Appendices

i

Appendix A: The C Shell

Csh is an alternate command language interpreter. It
incorporates good features of other shells and a history
mechanism. most of the features unique to csh are designed
more for the interactive XENIX user, although some features
of other shells have been incorporated to make writing shell

procedures easier.

XENIX users who have read a general introduction to the
system will find a valuable basic explanation of the shell
here. Simple terminal interaction with c¢sh is possible
after reading just the first section of this document. The
second section describes the capabilities you can explore
after you have begun to become acquainted with the Cshell.
Later sections introduce features which are useful, but not
necessary for all users of the shell.

The final section of this chapter lists special characters
of the Cshell. ‘

A shell is a command language interpreter. Csh is the name
of one particular command interpreter on XENIX. The primary
purpose of csh is to translate command 1lines typed at a
terminal into system actions, such as invocations of other
programs. Csh is a user program just 1like any you might
write.

This document provides a full description of all features of
the shell and is a final reference for all questions.

A.l Details on the shell for terminal users

A.l1l.1 Shell startup and termination

When you login, the shell is started by the system in your
home directory and begins by reading commands from a file
.cshrc in this directory. All shells which you may start
during your terminal session will read from this file. We
will later see what kinds of commands are usefully placed
there. For now we need not have this file and the shell
does not complain about its absence.

A login shell, executed after you login to the system, will,
after it reads commands from .cshrc, read commands from a
file .login also in your home directory. This file contains
commands which you wish to do each time you login to the

XENIX system. A typical .login file might look something
like this:

Appendix A Appendix A

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users" ; users
alias ts \
'set noglob ; eval “tset -s -m dialup:cl00rvé4pna \
-m plugboard:?hp2621nl *"';
ts; stty intr “C kill U crt
set time=15 history=10
if (-e $mail) then
echo "${prompt}mail"®
mail
endif

This above file contains several commands to be executed by
XENIX at each login. The first is a get command which is
interpreted directly by the shell. It sets the shell
variable ignoreeof which shields the shell from log off if
<CONTROL-D> is hit. Instead of <CONTROL-D>, the logout
command is used to log off the system. By setting the mail
variable, the shell is notified that it is to watch for
incoming mail and to notifiy the user if new mail arrives.

Next the shell variable time is set to "15" causing the
shell to automatically print out statistics 1lines for
commands which execute for at least 15 seconds of CPU time.
The variable "history"™ is set to 10 indicating that the
shell will remember the last 10 commands types in its
history list, (described later).

Next, an alias, "ts", is created which executes a tset(l)
command setting up the modes of the terminal. The
parameters to tset indicate the kinds of terminal normally
used when not on a hardwired port. Then "ts" is executed,
and the stty command is wused to change the interrupt
character to <CONTROL-C> and the 1line kill character to
<CONTROL~-U>.

Finally, if my mailbdx file exists, then I run the mail
program to process my mail.

Wwhen the mail programs finish, the shell will finish
processing my .login file and begin reading commands from
the terminal, prompting for each with "% ". When I log off
(bv giving the logout command) the shell will print "logout”
and execute commands from the file .logout if it exists in
my home directory. After that, the shell will terminate and
XENIX will log me off the system. If the system is not
going down, I will receive a new login message. 1In any
case, after the logout message the shell 1is committed to
terminating and will take no further input from my terminal.

Appendix A Appendix A

A.1.2 Shell variables

The shell maintains a set of variables. We saw above the
variables histor and time which had the values 10 and 15.
In fact, each shell variable has as value an array of zero
or more strings. Shell variables may be assigned values by
the set command. It has several forms, the most useful of
which was given above and is

set name=value

Shell variables may be used to store values which are to be
used in commands later through a substitution mechanism.
The shell variables most commonly referenced are, however,
those which the shell itself refers to. By changing the
values of these variables one can directly affect the
behavior of the shell.

One of the most important variables is the variable path.
This variable contains a sequence of directory names where
the shell searches for commands. The set command with no
arguments shows the value of all variables currently defined
(we usually say set) in the shell. The default value for
path will be shown by set to be

% set

argv ()

cwd /usr/bill
home /usr/bill
path (. /bin /usr/bin)
prompt %

shell /bin/csh
status O

term cl00rvé4pna
user bill

%

This output indicatés that the variable path points to the
current directory indicated by dot (.) and then /bin, and
/usr/bin. Your own local commands may be in dot. Normal
XENIX commands live in /bin and /usr/bin.

Often a number of locally developed programs on the system
live in the directory /usr/local. If we wish that all
shells which we invoke to have access to these new programs
we can place the command

set path=(. /bin /usr/bin /usr/local)

in our file .cshrc in our home directory. Try doing this
and then logging out and back in. Then type

Appendix A Appendix A

set
again to see that the value assigned to path has changed.

You should be aware that the shell examines each directory
that you insert into your path and determines which commands
are contained there. Except for the current directory, dot
(.), which the shell treats specially, this means that if
commands are added to a directory in your search path after
you have started the shell, they will not necessarily be
found. If you wish to use a command which has been added in

this way, you should give the command
rehash

to the shell, which causes it to recompute its internal
table of command locations, so that it will find the newly
added command. Since the shell has to look in the current
directory . on each command, placing it at the end of the
path specification usually works equivalently and reduces
overhead.

Other useful built in variables are the variable home which
shows your home directory, cwd which contains your current

working directory, the variable ignoreeof which can be set
in your .login file to tell the shell not to exit when it

receives an end-of-file from a terminal (as described
above). The variable "ignoreeof" is one of several
variables which the shell does not care about the value of,
only whether they are set or unset. Thus to set this
variable you simply do

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable "ignoreeof" no value, but none is
desired or required.

Finally, some other built-in shell variables of use are the
variables noclobber and mail. The metasyntax

>filename

which redirects the standard output of a command will
overwrite and destroy the previous contents of the named
file. 1In this way you may accidentally overwrite a file
which is wvaluable. If you would prefer that the shell not
overwrite files in this way you can

Appendix A Appendix A

set noclobber
in your .login file. Then trying to do
date > now

would cause a diagnostic if "now" existed already. You
could type ’

date >! now

if you really wanted to overwrite the contents of now. The
">1" 1is a special metasyntax indicating that overwriting or
"clobbering” the file is ok. (The space between the
exclamation (!) and the word "now" is critical here, as
"Inow" would be an invocation of the history mechanism, and
have a totally different effect.)

A.1.3 The Shell's History List

The shell can maintain a history list into which it places
the words of previous commands. It is possible to use a
notation to reuse commands or words from commands in forming
new commands. This mechanism can be used to repeat previous
commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving
typical usage of the history mechanism of the shell.

Appendix A Appendix A

§ cat bug.c
main ()

{
}

$ cc !$

cc bug.c

"bug.c", line 4: newline in string or char constant

"bug.c", line 5: syntax error

$ ed !$

ed bug.c

29

4s/) ;/"&/p
printf("hello");

printf("hello) ;

w
30
q
$!c
cc bug.c
$ a.out
hello$% !le
ed bug.c
30
4s/lo/1o\\n/p
printf("hello\n") ;
w
32
q
$!c -0 bug
cc bug.c -o bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = 0x1050b
bug: 2784+364+1028 = 4176b = 0x1050b

$ 1s -1 ¥

1s -1 a.out bug

-rwxr-xr-x 1 bill 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 biil 3932 Dec 19 09:42 bug

$ bug

hello

$ num bug.c | spp
spp: Command not found.
% “spp”ssp
num bug.c | ssp
1 main ()

3
4 printf("hello\n");
5

g !l | lpr
num bug.c | ssp | lpr
3

Appendix A Appendix A

In this example, we have a very simple C program which has a
bug (or two) in it in the file bug.c, which we cat out on
our terminal. We then try to run the C compiler on it,
referring to the file again as "!$", meaning the last
argument to the previous command. Here the exclamation mark
(n is the history mechanism invocation metacharacter, and
the dollar sign ($) stands for the last argument, by analogy
to the dollar sign in the editor which stands for the end of
the line. The shell echoed the command, as it would have
been typed without use of the history mechanism, and then
executed it. The compilation yielded error diagnostics, so
we now run the editor on the file we were trying to compile,
fix the bug, and run the C compiler again, this time
referring to this command simply as "!c", which repeats the
last command which started with the 1letter "c". If there
were other commands starting with "c" done recently we could
have said "!cc" or even "!cc:p" which would have printed the
last command starting with "cc" without executing it.

After this recompilation, we ran the resulting a.out file,
and then noting that there still was a bug, ran the editor
again. After fixing the program we ran the C compiler again,
but tacked onto the command an extra "-o bug" telling the
compiler to place the resultant binary in the file bug
rather than a.out. 1In general, the history mechanisms may
be used anywhere in the formation of new commands and other
characters may be placed before and after the substituted
commands.

We then ran the size command to see how large the binary
program images we have created were, and then an "ls -1"
command with the same argument list, denoting the argument
list "*n, Finally, we ran the program bug to see that its
output is indeed correct.

To make a numbered listing of the program, we ran the num
command on the file bug.c. In order to filter out blank
lines in the output &f num we ran the output through the
filter ssp, but misspelled it as "spp". To correct this we
used a shell substitute, placing the old text and new text
between up arrow (") characters. This is similar to the
substitute command in the editor. Finally, we repeated the
same command with "!1", but sent its oytput to the line
printer.

There are other mechanisms available for repeating commands.
The history command prints out a number of previous commands
with numbers by which they can be referenced. There is a way
to refer to a previous command by searching for a string
which appeared in it, and there are other, less useful, ways
to select arguments to include in a new command. A complete

Appendix A Appendix A

description of all these mechanisms is given in the C shell
manual pages in the XENIX Programmers Manual.

A.l1.4 Aliases

The shell has an alias mechanism which can be used to make
transformations on input commands. This mechanism can be
used to simplify the commands you type, to supply default
arguments to commands, or to perform transformations on
commands and their arguments. The alias facility is similar
to a macro facility. Some of the features obtained by
aliasing can be obtained also using shell command files, but
these take place in another instance of the shell and cannot
directly affect the current shells environment or involve
commands such as cd which must be done. in the current shell.

As an example, suppose that there is a new version of the
mail program on the system called "newmail" you wish to use,
rather than the standard mail program which is called
"mail®. If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line
of the form

mail bill

into a call on "newmail". More generally, suppose we wish
the command 1s to always show sizes of files, that is to
always do -s. We can do

alias 1ls 1ls -s
or even
alias dir 1ls -s

creating a new command named "dir" which does an "ls -s".
If we say

dir "bill
then the shell will translate this to

1s -s /usr/bill
Thus the alias mechanism can be used to provide short names
for commands, to provide default arguments, and to define

new short commands in terms of other commands., It is also
possible to define aliases which contain multiple commands

Appendix A Appendix A

or pipelines, showing where the arguments to the original
command are to be substituted using the facilities of the
history mechanism. Thus the definition

alias cd 'cd \!* ; 1s °

would do an 1ls command after each <change directory cd
command. We enclosed the entire alias definition in singTle
quotes (') to prevent most substitutions from occurring and
the semicolon (;) from being recognized as a metacharacter.
The exclamation mark (!) is escaped with a backslash (\) to
prevent it from being interpreted when the alias command is
typed in. The "\!*" here substitutes the entire. argument
list to the pre-aliasing cd command, without giving an error
if there were no arguments. The semicolon (;) separating
commands is used here to indicate that one command is to be
done and then the next. Similarly the definition

alias whois 'grep \!" /etc/passwd’

defines a command which looks up its first argument in the
password file.

Warning: The shell currently reads the .cshrc file each time
it starts up. If you place a large number of commands there,
shells will tend to start slowly. You should try to 1limit
the number of aliases you have to a reasonable number... 10
or 15 is reasonable, 50 or 60 will cause a noticeable delay
in starting up shells, and make the system seem sluggish
when you execute commands from within the editor and other
programs.

A.1.5 More redirection; >> and >&

There are a few more notations useful to the terminal user
which have not been introduced yet. 1In addition to the
standard output, commands also have a diagnostic output
which 1is normally directed to the terminal even when the
standard output is redirected to a file or a pipe. It |is
occasionally desirable to direct the diagnostic output along
with the standard output. For instance if you want to
redirect the output of a long running command into a file
and wish to have a record of any error diagnostic it
produces you can type

command >& file

The ">&" here tells the shell to route both the diagnostic
output and the standard output into file. Similarly you can
give the command

Appendix A Appendix A

command |& lpr

to route both standard and diagnostic output through the
pipe to the line printer daemon lpr. A command form

command >&! file

exists, and is used when noclobber is set and file already
exists.

Finally, it is possible to use the form
command >> file

to place output at the end of an existing file. 1if
noclobber is set, then an error will result if file does not
exist, otherwise the shell will create file if 1t doesn't
exist. A form

command >>! file

makes it not be an error for file to not exist when
noclobber is set.

A.1.6 Jobs: Background and Foreground

When one or more commands are typed together as a pipeline
or as a sequence of commands separated by semicolons, a
single job is created by the shell consisting of these
commands together as a unit. Single commands without pipes
or semicolons create the simplest jobs. Usually, every line
typed to the shell creates a job. Some lines that create
jobs (one per line) are .

sort < data
ls -s | sort -n | head -5
mail harold %

If the ampersand metacharacter (&) is typed at the end of
the commands, then the job is started as a background job.
This means that the shell does not wait for it to complete
but immediately prompts and is ready for another command.

The job runs in the background at the same time that normal
jobs, «called foreground Jjobs, continue to be read and

executed by the shell one at a time. Thus

du > usage &

would run the du program, which reports on the disk usage of
your working “directory (as well as any directories below
it), put the output into the file usage and return

A-10

Appendix A Appendix A

immediately with a prompt for the next command without out
waiting for du to finish. The du program would continue
executing in the background until it finished, even though
you can type and execute more commands in the mean time.
Background jobs are unaffected by any signals from the
keyboard like the <INTERRUPT> or <QUIT> signals mentioned
earlier.

The kill command terminates a background job immediately.
It may be given process numbers as arguments, as printed by

R—.
A.l1.7 Useful Built-In Commands

We now give a few of the useful built-in commands of the
shell describing how they are used.

The alias command described above 1is used to assign new
aliases and to show the existing aliases. With no arguments
it prints the current aliases. It may also be given only
one argument such as

alias 1s
to show the current alias for, e.q., 1ls.

The echo command prints its arguments. It is often used in
shell scripts or as an interactive command to see what
filename expansions will produce.

The history command will show the contents of the history
list. The numbers given with the history events can be used
to reference previous events which are difficult to
reference using the contextual mechanisms introduced above.
There is also a shell variable called prompt. By placing an
exclamation mark (!) in its wvalue the shell will there
substitute the number of the current command in the history
list. You can use this number to refer to this command in a
history substitution. Thus you could

set prompt="\! % '

Note that the exclamation mark (!) had to be escaped here
even within backslashes.

The logout command can be used to terminate a 1login shell
which has ignoreeof set.

The rehash command causes the shell to recompute a table of

where commands are located. This is necessary if you add a
command to a directory in the current shell's search path

A-11

Appendix A Appendix A

and wish the shell to find it; since otherwise the hashing
algorithm may tell the shell that the command wasn't in that
directory when the hash table was computed.

The repeat command can be used to repeat a command several
times. Thus to make 5 copies of the file one in the file
five you could do

repeat 5 cat one >> five

The setenv command can be used to set variables in the
environment. Thus

setenv TERM adm3a

sets the value of the environment variable TERM to "adm3a".
A user program printenv exists which will print out the
environment. It might then show:

$ printenv

HOME=/usr /bill

SHELL=/bin/csh

PATH=:/usr /ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER=bill

%

The source command can be used to force the current shell to
read commands from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file
which vyou wish to take effect before the next time you
login.

The time command can be used to cause a command to be timed
no matter how much CPU time it takes. Thus

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8%
$ time wc /etc/rc /usr/bill/rc
52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc
104 356 2694 total
0.1lu 0.1s 0:00 13%
%

indicates that the cp command used a negligible amount of

user time (u) and about 1/10th of a second system time (s);
the elapsed time was 1 second (0:01). The word count

A-12

Appendix A Appendix A

command, wc, on the other hand, used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of
elapsed time. The percentage "13%" indicates that over the
period when it was active the command wc used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases
and variable definitions from the shell, and unsetenv
removes variables from the environment.

This concludes the basic discussion of the shell for
terminal users. There are more features of the shell to be
discussed here, and all features of the shell are discussed
in its manual pages. One useful feature which is discussed
later is the foreach built-in command which can be used to
run the same command sequence with a number of different
arguments.

A.2 Shell Control Structures and Command Scripts

It is possible to place commands in files and to cause
shells to be invoked to read and execute commands from these
files, which are called shell scripts. We here detail those
features of the shell useful to the writers of such scripts.

It is important to first note what shell scripts are not
useful for. There 1is a program called make which is very
useful for maintaining a group of related files or
performing sets of operations on related files. For
instance a large program consisting of one or more files can
have its dependencies described in a makefile which contains
definitions of the commands used to create these different
files when changes occur. Definitions of the means for
printing listings, cleaning up the directory in which the
files reside, and installing the resultant programs are
easily, and most appropriately placed in this makefile.
This format is superior and preferable to maintaining a
group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be
created which defines how different versions of the document
are to be created and which options of nroff or troff are
appropriate.
A.2.1 Invocation and the argv variable
A csh command script may be interpreted by saying

$ csh script ...

where script is the name of the file containing a group of

A-13

Appendix A Appendix A

csh commands and "..." is replaced by a sequence of
arguments. The shell places these arguments in the variable
argv and then begins to read commands from the script.
These parameters are then available through the same
mechanisms which are used to reference any other shell
variables.

If you make the file script executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell
script (i.e. begin the file with a pound sign (#)) then a
/bin/csh will automatically be invoked to execute script
when you type '

script

If the file does not begin with a pound sign (#) then the
standard shell /bin/sh will be used to execute it. This
allows you to convert your older shell scripts to use csh at
your convenience. T

A.2.2 Variable substitution

After each input line is broken into words and history
substitutions are done on it, the input line is parsed into
distinct commands. Before each command is executed a
mechanism know as variable substitution is done on these
words. Keyed by the dollar sign ($), this substitution
replaces the names of variables by their values. Thus

echo $argv

when placed in a command script would cause the current
value of the variable argv to be echoed to the output of the
shell script. It is.an error for argv to be unset at this

point.

A number of notations are provided for accessing components
and attributes of variables. The notation

$?name

expands to 1 if name is set or to 0 if name is not set. It
is the fundamental mechanism used for checking whether
particular variables have been assigned values. All other
forms of reference to undefined variables cause errors.

The notation

A-14

Appendix A

S#name

expands to the number of elements in the
Thus

set argv=(a b c)
echo $?argv

echo S$#argv

unset argv
echo $?argv

echo S$argv ‘
ndefined variable: argv.

00 PO P R W

It is also possible to access the components
which has several values. Thus

$argv[l]

gives the first component of argv or in the
"a". Similarly

$argv([$#argv]

would give "c", and
Sargv[1-2]

would give:
ab

Other notations useful in shell scripts are
$n

where n is an integer as a shorthand for
$argv([n]

the nth parameter and
$*

which is a shorthand for

Sargv

A-15

Appendix A

variable name.

of a variable

example above

Appendix A Appendix A

The form

$$

expands to the process number of the current shell. Since
this process number is unique in the system it can be used
in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input
read from the shell's standard input (not the script it is
reading). This is useful for writing shell scripts that are
interactive, reading commands from the terminal, or even
writing a shell script that acts as a filter, reading 1lines
from its input file. Thus the sequence

echo 'yes or no?\c'
set a=($<)

would write out the prompt "yes or no?" without a newline
and then read the answer into the variable a. In this case
"$#a" would be 0 if either a blank line or <CONTROL-D> was
typed. '

One minor difference between "$n" and "Sargv[n]" should be
noted here. The form "$argv(n]” will yield an error if n is
not in the range "l-S#argv" while "$n" will never vyield an
out of range subscript error. This is for compatibility
with the way older shells handled parameters.

Another important point is that it is never an error to give
a subrange of the form "n-"; if there are less than "n"
components of the given variable then no words are
substituted. A range of ‘the form "m-n" likewise returns an
empty vector without giving an error when "m" exceeds the
number of elements. of the given variable, provided the
subscript "n" is in range.

A.2.3 Expressions

In order for interesting shell scripts to be constructed it
must be possible to evaluate expressions in the shell based
on the values of variables. In fact, all the arithmetic
operations of the language C are available in the shell with
the same precedence that they have in C. In particular, the
operations "==" and "!=" compare strings and the operators
"&&" and "||" implement the boolean AND and. OR operations.
The special operators "="" and "!~" are similar to "==" and
"1=" except that the string on the right side can have
pattern matching characters (like *, ? or [and]) and the

A-16

Appendix A Appendix A

test is whether the string on the left matches the pattern
on the right.

The shell also allows file enquiries of the form

-2 filename

where question mark (?) is replaced by a number of single
characters. For instance the expression primitive

-e filename

tell whether the file filename exists. Other primitives
test for read, write and execute access to the file, whether
it is a directory, or has non-zero length.

It 1is possible to test whether a command terminates
normally, by a primitive of the form

{ command }

which returns true, i.e. 1 if the command succeeds exiting
normally with exit status 0, or 0 if the command terminates
abnormally or with exit status non-zero. If more detailed
information about the execution status of a command is
required, it can be executed and the variable "$status"
examined in the next command. Since "$status" is set by
every command, it is very transient. It can be saved if it
is inconvenient to wuse it only in the single immediately
following command.

For a full list of expression components available see the
manual section for the shell.

A.2.4 Sample shell script
A sample shell scri@t which makes use of the expression

mechanism of the “shell and some of its control structure
follows:

A-17

Appendix A Appendix A

% cat copyc

#

Copyc copies those C programs in the specified list

¢ to the directory ~/backup if they differ from the files
$ already in ~/backup

set noglob

foreach i ($argv)

if ($i !~ *.c) continue # not a .c file so do nothing

if (! -r “/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp -s $i ~/backup/$i:t # to set $status

if ($status != 0) then
echo new backup of $i
cp $i ~/backup/$i:t
endif
end

This script makes use of the foreach command, which causes
the shell to execute the commands between the foreach and
the matching end for each of the values given between
parentheses with the named variable, in this case "i" set to
successive values in the list. Within this loop we may use
the command break to stop executing the loop and continue to
prematurely terminate one iteration and begin the next.
After the foreach 1loop the iteration variable (i in this
case) has the value at the last iteration.

We set the variable noglob here to prevent filename
expansion of the members of argv. This is a good idea, in
general, if the arguments to a shell script are filenames
which have already been expanded or if the arguments may
contain filename expansion metacharacters. It is also
possible to quote each use of a "$" variable expansion, but
this is harder and less reliable.

The other control construct used here is a statement of the
form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to

A-18

Appendix A Appendix A

the current implementation of the shell. The following two
formats are not acceptable to the shell:

if (expression) # Won't work!
then
command

endif
and
if (expression) then command endif # Won't work

The shell does have another form of the'if statement of the
form

if (expression) command
which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance.
The command must not involve "|", "s" or ":" and must not be
another control command. The second form requires the final
backslash (\) to immediately precede the end-of-line.

The more general if statements above also admit a sequence
of else-if pairs followed by a single else and an endif,
e.g.:

if (expression) then

commands

else if (expression) then
commands

.o N

else
commands

endif

Another important mechanism used in shell scripts 1is the

colon ({:) modifier. We can use the modifier ":r" here to
extract the root of a filename or “:e' to extract the
extension. Thus if the variable i has the value

/mnt /foo.bar then

A-19

Appendix A Appendix A

% echo $i $i:r Si:e
/mnt/foo.bar /mnt/foo bar
3

shows how the ":r" modifier strips off the trailing ".bar"
and the the ":e" modifier leaves only the "bar". Other
modifiers will take off the last component of a pathname
leaving the head ":h" or all but the last component of a
pathname leaving the tail ":t". These modifiers are fully
described in the csh(1lS) manual pages in the XENIX Reference
manual. It is also possible to use the command substitution
mechanism described in the next major section to perform
modifications on strings to then reenter the shells
enviromment. Since each wusage of this mechanism involves
the creation of a new process, it is much more expensive to
use than the colon (:) modification mechanism. (It is also
important to note that the current implementation of the
shell 1limits the number of colon modifiers on a "$"
substitution to 1. Thus '

% echo $i $i:h:t
/a/b/c /a/b:t
3

does not do what one would expect.)

Finally, we note that the pound sign character (#) lexically
introduces a shell comment in shell scripts (but not from
the terminal). All subsequent characters on the input line
after a pound sign are discarded by the shell. This
character can be quoted using "'" or "\" to place it in an
argument word.

A.2.5 Other control structures

The shell also has control structures while and switch
similar to those of %? These take the forms

while (expression)
commands
end

and

A-20

Appendix A Appendix A

switch (word)

case strl:
commands
breaksw

e e 0

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for. c¢sh(lS). C
programmers should note that we use breaksw to exit from a
switch while break exits a while or foreach loop. A common

mistake to make 1in cshell scripts is to use break rather
than breaksw in switches.

Finally, cshell allows a goto statement, w1th labels looking
like they do in C, i.e.:

loop:
commands
goto loop

A.2.6 Supplying input to commands

Commands run from shell scripts receive by default the
standard input of the shell which is running the script.
This is different from previous shells running under XENIX.

It allows shell scglpts to fully participate in pipelines,
but mandates extra ndtation for commands which are to take
inline data.

Thus we need a metanotation for supplying inline data to

commands in shell scripts. As an example, consider this
script which runs the editor to delete leading blanks from
the lines in each argument file

A-21

Appendix A Appendix A

% cat deblank

deblank -- remove leading blanks
foreach i ($argv)

ed - $i << 'EOF'

1,8s/71 1*//

w

q
'EOF'
end

%

The notation "<< 'EOF'" means that the standard input for
the ed command is to come from the text in the shell script
file up to the next line consisting of exactly "I'EOF'". The
fact that the EOF is enclosed in single quotes ('), i.e.
quoted, causes the shell to not perform variable
substitution on the intervening lines. In general, if any
part of the word following the "<<" which the shell uses to
terminate the text to be given to the command is quoted then
these substitutions will not be performed. In this case
since we used the form "1,$" in our editor script we needed
to insure that this dollar sign was not variable
substituted. We could also have insured this by preceding
the dollar sign ($) with a backslash (\), i.e.:

1,\$s/7 1 1*//

but quoting the EOF terminator is a more reliable way of
achieving the same thing.

A.2.7 Catching interrupts

I1f our shell script creates temporary files, we may wish to
catch interruptions of the shell script so that we can clean
up these files. We can then do

onintr label

where label is a label in our program. If an ' interrupt is
received the shell will do a "goto label" and we can remove
the temporary files and then do an exit command (which is
built in to the shell) to exit from the shell script. If we
wish to exit with a non-zero status we can do

exit(l)

e.g. to exit with status 1.

A-22

Appendix A Appendix A

A.2.8 Other Features

There are other features of the shell useful to writers of
shell procedures. The verbose and echo options and the
related -v and -x command line options can be used to help
trace the actions of the shell. The -n option causes the
shell only to read commands and not to execute them and may
sometimes be of use. :

One other thing to note is that csh will not execute shell
scripts which do not begin with the pound sign character
(#), that is shell scripts that do not begin with a comment.
Similarly, the /bln/sh on your system may well defer to csh
to interpret shell s scrlpts which begin‘with the pound 51gn
(#). This allows shell scripts for both shells to live in
harmony.

There 1is also another quotation mechanism . using the
quotation mark ("), which allows only some of the expansion
mechanisms we have so far discussed to occur on: the quoted
string and serves to make this string into a single word as
the single quote (') does. '

A.3 Loops At The Terminal

It 1is occasionally useful to use the foreach control
structure at the terminal to aid in performing a number of
similar commands. For instance, if there were three shells
in use on a particular system, /bin/sh, /bin/nsh, and
/bin/csh, you could count the number of persons using each
shell by using the following commands:

$ grep -c csh$ /etc/passwd

5

$ grep -c nsh$ /etc/passwd

3

8 grep -c -v sh$ /etc/passwd
20 R

3

Since these commands are very similar we can use foreach to
do this more easily.

% foreach 1 ('sh$' 'csh$' '-v sh$!')
? grep ~-c $i /etc/passwd

? end

5

3

20

$

A-23

Appendix A Appendix A

Note here that the shell prompts for input with "? " when
reading the body of the loop.

Very useful with loops are variables which contain lists of
filenames or other words. You can, for example, do

% set a=("1s")
% echo $Sa
csh.n csh.rm
$ ls

csh.n

csh.rm

% echo S#a

2

3

The set command here gave the variable a a list of all the

filenames in the current directory as value. We can then
iterate over these names to perform any chosen function.

The output of a command within back quote characters (%) is
converted by the shell to a list of words. You can also
place the quoted string within double quote characters (")
to take each (non-empty) line as:- a component of the
variable. This prevents the lines from being split into
words at blanks and tabs. A modifier ":x" exists which can
be used later to expand each component of the variable into
another variable by splitting the original variable into
separate words at embedded blanks and tabs.

A.4 Braces { ... } in argument expansion

Another form of filename expansion, alluded to before
involves the characters, "{" and “}". These characters
specify that the contained strings, separated by commas (,)
are to be consecutively substituted into the containing
characters and the ggsults expanded left to right. Thus

A{strl,str2,...strn}B
expands to
AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions,
and may be applied recursively (i.e. nested). The results
of each expanded string are sorted separately, left to right
order being preserved. The resulting filenames are not
required to exist if no other expansion mechanisms are used.
This means that this mechanism can be used to generate
arguments which are not filenames, but which have common

A-24

Appendix A : : Appendix A

parts.
A typical use of this would be
mkdir ~/{hdrs,retrofit,csh}

to make subdirectories hdrs, retrofit and csh in your home
directory. This mechanism 1is most useful when the common
- prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit},1lib/{ex?.?*,how_ex}}
A.5 Command substitution

A command enclosed in back quotes (%) 1is replaced, just
before filenames are expanded, by the output from that
command. Thus, it is possible to do

set pwd="pwd"
to save the current directory in the variable pwd or to do
vi “grep -1 TRACE *.c"

to run the editor vi supplying as arguments those files
whose names end in ".c" which have the string "TRACE" in
them. Command expansion also occurs in input redirected
with "<<" and within quotations ("). Refer to csh(1S) in
the XENIX Reference manual for more information. ~

A.6 Other Details Not Covered Here

In particular circumstances it may be necessary to know the
exact nature and order of different substitutions performed
by the shell. The exact meaning of certain combinations of

quotations is also occasionally important. These are
detailed fully in it% manual section.

The shell has a number of command line option flags mostly

of wuse in writing XENIX programs and debugging shell
scripts. See c¢sh(lS) in the XENIX Reference Manual for a
list of these options.

A.7 Special Characters

The following table lists the special characters of csh and
the XENIX system. A number of these characters also have
special meaning in expressions. See the csh manual section
for a complete list. T

A-25

Appendix A Appendix A

Syntactic metacharacters

Separates commands to be executed sequentially
Separates commands in a pipeline

Brackets expressions and variable values
Follows commands to be executed without waiting
for completion

R A~ e
~—~

Filename metacharacters

/ Separates components of a file's pathname

? ExpanSLOn character matching any single character

* Expansion character matching any sequence of
characters

[1] Expansion sequence matching any sxngle character

from a set of characters

Used at the beginning of a filename to indicate

home directories

{ } Used to specify groups of arguments with common
parts

Quotation metacharacters

\ Prevents meta-meaning of following single
character

Prevents meta-meaning of a group of characters

" Like ', but allows variable and command expansion

Input/output metacharacters

< Indicates redirected input
> Indicates redirected output

Expansion/Substitution metacharacters

Indicates variable substitution

Indicates history substitution

Precedes substitution modifiers

Used in special forms of history substltutlon
Indicates command substitution

Y e = N

’

Other metacharacters

Begins scratch file names; indicates shell
comments

- Prefixes option (flag) arguments to commands

3 Prefixes job name specifications

APPENDIX B: M4 — A Macro Processor

M4 is the name of the XENIX macro processor. Macro
processors are used to define and to process specially
defined strings of characters (called macros). By defining
a set of macros to be processed by M4, a programming
language can be enhanced to make it:

1. More structured
2. More readable
3. More appropriate for a particular application

The #define statement in C and the - analogous define in

Ratfor are examples of the basic facility provided by any
macro processor -- replacement of text by other text.

Besides the straightforward replacement of one string of
text by another, a macro processor provides:

@ Macros with arguments
® Conditional macro expansions
® Arithmetic expressions
® File manipulation facilities
@ String processing functions

The basic operation of M4 is to copy its input to its
output. As the input is read, , each alphanumeric "token"
(that is, string of letters and digits) is checked. If it
is the name of a macro, then the name of the macro is
replaced by its defining text, and the resulting string is
pushed back onto the input it is rescanned by M4. Macros
may be called with arguments, in which case the arguments
are collected and substituted into the right places in the
defining text before M4 rescans the text.

M4 provides a collection of about twenty built-in macros
which perform various operations. In addition, the user can
define new macros. Built-ins and user-defined macros work
exactly the same way, except that some of the built-in
macros have side effects on the state of the process.

Appendix B Appendix B

B.l1 Usage
To invoke M4, type:
m4 [files]

Each argument file is processed in order. If there . are no
arguments, or if an argument is a dash (-), the standard
input is read at that point. The processed text is written
to the standard output.

m4 [files] >outputfile
B.2 Defining Macros

The primary built-in function of M4 is define, which is used
to define new macros. The input

define(name, stuff)

causes the string name to be defined as stuff. All
subsequent occurrences of name will be replaced by stuff.
Name must be alphanumeric and “must begin with a letter (the
underscore counts as a letter). stuff is any text that
contains balanced parentheses; it may stretch over multiple
lines. ;

Thus, as a typical example,

define(N, 100)

if (1 > N)

defines N to be 100, and uses this "symbolic constant" in a
later 1f statement.

The left parenthegis must immediately follow the word
define, to signal that define has arguments. If a macro or
built-in name is not followed immediately by "(", it is
assumed to have no arguments. This is the situation for N
above; it is actually a macro with no arguments, and thus
when it is used there need be no (...) following it.

You should also notice that a macro name is only recognized
as such if it appears surrounded by non-alphanumerics. For
example, in '

define (N, 100)

if (NNN > 100)

Appendix B Appendix B

the variable NNN is absolutely unrelated ¢to the aefined
macro N, even “though it contains a lot of N's, ,

Things may be defined in terms of other things, For
example,

define (N, 100)
define (M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way,
is M defined as N or as 100? 1In M4, the latter is true --
M is 100, so even if N subsequently changes, M does not.

This behavior arises because M4 expands macro names into
their defining text as soon as it possibly can. Here, that
means that when the string N is seen as the arguments of
define are being collected, it is immediately replaced by
100; it's just as if you had sald

define (M, 100)
in the first place.

If this isn't what you really want, there are two ways out

of it. The first, which is specific to this situation, is
to interchange the order of the definitions:

define (M, N)
define(N, 100)

Now M is defined to be the string N, so when you ask for M
later, you will always get the value of N at that time
(because the M will be replaced by N which, in turn, will be

replaced by 100).

B.3 Quoting *

The more general solution is to delay the expansion of the
arguments of define by guotlng them. Any text surrounded by
the single quotes - and ' is not expanded immediately, but
has the quotes stripped off. 1If you say ‘

define(N, 100)
define (M, "N')

the quotes around the N are stripped off as the argument is
belng collected, but they have served their purpose, and M
is defined as the string N, not 100. The general rule is
that M4 always strips off one 1level of single quotes

Appendix B Appendix B

whenever it evaluates something. This is true even outside
of macros. If you want the word define to appear in the
output, you have to quote it in the input, as in .

“define' = 1;

As another instance of the same thing, which is a bitf more
surprising, consider redefining N:

define (N, 100)

define (N, 200)

Perhaps regrettably, the N in the 'second definition is
evaluated as soon as it's seen; that is, it is replaced by
100, so it's as if you had written

define (100, 200)

This statement is ignored by M4, since you can only define
things that look like names, but it obviously doesn't have
the effect you wanted. To really redefine N, you must delay
the evaluation by quoting: - :

define (N, 100)

define("N', 200)

In M4, it is often wise to quote the first argument of a
macro.

1f the forward and backward quote characters (- and ') are

not convenient for some reason, the quote characters can be
changed with the built-in changequote. For example:

changequote ([,])

makes the new quote éharacters the left and right brackets.
You can restore the original characters with just

changequote

There are two additional built-ins- related to define.
undefine removes the definition of some macro or built-In:

undefine ("N')

removes the definition of N. Built-ins can be removed with
undefine, as in

Appendix B Appendix B

undefine(“define')
but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is
currently defined. For instance, pretend that either the
word xenix or unix is defined according to a particular
implementation of a program. To perform operations
according to which system you have you might say:

ifdef (“xenix', “define(system,l)"')
ifdef (“unix', “define(system,2)')

Don't forget the quotes in the above example.

Ifdef actually permits three arguments: if the name is
undefined, the value of ifdef is then the third argument, as
in

ifdef(“xenix', on XENIX, not on XENIX)
B.4 Arguments

So far we have discussed the simplest form of macro
processing - replacing one string by another (fixed)
string. User-defined macros may also have arguments, so
different invocations can have different results. Within
the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the‘gth
argument when the macro is actually used. Thus, the macro
bump, defined as

define(bump, $1 = $1 + 1)
generates code to increment its argument by 1:
bump (x)

is

A macro can have as many arguments as you want, but only the
first nine are accessible, through $1 to $9. (The macro
name itself is $0, although that is 1less commonly used.;
Arguments that are not supplied are replaced by null
strings, so we can define a macro cat which simply
concatenates its arguments, like this:

define(cat, $1$2$3$45$53$65$7$8$9)

Appendix B Appendix B

Thus
cat(x, vy, z)
is equivalent to
Xyz

$4 through $9 are null, since no corresponding arguments
were provided.

Leading unquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is
retained. Thus:

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are
counted properly, so a comma "protected"” by parentheses does
not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally (b,c).
And of course a bare comma or parenthesis can be inserted by
quoting it.

B.5 Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on
integers. The simplest 1is incr, which increments its
numeric argument by 1. Thus, to handle the common
programming situation where you want a variable to be
defined as "one more than N", write

4

define(N, 100)
define(N1l, “incr(N)')

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in
called eval, which is capable of arbitrary arithmetic on
integers. It provides the following operators (in
decreasing order of precedence):

Appendix B Appendix B

unary + and -~
** or ©~ (exponentiation)
* / % (modulus)

+ -

== 1= < <= > >=
! (not)

& or && (logical and)
| or || (logical or)

Parentheses may be used to group operations where needed.
All the operands of an expression given to eval must
ultimately be numeric. The numeric value of a true relation
(like 1>0) is 1, and false is 0. The precision in eval is
implementation dependent.

As a simple example, suppose we want M to be 2**N+l. Then

define (N, 3)
define (M, “eval (2**N+1)')

As a matter of principle, it 1is advisable to quote the
defining text for a macro unless it is very simple indeed
(say just a number); it usually gives the result you want,
and is a good habit to get into.

B.6 PFile Manipulation

You can include a new file in the input at any time by the
built-in function include:

include (filename)

inserts the contents of filename in place of the include
command. The contents of the file 1is often a set of
definitions. The value of include (that is, its replacement
text) is the contents of the file; this can be captured in
definitions, etc.

It is a fatal error if the file named in include cannot be
accessed. To det some control over this situation, the
alternate form sinclude can be wused; sinclude ("silent
include") says nothing and continues if it can't access the
file.

It is also possible to divert the output of M4 to temporary
files during processing, and output the collected material
upon command. M4 maintains nine of these diversions,
numbered 1 through 9. If you say

divert(n)

Appendix B Appendix B

all subsequent output is put onto the end of a temporary
file referred to as n. Diverting to this file is stopped by
another divert command; in particular, divert or divert(0)
resumes the normal output process.

Diverted text is normally output all at once at the end of
processing, with the diversions output in numeric order. It
is possible, however, to bring back diversions at any time,
that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert
with arguments brings back the selected diversions in the
order given. The act of undiverting discards the diverted
stuff, as does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff.
Furthermore, the diverted material is not rescanned for

macros.

The built-in divnum returns the number of the currently
active diversion. This is zero during normal processing.

B.7 System Command

You can run any program in the local operating system with
the syscmd built-in. For example,

syscmd (date)

runs the date command. Normally, syscmd would be used to
create a file for a subsequent include.

To facilitate making unique file names, the built-in
maketemp is provided, with specifications identical to the
system function mkteﬁg: a string of XXXXX in the argument is
replaced by the process id of the current process.

B.8 Conditionals

There is a built-in called ifelse which enables you to
perform arbitrary conditional testing. In the simplest
form,

ifelse(a, b, c, 4d)
compares the two strings a and b. If these are identical,

ifelse returns the string c; otherwise it returns d. Thus,
we might define a macro called compare which compares two

Appendix B Appendix B

strings and returns "yes" or "no" if they are the same or
different.

define (compare, “ifelse($1l, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of
ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus
provides a limited form of multi-way decision capability.
In the input

ifelse(a, b, ¢, 4, e, £, g)

if the string a matches the string b, the result is ¢
Otherwise, if d is the same as e, the result is f
Otherwise the result is g. If the final argument is
omitted, the result is null, so

ifelse(a, b, ©)

is ¢ if a matches b, and null otherwise.

B.9 String Manipulation

The built-in len returns the length of the string that makes
up its argument. Thus

len (abcdef)
is 6, and len((a,b)) is 5.

The built-in substr can be used to produce substrings of
strings. substr(s, i, n) returns the substring of 8 that
starts at the ith position (origin =zero), and is n
characters long. If n is omitted, the rest of the string is
returned, so

substr("now is the time', 1)
is
ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in sl where the
string s2 occurs, or -1 if it doesn't occur. As with
substr, the origin for strings is 0.

Appendix B Appendix B

The built-in translit performs character transliteration.
translit(s, £, t)

modifies s by replacing any character found in £ by the
corresponding character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is
shorter than £, characters which don't have an entry in t
are deleted; as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)
deletes vowels from s.

There is also a built-in called dnl which deletes all
characters that follow it up to and including the next
newline. It is useful mainly for throwing away empty 1lines
that otherwise tend to clutter up M4 output. For example,
if you say

define(N, 100)
define (M, 200)
define(L, 300)

the newline at the end of each 1line is not part of the

definition, so it 1is copied into the output, where it may
not be wanted. If you add dnl to each of these 1lines, the
newlines will disappear.

Another way to achieve this, is

divert(-1)
define(,..)

divert

B.10 Printing

The built-in errprint writes its arguments out on the
standard error file. Thus, you can say

errprint(“fatal error')

Dum¥gef is a debugging aid which dumps the current
definitions of defined terms. If there are no arguments,
you get everything; otherwise you get the ones you name as
arguments. Don't forget the gquotes.

B-10

Apprendix 1t Appand iz B

B.11 Summary of Built-ins

changequote (L, R)

define (name, replacement)
divert (number)

divnum

dnl

dumpdef (“name', “name', ...)
errprint(s, s, ...)

eval (numeric expression)
ifdef(“name', this if true, this if false)
ifelse(a, b, c, 4d)
include(file)

incr (number)

index(sl, s2)

len(string)
maketemp (. ..XXXXX...)
sinclude (file)

substr (string, position, number)
syscmd (s)

translit(str, from, to)
undefine(“name')

undivert (number, number,...)

B-11

APPENDIX C: C Language Portability

The C language is defined in the appendix to "The C
Programming Languade", by Kernighan and Ritchie. This
definition leaves many details to be decided by individual
implementations of the language. It is those incompletely
specified features of the language that detract from its
portability and that should be studied when attempting to
write portable C code.

Most of the 1issues affecting C portability arise from
differences in either target machine hardware or compilers.
C was designed to compile to efficient code for the target
machine (initially a PDP-1l) and so many of the language
features not precisely defined are those that reflect a
particular machine's hardware characteristics.

This document highlights the various aspects of C that may
not be portable across different machines and compilers. It
also briefly discusses the portability of a C program in
terms of its environment, which is determined by the system
calls and library routines it uses during execution, file
pathnames it requires, and other items not guaranteed to be
constant across different systems.

The C language has been implemented on many different
computers with widely different hardware characteristics,
varying from small 8-bit microprocessors to large
mainframes. This document is largely concerned with the
portability of C code in the XENIX programming environment.
This is a more restricted problem to consider since all
XENIX systems to date run on hardware with the following
basic characteristics:

- Ascii character set.

8-bit bytes.

2 or 4 byte integers.
- Two's Complement Arithmetic.

None of these features is required by the formal definition
of the language, nor is it true of all implementations of C.
However, the remainder of this document is largely devoted
to those systems where these basic assumptions hold.

The C language definition contains no specification of how

input and output is performed. This is left to system calls
and library routines on individual systems. Within XENIX
systems there are a large number of system calls and library

Appendix C Appendix C

routines which can be considered portable. These are
described briefly in a later section.

This document is not intended as a C Jlanguage primer, for
which should be used. It is assumed here that the reader is
familiar with C, and with the basic architecture of common
microprocessors.

C.1 Source Code Portability

We are concerned here with source code portability, which
means that programs can be compiled and run successfully on
different machines without alteration.

Programs can be written to achieve this goal using several
techniques. The first is to avoid using inherently non-
portable 1language features. Secondly, any non-portable
interactions with the environment, such as I/0 to non-
standard devices should be isolated, and possibly passed as
an argument to the program at run time. For example programs
should not, in general, contain hard-coded file pathnames
except where these are commonly understood to be portable
(an example might be /etc/passwd).

Files required at compile time (i.e. include files) may also
introduce non-portability if the pathnames are not the same
on all machines. However in some cases the use of include
files to contain machine parameters can be used to make the
source code itself portable.

C.2 Machine Hardware

As mentioned earlier, most non-portable features of the C
language are due either to hardware differences in the
target machine or to compiler differences. This section
lists the more common hardware differences encountered on
XENIX systems and sgpe language features to beware of.

C.2.1 Byte Length

The length of the char data type is not defined in the
language, other than that it must be sufficient to hold all
members of the machine's character set as positive numbers.
Within the scope of this document we will consider only 8-
bit bytes, since this is the byte size on all XENIX systems.

C.2.2 Word Length

The definition of C makes no mention of the size of the
basic data types for a given implementation. These generally
follow the most natural size for the underlying machine. It

Appendix C Appendix C

is safe to assume that short is no longer than long. Beyond
that no assumptions are portable. For example on the PDP-11
short is the same length as int, whereas on the VAX long is
the same length as int.

Programs that need to know the size of a particular data
type should avoid hard-coded constants where possible. Such
information can usually be written in a fairly portable way.
For example the maximum positive integer (on a two's
complement machine) can be obtained with:

#define MAXPOS ((int) (((unsigned) 0) >> 1))

This is usually preferable to something like:

#ifdef PDP1l1l
#define MAXPOS 32767
#else

#endif

Likewise to find the number of bytes in an int use
sizeof (int) rather than 2, 4, or some other non-por table
constant.

C.2.3 Storage Alignment

The C language defines no particular layout for storage of
data items relative to each other, or for storage of
elements of structures or unions within the structure or
union.

Some CPU's, such as the PDP-11 and M68000 require that data
types longer than one byte be aligned on even byte address
boundaries. Others, such as the 8086 and VAX-11l have no such
hardware restriction. However, even with these machines,
most compilers genergte code that aligns words, structures,
arrays and long words, on even addresses, or even long word
addresses. Thus, on the VAX-11, the following code sequence
gives '8', even though the VAX hardware can access an int (a
4 byte word) on any physical starting address:

struct s_tag {
char c;
| int 1i;

printf("$d\n",sizeof (struct s tag));

The principal implications of this variation in data storage
are twofold: 1) data accessed as non-primitive data types is
not portable, and 2) neither is code that makes use of

Appendix C Appendix C

knowledge of the layout on a particular machine.

Thus unions containing structures are non-portable if the
union is wused to access the same data in different ways.
Unions are only likely to be portable if they are wused
simply to have different data in the same space at different
times. For example, if the following union were used to
obtain four bytes from a long word, there's no chance of the
code being portable:

union |{
char cl4};
long 1lw;
}ou;

The sizeof operator should always be used when reading and
writing structures:

struct s_tag st;

write(fd, &st, sizeof(st)):

This ensures portability of the source code. It does NOT
produce a portable data file. Portability of data is
discussed in a later section.

Note that the sizeof operator returns the number of bytes an
object would occupy in an array. Thus on machines where
structures are always aligned to begin on a word boundary in
memory, the sizeof operator will include any necessary
padding for this in the return value, even if the padding
occurs after all useful data in the structure. This occurs
whether or not the argument is actually an array element.

C.2.4 Byte Order ip a Word

The variation in byte order in a word between machines
affects the portability of data between machines more than
the portability of source code. However any program that
makes use of knowledge of the internal byte order in a word
is not portable. For example, on some PDP-11 systems there
is an include file misc.h which contains the following
structure declaration: -

Appendix C Appendix C

/*
* structure to access an
* integer in bytes
*/
struct {
char lobyte;
char hibyte;

}i

With certain less restrictive compilers this could be used
to access the high and low order bytes of an integer
separately, and 1in a completely non-portable way. The
correct way to do this is to use mask and shift operations
to extract the required byte: '

#define LOBYTE(i) (i & Oxff)
#define HIBYTE(i) ((i >> 8) & Oxff)

Note that even this is only applicable to machines with two
bytes in an int.

One result of the byte ordering problem is that the
following code sequence will not always perform as intended:

int ¢ = 0;
read(fd, &c, 1):

On machines where the low order byte is stored first, the
value of ¢ will be the byte value read. On other machines

the byte is read into some byte other than the 1low order
one, and the value of ¢ is different.

C.2.5 Bitfields

Bitfields are not implemented in all C compilers. When they
are, a number of resfrictions apply:

- No field may be larger than an int.

- No field will overlap an int boundary. If necessary the

compiler will 1leave gaps and move to the next int
boundary.

The C language makes no guarantees about whether fields are
assigned left to right, or right to left in an int. Thus
while bitfields may be useful for storing flags, and other
small data 1items, their use in unions to disect bits from
other data is definitely non-portable.

Appendix C Appendix C

To ensure portability no individual field should exceed 16
bits.

C.2.6 Pointers

The C language is fairly generous in allowing manipulation
of pointers, to the extent that most compilers will not
object to non-portable pointer operations. The lint program
is particularly useful for detecting questionable pointer
assignments and comparisons.

The common non-portable use of pointers is where a pointer
to one data type is cast to be a pointer to a different data
type. This almost always makes some assumption about the
internal byte ordering and layout of the data type, and is
therefore non-portable. For example, in the following code,
the ordering of the bytes from the long in the byte array is
not portable:

char cl4];
long *1p;

lp = (long *)&c(0];
*1p = 0x12345678L;

The lint program will issue warning messages about such uses
of pointers. Very occasionally it is necessary and valid to
write code like this. An example is when the malloc()
library routine is wused to allocate memory for something
other than type char. The routine 1is declared as type
char * and so the return value has to be cast to the type to
be stored in the allocated memory. If this type 1is not
char * then 1lint will issue a warning concerning illegal
type conversion. 1In addition, the malloc() routine is
written to always return a starting address suitable for
storing all types of data, but lint does not know this, so
it gives a warning about possible data alignment problems
too. In the following example, malloc() is wused to obtain
memory for an array of 50 integers. The code will attract a
warning message from lint. There is nothing which can be
done about this.

extern char *malloc():
int *ip;

ip = (int *)malloc(50);

Appendix C Appendix C

¢.2.7 Address Space

The address space available to a program running under XENIX
varies considerably from system to system. On a small PDP-11
there may be only 64k bytes available for program and data
combined (although this can be increased - see 23fix(1l)).
Larger PDP-11l's, and some 16 bit microprocessors allow 64k
bytes of data, and 64k bytes of program text. Other machines
may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas
may have portability problems on small machines.

C.2.8 Character Set

We have said that we are concerned here mainly with the
ascii character set. The C language does not require this
however. The only requirements are:

- All characters fit in the char data type.

- All characters have positive values.

In the ascii character set, all characters have values
between 2zero and 127. Thus they can all be represented in 7
bits, and on an 8 bits per byte machine are all positive
regardless of whether char is treated as signed or unsigned.

There is a set of macros defined under XENIX in the header
file /usr/include/ctype.h which should be used for most
tests on character quantities. Not only do they provide
some insulation from the internal structure of the character
set, their names are more meaningful than the equivalent
line of code in most cases, Compare

if (isupper(c))
to

if((c >= 'A') && (c <= 'Z2'))
With some of the other macros, such as isxdigit() to test
for a hex digit, the advantage is even greater. Also, the

internal implementation of the macros makes them more
efficient than an explicit test with an 'if' statement.

Appendix C Appendix C

C.3 Compiler Differences

There are a number of C compilers running under XENIX. On
PDP-11 systems there is the so called "Ritchie" compiler.
Also on the 11, and on most other systems, there is the
Por table C Compiler.

Cc.3.1 Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem
is best described as unsatisfactory. The problem is
completely explained and discussed in Sign Extension and
Portability in C, Hans Spiller, Microsoft 1982, so that
material is not repeated here.

The sign extension problem is one of the more serious
barriers to writing portable C, and the best solution at
present is to write defensive code which does not rely on
particular implementation features. The above paper suggests
some ways.

C.3.2 Shift Operations

The left shift operator, << shifts its operand a number of
bits left, filling vacated bits with zero. This is a so-
called logical shift.

The right shift operator, >> when applied to an unsigned
quantity, performs a logical shift operation. When applied
to a signed quantity, the vacated bits may be filled with
zero (logical shift) or with sign bits (arithmetic shift).
The decision is implementation dependent, and code which
uses knowledge of a particular implementation is non-
portable.

The PDP-11 compilers use arithmetic right shift. Thus to
avoid sign extension it is necessary to either shift and
mask out the appropriate number of high order bits, or to
use a divide operator which will avoid the problem
completely:

char c¢:

For c >> 3; use: (c >> 3) & Ox1f;
or: c/ 8;

C.3.3 1Identifier Length
The use of long identifier names will cause portability

problems with some compilers. There are three different
cases to be aware of:

Appendix C Appendix C

- C Preprocessor Symbols.
- C Local Symbols.
- C External Symbols.

The loader used may also place a restriction on the number
of unique characters in C external symbols.

Symbols unique in the first six characters are unique to
most C language processors.

On some non-XENIX C implementations, upper and lower case
letters are not distinct in identifiers.

C.3.4 Register Variables

The number and type of register variables in a function
depends on the machine hardware and the compiler. Excess and
invalid register declarations are treated as non-register
declarations, which should not cause a portability problem.
On a PDP-11, up to three register declarations are
significant, and they must be of type int, char, or pointer.
(Page 81). Whilst other machines/compilers may support
declarations such as "register unsigned short" this should
not be relied upon.

Since the compiler ignores excess register keywords,
register type variables should always be declared in their
importance of being register type. Then the ones the
compiler ignores will be the least important.

C.3.5 Type Conversion

The C language has some rules for implicit type conversion;
tt also allows explicit type conversions by type casting.
The most common portgbility problem arising from implicit
type conversion is unexpected sign extension. This is a
potential problem whenever something of type char is
compared with an int.

For example
char c;

if(c == 0x80)

will never evaluate true on a machine which sign extends
since ¢ is sign extended before the comparison with 0x80, an
int.

Appendix C Appendix C

The only safe comparison between char type and an int is the
following:

char c;

if(c == "x'")

This is reliable since C guarantees all characters to be
positive. The use of hard-coded octal constants is subject
to sign extension. For example the following program prints
f£f80 on a PDP-11:

main()

printf ("$x0,'\200");

}

Type conversion also takes place when arguments are passed
to functions. Types char and short become int. Once again
machines that sign extend char can give surprises. For
example the following program gives -128 on the PDP-11:

char ¢ = 128;
printf("sd\n",c);

This is because ¢ is converted to int before passing on the
stack to the function. The function itself has no knowledge
of the original type of the argument, and is expecting an
int. The correct way to handle this is to code defensively
and allow for the possibility of sign extension:

char ¢ = 128;
printf("%d\n", c & Oxff);

C.3.6 Functions With Variable Number of Arguments

Functions with a varf%ble number of arguments present a
particular portability problem if the type of the arguments
is variable too. 1In such cases the code is dependent upon
the size of various data types.

In XENIX there is an include file, /usr/include/varargs.h,
that contains macros for use in variable argument functions
to access the arguments in a portable way:

Appendix C Appendix C

typedef char *va_list;

$¢define va_dcl int va_alist;

$define va start(list) list = (char *) &va alist

$define va end(list) -

#define va_arg(list,mode) ((mode *) (list += sizeof(mode))) [-1]

Figure 1. File: /usr/include/varargs.h

The va_end () macro is not currently required. The use of
the other macros will be demonstrated by an example of the
fprintf() library routine. This has a first argument of type
FILE *, and a second argument of type char *. Subsequent
arguments are of unknown type and number at compllatlon
time. They are determined at run time by the contents of the
control string, argument 2.

The first few lines of fprintf() to declare the arguments

and find the output file and control string address could
be:

#include <varargs.h>
$include <stdio.h>

int
fprintf(va alist)
va_dcl;

va_list ap; /* pointer to arg list */
char *format;
FILE *fp;

va start(ap):; /* initialize arg pointer */
fp = va_arg(ap, (FILE *));
format = va_arg(apy, (char *));

* e 0

} s

Note that there is just one argument declared to fprintf().
This argument is declared by the va_dcl macro to be type
int, although its actual type is unknown at compile time.
The argument pointer, ap, is initialized by va_start() to
the address of the first argument. Successive arguments can
be picked from the stack so long as their type is known
using the va_arg() macro. This has a type as 1its second
argument, and this controls what data is removed from the
stack, and how far the argument pointer, ap, is incremented.
In fprintf(), once the control string is found, the type of
subsequent arguments is known and they can be accessed
sequentially by repeated calls to va_arg(). For example,
arguments of type double, int *, and short, could be

Appendix C Appendix C

retrieved as follows:

double dint;
int *ip;
short s;

dint = va_arg(ap, double) ;
ip = va_arg(ap, (int *));
s = va_arg(ap, short);

The use of these macros makes the code more portable,
although it does assume a certain standard method of passing
arguments on the stack. In particular no holes must be left
by the compiler, and types smaller than int (e.g. char, and
short on long word machines) must be declared as int.

C.3.7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of
evaluation of operands in an expression, or arguments to a
function call. Thus

func(i++, i++);
is extremely non-portable, and even
func (i++) ;

is unwise if func() is ever 1likely to be replaced by a
macro, since the macro may use i more than once. There are
certain XENIX macros commonly used in user programs; these
are all guaranteed to only use their argument once, and so
can safely be called with a side-effect argument. The
commonest examples are getc(), putc(), getchar(), and

putchar ().

Operands to the following operators are guaranteed to be
evaluated left to right:

’ && | ? :

Note that the comma operator here is a separator for two C
statements. A list of items separated by commas in a
declaration list are not guaranteed to be processed left to
right. Thus the declaration

register int a, b, c, 4;

on a PDP-11 where only three register variables may be
declared could make any three of the four variables register
type, depending on the compiler. The correct declaration is

Appendix C Appendix C

to decide the order of importance of the variables being
register type, and then use separate declaration statements,
since the order of processing of individual declaration
statements is guaranteed to be sequential:

register int a;
register int b;
register int c;
register int d;

For the same reason declaration initializations of the
following type are unwise:

int a =0, b= a;
C.4 Program Environment Differences

Most non-trivial programs make system calls and use library

routines for various services. The sections below indicate
some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the
XENIX operating system. Many of the XENIX system calls are
specific to that particular operating system environment and
are not present on all other operating system
implementations of C. Examples of this are getpwent () for
accessing entries in the XENIX password file, and getenv()
which is specific to the XENIX concept of a process's
environment.

Any program containing hard-coded pathnames to files or
directories, or user 1id's, login names, terminal lines or
other system dependent parameters is non-portable. These
types of constant should be in header files, passed as
command line arguments, obtained from the environment, or by
using the XENIX default parameter library routines dfopen(),
and dfread(). ’

Within XENIX, most system calls and library routines are
por table across different implementations and XENIX
releases. However, a few routines have changed in their user
interface.

C.4.1 Libraries

The various XENIX library routines are generally portable
among XENIX systems; however, note the following:

printf The members of the printf family, printf, fprintf,
sprintf, sscanf, and scanf have changed in several

Appendix C Appendix C

small ways during the evolution of XENIX, and some
features are not completely portable. The return
values from these routines cannot be relied upon
to have the same meaning on all systems. Certain
of the format conversion characters have changed
their meanings, in particular relating to
upper/lower case in the output of hexadecimal
numbers, and the specification of long integers on
16-bit word machines. The reference manual page
for rintf (3S) contains the correct specification
for tge routines.

C.5 Portability of Data

Data files are almost always non-portable across different
machine CPU architectures. As mentioned above, structures,
unions, and arrays have varying internal layout and padding
requirements on different machines. In addition, byte
ordering within words and actual word length may differ.

The only way to get close to data file portability is to
write and read data files as one dimensional character
arrays. This avoids alignment and padding problems if the
data is written and read as characters, and interpreted that
way. Thus ascii text files can usually be moved between
different machine types without too much problem.

C.6 Lint

For a complete description of lint(l) see the discussion in
a following chapter.

Lint is a C program checker which attempts to detect
features of a collection of C source files which are non-
portable or even incorrect C. One particular advantage over
any compiler checking is that 1lint checks function
declaration and usage across source files. Neither compiler
nor loader do this. *

Lint will generate warning messages about non-portable
pointer arithmetic and dubious assignments and type
conversions. Passage unscathed through 1lint is not a
guarantee that a program is completely portable.

C.7 Byte Ordering Summary

The following conventions are used below. 'a0' is the lowest
physical addressed byte of the data item. 'al' has a byte
address a0 + 1, etc. 'b0' is the least significant byte of
the data item, 'bl' being the next least significant, etc.

C-14

Appendix C

Note that any program which
following information is guaranteed to be non-portable!

A e e e +
| b0 | bl |
Fmmm +
al al
type short

B +
| bo | bl |
Fomm +
a0 al
type short
Figure 3.
o ————— +
| bOo | bl |
o ————— +
a0 al
type short

o ——— o — - -

e +
| bl | bo |
o +
a0 al
type short
Figure 5.

actually makes

Appendlx C

use

................... +
| b2 l b3 | b0 | bl |
___________________ +
a0 al a2 a3
type long

al a2
type long

e +
| b2 | b3 | b0 |
o o e e e e e e e +
a0 al a2
type long

e ———————————— +
| b3 | b2 | bl |
Fr e ——————————— +
a0 al a2
type long

M68000 Byte Ordering

15

of

the

Appendix C Appendix C

o —————— + e +
| b1 | bo | | b3 | b2 | bl | b0 |
Fomm + e +
a0 al a0 al a2 a3

type short type long

Figure 6. 28000 Byte Ordering

%

C-16

	XSSD_A_0001
	XSSD_A_1001
	XSSD_A_1002
	XSSD_A_1003
	XSSD_A_1004
	XSSD_A_1005
	XSSD_A_1006
	XSSD_A_1007
	XSSD_A_1008
	XSSD_A_1009
	XSSD_A_1010
	XSSD_A_1011
	XSSD_A_1012
	XSSD_A_1013
	XSSD_A_1014
	XSSD_A_1015
	XSSD_A_1016
	XSSD_A_1017
	XSSD_A_1018
	XSSD_A_1019
	XSSD_A_1020
	XSSD_A_1021
	XSSD_A_1022
	XSSD_A_1023
	XSSD_A_1024
	XSSD_A_1025
	XSSD_A_1026
	XSSD_B_0001
	XSSD_B_0002
	XSSD_B_0003
	XSSD_B_0004
	XSSD_B_0005
	XSSD_B_0006
	XSSD_B_0007
	XSSD_B_0008
	XSSD_B_0009
	XSSD_B_0010
	XSSD_B_0011
	XSSD_C_0001
	XSSD_C_0002
	XSSD_C_0003
	XSSD_C_0004
	XSSD_C_0005
	XSSD_C_0006
	XSSD_C_0007
	XSSD_C_0008
	XSSD_C_0009
	XSSD_C_0010
	XSSD_C_0011
	XSSD_C_0012
	XSSD_C_0013
	XSSD_C_0014
	XSSD_C_0015
	XSSD_C_0016

