— — aeasaeaa e
- e aamaaSa S
S

N e i

HEWLETT-PACKARD

Operating and Programming

HP System 35 Desktop Computer

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1978

N

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

]
Rt

System 35 Manual Reference

The following block diagram shows manuals that are included in the System 35 Documentation
scheme and suggested progression. Dotted-line borders indicate those manuals available with

specific options; solid borders indicate those manuals that are shipped with every System 35.

Owner's
Manual

Beginner's Guide

Preview

b Operating @ System Test
Reference Guide Program;r:r?g Manual Manual
. 1 O T I B
I Proa;anrzg:mg l I Techniques Mgnual I Proaraanmu;;mg I I Interface Manuals '
L_—-_1 L__{;___J L__U___I L

[_ Mass Storage —l [;ripheral Inslallatlc:I

I Peripheral Manuals l s and

ervice Manuals
——_——— L

Operating and Programming (09835-90000) for all users. All features of the computer and

the language are explained.

Beginner’s Guide (09835-90001) for the novice programmer. Covers the fundamentals of
programming and the BASIC language. The beginner can then progress to the Operating

and Programming Manual.

Preview (09835-90002) for the experienced BASIC programmer. A brief ‘‘demonstration” of
the System 35 to introduce the hardware and extensions of the BASIC language.

Owner’s Manual (09835-90005) for System 35 owners. Covers initial set-up, cleaning the

computer, ROMs, the tape cartridge, peripherals, and interfaces.

Reference Guide (09835-90010) for all users. A reference to general machine features and

all language syntax.

System Test (09835-90040) refer to this manual to test your computer or if there is any doubt

that it is operating properly.

Preface

This manual is designed to be used by a wide spectrum of 9835A /B users — from those who

are familiar with some type of programming to those who have programmed extensively using
the BASIC language.

In general, the various BASIC language components (statements, functions, etc.) are grouped
topically. For example, all statements and functions related to output are covered in the same
chapter. The topics are arranged logically; you could read the manual straight through if you
wanted to. As much as possible, major topics are self-contained; you don’t need to read an

entire chapter to extract one idea. In some instances, however, statements which haven’t been

introduced are used to help illustrate the topic being discussed; the statement is used
frequently in this way. It is a good idea to read the first two chapters to get acquainted with the

special features of the computer before going on to other topics.

The coverage of each statement, etc., is restricted to its syntax, rules for its usage and some

reasons for using it {covered either in text or in an example).

The example programs are not intended to be comprehensive, but to illustrate syntax and
example usage. In some cases, dots are used to highlight lines in the example programs. Due to
the volume and complexity of the 9835A /B’s capabilities, it is not feasible to delve into all of
the uses and possibilities of programming and still produce an easy-to-use and easy-to-handle

manual.

In limiting the depth of coverage in this manual, a certain'amount of previous knowledge on the
part of the reader must be assumed. It is assumed that you know how to program. Thus,
programming is not taught. Those who don’t should turn first to the Beginner’s Guide which is
supplied with the 9835A /B. The Beginner’s Guide covers the fundamentals of programming
and the BASIC language. Those of you who know how to program, but not using the BASIC
language, may also want to refer to the Beginner’s Guide for information about BASIC. The
programmers who know BASIC may want to turn to the Preview supplied with the 9835A /B to
find the hardware-oriented information which will allow you to write and run programs on the

9835A /B. The Reference Guide can be used by all users as a reference to the language.

vi

ool ooMolo

oo

Manual Summary

The summary below separates the tabbed information by chapter.

Chapter 1: General Information
Introduces you to features of the 9835A / B.

Chapter 2: Keyboard Operations

Describes most operations which don’t involve programming, including editing, special

function keys and operating modes.

Chapter 3: Mathematics

Describes basic mathematics including operators and functions and introduces variables.

Chapter 4: Programming Information

Describes programming fundamentals, program control operations and miscellaneous

statements.

Chapter 5: Using Variables

Describes all types of variables, how to dimension them and how to assign values to them.

Chapter 6: String Operations

Describes string operations and functions.

Chapter 7: Array Operations

Describes all array manipulation statements and functions.

Chapter 8: Branching and Subroutines

Covers all statements for branching and subroutines including branching using special

function keys.

Chapter 9: Subprograms

Describes the concepts and fundamentals of using subprograms.

Chapter 10: Output

Describes all output statements and functions.

Chapter 11: Mass Storage Operations

Covers all mass storage operations and specifics of the tape cartridge.

Chapter 12: Editing and Debugging

Describes program editing and tracing features.

Appendix A: HP Compatible BASIC

Lists all HP Compatible BASIC statements, functions and operators.

Appendix B: Advanced CRT Techniques

Describes the advanced printing capabilities of the CRT.

Appendix C: Foreign Characters

Describes how to access foreign characters.

Appendix D: Glossary

Lists terms which are used in the manual.

Appendix E: Reference Tables

Appendix F: Memory Organization

Describes the organization of Read / Write Memory and ways that the organization can

affect programs.

Appendix G: Error Messages

Lists numbers and meanings of mainframe and ROM errors.

vii

2@ e e .

2 & @

viii

Table of Contents

To find references to a specific item, please refer to the index in the back of the manual.

System 35 Manual Referenceo.oo oo ii
Preface e v
Manual Summary vi

Chapter 1: General Information

Introduction 1
Installation e e 1
Getting Started 2
The Keyboard. 3
The CRT (9835A) q

CRTPull-outCards i, e 5
The Display (9835B) 5
Thelnternal Printer 6
Range 6
Memory ... 7

Read/Write Memory 7

Read OnlyMemory T

Memory Loss 9
Error Messages and Warnings9

Chapter 2: Keyboard Operations

Introduction 11
9835Avs. 9835B 11
The RunLight. 11
Mode Indicators o 12
Basic Operations 12
Execting Operations 12
Simultaneous Computations e 12

Print All Mode (PRINT ALLIS) 13
Print All Printer 13
Recalling Previous Entries 14
Resetting the Computer 14

The Keyboard 15
Introduction 15
Typewriter Mode 15
Tab Capabilities 16

Settingand Using Tabs AN . 16
Clearing Tabs. GG 16

Editing on the 9835A 17
SUMMATY . 19

Controlling the 9835A CRT Display i 20

Editing on the 9835B 20
SUMMATY . . 24

Operating Modes 25
Live Keyboard 25

The Special Function Keys, e 26
Pre-defined Definitions 26
Special Features (9835A) 27
Typing Alds (EDIT KEY) 27

Defining Special Function Keys........... 27

Erasing Special FunctionKeys 35

Listing SFK Definitions 36
Chapter 3: Mathematics

Introduction 37

Keyboard Arithmetic 37
The RESult Function 38
DIV Operator e o 38
MOD Operator B 38

Arithmetic Hierarchy 39

OQutput of Numbers 40
Standard Format (STANDARD) 40
Fixed Point Format (FIXED) 41
Floating Point Format (FLOATY 42

Rounding 43

Variables 43
TyDeS . 43

Significant Digits 43

Forms . 44
Names 44
Simple NUMeErics 45
Relational Operators 46

ix

Logical Operators 47

AND Operatorso e A 47
OR Operator 47
EXOR Operator 47
NOT Operators. o L 47
Math Functions and Statements 48
General Functions 48
Logarithmic and Exponential Functions Y
Trigonometric Functions and Statements 52
Total Math Hierarchy 54
Math Errors-Recovery (DEFAULT ON) 55

Chapter 4: Programming Information

Introduction 57
Conventions and Terms 57
Programming Fundamentals 59
Program Pointer 59
Statements 60
Spacing e 61
Space DependentMode 61
Remarks 63
The REM Statement 63
Comment Delimiter 63
Line Numbering. 64
Auto Numbering (AUTO) 64
Renumbering (REN) . . 64
Listing the Program (LIST) 65
Available Memory AU 65
Alternate Printing Devices (LIST#) 65
Program Control Operations 66
Running a Program (RUN) e 66
Stepping Through a Program (GE2) 67
Pausing Execution (PAUSE,) ,,, 67
Continuing Execution (CONT,) .. 67
Terminating Execution (END, STOP, G 68
Erasing Memory (SCRATCH) 69
Interrupting a Program (ENABLE, DISABLE) 69
Priority ... 69

Miscellaneous Statements 70
The WAIT Statement170
Scrambling the Random Number Seed (RANDOMIZE) 70
The SECURE Statement _........ 71
Typewriter Mode 71

ConservingMemory O 72

Chapter 5: Using Variables

Introduction 73
Terms . 74
The LET Statement 74
Implied LET 74
Array Variables . . 75
Explicit Definition 76
Subscripts 76
Implicit Definition 77
Array Elements ... 77
Array Identifier 77
String Variables 78
SEING ATTAYS 78
String EXpressions 79
Declaring and Dimensioning Variables 80
Lower Bounds of Dimensions 80
The OPTION BASE Statement 80
The DIM Statement 81
The INTEGER Statement 82
The SHORT Statement 82
The REAL Statement 82
The COM Statement 83
Storage of Variables 84
Assigning Values to Variables e 84
READ, MAT READ and DATA Statements 85
Repositioning the DATA Pointer (RESTORE) 86
Assigning Values From the Keyboard 88
The INPUT Statement 88
The MAT INPUT Statement 89

The LINPUT Statement. 90

Xi

xii

Chapter 6: String Operations

INETOAUCHION .« o o o ot e e 93
SUBSHIINGS . - ot 93
String Concatenation (&) il 94
String Variable Modification DI 95
No Substring Specifers 96
One Substring Specifier 96
Two Substring Specifiers 98
The NUll STHNG oo 99
Special Features (9835A Only) A, 99
String FUNCHONS oo 100
Length Function (LEN) o 100
Position Function (POS) 101
Value Function (VAL) 102
VALS FUNCHON ... o 102
Character Function (CHRS) 103
Numeric Function (NUM) ... 104
Uppercase function (UPC$) 104
Lowercase Function (LWCS) e 105
Repeat Function (RPT$) 105
Reverse Function (REVS$) 106
Trim Function (TRIMS) 106
Relational Operations 107
Chapter 7: Array Operations
Introduction 109
Assigning a ConstantValue 110

1. MAT..CON .. 110

2. MAT..ZER. ... 110
3. MAT-Initialize 111
Copying an AITay 112
Mathematical Operations 113
Scalar Operations 113
Arithmetic Operations 114
Functions 116
Matrices and Vectors 117
Identity Matrix (MAT...IDN) e 117
Matrix Multiplication 117
Inverse of a Matrix (MAT.. . INV) 119

Transpose of a Matrix (MAT... TRN)

Column Sums (CSUM) ... e 121
Row Sums (RSUM) 122
Array Functions e 122
SUMFEUNCHON ... 122
ROW Function e 122
COL Functiono 123
DOT Function. ... 123
DET Function 123
Redimensioning an Array 125
The REDIM Statement 126

Chapter 8: Branching and Subroutines

Introduction 127
Unconditional Branching 128
The GOTO Statement ... i 128
The ON...GOTO Statement i 128
SUMMATY .. oo 129
Conditional Branching (IF...THEN) 130
LOODING . . o 132
Nesting 135
FOR-NEXT Loop Considerations 136
Subroutines 136
The GOSUB Statement e 136
The ON...GOSUB Statement i i, 137
SUIMMATY . . Lo 139
Defining a Function (DEF FN) 139
SUMMAIY ..o e 141
Branching Using Special Function Keys (ONKEY) 141
Priority . . 142
SUIMMALY .« oo e e 144

Chapter 9: Subprograms

Introduction 145
Types of Subprograms 146
Terms .. 146

Parameters 147
Formal Parameters 147
Pass Parameters. 147
What Happens 148

Summary e 150

xiii

Multiple-Line Function Subprograms (DEFFN) 150

Subroutine Subprograms (SUB, CALL)o 153
Subprogram Considerations 155
What Happens 155
Using the COM Statementt 156
Variable Allocation Statements 157
Local Variableso e 157
Files . .. 158
Editing .. -« 159
Busy Lineso 159

Chapter 10: Output

Introduction 161
Terms 161
Audible Output (BEEP) e 162
Displayed Output (DISP} e 162
Printed Output. 164
Defining the Standard Printer (PRINTERIS) C 164
The PRINT Statement 0 165
Output Functions o167
The TAB Function 167

The SPA Function 168

The LIN Function 169

The PAGE Function 170
Printing Arrays (MATPRINT) 170
Formatted Output (PRINT USING and IMAGE) 172
Format String 172
Delimiters 172
Blank Spaces 173
String Specification 173
Numeric Specification 174
Digit Symbols 174

Radix Symbols 176
SignSymbols.. ... 176

Digit Separator Symbols 177
ExponentSymbolo o 178
Floating Symbols 178
Replication 179
Compacted Specifier 180

Carriage Control 180

Reusing the Format String. 181
Field Overflow 181
SUMMATY .. - oo 182
Considerationso 182
Advanced Printing Techniques o 183
Overlapped Processing 183

Chapter 11: Mass Storage Operations

Introduction 185
TarmS o 186
The Standard Mass Storage Device (MASS STORAGEIS) 188
SHTUCTUTE - o 188
Files. ..o 188
Records ., 189
EOF s and EOR so o 189
Physical Records 190
End-of-File and End-of-Record Marks 190

The Directory e 191
Tape Cartridge Directory 191

Basic Operations. 192
Initializing a Mass Storage Medium (INITIALIZE) 192
Cataloging Files (CAT) 193
Storing and Retrieving Programs i 195
Data Files o 195
The SAVE Statement. 195

The GET Statemento 196

The LINK Statement - 197

The RE-SAVE Statement0 198
Program Files 198
The STORE Statement 198

The LOAD Statement 199

The RE-STORE Statement oo 199

Data . e 200
Creating a Data File (CREATE) o 200
Opening a File (ASSIGN) 201
Storing and RetrievingData 202
Serial File Access 202
Random File Access. 205
Repositioning the Pointer. 207

Random vs. Serial Method 207

XV

XV1

Storing and Retrieving Afrays 207
Determining Data Type (TYP Function) 209
Trapping EOR and EOF Conditions 209

EOR Errors e 210

Data Storage 211
Bufferinga File (BUFFER) 212
Closing a File (ASSIGN) 213
Verifying Information (CHECK READ) 213
Protecting a File (PROTECT) e e 214
Purginga File (PURGE) 214
Copying a File (COPY) 215
Renaming a File (RENAME) 215
Storing SFK Definitions 216
Binary Programs 216
Storing MeMOTYo 217
The Tape Cartridge 217
Recordingonthe Tape....................oooio 218
Write Protection 218
General Tape Cartridge Information 218
Rewindingthe Tape 219
Mass Storage Errors 219
Optimizing Tape Use 220

Chapter 12: Editing and Debugging

Program Editing (EDIT LINE) 221
Increment Value. 223
Automatic Indent 223
Inserting Lines L 223
Deleting Lines 224
Exiting the Edit LineMode 225

Debugging a Program 225
Tracing Program Logic Flow (TRACE) 226
Delayed Tracing (TRACE WAIT) 226
Tracing with PAUSE (TRACEPAUSE) 226
Tracing the Values of Variables (TRACE VARIABLES), 227
Comprehensive Tracing (TRACE ALL) 228
Cancelling Trace Operations (NORMAL) 228

Error Testing and Recovery 229

Error Functions 230

Appendix A: HP Compatible BASIC

OPperators oo e
Functions

Statements

Appendix B: Advanced CRT Techniques

CRT Memory
CRT Special Features S
Using Control Codes
Considerations
CRT Selective Addressing« oo
Introduction e
The Cursor
Adressing Schemes e
Setting the Cursor Position e
Absolute Addressing
Relative Addressing -
Combining Absolute and Relative Addressing
Moving the Cursor
UsingTabs. e

Clearing, Inserting and Deleting Lines

Inserting and Deleting Characters

Rolling the Display e 245
Selective Scrolling (Memory Lock)o o 245
Disabling Control Codes 246

Summary of Escape Codes 246
Examples 248

Appendix C: Foreign Characters AU ... 253

Appendix D: Glossary

Appendix E: Reference Tables

Reset Conditions 261
ASCII Character Codes 262
Metric Conversion Table 263
Sales and Service Offices 264

xvii

xviii

Appendix G: Error Messages

Mainframe Errors e B 269
[/0 Device Errors 273

Mass Storage ROM Errors 274
Plotter ROMErrors 274
Index . 275

Figures and Pictures

Tables

The Keyboard 3
The CRT (9835A) . . . 4
Storage and CalculatingRange6
Read/Write Memory Organization8
Variable Breakdown o 74
Record and File Structure 190
Tape Cartridge 218
Optimizing Tape Use 220
CRT-Edit LineMode 222
Memory Blocks 267
SFK Definitions at PowerOn e 26
Keycodes When Definingan SFK 32
Relational Operators 46
Truth Table 48
Default Values (DEFAULT ON) 55
SCRATCH Command 69
Storage of Variablesin Memory 84
Summary of Image Symbols (PRINTUSING)182
Letters for specifying device type (MASS STORAGEIS) 186
Return variable values (ASSIGN) 201
TYP Function Values e 209
Storage of Variables on Mass Storage Device 211
CRT Special Features — Valuesfor CHRS 236
Reset Conditions 261
ASCII Character Codes 262

Metric Conversion 263

Chapter l

General Information

Introduction

The HP 9835A /B Desktop Computer is a high speed, versatile computational and controlling
tool which you can use to perform calculations or program using the BASIC language. Internal
Read /Write memory can be expanded up to 256K bytes. A tape cartridge drive allows you to
store and retrieve programs and data. Your 9835A /B has either a CRT! (9835A) or a single-
line LED? display (9835B) for viewing information. Optionally, it also can have a 16-character

thermal strip printer for hard-copy output.

This chapter introduces some of the physical and operating characteristics of your
HP 9835A /B Desktop Computer. The keyboard, CRT or display, and memory are a few of the

subjects which are covered.

Installation

Information concerning initial set up, turn on, options and accessories can be found in the
9835A /B Owner’s Manual, HP P/ N 09835-90005.

1 Cathode Ray Tube
2 Light Emitting Diode

2 General Information

Getting Started

There are several things you should check each time you use your 9835A/B -

e If the computer is turned off, set the power switch (found on the right-hand side of the

machine) to the ‘1" position.

When one of the following displays appears, (allowing up to 30 seconds for memory test

and CRT warm-up), the computer is ready to use —

Memory failure at power on is covered in the Owner’s Manual

o If the computer is switched on, but the CRT or display is blank, hold down &3, then press
@™, This is known as the reset operation (see Chapter 2). You can also adjust the

intensity knob located on the lower right-hand side of the CRT.

If the display still remains blank, first check the power connection and the fuse, as de-
scribed in the Owner’s Manual. For further assistance, call the nearest HP Sales and

Service Office; locations are listed in Appendix E of this manual.

e Automatic Start

The 9835A /B has an automatic start capability. If a tape cartridge is present in the tape

drive at power-on, the computer automatically executes the following operation —

when the power is switched on.

The autostart routine permits the computer to load and run a supervisory program au-
tomatically, which in turn could define special function keys or load other programs

without operator instructions. The autostart routine is also performed after a power failure

(if a tape cartridge with a file named is present in the tape drive), enabling the

computer to reload and restart a program automatically. See the | statement (Chap-

operation.

General Information 3

The Keyboard

The keyboard is divided into several functional groups. This section gives a general overview of

each block of keys. Specific keys are discussed in detail throughout the manual.

o Alphanumeric Keys — This area is similar to a standard typewriter keyboard. The main
difference is that any letter is entered in upper case when that key is pressed and in lower
case when pressed with held down. For example, to enter a capital A, press @; to
enter a lower case a, hold down , then press @

o Numeric Keys — All the keys needed to enter numbers and do simple arithmetic are
located in this block. The numeric keys in the alphanumeric section of the keyboard can
also be used for the same purposes. @ is used for scientific notation, indicating that an

exponent follows.

o Special Function Keys (SFK’s) — These keys can be defined or redefined for use as
typing aids for statements, variable names or other series of keystrokes which are used
often. Many of them have pre-defined definitions. Any of the special function kays can
also be defined to have program interrupt capability (see Chapter 8 for more informa-

tion).
e Program Keys — These keys provide program listing and editing capabilities.

e Program Control Keys — These keys — the gold keys found in the alphanumeric area
and — are used to control a running program. Lines can be stored; the program can
be started or stopped. is used to execute a program one line at a time; it is located
beneath in the system keys area.

e Cursor Keys — These keys can be used to control the position of the cursor and edit the
line which is currently being entered.

o Display Keys — These keys can be used to move the cursor and roll the printout area of
the CRT on the 9835A to view all lines of output. On the 9835B, these keys can be used to

view the entire display and scroll the program while editing.

o Typing Aid Keys — These keys provide tab capability, two additional typing modes and
the capability to recall previous keyboard entries.

e System Command Keys —~ These keys provide miscellaneous system control features
like setting print all mode or rewinding the tape.

4 General Information

The CRT (9835A)

PRINT AREA LINE

PRINT AREA LINE 28
System-busy or
DISPLAY RREA run light
KEYBORRD ENTRY AREA /
KEYBORRD ENTRY AREA
SYSTEM COMMENTS AREA

\— J
T g — 7T
Pull-out cards containing/ \ m?unsstnn!ent
error messages and system Control

information

The 9835A comes equipped with a 24-functional-line by 80-character CRT (Cathode Ray
Tube) display. It is the primary means of viewing data, keyboard inputs, results, program

listings, error messages and system comments, and editing programs.

The CRT is divided into four areas while in normal mode as shown in the drawing above. Other

modes are accessed while editing a program or special function key. The four areas are —

o Printout Area — Lines 1 through 20 are similar to a printing device. When the machine is

switched on, this area is the standard system printer to which output from

’

and

’

is directed. It is also, at power-on, the print all
printer when in the print all mode; see Chapter 2.

Notice that the figure above shows 25 lines. Line 21 is a blank line and serves as a

separator only, leaving 24 functional lines.

e Display Line — Line 22 is used to display output generated by ,and any .

prompt or question mark.

o Keyboard Entry Area — Lines 23 and 24 are accessible only through keyboard inputs.
Every line that is typed in is displayed in this area. The first position in line 23 is known as
the ‘“home’’ position of the cursor. As the 148th character is keyed in, a beep indicates

that only 12 more characters can be entered.

General Information

o System Comments Line — Line 25 is reserved for error messages, mode indicators, and
E
£ JorX also appear in

the run light: . Results of keyboard operations such as 3+5

this line.

CRT brightness is controlled by the knob underneath the CRT on the right-hand side.

CRT Pull-out Cards

The four cards under the CRT serve as a handy reference for operating the 9835A. They are —
e Error Messages
e Statements
o ROM Error Messages

e About the 9835A

The Display (9835B)

The 9835B has a 32-character, 5 by 7 dot matrix display which is the primary means for
viewing keyboard entries, error messages and displays, and for editing programs. Even though
only 32 characters can be displayed at one time, up to 160 characters can be keyed in. After the
32nd character, additional characters which are keyed in cause the displayed line to shift to the
left. ©= and ©=9 can be used to view the entire display. After 148 characters are typed, a beep
indicates that only 12 more can be entered.

NOTE
Throughout this manual, references are made to various
lines of the CRT. 9835B users should interpret these to mean
the display.

6 General Information

The Internal Printer

The optional internal thermal printer is a 16-character printer which can be used for permanent
output. It is used with special blue-printout, heat-sensitive {thermal) paper. Paper is advanced
using the paper advance wheel to the right of the printer. Ordering and loading paper is

covered in the Owner’s Manual.

Range

The range of values which can be entered or stored in memory is —9.99999999999 x 10°°
through —1 x 107°°, 0, and 1 x 10~*° through 9.99999999999 x 10°°. However, the range of
intermediate calculations is —9.99999999999 x 105! through —1 x 105!, 0, and 1 x 105!
through 9.99999999999 x 10511,

Storage Range Calculating Range

Within Range Out of Range

[]

. — 511
~9.99999999999 x 109 Z 9.99999999999 x 10
—1x10-% F—1x 1051
0 0
1x10°9° N B - 1x10°"

9.99999999999 x 10°°

9.99999999999 x 105"

The extended calculation range is useful for calculations which have intermediate results out-
side the storage range, but the final result within storage range. For example
(9.2 x102 x 8.6 x 10%°) / (1 x 102%). When the first two values are multiplied, their result is
(7.912 x 10**4), This intermediate result cannot be stored, but the final result, 7.912 x 108°,

can.

General Information 7

Memory
Read/ Write Memory

The 9835A /B uses two types of memory: Read/ Write Memory and Read Only Memory
{ROM). Read / Write memory is used to store programs and data. When you store a program or
data, you ‘“‘write’’ into the memory. When you access a line of your program or a data element,
you ‘‘read” from memory, thus the term Read/Write. Read/ Write memory is temporary; it
can be changed or erased. The contents of Read / Write memory are lost when the computer is
shut off.

Programs and data in Read/Write Memory can be saved for future use by recording the

information on a tape cariridge or other storage medium.

Read/ Write Memory is available in various sizes. These options are listed in the Owner’s

Manual.

Read Only Memory

Read Only Memory differs from Read / Write Memory in that it is permanent. When the compu-
ter is turned off, the Read Only Memory is unaffected. ROMs can be inserted into one of the
drawers in the front of the machine, making it possible to expand the language and capabilities.
A small amount of Read /Write Memory is used by some plug-in ROMs. This area is called
“‘working storage’’. The working storage used by each ROM is listed in the manual for that
ROM.

8 General Information

Simplified Read / Write Memory Organization

(high addresses)

(reserved for internal use

used for Option ROM Read / Write

binary routines

calling environment execution stack

current environment execution stack

free memory
—used as needed —

buffers
SFK definitions

First subprogram symbol table

First subprogram

Main program symbol table

Main program

Value Area

Common

(low addresses)

1 This boundary is fixed at power-on.

This area is used for system configuration in-

formation — CRT vs. display, for example.

The amount used by each ROM is listed in the
manual for that ROM.

Binary routines are added to existing ones as

they are loaded into memory using i..:"

or i.i

The execution stacks contain DATA pointers,
subroutine return pointers, FOR-NEXT match-
ing, and other indicators for program execu-
tion. The current environment execution stack
also contains a program pointer to monitor
which line is being executed currently. The size
of an execution stack varies during program

execution.

Buffers for [/O and mass storage operations
use Read /Write Memory. SFK definitions use
82 bytes at power-on.

Each symbol table contains variable names,
any variable attributes (integer precision, array,
etc.), and a value pointer which points to the

value of the variable in the value area.

Each successive subprogram and its symbol
table comes “‘after” (has a higher address than)

the previous one.

Contains the values for all main and subpro-

gram variables.

Contains the values of all variables declared in

statements.

2 This information must be in Block 0; see Appendix F for more information.

General Information 9

For more information about memory organization and how it relates to programming, see

Appendix F.

Memory Loss

If your memory size seems smaller than the total amount that is installed in your machine, you

may be experiencing a partial memory loss. This condition could be detected when executing

loading a previously used program and getting an unexpected memory overflow (
though the program had fit into memory previously. Any decreases in memory size would be in
increments of approximately 8192 bytes. Should this condition occur, try turning the power
off, then on, several times, checking the memory size each time to see if it varies. Should the

problem persist, call your HP Sales and Service Office.

Error Messages and Warnings

When an error occurs, the machine beeps and displays an error number or a warning message.

The error number references a description that helps you pinpoint the cause of the error. For

example, typing in - £ | causes i1 to be displayed. %1 means divi-
sion by zero. A warning message can also appear and describes the error. For example, typing
1 to be displayed. On the 9835A, the ex-

pression is displayed in the keyboard entry area with the cursor flashing where the parenthesis

7 causes .

should be. On the 9835B, pressing returns the expression to the line with the cursor
flashing where the parenthesis should be.

If an error occurs within a running program, the machine halts and the line number where the

error occurs is displayed. For example, when 1 is executed,

A complete list of the error numbers and their meanings is given in Appendix G of this manual,
in the 9835A /B Reference Guide supplied with the 9835A /B, and also on pull-out cards 1
and 3 under the CRT of the 9835A.

10 General Information

Chapter 2
Keyboard Operations

Introduction

This chapter introduces the basic concepts of keyboard operations. How to use the keyboard,

the system command keys, the special function keys and computer operating modes are all
covered.

9835A vs. 9835B

There are differences between the 9835A and 9835B in keyboard operations. These differ-
ences are a result of the inherent differences between the CRT and the single-line display.

Throughout this manual, references are made to various lines of the CRT (*‘...is displayed in

the system comments line.”’, for example). 98358 users should interpret these to mean “‘the
display’’.

The main differences occur while keying in and editing keyboard entries and while viewing the
display. Editing on the 9835A and 9835B are discussed separately at the end of this chapter.

Other differences are discussed as they occur in the topics which follow.

N

The Run Light

While any operation (program, command, etc.) is executing, a run light is displayed. When the

operation is complete, the light goes out. On the 9835A, # is displayed on the right-hand end of
the system comments line. On the 9835B, a small red light appears in the left-hand end of the
display.

12 Keyboard Operations

Mode Indicators

Various mode indicators are used to indicate that a certain mode has been set or cancelled.
The modes are typewriter mode, space dependent mode and print all mode. Typewriter mode
and print all mode are discussed in this chapter; space dependent mode is discussed in Chapter
4.

On the 9835A, any mode indicator for print all mode remains displayed until it is replaced by
some other system message like an error message, while the indicator for typewriter or space
dependent mode remains displayed as long as the mode is set. On the 9835B, the indicator is

displayed only until another key is pressed.

Basic Operations

Executing Operations

Many keyboard operations (numeric computations, commands, and statements without line

E
numbers) are performed (executed) by typing in the operation, then pressing . For
example —

Pressing performs the operation, displays the result of a computation in the system com-
ments line and stores the operation that was executed in the recall buffer and the result in the
RESult buffer for later use. When the operation above is executed, ‘4’ is displayed, 2+2’ is
stored in the recall buffer and ‘4’ is stored in the RESult buffer.

Simultaneous Computations

Several numeric and string expressions can be entered and solved at the same time by separat-
ing each with either a comma or a semicolon. For example, if the diameter of a circle is 12 feet
(d = 12), both the area (A = wd?/4) and the circumference (C = 7d) can be found at the same

time by executing —

The result is —

More than two expressions can be solved simultaneously. The results are displayed; exces-
sively long results (greater than 80 characters) can be viewed totally by setting the print all
mode (press ®&al),

Keyboard Operations

The only difference between separating the expressions with commas or semicolons is that

semicolons cause the results to be packed together while commas leave more space between

each result. This is discussed in more detail with the

Print All Mode

The print all mode is set by pressing —

PRT ALL]

which is found in the System Keys area. i is displayed to inform you that the

print all mode is set.

In print all mode, the computer outputs to the print all printer any operations which are
executed from the keyboard, including computations, displayed results, stored program lines
and error messages. This provides a useful audit trail of previous operations for later re-

ferences — to duplicate a procedure for example. When a program is running and print all

mode is set, all display (: results, frace messages and error messages are output to the

print all device.

Print all mode is turned off by pressing again. This causes " to be

displayed.

Print All Printer
The standard print all printer is the CRT (9835A) or internal printer (9835B) when the comput-

er is turned on and after :

printer, setting the print all mode causes an [/ O error on select code 16. You must specify an

external printer as the print all printer.

The print all printer can be changed by executing the statement® —

: select code [, HP-IB device address]

The definitions of select code and HP-IB device address are found at the beginning of Chapter
4 and in Appendix D. See the 1/ O ROM or specific peripheral manual for further explanation of
HP-IB device addresses.

Here are some examples —

1The

I statement can also be programmed.

13

(=]

14 Keyboard Operations

Recalling Previous Entries

Any keyboard entry followed by , , or is stored in a recall buffer and can be

recalled into the keyboard entry area by pressing —

which is found is the Typing Aid keys area.

Entries are stored into a 350-byte (character) recall buffer on a first in, last out basis. Each time
is pressed, a previous keyboard entry is recalled. To move the other direction through the
recall buffer (recalling more recent keyboard entries), press while holding down .

When the recall buffer becomes full, each new entry causes one or more of the oldest entries,

depending on size, to be lost.

On the 9835B, you can press after errors resulting from keyboard operations to recall the

line containing the error into the display. For many errors, a flashing cursor indicates the

location of an error in the line.

Resetting the Computer

If the computer becomes inoperative due to a system or I/ O malfunction, it may need to be

reset. The computer is reset and returned to a ready state by holding down —

then pressing —

Resetting the computer immediately aborts all machine activity. The reset operation is a
hardware-oriented operation and returns peripherals and HP-IB interfaces, as well as the
computer, to a ready state. If a program is running, any pending or executing [/ O operation is

terminated and information may be lost.

NOTE
There is a finite possibility that the reset operation will cause

the entire memory to be scratched, like executing

~. The current program environment may or
may not be preserved. Use it only if nothing else, such as

pressing the STOP key, brings the machine to a ready state.

See the Reset table in Appendix E for a list of conditions affected by reset.

The Keyboard

Introduction

The typewriter-like keyboard is used to enter operations and program lines into the keyboard

entry area. Here are some facts related to keyboard operation —

o Color — In general, keys of the same color have similar functions. For example, all of the
alphanumeric keys are the same beige color. The control key affects the operation of

various keys when it is held down. The control features of these keys are indicated in
rust-colored lettering above the key.

e Spacing — In general, spaces are not important. It makes no difference, for example, if
you key in —

They are interpreted in the same way. Spacing, however, is important when using text
{characters within quotes), when printing and displaying messages and in space depend-
ent mode for program entering (see Chapter 4).

o Repetition of Keys — When a key is held down for more than a second, its operation is

repeated rapidly. This is an especially useful feature with the editing keys.

o Typing Aid Keys — A typing aid key is one that enters a BASIC keyword or other series of

keystrokes. is an example. The special function keys can be defined as typing aids.

Typewriter Mode

When is pressed, the keyboard is set to the typewriter mode. Normally, when a letter is
keyed in, it is in upper case; it appears in lower case when shifted. However, in typewriter

mode, lower case is unshifted and upper case is obtained by shifting. Typewriter mode is very

useful for entering text.

s displayed on the right-hand side of the system comments
line of the 9835A;

mode, press again.

is displayed on the 9835B. To exit typewriter
* is displayed on the 9835B.

The typewriter mode can also be set and unset within a program; for more information, see
Chapter 4.

SYSTEM
[RESET]
CONT'L PRT ALL REWIND STOP
TYPING AIDS
| TAB SET TABCLR SPC DEP |
TAB RECALL TYPW'R STEP

.U

4 4 LIST EDIT
[HOME TO EN
« > BACK FWD

Alphanumeric Keys

Keyboard Operations 15

Special Function Keys

ROGRAM
] INVERT BLINK UNDERLN
] DEL LN INS LN ko k1 ko k3 ka ks
CURSOR
D CLR>END]
] DEL CHR INS CHR ke k7 ks ko kio k11
GET LOAD SAVE STORE CAT

CLEAR SCREEN

ejejo
)@ D
oje]e
Jele]e

Vo

Program Control Keys Numeric Keys

610

e>lole]e
DEEREEG
ojojojclol

010
010
010

16 Keyboard Operations

Tab Capabilities

The keyboard has two keys used to control the position of the cursor in the keyboard entry

area.

Setting and Using Tabs
Tabs can be set at any of the 160 positions in the keyboard entry area. To set a tab at the

current position of the cursor, hold down —

then press —

TABSET

When is pressed, the cursor advances to the next tab setting. If it moves across characters
that are already keyed in, they don’t change. If no characters have been keyed in, the interven-
ing character positions are filled with spaces (blanks). If there are no further tab settings and
is pressed, the cursor moves to the 160th character position which is the last position in the

keyboard entry area; a beep occurs if the cursor was to the left of position 148 prior to the tab.

Tabs can be very useful for inserting comments at the end of program lines (see Chapter 4). By
setting a tab somewhere between columns 40 and 60, you can easily line up all of your

comments, making your program listing neat and easier to follow.

Clearing Tabs

Individual tabs can be cleared by using to move the cursor to the position to be cleared,
holding down —

then pressing —

TABCLR

Keyboard Operations

Editing on the 9835A

If you make a mistake while keying a line into the keyboard entry area, you can use the line
editing keys to change the line. This section covers editing keyboard entries on the 9835A.
Editing on the 9835B is discussed later in the chapter.

Clearing the Line

The entire keyboard entry area can be cleared by pressing —

CLEAR!
LINE

Then a new line can be keyed in.

Moving the Cursor

If a mistake is made in part of a line, the cursor can be repositioned and the mistake corrected.

Examples

For example, suppose you wanted to execute this line —

But by accident you key in —

To correct this, position the flashing cursor so it is underneath the first 2. This may be done in

any of the following ways —
o Press or = repeatedly.

o Reposition the cursor to the ‘‘home’’ position (first position in the keyboard entry area).

To do this press —

1 HOME

¢
Then press (=3 or repeatedly.

e Press = or repeatedly. When the cursor is positioned after the last character in the

line, pressing =3 or causes it to move to the home position.

1| ! indicates that the following key is shifted.

[

17

18 Keyboard Operations

When the flashing cursor is under the first 2, key in °

The resulting display would be —

with the flashing cursor under the second plus sign. Now press . The line can be executed

regardless of the position of the cursor.

As another example, suppose you wanted to change the previous line to —

First press to recall the line into the keyboard entry area. To delete the three 3’s, position
the flashing cursor so it is under the first 3. Then press three times. Notice that the cursor

remains under the last 3.

To change the line to —

position the cursor under the third 5. Now press &% This causes the insert cursor (inverse
Notice that the line shifted to the right two

video) to appear over the 5. Now type in
characters. The insert cursor is still flashing over the 5 indicating that more characters could be
inserted.

Let’s manipulate this expression —

To change it to —

5
5 CLR-END

the clear-to-end function can be used. Position the cursor under the comma, then press | ; &8,

Now move the cursor to the home position by pressing (), Press @@ then type in

S
"|‘ HOME
F
T

. Now you see —

Keyboard Operations 19

[
H

10 END
To add the zip code, the to-end function can be used. Press { i @, This positions the cursor to

F
I

the character position after the last character in the line. Now press the space bar and type in

‘. Now you see —

Summary (9835A)

In summary, the character editing keys work as follows —

Clears the keyboard entry area and the system comments line of everything except
' ') and the run light.

any mode indicators (

S
@ Clears the entire CRT of everything except any mode indicators, the run light and

any

, or " prompt.

[Moves the cursor one character position to the right. If the cursor is one position to
or the right of the last character in the line, pressing &3 or one more time moves it
to the first position in the line.

TO END

Moves the cursor to the character position immediately following the last character in

—mn—T0)

the line.
= Mouves the cursor one character position to the left. If the cursor is at the beginning of
or the line, pressing &3 or one more time moves the cursor to the character
position after the last character in the line.

HOME

Moves the cursor to the home position which is the first position in the keyboard

<zl

entry area.

Causes the insert cursor (change in inverse video mode) to appear over the character
at the position of the flashing cursor. Characters are inserted to the left of the cursor,

causing the rest of the line to move to the right. The insert character mode is exited

E
by pressing again, moving the cursor, or by pressing , , or .

D Causes the character at the position of the flashing cursor to be deleted. The cursor

remains in the same position and the rest of the line moves one position to the left as
each character is deleted.

CLR=END
@ Clears the keyboard entry area from the position of the cursor to the end. It also
clears the system comments line of everything except any mode indicators and the
run light.

20 Keyboard Operations

Controlling the 9835A CRT Display

Two keys are used to control the printout area of the CRT.

Moves (‘‘scrolls’’) the lines in the printout area up one line. If any lines are below the
displayed lines, pressing brings one line up into the bottom line of the printout

area.

S Pressing 23 causes one line, if any, above the top line in the printout area to move

into the top line; the lines all scroll down.

Editing on the 9835B

If you make a mistake while entering lines into the display, you can use the character editing

keys to change the line.

Clearing the Display
The display can be cleared by pressing —

CLEAR
LINE

then a new line can be keyed in.

Editing the Display
If a mistake is made in part of a line, the character editing and display keys —
(S

can be used to edit the display. Two flashing cursors are associated with line editing —

the replace cursor

the insert cursor

Keyboard Operations

Moving the Cursor

If a mistake is made in part of a line, the cursor can be repositioned and the mistake corrected.

Examples

For example, suppose you wanted to execute this line —

But by accident you key in —

To correct this, position the replace cursor so that it is over the first 2. This can be done in one

of the following ways —
o Press repeatedly.

o Reposition the cursor to the ““home’’ position (first position in the display). To do this,
press — 1

HOME

-l

then press repeatedly.

When the replace cursor is over the first 2, key in 3333.

The resulting display would be —

E
with the replace cursor over the second plus sign. Now press . The line can be executed

regardless of the position of the cursor.

H
1 G indicates that the following key is shifted.

21

22 Keyboard Operations

As another example, suppose you wanted to change the previous line to —

First press to recall the line into the display.

To delete the three 3’s, position the cursor so it is over the first 3. Then press three times.

To change the line to ~

position the cursor under the third 5. Now press 8 This causes the insert cursor to appear

over the 5. Now type in ! Notice the line shifted to the right two characters. The insert cursor

will still be flashing over the 5 indicating that more characters could be inserted.

Let’'s manipulate this expression —

To change it to —

& CLR=END

the clear-to-end function can be used. Position the cursor under the comma, then press { ees,

g
& HOME

(0, Press % then type in

Now move the cursor to the home position by pressing

£
|3

. Now you see —

To add the zip code, the to-end function can be used. Press @ (). This positions the cursor to

the character position after the last character in the line. Now press the space bar and type in
. Now you see —

Keyboard Operations

Moving the Display
For viewing or editing keyboard entries which are longer than 32 characters, these two keys —

=

can be used to move the line in the display to the left or right, allowing you to view a display of
up to 160 characters.

Example

For example, key in the following expression, which repeats each numerical digit eight times.

11111111 + 22222222 + 33333333 + 44444444 + 55555555 + 66666666 + 77777777 + 88888888 + 99999999

Display begins moving to the left.

mputer

useum

After the last character has been keyed in, the display looks like this —

To view any other portion of the expression, hold =3 down for a few seconds; the display is
rapidly moved to the right. When the portion of the display that you want to see is visible,
release the key. To view the end of the display, you can use &3,

The entire line can be executed at any time, regardless of the current portion being displayed ~

@

t

23

24 Keyboard Operations

Summary (9835B)

CLEAR!
LINE

10 END

41—

5 HOME
)
I

[DEL CHR

5 CLREND
)

=

Clears the display of everything except the run light.

Moves the cursor one position to the right. For a line which has just been recalled or
typed into the display, pressing causes the cursor to appear over the left-most

character visible in the display.

Moves the cursor to the character position immediately following the last character in

the line.

Moves the cursor one position to the left. If the cursor is not visible, pressing

causes the cursor to appear over the right-most character visible in the display.
Moves the cursor to the home position (the first position in the line).

Causes the insert cursor to appear over the character at the position of the flashing
cursor. Characters are inserted to the left of the cursor, causing the rest of the line to
move to the right. The insert character mode is exited by pressing again, moving

E
the cursor, or by pressing , , or .

Causes the character at the position of the flashing cursor to be deleted. The cursor
remains in the same position and the rest of the line moves one position to the left as
each character is deleted.

Clears the display from the position of the cursor to the end.

Moves the line in the display to the left, eight characters at a time.

Moves the line in the display to the right, eight characters at a time.

Keyboard Operations 25

Operating Modes
The computer can operate in any of five modes —

e Calculator mode — no program is running and the computer is awaiting inputs or calculat-
ing keyboard entries.

e Program mode — a program is running.

e Live Keyboard mode — numeric computations and most statements and commands can
be executed from the keyboard while a program is running. Program lines can be stored
also. The running program is temporarily paused while a keyboard operation is executing.

e Edit Line mode — the program in memory is being edited. See , Chapter

12.

e Edit Key mode - a Special Function Key is being defined as a typing aid. See

which is discussed near the end of this chapter.

" message may be displayed if a keyboard operation is executed while a

previous one is still executing, though some keyboard operations can overlap each other.

Live Keyboard

Live keyboard allows computations and most statements and commands to be executed from

the keyboard while a program is running. It also allows lines of a running program to be

changed by typing the new line in and pressing . You can also check the value of a variable
E

by typing in its name and pressing | { |. If execution is currently in a subprogram, you may get
an unexpected result if the variable isn’t defined in the subprogram.

To see how live keyboard works, key in, store, and run the following program —

25

While the program is running, you can use the numeric keys to balance your checkbook. Now
key in and store this line —

Live keyboard is disabled by executing the statement —

26 Keyboard Operations

While a program is running, any attempt to execute a keyboard operation or alter the program

by storing a line or executing a program control command such as i " will cause a

disabled, and

message to appear. When live keyboard is

ﬁ

are disabled as well.

Execute

and change line 20 of the previous program back to
Now run the program and try to add 2 + 2 or store a program line.

Live keyboard is re-enabled by executing the

statement —

The Special Function Keys

The special function keys (SFKs), marked kO through k11, provide a variety of uses: typing
aids for frequently used statements, commands, operations and other series of keystrokes,
program interrupting capability and, on the 9835A, accessing CRT special features. Their use

as program interrupts is discussed in Chapter 8.

Pre-defined Definitions

These keys have the following definitions at power on or after & is executed.

Key Function

INVERT " .
Inverse video mode

BLINK " . .
Blinking mode

UNDERLN " .
Underline mode

LEA

ke LINE

GET

[s)
ES)

[CLEAR!
LNE
LOAD
'CLEAR
LINE
SAVE
CLEAR
Line
STORE
CLEAR!
Ling
CAT
CLEAR

LINE

x|
o™

@
g
E
E
2

* 9835A only.

Keyboard Operations

Special Features (9835A)

The CRT special features — inverse video, blinking and underline — can be used alone or
combined. Each mode is entered by holding down &3 then pressing the specific key. For an
example of blinking, press —

BLINK
CONT "L|

then type in —

To add inverse video to blinking, press —

INVERT

and type in —

Each mode is exited by pressing and the specific key again or by pressing any of the
CLEAR keys. To get back to normal mode in the above example, press —

€D (ko) (ki)

These special features are very useful for highlighting text which is output to the CRT in
programs. For example, line 20 of the previous example could be made more ‘‘eye-catching”
by pressing &3 Cad before and after keying in 2. Make sure that the

quote marks aren’t blinking.

Typing Aids

Keys 6 through 11 are defined at power on and as typing aids so that frequently

used operations can be entered with a single key stroke. Th -se definitions are indicated below
the appropriate key.

Defining Special Function Keys

There are 32 special function keys available to be defined as typing aids. These are —
Keys 0-11

Keys 12-23 (0-11 using)
Keys 24-31 (4-11 using &3)

The initial definitions of keys 6 through 11 are not permanent, but can be edited, or erased and

redefined. These definitions were listed previously in this section.

27

28 Keyboard Operations

NOTE
The CRT special feature definitions (9835A) are permanent.

They are separate from the typing aid definitions.

To define or edit a key, execute —

"key number
or type in —

and press the key to be defined.

The computer is now in the edit key mode with the key number displayed at the top of the CRT
and any current definition displayed. On the 9835B, the key number followed by a question

mark, or any current definition, is displayed. Any keys on the keyboard, up to 70 keystrokes,
can be entered to define a particular key, with these exceptions —

m T SHIFT

In addition, the SFK itself may not be used in its own definition; this would cause an endless
recursion.

Pressing the SFK that is being defined a second time stores the definition and returns the
computer to the normal mode. Pressing it immediately after the edit key mode was entered
defines that key as null if that key had no previous definition. can be pressed at any time to

abort the editing of the key; no new definition is stored and any previous definition remains.

1 can be used to enter ©_{i1 T}

Keyboard Operations

Example

For example, let’s say you are keying in a program that has many tatements. It would

be handy to define key 0 as T, Keyin —

Then press —

Now type in —

To store the definition, press —

e

Now if you wanted to type in: =, ', four keystrokes can accomplish this —

=000

Example

One SFK definition can be used to define another. For example, say that (XD is defined —

Key 2 could by defined to be

pressing —

~ by entering the edit key mode for key 2, then

then storing the definition by pressing —

Pressing (323 now enters —

An SFK can also be defined so that it performs an operation immediately. This is accomplished

by having the last entry in the definition be one of the special terminator keys —

E
-STEP -lNS LN -DEL LNJ -ﬂinj
C

Only one of these keys can be used in a key definition and it must be the last entry in the

definition.

1 A Indicates a blank space

29

30 Keyboard Operations

Example

In the previous example, (k] is defined as =

. To define &3 as an immediate

. I, enter the edit key mode for key 3. Then

execute operation to execute

press —

ﬁ

Then store the definition by pressing —

G

Now when you press (&3, the values of Pay and H are automatically printed.

Example

As another example, say that you are writing a program which uses the above variables Pay

and H and you want the values printed many times throughout the program. By defining to
be —

o)

the entire line - I can be automatically stored after a line number by pressing

key 4 following a line number.

If two or more SFKs that each contain a terminator key as part of their definition are used to

define another SFK, execution stops with the first terminator key.

Example

For example, suppose key 12, key 13 and key 14 are defined as follows —

Pressing key 14 results in —

iz

Keyboard Operations

The character editing keys —
=

can be used to edit an SFK definition, or can be entered as part of an SFK definition. They must
be pressed while is held down to be entered as part of the key definition.

Example

For example, to change the previous definition of (3, |

first enter the edit key mode for & which was defined as

is displayed. Press &3 or (9835A only) 6 times to position the cursor under the P. Now
type in —

To delete the T, press @8,

To store the new definition, press —

The definition of key 2 is automatically altered because key 0 is part of its definition.

Example

“ can be

L]

Here’s an example of using in a key definition. The definition of key 0, |
changed to include quote marks and an insert cursor so that only the text need be entered into
the display statement. Enter the edit key mode for key 0. Key in two quote marks, then hold
down and press (or &3 on the 9835A) and &, Now press key O to store the
definition.

Now you can press key 0, type in the text you wish to display, and execute or store the line.

Many of the keys on the keyboard do not have a directly printable character, but instead cause
some action to occur when pressed. To represent these keys in the edit key mode, each key has

a unique keycode which is displayed on a separate line. The keycodes are —

31

32 Keyboard Operations

Key Keycode
TAB Tab
TABSET
Tab set
TABCLR
Tab clear
Recall
SPC DEP
Space dep
STEP Step
AT AL Print all
Rewind

ot

ONT®

LIST

EDIT

<) = =) = S &)
=1 Z m =1
- © I =
5 - - =
= z z = = =

»

ME

-
o]z
»|o

8 10 END
|

oz

3 CLR=END
i

STORE

Down arrow

Up arrow

Fwd (9835A); Right arrow (9835B)
Back (9835A); Left arrow {9835B)
List

Edit

Del line

Ins line

Back

Home

Fwd

To end

Del char

Clear to end

Ins char

Clear line

Run

Store

Pause

Keyboard Operations

Key Keycode

Continue

Execute
Result

INVERT

omxm

Inverse Video (9835A); Undefined (9835B)
Blink (9835A); Undefined (9835B)

@D T Underline (9835A); Undefined (9835B)
Undefined

thru Key 24 thru Key 31 Pr-Computer
@ thru Key 12 thru Key 23 ;‘Mus'eum
thru &0 Key O thru Key 11

When any of these keys is pressed for part of an SFK definition, the previous parts of the
definition roll up on 9835A; the keycode for the key just pressed appears on the line above the

cursor, with the cursor in the entry area ready for another key.

When editing keycodes on the 98354, the editing keys 3 (0 (@) &) @5 83 appear to
have a slightly different function. Using &3 or to move the cursor back into previously
defined parts causes the display to roll down. (=3 causes it to roll up. allows keystrokes to
be inserted above (before) a keycode entry.

33

34 Keyboard Operations

Example

For example, let’s say you wanted to define to set three tabs each three spaces apart but
defined it to be —

¢ and delete one of the last four i+ ¢

To change the 7

do the following —

Enter the edit key mode for G&. The flashing cursor will be in the line under the last 7
.. Now press —

= or @D

10 times to position ~ in the cursor line. Now hold down —

[CONT 'L

then press —
TAB SET
To delete a press —
3 or

four times to position a *

+in the cursor line. Now press —

to delete that entry.

Finally, press

Keyboard Operations

When editing key codes on the 9835B, =3 and (=3 move the display eight keystrokes, while

and move the cursor from one keycode to the next.

Remember, a maximum of 70 keystrokes can be used to define an SFK.

HINT
If you press a defined SFK and get an unexpected
"message, check the shift lock key.

Erasing Special Function Keys

To erase a specified key definition, type in —

(or press if it still has its power-on definition) then press the key you wish to erase.

To erase the typing aid definitions of all special function keys, execute —

Erasing all SFK definitions adds 82 bytes to the power-on value of space available in
Read / Write Memory, since the initial SFK definitions use 82 bytes.

35

36

Keyboard Operations

Listing SFK definitions

All or selected SFK typing aid definitions can be listed. Executing this command —

causes all typing aid definitions to be listed on the standard printer. (see !
Chapter 10). To specify a different device on which the listing is to occur, execute —

select code [, HP-IB device address]

A single key can be listed by executing —

#select code [, HP-IB device address];] SFK number
or

Here are some examples of ..

Chapter 3
Mathematics

Introduction

This chapter covers the concepts related to mathematics on the 9835A /B. This includes

keyboard arithmetic, number formats for output, operators, functions, math errors and vari-
ables.

While reading this chapter, remember that all of the statements and functions described here
can also be programmed.

Keyboard Arithmetic

The arithmetic operations that can be performed on the 9835A /B are addition (+), subtraction

), multiplication (), division (.”), exponentiation (-~ or : is listed -), integer division
), and modulo

To perform an arithmetic operation, such as 8 * 2, first you key in the expression —

E
@ . Then press ; 1 is displayed. Note that an operation such as 8% must appear
with parentheses as &« {3 |

If you execute an operation that has a large result, such as 608000 * 90000000 the result is

automatically displayed in scientific notation with 11 digits to the right of the decimal

There’s more about number formats later in this chapter.

38

Mathematics

The RESult Function

The value which is displayed after pressing the execute key is stored in a location called the

“RESult” buffer. It is obtained for use in subsequent calculations by pressing or keying in

' ' @ a =
EEEOO0H
PEEOOEN

Omxm

DIV Operator
The

‘ (integer division) operator returns the integer portion of the quotient. For example —

The following formula illustrates how

Omxm

7 is calculated —

MOD Operator

. For example —

Mathematics

Arithmetic Hierarchy

When an expression has more than one arithmetic operation, the order in which the computer
performs the operations depends on the following hierarchy —

exponentiation performed first

Modulo, integer divide,
multiplication and division

addition and subtraction performed last

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator to the right has a higher priority, then that operator is compared to the next
operator on its right. This continues until an operator of equal or lower priority is encoun-
tered: the highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right.

This comparison continues until the entire expression is evaluated.

Parentheses can be used to alter the hierarchy just described. When parentheses are used, they

take highest priority. When parentheses are nested, like < t 1, the innermost quan-

1is evaluated first. For example, here’s the order of execution in solving the expres-

tity ©:

sion —

multiplication
evaluate parentheses
exponentiation
division

addition

result

Whenever you are in doubt as to the order of execution for any expression, use parentheses to
indicate the order.

‘

Using parentheses for ‘‘implied’”’ multiplication is not allowed. So 4(5 — 2) must appear as

1. The operator, *, must be used to specify explicit multiplication.

39

40 Mathematics

Output of Numbers

Three formats are available for displaying and printing numbers: standard, fixed point, and

floating point (scientific notation). Standard format is automatically set when the machine is

switched on. Reset and i also return the computer to standard format when

executed. The format can be changed to fixed or floating point by executing the ¢ for

tatement returns the machine to standard

statements. Executing the =

format.

All numbérs are output with a trailing blank and a leading blank or minus sign.

Standard Format

The standard format is convenient for most computations since results appear in an easy-to-

read form. Remember, standard format is set at power on and : -, To reset stan-

dard format after a | statement was executed, execute the :

statement —

In standard format, all significant digits of a number are output up to a maximum of twelve. For
example, 9876543210.12345 is output as *

Excess zeros to the right of the decimal point are suppressed; for example, 32.100000 would be

output as

. 1. Leading zeros are truncated; for example 00223 is output

All numbers whose absolute values are greater than or equal to 1, but less than 10! are output
in fixed format showing all significant digits. Numbers between —1 and 1 are also output in
fixed format if they can be represented precisely in twelve or fewer digits to the right of the
decimal point. All other numbers are output in scientific notation. The form is the same as
FLOAT 11. See the ¢

“statement which is discussed later in this chapter.

Mathematics

Fixed Point Format

With fixed point, you can specify the number of digits you want to appear to the right of the

decimal point. For example, specifying two digits to the right of the decimal point would be

useful for output of dollar and cent values. The ¥ statement sets fixed point format —

number of digits

The number of digits parameter is a numeric expression and is rounded to an integer to specify

the number of digits to the right of the decimal point. Its range is 0 through 12. For example, set

* format —

HOXEE®O

Now execute 8.7 —

®OOH

But if you set ©

~CoMmputer
- sMuseum

&1 format —

EOREEED :

and execute 8.7 —

omxm

Notice that the number is rounded to the specified format. Also notice that the decimal point is

suppressed in |

When fixed point is set and the absolute value of the number to be output is greater than or
equal to 1E12 or would require more than 17 digits to represent it, the format temporarily
reverts to floating point. For example, in FIXED 12, 100 000 is output at !

41

42 Mathematics

Floating Point Format

When working with very large or very small numbers, the floating point format is most con-

venient. The ¥

statement sets this format —

number of digits

The number of digits parameter is a numeric expression and is rounded to an integer to specify

the number of digits to the right of the decimal point. Its range is O through 11.

A number output in floating point format has the form —

+d.d...dExdd

o The leftmost non-zero digit of a number is the first digit output. If the number is negative,

a minus sign precedes this digit; if the number is positive or zero, a space precedes this

digit.

e A decimal point follows the first digit, except in !

e Some digits may follow the decimal point; the number of digits is determined by the

specified floating point format.

e Then the character E appears followed by a plus sign or minus sign and two digits. This is

the exponent, representing a positive or negative power of ten. The exponent represents

the power of 10 by which the mantissa should be multiplied in order to express the

number in fixed point format.

Here are some numbers and how they are output in various modes —

Number

Standard

Examples

FIXED 4

FLOAT 3

15.00
.0547A9
—.000006
2.75327
271
2.4E78

Mathematics 43

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of
the decimal point than the number format allows. In either case, the rounding is performed as
follows: The first excess digit on the right is checked. If its value is 5 or greater, the digit to the
left is incremented (rounded up) by one; otherwise it is unchanged. In either case, the number
remains unchanged internally. For example —

Now execute

Variables

Algebraic formulas usually contain names which represent an assigned value. These names are
known as variables and, with the 9835A /B, specify a location in memory where a value is
stored. For instance, the formula for the area of a circle, A = 7R?, uses two variables, A and R.

To use the formula, you assign a value to R (radius) to solve for A.

Types
There are four types of variables available with the 9835A /B —
e Full precision numeric variables
e Short precision numeric variables
e Integer precision numeric variables
e String variables (string of characters)
Significant Digits
Significant digits are those which determine the internal accuracy with which a numeric variable
is represented. The number format for output has no effect on this. The amount of memory

each type of variable uses is discussed in Chapter 5 . All numbers are full precision unless

otherwise specified using a

statement; see Chapter 5. Any excess
digits input are truncated when the number is stored in memory. For example,
12345678912365 is represented internally with 123456789123 in the mantissa.

44 Mathematics

Here are the three types of numeric variables —

o Full (real) precision variables are represented internally with twelve significant digits and

an exponent in the range —99 through 99.

e Short precision variables are represented internally with six significant digits and an expo-

nent in the range —63 through 63.
e Integer precision variables have no digits following the decimal point. The range of integer

precision numbers is —32768 through 32767.

Short and integer precision variables are useful for conserving memory. All calculations are
performed with full ~precision accuracy, so short and integer precision numbers are converted

before and after an operation.

Forms

There are two forms that any type of variable may have. (See Chapter 5 for more information.)
o Simple (Nonsubscripted)

e Array

Names

All variables must have a name. Names must follow these rules —
o A name has between 1 and 15 characters.
o The first character must be a capital letter.

¢ The remaining characters must be lowercase letters, digits, or the underscore character

obtained by pressing .

e String names must be followed by # (dollar sign).

Mathematics 45

Here are some examples of variable names —

Any name can be used simultaneously for a simple numeric, simple string, numeric array and
string array.

Simple Numerics

This section introduces you to using simple numeric variables from the keyboard. String and
array variables are fully described in Chapter 5.

Variables are assigned values using an equals sign to create an assignment statement. For
example, to assign 150 to Owed and 25 to Payment, enter —

Now that some variables have assigned values, they can be used in place of numbers in math
calculations —

E
To check the current value of a variable, just type in its name, then press . For example —

If you do this while a program is running (see Live Keyboard, Chapter 2), you may get an
unexpected answer if execution is currently in a subprogram.

©

46 Mathematics

Relational Operators

Relational operators are used to determine the value relationship between two expressions.

This can be especially useful for program branching if a specified condition is true. See the

statement in Chapter 8.

Operator Meaning

Equal to

Less than

Greater than

Less than or equal to

Fe Greater than or equal to

s or # Not equal to (either form is acceptable; it is listed < >)

The result of a relational operation is either a 1 (if the relation is true) or a O (if it is false). Thus,
if A is less than B, then the relational expression A <=B is true and results in a value of 1. All

comparisons are made on all significant digits, signs and exponents.

The equals sign is also used in the assignment statement, as shown earlier in the chapter. In an
assignment statement, the variable is to the left of the equals sign, the value is to the right. If the

equals sign is used in such a way that it might be either an assignment or relational operation,

the computer assumes that it is an assignment operation. For example,
valueof Zto Xand Y. : = to X.

assigns the

" i assigns the result of the operation ™

Examples

Here are some examples of relational operations. First let’s assign values to the variables A and

B. Execute —

Assigns the value O to C

Mathematics

Logical Operators

The logical operators

< (exclusive or) and I" are useful for evaluating
Boolean expressions. Any value other than 0 (false) is evaluated as true. The result of a logical

operation is either 0 or 1. Logical operators are especially useful in determining whether or not

AND Operator

numeric expression numeric expression

compares two expressions. If both expressions are true, the result is true (1). If one or

both of the expressions is false, the result is false (0).

OR Operator

numeric expression i numeric expression

compares two expressions. If one or both of the expressions is true, the result is true (1). If

neither expression is true, the result is false (0).

EXOR Operator

numeric expression

numeric expression

{(exclusive or) compares two expressions. If only one of the expressions is true, the

result is true (1). If both are true, or both are false, the result is false (0).

NOT Operator

" numeric expression

returns the opposite of the logical value of an expression. If the expression is true
(non-zero), the result is false. If the expression is false (zero), the result is true (1).

The expressions used with logical operators can be either relational or non-relational. If the

, its true or false designation is determined by the particu-
lar relational value. If the expression is non-relational (like), it is true if its arithmetic value is

any value other than 0; it is false if its arithmetic value equals 0.

47

48 Mathematics

Examples

Here are some examples of logical operations. First assign values to X and Y. Execute —

Here’s a truth table summarizing logical operations —

A l B | A AND B AORB AEXORB NOT A NOTB
T T 1 1 0 0 0
T F 0 1 1 0 1
F T 0 1 1 1 0
F F 0 0 0 1 1

Math Functions and Statements

Math functions available on the 9835A /B are explained in this section. Parentheses must
enclose the numeric expression used as the argument of the function if it contains any
operators. For example, SINA+B does not equal SIN(A+B). Parentheses enclose the expres-

sion when listed. Examples of two functions are combined in some cases.

General Functions

3 numeric expression Returns the absolute value of the expression.

Mathematics
inumeric ex- The digit round function returns the numeric expression
pression. number of signifi- rounded to the specified number of significant digits. The

cant digits number of significant digits parameter is rounded to an in-

teger. If the specified number of digits is greater than 12, no
rounding takes place. If it is less than one, O is returned.

is useful for checking equality to a specified
number of digits.

- Computer
aMuseum

. numeric expression Returns the fractional part of the evaluated expression. It is

defined by this formula: expression — expression.
" numeric expression The integer function returns the greatest integer which is less
than or equal to the evaluated expression.
‘list of numeric ex- The maximum function returns the greatest value in the list.

pressions

49

50 Mathematics

list of numeric ex- The minimum function returns the smallest value in the list.
pressions !

St
S
i

Returns the value of . It is represented internally as
3.1415926536.

inumeric ex- The power-of-ten round function returns the numeric expres-
pression, power-of-ten posi- sion rounded to the specified power-of-ten position. Specify-
tion ! ing —2 is useful for output of money values.

Mathematics 51

Returns the result of the last numeric computation which was

executed from the keyboard.

The random number function returns a pseudo random
number greater than or equal to 0 and less than 1. The ran-

dom number is based on a seed set to /180 at power on,

and Each succeeding use of

reset,

returns a random number which uses the previous one

as a seed. The seed can be modified using the

statement which is described at the end of Chapter 4.

numeric expression The sign function returns a 1 if the expression is positive, O if

itis 0 and —1 if it is negative.

numeric expression The square root function returns the square root of a non-

negative expression.

52 Mathematics

Logarithmic and Exponential Functions

umeric expression The exponential function returns the value of the constant
Napierian e (= 2.71828182846 to twelve place accuracy)

raised to the power of the computed expression.

" numeric expression The common log function returns the logarithm (base 10) of a

positive valued expression.

i numeric expression The natural log function returns the logarithm (base e) of a

positive valued expression.

Trignometric Functions and Statements

The trigonometric functions use the angular unit mode: degrees, radians, or grads, which is

currently set. A trigonometric statement is used to set the angular unit mode.

Radian mode is automatically set at power on, or when

or reset is
executed.

Degree Mode

To set degree mode, execute —

A degree is 1/360th of a circle.

Grad Mode

To set grad mode, execute —

A grad is 1/400th of a circle.

Radian Mode

To reset radian mode, execute —

There are 27 radians in a circle.

Functions

numeric expression

umeric expression

numeric expression

numeric expression

numeric expression

numeric expression

Mathematics

Returns the principal value of the arccosine of the expression
in current angular units. The expression must be in the range
—1 through +1.

Returns the principal value of the arcsine of the expression in
current angular units. The expression must be in the range
—1 through +1.

Returns the principal value of the arctangent of the expres-

sion in current angular units.

Returns the cosine of the angle represented by the expression

in current angular units.

Returns the sine of the angle represented by the expression in

current angular units.

Returns the tangent of the angle represented by the expres-

sion in current angular units.

54

Mathematics

Total Math Hierarchy

The order of execution for all mathematical operations is shown here.

Highest Priority 1 parentheses
Functions

- (exponentiation)

unary minus)

All relational operators (=, =, », »= <= < or #)

Lowest Priority

Remember that the order of execution for operations of the same priority level is from left to

right, except when parentheses are used; operations within parentheses are executed first.

Mathematics

Math Errors-Recovery

Many math errors occur due to an improper argument or overflow; if a program is running,
execution halts. It is possible to make some of these errors non-fatal so that execution doesn’t
halt by providing a default value for the number which is out of range. The default values are

enabled by executing the

The errors and default values are —

Error (Number) Default Value

Integer precision overflow (20) 32767 or —32768
Short precision overflow (21) + or — 9.99999E63
Full precision overflow (22) + or — 9.99999999999E99
Intermediate result overflow (23) + or —9.99999999999E511
TAN(N * P1/2), N:odd integer (24) 9.99999999999E511
Zero to negative power (26) 9.99999999999E511
LGT or LOG of zero (29) —9.99999999999E511
Division by zero (31) + or — 9.99999999999E511
XMODY, Y=0(31) 0

Using default values may alter the results of computations; be aware of this when using them.

Default values are disabled by executing the I statement —

"is set at power on, reset,

and

55

56 Mathematics

Chapter 4

Programming Information

Introduction

An enhanced form of the BASIC language is used in the 9835A /B. This chapter discusses the
fundamentals of programming as they relate to the computer and to program control. If you are
unfamiliar with programming, the Beginner’s Guide contains fundamental information on how
to program the 9835A /B using the BASIC language.

Conventions and Terms

The following conventions and terms are used in the statement and command descriptions
found in this manual.

= — All items in dot matrix must appear exactly as shown.
] — Items within square brackets are optional unless the brackets are in dot matrix.

... — Three dots indicate that the previous item can be repeated.

| — A vertical line between two parameters means ‘‘or’’; only one of the two parameters can be
included.

/ — A slash between two parameters means ‘‘and /or’’; either or both of the parameters can
be included.

Statement — Statements are instructions to the computer telling it what to do while a program
is running. A statement can be preceded by a line number, stored and executed from a

program. Most statements can also be executed from the keyboard without a line
number.

Command — A command is also an instruction to the computer which is executed from the
keyboard. Commands are executed immediately, do not have line numbers and can’t
be used in a program. They are used to manipulate programs and for utility purposes,
such as listing key definitions.

58 Programming Information

Constant — A constant is a fixed numeric value within the range of the 9835A /B; for example

Character — A letter, number, symbol or ASCII control code; any arbitrary 8-bit byte defined
by the i

function.

Text — Any combination of characters; for example . Text can be quoted (literal) or

unquoted.

Name — A capital letter followed by O through 14 lowercase letters, digits or the underscore
character. Names are used for variable names, labels, function names, and subpro-

grams.

Line number — An integer from 1 through 9999. In most cases, when a line number is

specified, but is not in memory, the next highest line is accessed.

Label — A unique name given to a program line. It follows the line number and is followed by a

colon.

Line Identifier — A program line can be identified either by its line number

its label, if any

Program Segment — The main program and each subprogram are known as program seg-

ments.

Numeric Expression — A numeric expression is a logical combination of variables, constants,
operators, functions, including user-defined functions, grouped within parentheses
if needed.

Select Code — An expression (rounded to an integer) in the range zero through sixteen which
specifies a setting on an interface card to an 1/ 0 device. The following select codes are

reserved and can’t be set on an interface —
e 0 Optional internal thermal printer
e 15 Tape cartridge
e 16 CRT (9835A only); Optional Internal printer (9835B)

HP-IB Device Address — An expression which specifies the HP-IB address that is set on a
device. Its range is O through 30.

Programming Information 59

Programming Fundamentals

A program is a set of instructions to the computer — an organized set of statements. It is
ordered by line numbers; each statement in a program must be preceded by a unique line

number. Remember these points while writing and entering programs —

e Line numbers are arranged in ascending order. However, you can type main program
lines in any order because lines are automatically sorted as they are stored. Line numbers
1 through 9999 are allowed. Methods for entering line numbers are covered in the section

on Line Numbering later in this chapter.

e Each line number can be followed by a unique label — this is optional. A label is a name

and must be followed by a colon. For example —

- Comppter
:;.%Museum

= is the label.

e The line number and the label are both known as the line identifiers for that line. In
branching to line 50 above, both — @

and

would accomplish the same thing.

e Program lines can be up to 160 characters long including the line number. After each line

is typed in, it is entered into memory by pressing . Pressing also causes the line
to be checked for syntax errors before it is stored.

e Normal program execution proceeds from the lowest-numbered line to the highest-
numbered line. The order of execution can be altered, however; see Chapter 8 on Branch-

ing.

e Space dependent mode (covered later in this chapter) and edit line mode (covered in
Chapter 12) can be used to make program entering easier. Refer to those topics for more

information.

Program Pointer

While a program is running, an internal program pointer monitors which line is being executed.

60 Programming Information

Statements

Programs are made up of statements. Statements are instructions to the computer that can be
assigned a line number, stored, and executed from a program. Each statement contains one or
more keywords which have a special meaning in the BASIC language. They identify operations
to be performed or the type of information contained in a statement. Here are some examples

of keywords —

(secondary keyword)

Most statements can also be executed from the keyboard without a line number. Exceptions are

noted.

Statements are either executable or declaratory. A declaratory statement is part of a program
and is used to give the computer information it will need to execute other statements in the
program. Following is a list of declaratory statements. Each statement is described later in this

manual.

Programming Information

Spacing

In general, spacing between characters is arbitrary; the computer automatically sets proper

spacing into each line as it is stored into memory. Only in text, statements, comments,
and blanks after line numbers and labels does spacing remain exactly as input. These blanks

allow lines to be indented.

Space Dependent Mode

The space dependent mode is very useful for keying in a program that has long variable names.
It causes spaces, or lack of them, between parts of a statement to become significant when
entering program lines. In space dependent mode, variables, subprogram names and labels can
be typed in all capital letters or in any combination of upper and lower case, as long as the first
letter is upper case. Keywords must be separated from other parts of the statement by one or

more blanks or by a delimiter like a comma or a #.

Here are some rules to follow when entering programs in space dependent mode —

e Any variable name that is the same as a secondary keyword (e.g. function, logical

operator, !) cannot be entered in all capital letters.

e The label of a line that is the same as any keyword cannot be entered in all capital letters.

However, when referenced, as in a statement, it can be entered in all capital

letters, except after

e The first variable in an implied statement cannot be entered in all capital letters if it

is the same as a keyword. This is also the case if the implied

Example

For example, in space dependent mode, trying to store —

gives an message with the flashing cursor under the . The

computer is interpreting this as an assignment statement assigning the value 1 to the variable

61

62 Programming Information

Space dependent mode is entered by holding down —

then pressing —

SPC DEP

The words
of the 9835A. On the 98358,

"appear on the right hand side of the system comments line

is displayed.

When a program is listed after it was typed in space dependent mode, all names are converted

to their normal spelling: capital letter followed by lower case.

To exit the space dependent mode, hold down —

then press -
SPC DEP
again.
Example

Here is an example of how a program line may be typed in normal and space dependent

modes —

Normal Mode —

Space Dependent Mode —

Both list identically —

Space dependent and typewriter modes are mutually exclusive — if one is entered while the

other is in effect, the new one cancels the old.

Programming Information

Remarks

Many times you may want to insert comments in order to make your program logic easier to

follow. This can be done by using the T (remark) statement or the comment delimiter .

The REM Statement

i [any combination of characters]

Remarks can be used to explain program lines or set off program segments. For example —

Comment Delimiter

', the comment delimiter, can be anywhere in a program line after the line number. If it is

immediately following the line number, it is just like a il statement. All characters following
a ' are considered part of a comment unless the ! is within quotes. The comment delimiter can

also follow a command.

In this way, program lines and commands can contain comments. For example —

63

64 Programming Information

Line Numbering

There are three methods that can be used to enter line numbers. The first is to manually type in
the line number before the statement. A second method is to use edit line mode (see Chapter

icommand. A

12) to generate numbers as lines are stored. The third way is to use the !

program can also be renumbered.

Auto Numbering
The |

stored. This saves you from having to type the line number each time you key in a statement.

command allows lines to be numbered automatically as they are entered and

_t [beginning line number [, increment value]]

If neither parameter is specified, executing I causes line numbering to begin with 10 and
to be incremented by 10 as lines are stored. If only the beginning line number is specified, the
increment between line numbers is 10. Both the line number and the increment values must be

positive integers. Here are some examples —

Renumbering

[beginning line number [, increment value]]

The renumber command causes the program in memory to be renumbered. This allows you to
insert lines or add more lines at the end. If no parameters are specified, the program is renum-
bered so that line numbering begins with 10 and is incremented by 10. If only the beginning

line number is specified, the increment is 10. Here are some examples —

When a program is renumbered, all line references for example) in the program

are automatically adjusted to reflect the new line numbers.

Programming Information 65

Listing the Program

The !

program in memory. The listing is output on the device specified as the standard printer (see
: 15, Chapter 10).

" command is used to obtain a printed listing of the program or section of the

T [beginning line identifier [, ending line identifier]]

If no parameters are specified, the entire program is listed. If one line identifier is specified, the
program is listed from that line to the end. If two line identifiers are specified, that segment of

the program, including beginning and ending lines, is listed.

Here are some examples —

Available Memory

When the listing is complete, the amount of unused memory available for use is displayed in the

system comments line. So if you execute —

then —

the number that is displayed is the total memory available for your use. This memory is
expressed in bytes.

Alternate Printing Devices

The |

the select code of the alternate device.

‘command can be directed to a device other than the standard printer by specifying

select code [, HP-IB device address][; beginning line identifier [. ending line
identifier]]

Here are some examples —

66 Programming Information

Program Control Operations

Running A Program

Program execution can be started by pressing —

or executing the command —

[line identifier]

The line identifier must be in the main program and specifies that execution is to begin at that

line; if no line is specified, execution begins with the first line in memory.

Here are some examples —

causes a short pre-run initialization to occur which clears or resets the following items —
e Variables

e Files table (see Chapter 11)

e DATA pointers (see Chapter 5)

e Subroutine return pointers (see Chapter 8)

“and (see Chapters 8 and 11)
e Radian mode (see Chapter 3)

e Random number seed (see Chapter 3)

..and (see Chapter 12)

e ENABLE (see Chapter 4)
During the pre-run initialization, doubly defined labels and statements defined in ROMs which
aren’t present are detected and a warning message is given. However, functions defined in

ROMs which aren’t present are not detected.

After the pre-run phase, the program is executed.

Programming Information

Stepping Through A Program

A program can also be run or continued by pressing ~

When is used, the program is executed one line at a time as is pressed. The next line
to be executed is displayed in the system comments line. When using to run a program
from the beginning, a pre-run initialization takes place the first time it is pressed. Pressing a

second time executes the first program line.

Pausing Execution

Execution can be suspended by pressing —

The current line is completed and the program is halted at the next line to be executed; this line

is displayed in the system comments line. Any current [/ O operation is completed.

A pause can also be programmed using the statement. A useful application is to

program a pause so that intermediate results can be checked and execution resumed.

The ¥ . statement can’t be executed from the keyboard.

Continuing Execution

Program execution can be resumed where it was halted by pressing —

" (continue) command —

or executing the ©.

[line identifier]

The line identifier causes execution to resume at the specified line. [f it is a line number that is
not in memory, execution resumes with the next highest numbered line. i7"/ | can also be

used to start a program that was just run. No pre-run initialization takes place.

Execution of a paused program can also be restarted at the beginning with or i

67

68 Programming Information

Terminating Execution

All programs have a logical as well as a physical end. The logical end is that point where all
statements have been executed the desired number of times and the program has completed

the task for which it was designed. The physical end (highest-numbered line) of a program is
the last (highest-numbered) line.

Program execution can also be halted before it is done by pressing —

When is pressed, all [/ O operations are aborted and data may be lost. The program

pointer is reset to the first line of the main program.

The STOP Statement
The

program. It’'s purpose is to tell the computer to terminate execution of the program and reset

statement can be used to indicate the logical, rather than the physical end of a

the program pointer. It may appear at any point in the program. Some programs have several

logical ends and so require several ‘ statements.

The'! - statement can’t be executed from the keyboard.

The END Statement

The physical end (highest-numbered line) of a main program is indicated by the - -7 state-

ment. also terminates program execution. It is not mandatory to have an & /[statement

as itis in other BASIC systems; however, it is good programming practice.

Reset
The reset operation (see Chapter 3) can also be used to stop a running program. All [/O

operations are aborted and data may be lost.

T *Thad been
executed. Therefore reset should not be used for stopping a program unless pressing fails

It is also possible that the program and data can be destroyed just as if =

to halt the program.

Programming Information

Erasing Memory

The :

programs, variables, keys, or the entire memory. is defined as a typing aid for *

command is used to erase all or parts of memory; it can be used to erase

SCRATCH

at power on and

"[key number] or or]

Command Operation

Erases program including DATA pointers.
Erases the entire memory. See the Reset table in Appendix E.

Erases the values of all variables, including those in common.

Erases the program, variables, binary routines, DATA pointer
and the files table.

: Erases one or all SFK typing aid definitions (but not control
[key number] features).

Erases the values of all variables except those in common.

Erases the typing aid definition of the specified SFK.

Interrupting A Program

Normal program execution can be interrupted by conditions specified by [(see the
IO ROM Manual), i

this manual). All ON declarations are enabled at power on and

, and (which are all discussed later in

Priority

Priority determines whether a program can be interrupted. At power on, the priority of the
system is set to 0. Operations then assume this priority. An operation declared by an ON
declarative can be specified as having a higher priority and thus interrupt another operation

that has a lower priority. : , ", and i

all have differing

effects on priority levels. See those statements for information.

69

70 Programming Information

Disabling Declaratives

Any i % and -~ declaratives are deactivated by executing the
statement —
One 7 interrupt per key and one i interrupt per select code can be logged,

but the interrupt routine is not executed until declaratives are re-enabled.

Enabling Declaratives

and <

declaratives are re-enabled by executing the

Miscellaneous Statements

The WAIT Statement
The

statements —

statement is used to program a delay between the execution of two program

T number of milliseconds

The number of milliseconds is a numeric expression rounded to an integer in the range
—32 768 through 32 767. A negative number defaults to a wait of zero. The delay specified by
WAIT is not totally accurate. The degree of accuracy is dependent on what is displayed on the
CRT. A blank CRT enables the delay to be correct to wristwatch accuracy. When a 30 second
delay is specified and the CRT is totally full, the delay ranges between 35 and 40 seconds.
Thus, the fuller the CRT, the less the accuracy.

The wait operation can only be interrupted by reset.

Scrambling the Random Number Seed

The random number seed can be re-evaluated by executing the * <t statement —
[numeric expression]
If the value of the expression is an integer, the value of the seed is set to 0 causing ~~i.! to

return 0 each time it is used. To obtain a good seed, the expression should have as many digits
to the right of the decimal point as possible. A 1, 3, 7 or 9 is the most effective final digit. If no

expression is specified, the computer arbitrarily resets the seed to one of 116 possible points.

Programming Information

The SECURE Statement
The

an asterisk appears after the line number. The secured lines execute normally, however.

statement is used to prevent selected program lines from being listed; instead,

[line identifier [, line identifier]]

If no line identifiers are specified, the entire program is secured. If one line identifier is
specified, only that line is secured. Two line identifiers secure that block of lines, including the
beginning and ending lines.

"C.o'mputer

-+ Muse
For example — SNl

There is no provision made for ‘‘unsecuring’’ a program. However, a secured line can be
deleted or replaced, and can be listed after that.

A program protected with : _ can be reproduced onto a mass storage medium using

., but not using *

Typewriter Mode

can be ‘‘pressed”’ from within a program to set the keyboard to typewriter mode, thus

making input easier. This is done by executing the . 1 statement —

When this statement is executed, the keyboard behaves just as if had been pressed.

Typewriter mode can be turned off from within a program by executing the 7
L4 statement —

71

72 Programming Information

Conserving Memory

Large programs that involve large amounts of data can sometimes require more memory than
is available for use. This section presents some ways to conserve memory usage when writing a
program and using data.

One way to use less memory in a program is to limit the use of 1 statements and comments
in the program. This limits program readability and documentation, but does conserve memory

usage.

The use of subprograms can also conserve memory usage. Variables used within subprograms
either share memory space with calling program variables or use memory only temporarily. So
rather than creating new variables for various routines, thus using more memory, a subprogram
can be used. In addition, the use of many short program segments results in better memory

packing efficiency than a few large segments. See Appendix F for more information.

The use of SHORT and INTEGER precision variables, rather than full precision, is a very good
way to conserve memory in a program that has a great deal of data. This technique is most
useful when dealing with large arrays. However, this technique has two limitations. All calcula-
tions are performed with full-precision accuracy, so INTEGER and SHORT precision variables
must be converted before and after the operation. This slows down execution. Another limita-
tion can arise when inverting a matrix that is not full precision; the results will almost never be

entirely accurate due to rounding errors during calculation.

A fourth way to conserve memory is to break a program down into several sections and *-

each section into a different file. This is known as overlaying. Each section can be brought into

memory using .. 1. This operation preserves the values of variables, but erases each section

of the program as another one is linked in.

Chapter 5
Using Variables

Introduction

There are four types of variables available with the 9835A /B: full (real) precision numeric,
short precision numeric, integer precision numeric, and string. Each type can have two forms:
simple (non-subscripted) and array. All variables must have a name. Additional information

about variables can be found in Chapter 3.

The following topics and statements are covered in this chapter —

o B
e Array variables
e String variables — simple and array

e String expressions

74 Using Variables

Terms

The following terms are used in the syntax descriptions in this chapter —

variable — a name which is assigned a value and specifies a location in memory. Variables can
be classified into various categories and subsets of the categories as shown in the
diagram below. For example, any reference to a single numeric variable includes sim-

ple numerics and elements of numeric arrays. —

variable
single variable array variable
numeric variable string variable numeric array string array
simple numeric simple string matrix matrix
array element substring vector vector

string array element

substring

name — a capital letter followed by O through 14 lowercase letters, digits, or the underscore
character.

The LET Statement

Any simple numeric variable can be assigned a value using the

statement —

] simple variable [= simple variable...] = numeric expression

Implied LET

Omitting !

or implied assignment.

Examples

Using Variables

If a numeric variable is used in a computation and hasn’t been assigned a value, 0 is used as its

value.

E
To check the current value of a variable, type in its name, then press . This can also be
done while a program is running in live keyboard mode. You may get an unexpected result if

execution is currently in a subprogram and the variable isn’t defined in the subprogram.

The values of non-subscripted (simple) variables are erased by executing =

Array Variables

An array variable (array) is a collection of data items of the same type. An array can have one to
six dimensions and up to 32 767 elements. It is a convenient tool for handling large groups of

data within a program.

A one-dimensional array (also known as a vector') can be thought of as a column of items. The
following represents a vector having three items; X represents one item.

x

The structure of a two-dimensional array {(also known as a matrix') is rows and columns. Here

is a representation of a 2 by 4 {2x4) array.

The structure of a three-dimensional array can be though of as a series of two-dimensional

arrays. Here is a representation of a 3 by 2 by 4 array. The 9835A /B interprets it as three 2 by

4 arrays.
X X X X
X X X]x
X X X X | X
X X X X

The structure of arrays with more dimensions is conceptual and hard to visualize and thus is left

to your imagination. These arrays can be useful for structuring data.

1 Vectors and matrices are special types of arrays. Any reference in this manual to an array alsc includes matrices and vectors.

75

76 Using Variables

Explicit Definition

"y

An array can initially be defined in a variable declarative statement
)

parentheses after the name. This is known as dimensioning the array. The subscripts specify

. There, its maximum size is specified by placing subscripts in

the number of dimensions and upper bound of each dimension.

When an array is dimensioned, its physical or maximum size is defined. The working size of

an array is the total amount of elements being used. A new working size can be specified in a

i statement or in certain afray operation statements {see Chapter 7). The new working

size can’t have more elements than the maximum size.

Subscripts

Subscripts are integers separated by commas and enclosed in parentheses. The range of each
subscript is —32 767 through 32 767, but the size of an array is limited to no more than 32 767
elements by memory size. For example —

specifies an array with 2 dimensions, upper bounds of 2 and 3 for a total of 12 elements. The

lower bound for each dimension is zero. The . - statement can be used to

change it to one; is covered later in this chapter.

Here is a representation of array M —

M(2x3)
| 0 1 2 3
0 (0,0) (0,1) (0,2) (0,3)
1 (1,0 (1,1) (1,2) (1,3)
2 (2,0) (2,1) (2,2) (2,3)

Subscripts can also be used to specify the lower as well as upper bound of each dimension. An

array the size of array M above could also be specified —

The upper and lower bounds are separated by a colon.

Using Variables 77

Implicit Definition

If an array element (discussed next) is used in a program or keyboard computation, but the
array has not been defined in a variable declarative statement, the array is then implicitly
dimensioned. This means that an array is dimensioned having the number of dimensions
indicated by the array element. The upper bound of each dimension is 10; the lower bound is 0

or 1, depending on the current

Array Elements

Each element in the array can also be referenced by using subscripts and used like a simple

variable. An array element is a type of single variable. Thus —
M(1,2)

refers to an element in array M and can be assigned a value and used in calculations and other

programming operations.

LB LA POOUTPUTS THO W

Array Identifier

All elements of an array (in its working size) can be specified collectively in an input or output

operation by using the array identifier: @ # ! after the name. For example —

prints the entire array A.

78 Using Variables

String Variables

A string is a series of ASCII characters like —AB12*& which can be stored in a string variable. A

string variable can be declared in a ! statement which specifies the maximum

length of the string in number of characters up to 32 767. If a string variable is used without

being specified in a or tatement, it is implicitly dimensioned to be eighteen charac-
ters maximum. The current length of a string refers to the number of characters currently

assigned to the string.

Each string variable must have a name which is followed by a dollar sign (#) to specify a string

variable as opposed to a numeric variable.

Characters can be assigned to a string variable using the statement —

] string variable [=string variable...] = string expression

For example —

Each assigns a value to a string variable.

String Arrays

A string array is a collection of strings; each string is one element. It can be dimensioned in a

‘or statement. Every string in the array has the same maximum length. Like a

numeric array, a string array can be implicitly dimensioned.

In all string operations, an element of a string array can be used just like a simple string.

Example

Using Variables 79

String Expressions

Text within quotes (a literal) is the simplest form of a string expression and can be made up of
any ASCII characters excluding quotation marks. The quotation marks are not part of the

string. The forms that a string expression can take are —
o Text within quotes
e String variable name
e Substring
e String concatenation operation
e String function

e User-defined string function

As with numeric expressions, a string expression can be enclosed in parentheses, if necessary.

Substrings, concatenation and string functions are covered in Chapter 6. See Chapter 8 for an

explanation of user-defined string functions.

Example

Here is a sample program illustrating different ways to output SKI VAIL using string expres-
sions.

80 Using Variables

Declaring and Dimensioning Variables

Five variable declarative statements are used to dimension arrays and strings and declare the

precision of numeric variables —

These statements also reserve space in memory for the specified variables.

Lower Bounds of Dimensions

Subscripts specify the upper bound of a dimension and can also specify the lower bound. See
the Subscripts section earlier in this chapter for a discussion of using a colon to specify the

lower bound.

The OPTION BASE Statement
When dimensioning arrays, you may want to specify that the default lower bound for dimen-

sions be one rather than zero. This can be done using the

This statement must come before any of the variable declarative statements used in a program.

Then, any lower bound not specified is 1.

i is not declared in a program, you may wish to include the statement —

for documentation purposes.

The . ~ statement can’t be executed from the keyboard.

Using Variables 81

The DIM Statement
The .

numeric arrays and initialize each element to zero. It is also used to dimension and reserve

(dimension) statement is used to dimension and reserve memory for full-precision

storage space for simple strings and string arrays and initialize all strings to the null string.

item [. item...]
The item can be —
numeric array ‘. subscripts -

simple string [number of characters]

string array i subscripts : [Lnumber of characters]

Example

Remember these things when using

e The .

in a program is arbitrary, though it must be after any .

statement must be executed via a program, not from the keyboard. Its location

statement. At

pre-run initialization, the variables are dimensioned and initialized.

° need not be used to assign space for strings with eighteen characters or less or for
arrays having upper bounds of ten or less. These can be dimensioned implicitly. This,

however, may waste memory by creating arrays which are larger than you need.

e A program can have more than one statement, but the same variable name can be
declared only once in a program. Therefore, arrays of differing dimensions can’t have the
same name. But remember that the same name may be used for a simple numeric, simple

string, numeric array and string array.

o The maximum number of dimensions that can be specified is six. The range of subscripts
is =32 767 to 32 767. No array can have more than 32 767 elements. No simple string
can be longer than 32 767 characters. The size of arrays or strings may be limited by

available memory, however.

82 Using Variables

The INTEGER Statement
The

variables — simple and array. Integer-precision variables can be used to conserve memory; all

statement is used to dimension and reserve memory for integer precision

calculations are performed with full-precision accuracy however, so a conversion is made

before and after an operation.

numeric variable1 [fsubscripts '][, numeric variablez [{subscripts], ...]

Example

declares X to be an integer and Y to be an integer array of four elements.

The SHORT Statement
The

ables — simple and array. Short-precision variables can be used to save memory. All calcula-

! statement is used to dimension and reserve storage for short-precision vari-

tions are performed with full-precision accuracy, however, so a conversion is made before and

after an operation.

"numeric variable1 [{subscripts !][. numeric variablez [#subscripts !], ...]

Example

declares A and B as short precision arrays and D as a simple, short precision variable.

The REAL Statement
The

ables — simple and array.

statement is used to dimension and reserve memory for full-precision (real) vari-

. numeric variable: [© subscripts i] [, numeric variablez [¢ subscripts *], ...]

Example

dimensions the array M and declares the simple variable N.

Since the statement can also be used to dimension full-precison variables, the !
statement can be used for documentation purposes to document which variables are full preci-

sion.

Using Variables

The COM Statement
The

This includes strings and all three numeric precisions.

statement is used to dimension and reserve memory for simple and array variables.

is unique because it reserves

memory space in a special ‘‘common’’ area which allows data to be transferred to and from

subprograms or to other programs when each program or subprogram has corresponding

statements.

]

The item can be —

simple numeric
numeric array : subscripts !
simple string [“number of characters i]

string array ‘subscripts i [Lnumber of characters]

In addition, any one of the type-words —

.. — can precede one or
more numeric variables. All variables following a numeric type word have that precision until

another type is specified or a string is declared.

Example

The variables A,B(2,4), D and G are all full precision. Full precision is assumed at the beginning
of the ¢

list and for numeric variables which are declared after any string. Since all variables
following a numeric type word have that precision until another type is specified or a string is
declared, both H(5) and J are short precision.

The items declared in corresponding 1" statements in separate programs and subprograms

must correspond to preserve values. Each item must be of the same type — integer, short,

full-precision and string — as the corresponding item in other i.. statements. Arrays must
have the same maximum number of dimensions and elements; strings must have the same

number of characters dimensioned. Names need not match, however.

statements in separate programs need not have the same number of items. A shorter 7

statement in a succeeding main program causes the extra data from the first {1l statement to

belost. A longer list in a succeeding program causes the new elements of the second

statement to be initialized to O or the null string.

The use of ! statements within subprograms is discussed in Chapter 9.

83

84 Using Variables

Storage of Variables

To determine how many bytes variables require when stored in memory (storage on a mass

storage medium is different; see Chapter 11), use the following tables.

Simple Variable Amount of Memory Used

Full precision 10 bytes

Short precision 6 bytes

Integer 4 bytes

String 6 bytes + length (1 byte per character, rounded up to an
even integer)

Array Variable Amount of Memory Used?

Full precision 10 bytes + 4 bytes per dimension + 8 bytes per element

Short precision 10 bytes + 4 bytes per dimension + 4 bytes per element

Integer 10 bytes + 4 bytes per dimension + 2 bytes per element

String 12 bytes + 4 bytes per dimension + 2 bytes per
element + length of each string (1 byte per character,
rounded up to an even integer)

Assigning Values to Variables

Values can be assigned to variables during a program, either from within the program or input

directly from the keyboard. The following statements can be used for assigning values —

The i.

T statement was discussed earlier in this chapter. The others follow in this chapter.

1 See Appendix F for more information.

Using Variables

READ, MAT READ and DATA Statements

To assign values to variables from within a program, the

statement is used wit

and

The

! statement(s) provides values that are assigned to the variables —

constant or text [, constant or text, ...]

Text in the - statement can be quoted or unquoted. A constant can be interpreted as

either a numeric or unquoted text. The location of the statements within a program

segment is unimportant. If there are multiple - statements, make sure they are in the

order you want.

Example

--Computer
'-;',g,.l_\rllus_eum

“ and

specify the variables for which values are obtained from
statements —

variable name [, variable name]

" array variable [iredim subscripts ¥][. array variable [‘redim subscripts 1], ...]

The variables specified in the tatement can be any single variable or an array identifier:

t# 1 following the array name.

Example

Here's a

statement which could correspond to the previous tatement —

Notice that an unquoted value in the I statement (77) can correspond to a string variable

in the * istatement (A$). It is interpreted as unquoted text in this case.

The !

ing size of the array can be altered by including the redim subscripts. However, redimensioning

i statement specifies entire arrays for which values are to be read. The work-

of any but the first array takes place only if a DATA item is read for at least one element in that
array. The total number of elements can’t be greater than the number originally dimensioned.
The number of dimensions can’t change. The subscripts can be any numeric expression except

one containing a multiple-line user-defined function (FN) reference.

Array elements are read in order with the rightmost subscript varying fastest.

85

0

86 Using Variables

Here is an example of

Values are read in the following order —

A(1,1,1), A(1,1,2), A(1,2,1), A(1,2,2), A(2,1,1), A(2,1,2), A(2,2,1), A(2,2,2)

and

are programmable only; they can’t be executed from the
keyboard.

DATA Pointer
The computer uses an internal mechanism called a DATA pointer to locate the next data

element that is to be read. The leftmost element of the lowest-numbered ~! statement in

the current environment is read first. After this element is read and another value required by

the DATA pointer repositions itself one element to the right, and continues to do so

each time another data element is read. After the last elementin a statement is read and

another value required by the DATA pointer locates the next higher numbered .

statement and repositions itself at the first element in that statement. If there are no higher-

numbered statements, the data pointer remains at the end of the previous

statement; any effort to read additional data will result in

Repositioning the DATA Pointer
The DATA pointer can be repositioned to the beginning of any

- statement in the current

program segment, so that values can be reused, by using the

[line identifier]

Using Variables 87

If no line identifier is specified, the pointer is repositioned to the beginning of the lowest-
statement can’t

numbered i statement in the current program segment. The

be executed from the keyboard.

i statement following the specified

If the specified line is not a i statement, the first |

line is accessed.

Examples

Here are some examples of ' and

i statements can apply to the same |

This example shows that several
also shows that string values can be quoted or unquoted, though quotes are not part of the

string; notice that 7.31 is a string value assigned to A$.

The values in line 30 are used as

and

This example illustrates use of

the values of five simple variables, then re-used as the values in array B.

P e T s

:
Bt

88 Using Variables

Assigning Values From The Keyboard

The INPUT Statement
The

from the keyboard at the request of the program —

" statement allows values in the form of expressions to be assigned to variables

["prompt *,]variable name [, [“prompt* ,] variable name, ...]

When the

prompt is any combination of characters; it can be used to help remember for what variable a

T statement is executed, a " or the prompt, if present, is displayed. The

value is being requested. Each prompt applies only to the variable to its right. If no characters
are present between the quotes, nothing is displayed. Any variable not preceded by a prompt
uses a question mark by default. A value can then be input for each variable designated in the
I statement. Values are entered into the computer by pressing or G,

Example

For instance, in the statement —

four values are requested.

Values can be assigned individually or separated by commas in groups. Values input for strings
can be quoted or unquoted. Quotation marks can’t be input as part of the string’s value. An
unquoted value for a string can’t contain a comma or exclamation point and all leading and
trailing blanks are deleted.

Example

For example, the values 4,5, Time”, and 3 can be assigned to the variables in the example

above in many ways; here are two —

ABEE - @HEE
AEEO . O

In both cases, the " or prompt reappears after is pressed until all four values are input.

or

Pressing without entering values when an input is requested causes execution to continue

with the statement following the
the ¢

value.

I'T statement, even if values are still requested. or

T command can also be used. Variables not assigned values retain their previous

Using Variables

Example

Here is an example —

By responding to the statement with —

CONT CONT

X retains the value 5.

The variable list can also include array identifiers. For example —

requests values for the simple variable A and the array B.

The .

¥ statement is programmable only; it can’t be executed from the keyboard.

The MAT INPUT Statement

Entire arrays can be given values and optionally redimensioned using the

statement —

i1 array variable [‘redim subscripts *][, array variable

[iredim subscripts i]. ...]

When ¥
numeric or string expressions can be entered separately, or in groups. As with the

statement, values are stored by pressing or or using the 1
example —

" is executed, a " appears in the display line. Values in the form of

" command. For

89

90 Using Variables

When this is executed, 45 separate values are requested. If

i, | cont }[cont

is entered, the only values that would change are the elements of - with subscripts
(1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,2,1). Array B is not redimensioned because no
elements were input for it.

Remember, when an array is redimensioned, the number of dimensions can’t change and the

total number of elements can’t exceed the number originally dimensioned.

can’t be executed from the keyboard.
Other ways of assigning values to arrays are discussed in Chapter 7.

The LINPUT Statement

The . statement is used to assign any combination of characters to a string variable or
substring —

["prompt " .] string variable or substring

When L. is executed, a ¥, or the prompt if present, is displayed. All characters typed in
become the value of the string when or is pressed. Here is an example —

The response could be —

Pressing or without entering a value erases the current value of the string and sets it
to the null string.

Notice that the :.

variable; this isn't possible with the

statement allows quotation marks to be input for the value of a string

I statement.

The L

statement can’t be executed from the keyboard.

Using Variables 91

The EDIT Statement

The current value of a string can be viewed and edited by using the

["prompt ",] string variable or substring

When the
current value of the specified string appears in the keyboard entry area. On the 9835B, the

" statement is executed, a 7', or the prompt if present, is displayed and the
prompt is quickly replaced by the value of the string.

This value can then be edited like any keyboard entry. can be used to clear the line,

allowing a totally new value to be entered, like with | . However, the original value
can’t be recalled. Pressing stores the characters displayed in the keyboard entry area for

the value of the string. For example,

could be used to alter the names in printed

output —

When line 50 is executed, appears in the

is displayed.

keyboard entry area. Then the character editing keys could be used to change the name.

The limit on the length of the string being edited is 160 characters (the length of the keyboard

entry area). So, if a longer string is specified, < would occur. This could be avoided

by using substrings; here is an example —

The

 statement can’t be executed from the keyboard.

92 Using Variables

Chapter 6

String Operations

Introduction

This chapter further explores the use and manipulation of string variables.

The following topics are covered in this chapter —

e Substrings o Using CRT special features
e String concatenation e String functions
o String modification e Relational Operations

Substrings

A substring is a part of a string which is made up of zero or more contiguous characters. A
substring is specified by placing substring specifiers in brackets after the string name. There
are three forms a substring can have —

o String variable name icharacter position |
The character position is a numeric expression which is rounded to an integer. The
substring is made up of that character and all following it.

e String variable name [beginning character position, ending character position
This substring includes the beginning and ending characters and all in between. The

character positions must be within the dimensioned number of characters. The second
subscript must be greater than or equal to the first, minus one.

e String variable name [beginning character position; number of characters !

This substring begins with the specified character in the string and is the specified length.
The number of characters specified can’t exceed the dimensioned length, less the begin-

ning character position.

94 String Operations

Example

String Concatenation

The string concatenation operator joins (concatenates) one string to the back end of another.

Z.string expression...]

string expression

Example

String Operations 95

String Variable Modification

A string or substring can be modified by another string or substring. For example, a part of a
string can be changed or characters can be added or deleted. The string containing the modifi-
cation is called the modifying string; the string being modified is the destination string. The

destination string can be a string or substring. The modifying string can be any string expres-
sion.

The characteristics {length and content) of the destination string after modification depend not
only on the characteristics of the modifying string, but also on the number of subscripts given
for the destination string.

If a string expression is to be stored into a string or substring which is too short to hold it, the
result is truncated on the right.

1 & occurs if the destination string is a one-substring-

specifier substring which is too short to contain the result. Here is an example of how this can

occur —

Each string of a string array can be modified in the same way as a simple string by the inclusion
of subscripts.

96 String Operations

No Substring Specifiers

When the destination string has no substring specifiers, the entire destination string is replaced
by the modifying string or substring. Its characteristics after modification are the same as those

of the modifying string or substring.

Example

If the modifying string is longer than the length of the destination string

One Substring Specifier

When the destination string has one substring specifier, the indicated substring is replaced by
the modifying string or substring. The destination string can be shortened or lengthened.

Attempting to lengthen the destination string beyond its maximum length causes

Examples

String Operations 97

Here’s an example of the destination substring being shortened —

Computer
“ i Museum

Here's an example of the destination string being lengthened —

Characters added to those of a string must be contiguous; that is, they must immediately follow

the destination string without any unassigned character spaces. If they are non-contiguous,

occurs. For example —

is caused because character positions 5, 6 and 7 aren’t assigned any characters.

98

String Operations

Two Substring Specifiers

When the destination string has two substring specifiers, with either a comma or semicolon, the
indicated substring is replaced by the modifying string or substring. The left-most character of
the modifying string or substring replaces the left-most character of the indicated destination
substring. The next adjacent character is replaced, and so forth, until the indicated destination
substring is filled. If the modifying string is shorter than the indicated destination substring, the
remainder of the destination substring is filled with blanks. If the modifying string is longer than

the indicated destination string, the remainder of the modifying string is truncated.

Example

DOMODIEYIHG STRII

iy POMODIFYIHG

The length of the destination string after modification either is unchanged, or is greater. When
the value of the second substring specifier is greater than the current length of the destination

string, the modification results in a lengthened string (within its maximum length).

Example

String Operations

The Null String

The null string is a string which contains no characters or blanks. The following examples each

specify the null string —

or initial T {iF! statement or when

All strings are initialized to the null string by a

i is executed. The null string can be used to clear a string.

Special Features (9835A only)

The three SFK special features — blinking, inverse video, underline — (see Chapter 3) are
especially useful with strings. Strings can be displayed or printed to the CRT with any combina-

tion of the special features.Here is an example using underline —

combined.

Programming Hint
One factor to consider is that entering any combination of
special feature modes adds one character to the length of the
string, as does exiting the special features mode. For exam-
ple, the length of —

is 11 characters.

1 A specifies a blank which is considered a character.

99

100 String Operations

String Functions

A string function returns a numeric or string value to an expression. String functions enable you

to determine the length of a string and analyze and manipulate its contents. String functions are

especially useful in text processing applications.

Length Function

function returns the number of characters in a string expression —

<
<
o
<
2
o
c
=~

string expression

The current length of the string expression is returned.

Here are some examples —

String Operations

Position Function

The position function determines the position of a substring within a string —

fin string expression. of string expression !

If the second string is contained within the first, the value returned is the position of the first
character of the second string within the first string. If the second string is not contained within
the first string, or if the second string is the null string, the value returned by the function is zero.
If the second string occurs in more than one place within the first string, only the first occur-
rence is used by the function.

Here are some examples —

101

102 String Operations

Value Function

With the value (

an exponent, can be used in calculations. (Normally the characters in a string are not recog-

i) function, the numeric value of a string or a substring of digits, including

nized as numeric data and can’t be used in numeric calculations.)

© string expression !

The first character to be converted in a string using the i _ function must be a digit, a plus or
minus sign, a decimal point or a space. A leading plus sign or space is ignored; a leading minus
sign is taken into account. All following characters must be digits, a decimal point or an E. An E
character after a numeric and followed by digits or a plus or minus sign and digits is interpreted

as exponent of base 10. A decimal point following digits after an E terminates the exponent.

Numeric data entries can be combined logically with input text. All contiguous numerics are
considered a part of the number until a non-numeric is reached in the string. This means that a
string can contain more than one number. The first character of the string expression after
leading spaces, plus signs or minus signs must be a digit or a decimal point. If the leading part of

the string is not a valid number

For example —

VALS$ Function
The *

ing the number, in the current output mode —

¢ function is (nearly) the inverse of the */#.. function and returns a string represent-

. i numeric expression !

String Operations 103

Bl i cTath A R S 0

Character Function

The character (#) function converts a numeric value in the range —32 768 through
32 767 into a string character. Any number out of the range 0 through 255 is converted MOD
256 1o that range. Any 8-bit character code can be stored in a string using the character

function which is especially useful for accessing control codes and putting quotes into a string.

_numeric expression

For example —

See Appendix E for a table of correspondence between characters and numbers in the range 0
through 127.

With the 9835A, using this function with numbers in the range 128 through 159 is useful for
stylized printed output; see Appendix B.

Numbers in the range 160 through 255 are used to access foreign characters; see Appendix C.

104 String Operations

Numeric Function

The numeric function converts an individual string character to its corresponding value

represented decimally.

¢ string expression !

The decimal equivalent of the first character of the expression is returned.

For example —

Fived mumber drne g string

. . .
YA CEE

Lt Ut

POSITION';I;" OF As"
ASLIT:

hoid

Uppercase Function

The uppercase function returns a string with all lowercase letters converted to upper-

case.

£ string expression !

For example —

FUMCTION MITH IHPUT PROMFT

R THUE R pRreschsrd
{EM 5T 0F
THEH 468

YOLE ANEMERy CHNE

The uppercase function allows strings to be compared without regard to upper and lowercase.

It can also be used with printers than can output only uppercase letters.

String Operations

Lowercase Function

-) function returns a string with all uppercase letters converted to lower-

The lowercase

case —

.. string expression

For example —

i) v

Repeat Function

function allows a string of characters to be repeatedly concatenated —

~ Therepeat (

i string expression, number of repetitions

For example —

=
-
]

GOME M

The number of repetitions can be any numeric expression in the range 0 through 32 767 when
rounded. If 0 is specified, the result is the null string. The length of the result can’t exceed

32 767 characters.

105

106 String Operations

Reverse Function

) function reverses the order of the characters in a string —

The reverse (

. str

ing expression

For example —

ion

im Funct

Tr

ing blanks from a string —

) function deletes leading and trail

The trim (

ion i

ing express

St
b=
(2]

For example —

String Operations 107

Relational Operations

String variables may be compared using the relational operators —

< ¥ or

Each character in a string is represented by a standard equivalent decimal code, as shown in the
table in Appendix E. When two string characters are compared, the lesser of the two characters
is the one whose decimal code is smaller. For example, 2 (decimal code 50) is smaller than R
(decimal code 82).

Strings are compared, character by character, from left to right until a difference is found. If one
string ends before a difference is found, the shorter string is considered the lesser. For example,
“*STEVE” is smaller than both “STEVEA’’ and ““STEVEN"’.

Examples

Here is an example which could be used to allow communication between the computer and
the user —

In some cases, such as in alphabetic sequencing problems, it is useful to compare strings for
conditions other than ‘‘equal to’” and ‘“‘not equal to”’. For example, to arrange several different
strings in alphabetical order, the following type of string comparison could be included in a
program.

108 String Operations

Chapter 7

Array Operations

Introduction

The many operations that can be performed with numeric arrays are discussed in this chapter.

Some of the operations can be used with matrices and vectors only; these are noted. In all

single-argument array operations such as , the operand array can be enclosed in

parentheses.
The following topics are covered in this chapter —
e Assigning a constant value
e Copying an array
e Scalar operations
e Arithmetic operations
e Using functions
e Identity matrix
e Matrix multiplication

e Inverse of a matrix

e Transpose of a matrix

e Row and column sums

e Array functions

e Redimensioning an array

110 Array Operations

Assigning a Constant Value

Three statements allow a constant value to be assigned to every element in an array.

1. MAT...CON
The !

i statement assigns the value 1 to every element —

array variable = [“redim subscripts *]

When executed, all elements in the current size of the array are assigned the value 1. The

current size can also be redimensioned by including the redim subscripts. The redimensioning
is done before the assignment takes place.

Example

In this example the value 1 is assigned to 25 elements of the array

ORTION BEREE 1
DIM AO1IEG
(] MAT A=COMCS, 5 PogmsloMs b TO E5 O ELEMENTE OF MATEIX A
MAT FRIMT H:
EHD

2. MAT...ZER
The |

be redimensioned.

statement sets all elements in a numeric array to 0. It also allows the array to

array variable = [‘redim subscripts !]

Again, the optional redimensioning takes place before the assignment.

Example

15 elements of the array * are assigned the value 0.

Remember, any time an array is redimensioned the following are always true —
e The number of dimensions can’t change.

e The total number of elements can’t exceed the total originally dimensioned.

Array Operations 111

3. MAT-Initialize
The

in a numeric array.

" — Initialize statement assigns the value of the numeric expression to every element

This assigns the value of 2*PI to every element in

The numeric expression is evaluated once; it is converted to the numeric type of the array, if

necessary.

Example

POORTION BRSE
[YELUE OF PI

Line 20 causes the value 3 to be assigned to every element in .

112 Array Operations

Copying An Array

The

corresponding element of the result array.

— Copy statement copies the value of each element of a numeric array into the

“result array = operand array
The two arrays must have the same number of dimensions. The number of elements in the
result array must be greater than or equal to the number of elements in the current size of the

operand array.

Example

i
na

The values of array D are copied into the elements of array C, then the working size of array C is
redimensioned to be a 2 by 2 array.

Mathematical Operations

Array Operations

There are various mathematical operations that can be performed with arrays. These are

covered next.

Scalar Operations

The scalar operation statement allows an arithmetic or relational operation to be performed

with each element of an array using a constant scalar (any numeric expression). The result of

the operation becomes the value of the corresponding element of the result array.

result array = operand array

{scalar * operator

Example

operator i scalar

operand array

-t
b
5
—i
S
it

¥

e
bwd

i

(53

In this example, each element in array . is multiplied by 4 and the result is stored in the

corresponding element of array

113

114 Array Operations

The following operators are allowed —

s oor G

The two arrays must have the same number of dimensions. The result array can’t be smaller

than the operand array. The array is redimensioned after the operation so that it has the same

working size as the operand array.

Arithmetic Operations

The arithmetic operation statement allows an arithmetic or relational operation to be per-
formed with corresponding elements of two numeric arrays; the result becomes the value of the

corresponding element in the result array.

T result array = operand array operator operand array
Examples
G In this example, corresponding elements of arrays

Array Operations 115

wy
]
£ iy

and are multiplied together

The following operators are allowed —

: or &

(multiply)

116 Array Operations

Notice that multiplication is indicated by a period. An asterisk indicates matrix multiplication

which is covered later in this chapter.

The result and operand arrays must have the same number of dimensions. The operand arrays

must have the same number of elements in each dimension; the result array can’t be smaller.

Functions

The function statement allows each element in the operand array to be evaluated by the

specified function. The result becomes the corresponding element of the result array.

result array = function operand array

The function must be a single-argument system function like

Example

In this example, the square root of each element in array i is assigned to the corresponding

element in array

.
i,

Array Operations

Matrices and Vectors

Many array operations can only be performed using matrices or vectors. These are covered

next.
Identity Matrix
The | statement establishes the specified matrix as an identity matrix: all elements

in the matrix equal zero except those in the main diagonal (upper left to lower right), which all
equal one.

[‘redim subscripts !]

An identity matrix must be square (two dimensions; each dimension has the same number of
elements); when the subscripts are included, this enables the matrix to be redimensioned
before the identity matrix is established.

Matrix Multiplication

The matrix multiplication statement multiplies two matrices together. This is different from

the multiplication of corresponding elements which was discussed previously.

I result matrix = operand matrix1 * operand matrixz

The number of columns of the first operand matrix must equal the number of rows of the
second operand matrix. The result matrix has the same number of rows as the first operand
matrix and the same number of columns as the second operand matrix. The result matrix can’t
be the same matrix as either of the operands. Here is an example —

Bsxa) * Cuaxzy = Apsx2)
Either or both of the operand matrices can also be a vector. The result matrix must also be a
vector in this case. Here is an example —

X6 * Y6 = Zs)

117

118 Array Operations

[f you have not been introduced to matrix multiplication, you might assume that corresponding
elements are multiplied together; however, this is not the case. Assume we are multiplying
matrix B by matrix C and storing the result into matrix A (MAT A=B*C). To determine the
value of any element of matrix A, call it Aw,y), corresponding elements of the xth row of B and
the yth column of C are multiplied together. The sum of the resultant products is the value for
Ay

Mathematically speaking —

MATA=B*C

N
A(LK) = E B(L,J) * C(J,K)
J=1

where N = the number of columns in B and rows in C

Example

Here’s an example of using matrix multiplication to find total sales for four bus routes using old

and new prices —

Matrix A — Ticket Sales by Route

Route Single Trip Round Trip Commuter
1 143 200 18
2 49 97 24
3 314 77 22
4 82 65 16

Matrix B — Ticket Prices

Old Price New Price
Single Trip .25 .30
Round Trip .45 .50
Commuter 18.00 17.00

Matrix A, a 4 by 3 matrix, is multiplied by Matrix B, a 3 by 2 matrix, resulting in Matrix C, a 4 by

2 matrix.

Array Operations

Matrix C — Total Sales by Route

Route Old New
1 449.75 448.90
2 487.90 471.20
3 509.15 506.70
4 337.75 329.10 P-Computer
-, Museum

Here is the program used to perform the multiplication —

Here are some things to remember when using the matrix multiply statement —
e The result matrix can’t be the same as either of the two operand matrices.

o The number of columns of the first operand matrix must equal the number of rows of the

second operand matrix.

e Either or both of the operand matrices can be a vector. In this case, the result matrix must

also be a vector.

Inverse of a Matrix

The inverse of a square matrix can be found by using the ¥ ... 11" statement ~

result matrix = operand matrix

If the determinant of the operand matrix (see the "= ! function) is zero, the matrix doesn’t
have an inverse. No warning is given to indicate this condition and a meaningless inverse is
calculated. The best way to check the inverse is to multiply the original matrix by the inverse

using matrix multiplication. The result should be close to an identity matrix.

The inverse of a matrix is useful for solving systems of equations.

119

120 Array Operations

Example
3X +4Y =47
2X +2Y =28

These two equations can be represented as matrices —

28

The solution (the values of X and Y) is determined by multiplying both sides of the equation by
the inverse of A. The following program was used to solve the system of equations —

MATRI® Ao,

FHT

LRCIS
¥

Array Operations 121

Transpose of a Matrix

The transpose of a matrix can be found by using the

The transpose of a matrix has the same elements as the original, but columns become rows,

and rows become columns.

Example

Matrix X = |2 4 6 8
1 2 3 4

0 O BN
W N

The resuilt matrix is redimensioned, if necessary.

Column Sums

The sums of all the columns of a matrix can be found by using the

" result vector = i operand matrix

Each element in the result vector is the sum of the corresponding column of the operand

matrix.

Example

Matrix A= |2 5 7
9 8 1

Vector X = [11 13 8]

The result is redimensioned, if necessary.

122 Array Operations

Row Sums

The sums of all the rows of a matrix can be found by using the 1 statement —

[result vector - operand matrix

Each element in the result vector is the sum of the corresponding row of the operand matrix.

Example

Matrix B = |2 4 6
1 3 5

Vector C = |12
9

The result vector is redimensioned, if necessary.

Array Functions

There are five array functions which each return a number that provides information about an
array. These are covered next. Examples showing the array functions follow the descriptions of

all the functions.

SUM Function

The =L function returns the sum of all the elements in an array.

‘i operand array

ROW Function
The

number of rows corresponds to the subscript which is second from the right.

function returns the number of rows in the array according to its current size. The

f operand array

Array Operations

COL Function

The i3 (column) function returns the number of columns in the array according to its current

size. The number of columns corresponds to the rightmost subscript.

. operand array

A vector always has one column.

DOT Function
The

T function returns the inner (dot) product of two vectors.

vector name. vector name :

The two vectors must have the same working size. The inner product is the sum of the products

of corresponding elements.

Example

[o2 N~ \V)
BN~

= (2*1) + (4*2) + (6*4) = 34

DET Function
The

matrix which was inverted using the

i (determinant) function returns the determinant of the specified matrix or of the last

' statement. No error given if there is no

inverse.

operand matrix

If a matrix is not specified, the determinant of the last inverted matrix is returned. This method

uses less memory because the determinant is a by-product of the inversion operation.

123

Examples

Here are some examples of array functions —

124 Array Operations

B

HAL

ERIY

F.

=T

TES

ol il

g

i

fa !

ERS
[N
-

-

i

MADE

-

i

=

[#5)

g

3

il
&

IT

b,

OTH

Array Operations

Redimensioning an Array

When an array is redimensioned, it is given a new working size. If the working size is smaller
than the physical size, the remaining elements are ignored, but are still part of the array. Thus,
when new values are assigned to elements of a redimensioned array, the values of the unused

elements are not changed.

A redimensioned array must retain the same number of dimensions as orginally specified. Also,
the total number of elements can’t exceed the number originally specified.

Redimensioning of an array can be explicitly specified in many of the array statements.

"and

| are two examples.

Redimensioning can also be implicitly specified in many of the array operation statements. For
example, adding the elements of two 3x3 arrays and storing the sums in a 5x5 array causes the

result array to be redimensioned.

The following program illustrates how redimensioning of an array is accomplished —

futs

)

e R
|

Aol

it

W
—

K}
i
It

S

]

=

e e
RN

==t

L% }"l

CHAHGED"

AREAY
SF ¥ Y7
AREAY B--MOW A 2 BY 2
1
11
AREAY A--BACK TO A 5BV S==-HOTE WHICH ELEMEHTE CHAMGETD

ot
-t
fonts

125

126 Array Operations

The REDIM Statement

A new working size for an array can be established by using the

tatement.

| array variable redim subscripts ! [, array variable i redim subscripts !, ...]

The number of dimensions can’t change. The total number of elements can’t exceed the
number originally dimensioned.

Here are the characteristics of redim subscripts —
e A subscript can be any numeric expression
e One subscript is used to specify the upper bound of a dimension.

e Two subscripts separated by a colon are used to specify the upper and lower bounds of a
dimension.

e A comma is used to separate the subscript(s) for each dimension.

Chapter 8

Branching and Subroutines

Cbmputer

~Museum

Introduction

Normal program execution is in sequential order from lowest-numbered line to highest num-
bered line. Branching and subroutines are two methods of altering the normal flow of program

execution.

The following topics and statements are covered in this chapter —

e Unconditional Branching — ¢

e Conditional Branching — 1

e Looping — ¥

e Subroutines — ¢

e Defining Functions —

o Branching using Special Function Keys —

The following parameters are used in this chapter and can be numeric expressions —

initial value
final value
increment value
priority

key number

128 Branching and Subroutines

Unconditional Branching

The

trol to a specified line.

t statements provide unconditional branching by transferring con-

The GOTO Statement
The

ment where execution is to be transferred —

i statement specifies a higher or lower-numbered line in the current program seg-

line identifier

Examples

Here’s an example using i to branch to both higher-numbered and lower-numbered

lines —

=t

] GOTO P FREAWCHIHG TOoH CLABEL
ey INFLIT §
45 FEIMT “E WOl B L3
S8 STOP L STOR PREYEMTS
SRRt FEIMT "& EGUHRLEY 4

& T GOTO 26 POERBHOHIMG TO &
26 EMI

The ON...GOTO Statement
The

more statements in the current program segment based on the value of a numeric expression —

' (computed GOTO) statement allows control to be transferred to one of one or

numeric expression : line identifier list
The numeric expression is evaluated and rounded to an integer. A value of one causes control
to be transferred to the first statement specified in the list; a value of two causes control to be

transferred to the second statement specified in the list, and so on.

Branching and Subroutines

Example
ig THPUT FULL, HEDIUM OR OUT-OF 2T se R CEXNR
e i OH R GOTO 28,50 Py

s FRINT "F Do HLITHINGY
4 STOF
5 FEINT "HEDIUM - STQCE; IT HEEDE -To BE HWATCHED?

1 STOFR

G Problem? FEIHNT bebof X

& ERD

If the value of the numeric expression is less than one or greater than the number of line

identifiers in the list, (improper value) occurs.
Example

In the following example, when line 20 is executed for the third time, the value of I exceeds the

number of line identifiers in the list.

1]
i
e
%,

Summary

statements —

Here are some facts to remember concerning the

o All lines specified by statements must be in the current program segment.

o If the line specified as the destination of a branch is not an executable statement (see
Chapter 4 for an explanation of executable statements), program control is transferred to
the first executable statement following the specified line. However, execution pauses at

the specified line if is being used.

statements are programmable only; they can’t be executed from the keyboard.

129

Conditional Branching

130 Branching and Subroutines

ge] v o
Q £ c
ﬁ Rl .m
g 25
o & =
& £ 3
[EN]
© S 2 B . =
5 g = 2 &=
o] © e]
— 5 M =
S - = S
N
e € £ o a
5 s 3 ° .
o) S o T o i
o 5 =5 g
2 9 £ L 2
1] o v = - [e] L
— = m.w .m] -.M iid
w m T O e c =
...m o m © = © i3}
3 = c < = = -
© o O = g
o = o B S
£ 2 3 o =
= vt () o ©
= LOX et S
g g 2 g = =
— b
= [— = L i
S N 3 a Z o = 0
o — 1 £E 2 1
) [e) £ o m T . £
o] = < = © e o o Ll
- I s > % S . m
3 o = 2 18] G het £ 0
m m.-) w e e o) i 0
o x Um —— i LRM 1“
o ¢ © o 1 o i
Q ® -
o kS =} W o £ _nu
@) = = o) =
] £ g o Q =
3 3 > > “ b
[72] c S © o
..l 4] vy S £
-~ (o] o P
n h h m o
m e + (W) 2
& S = £
o 2 Q R
S 3 ¥ o G
@ 2 = + s ek et
o 3 ® G e
x 8 R
o o] § E e e TR
£ o T A
| s £ ot R L T B
c g =
el
o] 3 5 .
= o S o
-.m m E= R AL bl
3] 5
® £ Q
&= m ol W ..wuv hd L ® 'Y
= © = e = =

Branching and Subroutines

Another form of the { statement provides conditional execution of a statement

without necessarily branching —

! statement
When the value of the numeric expression is not equal to zero (true) the statement is executed.
When the value of the numeric expression is zero (false), execution continues with the follow-

ing line.

Example

"ENTER WRLU
* THEH PRIHT :
su AMD Y BRE HOT EGUAL®

£ FOR % RAND ¥ Y

gt

H

All executable BASIC statements are allowed after with the following exceptions —

statement

i statement

statement

The following statements are not allowed after because they are declaratory statements,

not executable statements —

: statement

statement

statement

statement
statement
statement
statement
statement

tatement

statement

tatement

statement

131

132 Branching and Subroutines

Looping

Repeatedly executing a series of statements is known as looping. The

state-
ments are used to enclose a series of statements in a FOR-NEXT loop, allowing them to be
repeated a specified number of times.

final value [increment value]

loop counter

The

statement defines the beginning of the loop and specifies the number of times the

loop is to be executed. The loop counter must be a simple numeric variable.

The initial, final, and increment values can be any numeric expression. If the increment value is
not specified, the default value is one.

Examples

Here’s an example of a FOR-NEXT loop —

FOR-NEXT
loop

range

L

L

T e iy el S e

fon)
It uy e

s
FLAd
fomit
|

2

S

e

L RN

In this example, I is established as the loop counter and is set to 1 when the FOR statement is
executed. The FOR-NEXT loop is executed 5 times — when1 =1, 2, 3, 4 and 5. Each time the

statement is executed, the value of I is incremented by 1, the default increment value.
When the value of | exceeds the final value (

when | = 6) the loop is finished and execution
continues with the statement following the '

Branching and Subroutines

The following examples show that differing ¢ tatements can perform the same task. In each
example, the FOR-NEXT loop is executed ten times. Notice the value of the loop counter while

the loop is executing and after it is complete.

® 1 r-Computer
TMiseum
H

" .
Hoo il
P e g, o i §
3o | g L B oEd i i apdd 1
® L FOR CHsIECTO R i i
e
e L
b e
Floe 5=
I Rt Raf
el PR y Bl e e D el g Pt S
. Thrs 2 PR E OF RN TER T8 o f]
S-S o)
nii

Programming Hint
An often overlooked aspect of FOR-NEXT looping is that the
actual value of the counter when the loop is complete does

not equal the final value.

133

134 Branching and Subroutines

statement are shown in

The advantages of using FOR-NEXT looping instead of an
the following examples where the numbers 1 through 1000 are printed in succession. The

program that uses the FOR-NEXT loop is easier to key in and uses less memory.

(2]
@
S
e
®
3
®
=
2

IE-I=18aE THEH &8 LMol TR RECBEHECUTED CAGRINT
PRINT I

T=1+] O THOREET SoTHE CCOUNTER

TR TodaBe THEM i PoRacE T RECIMMEING GF LOOF

BRI

FOR-NEXT loop

The initial, final and increment values are calculated upon entry into the loop; the calculated
values are used throughout execution of the loop. The following example illustrates that the

initial, final and increment values can be changed without affecting the number of times the

loop is repeated.

If 4 is input for the value of B, the loop is repeated 5 times and the output is —

T we TRl

iy

k
i

Branching and Subroutines

Nesting

FOR-NEXT loops can be nested. When one loop is contained entirely within another, the inner
loop is said to be nested. The following example illustrates assigning values to an array using a
nested FOR-NEXT loop.

o
()
el

Er)
T

- e id
= - i
£ % z
A iz o
i by L
& o =
-t o i

A FOR-NEXT loop can not overlap another.

Correct Nesting

ERECTHNIHG GF HITER LOOF
b BECTHEIHG OF ~IMHER LOGF

Lok
HonE

LB
Ep

FOR I=1-T003 FonESTHE

] EOENT OF OUTER LO0OF
HEAT I EHTC Ok T HMNER LTIORE
PRI
T A

completed and 1 is accessed, s displayed. This is be-

cause the J loop was cancelled and was not reactivated after the last I loop.

135

136 Branching and Subroutines

FOR-NEXT Loop Considerations
Execution of FOR-NEXT loops should always start with th

middle of a loop produces

statement. Branching into the

= when I is executed because no corresponding

statement was.

Execution of loops normally ends with the " statement. It is permissible to transfer control
out of the loop using a statement within the loop. After an exit is made through this method, the
current value of the counter is retained and is available for later use in the program. After

leaving a FOR-NEXT loop, it is permissible to re-enter the loop either at a statement within the

loop, or at the statement, thereby reinitializing the counter.

Subroutines

Many times, the same sequence of statements is executed in many places within a program. A
subroutine allows the group of statements toc be keyed in only once and to be accessed from

different places in a program. A subroutine return pointer is kept by the system in the execution

stack to indicate where execution is to return to when the subroutine is complete. The !

and statements are used to access subroutines.

The GOSUB Statement
The

the current program segment —

statement transfers control to the subroutine which begins at the specified line in

-1 line identifier

A subroutine ends logically with the

which transfers control back to the statement immediately following the statement.

Branching and Subroutin

Example

Here is an example of accessing a subroutine from different places in a program —

Mus

Tr e

Subroutine

The ON...GOSUB Statement
The

{computed GOSUB) statement allows any of one or more subroutines in the
current program segment to be accessed based on the value of a numeric expression —

numeric expression line identifier list
The numeric expression is evaluated and rounded to an integer. A value of one causes the

subroutine at the first identifier in the list to be accessed; a value of two causes the subroutine at
the second identifier in the list to be accessed and so on.

es

omputer

eum

137

138 Branching and Subroutines

18 FoR H=b T 2
o H DM GREUE
o) HEST 5
s TR =
o 5 FREINT YFIRST SUBEGHTIHE®
215 BETLEH
o FRINT TsECOHT
RETHREH
L] FRINT "THIRD SLIPROUTIHEY

FETUREH

1
116 END

If the value of the numeric expression is less than one or greater than the number of line

identifiers in the list, occurs.

A second subroutine can be entered before the of the first is executed.

The subroutine at line 70 is accessed before the one at line 40 is completed.

Subroutines can be accessed in this manner as much as available memory allows. Doing it too
many times can cause the execution stack to become too large, thus causing a memory over-

flow. See Appendix F for more information.

When a

recently.

is executed, control returns to the subroutine which was entered most

Branching and Subroutines

Summary

Here are some facts to remember concerning subroutines and the !

i statement.

e A subroutine should always end with a

e The
keyboard.

statements are programmable only; they can’t be executed from the

e All subroutines specified must be in the current program segment.

Defining a Function

If a numeric or string operation has to be evaluated several times, it is convenient to define it as

a function. This is done using the i Il statement which specifies a user-defined function,
returns a single value as the value of the function and can be used like a system function. The
simplest form is the single-line function which can be used to define a numeric or string function

(there is also a multiple-line function; see Chapter 9).

To define a numeric function —

+function name [i formal parameter list ;] !*> numeric expression

To define a string function —

function name # [i formal parameter list / | == string expression

The function name must be a valid name. The expression can include both parameters and

variables.

Once the function is defined, it is used by referencing it and supplying values by using —

F i function name [i pass parameter list ;! |

for a numeric function, or —

-1/ function name # [i pass parameter list ;]

for a string function.

! Formal and pass parameter lists are discussed in Chapter 9.

139

140 Branching and Subroutines

When the function reference, , is encountered, control is transferred to the corresponding

The values of the pass parameters are substituted for the formal parameters and the
expression is evaluated. Its value is returned as the value for the referencing syntax. See

Chapter 9 for a more detailed explanation of parameters.

Example

Here’s an example use of a single-line function —

Say that a program contains these lines —

variables

function name formal parameter

Lines 30, 80, and 200 can be simplified —

Y, it o

referencing syntax

NOTE
Single-line functions are local to the program segment in
which they are defined. The

tain a reference to itself.

! statement can’t con-

Multiple-line function subprograms can also be used to define a function; see Chapter 9.

Branching and Subroutines 141

Summary

Here are some facts to remember when using single-line functions —
o The name of the function must be a valid name.

o The expression used to define the function can contain both variables and formal

parameters.
® A single-line function can’t contain a reference to itself; that is recursion.

¢ Single-line functions are local to the program segment in which they are defined. See

Chapter 9 for more information.

Branching Using Special Function Keys

The 32 special function keys can be used to interrupt a running program and cause branching.
This branching capability is useful for a program which is very user-oriented. Each key can be
defined to cause a specific branch, so that the user can steer the program the way he wants it.
For example, a ‘menu’ of various routines can be displayed and accessed using special function

keys. Here is where a blank key overlay can be used.

This interrupt capability is declared with an # statement which specifies the branch-

ing operation and which SFK it relates to.

key number [, priority] « for ine identifier

t key number [, priority] ¢ _subprogram name*

The key number is an integer in the range 0 through 31. When a key is pressed and an

has been declared for it, the specified branching occurs if the specified priority

exceeds current system priority. System priority remains unchanged if i/is specified and is

set to the indicated priority if is specified.

1 Parameters can’t be passed. T.5iL.L. is explained in Chapter 9.

142 Branching and Subroutines

Priority

The priority determines the order in which multiple interrupts are handled. The range of
priority is 1 through 15. The higher the priority, the sooner the interrupt is serviced. If no
priority is specified, it is assumed to be 1. Pressing a key with a higher priority interrupts a

routine enabled by a key with a lower priority. The lower priority routine is finished after the

high priority one is complete if the higher priority routine was entered using
Priority is also discussed near the end of Chapter 4.

Example

and priority —

Here’s an example that illustrates

Branching and Subroutines 143

Pressing keys 4, 3, 2, 1 produces —

144 Branching and Subroutines

If multiple ©. declaratives have the same priority, the declarative with the highest key

number is given preference when two keys are pressed simultaneously.

statements which specify for are active only in the program seg-

ment in which they were declared declaratives are deactivated while a program is

waiting for a response to an statement and after

executed.

The = declarative holds for a key until another declarative for the same key,

) o

is executed —

key number

If a certain SFK routine has not been completed and that key is pressed again, the key won’t be
acknowledged until the original interrupt is completed.

If a special function key has both <. and typing aid definitions, the

precedence while the program is running. Remember, waits caused by F

and temporarily deactivate the so any typing aid definition is

’

active at that time.

Summary

Here are some facts to remember when using

o The range of priority is 1 through 15.

e System priority is not changed when . i is specified.

declaratives are temporarily deactivated by

e An i

ticular

declarative is permanently deactivated by another ¢ for that par-

key,

Chapter 9
Subprograms

Introduction

Many programs include various routines that require a long series of statements (such as

routines for sorting or computing compound interest). These routines must sometimes be
repeated many times in one program. To avoid rewriting a routine each time it is needed, a
subprogram can be used. A subprogram is a set of statements that performs a certain task

under the control of the calling program segment.

A subprogram enables you to repeat an operation many times, substituting different values

each time the subprogram is called. Subprograms can be called at almost any point in a
program, and are convenient and easy to use. Subprograms can give greater structure and
independence to a program. A main program may be a sort of ‘‘skeleton’’ program which calls

many subprograms, which, in turn, can call other subprograms.

Subprograms can also be used to conserve memory through the use of local variables and
dynamic memory allocation. These concepts are covered later in the chapter. See Appendix F
also.

The following topics and statements are covered in this chapter —

e Parameters

e Multiple-line Function Subprograms {

e Subroutine Subprograms

e Using . n subprograms
e Declaring variables in subprograms
e Dynamic memory allocation — local variables

e Using data files

e Busy lines

146 Subprograms

Types of Subprograms

There are two types of subprograms.

e The multiple-line user-defined function subprogram is designed to return a single

numeric or string value to the calling program and is used like system functions such as

It is defined using the

statement. (The -4 statement is

also used to define a single-line function; see Chapter 8.)

e A subroutine subprogram is designed to perform a specific task under the control of the

calling program segment. It is defined using the statement.

Terms

There are a few terms which are important to know when dealing with subprograms.

Main program — The central part of a program from which subprograms can be called is
known as the main program. When you press , you access the main program. The
main program can’t be called by a subprogram.

Program segment — The main program and each subprogram are known as program seg-
ments. Every program segment is independent of every other program segment. Sub-
programs come after the main program,; that is, they are higher numbered. Subpro-
grams are called by the main program or another subprogram. See Appendix F for

the relationship between memory allocation and subprograms.

Calling program — When a subprogram is being executed, the program segment (main pro-
gram or subprogram) which called the subprogram is known as the calling program.

Control returns to the calling program when the subprogram is completed.

Current environment — The program segment which is being executed is known as the current
environment. See the section on subprogram considerations at the end of this chapter
for a discussion of variables and various conditions as they relate to subprograms and

the current environment.

The following terms are used in the syntax descriptions in this chapter

Name — a capital letter followed by 0 through 14 lowercase letters, numbers or the underscore

character.

Subprograms 147

Parameters

Values are passed between a subprogram and the calling program using parameters. There are
two kinds of parameters. Formal parameters are used in defining the subprogram. Pass
parameters are used to pass values from the calling program to the subprogram. Each pass

parameter corresponds to a formal parameter.

Formal Parameters

The formal parameter list is used in a or - statement to define the subprogram
variables, and to relate them to calling program variables. It can include non-subscripted
numeric and string variable names, array identifiers and file numbers (see Mass Storage, Chap-
ter 10) inthe form:

ter list must be enclosed in parentheses.

ile number. Parameters must be separated by commas and the parame-

Numeric type — REAL, SHORT, INTEGER — can be declared in a formal parameter list by
placing the type word before a parameter or group of parameters. Here is an example of a

formal parameter list —

In this example, the array C and simple variable D are declared as integer precision, E and F are

short precision and A and G are full precision. Type words are cumulative like in a !
statement. For example, if INTEGER is specified, all variables following it are declared as be

integers until a string, a file number or another type word is specified.

Pass Parameters

and includes

The pass parameter list is used in calling the subprogram (using
numeric and string variable names, array identifiers, numeric expressions and file numbers in
the form: “ file number. Parameters must be separated by commas. The pass parameter list

must also be enclosed in parentheses.

All array variables in the pass parameter list must be defined within the calling program. That is,

arrays must have been dimensioned, either implicitly or explicitly.

148 Subprograms

What Happens

When a subprogram is called, (with

. or 1) each formal parameter is associated with
and assigned the value of the pass parameter which is in the corresponding position in the pass
parameter list. The parameter lists must have the same number of parameters; the parameters
must match in type —numeric or string, simple or array. The following example shows a formal
parameter list, (* lines 70

and 150).

, line 300) and two corresponding pass parameter lists (:

Notice the correspondence between pass and formal parameters. Notice also that the arrays C
and D were declared (line 10) before being passed.

Parameters are passed either by reference or by value. When a parameter is passed by refer-
ence, the corresponding formal parameter shares the same memory area with the pass parame-
ter. Thus, changing the value of the corresponding variable in the subprogram changes the

corresponding value of the variable in the calling program.

When a parameter is passed by value, the variable defined by the corresponding formal
parameter is assigned the value of the pass parameter and given temporary storage space in
memory. Numeric and string expressions are necessarily passed by value. Enclosing a pass
parameter in parentheses causes it to be considered an expression and thus passed by value,
rather than by reference. Passing by value prevents the value of a calling program variable from
being changed within a subprogram.

Examples

In the following example all parameters in line 80 are passed by value; those in line 130 are
passed by reference.

T R W
T

¢ o

£F
[

Subprograms 149

Here is an example of similar program segments. Notice the value of X in each case.

Pass by value

“GComputer
Museum

ST

Any parameters passed by value are converted, if necessary, to the numeric type — REAL,

SHORT, INTEGER - of the corresponding parameter in the formal parameter list. For exam-

ple, say that is passed by value to an INTEGER formal parameter. Its value would be

rounded to 3 when the subprogram is called.

occurs. No conversion is

Those passed by reference must match exactly, otherwise
line 30) are passed by
is INTEGER

made. In the following example,

]

reference. Their corresponding formal parameters are of different types —

occurs.

[o

150 Subprograms

Summary

Here are some facts to remember concerning parameters.

e Formal parameters are used in defining the subprogram (in the state-

ment) and can be simple variables, array identifiers or file numbers.

e Pass parameters are used in the calling program { . statement) to pass values

to the subprogram and can be single variables, array identifiers, expressions or file num-

bers.

o The parameter list must be enclosed in parentheses and all parameters must be separated

by commas.

e Numeric type — INTEGER, SHORT and REAL can be declared in the formal parameter
list.

e Parameters can be passed by reference or by value. Enclosing a pass parameter in
parentheses causes it to be passed by value. Parameters passed by reference must match

in numeric type.

Multiple-Line Function Subprograms

The multiple-line function subprogram is used to define a numeric or string function which
returns a value {numeric or string) to the calling program. There are four syntax which are used

with multiple-line function subprograms —

 subprogram name [:formal parameter list :]

4 subprogram name % [©formal parameter list !]

The

gram. The second syntax is used for defining a string function. The subprogram name

statement is the first line of a user-defined multiple-line function subpro-

must be a valid name.

statement is the last statement in a multiple-line function subprogram.

numeric expression

! string expression

The

the calling program for the value of the function.

statement specifies the value {(numeric or string) which is to be returned to

also transfers control back to

the calling program.

Subprograms 151

ubprogram name [‘ pass parameter list !]

ubprogram name # [©pass parameter list .]

"i. When it is encountered,

s used to reference the subprogram, like saying

values are passed and control is transferred to the subprogram.

can’t appear in an

input or output statement or in redim subscripts.

Examples

Here’s an example of a numeric function —

152 Subprograms

There can be more than one statement in a subprogram, but only one is executed
each time the subprogram is executed. Here's an example based on the previous numeric

function subprogram —

References to multiple-line function subprograms are not allowed in input or output statements

or in redim subscripts. For example, if line 60 of the previous example were changed to —

Remember, values of variables in the calling program can be changed from within a subpro-
gram if the parameter is passed by reference. If, in the previous example of a string function
subprogram, C$ had been passed by reference, its value would have been changed because

the value of X$ was changed in the subprogram.

If a single-line and multiple-line function are defined with the same name and the name is
referenced, the single-line function is the one that is accessed if it is defined within the calling

program segment.

Subprograms

Subroutine Subprograms

Subroutine subprograms allow you to repeat a series of operations many times using different
values or to break a large problem down into a series of smaller ones. A subroutine subprogram
performs a specific task.

There are four statements which are used with subroutine subprograms —

subprogram name [i formal parameter list :]

The

name must be a valid name.

statement is the first statement of a subroutine subprogram. The subprogram

The

back to the calling program.

statement is the last line of a subroutine subprogram and transfers control

The

control back to the calling program before

statement can be used within the body of a subprogram to transfer

_subprogram name [’ pass parameter list :]

The

i statement is used to transfer control and pass values to the subprogram.

Examples

Here is a simple example of a subroutine used to write a heading for data output. Notice that no
parameters are passed.

153

154 Subprograms

Here is another example which manipulates the parameters and could be used to output a

readable table when values are supplied —

Subprograms

statement is used to transfer control back to the calling program before

ke
P}
Ut e

18

T T

et bl

&
=
el
B
=
£
1
o]
ey
b
EX
=
1
i
=

Subprogram Considerations
What Happens

When entering a subprogram the following occur —

e The DATA pointer is reset to the first statement in subprogram.

e Any file assignments that are not passed are cleared.

, and i are the modes defaulted to.

e Any associated with a i or

’

is no longer active; however “interrupts are logged for processing upon

return to the calling program.

Upon return to the calling program, all of the above are restored to their previous state.

155

Using the COM Statement

156 Subprograms

statement. The list of items in the
statement; that is, it must match

|
3 ol
a. s
m e PR R
X .
)]
5k
Q 5
£ L
Hr
C o
® &5 5 -
e) i
£ = 9 i
3 29 [
.m H it
£ © . fue
c E o
o o i
o <
St el
Qo g
528 R
n o O
e & 2
= v o - ¥
2 o5 E i St
® n T
o =y = P e o
a © -~ hi £ el K i o
[m [e [B R i if [t
O o~ hg RO
b= i LU o g -
w B PR Y RS o I g L A iy Y W
- o (SRR TR o= e
© a 5w T e - R
c E o W e
8 & E :
7} Ma w fin] (] i3 i u e) i3 oz} 3
v = o
N :
s 5 a . . .
> w3

Subprograms

Arrays can be specified in a subprogram i_i:{" statement using an array identifier. This method

is very useful for editing. If you change the dimensions of an array in a main program .

statement, you won’t have to edit each subprogram i/ to make the dimensionality match.

Using an array identifier also avoids an error if an array declared with i was redimensioned

statement if it

in the calling program segment. A variable can’t be an item in a subprogram

is also a formal parameter.

Example

Variable Allocation Statements

Subprograms may also have any variable allocation statements: ' and

However, the variables declared may not be in the subprogram tatement or

the formal parameter list.

Here is an example —

S, L
LA |

COMPUTATIONS

T .
g Lok

Within subprogram variable allocation statements, array subscripts and maximum string
lengths can be specified with a numeric expression which can contain constants and formal

parameters because storage for them is temporarily allocated before execution of the subpro-
gram begins.

Local Variables

All variables in a subprogram that are not part of the formal parameter list or the

state-
ment are known as ‘‘local’”’ variables and cannot be accessed from any other program segment.
Storage of local variables is temporary, and is returned to main user Read / Write Memory upon

return to the calling program. This is known as dynamic memory allocation.

All variable names in a subprogram are independent of variables with the same name in other
program segments. Thus, if you check the value of a variable using live keyboard while a
program is running, you may get an unexpected result if the variable isn’t defined in the
program segment which is executing currently.

157

O

158 Subprograms

Files

File numbers of files opened in the calling program can be passed to a subprogram in the

parameter list.

For example —

bR LLE

LoPREIE

TGHED T

Any operations, such as which involve file #3 in the subprogram will affect file #1,

Data, in the calling program.

File numbers can also be implicitly assigned within the calling program from within a subpro-

gram. For example —

X
=
i
e
1
T
i d

¥

.l
Fag

When control returns to the calling program, #4 is still assigned to the file Pay.

Subprograms 159

A file can also be implicity buffered in this manner — P Computer
e Museum

When control returns to the calling program, #4 is still assigned to Pay and it is still buffered.

If a file is actually opened in a subprogram and wasn’t passed as a parameter, it is automatically
closed upon return to the calling program.

See Chapter 11 for explanation of

Editing

There are two ways to add a new subprogram to a main program and any subprograms. It must
either replace an existing subprogram or it must come after all other subprograms.

In order to delete the first line of a subprogram (the
subprogram must be deleted.

-] statement), the entire

The statement can be edited as long as it remains a *

statement or is changed to a

Busy Lines

When a subprogram is accessed from a calling program, a condition is created known as a busy
line or a busy subprogram. Here is an example of a busy line -

Line 10 is busy after the subprogram at line 100 is accessed and remains busy until |
executed.

160 Subprograms

Here is an example of a busy subprogram —

The subprogram X at line 100 becomes busy when line 100 is executed. It becomes unbusy

when the & I atline 190 is executed.

Busy lines and subprograms can have an effect when editing a running program or executing

Attempting to delete or alter a busy line causes an error message. Program execution

has to be stopped in order to delete or alter the line.

Chapter 1 0

Output

Introduction

Output is a method of recording information in the computer onto an output device. Program

results and listings are two examples of information which can be output. Output may take

many different forms, including printout, visual display and punched paper tape.

The following topics and statements are covered in this chapter —

e Audible output —

e Displayed output — !

e The standard printer

e Output functions

e Formatted Output — and .

e Overlapped Processing

Terms

The following parameters used in this chapter can be numeric expressions —

select code

HP-1B device address
number of characters per line
character position

number of spaces

number of linefeeds

162 Output

Audible Output

 statement is used to create a brief audible tone which can be used in a number of

= can signal that a particular computation or program segment is complete. It can also be
used to audibly indicate that the computer is ready for input, so that the operator does not have
to remain at the keyboard.

ig FoR I=1-To 7
® 23 BEEF PoETRHALS USER WHEM AN CIHFUT IS R
28 IHRLUT 2TaTe MALUEZY ML)
45 H 1
=H F Ml

KT
(i

In this case, a beep signals the operator when the program is ready for input.

Displayed Output

The } ' (display) statement allows text and variables to be output in the display line.

~ [display list]

The display list can contain the following —~

variable names
array identifiers
numeric expressions
string expressions

function*

function*

Multiple-line user-defined functions aren’t allowed in the display list, alone or in an expression.
The items in the display list must be separated by commas or semicolons. The list may end with

a comma or semicolon.

* The output functions are discussed later in this chapter.

Output

Examples

1)

-
i

7
i)

(%]
¥
£

,...
‘«
¢
4
e
e

B
H
&
4
i

]

.

N

-
4
524

Notice the difference in spacing between the numbers. This is caused by use of a comma or a
semicolon. When an item is followed by a comma, it is left justified in a field that is 20

characters wide. Two or more commas after an item cause one or more character fields to be
skipped. For example —

When an item is followed by a semicolon, no additional blanks are output after the item.

Remember that every number has a leading blank or minus sign and a trailing blank for spacing
(see Number Formats, Chapter 3). For example —

163

164 Output

Normally, one display replaces a previous one. Successive displays in a program can be pro-
longed with the I statement (which is discussed at the end of Chapter 4).

When the display list ends with a comma or semicolon, any future

statement output is
appended to the current display line. For example —

I g POMORE DISFLAYE ARE APPEMIED

The following are displayed in succession —

If the information being displayed is longer than 80 characters, a carriage return/linefeed
(CR-LF) is automatically output after every 80th character causing a new line to overwrite the
previous. Only the last line of the displayed information is visible. You can see all of the
displayed information by setting the print all mode. This causes every display to be printed on

the print all printer (see Chapter 3).

Printed Output

Five statements are used to control printed output:

-~ and

Defining the Standard Printer

The " statement defines the standard print device for the system. For the
9835A, the CRT, select code 16, is standard at power on, and . For the 9835B
the thermal strip printer, select code 16, is standard. If you do not have a printer in your 9835B,

any operation directed to select code 0 or 16 causes an /O error.

select code [, HP-IB device address] [. i number of characters per

line]

All output from T, and syntax error messages from

are directed to the standard printer.

QOutput 165

The specified device must be an acceptable printing device, like a printer or tape punch; it may
be any device which can accept strings of ASCII characters.

The i | parameter is a numeric expression and specifies the number of characters per line
of the standard printer. Its range is 16 through 260; 80 is the power on and default value unless

the internal printer is specified. 16 is the default width in this case.

Here are some examples —

The PRINT Statement

I statement causes text and variables to be output on the standard printer.

[print list]

The print list can contain the following items —

variable names
array identifiers
numeric expressions
string expressions

function

function
function

Multiple-line user-defined functions aren’t allowed, alone or in an expression. All items must be
separated by commas or semicolons.

166 Output

@ Here are some examples of the ‘statement —

i@ FERE I=L T

e o FRIHT » il

4 1

i i
i i
T o
I b

.

statement

just like in the statement. A comma after an item causes it to be left justified within a
20-character field. A semicolon after an item suppresses additional blanks. A comma or semico-
lon after the last item in the list allows a future print list to be appended by suppressing the

CR-LF. A CR-LF is automatically output when the

The current numeric output form (see Chapter 3) determines how a number is output with both

For example —

Output

The variable width of the standard printer can be especially useful when outputting non-
printable characters such as escape codes. Here is an example to try using the CRT of the
9835A as the output device —

In this example, CHR$(129) and CHR$(128) are non-printable characters used to turn inverse

video mode on and off. Please refer to Appendix B for more explanation of this use of CHRS$.

Output Functions

Four output functions are available to increase formatting capabilities. Ti+k and °

used with both

and 1

. They

must be separated from the next item in the display or print list with either a comma or a

fand | can be used only with F

semicolon. However, both the comma and semicolon function identically after an output func-
tion; they merely serve to separate it from the next item.

The TAB Function
The -

column.

function causes the next item in the list to be output beginning in the specified

character position

The character position can be specified by any numeric expression, except one containing a
multiple-line function, and it is rounded to an integer. If it is less than 1, it defaults to 1. For
example —

If the specified column has already been filled, a CR-LF is output, and then the TAB is com-

pleted. For example, if line 100 above is changed to —

a CR-LF would be output after 147 (notice that the comma causes 147 to be output in a 20
column field) and only the text would remain in the display.

" Computer
: Museum .

167

168 Output

When the character position specified is greater than the number of columns in the standard

printer, it is reduced by this formula —

(character position—1) N+1

N is the number of columns specified as standard printer width. For example, with printer width
80 -

i
&
=
b}
A

The SPA Function

The

blank spaces up to the end of the current line.

(space) function is used with -~ and

to output the specified number of

umber of spaces

Here’s an example —

The number of spaces can be specified by any non-negative numeric expression, except one
containing a multiple line function, and it is rounded to an integer. If it specifies more blanks

than remain in the line, the next item begins the next line. For example —

Output 169

The LIN Function

function is used with

and causes the specified number of linefeeds to be

number of linefeeds

The number of linefeeds can be specified by any numeric expression, except one containing a
multiple-line function, and it is rounded to an integer. Its range is —32 768 through 32 767.

Here’s an example —

When the number of linefeeds is positive, a carriage return precedes the linefeeds. When zero
linefeeds are specified, only a carriage return is output. When the number of linefeeds is
negative, no carriage return is output; the number of linefeeds output equals the absolute value
of the expression. Some printers, such as the internal printer, don’t suppress the carriage

return. For example —

170 Output

The PAGE Function
The function can be used with =7 and causes a form feed character to be output,

so further printing can begin on a new page or at the top of the next form on devices that can
understand ASCII form feed (CHR$(12)). The internal printer does not ‘‘understand’’ form
feed; alinefeed is output instead.

Here’s an example —

When the standard printer is the CRT,

clears the entire print area.

Printing Arrays

The statement is also used to print arrays on the standard printer.

array variable [, or ; [array variable, or ;...]]

The comma or semicolon following an item specifies open or close spacing between elements.
For example —

Output 171

When an array is printed, every printed row is followed by a blank line. The last row is followed

by two blank lines.

When an array has more than two dimensions, the last subscript varies fastest and defines the

length of a row. For example —

,MK,
£

In this example, array A(2,3,4) is interpreted as two matrices, each 3 by 4, for output or input

purposes.

t. In the

statement using an array identifier,

Arrays can also be printed by the
previous example, line 120 could be changed to —

172 Output

Formatted Output

Two statements, and | -, provide the capability of generating printed

output with complete control of the format.

tring expression[; print using list]

ne identifier[; print using list]

ormat string

The print using list can contain the following items —

variable names
array identifiers
numeric expressions

string expressions

Remember, no multiple-line user-defined functions can be specified in the print using list. The

items in the list are separated by commas or semicolons. However, the commas and semicolons

have no effect on the printout, as in "or ; they are used only to separate items.

The output is totally controlled by the format string.

The string expression in the first syntax must be a valid format string at the time of execution. It

can be any string expression. The line identifier in the second syntax must refer to an

statement; the _ statement contains the format string corresponding to the particular

; statement.

Format String

The format string is a list of field specifiers separated by delimiters. It is used to specify numeric
and string fields, blanks, and carriage control. Each numeric or string field specifier must
correspond to an appropriate item in the print using list. Each field specifier is made up of
various symbols and determines how a single item in the print using list is to be output.

Delimiters

Three delimiters are used to separate field specifiers —

A comma is used only to separate two specifiers.

A slash can be used to separate two specifiers. It also causes output of a CR-LF.

Qutput

The commercial at sign can be used to separate two specifiers. It also causes output of a

formfeed character, starting a new page of output on devices that have this capability.

The - and # symbols can also be used as field specifiers by themselves; that is, they may be
separated from other specifiers by a comma. Only the - can be directly replicated (see the

Replication section which is later in this chapter).

Blank Spaces

A blank space is specified with —
N specifies N blanks. Any * specifier can be imbedded within any other field specifier
without delimiters.

String Specification

Text can be specified in two ways —

A literal specifier is text enclosed in quotes. This specifier may be imbedded without

delimiters within any other field specifier.

For example —

gt PBLANHKS BHD LITERALS QUTFUT

-is used to specify a single string character. Ni+ specifies N characters. The length of

the string specifier is determined by the number of s that are specified between

delimiters; this corresponds to one item in the print using list.

The above example could also have been written —

CITERAL o BLAME AHD- STRING SRECIFEIED

173

174

Output

If the string item in the print using list is longer than the number of characters specified, the
string is truncated. For example —

WT USIHG “SA";"RESUL

If the item is shorter, the item is left justified and the rest of the field is filled with blanks.

Numeric Specification

Numeric specifiers can be made up of various types of symbols: digit symbols, sign symbols,

radix symbols, separator symbols and an exponent symbol.

Digit Symbols

with a blank space as a fill character.

For example —

with O as a fill character.

Output 175

For example — @

Specifies a digit position. N: specifies N digit positions. Leading zeros are replaced

with ## as a fill character.

For example —

Only the symbol !is allowed to the right of any radix indicator symbol (discussed later}. Any

digit symbol can be used to specify the integer portion of any number but, with one exception,

they can not be mixed. That is, for example, if 1!is used they must all be i The exception is

that the digit symbol specifying the one’s place can be a - regardless of the other symbols. For

example —

176

Output

Radix Symbols
A radix indicator is used to separate the integer part of a number from the fractional part. In the

United States for example, this is customarily the decimal point, as in 34.7. In Europe, this is
frequently the comma as in 34,7. Only one symbol for a radix indicator at most can appear in a

numeric specifier.

Specifies a decimal point radix indicator in that position.

&3 Specifies a comma radix indicator in that position.

Here are some examples —

If the number to be output contains more digits to the right of the radix indicator than are

specified, the number if rounded. Here is an example —

Sign Symbols
Two sign symbols are used to control the output of the sign characters + and —. Only one sign

symbol at most can appear in a numeric specifier.

) Specifies output of a sign: + if the number is positive, — if the number is negative.

Specifies output of a sign: — if the number is negative, a blank if it is positive.

If the sign symbol appears before all digit symbols in a numeric specifier, it floats (see the
section of Floating Symbols which is later in this chapter) to the left of the leftmost significant

digit output.

When no sign symbol is specified and the number to be output is negative, the minus sign

occupies a digit position.

Output 177

Here’s an example — @

Digit Separator Symbols
Digit separators are used to break large numbers into groups of digits {(generally three digits per
group) for greater readability. In the United States, the comma is customarily used; in Europe,

the period is commonly used. The X symbol can also be used to cause digits to be separated
with a blank space.

Specifies a comma as a separator in the specified position.

Specifies a period as a separator in the specified position.

The digit separator is output in an item only if a digit in that item has already been output; the
separator must appear between two digits. When leading zeroes are generated by the

bol, they are considered digits and will contain separators if specified.

Here is an example showing digit separators —

178 Output

Exponent Symbol
@ . Specifies that the number related to the numeric field that it is contained in is to be

digit exponent. At least one digit symbol must precede the E symbol in a numeric

specifier.

Here are some examples —

T u}:{‘ﬂﬂﬂgng,@‘w e

“nnn L“}‘}E‘,# :

Floating Symbols

Floating symbols — =i, Il ., or text in quotes — that precede all digit symbols in a numeric
specifier “float’” past blanks to the leftmost digit of the number, or to the radix indicator. This is

useful for output of monetary values so that the dollar sign will be output next to the first digit.

Here are some examples —

T ea o R

Sign symbols and text that are imbedded between digit symbols do not float.

Here are some examples of floating and non-floating symbols —

floating non-floatin

or text imbedded in a numeric field stops the floating field.

Output 179

Replication
Many of the symbols used to make up field specifiers can be replicated (repeated) to specify

multiple symbols by placing an integer in the range 1 through 32 767 in front of the symbol.
The following

s all specify the same format string —

Here’s an example of replication —

L
ami

Placing an integer before a symbol works exactly like having multiple adjacent symbols.

The following symbols can’t be replicated —

literal fields

¥ (see next section for explanation)

180

Output

In addition to symbol replication, an entire specifier or group of specifiers can be replicated by
enclosing it in parentheses and placing an integer in the range 1 through 32 767 before the

parentheses. For example —

So, specifying : is the same as specifying

In this manner, both ¥ and can be repeated —

Up to four levels of nested parentheses can be used for replication.

Compacted Specifier

A single symbol, ., is used to define an entire field for either numeric or string output. If the
corresponding print using item is a string, the entire string is output. If it is a numeric, itis output

in STANDARD form. K outputs no leading or trailing blanks. For example —

Carriage Control

The CR-LF normally output when the print using list is exhausted can be altered by using a
carriage control symbol as the first item in a format string; a comma must separate it from the

next item.

Suppresses both the carriage return and linefeed.
Suppresses the linefeed.

Suppresses the carriage return.

Output 181

For example —

HOR D L xaEs

Notice that

* is equivalent to and

“ is equivalent t

Reusing the Format String

A format string is reused from the beginning if it is exhausted before the print using list. This is

also a way to replicate fields. For example —

Field Overflow

If a numeric item requires more digits than the field specifier provides, an overflow condition
occurs. When this happens, all preceding, correct items are output, followed by a CR-LF. The
item which overflowed is output in STANDARD format followed by the field specifier which

caused the overflow. Another CR-LF is output, then the rest of the print using list is output. For
example —

SR
IR REE IR

a digit position.

No error message occurs when a field overflow occurs, but the computer beeps.

182 Output

Summary

Here is a summary table of image symbols and their uses —

Image Replication

Symbol Allowed? Purpose Comments
Yes blank Can go anywhere
No Text Can go anywhere
Yes Digit Fill = blanks
Yes Digit Fill = zeroes
Yes Digit Fill = asterisks
No Sign H+” or =7
No Sign “A” or ‘="
No Exponent Format = ESDD
No Radix Output “.”
No Comma Conditional digit separator
No Radix Output *“,”
No Decimal point Conditional digit separator
Yes Characters Strings
Yes Replicate For specifiers, not symbols
No Carriage control Suppress CR-LF
No Carriage control Suppress LF
No Carriage control Suppress CR
No Compact Strings or numerics
No Delimiter
Yes Delimiter Output CR-LF
No Delimiter Output FF

Considerations

One factor that must be taken into account when creating formatted output with

is the printer width. When dealing with numeric output, format strings should be

designed so that a line of characters doesn’t exceed the number of characters per line of the

printer. + does not provide carriage return-linefeeds to keep lines within the

width of the printer.

Output

Advanced Printing Techniques

Advanced printing techniques on the CRT (9835A) are covered in Appendix B.

Overlapped Processing

The 9835A /B has a capability which can enable a program to run faster and more effiiciently.
This capability is known as overlapped processing or overlapped 1/ 0. In overlap mode, /0
initiated by a program statement proceeds in parallel with the execution of subsequent program

lines, while in serial mode the /O is completed before the next line is executed. Overlap mode

is set by the i~ statement —

By clever programming techniques and matching computation with [/ O, the speed with which
a program runs can increase by a factor of up to (number of /O devices used +1). A program
that has a large difference between the amounts of /0O and computation won’t run more
efficiently in OVERLAP mode.

If you are using ON ERROR (see Chapter 12) to trap errors, [/ O errors (numbers 54-103)

aren’t trapped if overlap mode is in effect.

The computer is returned to the serial processing mode which is the default mode at power on,

- by the * statement —

Using serial mode is recommended during program debugging to avoid confusing results.

183

184 Output

Chapter 1 1

Mass Storage Operations

Introduction

Data and programs can be stored on various mass storage media for later use. Many mass

storage devices can be used with the 9835A /B. All devices are operated with the same state-

ments and commands.

The basic mass storage operations are covered in this chapter. Specifics of the tape cartridge
are discussed in the 9835A /B Owner’s Manual. The Mass Storage Techniques Manual covers
techniques for using mass storage devices in greater detail.

The following topics and statements are covered in this chapter —

e Standard Mass Storage Device e Storing and retrieving data

e Files

e Records e Protecting a file
e EOF's and EOR’s e Purging a file
e The Directory e Copying a file
° e Renaming a file

e Cataloging files e Storing keys, binaries and memory

e Storing and retrieving programs e Rewinding the tape

186 Mass Storage Operations

Terms

The following terms are used in mass storage operations —

file number — the number assigned to a mass storage data file by an
range is one through ten.

file name — a one to six character string expression with the exception of a colon, quote mark,
ASCII NULL, or CHR$ (255). Blanks are ignored. Here are some examples of file
names —

select code — an expression (rounded to an integer) in the range zero through sixteen. The

following select codes are reserved —
o O Internal Thermal Printer
e 15 Tape drive

e 16 CRT (9835A); Internal printer (9835B)

mass storage unit specifier — any string expression of the form —

: device type [select code [. controller address | 9885 unit code [, unit code]]]

The letters specifying the various mass storage device types are —

Letter Device
T Tape cartridge
F 9885 Flexible Disk
Y 7905A Removable Platter
VA 7905A Fixed Platter
C 7906A Removable Platter
D 7906A Fixed Platter
P 7920A Disc Pack

Mass Storage Operations 187

The select code can be an integer in the range 1 through 15 with 15 reserved for the tape drive.
15 is default for T devices, 8 for F and 12 for all others.

The controller address can be an integer from zero through seven. Zero is the default address.

The 9885 unit code can be an integer from zero through three. Zero is the default code. .!

The unit code can be an integer from zero through seven. Zero is the default code. It is ignored
for the 9885 and tape cartridge.

Mass storage unit specifier is abbreviated msus.

Here are some examples of mass storage unit specifiers —

msus Explanation

Tape cartridge drive

9885 flexible disk at select code 8

7905A removable platter, select code 4, controller address O,
unit code 3

Remember that the mass storage unit specifier can be any string expression. The following
program segment illustrates this.

file specifier — a string expression of the form — file name [mass storage unit specifier]. Here

are some examples —

when

protect code — any valid string expression except one with a length of zero. Only the first six

characters are recognized as the protect code, however.

188 Mass Storage Operations

The following parameters used in this chapter can be numeric expressions —

select code heading suppression
HP-IB device address number of defined records
controller address record length

9885 unit code file number

unit code defined-record number

interleave factor

The Standard Mass Storage Device

At power on and :

, the tape cartridge drive, T15, is the standard mass storage

device for the system. This is the device to which all mass storage operations are directed if no

device is specified. The default device concept is very powerful in creating device independent
programs.,

The standard default device is changed by executing the

statement —

> mass storage unit specifier

For example —

Structure
All mass storage operations deal with files and records, the basic components of a storage
medium.
Files

Files are the basic unit into which programs and data are stored. Storage of all files is “‘file-by-
name’’ oriented; that is, all files must be assigned unique names. The form these names must

take is covered in the ‘“Terms’’ section at the beginning of this chapter.

Mass Storage Operations 189

There are 6 types of files —
e Program files
e Data files

o KEY files

e STOREALL files
e Binary program files

e Binary data files (Mass Storage ROM)

Records

Every file is composed of a varying number of records. A record is the smallest addressable unit
on a mass storage medium.

There are three types of records —

1. Physical records are 256-byte, fixed units which are established when a medium is
initialized. Every file starts at the beginning of a physical record; this is an important fact
for optimum device use. Otherwise, you need not be concerned with physical records.

2. Defined records are established using the - statement and can be specified as
having any number of bytes in the range 4 through 32767 (rounded up to an even

number). A defined record is the smallest unit of storage which is directly addressable.

3. A logical record, a user-level rather than machine concept, is a collection of data items

which are conceptually grouped together.

When a file is established with a : . or - statement (discussed later), the computer
uses as many records of 256 bytes as it needs to store the program. Logical and defined records

are not used with =

Using the ¢ statement for data files, you can specify how many defined records you
wish the file to contain. You don’t need to be concerned with the correspondence between
physical and defined records, except to remember that the first defined record of a file starts at

the beginning of a physical record.

EOF’s and EOR’s

Files and records are bounded on the storage medium by end-of-file (EOF) and end-of-record
(EOR) marks which signify their ends. This section illustrates and describes the organization of
files and records on a storage medium.

190

Mass Storage Operations

Physical Records
A storage medium is divided into 256-byte fixed physical records when it is initialized.

256 bytes 256 byles ———

-physical record-

End-of-File and End-of-Record Marks
When a file is created, its end is designated by a physical-end-of-file (PEOF) mark. Any space

between the PEOF and the beginning of the next physical record is unused space.

Unused space
rr—r———

[e——— physical record ~———-

file

beginning of file PEOF (end of file)

When a file is created using the . statement (discussed later in this chapter), an
end-of-file (EOF) mark is placed at the beginning of each defined record. Each EOF mark takes

two bytes of storage space.

At the same time, a physical-end-of-record (PEOR) mark is placed at the end of each defined

record. Numeric data items can’t cross a PEOR mark.

physical record | physical record —
3 [E | E P
o] | o] I o] o
F I F | F F
defined record T defined record —g——| defined record +—
beginning of file PEOR mark PEOR mark PEOR mark

As data is written to a file, the EOF marks are over-written. An EOF mark can be printed at the

end of the data by printing (see the statement) after the data. If an EOF mark is

not placed after the data, an end-of-record (EOR) mark automatically is.

[«——— data items 65—

beginning of file EOR mark beginning of file

|+——— data items

MmO mo
mOom
mOomT™

Mass Storage Operations 191

The Directory

The directory is the storage medium’s record of all of its file information; it includes each file's
name, type, length, location and loading information. The directory information is automati-

cally revised when a file is created or purged. A spare directory is maintained on the medium in

the event that the first becomes unreadable. You are warned with a message every time the
spare directory is accessed if the main directory becomes unreadable. It is accessed automati-

cally by the system when necessary. Here is the message —

There is no provision made for recovering information stored on a medium if both directories
are destroyed. If the main directory becomes inaccessible it is wise to transfer all valuable data
on the medium to another one before the spare directory is destroyed. Rewriting the main
directory from the spare directory by adding, deleting or changing the name of a file may help

the problem, but not necessarily solve it.

Tape Cartridge Directory

When a tape cartridge is being used to store and retrieve information, its directory is written
into memory the first time it is accessed. This is done to save wear on the tape and improve
performance by reading the directory from memory rather than from the tape. The directory on
the tape is accessed only when it needs to be rewritten. The directory is erased from memory
under any of the following conditions —

e Reset

e Removing the tape from the drive

192 Mass Storage Operations

Basic Operations

Initializing a Mass Storage Medium

The
9835A /B by establishing physical records and main and spare directories.

. statement enables an unused mass storage medium to be used with the

A used medium can also be re-initialized; in the process, it is cleared of all information it

previously contained.

mass storage unit specifier [, interleave factor]

The interleave factor is a numeric expression which defines the number of revolutions per track
to be made for a complete data transfer. It is ignored for all devices except the 9885. See the

Mass Storage Techniques Manual for its use.

Main and spare directories and all physical records are established and tested when a mass

storage medium is initialized.

The .

program doesn’t utilize the mass storage device that is involved in the initialization process. If

_operation can take place at the same time as execution of a program if the

the program attempts to use the drive on which an initialization is in progress, program execu-

tion is suspended until the operation is complete.

Here are some examples —

Mass Storage Operations

Cataloging Files
The

medium: file names, types, and physical specifications.

(catalog) statement outputs a listing of directory information for a storage

[selective catalog specifier /msus [, heading suppression]]

select code [, HP-IB device address] [; selective catalog specifier/msus [, head-

ing suppression]]

The selective catalog specifier is a string expression one through six characters in length. Only

those files whose names begin with that combination of characters are cataloged.
If the value of the numeric expression is one, the heading is suppressed.

The second syntax directs the catalog output to the specified device.

Here are some examples —

193

194 Mass Storage Operations

The information for each file is printed on one line. Here is a sample catalog cutput.

7. msus

8. Available tracks

The name given to the file when the information is stored on

the medium.
An asterisk in this column designates a protected file.

The various file types are specified by the following:

for a program file

for a data file

for a KEY file

for a STOREALL file

for a binary program file

for a binary data file (Mass Storage ROM)

If a medium is being cataloged that was not initialized on the
9835A /B, but on another HP computer such as the System
45, the 9835A /B attempts to determine what types the files

are and put a question mark after the type in the catalog
output. The type may or may not be correct; the 9835A /B

may not be able to interpret the file.
The number of defined records in the file.
The number of bytes per defined record.

The address of the physical record number with which the file
begins. With the tape cartridge, it is the number of the first
physical record. See the Mass Storage Techniques Manual for

information about other devices.

The mass storage device on which the catalog was per-

formed.

The number of tracks available for use. This is most important
with the 9885; see the Mass Storage Techniques Manual.

Mass Storage Operations

Storing and Retrieving Programs

Programs can be stored onto a mass storage medium in two different ways, into two types of

files.

The first type of file for storing programs is known as a data file. When a program is stored into
a data file, it is stored as a series of strings, with one string per program line. This method is not
the fastest method of storing and retrieving programs, but it has other advantages. A program

stored into a data file can be accessed as string data by other programs. Programs are stored

" statement.

into data files with the statement and retrieved with the
The second type of file is known as a program file. When a program is stored into a program
file, it is stored in a compiled, internal code interpretation. Storing the program also stores all
binary routines currently in memory along with the program. This is the fastest method for

storing and retrieving programs. Programs are stored into program files with the =

statement and retrieved with the . tatement.

Data Files

The SAVE Statement
The =

data file on the storage medium.

. statement stores the program and any subprograms in computer memory into a

file specifier [, beginning line identifier [, ending line identifier]]

Execution of the * - statement creates a data file by “‘listing’’ the program and saving the
list on the medium as string data, one program line per string. In this way, the file can be read,

modified, or rewritten as string data by other programs.

When only the file specifier is given, the entire program is saved. If the beginning line identifier
is specified, the program from that number to the end is saved. If both line identifiers are
specified, the program section, from the first line identifier to the second, inclusive, is saved. If

the first line identifier is a label which is in a subprogram and execution is not currently in that

subprogram, - occurs.

195

196 Mass Storage Operations

Examples

ek
s]

il
51

A

b
i

The GET Statement
The partner of the

. statement, the i:i. 7 statement retrieves and puts into memory a

program saved previously with the _ statement, or any string data file consisting of valid

BASIC statements preceded by line numbers, stored one line per string.

I file specifier [, line identifier [, execution line identifier]]

Execution of the i T statement causes the computer to read the specified data file and expect

to find a succession of strings that are valid program lines.

If no line identifiers are specified, the entire stored program is loaded into computer memory,
destroying any programs or data (except data stored with ©

in memory.

If one line identifier is specified, the program is renumbered as it is loaded so that it begins with
the number of the specified line of the program currently in memory. Any lower-numbered

lines from a previous program are retained. The numbering remains the same on the storage
medium.

If the was executed in a program, program execution is restarted with —

e The program line immediately following the &
with

{ statement in the original program or

e The first line of the loaded program if there were no lines after the

" statement or if

these lines were destroyed by the ! statement.

If two line identifiers are specified, program execution is restarted with the second line iden-
tifier.

Mass Storage Operations 197

When a program retrieved with has an invalid line in it, the invalid line and an error

message is listed on the standard system printer. An example of how this can occur is when a

program is
with

other than :

with the Mass Storage ROM installed in the machine and later retrieved

when the ROM is not installed. Any lines which have mass storage unit specifiers
are listed with an error message. m

Examples

The LINK Statement
The !

current values of all variables are retained.

statement is identical to the statement discussed previously, except that the

ile specifier [, line identifier [, execution line identifier]]

If no line identifiers are specified, the program is loaded, destroying the current program in
memory.

The first line identifier specifies that the loaded program is to be renumbered and is to begin
with the line number of the specified line.

If two line identifiers are specified, execution begins with the second line specified.

In effect,

performs a operation on the loaded program, whereas performs a

~ operation, involving no pre-run initialization of variables.

Examples

198

Mass Storage Operations

The RE-SAVE Statement

A program stored in a data file can be loaded into memory and edited. It can then be re-saved
into the same file using the '

statement —

file specifier [, protect code] [, beginning line identifier [. ending line iden-
tifier]]

is equivalent to

followed by

The protect code is used only if the file has been protected. When no line identifiers are
specified, the entire program is saved. When one line identifier is specified, the program is

saved from that line to the end. When two line identifiers are specified, that block of lines
saved.

—

S

Program Files
The STORE Statement

The statement creates a program file and stores the program and any binary routines
in memory into it.

file specifier

Examples

fing

o]

ey

If you attempt to

a program which has been 'd, the information written to the

tape is meaningless.

Mass Storage Operations 199

The LOAD Statement

Programs saved with

are retrieved with the ! I statement.

file specifier [, execution line identifier]

statement destroys any program and data in memory and loads the

program and any binary routines. However, any data stored in common is preserved if the

Execution of the

statement. If the

loaded program has a statement comes from the keyboard and

no line identifier is specified, control returns to the keyboard after loading. If it comes from
execution of a program line in memory, execution begins at the first line of the loaded program.

When the line identifier is specified, execution of the loaded program begins at that line.

Examples

The RE-STORE Statement

A program file can be loaded into memory and edited, then re-stored into the same file using

the i : statement —

_file specifier [, protect code]

. is equivalent to followed by

The protect code is used only if the file has been protected.

Examples

200 Mass Storage Operations

Data

Data in the form of numbers and strings can be stored into a data file. This is the same type of

file as the one created by the ! statement, but it is created differently. A group of concep-
tually related items is known as a logical record. It is advisable, for the sake of ease of handling,
to save logical records into separate defined records, rather than putting all data in one com-

bined record.

There are five basic data file operations: creating a file, opening a file, recording data, retriev-

ing data, and closing a file.

Creating a Data File
The

statement is used to create a data file.

file specifier. number of defined records [, record length]

The record length specifies the length of a defined record in bytes and is rounded up to an even

integer. If it is not specified, a defined record length of 256 bytes is assumed.

The number of records specified can be 1 through 32 767. The length that can be specified is 4
through 32 767 bytes. However, the size of a file created is limited by the amount of available

space on the medium. A medium overflow error)} occurs if more records are

specified than the medium can hold.

. also puts an EOF mark in the first word of every defined record.

Here are some examples —

When creating data files, you must be sure that the length and number of your defined records
suit the storage requirements of the logical records you plan to store. To determine storage
requirements, see the section on Data Storage which is later in this chapter. Attempts to store

data into an insufficient amount of storage space results in an error.

Mass Storage Operations

Opening a File

Data files must be opened before they can be accessed. This is done with the !

statement. The two syntax shown below are equivalent.

file specifier i ile number [, return variable [, protect code]]

file number Tt file specifier [, return variable [, protect code]]

The statement sets up or references an existing internal files table and allows you to
utilize data files (with

and - statements). The files table has room for ten

entries. All entries are cleared when a program is run, and when

Py

: - or reset is executed. The file number is a numeric expression;
its range is 1 through 10. The ! | statement also assigns a file pointer used for data

access to the file number, and positions the pointer at the beginning of the file.

The optional return variable can be a simple numeric variable or array element and is set after
execution to indicate various results. Its value is used to check for errors. If no return variable is

specified, an error occurs if the file isn’t found, is protected or is of the wrong type.

Return Variable Meaning
0 File available
1 No such file found
2 File is protected, or wrong file type

The protect code is a string expression, and is necessary only if the file was protected earlier.
For all disks it must be the same protect code as the one to protect the file. If the file isn’t
protected, including the protect code causes an error. The null string as protect code corres-
ponds to an unprotected file.

Here are some examples —

Line 20 illustrates a return variable. Lines 20 and 30 show that more than one number can be
assigned to a file.

201

202 Mass Storage Operations

Storing and Retrieving Data

There are two methods of storing and retrieving data in a file: serial access and random

access.

Serial File Access

Serial file access is used to store or retrieve data items one after the other, without regard to
defined records. Logical records can be longer or shorter than defined record length. For each
data file opened, a file pointer keeps track of the data item currently being accessed. As you

store or retrieve data, the pointer moves serially forward through the file.

Serial Printing

The serial statement records values onto the specified file from the specified vari-

ables or strings in computer memory.

file number; data list [,

file number;

The data list is a collection of items separated by commas. The items can be variables, array

identifiers, numbers, or strings of characters. The last or only item can be : which causes

an EOF mark to be printed. Otherwise, an EOR mark is placed after the data list is printed.

Printing begins at the position of the pointer after the data item most recently stored or re-
trieved, or at the beginning of the file if nothing has been stored or retrieved, or if the pointer

has been repositioned to the beginning of the file (see Repositioning the Pointer).

When storing a long string, it might be too long to be contained in one defined record. In that
case, the string is automatically broken up and stored into as many defined records as it needs.
This adds four bytes to the amount needed to store the string each time the string crosses over

into another defined record. The parts of the string are identified as first, intermediate, or last.

Mass Storage Operations

The length of data in the list must equal or be less than the storage space that remains in the file

after the pointer; otherwise, an EOF error occurs, signaling that you have filled your file. Data

can also be stored using the statement in a file created with the _statement if

the file has been assigned a number " in effect, performs a serial print onto a file.

Here are some examples —

LB Aa-RECOED FILE

These two statements record values for A, B, C, D, and E (*) onto file #3. This data constitutes
a written record. The EOR which was placed after the data when line 50 was executed is
overwritten when line 60 is executed. Another EOR is printed after the data in line 60. Re-
member, an EOR signifies that there is no more data between the file pointer and the end of the
defined record.

The seria statement can also be used to generate program lines into a file. Such a

file can be retrieved with

". Here's an example —

¥

£

5

produces —

203

204 Mass Storage Operations

Serial Reading

The serial statement retrieves values for variables and strings of characters from the

specified file.

file number; variable list

Before you can re-use data which has been stored in a data file with a statement, you
must read the data back into computer memory. The data is not erased from the file; it is merely

copied into the variables specified in the same order in which it was stored with the

statement. Therefore, variables do not have to have the same names specified in the
statement. Reading begins after the last item printed or read on the specified file. To begin

reading from the beginning of the file, you must reposition the pointer (see Repositioning the

Pointer) or do another

file.

Data can be updated and restored into the file or into a new

Data in the form of strings can be read from a file created with the statement.

In order to retrieve all of the information stored, your

statement(s) data list must
match in number and type (string vs. numeric) the
stored. If the
EOR (or EOF if

statement(s) data list previously

statement list specifies more data items than were originally stored, an

was printed) error occurs, meaning there is no more data.

Data that is read must correspond to the type — numeric or string — that was printed. How-
ever, a numeric data item need not be of the same precision. Precision is automatically con-
verted. You can also print an array and read back simple variables or other arrays, and vice
versa. Here is an example using a data file called ‘*‘XX"'.

Notice that value of F is rounded when used as the value for B.

Mass Storage Operations 205

However, an overflow or underflow can occur. This is illustrated by the following example.

AR

LEE

This causes to be displayed and a beep to occur. To avoid the

error, ii can be executed. The default value is used.

Here’s an example of corresponding operations -

T

Bl

i

e S K

Notice that 52 items are printed and 52 are read; they don’t need to match as far as simple or
array variable goes. Arrays are stored as a series of single data items with no regard to dimen-
sionality.

In serial read mode an EOR mark is ignored, causing the file pointer to skip to the next record in
an attempt to read data.

Random File Access

Random file access is used to store or retrieve data items from a specific defined record.

Random file access requires you to specify which defined record you wish to access. The

pointer is positioned at the beginning of that defined record.

206 Mass Storage Operations

Random Printing

The random - statement is like the serial statement except that it records

data onto the file starting at the beginning of the specified record. However, EOF marks at the

end of records aren’t ignored. The data can’t be larger than the record.

file number, defined-record number[; data list [.

file number, defined-record number [;

The data list is identical to that used in the serial | ¢ statement. The random
statement records data into the specified record of the file. Printing starts at the beginning of the

specified defined record. Any previous data in the record is overwritten. Any data not overwrit-

ten because the new logical record is shorter is inaccessible via that pointer. Specifying
causes an EOF mark to be printed after the data or at the beginning of the record (second
syntax).

The written record set down by the list(s} of data must fit in the defined record, otherwise an

EOR error occurs. If you attempt to specify a defined record number greater than the number

specified in the statement, an EOF error occurs.

When no data list or is specified, an EOR is printed in the first word of the record, which

makes the data in that record inaccessible.

Here is an example —

D PRidTo Don TR EE

Records 1 and 2 each have two values in them. Record 3 has an EOR in the first word.

Random Reading

The random statement is like the serial statement except that reading of data

into the computer begins at the beginning of the specified defined-record and won’t read past
an EOR or EOF mark.

file number, defined record number [; variable list]

Mass Storage Operations 207

Again, as in the serial statement, the variables into which you read values do not

necessarily have to have the same names or precision type specified in the

ment.

If the number of items making up the data list is greater than the data in the defined record, an
EOR occurs.

C‘omputer

Museum .

Here’s an example —

These two operations retrieve the data stored in the previous example.

Repositioning the Pointer
If the variable list is omitted, the pointer is repositioned to the beginning of the specified record.

To reposition the pointer to the beginning of a file (for use with serial file access) execute —

Random vs. Serial Method

The decision to choose random or serial methods depends upon the structure of the data which
is to be recorded and retrieved. Serial file usage makes the most efficient use of the storage
medium by packing all data tightly in the file. However, the data must be retrieved from the
beginning of the file and therefore an item in the middle of a file cannot be accessed until all
data coming before it is accessed. Random file usage is less efficient in its use of the storage
medium but it provides access to data at various points {logical records) within the file without
previously accessing the data which comes before.

Storing and Retrieving Arrays

Entire arrays can be stored and retrieved, using either serial or random access, by use of the

and : tatements.

file number [, defined record number]: array variable

]

file number [, defined record number]: array variable

[. array variable...] [,

[‘redim subscripts !][, array variable [{redim subscripts * J , ...]

Arrays are stored and retrieved element by element without regard to dimensionality with the

last subscript varying fastest.

208 Mass Storage Operations

Here’s an example —

e
7

et

wd

et

)

)
el

-1
vl

5t
L
ol

statements. Lines 60 and

o]
=)
Q

Arrays can also be printed and read with the

80 above could also read —

Mass Storage Operations

Determining Data Type

The type function is used to determine what type of data the pointer will access next.

i [-] file number

The possible values for the function and their meanings are —

Value Meaning

Option ROM missing or data pointer lost.
Full precision number.
Total string

End-of-file mark
End-of-record mark
Integer precision number
Short precision number
Unused

First part of a string
Middle part of a string
Last part of a string

VXN UAWNHO

If the file number is negative, the data pointer doesn’t move. If it is positive, the pointer moves
until it is positioned at something other than an EOR mark. In effect, a negative file number

causes a random read. A positive file number causes a serial read, ignoring EOR marks.

Trapping EOR and EOF Conditions

Normally, encountering an EOF or EOR during a random access

= or

tion or encountering an EOF during serial access causes a fatal error. The @i
ment is a declarative which causes a branching operation to occur when an EOF or EOR is

encountered.

line identifier

line identifier

subprogram name

209

210 Mass Storage Operations

disables OVERLAP mode for that file. The routine branched to should

service the EOF or EOR condition. Here’s an example —

Specifying

e e
e
ok

o
o
s e

g T
10

b

"y

+’" js opened and used.

s disabled during an

" response request. can

)

"and routines.

interrupt

declarative is deactivated with the statement.

file number

EOR Errors
To recover from EOR errors, you can either shorten the data in precision or amount, or purge

and recreate the file with the defined records longer or more numerous.

The following example illustrates a condition in which an EOR condition is generated.

L e

;,‘;
B oeess G

T
el

i R

i

it

Mass Storage Operations

Execution causes an EOR condition (ERROR 60); A$ is longer than the record. The EOR

condition can be avoided by increasing the number of bytes in ‘““SHUN’’ or changing line 50 to

The following example shows how an EOF can be generated.

An EOF is generated when | = 6, B$(6) is ‘‘after’’ the end of file IVNESS.

Data Storage

When storing data, it is possible to optimize the use of your storage medium by minimizing the
amount of unused space. The best way to do this is to create your files so they are suited to the
amount of data you wish to store and to storage medium capacities.

The following tables indicate how many bytes are needed to store various variables.

Single Variable

Full precision 8 bytes
Short precision 4 bytes
Integer precision 4 bytes
String 1 byte per character + 4 bytes + 4 bytes each time string

crosses into a new defined record.

Array Variable

Full precision 8 bytes X dimensioned number of elements
Short precision 4 bytes X dimensioned number of elements
Integer precision 4 bytes x dimensioned number of elements
String 4 bytes per element + total needed for all strings as defined

above.

211

212 Mass Storage Operations

By summing up how many bytes of storage your data requires, you can tailor your file and
defined record lengths to suit your needs and minimize waste. However, keep in mind that a file
always begins on a new physical record. If a file requires a total of 520 bytes (2 physical records

plus 8 bytes), 248 bytes are unused, and therefore, are wasted space.

Buffering a File
The

number to reduce device wear and increase efficiency by reducing device transfers.

statement is used to attach a buffer from user Read / Write Memory to a file

file number

The

ing a 256-byte, semi-permanent buffer to the specified file number.

statement allocates buffers from the main user Read / Write Memory by attach-

statements
cause transfers to the buffer (rather than to the actual medium); when the buffer is full, its

contents are dumped to the medium. ! statements fetch data from the buffer until it is

exhausted; the buffer is then refilled from the medium.
Buffering files is most advantageous if all files being accessed on a specific device are buffered.

A buffer that is assigned to a file number is alsoc dumped under these conditions —

ing that number to a different file

7

All buffers are dumped when any

1is done.

A buffer is returned to main Read / Write Memory under these conditions —

e Reset

e Closing the file (see next section)

e Returning from the subprogram in which the file being buffered was opened.

The

statement can’t be executed from the keyboard.

Mass Storage Operations

Closing a File
The

statement is also used to close a file; any subsequent attempts to access that file
number result in an error. It is recommended that a file be closed before its number is assigned
to another file. The two syntax shown below are equivalent.

file number

Verifying Information
The

tatement is used to verify information written to a storage medium.

: file number]

When no file number is specified, all storage operations are verified. The file number causes
only

operations to that file to be verified. This is a bit for bit comparision.

has the additional function of forcing transfer to the medium of the current
data record after every

operation. However, the statement has prece-

dence over The data record is verified only when the buffer allocated by the

‘ statement is dumped to the actual medium.

The ©

tape cartridge. Use only when necessary.

operation reduces the speed of operations and increases wear on the

The <

statement.

operation can be cancelled by executing the

i file number]

213

214

Mass Storage Operations

Protecting a File

The
disks.

" statement is used to guard a file against accidental erasure, especially with

" file specifier, protect code
The file specifier must specify an established file on a device.

The protect code is any valid string expression except the null string. Only the first six charac-
ters are recognized as the protect code.

Examples

NOTE
A file on the tape cartridge can be purged using any protect
code; it need not be the one it was protected with.

Purging a File

The “statement eradicates any file (program, data, etc.) by removing its name from the
name table in the directory, thereby preventing any access to the file.

file specifier {, protect code]

The protect code is necessary only if the file was previously protected. The records of the file

are then returned to ‘‘available space’’, being combined with adjacent available records, if any.

Examples

Mass Storage Operations 215

Copying a File

The statement is used to copy the information in a file into another file.

destination file specifier [, protect code]

The protect code is necessary only if the source file is protected.

7 source file specifier

Execution of the statement causes all records of a file to be copied. The first file specified
can be of any type. A check of the name of the destination file is made; an error is given if the
name is present. If not, a file of the same characteristics as the source file is created. The same

storage medium can be both source and destination.

Examples

The i’ statement is very useful for duplicating a storage medium. Each file can be copied
individually, thus duplicating the entire medium.

Renaming a File

The _statement is used to give a file a different name.

old file specifier T+ new file name [. protect code]

Examples

216 Mass Storage Operations

Storing SFK Definitions

The typing aid definitions of all special function keys can be stored onto a mass storage medium

using the

file specifier

This creates a “‘KEY”’ file.

The stored definitions can be loaded back into the keys by executing the

statement —

" file specifier

Examples

Binary Programs

All binary routines currently in memory can be recorded separately from programs with the

file specifier

Stored binary routines are retrieved and added to current binary routines using the |

Hile specifier

Examples

Mass Storage Operations

Storing Memory

The entire user Read /Write Memory state: programs, variables, keys, binaries — can be

stored into a special memory file. The files table is not stored into the STORE ALL file,
however.

file specifier

The file created by

[is very large; the minimum is 38 records.

can’t be executed during execution of a subprogram.

command.

All files being used when the corresponding . was executed must be reassigned.

Examples

The Tape Cartridge

This section covers general information for using the tape cartridge for mass storage opera-
tions.

NOTE
Occassionally when using the tape cartridge, unexpected
high-speed movements may occur. Ignore these; they in no
way affect usage, but merely assure proper tape tension.

217

218 Mass Storage Operations

Recording on the Tape

To record on the tape cartridge, the record tab must be in the rightmost position, in the

direction of the arrow (as shown).

61 pa
7
e, F'A'?;

Cary

KagmnI0GE

Write Protection

If the record tab is moved to the left, no information can be written to the tape. Information can

only be read from the tape.

General Tape Cartridge Information

Rewind time 19 seconds

Initialization time 3 minutes

Tape length 42.67m (140 feet)

Number of tracks 2 independent tracks

Tape capacity 847 user-accessible physical records (216 832 bytes)
42 files (directory entries)

Access rate (search speed) 11 770 bytes/second

Transfer rate 1 438 bytes/second

Typical tape life 50-100 hours

Typical error rate! < 1in 107 bytes

Mass storage unit specifier :T15

1 This is dependent on the cleanliness of the tape head, tape care, and the cleanliness of the environment.

Mass Storage Operations

Rewinding the Tape
The

tatement rewinds the tape to its beginning.

[mass storage unit specifier]

If no parameter is specified, the default device is used. If it is not a tape cartridge, the statement

is ignored. There is also a key in the system keys area which can be used to rewind the
tape.

Operations which do not involve the tape cartridge can take place while the tape rewinds.

Mass Storage Errors

When using the tape cartridge, wear caused by contact between the tape and the read / write

head can occur. If at any time, the tape makes rattling sounds while moving, or error 84, 87, 88
or89ora

+ warning begin to occur frequently, it is advisa-
ble that steps be taken to prevent the loss of information stored on the tape.

The first step is to clean the tape head and capstan as discussed in the Owner’s Manual. If this
does not alleviate the problem, the next step is to transfer the information to a new medium,
retiring the worn tape. Continued use could cause loss of information or damage to the tape
drive itself.

i I can occur when either the tape drive or the cartridge itself fails. To determine the

source of the problem, a different cartridge can be inserted. If -+ 1 stops occurring,

assume the tape itself is bad and replace it. If | i continues to occur, the drive itself is

bad. In this case, call your HP Sales and Service Office for assistance.

219

220 Mass Storage Operations

Optimizing Tape Use

The tape cartridge used with a 9835A /B has two tracks with 426 records on each track.
Records are numbered consecutively; record 0 and record 426 are both at the same end of the
tape, on different tracks. Thus, records 425 and 426 are at opposite ends of the tape. This can
cause a situation in which one file spans two tracks, making access time-consuming and wear-

ing to the tape.

Record #0 Record #425

!

~—]
[————

Record #426

To avoid this situation, you can create a dummy file in record number 425, making it impossi-
ble for one file to span two tracks. The following set of operations can be used on a tape with no
files on it to create this dummy file.

The file will be in record number 425; the first five records on the tape are used by the
directory which is why file A is created with only 420 records.

Chapter 12
Editing and Debugging

Program Editing

A program in memory can easily be edited by entering the edit line mode. In the edit line mode,
lines can be edited, deleted, or added. For more information about editing subprograms, see
Chapter 9. This can be done while a program is running which causes the program to pause.
The edit line mode is entered by executing the & ' -. command —

] [line identifier [, increment value]]

Examples

1 There is a key in the program keys area which is defined as ‘=" 7", This key can be used to enter the word i 117 7.

224 Editing and Debugging

Pressing would cause it to look like —

Ve

«—{lashing cursor

When line 91 is stored, line number 92 is generated. This continues until the insert mode is

exited by one of the following —
o Pressing again
e Pressing

¢ Rolling the program with &3 or 53

e Changing the line number

e There is no more room between lines to insert another line. When this happens, the

machine beeps and a warning appears —

A line can also be inserted into a program when not in the edit line mode by typing in the line

Tumber and ne el and stong

Deleting Lines

In the edit line mode, the line currently in the keyboard entry area can be deleted from memory

by pressing —

The next line is then displayed in the keyboard entry area, and the rest of the lines scroll up.

Editing and Debugging

The |

line mode.

. (delete) command is used to delete a line or section of a program when not in the edit

. first line identifier [, last line identifier]
If only one line identifier is specified, then only that line is deleted. Specifying two line iden-

tifiers causes that block of lines to be deleted. For example, to delete lines 40, and 100 through

150 from a program, execute —

and

To delete a =% or multiple-line { statement, the entire subprogram must be deleted.

Exiting the Edit Line Mode
The edit line mode is exited by pressing .

E
or @ can also be used.

Debugging a Program

Tracing a program is a convenient method of debugging the logic errors in the program. There
are two types of tracing which allow the logic flow and variable assignments of a running
program to be monitored. Output from TRACE operations goes to the system comments line.
When tracing, it is advisable to set the print all mode (see Chapter 2) and specify a printer other
than the CRT as the print all printer so that |

_ outputs are more permanent.

Tracing statements can be programmed or executed from the keyboard. They do not increase

program Read/Write Memory requirements when executed from the keyboard or from the

program. In general, trace modes aren’t cumulative. If two - statements of the same

type are executed, the second cancels the first.

Tracing operations cause the computer to temporarily revert to . mode even if

is in effect.

225

226 Editing and Debugging

Tracing Program Logic Flow
The

branching occurs in a program, both the line number of the line where the branch is from, and

- statement is used to trace program logic flow in all or part of a program. When any

the line number of the line where the branch is to are output.

- [beginning line identifier [, ending line identifier]]

When a branch occurs, the output is —

If no line identifiers are specified, all branches in the program are monitored. When one line
identifier is specified, tracing doesn’t begin until that line is executed. When both line identifiers
are specified, tracing begins when the first line is executed and continues (regardless of where

the program is executing), then stops when the second line is executed.

Delayed Tracing

Delayed tracing using the

i statement in conjunction with any other
statement causes a specified delay to occur after each statement which causes a trace output. It

is useful for monitoring and examining trace output as it occurs.

i number of milliseconds

The delay is specified by a numeric expression in the range —32 768 through 32 767 which
indicates the number of milliseconds after each trace printout. A negative number defaults to
zero.

Tracing with PAUSE

To check whether or not a line in a program is reached, or to monitor the number of times a

specified line is executed, use the statement.

[line identifier [, numeric expression]]

If no parameters are specified, execution pauses when this statement is executed; the next line

to be executed is displayed. This allows you to pause a running program and know where it is

paused, which is not possible with the statement.

Editing and Debugging 227

When only the line identifier is specified, the running program stops when execution reaches
the specified line, but before the line is executed. When the numeric expression is specified, itis
rounded to an integer, call it N. The program stops when the specified line is reached for the
Nth time; the line isn’t executed. Execution can be resumed with that line by pressing .

Every subsequent time the line is encountered, the program pauses before the line is executed.

This type of tracing can be disabled by letting the line identifier be one that is not a line
identifier in memory. The most efficient way is to let it be a lower number than the lowest

numbered line in memory.

Tracing the Values of Variables

To trace changes in values of variables without using an output statement, use the

- variable list

The variable list can contain simple numeric and string variables, and array identifiers; there
can be one to five items separated by commas. The value of any variable which changes is

printed. The outputis —

line number, variable name [{subscripts]= value

The line number is the line in which the change occurred. If the change comes from a live
The new value of the

keyboard operation, the line number is replaced by ki
variable is indicated. In the case of an array, the values of the subscript(s) at the time are

printed following the name.

When an entire array changes value, the printout is —

- line number, array name !

Tracing variables also detects changes in subprograms of variables passed by reference. For

example, suppose —

228 Editing and Debugging

To trace all variables with the ability to specify lines, use the

statement.

: [beginning line identifier [, ending line identifier]]

When no line identifiers are specified, all variables are traced throughout the program. When
one line identifier is specified, tracing begins after that line is executed. The ending line iden-

tifier causes tracing to stop after that line is executed.

cancels and is cancelled by
This method of tracing can be turned off by letting the first line identifier be a line identifier

which is not in memory such as an undefined label or line number which is lower than the
lowest line number in memory.

Comprehensive Tracing

To trace all program logic and variables, like executing both

use the statement.

Either ‘part’ of the

example, if

mode can be altered without cancelling the other part. For

, tracing of all
variables is cancelled, and only A and B are traced, but the
not affected.

Although the volume of printout is high, - is useful if a logic problem in a program

hasn’t been isolated with selective tracing.

Canceling Trace Operations

All tracing statements are cancelled by executing =

“ or the i

Editing and Debugging 229

Error Testing and Recovery

Run-time errors are those which occur only when a program is running. Dividing by zero is an

= state-
ment, run-time errors can be recovered from 5o that execution can continue with the specified

line after execution of the line in which the error occurred. The

example. A run-time error normally halts execution. Through use of the

statement

specifies a branching which takes place after an error occurs.

7 line identifier

i line identifier

. subprogram name!

The ©

statement need be executed only once in each program segment to establish the !

: statement declares what should happen if an error occurs. An !

condition. Execution of another tatement cancels the previous one.

When a run-time error occurs and the i condition has been established, execution

is transferred to the specified line. Then the functions {discussed

next) could be tested, error recovery procedures or ° "’ could be executed.

The error is ‘‘ignored’ if the statement referenced by a is ai statement;

execution continues with the line after the one in which the error occurred.

NOTE
When a program is running in OVERLAP mode, :.
won’t trap most 1/0 errors (54-103). It is advisable to use

SERIAL mode when trapping errors with

If the recovery routine contains an error, it is possible to program into a endless loop. It can be
stopped by pressing or G&B_

If the
highest level until

statement specifies a or i , computer priority is set at the

s executed. This means that the routine can’t be interrupted by
any other interrupts.

A routine accessed with

can be interrupted because system priority isn’t changed.

1 Can't pass parameters

230 Editing and Debugging

Error Functions

One string and two numeric functions can be used with i

is disabled with the

The error line function returns the line number in which the

most recent program execution error occurred.

The error number function returns the number of the most

recent program execution error.

The error message string returns the most recent program

execution error message, a combination of and

! statement —

Appendix A
HP Compatible BASIC

The BASIC language as implemented on the 9835A /B Computer is an enhanced form of HP
Compatible BASIC. HP Compatible BASIC consists of statements, functions, operators and
commands that will be implemented in new HP BASIC machines. The HP Compatible BASIC
is implemented in the 9835A /B as Level I. Level I refers to the highest performance computa-

tional products; thus, any program consisting entirely of Level | BASIC language can be trans-
ported to any Level [BASIC machine.

Below is a list of HP Level 1 BASIC. Contact you HP Sales and Service Office to obtain

information concerning the transporting of programs between machines.

Operators

AND
OR
NOT
EXOR

ANV AV

&

232 HP Compatible BASIC

Functions

ABS SIN COL
EXP COS DET
INT TAN DOT
LGT ASN ROW
LOG ACS SUM
MAX ATN
MIN
RND LWC$ TYP
SGN REV$
DROUND UPC$ LIN
PROUND CHR$ SPA
FRACT LEN TAB
PI1 NUM PAGE
SQR POS

RPT$
ERRL TRIM$
ERRN VAL
ERRM$ VAL$

otatements

ASSIGN
BEEP
CALL
COM*
COPY
CREATE
DATA

DEF FN
DEG

DIM

EDIT

END
FIXED
FLOAT

FN END
FOR

NEXT
GOSUB
GOTO
GRAD

IF

IMAGE
INPUT
INTEGER
LET
LINPUT
MAT array = array
MAT array = array + — * /. = < > # < < > = array
MAT...CON

* The type words INTEGER, SHORT and REAL are the only ones which can be specified in a . :{*] statement or formal
parameter list. Dimensionality of arrays is limited to 6 dimensions.

HP Compatible BASIC 233

MAT array = (num. exp.)
MAT array = (num. exp.)+ — * / = < > # < < > = array
MAT array = array + — * / = < > # < < > = (num. exp.)
MAT...INV
MAT...TRN
MAT...IDN
MAT.. ZER
MAT...CSUM
MAT... RSUM
MAT INPUT
MAT PRINT
MAT PRINT#
MAT READ
MAT READ#
OFF END
OFF ERROR
ONEND

ON ERROR
ON...GOSUB
ON...GOTO
OPTION BASE
PAUSE
PRINT
PRINT#
PRINT USING
PURGE

RAD
RANDOMIZE
READ
READ#
REAL

REDIM

REM
RESTORE
RETURN
SHORT
STANDARD
STOP

SUB
SUBEXIT
SUBEND
WAIT

234 HP Compatible BASIC

Appendix B
Advanced CRT Techniques

This appendix introduces you to the more advanced printing capabilities of the CRT of the
9835A.

Some of the special capabilities are accessed by using various ASCII* control characters. See
the table in Appendix E for a complete list of ASCII characters. Another capability allows the
CRT special features: inverse video, blinking, and underline modes to be accessed in a pro-
gram rather than using the CONTROL key. A third capability uses escape codes to selectively
address any location on the CRT. The escape code sequences are compatible with those used
by HP 2640-series terminals.

The examples in this appendix are meant to be tried because it is impossible to show many of

the CRT capabilities on the printed page.

A summary of escape code sequences can be found at the end of this appendix.

CRT Memory

Every line that is printed to the CRT is stored in the CRT memory. This memory can hold 50
80-character lines. Fewer longer lines or more shorter lines can be stored. When the memory
becomes full, each new line printed to the CRT causes the oldest line in memory to be lost. All
linesin CRT memory can be viewed with 3 or 23 . The CRT memory is cleared with @,

a formfeed character (

* American Standard Code for Information Interchange.

236 Advanced CRT Techniques

CRT Special Features

The special features: blinking, underline and inverse video can be accessed in a program by
using the CHR$ function or escape code sequence within an output statement. Any time a

mode is accessed or cleared, one character is added to the length of what is output, though it is

an unprinted character. Any combination of the features can be accessed by outputting —
CHR$ (n)

Where n is an integer in the range 128 through 159 and specifies which combination of features

is to be accessed. Remember, larger numbers are reduced MOD 256.

The following table shows which numbers provide access to which features.

IV

v v BL BL

CLR I\Y BL BL UL UL UL UL
128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151
152 153 154 155 156 157 158 159

The following escape code sequence can be used to access the special features —

X can be —

X | Result

CLR

BL

I\

IV, BL

UL

UL, BL
UL, IV
UL, IV, BL

CLR ~ Clear all special features
IV — Inverse video

BL — Blinking

UL — Underline

All special features accessed with CHR$ remain in effect until specifically cleared. Those acces-
sed with the escape code sequence remain in effect until the end of the line or until another one
is specified. This can be done with the CLR feature above or by pressing @

Advanced CRT Techniques 237

Here are some examples to try —

Using Control Codes

ASCII characters are letters, numbers, characters and codes which each correspond to a unique
7-bit byte pattern. Each character also has decimal, binary and octal representations. The first

32 are control codes which pass control information between devices.

The control codes can be accessed for output using or the ¢ function. A two-letter
symbol specifies the control code. To determine what keys can be used with to obtain a
control code, the ASCII table in Appendix E can be used. By following the line all the way
across from the desired code, the two or three keys which produce the desired character when
pressed with can be determined. For example, LF (linefeed) can be obtained by pressing

with either @ , @, or . The DEL character is the only one that can’t be

obtained using @3,

238 Advanced CRT Techniques

Basic control operations on the 9835A utilize five control codes which affect output to the CRT

or internal thermal printer. Here are the codes and their various results —

Control Code CRT (DISP) CRT (PRINT)
BELL Beep Beep
BS(backspace) Back up and replace Back up and replace
LF (line feed) Nothing Generate line feed only
FF (form feed) Clear display line Clear printout area
and CRT memory
CR (carriage-return) Clear display line Return to beginning of line

ii)and
1) which are discussed later in this appendix, all other control
codes are ignored by the 9835A /B.

With the exception of the control codes described above, HT (horizontal tab, !

ESC (escape code, !

Here are some examples —

Command Output

Clears CRT

Considerations

There are a few things to consider when using control codes in programming.

Control codes used within a BASIC statement are executed even when a program is listed. This

can produce some undesirable results. For example, try listing these program lines —

Thus, a program listing will be more readable if control codes are generated with the

function.

Another thing to consider is the fact that escape codes and control codes remain in effect until

they are deactivated.

Advanced CRT Techniques

CRT Selective Addressing

Introduction

The top twenty lines of the CRT are known as the printout area. All lines printed to the CRT are
stored in CRT memory which was discussed at the beginning of this appendix. Through the use

of escape code sequences, any linein CRT memory can be selectively addressed and modified.

The operations available are as follows —

o Cursor Positioning o Editing
Absolute addressing Delete line
Relative addressing Insert line
Backspace Clear to end of line
Space Clear to end of screen
Up Insert character
Down Delete character
Set tab
Clear tab
Tab

Home position — first row

Home position — row after last row

¢ Display Positioning
Roll up
Roll down
Next page
Previous page

Memory lock

Selective cursor addressing and the other operations which are covered in the rest of this

appendix are very useful for form filling and text processing applications. It is recommended
that you use

: to output the escape code sequences to avoid unexpected
carriage return /linefeeds which can occur from length added to the output.

There are two example programs at the end of this appendix which combine many of the
operations to manipulate output.

239

240 Advanced CRT Techniques

The Cursor

Any location on the screen can be addressed and a non-visible cursor specified as being there.
(This cursor is not the same as the flashing cursor which is present in normal keyboard usage.)
This cursor refers to a logical print position in CRT memory where the next character will be

printed. In this appendix, the word “‘cursor’” always refers to the logical print position.

Addressing Schemes

The printout area is addressed using rows 0 through 19 and columns O through 79. The
following drawing illustrates this —

CRT memory is addressed using columns O through 79. The number of rows depends on the
size of the memory installed in your computer and on line length. The maximum number of
lines was covered at the beginning of this appendix. The following drawing illustrates address-

ing of CRT memory —

0
|
2
3
4
5
e ™
3]
[]
o
25
L J
26

In this drawing, line 6 of the CRT memory is positioned on line O of the printout area.

Setting the Cursor Position

The cursor can be set to any character position in the 20 lines of the printout area using

absolute or relative addressing, or a combination absolute and relative addressing.

Advanced CRT Techniques

Absolute Addressing
The cursor can be set to an absolute row and column position with any of the following escape

code sequences —

Here are some guidelines for using these escape code sequences —

e nn specifies a one or two-digit number which is used to specify the row and column
number. The digits preceding the R{r) specify the row number of CRT memory. The digits
preceding the Y(y) specify the row number of the printout area. The digits preceding the

C(c) specify the column number.

o The first column of the printout area is addressed using 0. The maximum column address

is 79; if anything greater is specified, 79 is used.
o The first row of either CRT memory or printed output is addressed using 0.
o If the specified row of CRT memory is not on the CRT screen, the display will roll up or

down as necessary.

The cursor can be moved within a row by omitting the R and preceding digits. Here is the

escape code sequence —

Similarly, the cursor can be moved within a column by omitting C and preceding digits. Here

are the escape code sequences —

Here are some examples of absolute addressing —

Moves the cursor to row 25, column 60.

Moves the cursor to column 60, row 17.

Moves the cursor to row 15, current column.
Moves the cursor to column 30, current row.
Moves the cursor to row 7 of the printout

area, current column

241

242 Advanced CRT Techniques

Relative Addressing

The cursor can also be repositioned using relative addressing. From its current position, the

cursor can be moved up {negative number) or down {positive number), left {(negative number)

or right (positive number). Here are the escape code sequences to use —

= Snn

= Snni.

5 Snn L

o Snn Y

Here are some guidelines for using these escape code sequences —

e nn specifies a one or two digit number which

is used to specify the number of rows and / or

columns the cursor is to move. The digits preceding the R(r) or Y(y) specify the number of

rows; the digits preceding the C(c) specify the number of columns.

¢ S specifies a sign : + or —. A plus sign (+) specifies right or down. A minus sign (—)

specifies left or up.

o If the number of columns specified is greater than the number of columns remaining after

the cursor in the current line, the cursor is positioned in the first column (negative move-

ment specified) or in the last column (positiv
specified in the negative direction is greater

in the first row.

e movement specified). If the number of rows

than the current row, the cursor is positioned

Here are some examples of relative addressing —

Moves the cursor down 8 rows, left

10 columns from its current position.

i+ Moves the cursor right 7 columns, up 11 rows

from its current position

Moves the cursor up 8 rows from its
current position

Moves the cursor right 10 columns

from its current position.

Advanced CRT Techniques 243

Combining Absolute and Relative Addressing

The cursor can be positioned to a new position using a combination of absolute and relative

addressing. Here are some examples —

Moves the cursor to column 60 and down 8 rows
from its current row.
* Moves the cursor to row 10 and left 15 columns

from its current position.

Moving the Cursor

The following escape code sequences can also be used to move the cursor —

Move cursor up one row
Move cursor down one row
Move cursor right one column
Move cursor left one column

Moves the cursor to first row of CRT memory, first column

Move cursor to row after last row of CRT memory, first column

These escape code sequences can be used very easily by defining special function keys to set
the cursor position, then move it up, down, left, and right.

" cause the cursor to ‘‘wrap around” when the edge of the screen is reached. When

the cursor is being moved to the right it wraps around on to the next line. When the cursor is

being moved to the left, it wraps around onto the previous line. [can be used to return the

cursor for normal printing after using cursor-moving escape code sequence. =i~ and " cause
the lines to scroll, if necessary.

Here is an example using cursor moving to fill in blanks in a form letter.

244 Advanced CRT Techniques

Using Tabs

The following escape code sequences are used to set and clear tabs —

Sets a tab at the column of the cursor

Clears a tab at the column of the cursor
Clears all tabs

The cursor can be moved to the next tab setting using the control code * (horizontal tab) which

can also be accessed using 1. If no tabs are set a TAB moves the cursor to the

beginning of the next line.

Clearing, Inserting and Deleting Lines

The following escape code sequences can be used in editing lines —

Clears the screen from the cursor position (remainder of the line and all lines follow-
ing)
Clears the remainder of the line from the cursor position

Inserts a blank line before the cursor line. Cursor remains on same line of CRT and

all following lines move down

Deletes the cursor line and closes up the gap. Cursor remains on same line of CRT,

and all following lines roll up
These escape code sequences are very useful for text processing applications. -

Inserting and Deleting Characters

The following escape code sequences can be used for inserting and deleting characters —

Deletes the character at the cursor position

Turns on the insert character mode. Characters can be inserted to the left of the

cursor

Turns off the insert character mode

Example

Advanced CRT Techniques

Rolling the Display

The display in the printout area of the CRT can be rolled using the following escape code

sequences —

Rolls the printout up one line (like &23J)

Rolls the printout down one line (like) P'-Computer

. ‘Museum
. :

Rolls the printout area up 20 lines (next page)

Rolls the printout area down 20 lines (previous page)

When using the escape code sequence with S and T to roll the printout, the cursor stays in the

same line of the CRT. Using &3 and moves the cursor also. When using the escape code .

sequence with U and V, the cursor is positioned to the upper left hand corner of the CRT. The
printout can only be rolled as far as the lines in memory; it can’t be rolled past the existing lines

to unused lines. You can’t roll all existing lines off the screen.

These escape code sequences are useful for accessing a line that is not currently displayed,

then moving the cursor in that line.

Selective Scrolling (Memory Lock)

Through use of an escape code sequence, it is possible to ‘‘freeze’’ a selected number of the
upper lines of the CRT in place. and =3 and escape code sequences used for rolling the
display then have no effect on these lines. This can be done with the following escape code

sequence —

%1 (lowercase L) Freezes all lines which are above the cursor line.

The remaining bottom lines can scroll up or down without moving the frozen lines. However,

absolute row addressing is disabled when memory lock is on. Output of a formfeed character

won’t clear the frozen lines. i positions the cursor to the first unfrozen line.
When memory lock is on, the cursor can’t be positioned using R to address a row of memory. Y
must be used to address a line of the printout area. When the printout is rolled using the U and

V escape code sequences, the cursor is positioned to the first unlocked line.

S
The frozen lines can be unfrozen with @, i, or by using the following escape code

sequence —

Unfreezes the lines which were frozen previously.

245

246 Advanced CRT Techniques

Disabling Control Codes

All control codes can be disabled (their action won’t be performed) and viewed using the

following escape code sequence —

The only control code which is then recognized is CR {carriage return). When one is encoun-
tered, = is printed and a carriage return-linefeed is executed. To see how this works, output

"7, then list the program in the Considerations section.

The control codes are re-activated using G or the following escape code sequence —

S
All control features are cleared, the display reset, and CRT memory cleared using @ or the

following escape code sequence —

Summary of Escape Codes

Escape Code Sequence Action

ESC A Moves cursor up one row

ESCB Moves cursor down one row

ESCC Moves cursor right one column

ESCD Moves cursor left one column

ESCE Resets the CRT — clears control features

Escape Code Sequence

Advanced CRT Techniques

Action

ESCF

ESCH
ESCJ
ESCK
ESCL
ESCM
ESCP
ESC Q
ESCR
ESCS
ESCT
ESCU
ESCV
ESCY
ESCZ
ESC 1 (lowercase L)
ESC m
ESC 1
ESC 2
ESC3
ESC &a

ESC &d

Moves cursor to row after last row of CRT memory, first col-

umn

Moves cursor to first row of CRT memory, first column
Clears screen from cursor (rest of line and all lines following)
Clears line from cursor position

Inserts a blank line before cursor line

Deletes cursor line and closes up gap

Deletes character at cursor position

Turns on insert character mode; inserts to left of cursor
Turns off insert character mode

Rolls printout up one line (like C3)

Rolls printout down one line (like CZ3)

Rolls printout up 20 lines (next page)

Rolls printout down 20 lines (previous page)

Disables control codes and allows them to be viewed
Reactivates control codes

Freezes all lines above cursor line

Unfreezes the lines which were frozen previously

Sets a tab at column of the cursor

Clears a tab at column of the cursor

Clears all tabs

Addresses the cursor

Accesses CRT special features

247

248 Advanced CRT Techniques

Examples

The first example listed is used to move blocks of text. The second example must be run to see

This example has been included on the System 35 test tape, under

t manipulates a table

how i

, execute —

To use this program

‘CRTADR’

the name

i

AT A

£y

s
:

o

e
s
4]

i

3

i

e

ok

Example 1

249

Advanced CRT Techniques

Example 2

3
4,
¥
i
.

ey
i

T

T4

r.

it

§13

: §oi

bi
i
Py
i
ik
5

i e

i gl

e
i B

H
i

Triapes ol
§ ¥

g

o

vy o

xR o

e, £ g
s
£

HERY 3

250 Advanced CRT Techniques

it

Eored

¥
H

1
¥

T
i

251

Advanced CRT Techniques

g

i

o

i

.

i e

e

s
X
1

e

&,

S

o

+
25

ke

252 Advanced CRT Techniques

Appendix C
Foreign Characters

~Computer”
- Museum .
S LT

You can easily access various foreign characters using the % function. The characters and

their corresponding decimal value for the CHR$ function are listed below.

Character CHRS Value Character CHRS$ Value
" (umlaut) 171 e 201
° (degree sign) 179 u 203
G 181 a 204
N 182 é 205
n 183 o 206
i 184 u 207
¢ 185 A 208
a 192 7 209
) 193 a 212
o 194 i 213
Q 195 A 216
a 196) 218
é 197 U 219
o 198 7 221
U 199 B 222
a 200

254 Foreign Characters

Appendix D
Glossary

BASIC Syntax Guidelines

[] — all items enclosed in brackets are optional unless the brackets are in dot matrix.

i — all items in dot matrix must appear as shown.

... — three dots indicate that the previous item can be duplicated.

| — awvertical line between two parameters means ‘‘or’’; only one of the two parameters can be

included. ¢

/ — aslash between two parameters means that either or both parameters can be included.

Terms

Calculator mode — No program is running and the computer is awaiting inputs or calculating

keyboard entries.

Calling program — When a subprogram is being executed, the program segment (main pro-
gram or subprogram) which called the subprogram is known as the calling program.

Control returns to the calling program when the subprogram is completed.

Character — A letter, number, symbol or ASCII control code; any arbitrary 8-bit byte defined
by the CHRS$ function.

256 Glossary

Command — An instruction to the computer which is executed from the keyboard. Commands
are executed immediately, do not have line numbers and can’t be used in a program.

They are used to manipulate programs and for utility purposes, such as listing key

definitions.

Constant — A fixed numeric value within the range of the 9835A/B; for example 29.5 or
2E12.

Controller address — An integer from zero through seven which specifies the address of a hard

disc controller. Zero is the default address.
Current environment — The program segment which is being executed.

Defined record — The smallest unit of storage on a mass storage medium which is directly
statement and can be

addressable. A defined record is established using the
specified as having any number of bytes in the range 4 through 32 767 (rounded up to

an even number).

Display line — Line 22 of the CRT is used to display output generated by

" prompt or question mark.

Edit key mode — A Special Function Key is being defined as a typing aid. See

which is discussed near the end of Chapter 2.

Edit line mode — The program in memory is being edited. See

_, Chapter 12,

Files — The basic unit into which programs and data are stored. Storage of all files is “‘file-by-

name’’ oriented; that is, each file must be assigned a unique name.

File name — A one to six character string expression with the exception of a colon, quote mark,
ASCII NULL, or CHRS$ (255). Blanks are ignored.

File number — The number assigned to a mass storage data file by an ¢

range is one through ten.
File specifier — A string expression of the form: file name [mass storage unit specifier]

Formal parameter — Used to define subprogram variables and can be a non-subscripted

variable, array identifier or file specified by # file number. A type word can come

Glossary 257

before parameters to specify numeric type. Parameters must be separated by commas;
the parameter list must be enclosed in parentheses.

HP-IB device address — An expression which specifies the HP-IB address that is set on a
device. [ts range is 0 through 30.

Interleave factor — Defines the number of revolutions per track to be made for a complete

data transfer on a 9885 Disk. It is specified in an statement.

Keyboard entry area — Lines 23 and 24 of the CRT are accessible only through keyboard
inputs. Every line that is typed in is displayed in this area. The first position in line 23 is
known as the ‘‘home’’ position of the cursor. As the 148th character is keyed in, a beep

indicates that only 12 more characters can be entered.

Label — A unique name given to a program line. It follows the line number and is followed by a

colon.

Line identifier — A program line can be identified either by its line number (-

its label, it any (:

Line number — An integer from 1 through 9999. In most cases, when a line number is

specified, but is not in memory, the next highest line is accessed.

Live keyboard mode — Numeric computations and most statements and commands can be
executed from the keyboard while a program is running. Program lines can be stored
also. The running program is temporarily paused while a keyboard operation is execut-

ing.

Local variable — A variable in a subprogram that isn’t declared in the formal parameter list or

statement; it can’t be accessed from any other program segment. Storage of local
variables is temporary and returned to user Read / Write Memory upon return to the
calling program.

Logical record — A user-level rather than machine concept; a collection of data items which

are conceptually grouped together for mass storage operation.

Main program — The central part of a program from which subprograms can be called is
known as the main program. When you press , you access the main program. The

main program can’t be called by a subprogram.

258

Glossary

Mass storage unit specifier — Any string expression of the form —

: device type [select code [. controller address | 9885 unit code [, unit code]]]

The letters specifying the various mass storage device types are —

Letter Device

Tape cartridge

9885 Flexible Disk
7905A Removable Platter
7905A Fixed Platter
7906A Removable Platter
7906A Fixed Platter
7920A Disc Pack

v O O N< ™3

Mass storage unit specifier is appreviated msus.
Msus — The abbreviation for mass storage unit specifier.

Name — A capital letter followed by O through 14 lower case letters, digits or the underscore

character. Names are used for variable names, labels, function names, and subprogram
names.

Numeric expression — A logical combination of variables, constants, operators, functions,

including user-defined functions, grouped with parentheses if needed.

Pass parameter — Used in calling a subprogram to pass a value and can be a variable, array
identifier, expression or file specified by #file number; any variable can be enclosed in

parentheses causing it to be passed by value.

Physical record — A 256-byte, fixed unit which is established when a mass storage medium is
initialized. Every file starts at the beginning of a physical record; this is an important
fact for optimum device use. Otherwise, you need not be concerned with physical

records.

Printout area — Lines 1 through 20 of the CRT are similar to a printing device. When the

machine is switched on, this area is the standard system printer to which output from

and L. is directed. It is also, at power-on, the

print all printer when in the print mode; see Chapter 2.

Glossary 259

Priority — A number in the range 1 through 15 which determines whether or not an interrupt is
serviced. The priority of the interrupt must be higher than current system priority to be

serviced.

Program mode — A program is running.

Program segment — The main program and each subprogram are known as program seg-
ments. Every program segment is independent of every other program segment. Sub-
programs come after the main program; that is, they are higher numbered. Subpro-
grams are called by the main program or another subprogram. See Appendix F for the

relationship between memory allocation and subprograms.

Protect code — Any valid string expression except one with a length of zero. Only the first six

characters are recognized as the protect code, however.
Redim subscripts — Numeric expressions separated by commas and enclosed in parentheses.

Read Only Memory (ROM) — Permanent memory which can’t be changed or erased. Option
ROMs are used to expand the language and capabilities of the computer.

Read/ Write Memory (RWM) — Used to store programs, data and related information. The

information in Read / Write Memory can be changed and is lost when the computer is
shut off.

Scalar — A numeric expression used as a constant in mathematical operations.
Select code — An expression (rounded to an integer) in the range zero through sixteen. The
following select codes are reserved by the system and can’t be set on an interface —
e 0 Optional Internal Thermal Printer
e 15 Tape Drive

o 16 CRT (9835A); Internal printer (9835B)

Special Function Keys (SFK’s) — These keys can be defined or redefined for use as typing
aids for statements, variable names or other series of keystrokes which are used often.
Many of them have pre-defined definitions. Any of the special function keys can also be

defined to have program interrupt capability (see Chapter 8 for more information).

Standard mass storage device — The device to which all mass storage operations are directed

if no device is specified. It is the tape cartridge at power on and can be changed using
the ¥ .

260 Glossary

and L.

Standard printer — The printer to which all
output is directed if no device is specified. At power on, it is the CRT (9835A) or strip
statement.

printer (9835B); it can be changed using the ¢

Statement — An instruction to the computer telling it what to do while a program is running. A
statement can be preceded by a line number, stored and executed from a program.

Most statements can also be executed from the keyboard without a line number.

Subscript — An integer used to specify the range of an array dimension. One subscript is used
to specify the upper bound of a dimension; two subscripts separated by a colon are
used to specify the upper and lower bounds of a dimension. A comma is used to

separate the subscripts for each dimension.

System comments line — Line 25 of the CRT is reserved for error messages, mode indicators,
E E
Results of keyboard operations such as 3+5 g or X also

and the run light: :

appear in this line.

Text — Any combination of characters; for example “. Text can be quoted (literal) or

unquoted.

Unit code — The address set on a hard disc drive; it can be an integer from zero through seven.
Zero is the default code. It is ignored for the 9885 and tape cartridge.

The 9885 unit code is the address set on a 9885 disk drive; it can be an integer from

zero through three. Zero is the default code.

Variable — A name which is assigned a value and specifies a location in memory. Variables can
be classified into various categories and subsets of the categories as shown in the
diagram below. For example, any reference to a single numeric variable includes a

simple numerics and elements of numeric arrays.

variable
single variable array variable
numeric variable tring variable numeric array string array
ksimple numeric imple string matrix matrix
array element substring vector vector

Tt_ring array element
substring

The following table shows the status of various conditions when the indicated operations are

Reset Conditions

Appendix E

Reference Tables

performed.
SCRATCHA
or
Power On
(Value) Reset SCRATCH | RUN |CONT

Variables R {none) - R R —
RESult R (0) - - - -
Subroutine return pointers R (none) R R R -
Angular units R (RAD) R R R —
Numeric output mode R (STANDARD) R R — -
Random number seed R (7 180) R R R —
Standard printer R (select code 16) — - — -
Printall printer R {select code 16) - - — -
Standard mass storage device R (:T15) — — - -
SFK definitions R (Initial) - - - -
Processing mode R (SERIAL) - R -
Live keyboard mode R (INTERACTIVE) R — — -
Binary routines R (none) - - - -
Files table R (none) R R R —
DATA pointers R {none) R R R —
ERRL, ERRN R (0,0) R R R -

— means unchanged

R means restored to power on values

262 Reference Tables

ASCII Character Codes

EQUIVALENT FORMS

ascll | EQUIVALENT FORMS ASCll | EQUIVALENT FORMS Ascii | EQUIVALENT FORMS Asch
Char. Binary Octal Dec Char. Binary Octal Dec Char. Binary Octal Dec Char. Binary Octal Dec
NULL | 00000000 000 0 space | 00100000 040 32 @ 01000000 1 OO 64) 01100000 140 96
SOH 00000001 001 1 t 00100001 041 33 A 01000001 101 65 a 01100001 1414 97
STX 00000010 002 2 00100010 042 34 B 01000010 102 66 b 01100010 142 98
ETX 00000011 003 3 # 00100011 043 35 C 01000011 103 67 [+ 01100011 143 99
EOT 00000100 004 4 $ 00100100 044 36 D 01000100 104 68 d 01100100 144 100
ENQ | 00000101 005 5 % 00100101 045 37 E 01000101 105 69 e 01100101 145 101
ACK 00000110 006 6 & 00100110 046 38 F 01000110 106 70 f 01100110 146 102
BELL 00000111 007 7 00100111 047 39 G 01000111 107 K [¢] 01100111 147 103
BS 00001000 010 8 { 00101000 050 40 H 01001000 110 72 h 01101000 150 104
HT 00001001 011 9) 00101001 051 41 1 01001001 111 73 i 01101001 151 105
LF 00001010 012 10 * 00101010 052 42 J 01001010 112 74 i 01101010 152 106
Ve 00001011 013 11 + 00101011 053 43 K 01001011 113 75 Kk 01101011 153 107
FF 00001100 014 12 \ 00101100 054 44 L 01001100 114 76 01101100 154 108
CR 00001101 015 13 - 00101101 055 45 M 01001101 115 77 m 01101101 155 109
SO 00001110 016 14 00101110 056 46 N 01001110 116 78 n 01101110 156 110
SI | 0o00111% 017 15 / |ootori1r 057 47 0 |o01001111 117 79 o |ot1o1111 157 111
DLE 00010000 020 16 [} 00110000 060 48 P 01010000 120 80 p 01110000 160 112
DCy 00010001 021 17 1 00110001 081 49 Q 01010001 121 81 q 01110001 181 113
DC: 00010010 022 18 2 00110010 082 50 R 01010010 122 82 r 01110010 162 114
DCs 00010011 023 19 3 00110011 063 51 S 01010011 123 83 s 01110011 163 115
DCq 00010100 024 20 4 00110100 064 52 T 01010100 124 84 t 01110100 164 116
NAK 00010101 025 21 5 00110101 0865 53 U 01010101 125 85 u 01110101 185 17
SYNC | 00010110 026 22 6 00110110 066 54 \' 01010110 126 86 v 01110110 166 118
ETB 00010111 027 23 7 00110111 087 55 w 01010111 127 87 w att1o11t 167 119
CAN 00011000 030 24 8 00111000 070 56 X 01011000 130 88 X 01111000 170 120
EM 00011001 031 25 9 00111001 071 57 Y 01011001 131 89 y 01111001 171 121
suB 00011010 032 26 00111010 172 58 Z 01011010 132 90 z 01111010 172 122
ESC 00011011 033 27 00111011 073 59 [01011011 133 91 { 01111011 173 123
Es | 00011100 034 28 < 00111100 074 60 | 01011100 134 92 | 01111100 174 124
GS 00011101 035 29 = 00111101 075 61] 01011101 135 93 K 01111101 175 125
RS 00011110 036 30 00111110 076 62 " 01011110 136 94 - 01111110 176 126
us 00011111 037 31 ? oot11111 077 63 . 01011111 137 95 DEL 01111111 177 127

Reference Tables

Metric Conversion Table

Linear Measure

1 millimetre = . 0.03937 inch
10 millimetres = ... 1 centimetre. =....... 0.3937 inch
10 centimetres......... =....... 1 decimetre............. = ... 3.937 inches
10 decimetres.......... = ... lmetre = ... 39.37 inches or 3.2808 feet or 0. 1988 rod
10 metres = ... 1 decametre = ... 393.7 inches
10 decametres......... = ... 1 hectometre........... = 328.08 feet
10 hectometres........ =....... 1 kilometre =....... 0.621 mile or 3 280.8 feet
10 kilometres = ... 1 myriametre = 6.21 miles

Square Measure

1 square millimetre = ... 0.00155 square inch
100 square millimetres. = ... 1 square centimetre. = 0.15499 square inch
100 square centimetres = .. 1 square decimetre.......... = 15.499 square inches
100 square decimetres.......... = 1 square metre = ... 1 549.9 square inches or 1.196 square yards
100 square metres = ... 1 square decametre......... = ... 119.6 square yards
100 square decametres = 1 square hectometre........ = 2.471 acres
100 square hectometres......... = 1 square kilometre = .. 0.386 square mile or 247.1 acres
Weights
10 milligrams = ... 1 centigram = ... 0.1543 grain or 0.000353 ounce (avdp.)
10 centigrams.......... = ... 1 decigram = ... 1.5432 grains
10 decigrams= ... lgram = 15.432 grains or 0.035274 ounce (avdp.)
10 grams = ... 1 decagram = 0.3527 ounce
10 decagrams = ... 1 hectogram = 3.5274 ounces
10 hectograms = ... 1 kilogram.......... = ... 2.2046 pounds
10 kilograms = ... 1 myriagram....... = 22.046 pounds
10 myriagrams = 1 quintal = 220. 46 pounds
10 quintals = ... 1 metricton........ = 2 204.6 pounds

Land Measure

1 square metre = .. lcentiare.................... = ... 1 549.9 square inches

100 centiares. = ... lare......... T = ... 119. 6 square yards

100ares = ... 1hectare = .. 2.471 acres

100 hectares = ... 1 square kilometre........ = 0.386 square mile or 247.1 acres

Volume Measure

1 000 cubic millimetres........ = 1 cubic centimetre........ = 0.06102 cubic inch
1 000 cubic centimetres = ... 1 cubic decimetre......... = ... 61.023 cubic inches or 0.0353 cubic foot
1 000 cubic decimetres = . 1 cubic metre = ... 35.314 cubic feet or 1.308 cubic yards

Capacity Measure

10 millilitres. = 1 centilitre = ... 0.338 fluid ounce

10 centilitres = 1 decilitre = ... 3.38 fluid ounces or 0.1057 liquid quart
10 decilitres = ... 1litre............... = 1.0567 liquid quarts or 0.9081 dry quart
10litres= 1 decalitre = 2.64 gallons or 0.284 bushel

10 decalitres = 1 hectolitre = ... 26.418 gallons or 2.838 bushels
10 hectolitres = 1 kilolitre = 264.18 gallons or 35.315 cubic feet

263

HEWLETT w PACKARD

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA

Telectra

Empresa Técnica de
Equipamentos
Elgctricos, SARL

R Barbosa Rodrigues. 42-1 DT

Caixa Postal. 6487

Luanda

Tel: 35515/8

Catfe TELECTRA Luanda

AUSTRALIA
Hewleu Packard Australia

31- 4! Joseph Street
Blackburn. Victona 3130

PO Box 36

Doncnlev East. Victona 3109
Tel 89-

Telex. 31 0

Cable. HEWPARD Melbourne

Hewlett-Packard Australia
Ld

31 Bridge Street
Pymble

New South Wales. 2073
Tel 449 65 6

Telex. 2

Cable HEWPARD Sydney

Hewlett-Packard Australia

Pty Lt
153 Greenhill Road
Parkside, 5A . 5063

Tel 272-5911

Telex: 82536 ADEL

Cable: HEWPARD ADELAID

Hewiett-Packard Australa
Pty Ltd

y
141 Stirling Highway
Nedlands. W A 6003
Tel: 86-5455
Telex 93859 PERTH
Cable HEWPARD PERTH

Hewlett-Packard Austrahi
L

121 uollongong Slreet
Fyshwick, ACT 2609
Tel 952733
Telex. 62650 Canberra
Cable. HEWPARD CANBERRA
Hewlett Packard Austrahia

Pty Lid
Sth Floor
Teachers Union Building
435-499 Boundary Street
Hilt, 4000 Queensiand
-1544
Cable. HEWPARD Brisbane

GUAM

Medical/Pocket Catcutatars Only
Guam Medical Supply. Inc

Jay Ease Bundmg. Room 210
P.0. Box 834

Tamunm? 96911

Tel: 64 13

Cable. EARMED Guam

HONG KONG

Schmidt & Co (Hong Kong) Ltd
P.0 Box2

Connalight Cemre

39th Floor

Connaught Road. Central
Hong Kon

Tet- H-255291-5

Telex 74766 SCHMC HX

Cable. SCHMIDTCO Hong Kong

INDIA

Biue Star Ltd
Kasturt Bulldings
Jamshedi Tata Ad
Bombay 400 020
Tel 29 50 21
Telex 001-2156
Cable BLUEFRQOST

Blue Star Ld

Sahas

414:2 Vir Savarkar Marg
Prabhadevi

Bombay 400 025
Tel 45 78 87
Telex 011-4093
Cable’ FROSTBLUE
Blue Star Lta
Band 8ox House
Prabhadev

Bombay 400 025

Tel. 4573 01

Telex: 011-3751

Cable BLUESTAR

Blue Star Ltd

7 Hare Street

P 0. Box 506

Caicutta 700 001

Tel 23-0131

Telex. 021-7655

Cable BLUESTAR

Blue Star Ltd

7th & 81h Floor

Bhandar House

91 Nehru Place

New Delhi 110024

Tel 634770 & 635166
Telex 031-2463

Cable BLUESTAR

Blue Slar Lid

Biue Star House

11 t1A Magarath Road
Bangalore 560 025

Tel. 55668

Telex 043-430

Cable. BLUESTAR

Biue Star Ltd

Meeakshi Mandiran
xxx:1678 Mahaima Gandhi Rd
Cochin 682 01

Tel 32069 32161.32282
Telex 0885-514

Cable BLUESTAR

Blye Star Ltd

1-1-1171

Saroimi Devi Road
Secunderabad 500 003
Tel: 70126. 70127

Cable BLUEFROST

Telex' 015-459

Blye Star Ltd

2:34 Kodambakkam High Road
Madras 6000

Tel. 82056

Telex 041-379

Cable BLUESTAR

INDONESIA
BERCA Indonesia P.T
PO Box 496.Jkt
JLNeABdu! Muts 62

Jakarta

Tel 40369. 49886.49255.356038
JKT 42895

Cable. BERCACON

BERCA Indonesia P t

63 JL Raya Gubeng

Surabaya

Tel: 443

ISRAEL

Electronics & Engineering Div
ol Motorola Israel Ltd

17. Kremenetski Street

P.0 Box 25016

Tel-Aviv

Tel 38973

Telex 3

Cable BASTEL Tel-Aviv

JAPAI

YologawarHewleanackam Ld

Ohashi Building

59-1 Yoyogi 1-Chome

Shibuya-ku Tokyo 151

Tel 03-370-2281

Telex. 232- 2024YHP MARKET
TOK 23-724

Cable YHPMARKET

Yokogawa-Hewlett-Packard Lid

Chuo Bidg . 4th floor

4-20. Nishinakapma 5-chome

Yodogawa-ku. Osaka-sht

Osaka.532

Tel 06-304-6021

Yokogawa-Hewlett-Packard Ltd

Nakama Building

24 Kami Sasapma-cho

Nakamura-ku, Nagoya . 450

Tel (052) §71-5171

Yokogawa-Hewlett-Packard Ltd

Tamgawa Buifding

2-24-1 Tsuruya-cho

Kanagawa-ku

Yokohama, 221

Tel 045-312-1252

Telex 382-3204 YHP YOK

Yokogawa-Hewlett-Packard Ltd

Mito Mitsu Building

105, Chome-1,5an-no-maru

Mito, Ibaragi 310

Tel 0292-25-7470

Yokogawa-Hewletl-Packard Ltd

Inoue Building

1348-3. Asahi-cho. 1-chome

Atsugi. Kanagawa 243

Tel 0462-24-0452

Yokogawa-Hewlett-Packard Ltd
Kumagaya Asahi

Hackijuni Building

4th Floor

3-4. Tsukuba

Kumagaya. Saitama 360
Tel. 0485-24-6563

KENYA

Technical Engineering
Services{E A.jLtd

P O Box 18311

Te) 557726/556782

Cable PROTON

Medical Only

Inlemalmnal Aeradio(E A ILtd
PO Box 19012

Nairati Atrport

Nairobi

Tel- 33605556

Telex 22201:22301

Cable: INTAERIO Nairoby

KOREA

Samsung Electronics Co . Lid

20th FI. Dongbang Bldg 250. 2-KA
C.PO. Box 2775

Taepyung-Ro Chung-Ku

Cable ELEKSTAR Seoul

MALAYSIA

Teknik Mutu Sdn Bhd
2 Lorong 13:6A
Section 13

Petaling Jaya.Selangor
Tel: 54994:54916
Telex MA 37605
Protel Engmeermg

P 0. Box 1917

Lot 259 Satok Road
Kuching. Sarawak

Tel 2400
Cable PROTEL ENG

MOZAMBIQUE

AN. Goncalves. Lta

162, 1 Apt 14 Av D Luts
Caixa Postal 107
Lourenco Marques

Tel 27091, 27114

Telex: 6-203 NEGON Mo
Cable NEGON

NEW ZEALAND
Hewleft-Packard (N Z.} Ltd
P 0. Box 9443

Courtenay Place
Wellington

Tel. 877-199

Cable. HEWPACK Wellington
Hewletl-Packard (N.Z.) Ltd
Pakuranga Professional Centre
267 Pakuranga Highway
Box 51092

Pakuranga

Tel: 569-631

Cable HEWPACK. Auckland

Analytical‘Medical Only
Medical Supplies N Z. Lld
Seientific Division

79 Carlton Gore Rd . Newmarket
P 0. Box 1234

Auckland

Tel 75-283

Cable DENTAL Auckland
Analytical Medical Only
Medrcal Supphes N.Z Ltd
PO Box 1994

147-161 Tory St
Wellington

Tet 850 799

Telex 3|

Cable DENTAL Wellington
Analytical Medical Dnly
Medical Supplies N 2 Ltd
P.0 Box 309

239 Stanmore Road
Chnslchurch

Tel: 892

Cable DENTAL Christchurch
Analytical:Medical Or\\y
Medical Supplies N.2 Ltd
303 Great King Street

PO Box233

Dunedin

Tel 88-817

Cable DENTAL. Dunedm

NIGERIA

The Electronics
instrumentations Lid

N6B.770 Oyo Road

Oluseun House

P MB 5402

Ibadan

Tel. 61577

Telex 31231 TEIL Nigena

Cable THETEIL fbadan

The Eleclvomcs Instrumenta-
tions L

144 Agege Molor Road. Mushin

PO Box 6645

Lagos
Cable THETEIL Lagos

PAKISTAN

Mushko & Company. Lid
Oosman Chambers
Abdu\lah Haroon Road

Kal

Tel 51\027 512927

Teiex 2894

Cable COOPERATOR Karachi
Mushko & Company. Ltd
388. Satellite Town

el 24
Cable. FEMUS Rawalpindi

PHILIPPINES

The Onhine Advanced
Systems Corporation

Rico House

Amorsolo cor Herrera Str

Legasp! Village. Makall

Metro Manila

Tel: 85-35-81. 85-34-91

Telex 3274 ONLINE

RHODESIA

Field Techmcal Sales
45 Kelvin Road North
P 0. Box 3458
Salisbur

Tel 70523T (5 fines|
Telex RH 4122

SINGAPORE

Hewlett-Packard Singapore
{Pre) L19

1150 Depot Road

Alexandra P.0 Box 58

Sin%apore 4

Tel 270-2355

Telex HPSG RS 21486

Cable. HEWPACK . Singapore

SOUTH AFRICA

Hewlett-Packard South Africa
Pty). Ltd

Private 8ag Wendywaod

Sandton, Transvaal 2144

Hewlett-Packard Centre

Daphne Street. Wendywood

Sandton. Transvaal 2144

Tet 802-10408

Telex. 8-4782

Cable HEWPACK JOHANNESBURG

Service Department

Hewlett-Packard Soulh Africa
(Py.J. Lt

P 0. Box 39325

Gramley. Sandton 2018

451 Wynberg Extension 3

Sandton. 2001

Tel 636-8188:9

Telex 8-2391

Hewlett-Packard South Alrica
(Pty 1. Ltd

PO Box 120

Howard Place. Cape Pravince. 7450

Pine Park Centre. Forest Drive
Pinelands, Cape Province. 7405
Tel 53-7955 thu 9

Telex 57-0006

Service Department
Hewlett-Packard South Africa

(Py.}. Ltd
P 0. Box 37099
Overpart. Durban 4067
Braby House
641 Ridge Road
Durban. 4001
Tel: 88-7478
Telex. §-7954

TAIWAN

Hewlett-Packard Far East Ltd
Tarwan Branch

39 Chung Hsiao West Road
Sec 1 7th Floor

Tel 38!916 -4

Cable HEWPACK TAIPEI
Hewlett-Packarg Far East Ltd
Tawan Branch

68-2. Chung Cheng 3rd. Road
Kaohsiung

Tel {07} 242318-Kaohsiung
Analyucal Only

San Kwang Instruments Co . Ltd .
No 20. Yung Sui Road

Taipei

Tel 3715171-4 (5 lines)
Telex 22894 SANKWANG
Cable: SANKWANG TAIPEI

TANZANIA

Medical Only

m(ematmna{ Aeradio (EA). LW
P 0. Box 861

Dar es Salaam

Tel. 21251 Ext 265

Telex' 41030

THAILAND

UNIMESA Co . Ltd
Elcom Research Building
2538 Sukumvit Ave
Bangkok

Tel 3932387, 3930338
Cable UNIMESA Bangkok

UGANDA

Medical Only

International Aeradiof€ A). Ltd .
PO Box 2577

Kampala

Tel 54388

Cable” INTAERIO Kampala

ZAMBIA

RJ Tv\hury ézambla) Ltd
PO

Lu-akn

Tel 73793

Cable: ARJAYTEE. Lusaka

OTHER AREAS NOT LISTED,CONTACT:

Hewsetl-Packard Intercontinental
3200 Hillview Ave

Paio Atto. Calfomia 94304

Tel 1415) 483-1501

TWX: 910-373-1267

Cable. HEWPACK Palo Ao

CANADA

ALBERTA

Hewett-Packard [Canada) Lig
11620A - 188th Street
EdmontonT5M 379

Tel {403) 452-3670

TWX: 610-831-2431

Hewlef- Packard gCanada) L
210.7220 Fisher

Calgary T2H ZHB

Tel {403) 253-2713

Twx. 610-821-6id|

BRITISH COLUMBIA
Hewlett-Packard {Canada) Lo
837 € Cordova Street
Vancouver V6A 3R2

Tel [5046 254-0531

TWX 610-922-5058

MANITOBA
Hewlent-Packard (Canada) Ltd
513 Cantury SI

St James

Winnj R3H OL8

Tel (204) 786-7581

TWX: 610-671-3531

NOVA SCOTIA
Hewleft-Packarg (Canada) Ltd
800 Windmill Road
Dartmouth B3B 1L1

Tel: (902} 469-7820

TWX 6(0-271-4482 HFX

ONTARIQ

Hewlett-Packard (Canada) Ltd
1020 Mornson Dr

Ottawa K2H 8K7

Tel (613) 820-6483

TWX. 610-563-1636
Hewleft-Packard {Canada} Ltd
6877 Goreway Drive
Mississauga L4V 1M8

Tel (416) 6/8-9430

TWX 610-492-4246

QUEBEC

Hewlett-Packard {Canadat Ltd
275 Hymus Blvd

Pointe Claire HIR 1G7

TLX 05-821521 HPCL

FOR CANADIAN AREAS NOT LISTED:

Contact Hewiett-Packard (Canada)
Ltd 1n Mississauga

CENTRAL AN

ARGENTINA
gle:\eanackayd Argentina

Av Leandro N Alem 822 - 12
10018uenos Aires

Tel 31-6063.4.5.6 and 7
Telex 122443 AR CIGY

Cable HEWPACK ARG

BOLIVIA

Casa Kaviin § A

Calle Potosi 1130

P O Box 500

La Paz

Tel 41530.53221

Telex CWC BX 5298.1TT 3560082
Cable KAVLI

BRAZIL
HewleR-Packarg do Brasil
leC Lda

Avenida Rio Negro. 980
Alphaville

06400Barueri SP

Tet 428-3222

D SOUTH AMERICA

:‘iewclen Packard do Brasil
e
Rua Pame Chagas 32
90000-Porto Alegre-
Tel {0512) 22-, 2998 22 5621
Cable HEWPACK Polo Alegre
Hewlett-Packard do Brasi|
1EC La
Rua Siqueira Campos. 53
Copacabana
20000-Rio de Janeiro
Tel' 257-80-94-D0D (021}
Telex 391-212-1905 HEWP-BR
Cable HEWPACK

Rio de Janeiro

CHILE

Calcagni y Metcalfe Ltda
Alameda 580-0f 807
Casilla 2118

Santiago. 1

Tel 398613

Telex 3520001 CALMET
Cable CALMET Santiago

COLOMBIA

(nstrumentacidn

Heartk A Langebaek & Kier S A
Carrera 7 No 48-75

Apartado Aéreo 6287

Cable AARIS Bogotd
Telex 044-400

COSTA RICA

C\en(mca Costarricense S A
Avenida 2 Calle 5

San Pedro ue Montes de Oca
Apartado 10159

San Jose

Tel 24-38-20. 24-08-19
Telex 2367 GALGUR CR
Cable GALGUR

ECUADOR

Calculators Only
Computadoras y Equipos
Electrdnicos

P 0. Box 6423 CCI

Eloy Altaro #1824.3 Piso
Quito

Tel 453482

Telex 02-2113 Sagita Eg
Cable Sagita-Ouito

EL SALVADOR

Instrumentacion y Procesamiento
Electronico de el Salvador

Bulevar de los Heroes 11-48

San Salvsdor

Tel 252787

GUATEMALA

IPESA

Avenida La Reforma 3-48
ona 9

Guatemala City

Tel 63627 64786

Tetex 1192 Teletro Gu

MEXICQO

Hewlef-Packard Mexicana
SA deCv

Av Peritérico Sur No 6501
Tepepan. Xochimilco
Mexico 23 D F

Tel 905-676-4600
Hewleanackaru Mexicana
SA

Ave Consmucldn No 2184
Monterrey,

Tel 48-71.32 48 71-84
Telex. 038-410

NICARAGUA

Roberto Terdn G
Apartado Postal 689
Edificio Terdn

Managua

Tel 25114, 2341223454
Cable ROTERAN Managua

PANAMA

Electrdnico Ba\boa SA
P O Box 4929

Caile Samuel Lewis
Cuidad de Panama
Tel 64-2700

Telex 3483103 Curunga

anal Zone
Cabie ELECTRON Panama

PERU

Compafifa Electro Médica S A
Los Flamencos 145

San (sigro Casila 1030
Lima 1

Tel 41-4325

Cable ELMED Lima

PUERTQ RiICO
Hewlef-Packard inter-Americas
Puerto Rico Branch Ottice
Calle 272

No. 203 Urb Country Club
Carobna 00924

Tel: (809) 762-7255

Telex: 345 0514

URUGUAY

Pablo Ferrando S.A
Comercial e Industria)
Avenida itaha 2877

Casilla ge Correo 370
Montevideo

Tel 40-3102

Cable RADIUM Montevideo

VENEZUELA
Eiew\eﬁ~?ackavd de Venezuela
A

P.0 Box 50933

Caracas 105

Los Rurces Norte

3a Transversal

Edificio Segre

Caracas 107

Tel 35-00-11 {20 lines)
Telex 25146 HEWPACK
Cable HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT:

Hewlett-Packard
Inter-Americas

3200 Hillview Ave

Palo Alto, California 94304
Tel (415} 493-1501

TWX 910-373-1260

Cable HEWPACK Paio Alto
Telex 034-8300. 034-8493

EUROPE, NORTH AFRICA AND MIDDLE EAST

AUSTRIA
Hewlett-Packard Ges.m.b H
Handelskal 52

0. box 7
A-1205 Vienna
Tel: (0222) 351621 to 27
cable HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
SANY

Avenue de Col-Vert, 1.
(Groenkraaglaan)

B-1170 Brusseis

Tel: (02) 672 22 40
Cable” PALOBEN Brussels
Telex 23 494 paloben bru

CYPRUS

Kypronics

19, Gregoribs & Xenopoulos Ad
P.0. Box 1152

CY-Nicosia

Tel: 45628/29

Cable: KYPRONICS PANDEHIS
Telex: 3018

CZECHOSLOVAKIA
Vyvojova a Provozni Zakladna
Vyzkumnych Ustavu v Bechovicich

CSSR-25097 Bechovice u Prahy

Tel 89 93 41

Telex: 121333

Institute of Medical Bionics
Vyskumny Ustav Lekarske] Bioniky
Jedlova 6
C5-88346 Bra
Tel: 44-551/45-541

a-Kramare

DR
Entmcklungslabor der TU Dresden
Furschungsmsmul Meinsberg

w-ldhcimlﬂunsberg
Tel: 37 6
Telex: 112145
Export Contact AG Zuerich
Guenther Forgber
Schiegelstrasse 15
1040 Berlin
Tel: 42-74-12
Telex 111889

DENMARK
Hewlett-packard A/S
Datavej 52

OK-3460 Birkernd
Tel: (02) 81 66 40
Cable: HEWPACK AS
Telex: 37409 hpas dk
Hewlett-Packard A/S
Navervc% 1

Tel: (06) 82 71 66
Telex: 37409 hpas dk
Cable: HEWPACK AS

FINLAND
Hewilett-Packard OY
Nahkahousuntie 5

. Box &
SF-00211 Helsinki 21
Tel: (90) 6923031
Cable: HEWPACKDY Helsinki
Telex: 12-1563 HEWPA SF

FRANCE
Hewlett-Packard France
Quartier de Courtaboeut
Baite Postale No. §

Cable: HEWPACK Orsay
Telex: 600048
Hewlett-Packard France
Agency Réqlonale

Le Saquin”
Cheml% des Movilles

F-69130 Eculty

Tel: (78) 33 81 25,
Cable: HEWPACK Eculy
Telex: 3106 17

Hewlett-Packard France
Agence Régionale
Péricentre de la Cépiére
Chemin de ia Cépidre. 20
F-31300 Toulouse-Le Mirail
Tel't61) 40 11 12

Cable HEWPACK 51957
Telex 510957
Hewlett-Packard France
Agence Regionale
Aéroport principal de
Marseille-Marignane
F-13721Marignane

Tel (91} 89 12 36

Cable. HEWPACK MARGN
Telex: 410770
Hewlett-Packard France
Agem:e Régionale

6J3. Avenue de Rochester
B.P. 1124

F-35014 Renneu Cedex
Tel: (99) 36 3.

Cable HEWPACK 74912
Telex 740912
Hewlett-Packard France
Agence Régionale

74. Alige de la Robertsau
F-67000 Strasbourg
Tel: (88) 35 23 20:21
Telex: 890141

Cable’ HEWPACK STRBG
Hewlett-Packard France
Agence Régionale

Centre Vauban

201 rue Colbert

Entrée A2

F-53000 Lille

Tel: (20) 51 44 14

Telex- 820744
Hewlett-Packard France
Centre d° Atfaires Paris-Nord
Baument Ampére

Rue de La Commune de Paris
B.P. 300

F-93153 Le Bianc Mesnil Cédex

Tel. (01) 931 88 50

GERMAN FEDERAL
REPUBLIC

Hewiet1-Packard GmbH
Vertniebszentrale Frankturt
Bernerstrasse 117

Posttach 560 140

0-6000 Frankfurt 56

Tel: (0611) 50 04-1

Cable: HEWPACKSA Frankturt
Tel: (0611) 50

Cable HEWPACKSA Frankfurt
Telex: 04 13249 hpttmd
Hewlett-Packard GmbH
Technisches Buero Bablingen
Herrenbergerstrasse 110
0-7030 Boblm?cn Wirttemberg
Tel (0703\’{

Cable: HEPAK Bdblingen
Telex: 07265739 bbn
Hewlett-Packard GmbH
Technisches Buero Disseldorf
Emanuel-Leutze-Str.1 (Seestern)
D-4000 Dusseldort 1

Tel: (0211) 59711

Telex: 085/86 533 hpdd d
Hewlett-Packard GmbH
Technisches Buero Hamburg
Wendenstrasse 23

D-2000 H-mbur

Tel 1040g 24 13

Cable: H WPACKSA Hamburg
Telex: 21 63 032 hphh
Hewlett-Packard GmbH
Technisches Buero Hannover
Am Grossmarkl §

0-3000 Hannover 91

Tel: (0511) 46 60 01

Telex: 092 3259

Hewlett-Packard GmbH
Werk Groetzingen
Ohmstrasse 6

0-7500 Karlsruke 41

Tel 10721& 69 40 06

Telex. 07-825707
Hewleti-Packard GmbH
Techmisches Buero Nuremberg
Neumeyer Str 90

0-8500 Nurember: ?

Tel' {0911) 56 30 83:85
Telex 0623 860
Hewlett-Packard GmbH
Technisches Buero Munchen
UnteMachinger Strasse 28
ISAR Center

D-8012 Ottobrunn

Tel: (089) 601 30 61:7
Cable: HEWPACKSA Miinchen
Telex: 0524985
Hewlett-Packard GmbH
Technisches Buero Berfin
Keith Strasse 2-4

0-1000 Berlin 30

Tel: {030} 24 90 86

Teiex. 18 3405 hpbin

GREECE

Kostas Karayannis

08, Omirou Street
GR-Athena 133

Tel- 3237731

Cable: RAKAR Athens
Telex: 21 59 62 rkar gr

Anal]yucal Only

ECO " G Papalnanasswu & Co

Mavm 17

GR - Athens 103

Tel: 522 1915

Cable: INTEKNIKA Athens
Telex: 21 5329 INTE GR
Medical Only
Technomed Hellas Lid
52 Skooufa Street

GA - Athens 135

Tel: 362 6972. 363 3830
Cable:ETALAK athens
Teiex. 21-4693 ETAL GR

HUNGARY
MT;

A
Muszerugyi és Méréstechnikai
Szoigalata
Lenin Krt. 67
1391 Budapest VI
Tel 42 03 38
Telex 22 51 14

ICELAND

Medical Only

Elding Trading Company In¢
Hafnarhvoli - Tryggvatoty
18- ngkhwk

Tel: 1 5t

Cable ELOING Reykjavik

IRAN

Hewlett-Packard Iran Ltd
No. 13. Fourteenth St
Miremad Avenue

P.0. Box 41,2419
IR-Tehran

Tel 851082-7

Telex 2125 74 khrm ir

IRAQ

Hewlett-Packard Trading Co.

4/1/8 Mansoor City

Baghdad

Tel. 5517827

Telex: 2455 heparraq ik

Cable: HEWPACDAD.
Baghdad Iraq

IRELAND
Hewlett-Packard Ltd

King Street Lane

GB- WInnorsh Wokmgham
Berks, RG11

Tel 10734' 78 47 74

Telex: 847178/848179

ITALY

Hewlett-Packard Italiana S p A
Via Amerigo Vespucc 2
Casella postale 3645

1-20100 Milano

Tel {2) 6251 (10 hnes)

Cable. HEWPACK|T Milano
Telex 32046

Hewlett-Packard ftaliana S p A
Via Pietro Maronceill 40

iang. Via Yisentin)

1:35100 Padova

Tel: (49) 66 48 88

Telex 41612 Hewpacki
Medical gnly

Hewlet-Packard Italiana S p. A
Via d'Aghiardr, 7

1-56100 Pisa

Tel. (050) 2 3204

Telex 32046 via Milano
Hewleti-Packard Itahana S p.A
Via G. Armellimi 10

1-00143 Roma

Tel (06) 54 69 6l

Telex 61514

Cable: HEWPACKIT Roma
Hewlett-Packard Italiana S.p.A
Corso G\uvanm Lanza

1-1031

Tel 1011 682245 659308
Medical:Calculators Only
Hewlett-Packard Italiana S p. A
Via Principe Nicola 43 G/C
1-95126 Catania

Tel (095) 37 05 04
Hewlett-Packard Htahana S.p.A
Via Amengo Vespucci, 9
1-80142 Napoli

Tel (081)33 77 11
Hewleti-Packard Italiana S.p A
Via E. Masi, 9/1 B

1-40137 Bol

Tel: (051) 30 887

KUWAIT
Al-Khaldiya Trading &
Contracling Co

P.0. Box 830-Satt
Kuwait

Tel. 424910-411726
Telex: 2481 areeg kt
Cable: VISCOUN

LUXEMBURG
Hewlett-Packard Benelux
SANV

Avenue du Col-Vert. 1
{Groenkraagiaan)

B-1170 Brusaels

Tel: (02) 672 22 40
Cable: PALOBEN Brussels
Telex' 23 494

MOROCCO

Gerep

190. Bivd. Brahim Roudam
Casablanca

Tel: 25-16-76/25-90-99
Cable: Gerep-Casa

Telex: 23739

NETHERLANDS
Hewlett-Packard Benelux N
Van Heuven Goedhartiaan 121
P 0. Box 667

NL-1134 Amstelveen

Tet: (020} 47 20 21

Cable: PALOBEN Amsterdam
Telex' 13 216 hepa ni

NORWAY

Hewilett-Packard Norge A/S
Nesveien 13

Box 149

N-1344 Haslum

Tel: (02) 53 83 60

Telex: 16621 hpnas n

POLAND

Bwro informac) Techmiczney

Hewleti-Packard

U1 Stawki 2. 6P

00-950Warszawa

Tel. 395962.395187

Telex 81 24 53 hepa pl

UNIPAN

Zaklad Doswiadczainy

Budowy Aparalug Naukowe|

U1 Krajowe) Ral

00-800 Warszawa

Tel 36190

Telex 8146 48

Zaklady Naprawcze Sprzety
Medycznego

Plac Kumuny Paryskie) 6

90-007

Tel: 334- M 337 83

PORTUGAL
Telectra-Empresa Técnica de
Equipamentos Eléctricos Sar !
Rua Rodrigo da fonseca 103

P 0. Box 2531

P-Lisbon 1

Tel (19) 68 60 72

Cable TELECTRA Lisbon

Telex 12598

Medical only

Mundinter

Intercambio Mundial de Comércio
Sarl

Av A A de Aguiar 138

PO Box 2761

P - Lisbon

Tel (19)53 21317

Cable INTERCAMBIO Lisbon

RUMANIA

Hewlett-Packard Reprezentanta
Bd.N Balcescu 16
Bucharest

Tel' 158023:138885

Telex 10440

ILIR.UC

(ntrepninderea Pentry
Intretinerea

St Repararea Utilajelor de Calcul

B-dui pro! Dimitrie Pompe: 6

Bucharest-Sectoru) 2

Tel 12 64 30

Telex 11716

SAUDI ARABIA

Modern Electronic Establishment
King Abdul Aziz str (Head office}
P.O Box 1228

Jeddah

Tel 31173-332201

Cable. ELECTRA

PO Box 2728 (Service center)

Riyad
Te! 62596-66232
Cable: RAOUFCO

SPAIN

Hewlett-Packard Espanola. S A
Jerez. Calle 3

E-Madrid 16

Tek(1) 458 26 00 (10 hnes)
Telex 23515 hpe
Hewett-Packard Espafiola. S A
Milanesado 21-23
E-Barceions 17

Tel. (3) 203 6200 (5 fines)
Telex: 52603 hpbe e
Hewien-Packard Espahota. S A
Av Ramdn y Cajal 1

Edificio Sevilia, pianta 9
E-Seville

Tel 64 44 54/58
Hewlett-Packard Espafiola S A
Edlhcm Alma nz

E-Bitb
Tel 23 53 06123 82 06
Calculators Only
Hewletl-Packard Espanola S.A
Gran Via Fernando EI Catdlico. 67
E-valencia-8
Tei' 326 67 28:326 85 55

Narodowe| 5155

SWEDEN
Hewletl-Packard Sverige AB
Emgnetsvagen 1-3

Fack

$-161 20 Bromma 20

Tel {08) 730 05 50

Cable” MEASUREMENTS
Stockholm

Telex 10721

Hewlett-Packard Sverige AB

Ostra Vintergatan 22

$-702 40 Orebro

Tel (019} 14 07 20

Hewleti-Packard Sverige AB

Frétailsgatan 30

$-421 32 Vastra Frélunda

Tel (031) 49 09 50

Telex 10721 Via Bromma Office

SWITZERLAND
Hewlett-Packard (Schweizi AG
Zurcherstrasse 20

PO Box 307

CH-8952 Schiieren-Zurich
Tel (01) 730 52 40 730 18 21
Cable HPAG CH

Telex 53933 hpag ch
Hewleti-Packard (schwee} AG
Chateau Bloc 19

CH-1219 Le Lignon-Geneva
Tei 1022) 96 03 22

Cable HEWPACKAG Geneva
Telex: 27 333 hpag ch

SYRIA
Medical:Calculalor only
Sawah & Co

Place Azmé

B P 2308
SYR-Damascus

Tel 16367 19697. 14268
Cable SAWAH. Damascus

TURKEY

Telekom Engmeermg Bureau
PO Box4

Beyoglu

TR-Istanbul

Tel. 49 40 40

Cable TELEMATION Istanbul
Telex 23609

Memca\ only
MA

Muhenmsllk Kollektif Sirkets
Adakaie Sokak 416
TR-Ankara

Tel- 175622

Analytical only

Yilmaz Ozyurek

Mill Mudafaa Cad No 16/6
Kizilay

TR-Ankara

Tel 250309

Telex 42576 ozek tc

UNITED KINGDOM
Hewlett-Packard Ltd

King Street Lane
GB-Winnersh, Wokingham
Berks. RG11 5AR

Tel (0734) 78 47 74

Cable' Hewpie London
Telex 847178:9

Hewlett-Packard Ltd
Tratalgar House,
Nawvigation Road
Altrinchsm
Cheshire WA14 INU
Tel {061) 928 6422
Telex' 668068

Hewlett-Packard L1d
Lygon Court

ereward Rise
Dudley Road
Halesowen
West Midlands 862 8SD
Tel (021) 550 9911
Telex: 339105

Hewlett-Packard Lid
Wedge House

799. London Road
GB-Thornton Heath
Surrey CR4 6XL

Tel 01} 684 01038
Telex 946825

Hewlett-Packard Ltd

¢ 0 Makro

South Service wholesale Centre
Wear Industnal Estate

Washington

GB-New Town. County Durham
Tel Washington 464001 ext 57 58

Hewlett-Packard Ltd

10. Wesley St
GB-Castietord

West Yorkshire WF10 TAE
Tet (09775) 50402

Telex 557355

Hewlett-Packard Ltd
1. Wallace Way
GB-Hitchin

Herls

Tel (04621 5282456704
Telex 825981
Hewlet-Packard Ltd

2C. Avonbeg Industrial Estate
Long Mile Road

Dublin 12

Tel Dubhn 509458

Telex 30439

USSR

Hewleti-Packard

Representative Otfice USSR
Pokrovsky Boulevard 4 17-KW 12
Moscow 101001

Tet 294-2024

Telex 7825 hewpak su

YUGOSLAVIA
Iskra-standard:Hewlett-Packard
Mikiosiceva 38VII

61000 Ljubljana

Telb. 3158 7932 16 74
Telex 31583

SOCIALIST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewiett-Packard Ges m b.H
P.0 Box7

A-1205 Vienna, Austria

Tel (0222) 35 16 21 to 27
Cable HEWPAK Vienna
Telex. 75923 hewpak a

MEDITERRANE AN AND
MIDDLE EAST COUI

T SHOWN PL EASE CONTACT
Hewlen Packard 5. A
Mediterranean and Middle
East Operations
35. Kolokotrom Street
Platia Kefallanou
GR-Kihssia-Athens. Greece
Tel 8080337:359:429
Telex 21-6588
Cable HEWPACKSA Athens

FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett-Packard S A

7. rue du Bois-du-Lan

0X
CH-1217 Meyrn 2 - Geneva
Swizerland
Tel 1022) 82 70 00
Cable HEWPACKSA Geneva
Telex 2 24 86

UNITED STATES

ALABAMA

8290 Whllesburg Or..
P.0 Box 420
Huntaville 35802
Tel: (205) 881-4591
Medical Only

228 W. Valley Ave
Room 220
Birmingham 35209
Tel. (205} 942-2081:2

ARIZONA

2336 E. Magnolia St
Phoenix 85034

Tel {602) 244-1361

2424 East Aragon Rd
Tucson 85706

Tel' (602) 294-3148

‘ARKANSAS
Medical Service Only
P.0. Box 5646
Brady Station
Litile Rock 72215
Tel (501) 376-1844

CALIFORNIA

1430 East Orangethorpe Ave
Fullerton 92631

Tel: (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604
Tel (213) 877-1282

TWX 910-499-2671

5400 West Rosecrans Bivd
P.0. Box 92105

World Way Postal Center
Los Angeles 30009

Tel (213} 970-7500

‘Los Angeles

Tel (213)776-7500

3003 Scott Boulevard
Santa Clara 95050

Tel. (408) 249-7000

TWX 910-338-0518

‘Ridgecreat

Tel. (714) 446-6165

646 W. North Market Bivd
Sacramento 95834

Tel' (316) 929-7222

9606 Aero Orive

P 0. Box 23333

San Diego 92123

Tel (714)279-3200

COLORADO

5600 South Ulster Parkway
Englewood 80110

Tel' (303) 771-3455

CONNECTICUT
12 Lunar Drive
New Haven 06525
Tel: (203) 389-6551
TWX 710-465-2029

FLORIDA

P O Box 24210

2806 W Oakland Park Bivd
Ft. Lauderdale 33311
Tel: (305) 731-2020
‘Jacksonville
Medical Service oni

Tel (904) 398- 066;
P.0 Box 13910

6177 Lake Ellenor Dr
Orlando 32809

Tel {305) 859-2900
P.D Box 12826
Pensacols 32575

Tel {904) 476-8422

GEORGIA

P O Box 105005
Atlanta 30348

Tel (404) 955-1500
TWX:810-766-4890
Medical Service Only
"Auguats 30903
Tel 2104\ 736-0592
PO Box 2103
Warner Robins 31098
Tel {912) 922-0449

HAWAII

2875 So. King Street
Honolulu 96814
Ter: (808) 955-4455
Telex: 723-705

ILLINOIS

5207 Toilview Or

Rolling meadows 60008
Tel (312) 255 9809

TWX" 910-687-2260

INDIANA

7301 North Shadeland Ave
Indianapolisd6250

Tel (317)842-1000

TWX 810-260-1797
1OWA

2415 Heinz Road

lowa City 52240

Tel: (319) 338-9466

KENTUCKY

Medical Only

Atkinson Square

3901 Atkinson Dr

Suite 407 Atkinson Square
Louisvilie 40218

Tel {502) 456-1573

LOUISIANA

P.0 Box 840

3229-39 Wilhams Boulevard
Kenner 70063

Tei: (504} 443-6201

MARYLAND

6707 Whitestone Rnad

Battimore 21207

Tei {301) 944-5400

TWX 710-862-9157

2 Choke Cherry Road

Rockville 20850

Te\ [301 948-6370
-828-9634

MASSACHUSETTS
32 Hartwell Ave
Lexin?wn 02173
Tel (617) 861-8960
TWX' 710-326-6304

MICHIGAN

23855 Research Onve
Farmington Hilis 48024
Tel: (313) 476-6400

724 West Centre Ave.
Kalamazoo 49002

Tel (606) 323-8362

MINNESOTA
2400 N. Prior Ave
St. Paul 55113
Tel: (612) 636-0700

MISSISSIPPI
“Jackson

Medical Service onl
Tel: (601) 982- 9363Y

MISSOUR(

11131 Colorado Ave
Kansas City 6413

Tel {816) 76. 3000
TWX' 310-771-2087
1024 Executive Parkway
St. Louis 63141

Tel {314) 878-0200

NEBRASKA

Medical On)

7171 Mercy Road

Suite 110

Omana 63106

Tel {402) 392-0948

NEW JERSEY

W 120 Century Rd

Parsmus 07652

Tel {201) 265-5000

TWX' 710-990-4951

Crystal Brook Professional
Buiding

Eatontown 07724

Tel (201) 542-1384

NEW MEXICO
P 0. Box 11634
Staton E

11300 Lomas Blvd . N E
Albuquerque 87123
Tel (505) 292-1330
TWX 910-989-1185

156 Wyatt Onve

Las Cruces 88001
Tel: (505) 526-2484
TWX: 910-9983-0550

NEW YORK

6 Automation Lane
Computer Park
Albnn 12205
Tel (518) 458-1550

201 Sou(n Avenue
ughkeepsie |2601

Te\ (814 454-7334

TWX. 510-253- 5951

650 Pennton Hili Dffice Park
Fairport 14450
Tel (716} 223-9950

5858 East Molloy Road
Syracuse 13211

Tel' (315) 454-2486
TWX 710-541-0482

1 Crossways Park West
Woodbury 11737

Tel (518} 421-0300
TWX 710-990-4951

NORTH CAROLINA
P 0 Box 5188

1923 North Main Sireet
High Point 27262

Tel (919) 885-8101

QHIO

16500 Sprague Road
Cleveland 44130
Tel (216) 243-7300
TWX 810-423-9430
330 Progress Rd
Dayton 45449

Tel i513) 859-8202
1041 Kingsmill Parkway
Columbus 43229
Tet (614) 436-1041

OKLAHOMA

P D Box 32008
Okiahoma City 73132
Tel {405) 721-0200

OREGON

17890 SW Lower Boones
Ferry Road

Tualatin 37062

Tel 503) 620-3350

PENNSYLVANIA
111 Zeta Onve
Pitisburgh 15238
Tel 412) 782-0400
1021 8th Avenue
King of Prussia lndus(na\ Park
King of Pru 19406

Tel: {215) 265
TWX 510-660-2670

SOUTH CAROLINA
6941-0 N Trenhoim Road
Columbia 29260

Tet 1803} 762-6493

TENNESSEE
“Knoxville
Medical Service only
Tel i615) 523-5022

3027 Vanguard Dr
Director's Plaza
Memphis 35131
Tel (901) 346-8370

Nashville
Medcal Service only
Tel (6151 244-5448

TEXAS

P 0 Box 1270

201 E Arapaho Rd

Richardson 75080
Tel 1214} 231-6101

10535 Harwin Ot
Houston 77036

Tet (713) 776-6400
205 Billy Mitchell Road
San Antonio 78226
Tel (512) 434-8241

TAH
2160 South 3270 West Street
Salt Lake City 84113
Tel (801} 9724711

VIRGINA

PO Box 12778

No 7 Koger Exec Center
Suite 212

Nortolk 23502

Tel (804) 461-4025:6

P 0 Box 9669

2914 Hungav; Springs Road
Richmond 23228

Tel 1804 285-3431

WASHINGTON
Belleteld Ottice P
1203-114th Ave S E
Bellevue 38004
Tei 1206) 454-3971
TWX 910-443-2446

"WEST VIRGINIA
Medical Analytical Oniy
Charleston

Tel 13041 345-1640

WISCONSIN

9004 West Lincoin Ave
West Allis 53227

Tel 1414) 541-0550

FOR U.S. AREAS NOT LISTED
Conlact the regional ottice

nearest you Allanta. Georgia

North Hollywood. Callornia

Rockville Maryland Roling Meadows
llhnois Theie complete

addresses are Nsted above

‘Service Only 1178

266 Reference Tables

267

Appendix F
Memory Organization

The appendix delves further into organization of User Read / Write Memory. It is not intended
to be a complete explanation of memory organization, but to explain memory configuration as
it relates to programming operations.

Read /Write Memory is divided into blocks. Each block is 64K bytes. The following diagram

illustrates the blocks of memory. Odd-numbered blocks are used by the system and are not part
of user Read / Write Memory.

Block 0 Block 2 Block 4 Block 6
Reserved by '
the System

64K
bytes

268 Memory Organization

The division of memory into blocks imposes limitations on programs and variables. The limita-
tions are —
e No main program or subprogram can be larger than one block of memory. A 1000-line

program typically fills one half of a 64K block.

e No main program or subprogram can cross a block boundary. That is, the main or sub-

program must be contained entirely in one block of memory.

oy

This limitation may cause you to get an unexpected memory overflow error,

! indicates there is ample memory available. The reason for this is

though executing i...
that the available memory is not all in the same block.

e To avoid this situation, it is advisable to organize your program into a series of a short
main program and short subprograms, rather than using long program segments. This
works well because a block can contain more than one subprogram. Additionally, a

program can consist of a main program and subprograms in several different blocks.

e No simple variable or array element can cross a block boundary. Arrays of long strings and
long simple strings can also cause an unexpected memory overflow or waste large

amounts of memory. For example, suppose you are allocating memory to some variables

‘| statement. Suppose that there is a 25K byte character string following a
numeric variable, but only 10K bytes left in the block after the numeric variable is allo-

cated memory space. The string will have to be stored in the next block, thus wasting 10k

bytes of memory. Thus, the order of large strings in | statements can affect

the amount of memory needed to run a program.

e Each time an array crosses a block boundary, six bytes of memory are added to the total

amount needed to store the array.

e The execution stack and any binary routines must be contained in block 0. You could get
a memory overflow when the other blocks are virtually empty if the execution stack gets
too large. This can be caused by recursive subprogram calls and intermediate results

involving long strings. Some program restructuring may be necessary.

269

Appendix G
Error Messages

Mainframe Errors

Missing ROM or configuration error

Memory overflow; subprogram larger than block of memory. (See Appendix
F)

Line not found or not in current program segment
Improper return

* statement

Abnormal program termination; no

Improper .7 matching
Undefined function or subroutine
Improper parameter matching
Improper number of parameters
String value required

Numeric value required

Attempt to redeclare variable

Array dimensions not specified

Muitiple ¢

: - statements or 7 DR Hrti statement pre-
ceded by variable declarative statements

Invalid bounds on array dimension or string length in memory allocation

statement

270 Error Messages

Dimensions are improper or inconsistent; more than 32 767 elements in an

array

Subscript out of range

Substring out of range or string too long
Improper value

Integer precision overflow

Short precision overflow

Real precision overflow

Intermediate result overflow

(N*7r/2), when N is odd

Magnitude of argument of
Zero to negative power

Negative base to non-integer power

of negative number

or of zero

of negative number

Division by zero; X Y withY =0

String does not represent valid number or string response when numeric data

required

Improper argument for % function

Referenced line is not
Improper format string

Out of DATA

string longer than 160 characters
[/ 0O function not allowed

Function subprogram not allowed

Improper replace, delete or command

Error Messages 271

First line number greater than second

Attempt to replace or delete a busy line or subprogram
Matrix not square

lllegal operand in matrix transpose or matrix multiply

Nested keyboard entry statements

No binary in memory for ! {or no program in memory for

Subprogram eclaration is not consistent with main program

Recursion in single-line function

Line specified in i} declaration not found

File number less than 1 or greater than 10

File not currently assigned

Improper mass storage unit specifier

Improper file name

Duplicate file name

Directory overflow

File name is undefined

Mass Storage ROM is missing

Improper file type

Physical or logical end-of-file found

Physical or logical end-of-record found in random mode
Defined record size is too small for data item

File is protected or wrong protect code specified

The number of physical records is greater than 32767
Medium overflow (out of user storage space)

Incorrect data type

Excessive rejected tracks during a mass storage initialization

Mass storage parameter less than or equal to 0

272 Error Messages

Invalid line number in “or L. IR operation

See Mass Storage ROM errors

Cartridge out or door open
Mass storage device failure

Mass storage device not present

Write protected

Record not found

Mass storage medium is not initialized

Not a compatible tape cartridge

Record address error; information can’t be read

Read data error

Check read error

Mass storage system error

SR See Mass Storage ROM errors

[tem in print using list is string but image specifier is numeric

[tem in print using list is numeric but image specifier is string

Numeric field specifier wider than printer width

Item in print using list has no corresponding image specifier

Unused

See Plotter ROM errors

o+ octal number; octal number

This error indicates an error in the machine’s firmware system; it is a fatal error. If reset
does not bring control back, the machine must be turned off, then on again. If the problem

persists, contact your Sales and Service Office.

Error Messages

I/ 0O Device Errors

Two error messages can occur when attempting to direct an operation to an [/ O device that is
not ready for use. A printer which is out of paper or no device at a specifed select code are

examples. The first message that appears is —

. select code

If the condition is not corrected, the machine beeps intermittently and the following message
replaces the first —

~select code

The 1/ 0 device can be made usable by correcting the error (loading paper for example), then

executing the |

t select code

This command readies the I/ O device and the operation which was attempted is attempted
again. The select code must be specified by an integer.

In some cases, such as an interface which is not connected, for that select code may
not solve the 1/ O error. In this case, should be pressed to regain control of the computer.
Be sure to turn the power off before inserting an interface. After the problem is remedied, the

operation or program can be tried again.

273

274 Error Messages

Mass Storage ROM Errors

Format switch off

Not a disc interface

Disc interface power off

Incorrect controller address, or controller power off
Incorrect device type in mass storage unit specifer
Drive missing or power off

Disc system error

Incorrect unit code in mass storage unit specifier
A= Unused

Unused

Plotter ROM Errors

Plotter type specification not recognized

Plotter has not been specified

Unused

“specifications out of range.

Unused

Subject Index 275

Subject Index

a

ABS (absolute value) 48
Access rate (tape) e 218
ACS (arccosine). A, 53
Addition (+) 37
AlphanumericKeys 3
AND operator 47
Angularunits oL 52
Arccosine (ACS) 53
Arcsine (ASN) 53
Arctangent (ATN)53
Arithmetic 37
Arithmetic hierarchy 39
Arithmetic operators 37
ASN (arcsine) 53
Arrays 75
Array identifier L. 77
Array operations 109-126
Array variables 75

Assigning a valueto 88,89,110

Dimensioning 76,81,83

Element 77

Explicit definition 76,81,83

Implicit definition 77

Maximumsize 76

Redimensioning 125

Physical size 76

Stringarrays 78

Working size 76
ASCII charactercodes 262
ASSIGN 201,213
Assignment (LET) 74,78

Implied 74
ATN (arctangent) 53
Audible output (BEEP) 163
AUTO (line numbering) 64
Autostart 2
Automatic Indent 223

Available memory

,,,,,,,,,,,,,,,,,,,,,,,,, 17,19,21,24
BASIC language 1,281
HP Compatible BASIC 231
BEEP A 163
Binary Programs 7,198216
Blinkingmode 27.,99,236
Bounds (of array dimensions) 76,80
Brackets[] 57,93,255
Branching 127
Conditional 130
Looping 132
Unconditional 128
WithSFKs 141
BUFFER (files)... 212
Implicit 159

Busylines159

Calculatormode 25,255
CALL 153
Calling program 146,255
Cartridge (tape) 217
CAT (catalog) 193
CHECKREAD 213
CHECK READ OFF e 213
Character 58,255
CHR$ (character function) 103
Clearingthe CRT 19
Clearing the keyboard entry area (display)
e 17,19,20
Closingafile 213
COL (column) 123
COM (common) 7,83
In subprograms 156
Comment delimiter (') 63
Command.... 57,256
Common logarithm 52
Computed GOSUB 137
Computed GOTO 128
Concatenation (&-string) 94
Conditional branching 130

Constant 58,256

276 Subiject Index

CONT (continue) 67
With INPUTo 88

Cont) 67,88
BT L ... 14,15
Control codes ,,,,,,,,,,,,,, e 237
Controller address 186,187,256
COPY (files) o...........215
Copyinganarray 112
COS (cosine ...« .oooveviii i 53
CREATE (datafiles) 200
CRT e 4
Accessing. e 58,186
Areasof e 4
Clearing 19
Intensity knob 5
Memory 235
Pull-outcards 5
Selective addressing 289
Special features 27,99,236
Current Environment 146,256
Cursor e 3
Insert...... 20,22
Keys 19
Moving 0001719
Replace 20
Selective addressing 239
DATA (with READ) 85
DATA pointer e 86
repositioning L. 86
Data 200
Storage on mass storage devices ... 211
Debuggingo i 221 ,225
DEFAULT OFF o 55
DEFAULTON 55
Default values C 55
DEF FN (define functions) 139
Multiple line 146,150
Singleline 139
Definedrecord 189,200,256
Defining a function 139,146,150
Defining special function keys 28
DEG (degrees) B 52
DEL (deleteline) 224,225 244
e 224
Deleting characters. 18,22,244
...................... 18,19,22,24

Delimiter
Comma .-.... ... B 162
Comment () o 63
PRINTUSING 172
Semicolon162
DET (determinant) 123

Device type (mass storage) .. - - 186,187
Digit rounding (DROUND) Y

DIM (dimension) - - 81,157
Dimensioning an array . .- 76,81,83
explicit - 76,81,83

implicit -~77

Dimensioning a string .- 78,81,83
explicit 78,81,83
implicit 78

Directory N L3
Tape cartridge - 191

DISABLE (interrupts)70

DISP (display) 162

Display (9835B) 5
Display control keys 3,19,20,23

Display line (CRT) 4,256
DIV (integer divide) 37,38
Division (/) .-37
DOT (inner product) 123
Dot matrix insyntax 57,255
Down arrow key (C23) 20
DROUND (digitround) 49
Dynamic memory allocation - 157
EDIT (string)91
EDITKEY(SFKs)28
EDIT LINE (programs) e 221
Editing 17,20,221
Keyboard lmes 17,20
Programs 221
SFKs28
ENABLE (mterrupt) 69
END o 68
End of frle and record marks (EOF EOR)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 189.190
Errors..,\,rw“.r_ o 209
End of program 68
logical 68
physical 68
Equalto (=) ; .. 46

Erasingmemory69

ERRL (errorline) 230
ERRMS (error message) 230
ERRN (error number) 230
Error functions 230
Errors:
I70 e ... 278
Mass Storage e 219,274
Math 55
Messages and warnings 9
Plotter ROM 274
Run-time . .. 229
Testing . . e 229
Escape code sequences 238,241
Summary 246
! (comment delimiter) .. . 63
L 12,37
Executionstack =7
EXOR operator 47
EXP (exponential) 52
Exponential functions 52
Exponentiation (A or **}) 37
Field specifiers R 172
Files 188,256
Binarydata 189
Binary program 189,216
Data 189,195
Filename 186,256
File number 186,201,256
File specifier 187,256
Key 201
Pointer 189,216
Program189,195,198
STORE ALL {memory) 189,217
Structure 188
Filestable 201
Final value 132
FIXED (fixed point) 40,41
FLOAT (scientific notation) 40,42
FNEND 150
FOR (with NEXT) 132
FOR-NEXTloops 132
Considerations 136
Nesting 135
Foreign characters 253
Formal parameters 139,147,256
Formatted output 172

Subject Index 277

FRACT (fractional part) 49
Full-precision numbers (REAL) 43,44 ,81,82
Functions

Array e 122
Defining 139
Erroro 230
Math 48-54
Output . 167
String 100
User-defined 139,150
WO 17,19,21,24

GET 196
GOSUB 136

Computed 137
GOTO 128

Computed128
Glossary 255
GRAD 52
Greater than (>) 46
Greater than or equalto (=) 46

h

Heading suppression {(CAT) 193
Hierarchy:
Arithmetic 39
Math 54
Home position (cursor) 417,21
HP-1B device address 58,257
HP Compatible BASIC 231

278 Subject Index

° LET.. o 74,78
l Implied 74
LGT (commonlog) 52
I/O deviceerrors 273 L,IN (‘hnefe‘e'd) e 168
Identity matrix o 117 L!ne identifier 58,59,257
IF. THEN . 130 Linelength 59
IMAGE (with PRINT USING) 172 ~ Linenumbers 58,59,64,257
Summary ... 182 g”to “‘l‘)m‘?e“f(‘géﬁt)”o’ EEEEE gi
s . enumbering e
Mty g7 UsngEDITLNE 221
e geomw UL
Incrementvalue - 132 0 e
Initial value - 132 LIST ... o 65
INITIALIZE 192 LIST KEY (SFK definitions)36
INPUT .. S 88 Literal e 079
Inserting characters 18,22 244 Live keyboard mode 25257
B 18192224 LOAD oo 199
Inserting lines 223244 LOADALL.... o2
,,,,,,,,,,,, L 223 LOADBIN 216
INT (integer part) 49 LOADKEY 216
INTEGER 82,83,157 Local variables e 157,257
Interleave factor 192,257 II:(())gGar(i?l?rtnu'ral logh52
Internal Thermal Printer 6 ‘
Interrupting a program................. 69 Common (LGT)52
Inverse-matrix 119 Logiljzrl:)r]ir(:tgr?) T 23
Inverse videomode 2799,236 Logical records ... | 189,257
Loopcounter 132
Looping.............. 132
k LWC$ (lowercase)105
Key repetition. B 15
Keyboard3,5
Arithmetic 37 m
Diagram 3
Keyboard entry area (CRT) 4,257 Main Program R 146,257
Keycodes e 32 Mass storage errors 219
Keyword 60 MASS STORAGEIS 188
Secondary 60 Mass storage unit specifier 186,258
MAT...CON (constant) 110
MAT-copy...... 112
MAT...CSUM (column sum) 2121
MAT-function. 116
MAT...IDN (identify} 117
MAT-initialize S B Y |
Label 58,59,257 MATINPUT 89
Language (BASIC)................... 1,231 MAT...INV (inverse) 119
LEN {length) 100 MAT-multiplication. 117
Lessthan(<} 46 MAT-operation 114
Lessthan orequalto (<)} 46 MATPRINT 170
LED Display (9835B)5 MATPRINT# 207

Leftarrow key ((=3) 17,19,23,24 MATREAD 85

MAT READ# 207
MAT...RSUM (row sum) e 122
MAT-scalar operation 113
MAT...TRN (transpose) 121
MAT...ZER (zero) 110
Math functions 48
Math hierarchy. 54
Matrices e 75
identity 117
inverse 119
multiplication 117
transpose e . 121
MAX (maximum) 49
Memory 7
Available foruse. 65
Conserving 72
Erasing 69
Lock 245
Loss 9
Map 7
Organization 7,267
Storing 217
Types (RWM,ROM) 7
Metric conversionfable 263
MIN (minimum) 50
Minussign (=) 37
MOD (module) 37,38
Mode indicators 12
Msus e 186,258
Multiple-line function subprogram . 146,150
Multiplication (*) 37
Natural logarithm 52
Name. 44 58,74,146,258
usedfor 58,258
Nested FOR-NESTloops 135
NEXT 132
NORMAL 228
NOT operator. 47
Notequalto (< >or#)..... 46
Nullstring 99
NUM (numeric) 104
Number formats for output. 40
Numeric expression 58,258
Numerickeys 3

Subject Index 279

OFFEND e 210
OFF ERROR. e 230
OFFKEY 144
ONEND 69,209
ONERROR 69,229
ON..GOSUB 137
ON..GOTO 128
ONKEY 69,141
Openingafile R 201
OperatingModes 25
Operators 37,231

Arithmetic 37

Logical 47

Relational 46

String 94
OPTIONBASE 80
ORoperator 47
Output 161
Output functions o e 167
Output of numbers 40
OVERLAP................. 183
Overlaying 72
PAGE 170
Parameters.. 139,147
Parentheses 39
Pass Parameters 139,147,258
Pass by reference 148
Passbyvalue 148
PAUSE.... e 67
................................. 67
Physical records 189,258
Pl . 50
Plussign (+)................... 37
POS (position) 101
Power-of-ten rounding (PROUND) 50
Precision (accuracy) e 43,44

For conserving memory 72
Preface v
Pre-run initialization 66
PRINT 165
PRINT# 202,206
.................................. 13
Printallmode. 13
Printall printer 13

PRINTALLIS. 13

280 Subject Index

PRINTERIS 164
Printer, internal 6
Addressing the printer 58,165
Printer paper 6
Printer, standard 164
Printout area (CRT) 4,258
PRINTUSING 172
Priority 69,141,142,259
Program control keys 3
Programkeys3
Program mode 25,259
Program pointer 59
Program segment 58,146,259
Prompt e 88-91
PROTECT...214
Protectcode 187,214,259
PROUND {(power-of-ten round) 50
Pull-outcards 5
PURGE 205214
RAD (radian) 53
Random file access o 205
Random number (RND) 51
Random numberseed 51,70
scrambling 70
RANDOMIZE 70
Range:
Computing . .) ... 6
Of various varlable prec151ons .43 44
Storage 6
READ (with DATA) e 85
READ# 204 ,206
Read Only Memory (ROM) ... 7,259
Read / Write Memory . . . 7,259
READY# 273
REAL 8283,157
Recall buffer e 12,14
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 14
Records e 189
Defined 189,200,256
Logical 189,257
Phuysical . Co.o..........189,258
REDIM (redlmensmn) P 126
Redim subscripts 126,259
Redimensioning an array .. . 125
Referencetables 261
Relational operators 46
REM (remark) 63

Remarks in program lines .63
! (comment delimiter) 63
REN (renumber) . .64
Renumbering lines64
RENAME (file) , 215
RES (result function) 38,51
Result buffer 12,38
38
RE-SAVE . . . 198
Reset 14,68
Conditions . . 261
Operation 14
RE-STORE 199
RESTORE (with READ DATA) ,,,,,,,, 86
RESUME INTERACTIVE ,,,,,,, .26
RETURN:
With DEFFN.. 150
With GOSUB 136
Returnvariable = 201
REVS (reverse) 106
REWIND 219
Right arrow key (=3) 17 19 23 24
RND (random number) b1
Rolling the dlsplay 20,245
ROM 7,259
Rounding. 43
Digit (DROUND) 49
Power-of-ten (PROUND) .50
ROW 122
RPTS$ (repeat) 105
RUN66
STORE o 198
Runlight 511
Run-time errors- trappmg o 230
RWM ; 4,259
Sales and Service Offices 264
SAVE 195
Scientific notation (FLOAT) 40,42
SCRATCH 69
SCRATCHA69
SCRATCHC69
SCRATCHKEY....3569
SCRATCHP... 69
SCRATCHV 69
Secondary keyword 60

SECURE (program lines) 71
Selectcodes 58,186,259
Selective catalog specifier 193
SERIAL (mode) 183
Serial fileaccess, 202
SFK’s 3,26
SGN (sign) 51
SHORT 82,83,157
Significant digits 43
In computations 43,44
Simple variables 45
Simultaneous computation 12
SIN (sine) e 53
SPA (space} 168
Space dependentmode 61
Spacing between characters 15,61
Spare directory 191
Special function keys 3,26,259
Control features 27
Defining as typing aids 27
Erasing definitions 35
Listing definitions 36
Pre-defined definitions 26
Program interrupts 141
SQR (squareroot) 51
STANDARD output format 40
Standard mass storage device 188,260
Standard printer 164,260
Statements 57,60,232,260
Declaratory 60
Executable 60
e 3,66
Stepping through a program 66
STOP e 68
o e 68
Storage, variables (in memory) 34
On mass storage devices 211
ORE 198
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 59
STOREALL 217
STOREBIN 216
STOREKEY. 216
Strings - ... 78,93
Comparing -o 107
Concatenation 94
Dimensioning 78,81,83
explicit.............. 78,81,83
implicit. 78
Functions........ 79,100
Maximumsize 78
Relational operations 107
Stringarrays -ol 78,81
String expressions 79

Subject Index 281

SUB ... 153
SUBEND i i 153
SUBEXIT 153
Subroutine return pointers 7,136
Subroutines (GOSUB) 136
Subprograms ..., 145
Conserving memory with 72
Considerations 155
Function subprograms 146,150
Subroutine subprograms (SUB) 146,153
Subscripts: ..o 76,260
Substring e 79,93
Substring specifier......... 93
Subtraction (=) 37
SUM 122
SUSPEND INTERACTIVE 25
Symbol Table 7
Syntax conventions 57,255
System command keys 3
System comments line (CRT) 5,260
Systemerror 272
TAB (output function) 167
Tab capabilities 16
Using escape codes 244

B e 16
TAN (tangent) 53
Tape cartridge 217
Capacity 218
Length 218
Optimizinguse 220
Specifications 218
Text 58,260
TRACE 226
TRACEALL 228
TRACE ALL VARIABLES 228
TRACEPAUSE 226
TRACEVARIABLES 227
TRACEWAIT 226
Transpose of a matrix 121
Trigonometric functions 52
TRIMS ... 106
Truthtable 48
TYP (datatype). 209
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 15
Typewritermode 15,71
TYPEWRITEROFF..... 71
TYPEWRITERON 71

Typingaid keys 3,15

282 Subject Index

u

Unconditional branching. 128
Underlinemode 27,99,236
Unitcode 186,187,260

9885 186,187,260
Uparrow (&) 20
UPCS$ (uppercase) 104

VAL (value) function R 102
VALS . 102
Valuearea 7
Variables. 43,73,74,260
Array 75
Assigning valuesto 74,78,84
Breakdown 74
Forms 44
Names. 44 .45
Numeric 43,45
Precision 43
Ranges 44
Simple. 45
Storage.. 84,211
String 78
Types 43,44
Vectors 75
Verification (file) 213
WAIT . 70
Degree of error...... 70
WIDTH e 164
Working storage 7
Write protection (tape cartridge) 218

283

284

Your Comments, Please...

Your comments assist us in improving the use-
fulness of our publications; they are an impor-
tant part of the inputs used in preparing up-
dates to the publications.

In order to write this manual, we made certain
assumptions about your computer background.
By completing and returning the comments
card on the following page, you can assist us in
adjusting our assumptions and improving our
manuals.

Feel free to mark more than one reply to a
question and to make any additional com-
ments.

If the comments card is missing, please address
your comments to:

HEWLETT-PACKARD COMPANY
Desktop Computer Division

3404 East Harmony Road

Fort Collins, Colorado 80525 U.S.A.
Attn. Controller Documentation

5 ey

