7/Make: A Maintenance
Program

7.5
7.6

7.7

CHAPTER 7
MAKE: A PROGRAM MAINTAINER

CONTENTS

INtroduCtion..vueeeeeesseeeseccccessnnnenanneesss 771
Description Files and Substitutions.............. 7-5
Command USAg@eceeseessesccccosssscssosscssccssacnsocscs 7-7
Implicit RUl@S..eeceeecescaosssccocscccscnscccsocns 7-8
EXaMPle.eeeoocoeoscnsescossosscosscscnsoscssssancosccs 7-10
Suggestions and WarningS...eceeecececcsseccocss.s 71-11

Suffixes and Transformation RuleS.....ceceseeesss 7=13

0
s
>
T
—
m
X
~.

Make Make

7.1 Introduction

In a programming project, it is easy to lose track of which
files need to be reprocessed or recompiled after a change is
made in some part of the source. Make provides a simple
mechanism for maintaining up-to-date versions of programs
that result from many operations on a number of files. It
is possible to tell Make the sequence of commands that
create certain files, and the list of files that require
other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the
make command will create the proper files simply, correctly,
and with a minimum amount of effort.

The basic operation of Make is to find the name of a needed
target in the description, ensure that all of the files on
which it depends exist and are up to date, and then create
the target if it has not been modified since its generators
were. The description file defines the graph of
dependencies. Make does a depth-first search of this graph
to determine what work is really necessary.

Make also provides a simple macro substitution facility and
the ability to encapsulate commands in a single file for
convenient administration.

It is common practice to divide large programs into smaller,
more manageable pieces. The pieces may require quite
different treatments: some may need to be run through a
macro processor, some may need to: be processed by a
sophisticated program generator (e.g., Yacc or Lex). The
cutputs of these generators may then have to be compiled
with special options and with certain definitions and
declarations. The code resulting from these transformations
may then need to be loaded together with certain 1libraries
under the control of special options. Related maintenance
activities involve #unning complicated test scripts and
installing wvalidated modules. Unfortunately, it is very
easy for a programmer to forget which files depend on which
others, which files have been modified recently, and the
exact sequence of operations needed to make or exercise a
new version of the program. After a long editing session,
one may easily lose track of which files have been changed
and which object modules are still valid, since a change to
a declaration can obsolete a dozen other files. Forgetting
to compile a routine that has been changed or that uses
changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the
other hand, recompiling everything in sight just to be safe
is very wasteful.

MaKQ T R S

The program described in this report mechanizes many of the
activities of program development and maintenance. If the
information on inter-file dependences and command sequences
is stored in a file, the simple command

make

is frequently sufficient to update the interesting files,
regardless of the number that have been edited since the
last make command. In most cases, the description file is
easy to write and changes infrequently. It is usually
easier to type the make command than to issue even one of
the needed operations, so the typical cycle of program
development operations becomes think, edit, make, test.

Make is most useful for medium-sized programming projects.
It does not solve the problems of maintaining multiple
source versions or of describing huge programs.

Basic Features The basic operation of Make is to update a
target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target
if it has not been modified since its dependents were. Make
does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the
date and time that a file was last modified.

To illustrate, let us consider a simple example. A program
named prog is made by compiling and loading three C-language
files x.c, y.c, and z.c. By convention, the output of the C
compilations ~is found in files named x.0, y.0, and z.o.
Assume that the files x.c and y.c share some declarations in
a file named defs, but that z.c does not. That is, x.c and
y.c have the line

#include "defs}h

The following text describes the relationships and
operations:

prog: X.0 Y.0 Z.0
cC X.0 Vy.0 2.0 =0 prog

X.0 y.o: defs

If this information were stored in a file named makefile,
the command

make

Make Make

would perform the operations needed to recreate prog after
any changes had been made to any of the four source files
X.¢, Y.C, z.c, or defs.

Make operates using three sources of information: a user-
supplied description file (as above), file names and "last-
modified" times from the file system, and built-in rules to
bridge some of the gaps. In our example, the first line
says that prog depends on three ".o" files. Once these
object files are current, the second line describes how to
load them to create prog. The third line says that x.o0 and

.0 depend on the file defs. From the file system, Make

iscovers that there are three ".c" files corresponding to
the needed ".o" files, and uses built-in information on how
to generate an object from a source file (i.e., issue a
"cc -c" command).

The following long-winded description file is equivalent to
the one above, but takes no advantage of Make's default
rules: :

prog: XxXx.0 V.0 z.0
ccC X.0 y.0 zZ.0 =0 Dprog
X.0: Xx.c defs
cc ~-C X.cC
y.0: v.c defs
cc -~-C y.cC
zZ.0: zZ.C
cc -C zZ.C

If none of the source or object files had changed since the
last time prog was made, all of the files would be current,
and the command

make

would just announce this fact and stop. If, however, the
defs file had been edited, x.c and y.c (but not z.c) would
be recompiled, and then prog would be created from the new
".0o" files. 1If only the file y.c had changed, only it would
be recompiled, but it would still be necessary to reload

prog.

If no target name is given on the Make command 1line, the
first target mentioned in the description 1is created;
otherwise the specified targets are made. The command

make x.0

would recompile x.0 if x.c or defs had changed.

Make Make

If the file exists after the commands are executed, its time
of last modification is used in further decisions; otherwise
the current time is used. It is often quite useful to
include rules with mnemonic names and commands that do not
actually produce a file with that name. These targets can
take advantage of Make's ability to generate files and
substitute macros. Thus, a target "save" might be included
to copy a certain set of files, or a target "cleanup" might
be used to throw away unneeded intermediate files. 1In other
cases one may maintain a zero-length file purely to keep
track of the time at which certain actions were performed.
This technique is useful for maintaining remote archives and
listings.

Make has a simple macro mechanism for substituting in
dependency lines and command strings. Macros are defined by
command arguments or description file 1lines with embedded
equal signs. A macro is invoked by preceding the name by a
dollar sign; macro names longer than one character must be
parenthesized. The name of the macro is either the single
character after the dollar sign or a name inside
parentheses. The following are valid macro invocations:

$ (CFLAGS)
$2

$(xy)

Sz

$(2)

The last two invocations are identical. $$ 1is a dollar
sign. All of these macros are assigned values during input,
as shown below. Four special macros change values during
the execution of the command: $*, $@, $?, and $<. They will
be discussed later. The following fragment shows the use:

OBJECTS = x.0 y.0 2.0
LIBES = -1ln ..
prog: $(OBJECTS)
cc $(OBJECTS) S(LIBES) -o prog

o o0

The command
make

loads the three object files with the Lex -1lln library. The
command

make "LIBES=-l1lln -1m"

loads them with both the Lex (-11) and the math (-1m)

Make Make

libraries, since macro definitions on the command line
override definitions in the description. (It 1is necessary
to quote arguments with embedded blanks in XENIX commands.)

The following sections detail the form of description files
and the command line, and discuss options and built-in rules
in more detail.

7.2 Description Files and Substitutions

A description file contains three types of information:
macro definitions, dependency information, and executable
commands. There is also a comment convention: all
characters after a sharp (#) are ignored, as is the sharp
itself. Blank lines and lines beginning with a sharp are
totally ignored. If a non-comment line is too long, it can
be continued using a backslash. If the last character of a
line 1is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not
preceded by a colon or a tab. The name (string of letters
and digits) to the left of the equal sign (trailing blanks
and tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are
stripped.) The following are valid macro definitions:

2 = xyz
abc = -11 -1y
LIBES =

The last definition assigns LIBES the null string. A macro
that 1is never explicitly defined has the null string as
value. Macro definitions may also appear on the Make
command line (see below).

Other lines give information about target files. The
general form of a target is:

target ... :[:] [dependent ...] [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and
dependents are strings of letters, digits, periods, and
slashes. (Shell metacharacters "*" and "?" are expanded.) A

command is any string of characters not including a sharp
(except in quotes) or newline. Commands may appear either
after a semicolon on a dependency line or on lines beginning
with a tab immediately following a dependency line.

Make Make

A dependency line may have either a single or a double
colon. A target name may appear on more than one dependency
line, but all of those lines must be of the same (single or
double colon) type.

1. For the usual single-colon case, at most one of these
dependency lines may have a command sequence
associated with it. If the target is out of date with
any of the dependents on any of the lines, and a
command sequence is specified (even a null one
following a semicolon or tab), it is executed.
Otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be
associated with each dependency line. If the target
is out of date with any of the files on a particular
line, then the associated commands are executed. A
built-in rule may also be executed. This detailed
form is of particular value in updating arch:ive-type
files.

I1f a target must be created, the sequence of commands is
executed. Normally, each command line is printed and then
passed to a separate invocation of the shell after
substituting for macros. (The printing is suppressed in
silent mode or if the command line begins with an @ sign).
Make normally stops if any command signals an error by
returning a non-zero error code. (Errors are ignored if the
"-i" flags has been specified on the Make command line, if
the fake target name ".IGNORE" appears in the description
file, or if the command string in the description file
begins with a hyphen. Some XENIX commands return
meaningless status). Because each command line is passed to
a separate invocation of the shell, care must be taken with
certain commands (e.g., cd and Shell control commands) that
have meaning only within a single Shell process; the results
are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is
set to the name of the file to be "made". $? is set to the
string of names that were found to be younger than the
target. If the command was generated by an implicit rule
(see below), $< is the name of the related file that caused
the action, and $* is the prefix shared by the current and
the dependent file names.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name " .DEFAULT" are used. If there is no such name, Make
prints a message and stops.

Make Make

7.3 Command Usage

The make command takes four kinds of arguments: macro
definitions, flags, description file names, and target file
names. The syntax is as follows:

make [flags] [macro definitions] [targets]

The following summary of the operation of the command
explains how these arguments are interpreted.

First, all macro definition arguments (arguments with
embedded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files.

Next, the flag arguments are examined. The permissible
flags are

-i Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
" _IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before
executing. This mode 1is also entered if the fake
target name ".SILENT" appears in the description
file.

- Do not use the built-in rules.

~-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an "@" sign are
printed.

-t Touch the target files (causing them to be up to

date) rather than issue the usual commands.

-q Question. The make command returns a zero Or non-
zero status code depending on whether the target
file is or is not up to date.

~p Print out the complete set of macro definitions and
target descriptions

—-d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument' is assumed
to be the name of a description file. A file name
of "-" denotes the standard input. If there are no

"_f" arguments, the file named makefile or Makefile

Make ' Make

in the current directory is read. The contents of
the description files override the built-in rules if
they are present).

Finally, the remaining arguments are assumed to be the names
of targets to be made; they are done in left to right order.
I1f there are no such arguments, the first name in the
description files that does not begin with a period is
"made".

7.4 Implicit Rules

The Make program uses a table of interesting suffixes and a
set of transformation rules to supply default dependency
information and implied commands. (The Appendix describes
these tables and means of overriding them.) The default
suffix list is:

Object file

C source file

Efl source file

Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

I’-—‘ﬁgﬁkl;’ll;ﬂl;‘ 11010

The following diagram summarizes the default transformation
paths. If there are two paths connecting a pair of
suffixes, the longer one is used only 1if the intermediate
file exists or is named in. the description.

L] O
Fm e Rt ST o e o o rom o e o ——— i e +
i
| | | | l I |
.C .r .e .f] Y .yr .ye .1
? A A
==t
l
.Y .1 .yr .ye

If the file x.0 is needed and there 1is an x.c¢ in the

description or directory, it is compiled. 1If there is also

Make Make

an x.1, that grammar would be run through Lex before
compiling the result. However, if there is no x.c but there
is an x.1l, Make then discards the intermediate C-language
file and uses the direct link in the graph above.

It is possible to change the names of some of the compilers
used in the default, or the flag arguments with which they
are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and
LEX. The command

make CC=newcc

causes the newcc command to be used instead of the usual C

compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with
optional flags. Thus

make "CFLAGS=-0"

causes the optimizing C compiler to be used.

o

Make Make

7.5 Example

As an example of the use of Make, we will present the
description file used to maintain the make command itself.
The code for Make is spread over a number of C source files
and a Yacc grammar. The description file contains:

Description file for the Make command

P = lpr

FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\
gram.y lex.c

OBJECTS = vers.o main.o ... dosys.o gram.o

LIBES=
LINT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

S (OBJECTS) : defs
gram.o: lex.c

cleanup:
-rm *,0 gram.cC
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: S$(FILES)# print recently changed files
pr $? | $P]
touch print

test:)
make -dp | grep -v TIME >lzap
/usr/bin/make -dp | grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c dgram.c
S(LINT) dosys.c doname.c files.c main.c misc.c vers.c qgram.c
M JJram.

archz:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The

Make Make

following output results from typing the simple command
make

in a directory containing only the source and description
file:

cc -C vers.c

cc -c main.c

cc -c doname.c

cc -c misc.c

cc -c files.c

cc -—c dosys.c

yacc dgram.y

mv y.tab.c¢c gram.c

cc —-Cc gram.C

cc vers.o main.o ... dosys.o gram.o —-o0 make
13188+3348+3044 = 19580b = 046174Db .

Although none of the source files or grammars were mentioned
by name in the description file, Make found them using its
suffix rules and issued the needed commands. The string of
digits results from the "size make" command; the printing of
the command line itself was suppressed by an @ sign. The @
sign on the size command in the description file suppressed
the printing of the command, so only the sizes are written.

The last few targets in the description file are wuseful
maintenance sequences. The "print" target prints only the
files that have been changed since the last "make print"
command. A zero-length file print is maintained to keep
track of the time of the printing; the $? macro in the
command line then picks up only the names of the files
changed since print was touched. The printed output can be
sent to a different printer or to a file by changing the
definition of the P macro:

make print "P = lpr”
or

make print "P= cat >zap"

7.6 Suggestions and Warnings

The most common difficulties arise from Make's specific

meaning of dependency. If file x.c has a "#include "defs"™"
line, then the object file x.o depends on defs; the source

f1le x.¢ does not. (If defs is changed, it is not necessary

to do anything to the file x.c, while it 1is necessary to

Make Make

tecreate x.0.)

To discover what Make would do, the -~n option is very
useful. The command
make -n

orders Make to print out the commands it would issue without
actually taking the time to execute them. If a change to a
file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the -t (touch) option can
save a lot of time: instead of issuing a large number of
superfluous recompilations, Make updates the modification
times on the affected file. Thus, the‘command

make -ts

("touch silently") causes the relevant files to appear up to
date. Obvious care 1is necessary, since this mode of
operation subverts the intention of Make and destroys all
memory of the previous relationships.

The debugging flag -d causes Make to print out a very
detailed description of what it is doing, including the file
times. The output is verbose, and recommended only as a last
resort.

Make Make

7.7 Suffixes and Transformation Rules

The Make program itself does not know what file name
suffixes are interesting or how to transform a file with one
suffix into a file with another suffix. This information is
stored in an internal table that has the form of a
description file. If the "-r" flag is used, this table |is
not used.

The list of suffixes is actually the dependency list for the
name ".SUFFIXES"; Make 1looks for a file with any of the
suffixes on the list. If such a file exists, and if there
is a transformation rule for that combination, Make acts as
described earlier. The transformation rule names are the
concatenation of the two suffixes. The name of the rule to
transform a ".r" file to a ".o" file is thus ".r.o". If the
rule 1is present and no explicit command sequence has been
given in the user's description files, the command sequence
for the rule ".r.o" is used. 1If a command is generated by
using one of these suffixing rules, the macro $* is given
the wvalue of the stem (everything but the suffix) of the
name of the file to be made, and the macro $< is the name of
the dependent that caused the action.

The order of the suffix list is significant, since it is
scanned from left to right, and the first name that is
formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can just
add a target for .SUFFIXES in his own description file; the
dependents will be added to the usual list. A .SUFFIXES
line without any dependents deletes the current 1list. (It
is necessary to clear the current list if the order of names

Make

is to be changed).

Make

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .Cc .e .r
YACC=yacc

YACCR=yacc -r
YACCE=yacc -e

YFLAGS=

LEX=lex

LFLAGS=

CC=cc

AS=as -

CFLAGS=

RC=ecC

RFLAGS=

EC=ecC

EFLAGS=

FFLAGS=

.C.0 :

$(CC) $(CFLAGS) -c $<
.e.0 .r.o .f.o :

$ (EC) $ (RFLAGS) $(EFLAGS) $ (FFLAGS)

«+S.0 ¢

.Y.O

C

$(AS) -o $@ S$<

$ (YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) =~-c y.tab.c

rm y.tab.c
mv y.tab.o $@

$ EYACC) $ (YFLAGS) $<
mv v.tab.c $@

. £

14

.1

.S

-c S«

8/As: An Assembier

8.1

8.3

8.4

CHAPTER 8

AS: AN ASSEMBLER
CONTENTS

IntrOduction....-.....-o....-..-...............e.
Invocation..-.-........oo.o-.................--..

Invocation Options....cccetieeeiiencecencncacccess

o

S O

rce Program Format....cceeeeeeeacsocccsccecccens
.1 Label Field...ceeeeeereoeeccsacosscscscsocns
.2 Opcode Field...ceeeeeeeonocsccnsnssccconns
3
4

Operand-Field..c.cecceecececsccrsosnscccanass
Comment Field‘l.‘......'.........’l.l.‘.ll

@ o oo W

bols and EXpPresSSiONS....c.ccececaccccscsossssns

SYMbDOlS .t teeececvocecscscscocsccscsancsncnsns
Assembly Location Counter....ccceeeeeeecee
Program SectionS...iceeeeccncccesncccnccons
CONSEANES . e ceeeeeeesacncssssssssssscsssssns
OperatorsS.e..icecesccanses seecesscsesseaoane

Terms.........-.o....................-..o.

EXPreSSiONS.ceeeeccesscccccsssssocssassscas

3

NonewiNEF O

[S20KC, S, IO, IO O IOy

oo 00 0O 00 O Ul
e e o o o o
« o o o

nstructions and Addressing ModeS...cceocnecesssscs
,6.1 Instruction MnemonicCS.....eeeeensecsonsson
.6.2 Operand ,Addressing Modes.......ccevevecnnn
Assenbler Directives. hessassessesenns .
LASCLL +ASCLZeeeeeinnnnens ceecereaeaeses .
.blkb .blkw .blikl.......... cesssvesreneves
.byte .word .long....... cecassenesaeneas

1
2
3
4 .endeceeececen.. cecsecvenon ceeesssses s e
5 .J.text .data .bSS. .. ciciecccrcsecssansene
6
7

.globl .COMM..coovewc-as cesesenssssseesanas

.even.-.o.a @ ® 6 ¢ 686 6 6 0 0 0 " 80 60 s e 0 s s e 9

Operation CodesS...cveeeeeesccoosossoccsssccncsecs “ae

Error MeSSAJeS..eceescscvesesssssssssssscsssssnssssoen

@m(‘DO)OO
[N4 I = R V)

ooooolooooo
W WwWoow;mu

8-11
8-12
8-12

8-13
8-13
8-14

B-1i7
B-17
B-18
8-19
8-19
8-19
8-20
8-21

8-22

8-23

As As

8.1 Introduction

This chapter describes the use of the XENIX assembler, named
as, for the Motorola MC68000 microprocessor. It is beyond
the scope of this manual to describe the instruction set of
the 68000 or to discuss assembly language programming in
general. For information on these topics, refer to the
MC68000 16-Bit Microprocessor User's Manual, 3rd Edition,
Englewood Cliffs, N.J: Prentice-Hall, Inc., 1982.

This chapter is organized as follows:

The Command Line .
Discusses assembler invocation and command line
options. '

Source Program Format
Discusses the proper layout of an assembly
language program, including specification of the
label, opcode, operand, and comment fields.

Symbols and Expressions
Discusses the symbols and expressions used 1in
writing assembly language programs.

Instructions and Addressing Modes
Discusses the available instructions and
addressing modes.

Assembler Directives
Discusses assembler directives.

Operation Codes .
Lists the available 68000 operation codes.

Error Messages
Lists error messages that can be generated by as.

8.2 Invocation

As can be invoked with one or more arguments oOp‘ions.
Except for option arguments, which must appear first on the
command line, arguments may appear in any order on the
command line. The source filename argument should be named
filename.s. If a filename does not have the ".s" extension,
the assembler prints a warning message, but still assembles
the specified file. Note, that except as specified below,
flags may be grouped. For example

As

As

as -glo that.o this.s

will have the same effect as

as -g

-1 -o that.o this.s

8.3 Invocation Options

The various flags and their function are:

-0 relname

-9

The default output name is filename.o if
assembling on an MC68000, and filename.b if
cross assembling. This can be overridden by
giving as the -o flag and giving the new
filename in the argument following the -o. The
-0 must be the last argument in a flag bunch.
Subsequent flags are ignored. For example

as -o that.o this.s

assembles the source this.s and puts the output
in the file that.o.

By default, no output listing is produced. A
listing may be produced by giving the -1 flag.
The 1listing filename extension is L". The
filename for the 1list file 1is based on the
output file. So the command line

as -1 -o output.x input.s
produces a listing named output.L.

By default, all symbols go into the symbol table
of the a.out(5) format file that is produced by
the assembler, including locals. If you want
only symbols that are defined as .globl or .comm
to be included, you can give the -e (externals
only) flag.

By default, if a symbol is undefined 1in an
assembly, an error is flagged. This may be
changed with the -g flag. If this is done,
undefined symbols will be interpreted as
external.

As As

8.4 Source Program Format

An as program consists of a series of statements, each of
which occupies exactly one 1line, 1i.e. a sequence of
characters followed by the newline character. Form feed,
ASCII <CONTROL~L>, also serves as a line terminator.
continuation lines are not allowed, and the maximum line
length is 132 characters. However, several statements may
be on a single 1line, separated by semicolons. Remember
though, that anything after a comment character is
considered a comment. The format of an as assembly language
statement is:

[label-field] [opcode [operand-fieéld] [;]} [| comment]

Most of the fields may be omitted under certain
circumstances. In particular:

1. Blank lines are permitted.

2. A statement may contain only a label field. The label
defined in this field has the same value as if it were
defined in the label field of the next statement in
the program. As an example, the two statements

name:
addl d0,d1

are equivalent to the single statement
name : addl dao0,dl

3. A line may consist of only the comment field; the two
statements below are allowed as comments occupying
full lines:

This is a comment field.
So is tHis.

4. Multiple statements may be put on a line by separating
them with a semicolon (;). Remember, however, that
anything after a comment character (including
statement separators) is a comment.

In general, blanks or tabs are allowed anywhere in a
statement; that is, multiple blanks are allowed in the
operand field to separate symbols from operators. Blanks are
significant only when they occur in a character string
(e.g., as the operand of an .ascii pseudo-op) or in a
character constant. At 1least one blank or tab must appear
between the opcode and the operand field of a statement.

As As

8.4.1 Label Field

A label is a user-defined symbol that is assigned the value
of the current location counter; both of which are entered
into the assembler's symbol table. The value of the label
is relocatable.

A label is a symbolic means of referring to a specific

location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. A
maximum of 10 1labels may be defined by a single source
statement. The collection of 1label definitions in a
statement is called the label-field.

The format of a label-field is:

symbol: [symbol:] ...

Examples:
start:
name: name2: Multiple symbols
7S A local symbol, defined below

8.4.2 Opcode Field

The opcode field of an assembly language statement
identifies the statement as either a machine instruction, or
an assembler directive (pseudo-op). One or more blanks (or
tabs) must separate the opcode field from the operand field
in a statement. No blanks are necessary between the label
and opcode fields, but they are recommended to improve

readability of the program.

A machine instruction is indicated by an instruction
mnemonic. Some conventions used in as for instruction
mnemonics are be described later in a later section. A
complete list of the opcodes is also presented.

An assembler directive, or pseudo-op, performs some function
during the assembly process. It does not produce any
executable code, but it may assign space in a program for
data.

As is case sensitive. Operators and operands may only be
lower case.

8.4.3 Operand-Field

A distinction is made between operand-field and operand in
as. Several machine instructions and assembler directives
require one or more arguments, and each of these is referred
to as an "operand". 1In general, an operand field consists
of zero, one, or two operands, and in all cases, operands
are separated by a comma. In other words, the format for an
operand-field is:

[operand [, operand]...]

The format of the operand field for machine instruction

statements is the same for all instructions. The format of
the operand field for assembler directives depends on the
directive itself.

8.4.4 Comment Field

The comment delimiter in as is the vertical bar, (]), not
the semicolon, (;). The semicolon 1is the statement
separator.

The comment field consists of all characters on a source
line following and including the comment character. These
characters are ignored by the assembler. Any character may
appear in the comment field, with the obvious exception of
the newline character, which starts a newline.

8.5 Symbols and Expressions

This section describes the various components of as
expressions: symbols, numbers, terms, and expressions.

8.5.1 Symbols

A symbol consists of 1 to 32 characters, with the following
restrictions:

1. vValid characters include A-%, a-z, 0-9, period (.),
underscore (_), and dollar sign ($).

2. The first character must not be numeric, unless the
symbol is a local symbol.

There is no 1limit to the size of symbols, except the
practical 1issue of running out of symbol memory in the

assembler. However, be aware that the current C compiler
only emits 8 characters so a 9 or more character symbol that
you think is the same in C and assembly may not match.
Upper and lower cases are distinct, ("Name" and "name" are
separate symbols). The period (.) and dollar sign (§)
characters are valid symbol characters, but they are
reserved for system software symbols such as system calls
and should not appear in user-defined symbols.

A symbol is said to be "declared" when the assembler
recognizes it as a symbol of the program. A symbol is said
to be "defined" when a value is associated with it. With the
exception of symbols declared by a .globl directive, all
symbols are defined when they are declared. A label symbol
(which represents an address in the program) may not be
redefined; other symbols are allowed to receive a new value.

There are several ways to declare a symbol:
1. As the label of a statement

2. In a direct assignment statement

3. As an external symbol via the .globl directive

4. As a common symbol via the .comm directive

5. As a local symbol
8.5.1.1 Direct Assignment Statements
A direct assignment statement assigns the wvalue of an
arbitrary expression to a specified symbol. The format of a

direct assignment statement is:

symbol = [symbol =] ... expression

Examples of valid direct assignments are:

vect_size = 4

vectora = /fffe

vectorb = vectora-vect size
CRLF = /O0DOA

Any symbol defined by direct assignment may be redefined
later in the program, in which case its value is the result
of the last such statement. A local symbol may be defined
by direct assignment; a label or register symbol may not be
redefined.

8-6

If the expression is absolute, then the symbol is also
absolute, and may be treated as a constant in subsequent
expressions. If the expression is relocatable, however,
then symbol is also relocatable, and it is considered to be
declared in the same program section as the expression. See

the discussion in a 1later section for an explanation of
absolute and relocatable expressions.

8.5.1.2 Register Symbols

Register symbols are symbols used to represent machine
registers. Register symbols are usually used to indicate
the register in the register field of a machine instruction.
The register symbols known to the assembler are given at the

end of this chapter. '

8.5.1.3 External Symbols

A program may be assembled in separate modules, and then
linked together to form a single program (see 1d(l)).
External symbols are defined in each of these separate
modules. A symbol which is declared (given a value) in one
module may be referenced in another module by declaring the
symbol to be external in both modules. There are two forms
of external symbols: those defined with the .globl directive
and those defined with the .comm directive. See Section
8.7.6 for more information on these directives.

8.5.1.4 Local Symbols

Local symbols provide a convenient means of generating
labels for branch instructions, etc. Use of local symbols
reduces the possibility of multiply-defined symbols in a
program, and separates entry point symbols from local
references, such as the top of a loop. Local symbols cannot
be referenced by other object modules.

Local symbols are of the form n$ where n is any integer.
Valid local symbols include:

27$
394s

A local symbol is defined and referenced only within a
single local symbol block (lsb). A new local symbol block
is entered when either 1) a label is declared; or 2) a new
program section is entered. There is no conflict between
local symbols with the same name that appear in different
local symbol blocks.

8.5.2 Assembly Location Counter

The assembly location counter is the period character (.);
hence its name dot. When used in the operand field of any
statement, dot represents the address of the first byte of
the statement. Even in assembly directives, it represents
the address of the start of the directive. A dot appearing
as the third argument in a .byte directive would have the
value of the address where the first byte was loaded; it is
not updated "during" the pseudo-op.

For example:
movl .,dl | load value of program counter into dl

At the beginning of each assembly pass, the assembler clears
the location counter. Normally, consecutive memory locations
are assigned to each byte of generated code. However, the
location where the code is stored may be changed by a direct
assignment altering the location counter:

. = expression

This expression must not contain any forward references,
must not change from one pass to another, and must not have
the effect of reducing the value of dot. Note that setting
dot to an absolute position may not have quite the effect
you expect if you are linking as's output file with other
files, since dot is maintained relative to the origin of the
output file and not the resolved position in memory.
Storage area may also be reserved by advancing dot. For
example, if the current value of dot is 1000, the direct
assignment statement:

TABLE: .=. + /100

would reserve 100 (hex) bytes of storage, with the address
of the first byte as the value of TABLE. The next
instruction would be stored at address 1100. Note that
" pblkb 100" is a substantially more readable way of doing
the same thing.

Note that the :p operator allows you to assemble values that
are location relative both locally (within a module) and
across module boundaries, without needing to do explicit
address arithmetic.

8.5.3 Program Sections

As in XENIX, programs to as are divided into two sections:
text and data. The normal interpretation of these sections

is: instruction space and initialized data space,
respectively.

In the first pass of the assembly, as maintains a separate
location counter for each section, thus for code like

.text

LABELl: movw dl ,dz2
.data

LABEL2: .word 27
.text

LABEL3: addl d2,d41
.data

LABEL4: .byte 4

in the output, LABELl will immediately precede LABEL3, and
LABEL2 will immediately precede LABEL4. At the end of the
first pass, as rearranges all the addresses so that the
sections will be output in the following order: text, then
data. The resulting output file is an executable image file
with all addresses correctly resolved, with the exception of
.comm's and undefined .globl's. For more information on the
format of the output file, consult a.out(5).

8.5.4 Constants

All constants are considered absolute guantities when
appearing in an expression.

8.5.4.1 Numeric Constants

Any symbol beginning with a digit is assumed to be a number,
and will be interpreted in the default decimal radix.
Individual numbers may be evaluated in any of the five
valid radices: decimal, octal, hexadecimal, character, and
binary. The default decimal radix is only used on "bare”
numbers, i.e. sequences of digits. Numbers may be
regiesented in other radices as defined by the following
table.

The other three radices require a prefix:

As As

Radix Prefix Example

octal * (up-arrow) 17 equals 15. base 10.
octal 0 “017 equals 15. base 10.
hex / (slash) /Al equals 16l. base 10.
hex 0Ox 0xAl equals 161. base 10.
char ' (quote) 'a equals 97 base 10.

char ' (quote) '\n equals 10 base 10.
binary % (percent) $11011 equals 27. base 10.

Letters in hex constants may be upper ‘or lower case; e.g.,
/aa=/Aa=/BA=170. Illegal digits for a particular radix
generate an error (e.g.. ~018). while the C character
constant syntax 1is supported, you cannot define character

constants by a number, (e.g., '\27) as this is more -easily
represented in one of the other formats.

8-10

As As

8.5.5 Operators

8.5.5.1 Unary Operators
There are three unary operators in as:

Operator Function
+ unary plus, has no effect.

unary minus.
logical negation.

?

:p program displacement

The ":p" operator is a suffix that can be applied to a
relocatable expression. It replaces the value of the
expression with the displacement of that value from the
current location (not dot). This is implemented with
displacement relocation, so that it also works across
modules.

8.5.5.2 Binary Operators
Binary operators in as include:

Operator Description Example Value
+ Addition 3+4 7.
- Subtraction 3-4 -1., or /FFFF
* Multiplication 4%*3 12.
/ Division 12/4 3.
1 Logical OR 301101 | #00011 $01111
& Logical AND $01101&%00011 $00001
= Remainder 573 2.

Each operator is assumed to work on a 32-bit number. If the

value of a particular term occupies only 8 or 16 bits, the
sign bit is extended into the high byte.

Sometimes error messages in expressions can be fixed by

breaking the expressions into multiple statements using
direct assignment statements.

8-11

As As

8.5.6 Terms

A term is a component of an expression. A term may be one of
the following:

A. A number whose 32-bit value is used
B. A symbol

C. A term preceded by a unary operator. For example, both
"term" and "“term" may be considered to be terms.
Multiple unary operators are allowed; e.g. "+--+A" has
the same value as "A".

8.5.7 Expressions

Expressions are combinations of terms joined together by
binary operators. An expression is always evaluated to a
32-bit value. If the instruction calls for only one byte,
(e.g. .byte), then the low-order 8 bits are used.

Expressions are evaluated left to right with no operator
precedence. Thus "1 + 2 * 3" evaluates to 9, not 7. Unary
operators have precedence over binary operators since they
are considered part of a term, and both terms of a binary
operator must be evaluated before the binary operator can be
applied.

A missing expression or term is interpreted as having a
value of zero. In this case, an "Invalid Expression" error
will be generated. An "Invalid Operator" error means that a
valid end-of-line character or binary operator was not
detected after the assembler processed a term. In
particular, this error will be generated if an expression
contains a symbol with an 1illegal character, or 1if an
incorrect comment character was used.

Any expression, when evaluated, is either absolute,
relocatable, or external:

A. An expression is absolute if its value is fixed. An
expression whose terms are constants, or symbols whose
values are constants via a direct assignment
statement, is absolute. A relocatable expression minus
a relocatable term, where both items belong to the
same program section is also absolute.

B. An expression is relocatable if its value i3 fixed
relative to a Dbase address, but will have an offset

value when it is linked, or 1loaded into core. All

8-12

labels of a program defined in relocatable sections
are relocatable terms, and any expression which
contains them must only add or subtract constants to
their value. For example, assume the symbol sym was
defined 1in a relocatable section of the program. Then
the following demonstrates the use of relocatable
expressions:

sym relocatable

sym+5 relocatable

sym-"'A relocatable

sym*2 Not relocatable

2-sym Not relocatable, since the expression cannot

be linked by adding sym's offset to it.

sym-sym2 Absolute, since the offsets added to sym and
sym2 cancel each other out.

C. An expression is external (or global) if it contains
an external symbol not defined in the current program.
The same restrictions on expressions containing
relocatable symbols apply to expressions containing
external symbols. Exception: the expression "sym-sym2”
where both sym and sym2 are external symbols is not
allowed.

8.6 Instructions and Addressing Modes

This section describes the. conventions used in as to specify
instruction mnemonics and addressing modes.

8.6.1 Instructionyﬁnemonics

The instruction mnemonics used by as are described in the
previously mentioned user's manual with a few variations.
Most of the MC68000 instructions can apply to byte, word or
to long operands, thus in as the normal instruction mnemonic
is suffixed with b, w, or 1 to indicate which 1length of
operand was intended. For example, there are three mnemonics
for the add instruction: addb, addw, and addl.

Branch and call instructions come in 3 forms: the bra, jra,
bsr and For the bra and bsr forms, the assembler will always
produce a long (l16-bit) pc relative address. For the jra and
jbsr forms, the assembler will produce the shortest form of

As As

binary it can. This may be 8-bit or 16-bit pc relative, or
32-bit absolute. The 32-bit absolute is implemented for
conditional branches by inverting the sense of the condition
and branching around a 32-bit jmp instruction. The 32-bit
form will be generated whenever the assembler can't figure
out how far away the addressed location is; for example,
branching to an undefined symbol or a calculated value such
as branching to a constant location.

8.6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s) of
an instruction. For details of the effective "addressing
modes, see section 2.10 of the MC68000 User's Manual. Note
also that not all instructions allow all addressing modes.
Details are given in the MC68000 User's Manual in appendix B
under the specific instruction.

In the examples that follow, when two examples are given,
the first example is based on the assembly format suggested
by Motorola. The second example is in what is called
"Register Transfer Language" or RTL. This is the format used
by MIT and a number of other M68000 UNIX vendors, and Iis
used by Motorola to describe technically the register
transfers that are occurring within the machine, so it is
provided for compatibility. Either syntax is accepted, and
it is permissible to mix the two types of syntax within &
module or even within a line when two effective address
fields are allowed. Be aware, that a warning message will be
generated when the assembler notices such a mix.

Many of the effective address modes have other names, by
which they may be more commonly known. These name or names
appear to the right of the Motorola name in parenthesis.

Data Register Direct.
addl do,d1

Address Register Direct
addl a0, a0

Address Register Indirect (indirect)

addl (al),d1
addl a0e@,dl

Address Register Indirect with Postincrement (autoinc)

As As

movl (a7)+,dl
mov 1l a7e+,dl

Address Register Indirect with Predecrement (autodec)

movl dl, (a7)-
movl dl,a7@-

Address Register Indirect with Displacement (indexed)

This form includes a signed 16-bit displacement. These
displacements may be symbolic.

movl l12(ab6),dl
movl a6@ (12),dl1

Address Register Indirect with Index (double-indexed)

This form includes a signed 8-bit displacement and an
index register. The size of the index register is
given by following its specification with a ":w" or a
":1". If neither is specified, ":1" is assumed.

movl 12(a6,d0:w) ,dl
movl a6@(12,d0:w) ,dl

Absolute Short Address
movl xx:w,dl
Absolute Long Address (absolute)

Note that this is the address mode assumed should the
given wvalue be a constant. This is not true of branch
and call instructions. Note also that the second
example here is not RTL syntax, but it is provided
because it is also allowed.

mov 1l xx,dl
movl xx:1,d1

Program Counter with Displacement (pc relative)
When pc relative addressing is used, such as
pea name (pc)
the assembler will assemble a value that 1is equal to
"name-.", where dot (.) is the position of the value,

whether name is in the current module or not. You may
also cause an expression to be pc relative by suffixing

8-15

As

As

it with a ":p". See also the displacement relocation
mode in a.out(5).

movl 10 (pc) ,dl
movl pc@ (10),dl

Note that if a symbol appears in the above addressing
mode (where the 10 1is in the example), the symbol's
displacement from the extension word will be used in
the instruction.

Program Counter with Index

jmp switchtab(pc,d0:1)
jmp pc@ (switchtab,d0:1)"
switchtab:

Immediate Data

Note that this is the way to get immediate data. If a
number 1is given with no number sign (#), you get
absolute addressing. This does not hold for jsr and jmp
instructions. Also note that the second and third
examples are not RTL syntax in particular.

movl $#47 ,41

jmp somewhere
moveq #7,41

In the movem instruction's register mask field, a
special kind of immediate is allowed: the register
list. 1Its syntax is as follows:

<reg [,regl>

Here, reg is any register name. Register names may be
given in any order. The assembler automatically takes
care of reversing th mask for the auto-decrement
addressing mode. Normal immediates are also allowed.

As As

8.7 Assembler Directives

The following pseudo-ops are available in as:

.ascii stores character strings
.ascig

.blkb
.blkw saves blocks of bytes/words/longs
.blkl

.byte
.word stores bytes/words/longs
.long

[P

.end terminates program and identifies execution address

. text Text psect
.data Data psect

.bss Bss psect

.globl declares external symbols

. comm declares communal symbols

.even forces location counter to next word boundary

8§.7.1 .ascii .asciz

The .ascii directive translates character strings into their
7-bit ascii (represented as 8-bit bytes) equivalents for use
in the source program. The format of the .ascii directive is
as follows:

.ascii "character-string”

where character-string contains any character valid in a
character constant. Obviously, a newline must not appear
within the character;string. (It can be represented by the
escape sequence "\n" as described below). The quotation
mark (") is the delimiter character, which must not appear
in the string unless proceeded by a backslash (\).

The following escape sequences are also valid as single
characters:

8-17

As As

X Value of X
\b <backspace>, hex /08
“\t <tab>, hex /09
\n <newline>, hex /0A
“\f <form-feed>, hex /0C
\r <return>, hex /0D
\nnn hex value of nnn

Several examples follow:

Hex Code Generated: Statement:

22 68 65 6C 6C 6F 20 74 .ascii "hello there"

68 65 72 65 22

77 61 72 6E 69 6E 67 20 .ascii "Warning-\007\007 \n"
2D 07 07 20 OA

The .asciz directive is equivalent to the .ascii directive
with a zero (null) byte automatically inserted as the final
character of the string. Thus, when a list or text string
is to be printed, a search for the null character can
terminate the string. Null terminated strings are sometimes
used as arguments to XENIX system calls.

8.7.2 .blkb .blkw .blkl

The .blkb, .blkw, and .bkkl directives are used to reserve
blocks of storage: .blkb reserves bytes, .blkw reserves
words and .blkl reserves longs.

The format is:

{label:] .blkb expression
[label:] .blkw expression
[label:]1 .blkl expression

where expression is the number of bytes or words to reserve.
If no argument is given a value of 1 is assumed. The
expression must be absolute, and defined during pass 1 (i.e.
no forward references).

This is equivalent to the statement ".=.+expression”, but
has a much more transparent meaning.

8.7.3 .byte .word .long

The .byte, .word, and .long directives are used to reserve
bytes and words and to initialize them with values.

The format is:

[label:] .byte [expression] [,expression] ...
[label:] .word [expression] [,expression]...
flabel:] .long [expression] [,expression] ...

The .byte directive reserves one byte for each expression in
the operand field and initializes the value of the byte to
be the low-order byte of the corresponding expression. Note
that multiple expressions must be separated by commas. A
blank expression is interpreted as zero, and no error |is
generated.

For example,

.byte a,b,c,s reserves 4 bytes.

.byte ,,,, reserves five bytes, each with
a value of zero.
.byte reserves a single byte, with a

value of zero.
The semantics for .word and .long are identical, except that
16-bit or 32-bit words are reserved and initialized. Be
forewarned that the value of dot within an expression is

that of the beginning of the statement, not of the value
being calculated.

8.7.4 .end

The .end directive indicates the physical end of the source
program. The format is:

.end
The .end is not really required; reaching the end of file
has the same effect.
8.7.5 .text .data .bss

These statements change the "program section” where
assembled code will be loaded.

As As

8.7.6 .globl .comm

Two forms of external symbols are defined with the .globl
and comm directives.

External symbols are declared with the .globl assembler
directive. The format is:

.globl symbol [, symbol ...]

For example, the following statements declare the array
TABLE and the routine SRCH to be external symbols:

.globl TABLE,SRCH

TABLE: .blkw 10.
SRCH: movw TABLE, a0

External symbols are only declared to the assembler. They
must be defined (i.e. given a value) in some other statement
by one of the methods mentioned above. They need not be
defined in the current program; in this case they are
flagged as "undefined" in the symbol table. If they are
undefined, they are considered to have a value of zero in

expressions.

It is generally a good idea to declare a symbol as .globl
before using it in anyway. This is particularly important
when defining absolutes.

The other form of external symbol is defined with the .comm
directive. The .comm directive reserves storage that may be
communally defined, 1i.e., defined mutually by several
modules. The link editor, 1d(l) resolves allocation of .comm
regions. The syntax of the .comm directive is:

.comm name constant-expression

which causes as to declare the name as a common symbol with
a value equal to the expression. For the rest of the
assembly this symbol will be treated as though it was an
undefined global. As does not allocate storage for common
symbols; this task is 1left to the loader. The loader
computes the maximum size of each common symbol that may
appear in several load modules, allocates storage for it in

the final bss section, and resolves linkages.

As As

8.7.7 .even

This directive advances the location counter if its current
value is odd. This is useful for forcing storage allocation
to be on a word boundary after a .byte or .ascii directive.

Note that many things may not be on an odd boundary in as,
including instructions, and word and long data.

8-21

8.8 Operation Codes

Below are all opcodes recognized by as:

abcd
addb
addw
addl
addgb
addqw
addql
addxb
addxw
addxl
andb
andw
andl
aslb
aslw
asll
asrb
asrw
asrl
bece
bces
bchg
bclr
bes
bcss
beq
begs

bges
bgt
bgts
bhi
bhis
ble
bles
bls
blss
blt
blts

bmi
bmis
bne
bnes
bpl
bpls
bra
bras
bset
bsr
bsrs
btst
bvc
bvcs
bvs
bvss
chk
clrb
clrw
clrl
cmpb
cmpw
cmpl
cmpmb
cmpmw
cmpml
dbcc
dbcs
dbeq
dbf

dbge -

dbgt
dbhi
dble
dbls
dblt
dbmi
dbne

dbpl

dbra
dbt
dbvc
dbvs
divs
divu
eorb
eorw
eorl
exg
extw
extl
jbsr
jec
jcs
jed
jge

hi
gle
jls
jit
jmi
jmp
jne
ipl
jra
jsr
jvc
jvs
lea
link
1slb
1slw
1sl11
1srb
1srw
1srl

22

movb
movw
movl
movemw
moveml
movepw
movepl
moveq
muls
mulu
nbecd
negb
negw
negl
negxb
negxw
negxl
nop
notb
notw
notl
orb
orw
orl
pea
reset
rolb
rolw
roll
rorb
rorw
rorl
roxlb
roxlw
roxll
roxrb
roxrw
roxrl

As

rte
rtr
rts
sbed
scc
scs
seq
sf
sge
sgt
shi
sle
sls
slt
smi
sne
spl
st
stop
subb
subw
subl
subgb
subgw
subgl
subxb
subxw
subxl
gsvc
svs
swap
tas
trap
trapv
tstb
tetw
tstl
unlk

ASs As

The following pseudo operations are recognized:

.ascii
.asciz
.blkb
.blkl
+blkw
.bss
.byte
. comm
.data
.end
.even
.globl
.long
.text
.word

The following registers are recognized:

d0 d1 42 43 d4 45 de 4z
a0 al a2 a3 a4 a5 a6 a7
Sp pc cc sr

8.9 EBrror Messages

I1f there are errors in an assembly, an error message appears
on the standard error channel (usually the terminal) giving
the type of error and the source 1line number. If an
assembly 1listing 1is requested, and there are errors, the
error message appears before the offending statement. If
there were no assembly errors, then there are no messages,
thus indicating a successful assembly. Some diagnostics are
only warnings and the assembly is successful despite the
warnings.

If an assembly listifig was not requested, any source lines
which caused an assembly diagnostic are displayed on the
terminal (the standard error file). In addition, a 1list of
assembly errors and their description is also displayed on
the terminal.

The common error codes and their probable causes, appear
below:

Invalid character
An invalid character for a character constant or
character string was encountered.

S As

Multiply defined symbol
A symbol has appeared twice as a 1label, or an
attempt has been made to redefine a label using an
= statement. This error message may also occur if
the value of a symbol changes between passes.

Offset too large
A displacement cannot fit in the space provided
for by the instruction.

Invalid constant _
An invalid digit was encountered in a number.

Invalid term ’
The expression evaluator could not find a valid
term that was either a symbol, constant or
expression. An invalid prefix to a number or a bad
symbol name in an operand will generate this.

Non-relocatable expression
Some instructions require relocatable expressions
as operands. It was not provided.

Invalid operand
An illegal addressing mode was given for the
instruction.

Invalid symbol
A symbol was given that does not conform to the
rules for symbol formation.

Invalid assignment
An attempt was made to redefine a label with an =
statement.

Invalid opcode
A symbol in the opcode field was not recognized as
an instrucfion mnemonic or directive.

Bad filename
An invalid filename was given.

Wrong number of operands
An instruction has either too few or too many
operands as required by the syntax of the
instruction.

Invalid register expression
An operand or operand element that must be a
register 1is not, or a register name is used where
it may not be used. For example, using an address

As

As

register in a moveq instruction, which only allows
data registers will produce this error message; as
will using a register name as a label with a bra
instruction.

0dd address
Something which must start at an even address does
not.

Inconsistent effective address syntax
Both assembly and RTL syntax appear within a

single module.

Non-word memory shift
An in memory shift instruction was given a size

other than 16 bits.

8-25

JILEA. A LEAILAl AlldlyZET

CHAPTER 9

LEX: A LEXICAL ANALYZER
CONTENTS

Intrﬁuctionﬁ....l....D...O.....'.......l"'....
TeX SOUICEe: eeesoccesnssssscnosncsocssossssssssnecssass

Lex Regular EXpPresSiONS...cccecsescscceccccccnne
9.3.1 Character ClaSSeS...ccesssccccsssscccccss
Arbitrary character....cceceecccccccocccces
Optional EXpressionS....ccececcecccncscane
Repeated EXpressionS.....ecceececcccsccns
Alternation and Groupingeeecececesesssccoscss
Context Sensitivity..cceicesceeecocconcnn
Repetitions and Definitions..............

. .
-
.
.

.

.

W W O W\
wWwwwww
s % 8
NN W

Lex Actions..0......"......‘......'.........‘.'
Ambiguous Source RuleS....ccecetececcccccccccnns

Lex Source DefinitionNS.ccececcccsceccsscsceccocese
Usage..'...O.‘.................‘.....'....t.l.‘.

Lex and Yacc...............‘.......'.....O......
Left Context Sensitivity.....ceeeeecacnnccnccnns
Character Set..ceieereecvessscscsesccocccosancas

Summary of Source Format...eccceecccesscceancccnnnse

NoteS..........o-.~..¢.«n..o.--.oc.‘.........-..

1 i
[

LI TR S B | [
XN JAO U w

&O\D\D\O\D\'D\O\D O Ve

o
|
(o]

9-13
9-16
9-17
9-18
9-22
9-24
9-25

9-27

Lex Lex

9.1 Introduction

Lex is a program generator designed for lexical processing
of character input streams. It accepts a high-level,
problem oriented specification for character string
matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the
user in the source specifications given to Lex. The Lex
written code recognizes these expressions in an input stream
and partitions the input stream into strings matching the
expressions. At the boundaries between strings program
sections provided by the user are executed. The Lex source
file associates the regular expressions and the program
fragments. As each expression appears in the input to the
program written by Lex, the corresponding fragment 1is
executed.

The user supplies the additional code beyond expression
matching needed to complete his tasks, possibly including
code written by other generators. The program that
recognizes the expressions 1is generated in the general
purpose programming language employed for the user's program
fragments. Thus, a high level expression language is
provided to write the string expressions to be matched while
the user's freedom to write actions is unimpaired. This
avoids forcing the user who wishes to use a string
manipulation language for input analysis to write processing
programs in the same and often inappropriate string handling
language.

Lex is not a complete language, but rather a dgenerator
representing a new language feature which can be added to
different programming languages, called "host languages." At
present, the only supported host language is C.

Lex turns the user's expressions and actions (called source
in this section) inko the host general-purpose languagde; the
generated program is named yylex. The yylex program will
recognize expressions in a stream (called input here) and
perform the specified actions for each expression as it 1is
detected.

For a trivial example, consider a program to delete from the
input all blanks or tabs at the ends of lines.

%
[\tl+$;

is all that 1is required. The program contains a %%
delimiter to mark the beginning of the rules, and one rule.
This rule contains a regular expression which matches one or

Lex Lex

more instances of the characters blank or tab (written \t
for wvisibility, 1in accordance with the Cc language
convention) Jjust prior to the end of a line. The brackets
indicate the character class made of blank and tab; the +
indicates "one or more ..."; and the $ indicates "end of
line."™ No action is specified, so the program generated by
Lex (yylex) will ignore these characters. Everything else
will be copied. To change any remaining string of blanks or
tabs to a single blank, add another rule:

%3
[\tl+$;
[\t]l+ printf(" ");

The finite automaton generated for this source will scan for
both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level analyzer
to recognize input tokens. Thus, a combination of Lex and
Yacc is often appropriate. When used as a preprocesgor for
a later parser generator, Lex is used to partition the input
stream, and the parser generator assigns structure to the
resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs
written by Lex. Yacc users will realize that the name yylex
is what Yacc expects.its lexical analyzer to be named, so
that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the
time taken by a Lex program to recognize and partition an
input stream is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless rules which
include forward context require a significant amount of
rescanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

Lex Lex

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity
is provided for the user to insert either declarations or
additional statements in the routine containing the actions,
or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the
basis of one character lookahead. For example, if there are
two rules, one looking for "ab" and another for "abcdefg",
and the input stream is "abcdefh", Lex will recognize "ab"
and leave the input pointer just before "cd". Such backup
is more costly than the processing of simpler languages.

9.2 Lex Source

The general format of Lex source is:

{definitions]

{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is
required to mark the beginning of the rules. The absolute
minimum Lex program is thus

3%

(no definitions, no rules) which translates into a program
which copies the input to:'the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions and the
right column contains actions, program fragments to be
executed when the expressions are recognized. Thus an
individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears. 1In
this example the host procedural language is C and the C
library function printf() is used to print the string. The
end of the lex regular expression is indicated by the first
blank or tab character. If the action is merely a single C

Lex Lex

expression, it can just be given on the right side of the
line; 'if it is compound, or takes more than a line, it
should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words
from British to American spelling. Lex rules such as

colour printf("color"):;
mechanise printf ("mechanize") ;
petrol printf("gas");

would be a start. These rules are not quite enough, since
the word "petroleum" would become "gaseum"; a way of dealing
with this is described later.

9.3 Lex Regular Expressions

A regular expression specifies a set of strings to be
matched. It contains text characters (that match the
corresponding characters in the strings being compared) and
operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits
are always text characters. Thus, the regular expression

integer

matches the string "integer" wherever it appears and the
expression

a57D
looks for the string "a57D".

The operator characters are

"Nl "=-2.*x+ | ()s/ {}s<>
and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indicates
that whatever is contained between a pair of quotes is to be
taken as text characters. Thus

xyz " ++ll
matches the string xyz++ when it appears. Note that a part
of a string may be quoted. It is harmless but unnecessary
to quote an ordinary text character; the expression

" xyz++'l

is the same as the one above. Thus by quoting every non-

Lex Lex

alphanumeric character being used as a text character, the
user need not memorize the list above of current operator
characters. '

An operator character may also be turned into a text
character by preceding it with a backslash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above
expressions. The quoting mechanism can also be used to get
a blank into an expression; normally, as explained above,
blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. Several normal C

escapes with \ are recognized:

\n newline

\t tab
\b backspace
\\ backslash

Since newline is illegal in an expression, a "\n" must be
used; it is not required to escape tab and backspace. Every
character but blank, tab, newline and the 1list above is
always a text character.

9.3.1 Character classes

Classes of characters can be specified using brackets: [and
]. The construction

[abc]

matches a single character, which may be "a", "b", or "c".
Within square brackets, most operator meanings are ignored.
Only three character%fare special: these are the backslash
(\), the dash (-), and the up-arrow ("). The dash character
indicates ranges. For example

[a-20-9<>]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using the dash between
any pair of characters which are not both upper case
letters, both lower case 1letters, or both digits is
implementation dependent and causes a warning message. If
it is desired to include the dash in a character class, it
should be first or last; thus

Lex Lex

[-+0-9]
matches all the digits and the two signs.

In character classes, the up-arrow (7) operator must appear
as the first character after the left bracket; it indicates
that the resulting string is to be complemented with respect
to the computer character set. Thus

["abc]

matches all characters except "a", "b", or "c", including
all special or control characters; or

[fa-zA-7]

is any character which is not a letter. The backslash (\)
provides an escape mechanism within character class
brackets, so that characters can be entered 1literally by
preceding them with this character.

9.3.2 Arbitrary character

To match almost any character, the period (.) designates the

class of all characters except a newline. Escaping into

octal is possible although non-portable. For example
[\40-\176]

matches all printable characters in the ASCII character set,

from octal 40 (blank) to octal 176 (tilde).

9.3.3 Optional Expressions

The question mark (?) operator indicates an optional element
of an expression. Thus

ab?c

matches either "ac" or "abc".

9.3.4 Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and
plus (+) operators. For example

ax

Lex Lex

matches any number of consecutive "a" characters, including
zero; while "a+" matches one or more instances of "a". For
example,

[a—-z]+
matches all strings of lowercase lettersg, and
[A-Za-z] [A~-Za~z0~9] *

matches all alphanumeric strings with a 1leading alphabetic
character. This 1is a typical expression for recognizing
identifiers in computer languages.

9.3.5 Alternation and Grouping

The vertical bar (|) operator indicates alternation. For
example

(ab|cd)

matches either "ab" or "cd". Note that parentheses are used
for grouping, although they are not necessary at the outside
ievel. For example

ab|cd

would have sufficed in the preceding example. Parentheses
can be used for more complex expressions, such as ’

(ab]cd+)? (ef) *

which matches such strings as "abefef", T"efefef", "cdef",
and "cddd", but not "abc", "abcd", or "abcdef".

3.3.6 Context Sensifivity

Lex recognizes a small amount of surrounding context. The
two simplest operators for this are the up-arrow (") and the
dollar sign ($). If the first character of an expression is
an up-arrow, then the expression 1is only matched at the
beginning of a line (after a newline character, or at the
beginning of the input stream). This can never conflict
with the other meaning of the up-arrow, complementation of
character classes, since complementation only applies within
brackets. If the very last character is dollar sign, the
expression only matched at the end of a 1line (when
immediately followed by newline). The latter operator is a
special case of the slash (/) operator, which indicates

Lex Lex

trailing context. The expression
ab/cd

matches the string "ab", but only if followed by "cd". Thus
abs$

is the same as

ab/\n
Left context is handled in Lex by specifying start
conditions as explained later. If a rule is only to be

executed when the Lex automaton interpreter is in start
condition "x", the rule should be enclosed in angle
brackets:

<x>

If we considered "being at the beginning of a 1line" to be
start condition ONE, then the up-arrow (") operator would be
equivalent to

<ONE>

Start conditions are explained more fully later.

9.3.7 Repetitions and Definitions

The curly braces ({ and }) specify either repetitions (if
they enclose numbers) or <definition expansion (if they
enclose a name). For example

{digit}

looks for a predefined string named "digit" and inserts it
at that point in the expression. The definitions are given
in the first part of the Lex input, before the rules. In
contrast,

a{1,5}
looks for 1 to 5 occurrences of the character "a".

Finally, an initial percent sign (%) is special, since it is
the separator for Lex source segments.

Lex Lex

9.4 Lex Actions

when an expression written as above is matched, Lex executes
the corresponding action. This section describes some
features of Lex which aid in writing actions. Note that
there 1is a default action, which consists of copying the
input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb
the entire input, without producing any output, must provide
rules to match everything. When Lex is being used with
Yacc, this is the normal situation. You may consider that
actions are what is done instead of copying the input to the
output; thus, in general, a rule which merely copies can be
omitted. Also, a character combination which is omitted
from the rules and which appears as input is 1likely to be
printed on the output, thus calling attention to the gap in
the rules.

One of the simplest things that can be done is to ignore the
input. Specifying a C null statement ";" as an action causes
this result. A frequent rule is

[\t\n] ;

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is to use the
repeat action character, "l", which indicates that the
action for this rule is the action for the next rule. The
previous example could also have been written

" on l
N\t" !

"\nﬂ

with the same resultg although in different style. The
guotes around "\n" and "\t" are not required.

In more complex actions, you often want to know the actual
text that matched some expression like

[a-z]+

Lex leaves this text in an external character array named
"yytext". Thus, to print the name found, a rule like

[a-2z]+ printf("ss", yytext);

prints the string in "yytext". The C function printf
accepts a format argument and data to be printed; in this

Lex Lex

case, the format is "print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in "yytext". So this just places the matched
string on the output. This action is so common that it may
be written as ECHO. For example

[a=z]+ ECHO;

is the same as the preceding example. Since the default
action is just to print the characters found, one might ask
why give a rule, like this one, which merely specifies the
default action? Such rules are often required to avoid
matching some other rule which is not desired. For example,
if there is a rule that matches read it will normally match

the instances of read contained in bread or readjust; to
avoid this, a rule of the form

[a~z]+
is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has
been found; hence Lex also provides a count of the number of
characters matched. in the variable, "yyleng". To count
both the number of words and the number of characters in
words in the input, you might write

[a-zA-Z]+ [words++; chars += yyleng;}

which accumulates in the variables "chars" the number of

characters in the words recognized. The last character in
the string matched can be accessed by

yytext[yyleng-1]

Occasionally, a Lex action may decide that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized
is to be tacked on to the end of this input. Normally, the
next input string would overwrite the current entry in
"vytext". Second, yyless(n) may be called to indicate that
not all the characters matched by the currently successful
expression are wanted right now. The argument "n" indicates
the number of characters in “"yytext" to be retained.
Further characters previously matched are returned to the
input. This provides the same sort of lookahead offered by
the slash (/) operator, but in a different form.

Example: Consider a language which defines a string as a set
of characters between quotation (") marks, and provides that

Lex Lex

to include a quotation mark in a string, it must be preceded
by a backslash (\). The regular expression that matches this
is somewhat confusing, so that it might be preferable to
write

\"[""]* |
if (yytext[yyleng-1] == '\\')
yymore () ;
else

}

which, when faced with a string such as

... normal user processing

"abc\"def"
will first match the five characters
"abc\

and then the call to yymore() will cause the next part of
the string,

"def

to be tacked on the end. Note that the final guote
terminating the string should be picked up in the code
labeled "normal processing”.

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of

distinguishing the ambiguity of "=-a". Suppose it is
desired to treat this as "=- a" but print a message. A rule
might be

=-[a~zA-2] {i

printf ("Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for =- ...

which prints a message, returns the letter after the
operator to the input stream, and treats the operator as
"=-"_, Alternatively it might be desired to treat this as "=
-a". To do this, just return the minus sign as well as the
letter to the input: The following performs the
interpretation:

9-11

Lex Lex

=—-[a-zA-2] {
printf ("Operator (=-) ambiguous\n");

yyless(yyleng-2);
... action for = ...

Note that the expressions for the two cases might more
easily be written

=-/[A-Za-2]
in the first case and
=/- [A-Za-z]

in the second: no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3", however, makes

=-/[" \t\n]
a still better rule.

In addition to these routines, Lex also permits access to
the I/0 routines it uses. They are:

1. input() which returns the next input character;

2. output{c) which writes the character ¢ on the output;
and

3. unput(c) pushes the character c back onto the input
stream to be read later by input().

By default these routines are provided as macro definitions,
but the user can override them and supply private versions.
These routines define the relationship between external
files and internal characters, and must all be retained or
modified consistently. They may be redefined, to cause
input or output to be transmitted to or from strange places,
including other programs or internal memory; but the
character set used must be consistent in all routines; a
value of zero returned by input must mean end of file; and
the relationship between unput and input must be retained or
the Lex lookahead will not work. Lex does not look ahead at
all if it does not have to, but every rule ending in + * ?
or $ or containing / implies lookahead. Lookahead 1is also
necessary to match an expression that is a prefix of another
expression. See below for a discussion of the character set
used by Lex. The standard Lex library imposes a 100

Lex Lex

character limit on backup.

Another Lex library routine that you sometimes want to
redefine is rap() which is called whenever Lex reaches an
end-of-file. If yywrap returns a 1, Lex continues with the
normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive from a new
source. In this case, the user should provide a yywrap
which arranges for new input and returns 0. This instructs
Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is not
possible to write a normal rule which recognizes end-of-
file; the only access to this condition is through rap().
In fact, unless a private version of input() is supplie a
file containing nulls cannot be handled, since a value of 0
returned by input is taken to be end-of-file.

9.5 Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as
follows:

® The longest match is preferred.

® Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer keyword action ...;
[a-z]+ identifier action ...:;

to be given in that order. If the input is integers, it is
taken as an identifier, because [a-z]+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int)
does not match the expression integer, so the identifier
interpretation is used.

The principle of preferring the longest match makes certain
constructions dangerous, such as the following:

*

For example,

Lex Lex

l'*l
might seem a good way of recognizing a string in single
guotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression matches

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of
the form : '

] ["!\n]*l

which, on the above input, stops after 'first'. The
consequences of errors like this are mitigated by the fact
that the dot (.) operator does not match a newline.
Therefore, only no more than one line is ever matched by
such expressions. Don't try to defeat this with expressions
like

[.\n]+

or their equivalents: the Lex generated program will try to
read the entire input file, causing internal buffer
overflows.

Note that Lex is normally partitioning the input stream, not
searching for all possible matches of each expression. This
means that each character is accounted for once and only
once. For example, suppose it is desired to count
occurrences of both "she" and "he" in an input text. Some
Lex rules to do this ‘might be

she S++;
he h++;
\n l
. ;

where the last two rules ignore everything besides "he" and
"she". Remember that the period (.) does not include the
newline. Since "she" includes "he", Lex will normally not
recognize the instances of "he" included in "she", since
once it has passed a "she" those characters are gone.

Sometimes the user would like to override this choice. The
action REJECT means "go do the next alternative." It causes

Lex Lex

whatever rule was second choice after the current rule to be
executed. The position of the input pointer is adjusted
accordingly. Suppose the user really wants to count the
included instances of "he":

she s++; REJECT;]
he h++; REJECT;
\n

. ;

These rules are one way of changing the previous example to
do Jjust that. After counting each expression, it is
rejected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user could
note that "she" includes "he", but not vice versa, and omit
the REJECT action on "he"; in other cases, however, it would
not be possible to tell which input characters were in both
classes.

Consider the two rules

REJECT:

albcl+ ees
REJECT;

afcd]l+

we we

If the input is "ab", only the first rule matches, and on
"ad" only the second matches. The input string "accb"
matches the first rule for four characters and then the
second rule for three characters. In contrast, the input
"accd" agrees with the second rule for four characters and
then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex Iis
not to partition the input stream but to detect all examples
of some items in the input, and the instances of these items
may overlap or include each other. Suppose a digram table
of the input is desired; normally the digrams overlap, that
is the word "the™ is considered to contain both "th" and
"he". Assuming a two-dimensional array named digram to be
incremented, the appropriate source is

13
fa-z] [a~z] {digram[yytext[O]][yytext[l]]++; REJECT;}
\n ;

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

9-15

il AR R

Lex Lex

9.6 Lex Source Definitions
Remember the format of the Lex source:

{definitions}
£33

{rules}

$%

{user routines}

So far only the rules have been described. You will need
additional options, though, to define variables for use in
your program and for use by Lex. These can go either in the
definitions section or in the rules section.

Remember that Lex is turning the rules into a program. Any
source not intercepted by Lex is copied into the generated

program. There are three classes of such things:

1. Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior to the
first %% delimiter will be external to any function in
the code; if it appears immediately after the first
2%, it appears in an appropriate place for
declarations in the function written by Lex which
contains the actions. This material must look like
program fragments, and should precede the first Lex
rule.

As a side effect of the above, lines which begin with
a blank or tab, and which contain a comment, are
passed through to the generated program. This can be
used to include comments in either the Lex source or
the generated code. The comments should follow the
conventions of the C languade.

2. Anything included between lines containing only ng{"
and "%}" is copied out as above. The delimiters are
discarded. This format permits entering text like
preprocessor statements that must begin in column 1,
or copying lines that 4o not look like programs.

3. Anything after the third "%%" delimiter, regardless of
formats, etc., is copied out after the Lex output.

Definitions intended for Lex are given before the
first "$%" delimiter. Any 1line in this sectiocn not
contained between "${" and "%}", and beginning in
column 1, is assumed to define Lex substitution
strings. The format of such lines is

Lex Lex

name translation

and it causes the string given as a translation to be
associated with the name. The name and translation
must be separated by at least one blank or tab, and
the name must begin with a letter. The translation
can then be called out by the {name} syntax in a rule.
Using {D} for the digits and {E} for an exponent
field, for example, might abbreviate rules to
recognize numbers:

D [0-9]

E [DEde] [-+]1?{D}+

%%

D+ printf ("integer") ;-

D +"."IDI*(E})? |
Di*"."{D}+({E})?

p}l+{E} printf("real");

Note the first two rules for real numbers; both
require a decimal point and contain an optional
exponent field, but the first requires at least one
digit before the decimal point and the second requires
at least one digit after the decimal point. To
correctly handle the problem posed by a Fortran
expression such as "35.EQ.I", which does not contain a
real number, a context-sensitive rule such as

[0-9]+/"."EQ printf("integer");

could be used in addition to the normal rule for
integers.

The definitions section may also contain other
commands, including the selection of a host language,
a character set table, a list of start conditions, or
adjustments to the default size of arrays within Lex
itself for 1larger source programs. These
possibilities are discussed below under "Summary of
Source Format."

9.7 Usage

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a library
of Lex subroutines. The generated program is on a file
named lex.yy.c. The I/0 library is defined in terms of the
C standard library.

9-17

Lex Lex

3%
int k;
[0-91+ {
k = atoi(yytext);
if (k%7 == 0)
printf("sd", k+3);
else

}

The rule [0-9]+ recognizes strings of digits; atoi ()
converts the digits to binary and stores the result in "k".
The operator % (remainder) is used to check whether "k" |is
divisible by 7; if it is, it is incremented by 3 as it is
written out. It may be objected that this program will
alter such input items as 49.63 or X7. PFurthermore, it
increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

printf("%d",k);

3%
int k;
-2[0-91+
k = atoi(yytext);
rintf("%d", k%7 == 0 ? k+3 : k);

-2[0-9.]+ ECHO;
[A~Za-z] [A-Za~2z0-9]+ ECHO;

Numerical strings containing a decimal point or preceded by
a letter will be picked up by one of the last two rules, and
not changed. The if-else has been replaced by a C
conditional expression to save space; the form "a?b:c"
means: if "a" then "b" else "c". '

For an example of statistics gathering, here 1is a program

which makes histograms of word lengths, where a word is
defined as a string of letters.

9-19

Lex Lex

int lengs[100];

£ 3]

[a-z]+ lengs{yyleng]++;
\n ;

$%

%ywrap()

int i;

printf ("Length No. words\n");
for (i=0; 1i<100; i++)
if (lengs([i] > 0)
printf ("$5d4%104\n",1i,lengs[i]);
return(l);

This program accumulates the histogram, while producing no
output. At the end of the input it prints the table. The
final statement return(l); indicates that Lex is to perform
wrapup. If yywrap() returns zero (false) it implies that
further input 1s available and the program is to continue

reading and processing. To provide a yywrap() that never
returns true causes an infinite loop.

As a larger example, here are some parts of a program
written to convert double precision Fortran to single
precision Fortran. Because Fortran does not distinguish
upper and lower case letters, this routine begins by

defining a set of classes including both cases of each
letter:

[aAl
[bB]
[cC]
[zZ]

NQUTU®

An additional class recognizes white space:

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}.{c))%{n} E

?rintf(yytext[0]==‘d'? "real" : "REAL

Care is taken throughout this program to preserve the case
(upper or lower) of the original program. The conditional
operator is used to select the proper form of the keyword.

The next rule copies continuation card indications to avoid
confusing them with constants:

9-20

Lex f.ex

“n "{* 0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of the caret (") here. There follow some rules to
change double precision constants to ordinary floating
constants.

[0—9]+1wi{d} W

[+-12{w}[0-9]+
[0-9]+{w}"." {d{{w}[+a]?{wl[o—9]+
"o {wlro-91+{w}i{at{w} [+-12{w}[0-9]+

/* convert constants */

for (p=yytext; *p 1= 0; p++)

if (+p == 'd' || *p == 'D)
*p+= |e|_ ldl;
ECHO;

After the floating point constant is recognized, it is
scanned by the for loop to find the letter “d' or “D'. The
program then adds 'e'-'d' which converts it to the next
letter of the alphabet. The modified constant, now single-
precision, is written out again. There follow a series of
names which must be respelled to remove their initial "d".
By using the array "yytext" the same action suffices for all
the names (only a sample of a rather long list is given
here) .

di{stiitin

diictiotts

df{stia}ir {t}

driajritjiarin

{é f£}{1}{o}{a}{t} printf("ss",yytext+l);

Another list of names must have initial "d" changed to
initial "a":

{d li{og19

{d 1}{o}{g}10

diyimjii}i{ntl

diim}iarixtl
yytext[0] += 'a' - 'd’';
ECHO;

And one routine must have initiali "d" changed to initial

nen,

9-21

Lex Lex

{d}1{m}{a}{c}{n} {yytext[0] += 'r' - 'd';
ECHO ;

}

To avoid such names as "dsinx" being detected as instances
of "dsin", some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z] [A-Za-20-9]*
[0-9]+

\n

. ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in FORTRAN or with the use of
keywords as identifiers.

9.9 Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior
context, and there are several ways of handling such
problems. The circumflex (") operator, for example, is a
prior context operator, recognizing immediately preceding
left context Jjust as the dollar sign ($) recognizes
immediately following right context. Adjacent left context
could be extended, to produce a facility similar to that for
adjacent right context, but it is unlikely to be as useful,
since often the relevant left context appeared some time
earlier, such as at the beginning of a line.

This section describes three means of dealing with different
environments: a simple use of flags, when only a few rules
change from one environment to another, the use of start
conditions on rules, and the possibility of making multiple
Texical analyzers all run together. In each case, there are
rules which recognize the need to change the environment in
which the following input text is analyzed, and set some
parameter to reflect the change. This may be a flag
explicitly tested by the user's action code; such a flag is
the simplest way of dealing with the problem, since Lex is
not involved at all. It may be more convenient, however, to
have Lex remember the flags as initial conditions on the
rules. Any rule may be associated with a start condition.
It will only be recognized when Lex 1is 1in that start
condition. The current start condition may be changed at
any time. Finally, if the sets of rules for the different

Lex Lex

environments are very dissimilar, clarity may be best
achieved by writing several distinct lexical analyzers, and
switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word "magic" to "first" on every line
which began with the letter "a", changing "magic" to
"second" on every line which began with the letter "b", and
changing "magic" to "third” on every line which began with
the letter "c". All other words and all other lines are left
unchanged.

These rules are so simple that the easiest way to do this
job is with a flag: '

int flag;
3%
~a flag = 'a'; ECHO;
“b flag = 'b'; ECHO;
“c flag = 'c'; ECHO;
\n flag = 0 ; ECHO;
magic

switch (flag)

case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

should be adequate.

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions
section with a line reading

$Start namel name2 ...

where the conditions may be named in any order. The word
"Start" may be abbreviated to "s" or "S". The conditions
may be referenced at the head of a rule with angle brackets
(< and »):

<namel>expression
is a rule which is only recognized when Lex is in the start

condition "namel"”. To enter a start condition, execute the
action statement

rex Lex

BEGIN namel;

which changes the start condition to namel. To resume the
normal state,

BEGIN 0;
resets the 1initial condition of the Lex automaton
interpreter. A rule may be active in several start
conditions:

<namel ,name?2,name3>

is a legal prefix. Any rule not beginning with the <> prefix
operator is always active. '

The same example as before can be written:

$START AA BB CC

$%

~a ECHO; BEGIN AA;

“b ECHO; BEGIN BB;

“c ECHO; BEGIN CC;

\h ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second") ;
<CC>magic printf ("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work rather
than the user's code.

9.10 Character Set

The programs generated by Lex handle character I/0 only
through the routines input, output and unput. Thus the
character representation provided 1in these routines is
accepted by Lex and employed to return values in "yytext".
For internal use a character is represented as a small
integer which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. Normally, the letter
"a" is represented as the same form as the character
constant:

Ial

If this interpretation is changed, by providing I/O routines
which translate the characters, Lex must be told about it,
by giving a translation table. This table must be in the

O
!

24

Lex Lex

definitions section, and must be bracketed by 1lines
containing only "$T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
For example:

1 Aa

2 Bb
26 7z
27 \n
28 +
29 -
30 0
31 1
39 9

This table maps the lower and upper case letters together
into the integers 1 through 26, newline into 27, plus (+)
and minus (-) into 28 and 29, and the digits into 30 through
39. Note the escape for newline. If a table is supplied,
every character that is to appear either in the rules or in
any valid input must be included in the table. No character

may be assigned the number 0, and no character may be
assigned a larger number than the size of the hardware
character set.

9.11 Summary of Source Format

The general form of a Lex source file is:

{definitions}

{user subroutines}
The definitions section contains a combination of
1. Definitions, in the form "name space translation".

2. Included code, in the form "space code".

3. Included code, in the form

Lex

Lines

T.ex

Start conditions, given in the form
%S namel name2 ...
Character set tables, in the form

T
number space character-string
T

Changes to internal array sizes, in the form
$X nnn

where nnn is a decimal integer representing an array
size and "x" selects the parameter as follows:

Letter Parameter

positions

states

tree nodes

transitions

packed character classes
output array size

O 30

in the rules section have the form "expression

action" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X The character "x"

"x" An "x", eJ;n if x is an operator.
\ X An "x", even if x is an operator.
[xy] The character x or y.

[x=-2z] The characters x, y or z.

[("x] Any character but x.

. Any character but newline.

“x An x at the beginning of a line.

Lex Lex

VX An x when Lex is in start condition vy.

x$ An x at the end of a line.

X7 An optional x.

X* 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

x|y An x or a y.

(x) An x.

xX/y An x but only if followed by vy.

{xx} The translation of xx from the definitions
section.

x{m,n} m through n occurrences of x.

9.12 Notes

There are pathological expressions which produce exponential
growth of the tables when converted to deterministic
machines; fortunately, they are rare.

REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with
trailing context is found, and REJECT executed, the user
must not have used unput to change the characters
forthcoming from the input stream.. This is the only
restriction on the wuser's ability to manipulate the not-
vet-processed input.

9-27

10/YACC: A Compiler-
Compiler

CHAPTER 10
YACC: A COMPILER-COMPILER

CONTENTS

10.1 Introduction..................;............... 10-1
10.2 Basic Specifications......cceeeccceccccaccacns 10-4
10.3 ACLIONS. . ceeecesesccscoassosssscsssansssnsscccssns 10-6
10.4 Lexical AnalysSiS...cceeececencenceccncrcnnnnns 10-9
10.5 How the Parser WOrKS...escoeescsseseccscaseess 10-11
10.6 Ambiguity and ConflictS...cseeeecscesescaseass 10-17
10.7 PreCedenCe. ceeeessccssscsccssscsnscssancasssass 10-22
10.8 Error Handling..cececeeeeeasasesescsossvsnsesss L10-25
10.9 The Yacc Environment.......occeeeeeseecccasess 10-27
10.10 Hints for Preparing Specifications............ 10-28
10.11 Advanced TOPiCS.......... et eeeeneeneeeeeaee. 10-32
10.12 A Simple EXample....eeeeeeeeesceessccsesacesss 10-35
10.13 Yacc Input S;;tax............................. 10-38
10.14 An Advanced Example........ crevsccescssseseaseas 10-40

10.159 0Old FeatUreS. ceeeeenassnssssssonssnnccss ceocaass 10-47

YACC YACC

10.1 Introduction

Computer program input generally has some structure; every
computer program that does input can be thought of as
defining an "input language" which it accepts. An input
language may be as complex as a programming language, or as
simple as a sequence of numbers. Unfortunately, usual input
facilities are limited, difficult to use, and often lax
about checking their inputs for validity.

Yacc provides a general tool for describing the input to a
computer program. The name Yacc itself stands for "yet
another compiler-compiler." The Yacc user specifies the
structures of his input, together with code to be invoked as
each such structure 1is recognized. Yacc turns such a
specification into a subroutine that handles the input
process; frequently, it is convenient and appropriate to
have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied
routine to return the next basic input item. Thus, the user
can specify his input in terms of individual input
characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also
handle idiomatic features such as comment and continuation
conventions, which typically defy easy grammatical
specification. The class of specifications accepted is a
very general one: LALR grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc.,
Yacc has also been used for less conventional languages,
including a phototypesetter language, several desk
calculator languages, a document retrieval system, and a
Fortran debugging system.

Yacc provides a general tool for imposing structure on the
input to a computer program. The Yacc user prepares a
specification of the input process; this includes rules
describing the input structure, code to be invoked when
these rules are recognized, and a low-level routine to do
the basic input. Yacc then generates a function to control
the input process. This function, called a parser, calls
the user-supplied low-level input routine (the 1lexical
analyzer) to pick up the basic items (called tokens) from
the 1input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of
these rules has been recognized, then user code supplied for
this rule, an action, is invoked; actions have the ability
to return values and make use of the values of other
actions.

YACC YACC

Yacc is written in a portable dialect of C and the actions,
and output subroutine, are in C as well. Moreover, many of
the syntactic conventions of Yacc follow C.

The heart of the input specification 1is a collection of
grammar rules. Each rule describes an allowable structure
and gives it a name. For example, one grammar rule might
be:

date : month _name day ',' Vyear ;

Here, date, month name, day, and year represent structures
of interest in the input process; presumably, month name,
day, and year are defined elsewhere. The comma "," Is
enclosed in single gquotes; this implies that the comma is to
appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule, and have no
significance in controlling the input. Thus, with proper
definitions, the input:

July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the
lexical analyzer. This user routine reads the input stream,
recognizing the lower level structures, and communicates
these tokens to the parser. A structure recognized by the
lexical analyzer is «called a terminal symbol, while the
structure recognized by the parser is called a nonterminal
symbol. To avoid confusion, terminal symbols will usually
be referred to as tokens.

There 1is considerable leeway in deciding whether to
recognize structures using the lexical analyzer or grammar
rules. For example, the rules

l‘:;'hl lal ln'
IF' lel lb'

month name
month name

e oo

“e we

-

month name : 'D' ‘e' 'c' ;

might be used in the above example. The lexical analyzer
would only need to recognize individual letters, and
month name would be a nonterminal symbol. Such low-level
rules tend to waste time and space, and may complicate the
specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month
names, and return an indication that a month name was seen;

10-2

YACC YACC

in this case, month name would be a token.

Literal characters such as "," must also be passed through
the lexical analyzer, and are also considered tokens.

Specification files are very flexible. It is relatively
easy to add to the above example the rule

date : month '/' day '/' year ;
allowing

7/4/1776
as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a
working system with minimal effort, and little danger of
disrupting existing input.

The input being read may not conform to the specifications.
These input errors are detected as early as is theoretically
possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the
input specifications, permits the reentry of bad data, or
the continuation of the input process after skipping over
the bad data.

In some cases, Yacc fails to produce a parser when given a
set of specifications. For example, the specifications may
be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The
former cases represent design errors; the latter cases can
often be corrected’ by making the lexical analyzer more
powerful, or by rewriting some of the grammar rules. While
Yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the
constructions which are difficult for Yacc to handle are
also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid
Yacc specifications for their input revealed errors of
conception or design early in the program development.

The next several sections describe:

® The preparation of grammar rules

10-3

YACC YACC

® The preparation of the user supplied actions associated
with the grammar rules

& The preparation of lexical analyzers
® The operation of the parser

® Various reasons why Yacc may be unable to produce a
parser from a specification, and what to do about it.

® A simple mechanism for handling operator precedences in
arithmetic expressions.

& Error detection and recovery.

@ The operating environment and special features of the
parsers Yacc produces.

@& gives some suggestions which should improve the style
and efficiency of the specifications.

10.2 Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc
requires token names to be declared as such. In addition,
for reasons discussed later, it 1is often desirable to
include the 1lexical analyzer as part of the specification
file. It may be useful to include other programs as well.
Thus, every specification file consists of three sections:
the declarations, (grammar) rules, and programs. The
sections are separated by double percent "%$%" marks. (The
percent %' is generally used in Yacc specifications as an
escape character.)

In other words, a full specification file looks like

declarations K
%3

rules

%%

programs

The declaration section may be empty. Moreover, if the
programs section 1is omitted, the second %% mark may be
omitted also; thus, the smallest legal Yacc specification is

$%
rules

10-4

YACC YACC

Blanks, tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols.
Comments may appear wherever a name 1is legal; they are
enclosed in /* ... */, as in C.

The rules section is made up of one or more dgrammar rules.
A grammar rule has the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a
sequence of zero or more names and literals. The colon and
the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of
letters, dot ".", underscore " ", and non-initial digits.
Upper and lower case letters are distinct. The names used
in the body of a grammar rule may represent tokens or
nonterminal symbols.

A literal consists of a character enclosed in single quotes
MN*Y, As in C, the backslash "\" is an escape character
within literals, and all the C escapes are recognized. Thus

For a number of technical reasons, the NUL character ('\0O'
or 0) should never be used in grammar rules.

If there are several grammar rules with the same 1left hand
side, the vertical bar "|" can be used to avoid rewriting
the left hand side. 1In addition, the semicolon at the end
of a rule can be dropped before a vertical bar. Thus the
grammar rules

>
N.U

B
E
G

AU @]

can be given to Yacc as
B C D
E F

G

It is not necessary that all grammar rules with the same
left side appear together in the grammar rules section,
although it makes the input much more readable, and easier
to change.

If a nonterminal symbol matches the empty string, this can
be indicated in the obvious way:

10-5

YACC YACC

empty : ;

Names representing tokens must be declared; this 1is most
simply done by writing

$token namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for
much more discussion). Every name not defined in the
declarations section is assumed to represent a nonterminal
symbol. Every nonterminal symbol must appear on the left
side of at least one rule.

Of all the nonterminal symbols, one, called the start
symbol, has particular importance. The parser is designed
to recognize the start symbol; thus, this symbol represents
the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left
hand side of the first grammar rule in the rules section.
It is possible, and in fact desirable, to declare the start
symbol explicitly in the declarations section using the
gstart keyword: ,

g§start symbol

The end of the input to the parser is signaled by a special
token, called the endmarker. If the tokens up to, but not
including, the endmarker form a structure which matches the
start symbol, the parser function returns to its caller
after the endmarker is seen; it accepts the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to
return the endmarker when appropriate; see section 3, below.
Usually the endmarker represents some reasonably obvious I/0
status, such as "end-of-file" or "end-of-record".

10.3 Actions

With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input
process. These actions may return values, - and may obtain
the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do
input and output, call subprograms, and alter external
vectors and variables. An action is specified by one or
more statements, enclosed in curly braces "{" and "}". For
example

10-6

YACC YACC

hello(1, "abc"); |}
and

XXX <« YYY Z27Z
{ printf("a message\n");
flag = 25;}

are grammar rules with actions.

To facilitate easy communication between the actions and the
parser, the action statements are altered slightly. The
symbol "dollar sign" "$" is used as a signal to Yacc in this
context. :

To return a value, the action normally sets the pseudo-
variable "$$" to some value. For example, an action that
does nothing but return the value 1 is

{ 88 =1; }

To obtain the values returned by previous actions and the
lexical analyzer, the action may use the pseudo-variables
$1, $2, ..., which refer to the values returned by the
components of the right side of a rule, reading from left to
right. Thus, if the rule is

A: BCD;

for example, then $2 has the value returned by C, and $3 the
value returned by D.

As a more concrete example, consider the rule
expr : '(' expr ")' ;

The value returned by this rule is usually the value of the
expr in parentheses. This can be indicated by

expr : '(" expr ')' { $$ =52 ; }

By default, the value of a rule is the value of the first
element in it ($1). Thus, grammar rules of the form

A : B ;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of
their rules. Sometimes, it is desirable to get control

10-7

YACC YACC

betore a rule is fully parsed. Yacc permits an action to be
written in the middle of a rule as well as at the end. This
rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. 1In turn,
1t may access the values returned by the symbols to its
left. Thus, in the rule

A :

i
[
——

$s

X

~ Q) —w

]

W

[\

b
1]

W

w

[u—

the effect is to set x to 1, and y to ‘the value returned by
C. :

Actions that do not terminate a rule are actually handled by
Yacc by manufacturing a new nonterminal symbol name, and a
new rule matching this name to the empty string. The
interior action 1is the action triggered off by recognizing
this added rule. Yacc actually treats the above example as
if it had been written:

$ACT

e

/* empty */

L}
-
Nt

$$

-

fo o]

B SACT C

»
]
wn
[18

a9
L}
n
w
Nt

.
’

In many applications, output is not done directly by the
actions; rather, a data structure, such as a parse tree, is
constructed in memory, and transformations are applied to it
before output 1is generated. Parse trees are particularly
easy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C
function node, writtén so that the call

node(L, nl, n2)
creates a node with label L, and descendants nl and n2, and
returns the index of the newly created node. Then parse
tree can be built by supplvying actions such as:

expr : expr '+' expr
{ $$ = node('+', $1, $3); |}

in the specification.

10-8

YACC YACC

The user may define other variables to be used by the
actions. Declarations and definitions can appear in the
declarations section, enclosed in the marks "${" and "s}".
These declarations and definitions have global scope, so
they are known to the action statements and the lexical
analyzer. For example,

${ int variable = 0; %}

could be placed in the declarations section, making variable
accessible to all of the actions. The Yacc parser uses only
names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion
of values of other types will be found in a later section.

10.4 Lexical Analysis

The user must supply a lexical analyzer to read the input
stream and communicate tokens (with values, if desired) to
the parser. The 1lexical analyzer 1is an integer-valued
function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there
is a value associated with that token, it should be assigned
to the external variable yylval.

The parser and the lexical analyzer must agree on these
token numbers in order for communication between them to
take place. The numbers may be chosen by Yacc, or chosen by
the user. 1In either case, the "# define" mechanism of C is
used to allow the lexical analyzer to return these numbers
symbolically. For example, suppose that the token name
DIGIT has been defined in the declarations section of the
Yacc specification file. The relevant portion of the
lexical analyzer might look like:

10-9

YACC YACC

yylex(){
extern int yylval;
int c;

(o]

switch(¢) {

getchar () ;

case '0'
case '1!

case '9':
yylval = c-'0';
return(DIGIT); °

}

. o

The intent is to return a token number of DIGIT, and a value
equal to the numerical value of the digit. Provided that
the lexical analyzer code is placed in the programs section
of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads to <clear, easily modified lexical
analyzers; the only pitfall is the need to avoid using any
token names in the grammar that are reserved or significant
in C or the parser; for example, the use of token names if
or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled. The token name error
is reserved for error handling, and should not be used
naively.

As mentioned above, the token numbers may be chosen by Yacc
or by the user. 1In the default situation, the numbers are
chosen by Yacc. The default token number for a literal
character is the numerical value of the character in the
local character set. Other names are assigned token numbers
startina at 257.

To assign a token number to a token (including literals),
the first appearance of the token name or literal in the
declarations section can be immediately followed by a
nonnegative integer. This integer is taken to be the token
number of the name or 1literal. Names and literals not
defined by this mechanism retain their default definition.
It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number
0 or negative. This token number cannot be redefined by the
user. Hence, all lexical analyzers should be prepared to

10-10

YACC YACC

return 0 or negative as a token number upon reaching the end
of their input.

A very useful tool for constructing lexical analyzers is
Lex, discussed in a previous section. These lexical
analyzers are designed to work in close harmony with Yacc
parsers. The specifications for these lexical analyzers use
regular expressions instead of grammar rules. Lex can be
easily used to produce quite complicated lexical analyzers,
but there remain some languages (such as FORTRAN) which do
not fit any theoretical framework, and whose 1lexical
analyzers must be crafted by hand.

10.5 How the Parser Works

Yacc turns the specification file into a C program, which
parses the input according to the specification given. The
algorithm used to go from the specification to the parser is
complex, and will not be discussed here (see the references
for more information). The parser itself, however, Iis
relatively simple, and understanding how it works, while not
strictly necessary, will nevertheless make treatment of
error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state
machine with a stack. The parser is also capable of reading
and remembering the next input token (called the lookahead
token). The current state is always the one on the top of
the stack. The states of the finite state machine are given
small integer labels; initially, the machine is in state 0,
the stack contains only state 0, and no lookahead token has
been read.

The machine has only four actions available to it, called
shift, reduce, accept, and error. A move of the parser is
done as follows: :

1. Based on its current state, the parser decides whether

it needs a lookahead token to decide what action
should be done; if it needs one, and does not have

one, it calls yylex to obtain the next token.

2. Using the current state, and the lookahead token |if
needed, the parser decides on its next action, and
carries it out. This may result 1in states being
pushed onto the stack, or popped off of the stack, and
in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action 1is taken, there is always a

10-11

YACC YACC

lookahead token. For example, in state 56 there may be an
action:

IF shitt 34

which says, in state 56, if the lookahead token is 1IF, the
current state (56) is pushed down on the stack, and state 34
becomes the current state (on the top of the stack). The
lookahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are appropriate when the parser has
seen the right hand side of a grammar rule, and is prepared
to announce that it has seen an instance of the rule,
replacing the right hand side by the left hand side. It may
be necessary to consult the lookahead token to decide
whether to reduce, but usually it 1is not; in fact, the
default action (represented by a ".") is often a reduce
action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, leading
to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is
A: XY 2 ;

The reduce action depends on the left hand symbol (A in this
case), and the number of symbols on the right hand side
(three in this case). To reduce, first pop off the top
three states from the stack (In general, the number of
states popped equals the number of symbols on the right side
of the rule). 1In effect, these states were the ones put on
the stack while recognizing x, y, and z, and no longer serve
any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is
in effect a shift of A. A new state is obtained, pushed
onto the stack, and parsing continues. There are
significant differences between the processing of the left

hand symbol and an ordinary shift of a token, however, 8o

10-12

YACC YACC

this action 1is called a goto action. 1In particular, the
lookahead token is cleared by a shift, and is not affected
by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the
current state.

In effect, the reduce action "turns back the clock" in the
parse, popping the states off the stack to go back to the
state where the right hand side of the rule was first seen.
The parser then behaves as if it had seen the left side at
that time. If the right hand side of the rule is empty, no
states are popped off of the stack: the uncovered state is
in fact the current state.

The reduce action is also important in the treatment of
user-supplied actions and values. When a rule is reduced,
the code supplied with the rule is executed before the stack
is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a
shift takes place, the external variable lval 1is copied
onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done,
the external variable val is copied onto the value stack.
The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been
seen and that it matches the specification. This action
appears only when the lookahead token is the endmarker, and
indicates that the parser has successfully done its job.
The error action, on the other hand, represents a place
where the parser can.no longer continue parsing according to
the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything
that would result in a legal input. The parser reports an
error, and attempts tc recover the situation and resume
parsing: the error recovery (as opposed to the detection of
error) will be in a later section.

Consider the following example:

10~-13

YACC YACC

s token DING DONG DELL

LR
rhyme : sound place
sound DING DONG

~3 se me

place : DELL

-
’

Wwhen Yacc is invoked with the -v option, a file called
y.output is produced, with a human-readable description of
the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) is:

10-14

YACC YACC

state 0
$accept : rhyme Send

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
S$accept : rhyme Send

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2

Notice that, in addition to the actions for each state,
there 1is a description of the parsing rules being processed
in each state. The underscore character (_) is used to
indicate what has been seen, and what is yet to come, in
each rule. Suppose the input is

10-15

YACC YACC

DING DONG DELL

It is instructive to follow the steps of the parser while
processing this input.

Initially, the current state is state 0. The parser needs
to refer to the input in order to decide between the actions
available in state 0, so the first token, DING, 1is read,
becoming the lookahead token. The action in state 0 on DING
is is "shift 3", so state 3 is pushed onto the stack, and
the lookahead token is cleared. State 3 becomes the current
state. The next token, DONG, is read, becoming the
lookahead token. The action in state 3 on the token DONG is
"shift 6", so state 6 is pushed onto the stack, and the
lookahead 1is cleared. The stack now contains 0, 3, and 6.
In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two
states, 6 and 3, are popped off of the stack, uncovering
state 0. Consulting the description of state 0, looking for
a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming
the current state.

In state 2, the next token, DELL, must be read. The action
is "shift 5", so state 5 is pushed onto the stack, which now
has 0, 2, and 5 on it, and the lookahead token 1is cleared.
In state 5, the only action is to reduce by rule 3. This
has one symbol on the right hand side, so one state, 5, is
popped off, and state 2 is uncovered. The goto in state 2
on place, the left sdide of rule 3, is state 4. Now, the
stack contains 0, 2, and 4. 1In state 4, the only action is
to reduce by rule 1. There are two symbols on the right, so
the top two states are popped off, uncovering state 0 again.
In state 0, there is a goto on rhyme causing the parser to
enter state 1. 1In state 1, the input is read; the endmarker
is obtained, indicated by "$end" in the y.output file. The
action 1in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as "DING DONG DONG",
"DING DONG", "DING DONG DELI, DELL", etc. A few minutes
spend with this and other simple examples will probably be
repaid when problems arise in more complicated contexts.

10-16

YACC YACC

10.6 Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input

string that can be structured in two or more different ways.
For example, the grammar rule

expr : expr '-' expr
is a natural way of expressing the fact that one way of
forming an arithmetic expression is to put two other
expressions together with a minus sign between them.
Unfortunately, this grammar rule does not completely specify
the way that all complex inputs should be structured. For
example, if the input is

exXpr - exXpr - expr
the rule allows this input to be structured as either

(expr - expr) - expr
or as

expr - (expr - expr)

(The first is called 1left association, the second right
association).

Yacc detects such ambiguities when it is attempting to build
the parser. It is instructive to consider the problem that
confronts the parser when it is given an input such as

exXpr - expr - expr

When the parser has read the second expr, the input that it
has seen:

expr - expr

matches the right side of the grammar rule above. The
parser could reduce the input by applying this rule; after
applying the rule; the input is reduced to expr(the left
side of the rule). The parser would then read the final
part of the input: '

- expr

and again reduce. The effect of this is to take the left
associative interpretation.

10-17

YACC YACC

Alternatively, when the parser has seen
expr - expr

it could defer the immediate application of the rule, and
continue reading the input until it had seen

eXpr - expr - expr

It could then apply the rule to the rightmost three symbols,
reducing them to expr and leaving

expr - expr

Now the rule can bé reduced once more; the effect is to take
the right associative interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction,
and has no way of deciding between them. This is called a
shift/reduce conflict. It may also happen that the parser
has a choice of two legal reductions; this is called a
reduce/reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc
still produces a parser. It does this by selecting one of
the valid steps wherever it has a choice. A rule describing
which choice to make in a given situation is called a
disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to dc¢ the
shift.
ki
2. In a reduce/reduce conflict, the default is to reduce
by the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there
is a choice, in favor of shifts. Rule 2 gives the user
rather crude control over the behavior of the parser in this
situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic,
or because the dgrammar rules, while consistent, require a
more complex parser than Yacc can construct. The use of
actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is

10-18

YACC YACC

being recognized. In these cases, the application of
disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, Yacc always reports the
number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating
rules to produce a correct parser, it is also possible to
rewrite the grammar rules so that the same inputs are read
but there are no conflicts. For this reason, most previous
parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is
somewhat unnatural, and produces slower parsers; thus, Yacc
will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider
a fragment from a programming language involving an "if-
then-else" construction:

IF '(*' cond ')' stat
IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a
nonterminal symbol describing conditional (logical)
expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if
rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input
of the form

IF (Cl1) IF (C2) Sl ELSE S2
can be structured according to these rules in two ways:

IF (Cl) { .
IF (&2) S1

ELSE S2
or
IF (Ccl) {

IF (C2) Sl
ELSE S2

The second interpretation is the one given in most
programming languages having this construct. Each ELSE is
associated with the last preceding "un-ELSE'd" IF. In this

10-19

YACC YACC

example, consider the situation where the parser has seen
IF (Cl1) IF (C2) sl

and is looking at the ELSE. It can immediately reduce by
the simple~if rule to get

IF (C1) stat

and then read the remaining input,
ELSE S2

and reduce
IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above
groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and
then the right hand portion of

IF (Cl) IF (C2) S1 ELSE S2
can be reduced by the if-else rule to get
IF (Cl1) stat

which can be reduced by the simple-if rule. This leads to
the second of the above groupings of the input, which is
usually desired.

Once again the parser can do two valid things - there is a
shift/reduce conflict. The application of disambiguating
rule 1 tells the parser to shift in this case, which leads
to the desired groupjng.

This shift/reduce conflict arises only when there is a
particular current input symbol, ELSE, and particular inputs
already seen, such as

IF (Cl) IF (C2) sl
In general, there may be many conflicts, and each one will
be associated with an input symbol and a set of previously

read inputs. The previously read inputs are characterized
by the state of the parser.

The conflict messages of Yacc are best understood by
examining the verbose (-v) option output file. For example,

10-20

YACC YACC

the output corresponding to the above conflict state might
be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat
stat

IF (cond) stat_ (18)
IF (cond) stat_ELSE stat

s e

ELSE shift 45
. reduce 18

The first line describes the conflict, giving the state and
the input symbol. The ordinary state description follows,
giving the grammar rules active in the state, and the parser
actions. Recall that the underline marks the portion of the
grammar rules which has been seen. Thus in the example, in
state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time.

The parser can do two possible things. If the input symbol
is ELSE, it is possible to shift into state 45. State 45

will have, as part of its description, the line
stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back
in state 23, the alternative action, described by ".", is to
be done if the input symbol is not mentioned explicitly in
the above actions; thus, in this case, if the input symbol
is not ELSE, the parser reduces by grammar rule 18:

stat : IF '(! cqnd 'y' stat

Once again, notice that the numbers following "shift"
commands refer to other states, while the numbers following
"reduce" commands refer to grammar rule numbers. In the
Y.output file, the rule numbers are printed after those
rules which can be reduced. 1In most one states, there will
be at most reduce action possible in the state, and this
will be the default command. The user who encounters
unexpected shift/reduce conflicts will probably want to look
at the verbose output to decide whether the default actions
are appropriate. In really tough cases, the user might need
to know more about the behavior and construction of the
parser than can be covered here. 1In this case, one of the
theoretical references might be consulted; the services of a

10-21

YACC YACC

local guru might also be appropriate.

10.7 Precedence

There is one common situation where the rules given above
for resolving conflicts are not sufficient; this is in the
parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for
operators, together with information about left or right
associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create
parsers that are faster and easier to write than parsers
constructed from unambiguous grammars. The basic notion is
to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a
very ambiguous grammar, with many parsing conflicts. As
disambiguating rules, the user specifies the precedence, or
binding strength, of all the operators, and the
associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in
accordance with these rules, and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens
in the declarations section. This is done by a series of
lines beginning with a Yacc keyword: sleft, $right, or
$nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus,

$left '+' '~
sleft '*' '/!

describes the precedence and associativity of the four
arithmetic operators. Plus and minus are left associative,
and have lower precedence than star and slash, which are
also 1left associative. The keyword $right is used to
describe right associative operators, and the keyword
$nonassoc is used to Adescribe operators, like the operator
.LT. in Fortran, that may not associate with themselves;
thus,

10-22

YACC YACC

A .LT. B .LT. C

is illegal in Fortran, and such an operator would b=
described with the keyword $nonassoc in Yacc. As an example
of the behavior of these declarations, the description

gright '=!

gleft '+' '-!

gleft '*' /¢

L3]

expr : expr '=' expr
expr '+' expr
expr '-' expr
expr '*' expr
expr '/' expr
NAME

might be used to structure the input
a=b=c* - e ~ f*g

as follows:
a= (b= (((c*d)~-e) - (f*g)))

When this mechanism is used, unary operators must, in
general, be given a precedence. Sometimes a unary operator
and a binary operator have the same symbolic representation,
but different precedences. An example is unary and binary
'-'; unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a
lower strength than multiplication. The keyword, %prec,
changes the precedence level associated with a particular
grammar rule. The %prec appears immediately after the body
of the grammar rule,” before the action or closing semicolon,
and is followed by a token name or literal. It causes the
precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary
minus have the same precedence as multiplication the rules
might resemble:

10-23

YACC YACC

gleft '+ '-"

gleft '** '/

3

expr : expr '+' expr

expr '~' expr
expr '*' expr

expr '/' expr

'-' expr %prec '¥*!
NAME

e

A token declared by %left, %$right, and’ %$nonassoc need not
be, but may be, declared by %token as well.

The precedences and associativities are wused by Yacc to
resolve parsing conflicts; they give rise to disambiguating
rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for
those tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule; it is the precedence and associativity
of the last token or literal in the body of the rule.
If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence
and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a
shift/reduce conflict and either the input symbol or
the grammar rule has no precedence and associativity,
then the two disambiguating rules given at the
beginning of the section are used, and the conflicts
are reported.

4. 1If there is a 'shift/reduce conflict, and both the
grammar rule and the input character have precedence
and associativity associated with them, then the
conflict 1is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is

used; left associative implies reduce, right
associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the

number of shift/reduce and reduce/reduce conflicts reported
by Yacc. This means that mistakes in the specification of
precedences may disguise errors in the input grammar; it is

10-24

YACC YACC

a good idea to be sparing with precedences, and use them in
an essentially "cookbook" fashion, until some experience has
been gained. The y.output file is very useful in deciding
whether the parser is actually doing what was intended.

10.8 Error Handling

Error handling is an extremely difficult area, and many of
the problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error
is found. It is more useful to continue scanning the input
to find further syntax errors. This leads to the problem of
getting the parser "restarted" after an error. A general
class of algorithms to perform this involves discarding a
number of tokens from the input string, and attempting to
adjust the parser so that input can continue.

To allow the user some control over this process, Yacc
provides a simple, but reasonably general feature. The
token name "error" is reserved for error handling. This
name can be wused in grammar rules; in effect, it suggests
places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state
where the token "error"™ is legal. It then behaves as if the

token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset
to the token that caused the error. If no special error
rules have been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an emror, remains in error state until three
tokens have been successfully read and shifted. If an error
is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser
would attempt to skip over the statement in which the error
was seen. More precisely, the parser will scan ahead,
looking for three tokens that might legally follow a
statement, and start processing at the first of these; if
the beginnings of statements are not sufficiently

10-25

YACC YACC

distinctive, it may make a false start in the middle of a
statement, and end up reporting a second error where there
is in fact no error.

Actions may be used with these special error rules. These
actions might attempt to reinitialize tables, reclaim symbol
table space, etc.

Error rules such as the above are very general, but
difficult to control. Somewhat easier are rules such as

stat : error ';'

Here, when there is an error, the paréer attempts to skip
over the statement, but will do so by skipping to the next
':'., All tokens after the error and before the next Vet
cannot be shifted, and are discarded. When the ';' is seen,
this rule will be reduced, and any "cleanup" action
associated with it performed.

Another form of error rule arises in interactive

applications, where it may be desirable to permit a line to
be reentered after an error. A possible error rule might be

input : error '\n' { printf("Reenter line: "); } input
{ 33 = s4;}

There is one potential difficulty with this approach; the
parser must correctly process three input tokens before it
admits that it has correctly resynchronized after the error.
If the reentered line contains an error in the first two
tokens, the parser deletes the offending tokens, and gives
no message; this is clearly unacceptable. For this reason,
there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The last
example is better written

input : error '\n'
[yyerrok;
printf("Reenter last line: "y}
nput
$$ = $4; }

W e

As mentioned above, the token seen immediately after the
"error" symbol 1is the input token at which the error was

10-26

YACC YACC

discovered. Sometimes, this is inappropriate; for example,
an error recovery action might take upon itself the job of
finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose
the action after error were to call some sophisticated
resynchronization routine, supplied by the user, that
attempted to advance the input to the beginning of the next
valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token
in a legal statement; the old, illegal token must be
discarded, and the error state reset. 'This could be done by
a rule like

stat : error
{ resynch();
yyerrok ;
yyclearin ;

-
14

These mechanisms are admittedly crude, but do allow for a
simple, fairly effective recovery of the parser from many
errors. Moreover, the user can get control to deal with the
error actions required by other portions of the program.

10.9 The Yacc Environment

When the user inputs a specification to Yacc, the output is
a file of C programs, called y.tab.c on most systems. The
function produced by Yacc is called yyparse; it is an
integer valued function. . When it is called, it in turn
repeatedly calls yylex, the lexical analyzer supplied by the
user to obtain 1nput¢tokens. Eventually, either an error is
detected, in which case (if no error recovery 1is possible)
yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case,
yyparse returns the value 0.

The user must provide a certain amount of environmment for
this parser in order to obtain a working program. For
example, as with every C program, a program called main must
be defined, that eventually calls yyparse. 1In addition, a
routine called yyerror prints a message when a syntax error

is detected.

These two routines must be supplied in one form or another
by the user. To ease the initial effort of using Yacc, a

10-27

YACC | YACC

library has been provided with default versions of main and
yyerror. The name of this library is system dependent; on
many systems the library is accessed by a =ly argument to
the 1loader. To show the triviality of these default
programs, the source is given below:

main () {
return({ yyparse()):

and
include <stdio.h>

yyerror (s) char *s; {
fprintf(stderr, "%$s\n", s);

The argument to yyerror is a string containing an error
message, usually the string "syntax error"”. The average
application will want to do better than this. Ordinarily,
the program should keep track of the input line number, and
print it along with the message when a syntax error is
detected. The external integer variable yychar contains the
lookahead token number at the time the error was detected;
this may be of some interest in giving better diagnostics.
Since the main program is probably supplied by the user (to
read arguments, etc.) the Yacc library is useful only in
small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0.
If it is set to a nonzero value, the parser will output a
verbose description of its actions, including a discussion
of which input symbols have been read, and what the parser
actions are. Depending on the operating environment, it may
be possible to set this variable by using a debugging
system. @

10.10 Hints for Preparing Specifications
This section contains miscellaneous hints on preparing

efficient, easy to change, and clear specifications. The
individual subsections are more or less independent.

10-28

YACC YACC

Input Style It is difficult to provide rules with
substantial actions and still have a readable specification
file. The following style hints owe much to Brian
Kernighan.

a. Use all capital letters for token names, all lower
case letters for nonterminal names. This rule comes
under the heading of "knowing who to blame when things
go wrong."

b. Put grammar rules and actions on separate lines. This
allows either to be changed without an automatic need
to change the other.

c. Put all rules with the same left hand side together.
Put the 1left hand side in only once, and let all
following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given
left hand side, and put the semicolon on a separate
line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies
by three tab stops.

The examples in the text of this section follow this style

(where space permits). The user must make up his own mind
about these stylistic questions; the central problem,
however, 1is to make the rules visible through the morass of
action code.

Left Recursion The algorithm used by the Yacc parser
encourages so called "left recursive" grammar rules: rules
of the form

name : name regt of rule ;

These rules frequently arise when writing specifications of
sequences and lists:

list :
| list ',' item
H

and

10-29

YACC YACC

In each of these cases, the first rule will be reduced for
the first item only, and the second rule will be reduced for

the second and all succeeding items.
With right recursive rules, such as

item
item seq

seq

-e

the parser would be a bit bigger, and the items would be
seen, and reduced, from right to left. More seriously, an
internal stack in the parser would be in danger of
overflowing if a very long sequence were read. Thus, the
user should use left recursion wherever reasonable.

It is worth considering whether a- sequence with zero
elements has any meaning, and if so, consider writing the
sequence specification with an empty rule:

/* empty */

seq :
| seq item

~e

Once again, the first rule would always be reduced exactly
once, before the first item was read, and then the second
rule would be reduced once for each item read. Permitting
empty sequences often leads to increased generality.
However, conflicts might arise if Yacc is asked to decide
which empty sequence it has seen, when it hasn't seen enough
to know!

Lexical Tie-ins Some lexical decisions depend on context.
For example, the lexical analyzer might want to delete
blanks normally, but not within quoted strings. Or names
might be entered f@hto a symbol table in declarations, but
not in expressions.

One way of handling this situation is to create a global
flag that is examined by the lexical analyzer, and set by
actions. For example, suppose a program consists of 0 or
more declarations, followed by 0 or more statements.
Consider:

10-30

YACC YACC

% {

int dflag;
%}

... other declarations ...
%3 ‘
prog : decls stats
decls : /* empty */

{ dflag = 1; }
decls declaration

stats : /* empty . */

LI}
o
~e
[

dflag
| stats statement

-e

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when
reading declarations, except for the first token in the
first statement. This token must be seen by the parser
before it can tell that the declaration section has ended

and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of "back door" approach can be over done.
Nevertheless, it represents a way of doing some things that
are difficult to do otherwise.

Reserved Words Some programming languages permit the user
to use words 1like "if", which are normally reserved, as
label or variable names, provided that such use does not
conflict with the 1legal use of these names in the
programming language. This is extremely hard to do in the
framework of Yacc; it is difficult to pass information to
the lexical analyzer telling it "this instance of “if' is a
keyword, and that instance 1is a variable". The user can
make a stab at it, using the mechanism described in the last
subsection, but it is difficult.

For stylistic (and other) reasons, it is best that keywords
be reserved; that 1is, be forbidden for use as variable
names.

10-31

YACC YACC

10.11 Advanced Topics

This section discusses a number of advanced features of
Yacc.

Simulating Error and Accept in Actions The parsing actions
of error and accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to
return the value 0; YYERROR causes the parser to behave as
if the current input symbol had been a syntax error; yyerror
is called, and error recovery takes place. These mechanisms
can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

Accessing Values in Enclosing Rules. An action may refer to
values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a
dollar sign followed by a digit, but in this case the digit

may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence ... }

-e

adj : THE 1 $$ = THE; }
YOUNG $$ = YOUNG;

;
noun : po6 { $$ = poG; }

| CRONE { if($0 == YOUNG) {
frintf("what?\n");

$$ = CRONE;

.
L

.« o »

In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. Obviously, this
is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at
times this mechanism will save a great deal of trouble,
especially when a few combinations are to be excluded from
an otherwise regular structure.

10-32

YACC YACC

Support for Arbitrary Value Types By default, the values
returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including
structures. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting
parser will be strictly type checked. The Yacc value stack
is declared to be a union of the various types of values
desired. The user declares the union, and associates union
member names to each token and nonterminal symbol having a
value. When the value is referenced through a $$ or $n
construction, Yacc will automatically insert the appropriate
union name, so that no unwanted conversions will take place.
In addition, type checking commands such as Lint(l1) will be
far more silent. '

There are three mechanisms used to provide for this typing.
First, there 1is a way of defining the union; this must be
done by the user since other programs, notably the Ilexical
analyzer, must know about the union member names. Second,
there is a way of associating a wunion member name with
tokens and nonterminals. Finally, there is a mechanism for
describing the type of those few values where Yacc can not
easily determine the type.

To declare the union, the user includes in the declaration
section: ‘

gunion { 3
body of union ...

This declares the Yacc value stack, and the external
variables yylval and yyval, to have type equal to this
union. If Yacc was invoked with the -d option, the union
declaration is copied onto the y.tab.h file. Alternatively,
the union may be declared in a header file, and a typedef
used to define the wariable YYSTYPE to represent this union.
Thus, the header file might also have said:

typedef union {
body of union ...
[YYSTYPE;

The header file must be included in the declarations
section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names.
The construction

10-33

YACC YACC

< name >

is used to indicate a union member name, If this follows

one of the keywords $token, %left, %right, and %nonassoc,
the union member name is associated with the tokens listed.

Thus, saying
$left <optype> '+' '-!

will cause any reference to values returned by these two
tokens to be tagged with the union member name optype.
Another keyword, %$type, is used similarly to associate union
member names with nonterminals. Thus, one might say

ttype <nodetype> expr stat

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the
value returned by this action has no a riori type.
Similarly, reference to left context values isucﬁ as $0 -
see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on
the reference by inserting a union member name, between <
and >, immediately after the first $. An example of this
usage is

rule

aaa { $<intval>$ = 3; |} bbb
fun($<intval>2, S<other>0); }

3
’

This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in a later section. The
facilities in this subsection are not triggered until they
are used: in particular, the use of %type will turn on these
mechanisms. When they are used, there is a fairly strict
level of checking. or example, use of $n or $$ to refer to
something with no defined type is diagnosed. If these
facilities are not triggered, the Yacc value stack 1is used
to hold int's, as was true historically.

10-34

YACC YACC

10.12 A Simple Example

This example gives the complete Yacc specification for a
small desk calculator: the desk calculator has 26 registers,
labeled "a" through "z", and accepts arithmetic expressions
made up of the operators +, -, *, /, % (mod operator), &
(bitwise and), | (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is
not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it
is assumed to be decimal.

As an example of a Yacc specification, the desk calculator
does a reasonable job of showing' how precedences and
ambiguities are wused, and demonstrating simple error
recovery. The major oversimplifications are that the
lexical analysis phase is much simpler than for most
applications, and the output is produced immediately, line
by line. Note the way that decimal and octal integers are
read in by the grammar rules; This job is probably better
done by the lexical analyzer.

% {
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}
gstart list

$token DIGIT LETTER

sleft '|°)
gleft 'g! '
$left '4' ="

gleft 'x' 1/ rg
$§left UMINUS /* precedence for unary minus */

%% /* beginning of rules section */

: /* empty */

| list stat '\n'

| iist error '\n'
yyerrok; }

list

.
’

stat : expr

10-35

YACC YACC

{ printf("sa\n", $1); }
| LETTER '=' expr
regs[$1l] = $3; }

~e

expr : '(' expr '")'

$$ = $2; |}
expr '+' expr
$$ = $1 + $3;
| expr '-' expr

}
$$ = $1 - $3; }

| expr '*' expr
{ 8 = $1 * $3; }

| expr '/' expr
$$ = $1 / $3; |}

| expr '%' expr
{ 8 = $1 % $3; }
}
}
S

| expr '&' expr

$ = $1 & $3; .
| expr 'T' expr
{ 88 = 81 | $3;
| '-' expr $prec UMINU
{ 8 = - s2;
| LETTER
{ $$ = regs[s1]; }
| number
number : DIGIT
[$$ = $1; base = ($1==0) ? 8 : 10; }
| number DIGIT
$$ = base * $1 + $2; |}
%3 /* start of programs */
yylex () { /* 1lexical analysis routine */

/* returns LETTER for a lowercase letter, */
/* yylval = 0 through 25 */
/* return DIGIT for a digit, */
/* yylval = 0 through 9 */
/* all other characters */
/* are returned immediately */
int c;
while((c=getchar()) == "' ') { /* skip blanks */ }
/* ¢ is now nonblank */

if(islower(c)) {

10-36

YACC : YACC

yylval = ¢ - 'a';
return (LETTER };

if(isdigit(¢)) {
yylval = ¢ - '0';
return{(DIGIT);

return(c);

8

10-37

YACC YACC

10.13 Yacc Input Syntax

This section has a description of the Yacc input syntax, as
a Yacc specification. Context dependencies, etc., are not
considered. Ironically, the Yacc input specification
language is most naturally specified as an LR(2) grammar;
the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule;
otherwise it is a continuation of the current rule, which
just happens to have an action embedded in it. As
implemented, the lexical analyzer looks ahead after seeing
an identifier, and decide whether the next token (skipping
blanks, newlines, comments, etc.) ‘is a colon. If so, it
returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS, but never as part of C_IDENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities */

$token IDENTIFIER /* includes identifiers and literals */
$token C_IDENTIFIER /* identifier followed by colon */
$token NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, $left => LEFT, etc. * /
stoken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

ttoken MARK /* the %% mark */
stoken LCURL /* the %{ mark */
$token RCURL /* the %} mark */

/* ascii character literals stand for themselves */

g¢start spec

L3
spec : defs MARK rules tail
tail : MARK [Eat up the rest of the file }
| /* empty: the second MARK is optional */
defs /* empty */
defs def

o ———— a8

10-38

YACC

def

rword

tag

nlist

nmno

rules

rule

rbody

act

prec

START
UNION
LCURL
ndefs

WO ——e g

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

. —— e e

l<|

NG e 00

nmno
nlist nmno
nlist *',°!

-

IDENTIFIER

LY Jpee—— ¥

IDENTIFIER
Copy union definition to output }

IDENTIFIER NUMBER

C code to output file |
tag nlist

/* empty: union tag is opt10na1 */
IDENTIFIER

'>'

nmno

/* Literal illegal with %type */
/* Illegal with %type */

/* rules section */

: C_IDENTIFIER rbody prec
| rules rule
: C IDENTIFIER rbody prec
| 'T* rbody prec
: /* empty */

rbody IDENTIFIER

rbody act

. |{|

{ copy action, translate $$, etc. } '}

~e

: /* empty */
PREC IDENTIFIER

‘ PREC IDENTIFIER act
prec ‘';'

¥

10-39

RCURL

YACC

YACC YACC

10.14 An Advanced Example

This section gives an example of a grammar using some of the
advanced features discussed in earlier sections. The desk
calculator example is modified to provide a desk calculator
that does floating point interval arithmetic. The
calculator understands floating point constants, the
arithmetic operations +, -, *, /, wunary -, and =
(assignment), and has 26 floating point variables, "a"
through "z". Moreover, it also understands intervals,
written

(x ., v7)

where x is less than or equal to y. There are 26 interval
valued variables "A" through "2z" that may also be used.
Assignments return no value, and print nothing, while
expressions print the (floating or interval) value.

This example explores a number of interesting features of
Yacc and C. Intervals are represented by a structure,
consisting of the left and right endpoint values, stored as
double's. This structure is given a type name, INTERVAL, by
using typedef. The Yacc value stack can also contain
floating point scalars, and integers (used to index into the
arrays holding the variable values). Notice that this
entire strategy depends strongly on being able to assign
structures and unions in C. In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions: division by an interval containing 0, and an
interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throw away the rest of
the offending line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates an interesting use of syntax to
keep track of the type (e.g. scalar or interval) of
intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands
an interval value. This causes a large number of conflicts
when the grammar is run through Yacc: 18 Shift/Reduce and 26
Reduce/Reduce. The problem can be seen by looking at the

two input lines:
2.5 + (3.5 - 4.)

and

10-40

YACC YACC

2.5+ (3.5, 4.)

Notice that the 2.5 is to be wused in an interval valued
expression in the second example, but this fact is not known
until the "," is read; by this time, 2.5 1is finished, and
the parser cannot go back and change its mind. More
generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an
interval. This problem is circumvented by having two rules
for each binary interval valued operator: one when the left
operand is a scalar, and one when the 1left operand 1is an
interval. In the second case, the right operand must be an
interval, so the conversion will be applied automatically.
However, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They are
resolved by 1listing the rules that yield scalars first in
the specification file; in this way, the conflicts will be
resolved in the direction of keeping scalar valued
expressions scalar valued until they are forced to become
intervals.

This way of handling multiple types is very instructive, but
not very general. If there were many kinds of expression
types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more
dramatically. Thus, while this example is instructive, it
is better practice in a more normal programming language
environment to keep the type information as part of the
value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only
unusual feature is the treatment of floating point
constants. The C library routine atof is used to do the
actual conversion from a character string to a double
precision value. If the lexical analyzer detects an error,
it responds by returning a token that is illegal in the
grammar, provoking a sgpyntax error in the parser, and thence
error recovery.

10-41

YACC

% {

#
#

inclu
inclu

typedef

INTERVAL
double

double
INTERVAL

%}
%start‘

gunion

gtoken
gtoken
$type

type

gleft

gleft
gleft

3

lines

line

YACC

<stdio.h>
<ctype.h>

de
de

struct interval
double 1lo, hi;
} INTERVAL;

vmul(), vdiv():;
atof();

dreg[26 1;
vreg[26];

lines
{
int ival;
double dval;
INTERVAL vval;
<ival> DREG VREG /* indices into dreg, vreg arrays */
<dval> CONST /* floating point constant */
<dval> dexp /* expression */
<yval> vexp /* interval expression */
/* precedence information about the operators */
Tt v_1 K
[3 I/l
UMINUS /* precedence for wunary minus */
: /* empty */
| lines 1line
: dexp '\n’'
{ printf("%15.8f\n", S$1); }
| vexp '\n'
{ printf("(215.8f, %15.8f)\n", $l.lo, $l.hi); |}

10-42

YACC YACC

| DREG '=' dexp '\n'

{ dreg($1] = $3;
| VREG '=' vexp '\n'

{ vreg[s1l] = $3; }
| error ‘\n'

{ yyerrok; }

dexp : CONST
| DREG
{ $$ = dregls1]; }
| dexp '+' dexp
{ $$ =31 + $3; }
| dexp '-' dexp
{ 88 = $1 - 33; }
| dexp '*' dexp
{ 3 =51 * 33; }
| dexp '/' dexp
{ $$ =51/ %3; }
| '-' dexp %$prec UMINUS

{ s = - s2; }
! |(v dexp v)v
{"s$s = s2; }

vexp : dexp
{ $$.hi = $$.10 = $1; }
l 1(! de?p |’| dexp l)l

s.1o $2;

$$.hi $4;

if($$.1lo > $$.hi) {
printf("interval out of order\n");
YYERROR;

}
{ $$%= vreg(sl]; }

| vexp '+' vexp
{ $$.hi = $1.hi + $3.hi;
$$.10 = $1.1o + $3.1l0; }
| dexp '+' vexp
{ $5.hi = $1 + $3.hi;
$$.10 = $1 + $3.1o; |}
| vexp '-' vexp
{ $$.hi = $1.hi - $3.l0;
$$.1o0 = $1.1o - $3.hi; }
| dexp '-' vexp '
{ $$.hi = $1 - $3.10;
$$.1o = $1 - $3.hi;}
| vexp '*' vexp

10-43

YACC YACC

{ $$ = vmul($1l.lo, $1.hi, $3); }
| dexp '*' vexp
$$ = vmul($1, $1, $3); }
| vexp '/' vexp
if (dcheck($3)) YYERROR;
$$ = vdiv($1l.lo, S$l.hi, $3);
| dexp '/' vexp
if (dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3);
| '-' vexp $prec UMINUS
{"$$.hi = -$2.10; $$.lo0 = -$2.hi; }

‘ |(| vexp |)|
$$ = $2; |}

-

%
define BSZ 50 /* buffer size for f£fp numbers */

/* lexical analysis */

yylex () {
register c;
/* skip over blanks */ }
while((¢ = getchar()) == "' ')

if (isupper(c)){
yylval.ival = ¢ - 'A';
return(VREG);

if (islower(c)){

yylval.ival = c - 'a';
return(DREG);

if(isdigit(c) || e=='."){
/* gobble up digits, points, exponents */

char buf[BSZ+l], *cp = buf;
int dot = 0, exp = 0;

for (; (cp-buf)<BSZ ; ++cp,c=getchar()){

*cp = c;

if (isdigit(c)) continue;

if (¢ == "',."
if (dot++ || exp) return('.');
/* above causes syntax error */
continue;

10-~-44

YACC YACC

if (c == 'e') {
if (exp++) return('e');
/* above causes syntax error */
continue;

/* end of number */
break:

*cp = '\0';
if((cp-buf) >= BSZ)

printf("constant too long: truncated\n");
else ungetc(c, stdin);

/* above pushes back last char read */
yylval.dval = atof (buf);
return(CONST);

return(¢);

INTERVAL hilo(a, b, ¢, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, ¢, and d
/* used by *, / routines */
INTERVAL v;

if(a>b) { v.hi = a; v.lo =
else { v.hi = b; v.1lo = a; }

if(c>d) |
if (c»>v.hi) v.hi = ¢
if (d<v.lo) v.lo = d

J

else { ,
if (d>v.hi) v.hi = 4;
if (c<v.lo) v.lo = c;

}

return(v «);

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo });

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.){
printf("divisor interval contains 0.\n");
return(l) ;

return(0);

10-45

YACC YACC

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));

10-46

YACC YACC

10.15 014 Features

This section mentions synonyms and features which are
suppor ted for historical continuity, but, for various
reasons, are not encouraged.

1. Literals may also be delimited by double quotes """.

2. Literals may be more than one character long. If all
the characters are alphabetic, numeric, or underscore,
the type number of the literal is defined, just as if
the 1literal did not have the quotes around it.
Otherwise, it is difficult to find the value for such
literals. The use of multi-character 1literals is
likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a Jjob that must be
actually done by the lexical analyzer.

3. Most places where “%' is legal, backslash "\" may be
used. In particular, "\\" is the same as "%%", \left
the same as %left, etc.

4. There are a number of other synonyms:

$< is the same as %left

$> is the same as %$right

$binary and %2 are the same as %nonassoc
$0 and %term are the same as %token

§= is the same as %prec

5. Actions may also have the form

={ ...}

and the curly braces can be dropped if the action is a
single C statement.

6. C code between %{ and %} used to be permitted at the
head of the rules section, as well as in the
declaration section.

10-47

	XSSD_07_0001
	XSSD_07_0002
	XSSD_07_1001
	XSSD_07_1002
	XSSD_07_1003
	XSSD_07_1004
	XSSD_07_1005
	XSSD_07_1006
	XSSD_07_1007
	XSSD_07_1008
	XSSD_07_1009
	XSSD_07_1010
	XSSD_07_1011
	XSSD_07_1012
	XSSD_07_1013
	XSSD_07_1014
	XSSD_08_0001
	XSSD_08_0002
	XSSD_08_1001
	XSSD_08_1002
	XSSD_08_1003
	XSSD_08_1004
	XSSD_08_1005
	XSSD_08_1006
	XSSD_08_1007
	XSSD_08_1008
	XSSD_08_1009
	XSSD_08_1010
	XSSD_08_1011
	XSSD_08_1012
	XSSD_08_1013
	XSSD_08_1014
	XSSD_08_1015
	XSSD_08_1016
	XSSD_08_1017
	XSSD_08_1018
	XSSD_08_1019
	XSSD_08_1020
	XSSD_08_1021
	XSSD_08_1022
	XSSD_08_1023
	XSSD_08_1024
	XSSD_08_1025
	XSSD_09_0001
	XSSD_09_0002
	XSSD_09_1001
	XSSD_09_1002
	XSSD_09_1003
	XSSD_09_1004
	XSSD_09_1005
	XSSD_09_1006
	XSSD_09_1007
	XSSD_09_1008
	XSSD_09_1009
	XSSD_09_1010
	XSSD_09_1011
	XSSD_09_1012
	XSSD_09_1013
	XSSD_09_1014
	XSSD_09_1015
	XSSD_09_1016
	XSSD_09_1017
	XSSD_09_1019
	XSSD_09_1020
	XSSD_09_1021
	XSSD_09_1022
	XSSD_09_1023
	XSSD_09_1024
	XSSD_09_1025
	XSSD_09_1026
	XSSD_09_1027
	XSSD_10_0001
	XSSD_10_0002
	XSSD_10_1001
	XSSD_10_1002
	XSSD_10_1003
	XSSD_10_1004
	XSSD_10_1005
	XSSD_10_1006
	XSSD_10_1007
	XSSD_10_1008
	XSSD_10_1009
	XSSD_10_1010
	XSSD_10_1011
	XSSD_10_1012
	XSSD_10_1013
	XSSD_10_1014
	XSSD_10_1015
	XSSD_10_1016
	XSSD_10_1017
	XSSD_10_1018
	XSSD_10_1019
	XSSD_10_1020
	XSSD_10_1021
	XSSD_10_1022
	XSSD_10_1023
	XSSD_10_1024
	XSSD_10_1025
	XSSD_10_1026
	XSSD_10_1027
	XSSD_10_1028
	XSSD_10_1029
	XSSD_10_1030
	XSSD_10_1031
	XSSD_10_1032
	XSSD_10_1033
	XSSD_10_1034
	XSSD_10_1035
	XSSD_10_1036
	XSSD_10_1037
	XSSD_10_1038
	XSSD_10_1039
	XSSD_10_1040
	XSSD_10_1041
	XSSD_10_1042
	XSSD_10_1043
	XSSD_10_1044
	XSSD_10_1045
	XSSD_10_1046
	XSSD_10_1047

