i1 E

Line

by
Carl Helmers
Editor, BYTE

72

G_ames played with
computer equipment
are applications of value
above and beyond the
momentary ‘“hack” value of
putting together an
interesting program. The
creation of a game is one of
the best ways to learn about
the art and technique of
programming with real
hardware and software
systems. LIFE Line concerns
a game — the Game of LIFE,
originated by Charles Conway
and first publicized by Martin
Gardner in Scientific
American. The Game of LIFE
serves as the central theme of
LIFE Line — a well defined
application of the type of
hardware and software which
is within the reach of BYTE
readers. The description of
the LIFE application is the
“down to earth” goal of
LIFE Line. However, | have
an ulterior motive as well —
LIFE Line s - a very
convenient and practical
vehicle for teaching ideas
about program and system
design which you can apply
for your own use. Even if you
never implement a graphics
output device and interactive
input keyboards, you can
gain knowledge and improve
your skills by reading and
reflecting upon the points to
be made in LIFE Line. The
LIFE application also has the
side benefit of illustrating
some techniques of

interactive visual graphics
which can be used much
more generally.

The Starting Point

In developing a system, it
always helps to know what
you want to do! The ability
to pin down a goal for a
programming effort — indeed,

any effort you make — is one’

of the most important tools
of thought you have available
(or can develop) in your
personal ‘“bag of tricks.”
Goal setting does not
necessarily mean a complete
and detailed description of
the result — the feedback
from the process of reaching
the goal can often modify the
details. Goal setting means
the setting of a standard in
your mind — and on paper —
of what you want to
accomplish. This standard is
used to evaluate and choose
among alternatives in a
methodical approach to a
system which meets that
standard.

How to Get From Here to
There

The goal of LIFE Line is a
hardware/software system
which enables the home brew
computer builder such as you
or me (the “byter”) to
automate the game of LIFE
using relatively inexpensive
equipment. It’s appropriate
here to give a preliminary
road map of the course LIFE

Line will take, as an
illustration of the first steps
in the development of a
complicated system . . .

I T hes i tacls SofEs i =
Defining the rules of the
game and its logical
requirements always helps —
after all, | would not want to
confuse it with chess, poker
or space war!

2. What do | need to
implement LIFE? Once |
know the rules, my next
problem is to sketch the
hardware and software
requirements for a reasonable
implementation.

3. Programming. Given the
necessary hardware, the
biggest lump of effort is the
process of programming the
application. Some parts of
this lump include . . .

—Control flow:
Outlining the major
pieces of the program
and their relationships.

—Partitioning: A well
designed system is
simple! But how can
the desired simplicity
be reconciled with
“doing a lot.”” One way
is to partition the
system into pieces.
Within each piece, a
further partition
provides a set of
sub-pieces and so on.
Each piece of the
program is thus kept at
a level of relative
simplicity, yet the
whole system adds up
to a quite sophisticated
set of functions.
—Coding: With the
application design laid
out in some detail, the
program must be coded
and debugged for a
particular computer.
The result could be a
series of octal or
hexadecimal numbers
fLoir | VoAU IS OEWAR
computer, or a high
level language program
which can be translated
by an appropriate
compiler.

0 e IR et

Tt R, R

Fig. 1. Three views of LIFE: (a)
on paper; (b) in memory; (c)ona
display.

0000000000000
00000000000000
000000000000000
0000000000000000
0000000000010000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

A B

A live “cell” is a dot on paper.

What Are The Facts of LIFE?

Ask a biologist the
question “What are the facts
of life?” and you will get one
answer; ask a ‘“byter”’ and
you’ll get the “‘real’’ answer —
an evolution algorithm used
to generate the placement
and ‘“‘cell” content of a
square grid given the previous
state of cells in the grid. The
inspiration of the game is a
combination of modern

biology, the concept of
““cellular automata” in
computer science and the

- pure fun of mathematical
abstractions. In making a
computer version of the
game, the simplest approach
is to think of a group of
individual “bits” in the
computer memory — with
your thoughts assigning one
memory bit to each “‘square”
of the grid. (The hand
operated form of the game
algorithm uses graph paper
for the squares in question.)
If | have a place in memory
which can store one bit, it

A live
memory.

can have a value of logical
“zero” or logical “one”’.

The LIFE game treats each
location of the grid (its
“squares”) as a place where a
“cell” might live. If the place
is empty, a logical “0” value
will be used in the computer
memory; if the place s
occupied, the “cell” will be
indicated by a logical “1”
value. The rules of the LIFE
algorithm are defined in
terms of this idea of a “cell”
(logic 1) or “no cell” (logic 0)
at every point in the universe
of the grid. Fig 1(a)
illustrates a single live cell on
a section of graph paper as |

might record it when | work

out the LIFE process by
hand. Fig. 1(b) shows a
similar section of the

computer memory in which
bits (“0”’ mostly, but “1” for
the cell) stand for the content
or lack of content of a square
on the grid. Fig. 1(c) shows a
third view — the output of a
program which puts the
computer memory bits of the
grid onto a graphics display.

“cell” is a "1"”

bit in

Look again at Fig. 1(a).
The “cell’’ on the graph paper
grid is a black dot placed in

some location. Count the
number of graph paper
squares which directly

surround the live “cell”
location. There are 8 possible
places which are ‘“nearest
neighbors” to the place held
by the live cell. Similarly, if
you pick an arbitrary square
on the graph paper, you can
count up its nearest neighbors
and find 8 of them also. The
rules of the LIFE algorithm
concern how to determine
whether to place a “cell” ina
particular square of the grid
for the “next generation”,
given the present content of
that square and its 8 nearest
neighbors.

What are the properties of
a specific grid location of the
game? I’ve already mentioned
its binary valued nature (jt
has a “cell” or it doesn’t) and
its neighbors. One more
property which is crucial to
the game of LIFE is that of
the “state” of its 8 nearest

A live “cell” is a point of light on
a graphics display.

neighbor squares. For LIFE,
the “state” of the neighbors
of a grid location is defined as
“the number of occupied
neighbors.” In the examples
of Fig. 1, the “‘state” of the
grid location with the live cell
is thus “0” (no neighboring
cells), and the state of any
cell location which touches
the single live cell’s location is
“1”. 1If | were to fill the
entire graph paper or its

. memory equivalent with live

cells, the state of any grid
location in the middle would
be “8"".

Stated in words, the rules
of the LIFE algorithm
determine the content of
each grid location in the
“next generation” in terms of
its present content and the
state of its nearest neighbor
grid locations. The rules
divide into two groups
depending upon the present
content of the grid location
whose ‘“next generation”
value is to be calculated:

i

73

Fig. 2. (a) A “glider” generation #n. (b) Examining location “Z” and its
nearest neighbors. (¢) What has to change for generation #n+1. (d) The
second phase of the glider (generation #n+1).

A B
7Y
|
e ; iy
® / / /(s/
000 aawdOooCd
Z 2
411 4
AL
i
c D
P
o _© e O
9 S - 00
s o ~ L]
Riufliesssl sl VIESSGELL live into the tomorrow
LOCATIONS. If the location of the next generation.
to be evolved has a live “cell” 1.3 Overpopulation. If
at present (“this generation”) the location to be
then, evolved has a state of 4
ISNISNESTRa rving s el “thru &, there will be no
Affection. If the cell at the location in
location to be evolved the next generation.
has a state of 0 or 1, Metaphorically, the cell
there will be no cell at has been crowded out
the location in the next by overpopulation on a
generation. Metaphori- local basis.
gally, - it thelcell has “Rusle 02w E M P Ty

only one or no nearest
neighbors it will die out
for lack of interaction
with other members of
its species.

1.2 Status Quo. If the
location to be evolved
has a state of 2 or 3,
the present live cell will

74

LOCATIONS. If the location
to be evolved has no live
‘“‘cell” at present (“this
generation”’) then,
25T hesSexivlife i or
Cells. If the location to
be evolved has a state
of 3, a new cell will be
“born” in the formerly

empty location for the
‘““next generation.”
Metaphorically, the
three neighboring
““parent” cells have
decided it is time to
have a child.

2.2 Emptiness. If the
location to be evolved

does not have three

’ cells in neighboring
locations, it will remain
empty.

This is the simplest set of
rules for the LIFE algorithm,
a version which will allow
you to begin experimenting
with patterns and the
evolution of patterns. More
complicated extensions can
be made to provide an actual
interactive (two people)
competitive game version; an
interesting variation | once
implemented is a LIFE game
with ‘‘genetics.” In the
genetics variation, each grid
location (graph paper square)
is represented in the
computer as a ‘“character”’ —
an 8 bit byte — of memory.
The character in the square is
the ‘“‘gene” pattern of that
cell. Then, when rule 2.1 is
implemented, LIFE with
genetics uses a set of genetic
evolution rules to determine
which character will be put in
the newborn cell based upon
the “genes” of the parents.
(This genetic evolution
program for LIFE was
written for my associates at
Intermetrics, Inc., as a test
program to ftry out a new
compiler’s output.)

How Do You Use The Facts of
Life?

To illustrate the facts of
LIFE, a hand-worked
example is a valuable tool of
understanding. Consider a
“typical’’ pattern of LIFE as
shown in Fig. 2(a). Fig. 2(a)
shows what LIFE addicts call

a “glider” for reasons which
will become clear a little bit
later in this article. The glider
pattern of Fig. 2(a) consists
of the five cells indicated by
black dots, and their
positions relative to one
another. | have also indicated
a dotted line in all the
illustrations of Figs. 2 and 3
as a fixed reference point in
the grid.

The algorithm for evolving
one generation to the next is
illustrated for one grid
location in Fig. 2(b). The
LIFE program will examine
each location in the grid one
by one. This examination is
used to figure out what the
content of the cell will be in
the next generation according
to the facts of LIFE. Since
these facts only require
knowledge of the given grid
location Z and its 8 nearest
neighbor locations, Fig. 2(b)
depicts a box of 9 squares
including Z. The rest of the
universe is shown shaded. To
determine what grid-space
location Z will be like in the
next generation, the LIFE
program first counts up the
Fivie- “ceells’ in = all &the
nearest-neighbor positions.
The count is the “state” of Z.
In this case there are 3 live
cells on the top edge of the
box containing Z. Then, the
program chooses which rule
to wuse depending upon
whether or not location Z has
a cell. In this case, Z is empty
so the “empty location’ set
of rules (numbers 2.1 or 2.2)
is used. Since the state of Z is
3, rule 2.1 applies and a cell
will be born in location Z for
the next generation.

Now if | had a true
‘‘cellular automaton” to
implement -the LIFE
program, all grid locations
would be evolved
“simultaneously” — and very
quickly — in the computation
of the next generation. In
point of fact, however, | have

=74

v+N NOILVH3INID ILVH3IN3O
2
1vH3IN3D Z+NNOILYHINIO

' ole

Z+N NO1LYHINIO

L+NNOILYHINID

&
0

v

jpooe[dsIp 1nq ‘aseyd 15J1f Y31 O jjoeg
() ~19pyb a1 jo eseyd yrano4 (q) epib oy jo eseyd paryy (e) 'g “big

WalsAs asemijos/arempaey ayy
3uisn uoignN|oAd JO 354IN0 Y}
9AJ9sqO pue ‘susdjjed uaypo
pue asayl JOo suopein3ipuod
[erur dn 19s 01 9|qe 8q [|,NOA

‘sujeted Jayio pue | |d,
qu “‘59/\!L|99q" ‘((SJQ)IU!IqH
ay3 ‘. sy00lq,, ‘,sdlys

aoeds,, ¢ siopl3,, JO sasse|d
dloym ate audyl ‘sioAo| J|7

JO u02IXd| ay3 uj| ‘suualjed
Jo sasse|dp pue suidijed
Yaim sedueys uoljeIdUdd

0] UOJBJoUd3 WOJ) UOHN|OAD
3yl MOy dAI9SqO pue S[|92
Jo suiejzed yim JudwiLedxd
03 s1 3417 40 sed uny ay |
{3417 swsidw
01 PeaN [0@ 3Ieym

Iopl8
ay3 03 Jejiwis su4ajzed Suiaow
JO swJoj Jayjo osfe aJe ajay |
‘suopesausd Jo spadpuny

ojul uni yomym spoitsad
dARY UoIym JO awos ‘suiajjed
JO S3sSB[D JOYJo snotownu
puy M noA ‘Suiuunu
pue dn ooeyiqul solydes
INoA 1393 noA uayp ‘ussijed
siy) Jo ,pouad,, ays sauydp
yolym ‘wioy [euiSLo s3l
ajelousdal 01 useped Jopis
ay3 404 SuOI1IeIBUAS INOJ 300]
1] (3uswaAow siyl smoys
aul| Qouasages dYy) IYsu
iawmo| sy pJemol pLs3 J4|7
ay3 jo [euoSeip e Suofe 3lun
duo peAow Ssey zng ‘uisyjed
Jopl8 [euiduo ayy sjeadas
oouanbes ayr ul (,p+U,,)
uopeJous8 yiino) Sy} mou
910N °S9INGLIIIB UOIOW S| JO
asnedaq sI dwieu s3i s393 J9pis
ay3 eyl UOSseas Y| °,puno.e
-desm,, ® 01 anp UIJAOS
ay3 uo aJaymasje Surneaddeau
‘ddews,, Ajpuaiolgyns

Z'L 8|n4 Aq pauielau
SI UdIyMm [|8D pJO ue saleaipul siyl —.

gL 40 |'| sajn4 Aq

SaIP Y2IYM [[30 P|O ue saledipul Siyl —

12 3Ind Aq

pajesauab ||90 mau e sa1edlpul SIylr —

si wesdoud ayz 41 40 — 98pd
2yl 1e oquwi| ojul yjo 3uiod
‘poads osuealq B JB USAIOS
Y1 jo 1ysu Jamo| Ay o1
«AP1IB,, (1M djdwexa siyy ul
pasn auo a3y} se yons J4aplis e
€10s5920.4d ysnous 3sey e Yim
*90IA9p Aerjdsip solydes3 e
SS0UJB OAOW,, Yolym sualzed
JO UOIIN[OAS aY] SI dwed F 4|7
Yy Jjo seaumed) Sunsaisgul
jsow 9yl Jo duQ
‘+U uonesouds
01 3ul08 a8ueyd Ayl SMOYS
(0)¢ pue ‘cqu uonereusd
0] gZ+U uoneioudd wody
sadueyo a8yl smoys (q)¢ Si4
‘Y311 ay3 3 umoys si uieyed
Z+U uopesoudd 3uij|nsad
yr *(9)g B4 ur pasn
SEM SB UO[IBIOU JWIBS 9] YlIM
pa1edIpul due |+U UOIBISUSZ
O] Esosue o (el e s eg
uj “4op1i3,, ayy 4oy g 314 ul
pajesisnj|l uonnjoAs uidljed
ay1 anunuos ‘(2) pue (q) ‘(e)
‘c 814 "uwienzed pud ayy jo
[[92 9Al| Yoes 01 Spuodsatiod
Ae|dsip adods ay3 uo gop,,
JuQ *1ndino adoos ayl 03 Juss
pu® paje|nofes aJe suopelauss
MU SB dWIl [Bal Ul AAJOA9,,
0] U99s aq [|IM suianred oy
*suoie[nofes ayj |[e 99|dwod
ueo J93ndwos ayj Se Uoos Se
uonesaudd Mau e ul 3unnsai
— pu8 sy ur juiod yoes
Jo) Ajeonewoine auop sl
SIy3 [e ‘una si wesSosd 34|
Yy uaym *(9)c 814 ui pajou
sadueyo ayy Suignosexs,,
Aq pauieigo sem yalym ‘(p)g
814 ul pajeasniji st 3417 Jo
pli8 ay3 Jo | +U,, Uoielausn)

:S]{99 4oy
suoleIou 931yl Aq pajesipul
aJe soSueys ayj| °pagessni|l
st (e)z 814 jo Jopi3 Ay
JO AlIUIDIA QY] Ul SUOIIRIO|
pu8 sy || Sululwexs
1o 3|nsas ay3 ‘(9)g 314 U]

‘elep pajepdn-un ayj jo Ados
e Supequowal Ajliesodwal
Jo anbiuyody [|eonuspl Ayl
AQ paAjos 2q 03 ‘Suiwweldoud
191 nid UWio o Ui inotaia
usjjo elep pajepdn Ajjeizted
40 yoerJs3 3uidosy jo swajqoud
Jejlwig “a8ueYD Sy J91je MOl
1X8U 9yl 9Je|NoJed 01 JIpJo
ur pagueyd Sem 31 910Joq
MmoJ snoirdid ouo ul elEp
3U3 ||B JOQLUSLUAL OF JUSIDILNS
9q 03 1IN0 Sulnl 1| "UOIINJOA
Jo TS tUR IS oid T AT e
B S9IN31JSUOD pue s3a[nu
oyl Jo 1Jed jou si auMXIW
Jey| °MOJ dYyj Ul UuonedIO|
pl8 1xau 8yl 3 3OO| | usym
BJBP MAU PUB pjO JO auniXiw
e yim dn pus ||| ‘@njea
pjo s3I [e%as 03 uoisiAoid
Oou yim uoijeso| jeyi ojul
30BQ POAjOAd Isn[uoied0|
pl8 ayy jo onjeA Mau ayl
9J03s | JI :uoseas 3uimojjo}
ayy Joy pjo aziseydws
| ‘9n[eA Mau s3I d3e|Nofed
0} JepJuo ul sitoqysiau
1594B3U p/O S)I AUIWEXD
pue weidoid ays o pus F 4|7
[eusalul 9yl JO 11g AJoAd Je
300| Ajjeiauanbas 03 aAey
| "SAWO0D Wl dYj usayMm 8ul
3417 Ul paqlosep 8q |jIm
Yolym sauilnosgns Jo $a1uas
® AQ possaode ag ||IM pue
s3uLis 319, padjoed,, se paJois
3 || pu8 3417 Ayl Joj
s31q 9sayl ‘suaandwosouoiwl
[J[RWS 404 “AJowaw
JO SPIOM Ul Pai0ls aJe Yolym
oWl e e S1q (9] 10) § 9puey
Aluo ueds ysiym Jayndwos e

B e R e R e R T e R T e T e A A e e i etk

concepts of LIFE Line. The
hardware requirements of this
application’s first simple form
are three:

1. An input method. The best
all around input you can get
for your computer is an
ASCIlI encoded typewriter
keyboard. This hardware will
be assumed, with 7-bit ASCII
codes used in the examples of
programs. If you feel like
embellishing the program
with special hardware, a
“paddle” with several keys
can be wired in parallel with
your main keyboard to
control the special functions
of the LIFE program. The
input keys used to control
the display will require a
keyboard which can detect
two simultaneous (or three)
keys being pressed. A normal
ASCIl encoded keyboard
with an LSl encoding chip
will not work ‘as is”’ in this
application since pressing two
keys (other than control or
shift and one other) will be
resolved into two characters.
An alternate ‘“paddle’ type
of arrangement is to use a
single input port with one

76

Fig. 4. The LIFE grid display with cursor detail (showing suggested pattern).

cursor at some o ~
7 (x,y) place -
L~ o0
oAl ~
Y H T o
positions |~ ~ /

L

—>
—_— -
P
—_—
—_—

et e, 64 ** x " positions —'—l

switch key switch for each bit
of the port, debounced by
software. A keyboard which
is encoded by a diode matrix
can be used since the diode
matrix will give a new code
(logical sum) based upon
which keys were depressed.
2. A processor. The game can
be implemented on any
conventional computer. As a
measure of capacity,
however, the simple form will
assume a 64x64 bit array for
the playing field, and an
available home brew
processor such as an Intel
8080 (i.e.: Altair), Motorola
6800, or National PACE. The
total programming capacity
of your memory should be
roughly 4000 8-bit words, or
2000 16-bit words; the
playing field will require 512
8-bit words, or 256 16-bit
words — and programming
will include a set of
subroutines to access
individual bits.

3. A display. My first version
of LIFE was implemented on
a PDP-6 in FORTRAN at the
University of Rochester when
| was a student. That program

used a direct link out to a
DEC Scope controlled by a
PDP-8 — with a teletype for
input, It “have since
implemented life programs
using character-oriented
terminal output and line
printers.

The display to be used for
LIFE Line purposes I’ll leave
undefined in detail, but with
the following characteristics:
It should have an X-Y
selection of coordinates for
display elements (LIFE grid
locations), which can be
individually controlled. Its
size will be assumed 64x64.

A Note Regarding Speed

The LIFE algorithm to be
illustrated in LIFE Line is
optimized fairly well for
speed — a requirement which
will become obvious in the
context of your own system
if you use a typical
microprocessor. With a fairly
large pattern of cells, it may
take as much as a minute or
more to compute the next
generation. Trading off
against speed is memory size

(x,y) designated
by cursor

— wuse of a packed bit
structure is necessary if the
matrix and programs are to
fit in a micro computer which
is inexpensive. But the
packed bit structure requires
time to access bits (eg: the
shift/rotate instructions
several times might be used in
the access process). | predict
that the program will be
“dreadfully slow” if run on
an 8008, and perhaps
passably quick if you use a
6800 or 8080. (“Passably
quick” means under 10
seconds per generation.) A
used third-generation mini
(high speed TTL) would be
ideal.

User Features

No application is complete
without taking into
consideration the user of the
system. The interface which
controls the system is an
important section of the
design. There is a temptation
on the part of individuals
such as you or | to say words
to the effect: “Since | am
making it for me, who the
heck cares about the user
interface.” But! Removing
the system from the working
product realm to the purely
personal realm does not
eliminate the need to design a

usable system. You have at
least one user to think of —
yourself! In point of fact,
however, | doubt that any
reader who builds a scope or
TV graphics interface will be
able to resist the temptation
to show it off to his or her
family and friends; so, even
ot N2 i svisiteim’s),
consideration of users is still a
major input_to the design.
The user interface for the
LIFE program will provide
the following functions to
enable a pattern to be drawn
on the screen and initiated:
1. Cursor. The display
output should provide a
“cursor” which is maintained
all the time by a subroutine
in the software at a given “X”
and “Y” position of the
matrix. Fig. 4 illustrates the
point matrix of the screen
(here assumed 64x64) and
the cursor pattern. The cursor
is a visual feedback through
the display to the user of the
LIFE program, illustrating
where the program will place
or erase information. Fig. 4
shows a blow-up of one
possible cursor pattern.

Two additional features
are required for a useful
cursor output of the program
for LIFE. These are:

— A blinking feature.
Suppose you have filled the
screen with a complicated
pattern drawn with the cursor
controls described below. A
significant number of the
screen points are now filled
with dots — and there will be
a strong tendency to confuse
the cursor pattern of Fig. 4
with the actual data pattern
you have entered. A “blink”
feature can be built into the
programs which create the
cursor so that you will always
be able to distinguish it by its
flashes.

— A blanking feature. For the
LIFE game, a necessary
attribute of cursor control is
the ability to blank out the
cursor during the actual
evolution of patterns. |
consider this necessary due to
albsie rviaitiion: of . a

demonstration LIFE program
for one desk top
programmable CRT terminal:

- its cursor is always present

and mildly annoying when
the LIFE game is in
operation.

A basic way to make the
cursor disappear from view at
certain times is to require
active control by cursor
display routines when the
program is in its input mode.
If the LIFE program leaves
the input mode to go evolve
some patterns, the cursor will
die a natural death until the
active maintenance is
resumed on return to the
input mode.

2. Cursor Control. The
whole purpose of the cursor
is to provide a means of
feeding back to you — the
user — the current grid
location the LIFE program is
pondering. Movement of the
cursor provides the
opportunity for three types
of data entry to the program:
— Positioning of the Cursor.
By simply moving the cursor
under control of the
keyboard (see below) you can
direct the LIFE program’s
attention to different parts of
the screen.

— Sowing Seeds of LIFE. By
moving the cursor while
indicating a “birth” function,
the cursor will leave a trail of

Birth — the cursor leaves a path of “cells,”” illuminated points.

Death — cells in the cursor’s path are eliminated.

““cells” indicated in the
display by illuminated points.
(One keyboard key is
required for this function.)

— The Grim Reaper. By
moving the cursor while
indicating a ‘‘death”’
function, any cells in the path
of the cursor will be
eliminated, by turning off the
corresponding display point.
(One keyboard key is
required for this function.)

Motion control is also used
to enter data. By picking a
data key and at the same time
depressing one or two of the
cursor direction keys, a
“trail” will be left. A timing
loop in the input program
will be wused to set a
reasonable motion rate in the
X (horizontal) and Y
(vertical) directions, so that
the data entry will be
performed automatically as
long as the keys are
depressed. The motion
control keys and useful
combinations are illustrated
in Fig. 5.

3. Program Control
Commands. This is the
section of the LIFE program
design which is the software
analog of the ‘“‘backplane”
data bus concept in a
hardware system. LIFE Line
concerns a modular LIFE
program which will be subject
to many variations and

improvements.

B e Ry L

77

KILLING TWO BIRDS WITH ONE STONE, or “HOW I
DESIGNED A GENERAL INTERACTIVE GRAPHICS
SOFTWARE INITIALIZATION PACKAGE IN THE GUISE

OF A SPECIFIC APPLICATION. Therfinst demernliclichss
: LIFE in these pages is just the
The ideas contained in this article are by no means limited bare bones of a LIFE
to control of the graphics display type of device in the LIFE program. When it is fully
context used for this application. The only necessary described you will see the
connection between the LIFE program proper and the display input display routines, the
“drawing”’ and updating functions is in the existence of several evolution algorithm, the
subroutines needed to turn on/turn off selected points, and program control mechanism
the ability of the display input (“drawing’’) routines to call the and little else. The program
LIFE program. One logical extension of the program control control mechanism, however,
mechanisms to be included in LIFE Line is to allow the is quite general and will be
invocation (ie: activation, calling, etc.) of other programs and used to integrate additional
games which use the display. commands, variations on

When the ‘“‘drawing” routines are up and running, even LIFE, etc. The means of
before you hook up the LIFE algorithm proper, you’ll be able achieving this modularity-is a
to manipulate the contents of the scope under software set of “hooks” which enable
control and draw pictures on the screen. you to add commands

beyond the bare minimum by
coordinating new modules
with the program. The
following is a minimum set of
program control commands
for the first version:
RUN — a key assigned to this
function will terminate the
The following commands (one key on your keyboard for each) are used to simply move the cursor in one input (“drawing”) mode, and
of the grid directions at a rate set by the cursor control software: begin the “run mode.”
DRAW — a key assigned to
this function will be tested

¢ ”»

during the “run” mode to

Fig. 5. Cursor motion control commands.

Typical “Key Tops"’

or Move toward top of screen. cause a return to the “draw”’
mode.
CLEAR — a key assigned to
or Move toward bottom of screen. this function will be used to

clear the screen in the
“drawing’’ mode, leaving only
the cursor and a blank screen.

The above features are
only a minimum set of user
controls for LIFE. Additional

or Move left on the screen.

DOOC
DDOO

or Move right on the screen. program Contro| commands
which will prove invaluable
The following combinations can be used to achieve motion in diagonal directions: when added include:

SAVE/RESTORE -
commands to write and read
AT THE SAME TIME. LIFE patterns on cassette
tape or other mass storage
device in your home brew
system.
INITIALIZATION —
functional key entries for the
generation of various
‘‘standard” LIFE patterns
placed at the current cursor
location.
Next month, LIFE Line
AT THE SAME TIME. will enter into the realm of
software design to describe

Remember that all eight of these possibilities can be used to ‘‘sow the seeds’” or erase data if the the LIFE program software in 1
appropriate data key is pressed simultaneously. more detail.

Toward Upper Right Corner — PRESS AND

Toward Lower Right Corner — PRESS AND AT THE SAME TIME.

Toward Lower Left Corner — PRESS AND AT THE SAME TIME.

Toward Upper Left Corner — PRESS AND

QOO
HOOO

78 ‘

. il

LIFE Line Glossary.

Communication of meaning requires definition of terms. The following is a listing of selected terms used
in LIFE Line with short explanations. The terms which are marked “L’’ are primarily significant only in the

LIFE application — all others are fairly general terms.

“Active Control” — in the LIFE example, a desired
requirement for the cursor is that it disappear
automatically if not continually refreshed. This can
be accomplished in software by instituting a
“garbage sweeper’ for the screen which clears the
screen memory periodically and updates from the
latest non-cursor sources of data. Normally, the
cursor control/display subroutine would be called
after the screen is updated — but if the cursor
control routine is not called, the cursor will be
absent after garbage sweeping. The cursor is thus
said to require “active control” because it must be
explicitly posted on the screen following the
garbage sweeping operation if it is to appear at all.

(L)

“Algorithm” — this term has a formal mathe-
matical origin as the generalized methodology for
arriving at some result. In the computer science
area, it retains this definition: an algorithm is the
most general processing required to achieve some
result. “Algorithm” is a term which includes the
term “‘program” in the following sense: a program
is an algorithm (general) as written and coded for a
specific system.

“Application”” — an application is a specific system
designed to accomplish some goal. In the computer
systems area, applications are generally composed
of hardware and software components which must
“play together” to accomplish the desired func-
tions. The LIFE Line’s target — a working game of
LIFE — is an example of an application.

“Backplane Bus’’ — the hardware concept of a set
of wired connections between identical terminals
of multiple sockets. In modular systems, the
common wiring makes each socket identical to
every other socket. Hardware modules can then be
inserted without regard to position in the cabinet
containing the equipment.

“Cellular Automata’’ — conventional computers
employ a serial or sequential method of processing.
One instruction, then the next, is executed in a
time-ordered sequence. The “cellular automata”
concept is one way of visualizing large and compli-
cated parallel computing elements. Hypothetically,
the LIFE game could be played by such a cellular
computer, one which calculates each matrix
element simultaneously. In the present state of
computer technology, this is not possible, so you
have to settle for a simulation of the parallel
computation’s result, using a serially executing
program.(L)

“Coding” — the process of translating a functional
specification of a program or routine into a set of
machine readable elements for actual use in a
computer. Coding can mean writing FORTRAN
statements, writing PL/1 statements, writing
assembly language statements, or ... if you have
no compiler, coding is the writing of machine
codes directly onto a sheet of paper using tables of
op codes, an eraser and patience.

“Cursor” — a mark on a display screen used to
identify a particular place. This interpretation is an
electronic adaptation of the standard definition in
Webster.

“Evolution’’ — patterns in the game of LIFE
change from generation to generation according to
the rules. The sequence of such changes can loosely
be called the evolution of the pattern.(L)

“Feedback’’ — in the context of system develop-
ment, feedback is the use of observed system
behavior to modify and improve the design of the
system.

“Functional Specification”’ — a functional specifi-
cation of a system is one which describes ‘““what”
the system must do, more or less independent of
any technology which is required to make the
“what” work. It is easy to come up with loose
functional specifications — the hard part is to
refine the specification and pin it down to some-
thing which is ‘“do-able” in a given context of
technology. I have a functional specification in my
mind, for instance, of a useful interplanetary travel
method — but whether or not I ever see such a
system depends upon advances in physics,
engineering and economic understanding. BYTE
often concerns itself with functional specifications
of much more “do-able’’ systems which readers can
and will implement on home computers.

““Generation”” — this term in the LIFE context
means the present ‘‘state” of all the locations in
the “universe of the grid” at some point in
time.(L)

“Implement’” — technical jargon verb for the
creation of a system or element of a system. A
hardware designer might implement a controller or
a CPU; a software programmer implements a
system of programs; a systems designer imple ments
a hardware/software combination which achieves a
desired functional end.

“Indexing’’ — the techmnique of referencing data in
collection of similar items by means of numerical
“indices.” In the LIFE Line example, the collec-
tion is that of the 64x64 array of bits in the
computer representation of “grid space.” Indexing
by row and by column is used to pick a particular
bit within this array when the program requires the
data.

“Interact’’ — when a system ‘‘interacts’” with
“something/person” it is operating under an
algorithm which allows conditional behavior
dependent upon data. The data is obtained from
the “something/person” and may in fact be
influenced by previous interactions as well as new
inputs. In many computer contexts “interact” has
the additional implication of ‘“‘quick” response in
“real time.” Thus when you think of an
“interactive” terminal or game, you think of a
computer programmed so that it keeps up with the
inputs from the human operator.

79

INTEL 1K 2102 RAM

Factory prime, tested units. Factory selected for
much faster speed than units sold by others. 650
NS. These are static memories that are TTL
compatible and operate off + 5 VDC. The real
workhorse of solid state memories because they
are so easy to use. Perfect for memories because
they are so easy to use. Perfect for TV typewriters,
mini-computers, etc. With specs.
$3.95 ea. or 8 for $30

SIGNETICS 1K P-ROM
825129. 256 x 4. Bipolar, much faster than MOS
devices. 50ONS. Tri-state outputs. TTL compatible.
Field programmable, and features on chip address
decoding. Perfect for microprogramming appli-
cations. 16 pin DIP. With spec. $2.95 ea.

8T97B
By Signetics.
Tri-State Hex Buffer
MOS and TTL Interface to Tri-State Logic.
Special $1.49

DO YOU NEED A LARGE COMMON ANODE
READOUT AT A FANTASTIC PRICE?
S.D. presents the MAN-64 by Monsanto - 40 inch
character. All LED construction - not reflective
bar type, fits 14 pin DIP. Brand new and factory
prime. Left D.P.
$1.59 ea. 6 for $7.50

MOTOROLA POWER DARLINGTON - $1.99
MJ3001 - NPN - 80 Volts - 10 Amps - HFE 6000
typ. To-3 Case. ldeal for power supplies, etc.
We include a free 723 regulator w/schematic for
power supply with purchase of the MJ3001. You
get the two key parts for a DC supply for only
$1.99. Regular catalog price for the MJ3001 is
$3.82.

LARGE SIZE LED LAMPS
Similar to MVV5024. Prime factory tested units. We
include plastic mounting clips which are very hard
to come by.
Special 4 for $1

48 HOUR SERVICE
You deserve, and will get prompt shipment. On
orders not shipped in 48 HRS’ a 20% cash refund
will be sent. We do not sell junk. Money back
guarantee on every item. WE PAY POSTAGE.
Orders under $10 add 75¢ handling. No C.O.D.
Texas Res. add 5% tax.

t S.D. SALES CO.

80

P. 0. BOX 28810 DALLAS, TEXAS 75228

“Lexicon” — the list of buzzwords in any given
field. This glossary is a subset of a-lexicon coupled
with explanations. In compiler and language
design, “lexical analysis” is a derivative of this term
concerned with language keywords and their rela-
tion to a grammar.

“n’ “n+1”, ‘“n+2”... — when it is useful to
specify a sequence of things, where no particular
number is intended, a “relative” notation of the
sequence is useful. “n’ is some arbitrary number;
“nt1” is one number greater than an arbitrary
number, and so on. When I say “‘generation n+1”
of LIFE, I mean the next generation after

(T3¢ 2 Cers)

generation “‘n’” where “n” is arbitrary.

A suitable LIFE display peripheral is an oscilloscope
graphics interface such as the Digital Graphic Display
Oscilloscope [Interface designed by James Hogenson and
printed in the May 1975 issue of ECS Magazine, the
predecessor to BYTE. The graphics interface article will be
expanded and published in BYTE No. 2, October 1975. Until
supplies are exhausted, back issues of May ECS (and earlier
articles) can be ordered at $2 each. Orders and inquiries
regarding ECS back issues should be sent to M. P. Publishing,
Box 378, Belmont MA 02178.

“Partitioning’’ — the technique of “divide and
conquer.” Rather than view a complicated system
as a monolithic blob of “function,” an extremely
useful design method is to partition the system
into little ““bloblets™ of function which are easy to
understand. Hardware designers of CPUs thus think
of MSI chips as sub-elements in partitioning;
hardware systems designers think of CPUs and
peripherals and memories as sub-elements of parti-
tioning, and software designers consider divisions
of complicated programs and program libraries as
their sub-elements.

“State’’ — the present condition of some system,
or elements of the system. This term applies to any
system which has “memory” to distinguish one
possible “‘state” from another. The term applies
equally well to small sub-elements of a system such
as the bits of a memory: in the LIFE Line context,
the “‘state” of a single grid location is a number
from 0 to 8 counting how many ‘“‘neighbor cells”
are present.

“System”” — the most general of all general purpose
terms. A system is a collection of component
elements (technological, hardware, software,
human-interface) selected to play together accord-
ing to some design or purpose. A system is a
human-invented way of doing things.

“Undefined in Detail”’ — I know what is needed,
can specify its interface, but am not at present
supplying the detail design. This is a useful attitude
since it allows for “plug compatible’” designs
differing widely in their internal principles of
operation. A similar expression would be to call
the subsystem in question (the graphic display
mentioned in this LIFE Line example) a “‘black
box” and leave it at that. (Software always seems
to reference hardware in this way, and hardware
does the same for software.) A synonym for the
attitude is the mathematician’s way of saying “in
principle there exists a solution!”” without telling
you what it is.

“Universe of the Grid"”’ — this is the set of all
possible places in which a LIFE cell could be
placed. These places are called “grid locations”.(L)

