ICOL;

12 STATE = STATE + TGET (THAT,N);

13 STATE = STATE + LGET (M,N);

1k N = ICOL + 1;

5 IF N> 63 THEN N = 0; /* RIGHT BOUNDARY WRAP CONDITION */
16 STATE = STATE + TGET (THAT,N);

17 STATE = STATE + TGET (THIS,N);

18 STATE = STATE + LGET (M,N);

19 EVOLVEIT:

20 NEWCELL = O; /% DEFAULT EMPTY LOCATION UNLESS OTHERWISE */
21 OLDCELL = TGET (THIS, ICOL);

22 IF OLDCELL = 1 THEN DO;
23 IF STATE = 2 OR STATE = 3 THEN NEWCELL = 1;
2L END;

25 ELSE DO;

26 IF STATE = 3 THEN NEWCELL = 1;

27 END;

28 CALL LPUT (TROW, ICOL, NEWCELL);

29 IF NEWCELL = 1 THEN CALL SETLIMIT (IROW, ICOL);

30 CLOSE FACTS OF LIFE;

Subroutines Referenced by FACTS OF _LIFE:

TGET. .. This is a “function” subroutine which returns an
8 bit value (for example in an accumulator when you generate
code) of 00000001 or 00000000 depending upon whether or
not a referenced column in one of the two temporary line
copies in TEMP is 1 or O respectively. The first argument tells
which line of the two, and the second argument tells which
column (0 to 63) is to be retrieved.

LGET. .. This is a “function” subroutine which returns an
8 bit value similar to TGET, but taken instead from the bit
value at a specified row/column location of LIFEBITS.

LPUT ... This subroutine is used to set a new value into the
specified row/column location of LIFEBITS.

NOTE: The routines LGET and LPUT will be referenced from
the KEYBOARD INTERPRETER routine in the course of
manipulating data when setting up a life pattern.

SETLIMIT . .. This subroutine is used to check the current
active region limits when the result of the facts of life indicate
a live cell.

Data (8 bit bytes) used by FACTS__OF_ LIFE at this level:

IROW = Parameter passed from GENERATION.

ICOL = Parameter passed from GENERATION.

M = temporary, row index.

N = temporary, column index.

STATE = count of “on’ bits in neighborhood of IROW, ICOL.
OLDCELL = temporary copy of old cell at IROW, ICOL.
NEWCELL = new value for location IROW, ICOL.

Data (8 bit bytes) used by FACTS_ OF _ LIFE but shared with
the whole program:

THAT, THIS (see Fig. 6)

are used to reference bits in the positive cases of an “on”

TEMP and LIFEBITS (live cell) value for the grid
respectively, using location. A cell will be in the
appropriate bit location grid location for the next

indices. The values returned generation in only two cases:

What was THIS row becomes THAT row with respect to the by
next row to be computed. (What’s in a name? A pointer of

course!)

40

these two
subroutines’ are either O or 1
in all cases — thus counting
the number of “on” cells
consists of adding up all the
TGET or LGET references
required to examine
neighboring grid locations.
Once the STATE of the
grid location is determined,
the Facts of LIFE are

implemented by examining

“function

If the old content of the
location was a live cell and
the STATE is 2 or 3; or if the
old content of the location is
0 (no cell) and the STATE is
3. A default of NEWCELL =
0 covers all the other cases if
these two do not hold. Line
28 stashes the new value
away in LIFEBITS with
subroutine LPUT, and if the
new value of the grid location

Fig. 9. The SETLIMIT routine specified in a procedure-oriented
language.

SETLIMIT:
PROCEDURE (IROW,ICOL);
IF TROW < NRMIN THEN NRMIN = IROW;

IF ICOL < NCMIN THEN NCMIN = ICOL;

1

2

3

L IF IROW > NRMAX THEN NRMAX = IROW;
5

6 IF ICOL > NCMAX THEN NCMAX = ICOL;
7

CLOSE SETLIMIT;

Subroutines Referenced by SETLIMIT:
None.
Data (8 bit bytes) used by SETLIMIT at this level:

IROW = parameter passed from FACTS OF LIFE.
ICOL = parameter passed from FACTS OF LIFE.

Data (8 bit bytes) used by SETLIMIT but shared with the
whole program:

Fig. 10. The Tree of LIFE.

NRMIN, NRMAX, NCMIN, NCMAX (see Fig. 6)

is a live cell, SETLIMIT is
called (see Fig. 9) in order to
update the active area
pointers NRMAX, NRMIN,
NCMAX and NCMIN.

Where Does the LIFE
Application Stand?

An alternative to the
pyramid structure way of
viewing programming
program designs introduced
at the beginning of this article
is a “tree”’ notation showing
the heirarchy of modules in
the application. The “Tree of
LIFE” is shown in Fig. 10 as
it exists in materials printed
to date. The next installment
of LIFE Line will explore the
left hand branch of the tree
diagram by a similar
presentation of a
KEYBOARD_INTER-
PRETER algorithm.

a1

LIFE Line 2
Addendum

Procedure-Oriented Computer
Languages

The examples of programs
accompanying two articles in
thist issuehave' been
cloin s tienicitierd = nirni = a
procedure-oriented language.
This method of program
representation is compact and
complete. In principle, one
could write a compiler to
automatically translate the
programs written this way
into machine codes for some
computer. By writing the
programs in this manner,
more detail is provided than
in a flow chart, and the
program is retained in a
machine independent form.

Fehee p-airitii ¢ uliar
representation used here
resembles several languages in
The P L/lestsfamilyss iof
computer languages, but is
not intended for compilation
by any existing compiler. For
readers familiar with such
languages, you will find a
strong PL/1 influence and a
moderate XPL influence. In a
future issue BYTE will be
running articles on a language
specifically designed for
microcomputer systems,
PL/M, which is an adaptation
of the XPL language for 8-bit
machines. For the time being,
this representation is used
with some notes to aid your
understanding.

Programs and Procedures

A program is a group of
lines which extends from a
PROGRAM statement to a
matching CLOSE statement.
It is intended as the ‘“‘main
routine” of an application. A
procedure is a similar group
of lines which extends from a
PROCEDURE statement to
its CLOSE statement. A
procedure may have
parameters indicated in the
PROCEDURE statement, and

42

may be called as a
“subroutine’” from a program
or another procedure. A
procedure may be called in a
“function” sense as well, in
which case a RETURN
statement would be required
to set a value.

Data

For the purposes of these
examples, no ‘‘data
declarations” are put into the
programs to complicate the
picture. Instead, each
example has a section
following it which verbally
describes each data name
used. Only one “data type’’ is
considered at this point —
integers — and these are
generally assumed to be 8
bits.

Arrays of integers are used
in several examples. An array
is a group of bytes, starting at
the location of its address and
extending through ascending
memory addresses from the
starting point. The purpose of
an array is to reference
“elements” within the array
by “subscripts”. For these
examples, the elements are
referenced by the numbers O
through “n-1” for an array
dimension of length “n”. If
LIFEBITS is an array of 64
by 8 bytes, then
LIFEBITS(63,7) is the last
element of the last row of the
array, and LIFEBITS(L,J) is
the byte at row I, column J
provided I and J are within
the proper ranges.

Statements

A program or procedure
consists of statements which
specify what the computer
should do. In a machine
language, these would
correspond to the selected
operation codes of the
computer which is being
programmed. For a high level

language, one statement
typically represents several
machine instructions. In these
the high level language
statement has a ‘‘semantic
intent” — a definition of its
operation — which can be
translated into the lower level
machine language. In these
examples several types of
statements are employed ...

SR S RHEN = EISE 3.
constructs are used for
notation of decisions. The
first set of ellipses indicate a
condition which is to be
tested. The second set of
ellipses in the model is used
to stand for the “true part” —
a statement (or DO group)
which is to be executed if and
only if the condition is true;
the third set of ellipses is the
“false part” — a statement
which is only executed if the
condition is false. The word
ELSE and the whole false
part are often omitted if not
needed.

“CALL X is a statement
used to call a subroutine, in
its simplest form. A more
complicated form is to say
CALL X(Z) where Z is a set
of “arguments’ to be passed
to the routine. Another form
of subroutine call is the
“function reference” in an
assignment statement, where
the name of the subroutine is
used as a term in an
arithmetic expression.

“assignment” — a statement
of the form “X =Y;” is called
the assignment statement. Y
is “‘evaluated” and the result
is moved into X when the
statement is executed. If X or
Y have subscripts as in
S TEEIMEPE (RIS S ST)=
LIFEBITS(IROW,I);” then
the subscripts (such as
“THIS,I” and “IROW,I” in
the example) are used to
reference the name as an
array and pick particular
bytes.

“DO groups” — a grouping of
several statements beginning
with a “DO” statement and
running through a
corresponding “END”’ is used
to collect statements for a
logical purpose. In “DO FOR
I = 0 to 7;” this purpose is to

execute the next few
statements through the
corresponding “END;” 8

times with I ranging from 0
o SR QNN
DONE=TRUE;” 1is an
example of a group which is
repeated indefinitely until a
condition is met at the END.
“DO FOREVER’’ is a handy
way of noting a group to be
repeated over and over with
no end test, a practice often
frowned upon.

