TRS-XENIX System Software Development

TRS-80 °

TRS-XENIX SYSTEM

SOFTWARE DEVELOPMENT

Radio fhaek

XENIX Operating System Software: d09yfight'1983‘Microéoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

Restricted rights: Use, duplication, and disclosure are
subject to the terms stated in the customer Non-Disclosure
Agreement.

"tsh" and "tx" Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

XENIX Development Syétem Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

TRS-XENIX Software Development Manual: Copyright 1983
Microsoft Corporation. All Rights Reserved. Licensed to
Tandy Corporation. :

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors
or omissions in this manual, or from the use of the
information contained herein.

%
XENIX is a trademark of Microsoft.

UNIX is a trademark of Bell Laboratories.

ACKNOWLEDGEMENTS

This manual builds on the writing of many others. In many
cases, the content here is identical, in whole or in part,
to papers and manuals written at Bell Laboratories. In
particular, Chapter 2 and Appendix B are adapted from papers
written by Brian Kernighan and D.M. Ritchie. Chapters 5 and
10 are adapted from papers written by S.C. Johnson. Chapter
6 is derived from a paper by S.I. Feldman, Chapter 7 from a
a paper by J.F. Marazano and S.R. Bourne, and Chapter 9 from
a paper by M.E. Lesk and E. Schmidt. -In addition, Appendix
A is adapted from material written by Bill Joy and Mark
Horton, while at the University of California at Berkeley.
The work of those mentioned above, and countless others, is
gratefully acknowledged.

2.3

CONTENTS

Introduction

Overview.OOOOQOC...'.OQ........C.OOOOOODOOIOOOIOQIO
Manual Organization‘ *- & 5 @ & & 0 3 0P E P s B e ;. ® % & & a0 8P
Notational ConventionsS..cceessssoeesvscssasnsvseceas

XENIX Programming

Introduction'O".‘.'.....'0....."..‘0.'0...'00.ICC.;.
The C Interface To The XENIX SystemMe.ceccecoscccos
2.2.1 Program ArguUmeNntS...ceececscessessscccsass

The LR SR I I N R R A A L N R A R I] 4 8 ¢ 8 2 8 E PSS e e e

The Standard I/0 Libraryeecesesccecessses .o
Low=Level I/0...vecrcerscscaasssascssannvsns
PrOCeSSeBu .o vrrsrenorecasnsasesessssassvans
Signals and InterruptS...eceecesoccsannssve
tandard I/0 Library...ceeecescessecssosances
General USaAgCecieesessssevisosonossansssne
File ACCESS.ceuceeessstossnsnosccscsosansns
File StatusS...cccetieentncesvoncasoceriose
Input FUNCEION. ce et e s et essovossnsnssecsass
Output FunctionsS....cceceecenese cesencasans
String FPUNCLiONS.ee it esevssscscvccscsnnes
Character Classification..v.ccceeeccacaaes
Character TranslatioN.sieeeesscocsnccasss .
Space AlloCatioNiseeeecsvscensceescsssaansnasns
de FileSiveeeeeooooeenes cseesaisecssssssenss
ctype.hs#........ ceceacea teesevecsecacanens
Signal.iheceeeerensnesnencvssocensosaccsnns
stdio.heveoeen... sasevsacasensessresany e as
MC68000 Assembly Language Interface........
Registers and Return ValueS....vcevvecnses
Calling SequUenCe....cceeevvscsosconaasccns
Stack Probes....c.cvsevecneccrecssesnscans

o 5 s »

e s s e
NOUVTBWNNHN AU EWN

e o & 2 o s a8 o e

BB WWWWWWww WWwo NOONN

inin B b o

NN NDNODNDDRDONNNDE RDORNDDN
W MXWwi=o oo

Lo

. - -

Software Tools

IntrOdUCtion- o.o-.‘oo LRI ST B 3 B) * S0 ® 608 S B 00 e e . e
Bas ic TOOlS L I LS IR R I R A B R R A A I BN N A A N A
Other TOO].S' *® 8 580 08 IR A AR R B S N EE A 2R B B B B B B B I I B]

LS SN .S SN SIS
1

N
i
[l

4.0 Cc: A C Compiler

Introduction' * ® 8 B 8 & % S 6 S 0 0 0 S O W U U AW DS P e S so . " e ® e ¢ s DN
Invocation SwitChesS. v vieeevevesssosesanssnsennssns
The Loader. @ 9 B P R B S S G VOSSP S YN TR RS NS * % ¢ & O & s @

Lo -
. L] .
[CS 0 S0 o

w
L]
(=]

Lint: A C Program Checker

INtrodUCtioN. ceevessncsosecoscacsssssccnossccscossnas
A Word About PhiloSOpPhy.cecseeeccsenenscacscscccna
Unused Variables and FUNCtiONS..eseeessccccocones
Set/Used Information...ceseveescacacaansecenassses
Flow Of CONtrol.e.sceeesscsesvonsssssssosssscnnasasss
Function ValueBS..eeasecosooscsancssesssessssnsssnasns
Type Checking.ceeeeeereesscesnessncnsassonecccsnas
TYPe CaStSecececccscoscososscscassssscscccsnsccnscsos
Nonportable Character Us€...ccceeecerscescscsaccns
0 Assignments of longs to ints......iievvennsccecis
1l Strange ConstruCtionS..cceeescccveescescssossccnns
HiStOrYeiceeeaossvceasosesossssscssnosnssnnnsoncsese
Pointer Alignment...cscececseccssccsccncnccsssanns
5.14 Multiple Uses and Side Effects......cicecivecscns
Shutting Lint UP..cicerieeesvreesvraoscsossscscsncsacces
5.16 Library Declaration FileS...cesececcacssscscsacss
5417 NOLES.teooosooscosassssssnssssssvsnsscsosasasssansae
5.18 Current Lint OptionsS....ceecreecncaccatnnssnconss

L . . L) .
HF W O-A U S WM

NS RGERGEG RGN S R R RS L

»
e
w N

%))
.

ot
o

ADB: A Program Debugger

0
1 IntroduCtioN..ceicescoscessoccesasnascascosaneossscne
2 InvocatioN.iieeeeceesseccsosvnensscosssscsnsanssansee
3 The Current Address — DOt...verievnscacessococccnns
4 PFOIMAtSeeicceosserossssanscoscnsossosocsncssnnsncssnce
5 General Request Meanings......cccecscssscsnccsnsns
6 Debugging C ProgramS...csececesscccvsescsosssascns
6.6.1 Debugg®ng A Core IMage ..ecevssassncseccs
6.6.2 Multiple FUNCtionS....ceeeeocccccscensss
6.6.3 Setting BreakpointS..icivcescecesssoncncss
6.6.4 Other Breakpoint Facilities....ccacacusns
R . 1 o -
8 Advanced USage@.cseeesvcecoccssssosssasnssnssnsnscsse
6.8.1 Formatted dUMP..ccvcceeeccncsvesccncasncns
6.8.2 Directory DUMP.ceescecessassensocssosnnee
6.8.3 T1iSt DUMP.ceeveeesorerosnssossossssssasss
6.8.4 Converting valuesS...csoceeeecacccsvasances
6.9 PatChing...eeieeeeceersescesoscscesoseccnsosncsscsas
6.10 NOtES.iiereavaosscscsaccenossscnsscsssccsssnscsnsssce
6.1l]l FigUI@S.eeesersossosscoonrsssnsssasonannsosrncsosnocss
6.12 ADB SUMM.AIYe.ecesscrssssosacsssososnnsssevsssosans

- ii -

T
WK

U’lU‘IU"L"'ILHU'\U’I

t

T
O~ AN E WO N

HOWSIO b BWWNH M

el

~
o

NN NN N
[] » . L] »
SN W N

6.12.1 Format Summary....‘..........ll.'...-..... 6—32
6.12.2 EXpression SUMMAIY..sccecececoes ceesecessass 6-32

Make: A Maintenance Program

IntroductionNesevseeesoccenne ceassescserecsassenvan 7-1
Description Files and Substitutions............c. 7-~5
Command UBAGE. cssaseassacssvvessssssnsosronasnananse 7-7
IMPlicit RUlES...icieeverescnssccacssncsscnsseansae 7-8
EXAMPle.:ceesoenseacaasassoscssosssssssnneasssssossces 1-10
Suggestions and WarningsS...cceseevesescscsnsesens 7-11
Suffixes and Transformation RuleéS...cesesvsvessss /=13

8.5

8.7

0 0o
O

As: An Assembler

Introduction....
Invocation......

Invocation OptionsS.:.eeeeceses
Source Program Format

® 5 & 05 008 05050 0

*© 6 00 0 @60 e Ce N 00

S 8 8 5 0 5 2 8 60 C TS eSSBS LT SO EESs 0

® e S 88 S 0SSP eSS LE e e e

® % ® 8 85 9 6 e eI

8'4.1 Label Field ooooo 9 8 60 0 0 U PGS L E OSSN Es S

8.4.2 Opcode Field..

® e OO H O S H N O N PSS s

8.403 operand_Field...coo.o.oo....-.u---.. ----- .

8.4.4 Comment"F,ield.QCIQ.‘.O...‘CHOCI............"

Symbols and EXpressionS.....ccececscscssoscccoanns

[,
- * L3

U WN

L[] » »

Constants
Operators
TermS. ..«

o BT R
(s o o o

NNNNSNNNO OO ot O

bler Dire

s o ¢ o o o N e o
« s e 8 o 0o (D o

000000 00 OO 00O ¥ GO OO < CO C0 0O OO OO 0O
NN B WM S N

L] .evenlll.
Operation Codes.
Error Messages..

Symbols..
Assembly Location Counter.....cevecececcns
Program Sections..

Expressions.......

P E E R R R L N I A S Y B A

4 % & 0 * 0B B G S S SN G NGO e

----------- LR R N T BE R I B R A 2N A A AL AL B O

® 8 9 5 8 O B AP P OO E LN EER BRI PES e e e

* O & & & ¢ & 2 U 0B " o & & 5 66 9 s 808 e N e

.......... * o s 00

- iii -~

S 4 @ 6 0 0 0 0 0SS E LA E bl e

uctions and Addressing ModeS.....cceerevoces

Instruction MNnemonics. cseesaeccovscsssveses

Operand Addressing ModeS....ececsevesscvsnes
3 8- T R R R R R R TR
.ascii Tasciz...........,
.blkb .blkw .blkl..
.byte .word
‘.end..r.y.................-....5..........
.text .data
.globl .COMM...ceescesoscoaccsvenseasces ces

R R R E R R A

RN RS NN SRS EE e E s

Ilong¢..ooo‘-‘oulnl.!..oooooo

.bss-.ol.....:l..'..n.‘.nl.'

* 8 @ & 0 B 2SO0 S b E NN

® 4 ¥ 88 @8 P P OO S eSS e

6 0% 6% P B eSS P S sEIe

LwounutunkdWNE- -

Q> 00 00 Q0 Q0 0 00 Q0 Q0 O O O

8-11
8-12
8-12
8-13
8-13
8-14
8-17
8-17
8-18
8-19
8-19
8-19
8-20
8-21
8-22
8-23

.0 Lex: A Lexical Analyzer

.1 IntroductionN..cceeeceiocsasesasans cesesesecenaneon 9-1
e2 LeX SOUYCEe.iriesssecssssosnsssssscsssassnssosssscasess 9-3
.3 Lex Regular EXpPressSioOnS...cecescesssee veosossseee 9—4

.1 Character classes..... cesesassresennerens 9-5
Arbitrary character........... ceesersasne 9-6

3

9.3.2

9.3.3 Optional EXpressions......eeecececcccsase 9=6

9.3.4 Repeated EXpPressSiONS...cccscecsscencccsce 9-6

9.3.5 Alternation and Grouping.....ceceeecassss 9-7

9.3.6 Context Sensitivity....eceveeccescccnanea 9-7

9.3.7 Repetitions and DefinitionS...ceeevcecess 9-8
LexXx ACtiOonS.cecsesocsccossssnscan s sssacessssasrsens 9-9
Ambiguous Source RULES...ceeesssesnssoscnssssanss 9I-13
Lex Source Definitions......... cecesessisenenannas 916

USAQJCe ceresnoassssssossscssocsnssssancassanvavsssnnsae I=17
LeX and YacCC..essvescoscesccosnssscasasssnvsssensss 9I—18
Left Context Sensitivity.ieeseeresnsersoccaseesss 9-22
Character Set.cicesececces ceeeseseccsssssssssscsss 924
Summary of Source Format......... cececsossseansssee 9=25
NOLES..eeietoessesasesnansanens cecereevesssassees 927

. - . [] L] []
b o D 0O~ OY UT i

W W W0 WOWOWWOW
OO

10.0 YACC: A Compiler-Compiler

10.1 INtrodUCEiONescecececeseseeecasosnsanasnasassss - 10=1
10.2 Basic SpecificationsS......iceecesiveccencccccns 10-4
10.3 ACLIONS.eccinassoscsssossssossosissenssenssssscsnss 10-6
10.4 LEchal AnaJ.YSlS-......................---..... 10"9
10.5 How the Parser WOrkS......... ceecesveseenencssece 10-11
10.6 Ambiguity and Conflicts....... ceseessesesnssees 10-17
10.7 PrecedeNCe.c.cccecccscecssscscsssssssessnesesss 10-22
10.8 Error Handling.ee.eoesececessesorososconasseasecs 10-25
10.9 The Yacc Environment....ccccecevevosesoesocassas 10-27
10.10 Hints for Preparing Specifications.....cee..... 10-28
10011 Advanced TOpiC_S-.....-.......-.....-........... 10"'32
10.12 A Simple ExampMe..c.cceveeeccsscnssscsocassassss 10-35
10.13 Yacc Input SYNtaAX.....cccoacacseesecoevssossass 10-38
10.14 An Advanced Example...ccececsances deesvsassssnas 10-40
10.15 O1ld FeatUreSeesecerssssssscsanssnse vecesesnssssess 10-47

Appendix A: The C Shell
Appendix B: M4
Appendix C: Portable C Programming

- iv -

CHAPTER 1
INTRODUCTION

CONTENTS

l.l overview..Q...cc.-0....0..000...0‘....--000....'...

102 Manual Organization-o.--.0.000.0000.0...n.ll.oo.oo

1.3 Notational ConventionS....seecesesccsssssssannscses

1/introduction

Introduction Introduction

1.1 Overview

One of the primary uses of the XENIX system is as an
environment for software development. This manual describes
this programming environment and the available tools. Since
nearly all of the XENIX system is written in the C
programming language, C is the ideal language for creating
new XENIX applications. However, no attempt is made here to
teach C programming.. For that, see the excellent tutorial
and reference The C Programming Language, by Kernighan and
Ritchie. For more information about the basic concepts and
software that underly XENIX itself, see the XENIX
Fundamentals manual. T

1.2 Manual Organization
This manual is organized as follows:
CHAPTER 1: Introduction

The chapter you are now reading cbntains a word
about the ‘development of software on the XENIX
system '

CHAPTER 2: Xenix Programming

Discusses the standard XENIX environment and how
this environment can be accessed either from C or
from assembly language.

CHAPTER 3: Software Tdols

Describes each of the tools that you are likely
to use either directly or indirectly, in
programming on the XENIX system, with emphasis on
how the ygthe software tools discussed in this
manual fit together.

CHAPTER 4: Cc: The C Compiler

Describes use of the XENIX C compiler, cc. Also
describes the preprocessing, - linking, and
assembly stages in compiling C programs to
executable files.

CHAPTER 5: Lint: The C Program Checker
Describes use of lint, the XENIX C program

checker. "+ Lint analyzes C program syntax and
language usage, reporting anomalies to the user.

1-1

Introduction Introduction

CHAPTER 6: Make: A Program Maintainer

Describes use of make, a program for controlling
software generation, update, and installation.

CHAPTER 7: ADB: A Program Debugger
Describes use of the debugger, ADB, a program for
debugging and analyzing both programs while they
execute. . o S

CHAPTER 8: As: The XENIX Assembler

Describes how as, the XENIX assembler can be used
to assemble machine language programs and
routines. ‘ :

CHAPTER 9: Lex: A Lexical Analyzer

Describes use of lex, a lexical analyzer useful
in reading input languages.

CHAPTER 10: YACC: A Compiler-Compiler
Describes use of YACC, a complex utility for

creating = language translators. '~ Useful in
conjunction with lex, above.

APPENDIX A: The C Shell

Describes use of the alternate shell command
interpreter, c¢sh. The C shell command language
has a syntax similar to that of the C programming
language. Aliases and a command history
mechanism are also provided.

APPENDIX B: M4 ™
Describes use of the macro preprocessor, Mé.
APPENDIX C: C Program Portability

Explains how to write C programs that are
portable across different processors and XENIX
systems.

Introduction

’Introduction

1.3 Notational Conventions

Throughout this manual, the following notational conventions

are used:

boldface

underlining

[brackets]

<angle-brackets>

ellipses...

gquotation marks

Command names are given in boldface in
the text of this manual; no boldface
occurs in displays, except in syntax
specifications for literal text. For
example, 1ls, date, and cd are all the
names of commands that you might type at
the keyboard, and therefore all are in
bold. An exception to this rule occurs
for 1long chapters about a single
command. In this case, the command name
is made 1less conspicuous by either
underlining or capitalization.

All filenames and pathnames are
underlined. For example, text.file is a
filename and /usr/mary 1is a pathname.
Most command arguments are underlined as
well, although in some cases these are
in boldface. Words and phrases also may
be underlined for emphasis. References

. to entries in the XENIX Reference Manual

are underlined and include a section
number in parentheses. For example,
1s(l) refers to the entry for the 1s
command in Section 1, "Commands".

Brackets enclose optional arguments in
syntax specifications.

Angle brackets enclose the names of
control characters and special function

gkeys. Examples are <CONTROL~D>,

<CONTROL~S>, <RETURN>, <INTERRUPT>, and
<BRSP>,

Ellipses are used to indicate one or
more entries of an argument in a syntax
specification. For example, in the
following syntax for the mail command,
the ellipses indicate that one or more
persons can be sent mail:

mail person ...

Quotation marks' are used to set off
multiple keystroke input. For example,

Introduction , ; Introduction

"ls =-la ; date" is an example of a
command line appearing 1in the body of
the text.
Common abbreviations for ASCII characters are listed below:

<ESC> Escape, Control-|

<RETURN> Carriage return, Control-M

<LF> Newline, Linefeed, Controi—J

<NL> Newline, Linefeed, Control-J

<BKSP> Backspace, Control-H

<TAB> Tab,vControl—Ir

<BELL> Bell, Control-G

<FFP> Formfeed, Control-L

<SPACE> Space, octal 040

 | Delete, octal 0177

\ 2/TRS-XENIX Programming

2.1
2.2

2.3

CHAPTER 2
XENIX PROGRAMMING

CONTENTS

Introduction.-.-..-c.l.l.00-ollcoicuoolccanloolonoo

The C Interface To The XENIX Systeéme.eccececececss
2.2.1 Program ArgumentS..cccecevsssvcescssccsnssas

The LR B B EE B B Y BRI N I B B A I B R B BE B B R B B N A R A A L A

The Standard I/0 Library...ecceececsccceces
LOW"Level I/O-.--.-ooooa-to.-oo-bc.oo--.-l

NN
¢ o o s @
OO

Vo~NaAUMsE WU UL WD

Signals and InterruptS..cceersssscssoscencs

h

3

WWWWWw W WWwWe

tandard I/0 Library..ceceesicecccsvecssocses
General USAge.ceeceeassscnsnsascsssosssscasse
File ACCESS. . itessscesosrsoscasssassnnsscsssse
File StatuUS..eeeesccess ceccssessrenanansn
Input FUNCEION. ceeseenscerosenssssscscsans
Output FUNCLiONS. . ettt steecsasossssnsscsces
String FUNCLIiONS. . ceseeacvosssnnsescsocces
Character Classification...icccveesoenncen
Character TranslatioN. ... cvessenscsncaconae
Space Allocation.o.-oo.n-ao.'--.o.oo-oooo-o

» & & & ¢ -
. . . * L] .

ncl de Filest....‘6.".O..D‘O..'Q....OOVOJ‘OUUCOCC
.4. ctype.hevececascs s e sresnssasesa e aesse e e
4. signal.hy........ cecbusecses s s e s0cans e
4. stdio.hiceveecenene o

MC68000 Assembly Language Interface........
Registers and Return ValueS.....cces00cae0
Calling SeqUEeNCEe. i veesessssccsssssnsesse
Stack Probes...cccveviaee veesseasrassnsenens

[S VR V- NN NN NNDNONN

4
W N = X W o

(SIS]

Processe‘s..........’..'.O‘...‘;..'I..‘..‘.~.‘...l '

[\
|
P

NN

oo
SN S I e A |
NN WES N

XENIX Programming ; XENIX Programming

2.1 Introduction

The C programming language is designed to be used in a
computing environment. Because of the power and flexibility
of the XENIX environment, it is important for the programmer
to to take advantage of its many capabilities. For example,
from within some C programs, you may want to execute other
programs, or make calls to perform system functions. Or,
you may want to write assembly language routines that
interface to C programs. Before you can perform any of
these programming tasks, you must know the environment. In
the case of the XENIX system, this environment includes
low-level system calls, available C libraries, and compiler
calling conventions. Because you may also want to write C
programs that are portable to other XENIX systems and other
processors, a section in this chapter discusses portable C
programming. v

2.2 The C Interface To The XENIX System A
This section shows hoﬁ to interface C programs to the VXENIX
system, either directly or through" the standard I/0 library.
The topics discussed include:

¢ Handling command arguments

¢ Rudimentary I/0

& The standard input and output

® The standard I1/0 library

® File system access

& Low—levei 1/0: open, read, write, close, seek

® Processes: exec% fork, pipes

@& Signals and interrupts

2.2.1 Program Arguments

When a C program is run as a command, the arguments on the
command line are made available to the function main as an
argument count argc and an array argv of pointers to
character strings that contain the arguments. By
convention, argv[0] is the command name itself, so argc is
always greater than 0.

2-1

XENIX Programming XENIX Programming

The following program illustrates the mechanism: it simply
echoes its arguments back to the terminal. (This is
essentially the echo command.)

main(argc, argv) /* echo arguments */
int argc;
char *argv([]:

int i;

for (i = 1; i < argc; i++)
printf("%s%c", argv([i], (i<argc-1l) ? * ' : '\n');

}

argv is a pointer to an array whose individual elements are
pointers to arrays of characters; each is terminated by \0,
so they can be treated as strings. The program starts y
printing argv[l] and loops until it has prlnted them all.

The argument count and the arguments are parameters to main.
If you want to keep them so other routines can get at them,
you must copy them to external varlables.fﬁ, :

2.2.2 The Standard

The simplest input mechanism 1is to read the "standard
input, " which is generally the user's terminal. The
function getchar returns the next input character each time
it is called. A file may be substituted for the terminal by
using the < convention:

prog <file

This causes prog to read file instead of the terminal. The
program itself need know nothing about where its input is
coming from. This {s also true if the input comes from
another program via the "pipe" mechanism. For example

otherprog | prog

provides the standard input for prog from the standard
output of otherprog.

Getchar returns the value EOF when it encounters the end of
file (or an error) on whatever you are reading. The value
of EOF is normally defined to be -1, but it is unwise to
take any advantage of that knowledge. As will become clear
shortly, this value is automatically defined for you when
you compile a program, and need not be of any concern.

XENIX Programming XENIX Programming

Similarly, putchar(c) puts the character ¢ on the "standard
output,” which is also by default the terminal. The output

can be captured on a file by using >. If prog uses putchar,
prog >outfile

writes the standard output on outfile instead of the
terminal. Outfile is created if it doesn't exist; if it
already exists, its previous contents are overwritten.

The function printf, which formats output in wvarious ways,
uses the same mechanism as putchar does, so calls to printf
and putchar may be intermixed 1n any order: the output
appears in the order of the calls. . ;

Similarly, the function scanf provides for formatted input
conversion; it reads the standard input and breaks it up
into strings, numbers, etc., as desired. Scanf. uses the

same mechanism as getchar, so calls to them may also be
intermixed.

Many programs read only one input and write one output; for
such programs I/0 with getchar, putchar, scanf, and printf
may be entirely adequate, and it is almost always enough to
get started. This 1is particularly true if the XENIX pipe
facility is used to connect the output of one program to the
input of the next. For example, the following program
strips out all ASCII control characters from its 1input
(except for newline and tab). : ‘

#include <stdio.h>

main() /* ccstrip: strip non-graphic characters * /

int c; :
while ((c¢c = getchar()) != EOF)
gif ((c >= ' ' && ¢ < 0177) \ ||
: - v\tv H == !\nl)
putchar (c¢) ;
exit (0)

}

The line
$include <stdio.h>

should appear at the beginning of each source file. It
causes the C compiler to read a file (/usr/include/stdio.h)

of standard routines and symbols that includes the
definition of EOF. -

XENIX Programming XENIX Programming

If it is necessary to treat multiple files, you can use cat
to collect the files for you:

cat filel file2 ... | ccstrip >output

and thus avoid learning how to access files from a program.
By the way, the call to exit at the end is not necessary to
make the program work properly, but it assures that any
caller of the program will see a normal termination status
(conventionally 0) from the program when it completes.
Status returns are discussed later in more detail.

2.2,3 The Standard I/0 Library

The Standard I/0 Library 1is a collection of routines
intended to provide efficient and portable I/0 services for
most C programs. The standard I/0 library is available on
each system that supports C, so programs that confine their
system interactions to its facilities <can be transported
from one system to another essentially without change.

In this section, we will discuss the basics of the standard
1/0 library. Section 2.3 contains a more complete
description of its capabilities.

2.2.3.1 Pile Access

The programs written so far have all read the standard input
and written the standard output, which we have assumed are
magically pre-defined. The next step is to write a program
that accesses a file that is not already connected to the
program. One simple example is wc, which counts the lines,
words and characters in a set of files. For instance, the
command

WC X.C Y.C "

prints the number of lines, words and characters in x.c¢c and
y.c and the totals.

The question is how to arrange for the named files to be
read~that 1is, how to connect the file system names to the
I/0 statements which actually read the data.

The rules are simple. Before it can be read or written a
file has to be opened by the standard library function
fopen. Fopen takes an external name (like x.¢ or y.c), does
some housekeeping and negotiation with the Sperating system,
and returns an internal name which must be used in
subsequent reads or writes of the file.

2-4

XENIX Programming XENIX Programming

This internal name is actually 'a pointer, called a file
pointer, to a structure which contains information about the
file, such as the 1location of a buffer, the current
character position in the buffer, whether the file is being
read or written, and the like. Users don't need to know the
details, because part of the standard 1I/0 definitions
obtained by including ' stdio.h is a structure definition
called FILE. The only declaration needed for a file pointer

is exemplifled by
FILE *fp, *fopen();

This says that fp is a p01nter to a FILE, ‘and fopen returns
a pointer to a FILE, which is a type name, like int, not a
structure tag.

The actual call to fopen in a program is
fp = fopen(name, mode) ;

The first argument of fopen is the name of the file, as a
character string. The second argument is the mode, also as
a character string, which indicates how you intend to use
the file. The only allowable modes are read (r), write (w),
or append (a).

If a file that you open for writing or appending does not
exist, it 1is created (if possible). Opening an existing
file for writing causes the old contents to be discarded.
Trying to read a file that does not exist is an error, and
there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is
any error, fopen returns the null p01nter value NULL (which
is defined as zero in stdio.h).

The next thing needed is a way to read or write the file
once it is open. here are several possibilities, of which
getc and putc are e simplest. Getc returns the next
character from a file. It needs the file pointer to tell it
what file. Thus:

c = getc(fp)

places in ¢ the next character from the file referred to by

fp; it returns EOF when it reaches end of file. Putc is the
inverse of getc. For example

putc(c, fp)

puts the character c on the file fp and returns ¢. Getc and
putc return EOF on error.

XENIX Programming ‘ XENIX Programming

When a program 1is started, three files are opened
automatically, and €file pointers are provided for them.
These files are the standard input, the standard output, and
the standard error output; the corresponding file pointers
are called stdin, stdout, and stderr. Normally these are
all connected to the terminal, but may be redirected to
files or pipes. §8tdin, stdout and stderr are pre-defined in
the I/0 1library as the standard input, output and error
files; they may be used anywhere an object of type

FILE *

can be. They are constants, however, not variables, so
don't try to assign to them. ‘

With some of the preliminaries out of the way, we can now
write wc. The basic design is one that has been found
convenient for many programs: if there are command-line
arguments, they are processed in order; if there are no
arguments, the standard input is processed. - This way the

program can be used stand-alone or as part of a larger
process.

2-6

XENIX Programming XENIX Programming

$include <stdio.h>

main(argc, argv) /* wc: count lines, words, chars */
int argc;
char *argv([]:

{

int ¢, i, inword;

FILE *fp, *fopen():;

long linect, wordct, charct;

long tlinect = 0, twordct = 0, tcharct = 0;

i=1;
fp = stdin;
do { :
if (argc > 1 && (fp=fopen(argv[i]l, "r")) == NULL) {
fprintf (stderr, "wc: can't open %s\n", argv[i]);
. continue;

} ..
linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF)

charct++;
if (¢ == '\n')
linect++;
if (¢ =="' "' || ¢=="'\t' || ¢ == "\n")
inword = 0; »
else if (inword == 0) {
inword = 1;
wordct++;

}

printf("$71d4d %714 %714d", linect, wordct, charct);
printf(arge > 1 2 " %s\n" : "\n", argvl[i]);
‘fclose(fp) ;
tlinect += linect;
twordct += wordct;
. tcharct += charct;
} while (++i < argc)y
if (argc > 2)
printf("%71d 8714 %71d total\n", tlinect, twordct, tcharct);
exit (0);

The function fprintf is identical to printf, save that the
first argument is a file pointer that specifies the file to
be written. :

The function fclose is the inverse of fopen; it breaks the
connection between the file pointer and the external name
that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files

XENIX Programming XENIX Programming

that a program may have open simultaneously, it's a good
idea to free things when they are no longer needed. There
is also another reason to call fclose on an output file-it
flushes the buffer in which putc 1is collecting output.
fclose(is called automatically for each open file when a
program terminates normally.)

2.2.3.2 Error Handling-Stderr and Exit

Stderr is assigned to a program in the same way that stdin
and stdout are. Output written on stderr appears on the
user's terminal even if the standard output is redirected.
We writes its diagnostics on stderr instead of stdout so
that if one of the files can't be accessed for some reason,
the message finds its way to the user's terminal instead of
disappearing down a pipeline or into an output file.

The program actually signals errors in another way, using
the function exit to terminate program execution. The
argument of exit is available to whatever process called it,
so the success or failure of the program can be tested by
another program that uses this one as .a sub-process. By
convention, a return value of 0 signals that all is well;
non-zero values signal abnormal situations.

Exit itself calls fclose for each open output file, to flush
out any buffered output, then calls a routine named _exit.
The function exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

2.2.3.3 Miscellaneous I/0 Functions
The standard I/0 1library provides several other I/0
functions besides those we have illustrated above.

Normally output with putc, etc., is buffered (except to
stderr); to force it%out immediately, use fflush(fp).

fscanf is identical to scanf, except that its first argument
is a file pointer (as with fprintf) that specifies the file
from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and
fprintf, except that the first argument names a character
string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf.

fgets (buf, size, fp) copies the next line from fp, up to and
including a newline, into buf; at most gsize-~l characters are
copied; it returns NULL at end of file. fputs(buf, fp)
writes the string in buf onto file fp.

XENIX Programming XENIX Programming

The function ungetc(c, fp) "pushes back” the character c
onto the input stream fp; a subsequent call to getc, fscanf,
etc., will encounter c¢. Only one character of push-back per
file is permitted.

2.2.4 Low-Level I/0

This section describes the bottom level of I/0 on the XENIX
system. The lowest level of I/0 in XENIX provides neither
buffering nor any other services; it is in fact a direct
entry into the operating system. You are entirely on your
own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite
simple, this isn't as bad as it sounds.

2.2.4.1 File Descriptors

In the XENIX operating system, all input and output is done
by reading or writing files, because all peripheral devices,
even the user's terminal, are files in the file system.
This means that a single, homogeneous interface handles all
communication between a program and peripheral devices.

In the most general case, before reading or writing a file,
it is necessary to inform the system of your intent to do
so, a process called "opening" the file. If you are going
to write on a file, it may also be necessary to create it.
The system checks your right to do so (Does the file exist?
Do you have permission to access it?), and if all is well,
returns a small positive integer called a file descriptor.
Whenever I/0 is to be done on the file, the file descriptor
is used instead of the name to identify the file. (This |is
roughly analogous to the use of and in Fortran.) All
information about an open file is maintained by the system;
the wuser program refers to the file only by the file
descriptor. o

File pointers are similar in concept to file descriptors,
but file descriptors are more fundamental. A file pointer
is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so

common, special arrangements exist to make this convenient.
When the command interpreter (the "shell") runs a program,
it opens three files, with file descriptors 0, 1, and 2,
called the standard input, the standard output, and the
standard error output. All of these are normally connected
to the terminal, so if a program reads file descriptor 0 and
writes file descriptors 1 and 2, it can do terminal I/0

2-9

XENIX Programming XENIX Programming

without worrying about opening the files.
If 1/0 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file
descriptors 0 and 1 from the terminal to the named files.
Similar observations hold if the input or output is
associated with a pipe. Normally file descriptor 2 remains
attached to the terminal, so error messages can go there.
In all cases, the file assignments are changed by the shell,
not by the program. The program does not need to know where
its input comes from nor where its output goes, so long as
it uses file 0 for input and 1 and 2 for output.

2.2.4.2 Read and Write

All input and output is done by two functions called read
and write. For both, the first argument is a file
descriptor. The second argument is a buffer in your program
where the data is to come from or go to. " The third argument
is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);
n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes
actually transferred. On reading, the number of bytes
returned may be less than the number asked for, because
fewer than n bytes remained to be read. (When the file is a
terminal, read normally reads only up to the next newline,
which is generally less than what was requested.) A return
value of zero bytes implies end of file, and -1 indicates an
error of some sort. For writing, the returned value is the
number of bytes actually written; it is generally an error
if this isn't equal to the number supposed to be written.

The number of bytes to be read or written is quite
arbitrary. The two most common values are 1, which means
one character at a time ("unbuffered"), and 512, which
corresponds to a physical block size on many peripheral
devices. This latter size will be most efficient, but even
character at a time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program
to copy its input to its output. This program copies
anything to anything, since the input and output can be
redirected to any file or device.

XENIX Programming XENIX Programming

#define BUFSIZE 512
main() /* copy input to output */

char buf [BUFSIZE];
int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n);
exit(0); '

}

If the file size is not a multiple of BUFSIZE, the last read
will return a smaller number of 'bytes to be written by
write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to
construct higher level routines like getchar, putchar, etc.
For example, here 1is a version of getchar which does
unbuffered input.

$define CMASK 0377 /* for making char's > 0 */
getchar () /* unbuffeted'single‘chafacter input */
char c¢;

return({(read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);

J

¢ must be declared char, because read accepts a character
pointer. The character being returned must be masked with
0377 to ensure that it is positive; otherwise sign extension
may make it negative. (The constant 0377 is machine
dependent and thus varies from machine to machine.)

The second version Qf getchar does input in big chunks, and
hands out the characters one at a time.

XENIX Programming XENIX Programming

#define CMASK 0377 /* for making char's > 0 */
#define BUFSIZE 512
?etchar() /* buffered version */

static char buf [BUFSIZE];

static char *bufp = buf:

static int n = 0;

if (n == 0) { /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;

}

return((--n >= 0) ? *bufp++ & CMASK : EOF);

2.2,4.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error
files, you must explicitly open files in order to read or
write them. There are two system entry points for this,
open and creat [sic]. ' 3 L . ~

open is rather like the fopen discussed in the previous
section, except that instead of returning a file pointer, it
returns a file descriptor, which is just an int.

int f4;
fd = open(name, rwmode) ;

As with fopen, the name argument 1is a character string
corresponding to the external file pame. The access mode
argument is different, however: rwmode is 0 for read, 1 for
write, and 2 for read and write access. open returns -1 if
any error occurs; otherwise it returns a valid file
descriptor. %

It is an error to try to open a file that does not exist.

The entry point creat is provided to create new files, or to
re-write old ones.

fd = creat(name, pmode) ;

returns a file descriptor if it was able to create the file
called name, and -1 if not. If the file already exists,
creat will truncate it to zero length; it is not an error to
creat a file that already exists.

If the file 1is brand new, creat creates it with the
protection mode specified by the pmode argument. 1In the

2-12

XENIX Programming XENIX Programming

XENIX file system, there are nine bits of protection
information associated with a file, controlling read, write
and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-~-digit octal
number is most convenient for specifying the permissions.
For example, 0755 specifies read, write and execute
permission for the owner, and read and execute permission
for the group and everyone else.

To illustrate, here is a simplified version of the XENIX
utility c¢p, a program which copies one file to another.
(The main simplification is that our version copies only one
file, and does not permit the second argument to be a
directory.)

#define NULL O

#define BUFSIZE 512

#define PMODE 0644 /* RW for owner, R for group, others */
main(argc, argv) /* cp: copy fl to f2 */

int argc;

char *argv([];

int f1, £2, n;
char buf [BUFSIZE];

if (argc‘!= 3)
error ("Usage: cp from to", NULL);

if ((f1 = open(argv[l], 0)) == =1)
error ("cp: can't open %s", argv(l]);
if ((£f2 = creat(argv[2], PMODE)) == -1)

error ("cp: can't create %s", argv[2]);

while ((n = read(fl, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error ("cp: write error", NULL);
exit(0)s

}

error (sl, s2) /* print error message and die */
char *sl, *s2:

printf(sl, s2);
print£("\n") ;
exit (1)

}

There is a limit (typically 20) on the number of files which
a program may have open simultaneously. Therefore, any
program which intends to process many files must be prepared
to reuse file descriptors. The routine close breaks the

2-13

XENIX Programming XENIX Programming

connection between a file descriptor and an open file, and
frees the file descriptor for use with some other file.
Termination of a program via exit or return from the main
program closes all open files.

The following function removes the file filename from the
file system:

unlink (filename)

2.2.4.4 Random Access-Seek and Lseek

File I/0 is normally sequential: each read or write takes
place at a position in the file right after the previous
one. When necessary, however, a file can be read or written
in any arbitrary order. The system call lseek provides a
way to move around in a file without actually reading or
writing:

lseek (fd, offset, origin);

forces the current position in the file whose descriptor is
fd to move to position offset, which is taken relative to
the location specified by origin. Subsequent reading or
writing will begin at that position. offset is a long; £f4
and origin are int's. origin can be 0, 1, or 2 to specify
that offset 1is to be measured from the beginning, from the
current position, or from the end of the file respectively.
For example, to append to a file, seek to the end before
writing:

lseek (fd, OL, 2);

To get back to the beginning ("rewind"):
lseek (£fd4, OL, 0);

Notice the OL argument; it could also be written as
(long) O

With lseek, it is possible to treat files more or less like
large arrays, at the price of slower access. For example,
the following simple function reads any number of bytes from
any arbitrary place in a file:

2-14

XENIX Programming XENIX Programming

get(fd, pos, buf, n) /* read n bytes from position pos */
int £4, n;
long pos;
char *buf;

lseek (£d, pos, 0); /* get to pos */
return(read(fd, buf, n));

2.2.4.5 Error Processing

The routines discussed in this section, and in fact all the
routines which are direct entries into the system can incur
errors. Usually they indicate an error by returning a value
of -1, Sometimes it is nice to know what sort of error
occurred; for this purpose all these routines, when
appropriate, leave an error number in the external cell
errno. The meanings of the various error numbers are listed
in the introduction to Section II of the XENIX Reference
Manual, so your program can, for example, determine if an
attempt to open a file failed because it did not exist or
because the user lacked permission to read it. Perhaps more
commonly, you may want to print out the reason for failure.
The routine perror will print a message associated with the
value of errno; more generally, Sys errno is an array of
character strings which can be indexed by errno and printed

by your program.

2.2.5 Processes

It is often easier to use a program written by someone else
than to invent your own. This section describes how to
execute a program from within another.

2.2.5.1 The System"g4

The easiest way to execute a program from another is to use
the standard library routine system. System takes one
argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For
instance, to time~stamp the output of a program,

main()

system("date") ;
/* rest of processing */

}

It the command string has to be buiit from pieces, the in-
memory formatting capabilities of sprintf may be useful.

2-15

XENIX Programming XENIX Programming

Remember than getc and putc normally buffer their input;
terminal I/O will not be properly synchronized unless this
buffering is defeated. For output, use fflush; for input,
see setbuf in the appendix.

2.2.5.2 Low-Level Process Creation—-Execl and Execv ;
If you're not using the standard library, or if you need
finer control over what happens, you will have to construct
calls to other programs using the more primitive routines
that the standard library's system routine is based on.

The most basic operation is to execute another program
without returning, by using the routine execl. To print the
date as the last action of a running program, use

execl("/bin/date", "date", NULL):;

The first argument to execl is the filename of the command;
you have to know where it is found in the file system. The
second argument is conventionally the program name (that is,
the 1last component of the file name), but this is seldom
used except as a place~holder. If the command takes
arguments, they are strung out after this; the end of the
list is marked by a NULL argument.

The execl call overlays the existing program with the new
one, runs that, then exits. There is no return to the
original program.

More realistically, a program might fall into two or more
phases that communicate only through temporary files. Here
it is natural to make the second pass simply an execl call
from the first. '

The one exception to the rule that the original program
never gets control back occurs when there is an error, for
example if the file can't be found or is not executable. 1If
you don't know where date 1s located, say

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL):
fprintf(stderr, "Someone stole ‘'date’'\n");

A variant of execl called execv is useful when you don't
know in advance how many arguments there are going to be.
The call is

execv (filename, arqgp);

where argp is an array of pointers to the arguments; the

2-16

XENIX Programming XENIX Programming

last pointer in the array must be NULL so execv can tell
where the list ends. As with execl, filename is the file in
which the program is found, and argp{0] is the name of the
program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal
command execution. There is no automatic search of multiple
directories~you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters
like <, >, *, 2, and [] in the argument list. If you want
these, use execl to invoke the shell sh, which then does all
the work. Construct a string commandline that contains the
complete command as it would have been typed at the
terminal, then say

execl("/bin/sh", "sh", "-c¢", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its
argument -c says to treat the next argument as a whole
command line, so it does Jjust . what ~you want. The only
problem is in constructing the right information in
commandline. EEE

2.2.5.3 Control of Processes - Fork and Wait

So far what we've talked about isn't really all that useful
by itself. Now we will show how to regain control after
running a program with execl or execv. Since these routines
simply overlay the new program on the old one, to save the
0ld one requires that it first be split into two copies; one
of these can be overlaid, while the other waits for the new,
overlaying program to finish. The splitting is done by a
routine called fork:

proc_id = fork{();

splits the program f%to two copies, both of which continue
to run. The only difference between the two is the value of
proc id, the "process id." In one of these processes (the
"child"), proc id 1is zero. In the other (the "parent"),
proc id is non-zero; it is the process number of the child.
?hus the basic way to call, and return from, another program
is
if (fork() == 0)
/* in child *»/
execl("/bin/sh", "sh", "-c¢", cmd, NULL);

And in fact, except for handling errors, this is sufficient.
The fork makes two copies of the program. In the child, the

2-17

XENIX Programming XENIX Programming

value returned by fork is zero, so it calls execl which does
the command and then dies. In the parent, fork returns
non-zero so it skips the execl. (If there 1is any error,
fork returns -1).

More often, the parent wants to wait for the c¢hild to
terminate before continuing itself. This can be done with
the function wait:

int status;

if (fork() == 0)
execl(\ ...\);
wait (&status);

This still doesn't handle any abnormal conditions, such as a
failure of the execl or fork, or the possibility that there
might be more than one child running simultaneously. (The
wait returns the process id of the terminated child, if you
want to check it against the value returned by fork.)
Finally, this fragment doesn't deal with any funny behavior
on the part of the child (which is reported -in status).
Still, these three 1lines are the heart of the standard
library's system routine, which we'll show in a moment.

The status returned by wait encodes in its low-order eight
bits the system's idea of the child's termination status; it
is 0 for normal termination and non-zero to indicate various
kinds of problems. The next higher eight bits are taken
from the argument of the call to exit which caused a normal
termination of the child process. It is good coding
practice for all programs to return meaningful status.

When a program is <called by the shell, the three file
descriptors 0, 1, and 2 are set up pointing at the right
files, and all other possible file descriptors are available
for use. When this program calls another one, correct
etiquette suggests making sure the same conditions hold.
Neither fork nor the exec calls affects open files in any
way. If the parent is buffering output that must come out
before output from the c¢hild, the parent must flush its
buffers before the execl. Conversely, if a caller buffers
an input stream, the called program will lose any
information that has been read by the caller.

XENIX Programming : XENIX Programming

2.2.5.4 Pipes

A pipe is an I/0 channel intended for use between two
cooperating processes: one process writes into the pipe,
while the other reads. The system looks after buffering the
data and synchronizing the two processes. Most pipes are
created by the shell, as in

1s | pr

which connects the standard output of 18 to the standard
input of pr. Sometimes, however, it is most convenient for
a process to set up its own plumbing; in this section, we
will illustrate how the pipe connection is established and
used.

The system call pipe creates a pipe. Since a pipe is used
for both reading and writing, two file descriptors are
returned; the actual usage is like this:

int £fa[2];

stat = pipe(£fd); .
if (stat == -1) , :
/* there was an error ... */

fd is an array of two file descriptors, where £4[0] 1is the
read side of the pipe and £d4[1l] is for writing. These may
be used in read, write and close calls just like any other
file descriptors.

If a process reads a pipe which is empty, it will wait until
data arrives; if a process writes into a pipe which is too
full, it will wait until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will
encounter end of file.

To illustrate the usg of pipes in a realistic setting, let
us write a function %alled popen(cmd, mode), which creates a
process cmd (just as sgsystem does), and returns a file
descriptor that will either read or write that process,
according to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent
write calls wusing the file descriptor fout will send their
data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it

then forks to create two copies of itself. The child
decides whether it is supposed to read or write, closes the

2-19

XENIX Programming XENIX Programming

other side of the pipe, then calls the shell (via execl) to
run the desired process. The parent likewise closes the end
of the pipe it does not use. These closes are necessary to
make end-of-file tests work properly. FPor example, 1if a
child that intends to read fails to close the write end of
the pipe, it will never see the end of the pipe file, just
because there is one writer potentially active.

$include <stdio.h>

$define READ 0
$define WRITE 1

$define tst(a, b) (mode == READ ? (b) : (a))
static int popen_pid;
popen (cmd, mode)
char *omd ;
int mode;
int pl2];

if (pipe(p) < 0)
return (NULL) ;
if ((popen_pid = fork()) == 0) {
close (tst (p[WRITE], p[READ]));
close(tst(0, 1));
dup(tst (p[READ], p[WRITE])):;
close (tst (p[READ], p[WRITE])):
execl("/bin/sh", "sh", "-c", cmd, 0);
/* disaster has occurred if we get here*/
} _exit(l);
if (popen_pid == -1)
return(NULL) ;
close (tst (p[READ], p[WRITE])
return(tst (p[WRITE], p[READ]

The sequence of closes in the c¢hild is a bit tricky.
Suppose that the task is to create a child process that will
read data from the parent. Then the first close closes the
write side of the pipe, leaving the read side open. The
lines

)
)

)

close(tst(0, 1));
dup (tst(p[READ], p{WRITE]));

are the conventional way to associate the pipe descriptor
with the standard input of the child. The close closes file
descriptor 0, that is, the standard input. Dup is a system
call that returns a duplicate of an already open file

XENIX Programming AN LA FLOYGILARIRLOY

descriptor. File descriptors are assigned in increasing
order and the first available one is returned, so the effect
of the dup is to copy the file descriptor for the pipe (read
side) to file descriptor 0; thus the read side of the pipe
becomes the standard input. (Yes, this is a bit tricky, but
it's a standard idiom.) Finally, the old read side of the
pipe is closed.

A similar sequence of operations takes place when the child
process 1is supposed to write from the parent instead of
reading. You may find it a useful exercise to step through
that case.

The job is not quite done, for we still need a function
pclose to close the pipe created by popen. The main reason
for using a separate function rather than close is that it
is desirable to wait for the termination of the child
process. First, the return value from pclose indicates
whether the process succeeded. Equally important is that
only a finite number of unwaited-for children can exist for

a given parent process, even if some of them have
terminated. Performing the wait lays the «c¢hild to rest.
Thus: . v ,

#§include <signal.h>

pclose (£4d) /* close pipe fd */
int £4; ‘

register r, (*hstat) (), (*istat) (), (*gstat) ();
int status;
extern int popen_pid;

close (£4) ;
istat = signal(SIGINT, SIG_IGN);

gstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGHUP, SIG_IGN);
while (%r = wait(&status)) != popen pid && r !=
if (r == -1)
status = ~1;

signal (SIGINT, istat):

signal (SIGQUIT, gstat);
signal (SIGHUP, hstat} ;

return(status) ;

}

The calls to signal make sure that no interrupts, etc.,

interfere with the waiting process; this is the topic of the
next section.

-1)

¥

XENIX Programming XENIX Programming

The routine as written has the limitation that only one pipe
may be open at once, because of the single shared variable
popen pid; it really should be an array indexed by file
descriptor. A popen function, with slightly different
arguments and return value 1is available as part of the
standard I/0 library discussed below. As currently written,
it shares the same limitation.

2.2.6 Signals and Interrupts

This section is concerned with how to deal gracefully with
program faults and with signals and interrupts from the
outside world. Since there's nothing very useful that can
be done from within C about program faults, which arise
mainly from illegal memory references or from execution of
peculiar instructions, we'll discuss only the outside-world
signals: interrupt, which is sent when the character is
typed; quit, generated by the character; hangup, caused by
hanging up the phone; and terminate, generated by the kill
command. When one of these events occurs, the signal is
sent to all processes which were started from the
corresponding terminal; unless other arrangements have been
made, the signal terminates the process. In the quit case,
a core image file is written for debugging purposes.

The routine which alters the default action 1is called
signal. It has two arguments: the first specifies the
signal, and the second specifies how to treat it. The first
argument 1is just a number code, but the second is the
address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it
be given the default action. The include file signal.h
gives names for the various arguments, and should always be
included when signals are used. Thus

#include <sign%1.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored, while
signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all
cases, signal returns the previous value of the signal. The
second argument to signal may instead be the name of a
function (which has to be declared explicitly if the
compiler hasn't seen it already). In this case, the named
routine will be called when the signal occurs. Most
commonly this facility is used to allow the program to clean

XENIX Programming , XENIX Programming

up unfinished business before terminating, for example to
delete a temporary file:

#include <signal.h>

main{)
int onintr();
if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);
/* Process ... */
exit(0);
}
onintr ()

unlink (tempfile);
exit(l);

}

Why the test and the double call to s8ignal? Recall that
signals 1like interrupt are sent to all processes started
from a particular terminal. Accordingly, when a program is
to be run non-interactively (started by &), the shell turns
off interrupts for it so it won't be stopped by interrupts
intended for foreground processes. If this program began by
announcing that all interrupts were to be sent to the onintr
routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt
handling, and to continue to ignore interrupts if they are
already being ignored. The code as written depends on the
fact that signal rgturns the previous state of a particular
signal. 1If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be
caught.

A more sophisticated program may wish to intercept an
interrupt and interpret it as a request to stop what it is
doing and return to its own command-processing loop. Think
of a text .editor: interrupting a long printout should not
cause it to terminate and lose the work already - done. The
outline of the code for this case is probably best written

like this:

XENIX Programming . XENIX Programming

#include <signal.h>
#include <setjmp.h>

main{()
int (*istat) (), onintr ();
istat = signal (SIGINT, SIG_IGN);

/* save original status above*/
setijmp(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT, onintr);

} /* main processing loop */
onintr ()

printf ("\nInterrupt\n");
longjmp(sjbuf); /* return to saved state */

}

The include file setjmp.h declares the type jmp buf an
object in which the state can be saved. Sjbuf is such an
object; it is an array of some sort. The setjmp routine
then saves the state of things. When an interrupt occurs, a
call is forced to the onintr routine, which can print a
message, set flags, or whatever. Longjmp takes as argument
an object stored into by setjmp, and restores control to the
location after the call to setjmp, so control (and the stack
level) will pop back to the place in the main routine where
the signal is set up and the main loop entered. Notice, by
the way, that the signal gets set again after an interrupt
occurs. This 1is necessary; most signals are automatically
reset to their default action when they occur.

Some programs that want to detect signals simply can't be
stopped at an arbitrary point, for example in the middle of
updating a linked list. If the routine called on occurrence
of a signal sets a flag and then returns instead of calling
exit or longjmp, execution will continue at the exact point
it was interrupted. The interrupt flag can then be tested
later.

There is one difficulty associated with this approach.
Suppose the program is reading the terminal when the
interrupt is sent. The specified routine is duly called; it
sets its flag and returns. If it were really true, as we
said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the

2-24

XENIX Programming » XENIX Programming

terminal until the user typed another line. This behavior
might well be confusing, since the user might not know that
the program is reading; he presumably would prefer to have
the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read
when execution resumes after the signal, returning an error
code which indicates what happened.

Thus programs which catch and resume execution after signals
should be prepared for T"errors" which are caused by
interrupted system calls. (The ones to watch out for are
reads from a terminal, wait, and pause.) A program whose
onintr program just sets intflag, resets the interrupt
signal, and returns, should usually include code like the
following when it reads the standard input:

if (getchar() == EOF)
if (intflagqg)
/* EOF caused by interrupt */
else
/* true end-of-file */

One item to keep in mind becomes important when signal-
catching is combined with execution of other programs.
Suppose a program catches interrupts, and also includes a
method (like "!" in the editor) whereby other programs can
be executed. Then the code should look something like this:

if (fork() == 0)
execl{(...)
signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait (&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

why is this? Again, 1it's not obvious but not really
difficult. Suppose the program you call catches its own

interrupts. If youignterrupt the subprogram, it will get
the signal and return to its main loop, and probably read
your terminal. But the calling program will also pop out of
its wait for the subprogram and read your terminal. Having
two processes reading your terminal is very unfortunate,
since the system figuratively flips a coin to decide who
should get each line of input. A simple way out is to have
the parent program ignore interrupts until the child is
done. This reasoning is reflected in the standard 1I/0

library function system:

XENIX Programming XENIX Programming

#include <signal.h>

system(s) /* run command string s */
char *s;

int status, pid, w;
register int (*istat) (), (*gstat) ();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c¢", s, 0);
_exit(127);

}

istat = signal (SIGINT, SIG_IGN);

gstat = signal (SIGQUIT, SIG_IGN) ;

while ((w = wait(&status)) != pid && w != ~1)
H

if (w == =1)

status = ~1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat);
return(status); '

}

The function signal obviously has a rather strange second
argument, This argument is a pointer to a function
delivering an integer, and this is also the type of the
signal routine itself. The two values SIG_IGN and SIG_DFL
have the right type, but are chosen so they coincide with no
possible actual functions. For the enthusiast, here is how
they are defined for the PDP-11; the definitions are
sufficiently ugly and nonportable to encourage use of the
standard include file:

#define SIG_DFL (int (*)())0
#define SIG_IGN (int (*) ())1

2~26

XENIX Programming XENIX Programming

2.3 The Standard I/0 Library

A knowledge of the available C libraries is essential to the
C programmer, since they defines a common set of macros,
types, and functions that can be used in almost any
programming project. The most important functions and
macros are declared in the standard 1/0 library, which was
was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and
in space, so that there will be no hesitation in using
it no matter how critical the application.

2. It must be simple to use, and free of the magic
numbers and mysterious calls whose use can reduce
understandability and portability.

3. The interface provided .should be appiicable on all
machines, whether or not the programs which implement
it are directly portable to other systems.

2.3.1 General Usage’
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines
are in the normal C library, so no special library argument
is needed for 1loading. All names in the include file
intended only for internal use begin with an underscore ()
to reduce the possibility of conflict with other names
created by the user. The names intended to be visible
outside the package are: o o

stdin The name Qf the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

EOF The value returned by the read routines on end-
of-file or error; usually -1

NULL The null pointer, returned by pointer-valued
functions to indicate an error

FILE The name of a macro useful when declaring pointers
to streams. It expands to "struct _iob".

XENIX Programming XENIX Programming

BUFSIZ The size (usually 512) size suitable for an 1I/0
buffer supplied by the user. See setbuf, below.

Getc, getchar, putc, putchar, feof, ferror, and fileno are
defined as macros. Their actions are described below; they
are mentioned here to point out that it is not possible to
redeclare them and that they are not actually functions.
Thus, they may not have breakpoints set on them when
debugging.

The routines in this package offer the convenience of
automatic buffer allocation and output £flushing where
appropriate. The names stdin, stdout, and stderr are in
effect constants and may not be assigned to. Stdio.h
contains the definitions of NULL, EOF, FILE, and BUFSIZ.
The standard input file (stdin), standard output file
(stdout), and standard error file (stderr) are also defined
in the standard I/0 1library. These definitions can be
incorporated into a C program with the following statement:

#include <stdio.h>

The file ctype.h provides the macro definitions for the
possible character classifications. Any program using those
facilities must contain the line:

$include <ctype.h>

The functions that handle signals need to wuse the signal
definitions, so these definitions must be included if these
functions are to be used. This can be done with the line:

#include <signal.h>

Some function names have changed in order to follow the
established convention. To insure that the uniqueness of
function names is pmeserved even if truncation occurs on
some systems, those functions dealing with entire strings
are named str...; those functions that consider only the
first n characters of a string are named strn....

XENTIX Programming XENIX Programming

Listed below are some common C library functions. Most of
these belong to the standard I/0 library -- although other
libraries are represented here as well.

2.3.2 File Access

fclose
#include <stdio.h>
int fclose(stream)
FILE *stream;
Fclose closes a file that was opened by fopen,
frees any buffers after emptying them, and
returns zero on success, hONzZero on error., Exit
calls fclose for all open files as part of its
processing.

fdopen .

#include <stdio.h>

FILE *fdopen (fildes, type)
int fildes: '

char *type;

Fdopen provides a bridge between the Jlow-level
input-output (I/0) facilities of XENIX and the
standard 1I1/0 functions. Fdopen associates a
stream with a valid file descriptor obtained from
a XENIX system call (e.g., open). "Type" is the
same mode ("r", "w", "a", r+ , w+ , a+) that
was used in the original creation of a file
identified by "fildes". Fdopen returns a pointer

to the associated stream, or NULL if
unsuccessful.
Example:
i
int £4;
char *name = "myfile";

FILE *strm;
fd = open{(name,0);

-

if((strm = fdopen(£fd,"r")) == NULL)
fprintf(stdery,"Error on %d\n",fdj;

2-29

XENIX Programming ' XENIX Programming

fileno
#include <stdio.h>
int fileno (stream)
FILE *stream;
Implemented as a macro on XENIX, (and contained
in the file stdio.h), fileno returns an integer
file descriptor associated with a valid "stream".
Any existing non-XENIX implementations may have
different meanings for the integer which is
returned. Fileno is used by many other standard
functions in the C library.

fopen

#include <stdio.h>
FILE *fopen (filename, type)
char *filename, *type;

Fopen opens a file named "filename" and returns a
pointer to a structure (hereafter referred to as
"stream"), containing the data necessary to
handle a stream of data. The "type" is one of
the following character strings: -

r Used to open for reading.

W Used to open for writing, which
truncates an existing file to =zero
length or creates a new file.

a Used to append, that 1is, open for
writing at the end of a file, or create
a new file.

For the update options, fseek or rewind can be
used to trigger the change from reading to
writing, or vice versa. (Reaching EOF on input
will also permit writing without further
formality,) Fopen returns a NULL pointer if
"filename™ cannot be opened. The update
functions are particularly applicable to stream
I/0 and allow for the possibility of creating
temporary files for both reading and writing.

Example:
FILE *fp;
char *file;

if((fp = fopen(file,"r")) == NULL)
fprintf{stderr, "Cannot open %s\n",file);

2-30

XENIX Programming XENIX Programming

freopen
#include <stdio.h>
FILE *freopen (newfile, type, stream)
char *newfile, *type;
FILE *stream;
Freopen accepts a pointer, "stream", to a
previously opened file; the old file is closed,
and then the new file is opened. The principal
motivation for freopen 1is the desire to attach
the names stdin, stdout, and stderr to specified
files. On a successful freopen, the stream
pointer is returned; otherwise NULL is returned,
indicating that while the file c¢losing took
place, the reopening failed. Freopen is of
limited portability; it cannot be implemented in
all environments.
Example: ,
char *newfile;
FILE *nfile; :
if((nfile = freopen(newfile,"r",stdout)) == NULL)
fprintf(stderr,"Cannot reopen %s\n",newfile)y
fseek

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;

long offset;

int ptrname;

Fseek positions a stream to a location "offset"
distance from the beginning, current position or
end of a file, depending on the values 0, 1, 2
respectively for "ptrname". On XENIX the offset
unit is bytes; other implementations are not
necessarily the name. ‘The return values are 0 on
success and EOF on fallure. Both bhuffered and
unbuffered files may use fseek.

Example:
To position to the end of a file:
FILE *stream;

fseek(stream,0L,2);

XENIX Programming XENIX Programming

pclose

popen

rewind

#include <stdio.h>
int pclose (stream)
FILE *stream;

Pclose closes a stream opened by popen. It
returns the exit status of the command that was
issued as the first argument of its corresponding
popen, or -1 if the stream was not opened by

popen.

#include <stdio.h>)
FILE *popen (command, type)
char *command, *type; 4

Popen creates a pipe between the calling process
and a command to be executed. The first argument
is a shell command line; type is the I/O mode for
the pipe, and may be eitEer "r® for reading or
"w" for writing. The function returns a stream
pointer to be used for I/0 on the standard input
or output of the command. A NULL pointer is
returned if an error occurs.

Example:

FILE *pstrm;

if ((pstrm=popen("tr mvp MVP","w"))== NULL)
fprintf(stderr,”"popen error\n");

fprintf(pstrm,"a message via the pipe...\n");

if(pclose(pstrm) == -1)
fprintf(stderr,"Pclose error\n");

results %n:

a message via the pipe

$#include <stdio.h>
int rewind(stream)
FILE *stream;

Rewind sets the position of the next operation at
the beginning of the file associated with
"stream", retaining the current mode of the file.
It is the equivalent of fseek (stream,0L,0);.

2-32

XENIX Programming XENIX Programming

gsetbuf

#include <stdio.h>
setbuf (stream, buf)
FILE *stream;

char *buf;

This function allows the user to choose his own
buffer for I/0 or choose no buffering at all.
Use it after opening and before reading or
writing. The function is often used to eliminate
the single character writes to a file that result
from the execution of utc to standard output
that is not redirected. The choice to buffer I/0
brings with it - the respdnsibility for flushing
any data that may remain in a 1last, partially-
filled buffer. Fflush or fclose perform this
task. The constant BUFSIZ in stdio.h tells how
big the character array "buf" is. It is well-
chosen for the machine on which XENIX is running.
When "buf" is set to NULL, the I/O is completely
unbuffered.

Example:

setbuf (stdout, malloc(BUFSIZ)):;

2.3.3 PFile Status

clearerr

feof

#include <stdio.h>
clearerr {stream)
FILE *stream;

Clearerr resets the error condition on "stream”.
The need for clearerr arises in XENIX
implementations where the error indicator is not
reset after a query.

$include <stdio.h>
int feof (stream)
FILE *stream;

Feof, which is implemented as a macro, returns
nonzero if an input operation on "stream" has
reached end of file; otherwise a zero is
returned. Feof should be used in conjunction
with any I/O function whose return value is not a
clear indicator of an end-of-file condition.
Such functions are fread and getw.

XENIX Programming - XENIX Programming

ferror

ftell

Example:

int *x;
FPILE *stream;

do
*x++ = getw(stream) ;

while(!feof (stream));

#include <stdio.h>
int ferror (stream)
FILE *stream;

Ferror tests for an indication of error on
"stream®™. It returns a nonzero value (true) when
an error is found, and a zero otherwise. Calls
to ferror do not clear the error condition, hence
the clearerr function is needed for that purpose.
The user should be aware that, after an error,
further use of the file may cause strange
results. On XENIX ferror 1is implemented as a

macro.

Example:

FILE *stream;
int *x:

while(!ferror (stream))
putw(*x++,stream) ;

#include <stdio.h>
long ftekl (stream)
FILE *stream;

Ftell determines the current offset relative to
the beginning of the file associated with
"stream". It returns the current value of the
offset in bytes. On error, a value of -1 is
returned. This function is useful in obtaining
an offset for subsequent fseek calls.

XENIX Programming XENIX Programming

2.3.4 Input Function

fgetc
$include <stdio.h>
int fgetc (stream)
FILE *stream;

This is the function version of the macro getc
and acts identically to getc. Because fgetc is a
function and not a macro, it can . be used in
debugging to set breakpoints on fgetc and when
the side effects of macro processing of the
argument 1is a problem. Furthermore, it can also
be passed as an argument.

fgets
#include <stdio.h>
char *fgets (s,n,stream)
char *s;
int n;
FILE *stream;

Fgets reads from "stream" into the area pointed
to by "s" either n-1 characters or an entire
string including its newline terminator,
whichever comes first. A final null character is
affixed to the data read. Fgets returns the
pointer "s" on success, and NULL on end-of-file
or error. Fgets differs from the function gets
in three ways: it can read from other than stdin;
it appends the newline at the end of input when
the size of the string is longer than or equal to
"n"; and even more important, it provides
control, not available with gets, over the size
of the string to be read.

Example:

Hi

char msg[MAX];
FILE *myfile;

while(fgets(msg,MAX,myfile) != NULL)
printf ("$s\n",msqg) ;

fread
$include <stdio.h-
int fread((char *)ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

XENIX Programming XENIX Programming

fscanf

This function reads from "stream" the next
"nitems" whose size 1is the same as the size of
the item pointed to by "ptr", into a sufficiently
large area starting at "ptr". It returns the
number of items read. 1In XENIX, fread makes use
of the function getc. It is often used in
combination with feof and ferror to obtain a
clear indication of the file status.

Example:

FILE *pstm;
char mesg{100];

while(fread((char *)mesg,sizeof (*mesg),l,pstm) == 1)
printf ("%s\n",mesg) ;

#include <stdio.h>

int fscanf (stream, format{, argptr]l...)
char *format; ‘

FILE *stream;

Fscanf accepts input from the file associated
with "stream", and deposits it into the storage
area pointed to by the respective argument
pointers according to the specified formats.
Fscanf differs from scanf in that it can read

from other than stdin. The function returns the

number of successfully handled input arguments,
or EOF on end of input.

Example:

FILE, *file;

long pay;

char namel[15];

char pan[7];

fscanf(file,"%6s%14s%1d\n", pan,name, &pay) ;

if (pay<50000)

printf("$%1d raise for %s.\n",pay/10,name);

If the input data is:

020202MaryJones 15000

the resulting output is:

2-36

XENIX Programming XENIX Programming

getc

getchar

gets

getw

$1500 raise for MaryJones.

#include <stdio.h>
int getc (stream)
FILE *stream;

Getc returns the next character from the named
"stream". It is implemented as a macro to avoid
the overhead of a function call. On error or
end-of-file it returns an EOF. Fgetc should be
used if it is necessary to avoid the side effects
of argument processing by the macro getc.

#include <stdio.h>
int getchar()

This is identical to getc (stdin).

$include <stdio.h>
char *gets(s)
char *s;

Gets reads a string of characters up to a newline
from stdin and places them in the area pointed to
by "s". The newline character which ended the
string is replaced by the null character. The
return values are "s" on success, NULL on error
or end~-of-file. The gsimple example below
presumes the size of the string read into "msg"
will not exceed SIZE in 1length. If used in
conjunction with strlen, a dangerous overflow can
be detected, though not prevented.

Example:
%

char msg[SIZE];
char *s;
s = msqg; :
while (gets(s) != NULL)
printf("$s\n",s);

#include <stdio.h>
int getw (stream)
FILE *stream:

XENIX Programming XENIX Programming

scanf

sscanf

Getw reads the next word from the file associated
with "stream". If successful, 1t returns the
word; on error or end-of-file, it returns EOF.
However, because EOF could be a valid word, this
function is best used with feof and ferror.

Example:

FILE *stream;
int *x;
do
*x++ = getw(stream);
while (!feof(Stream)):;

#include <stdio.h>
int scanf (format{, argptrl...)
char *format; _ .

Scanf reads input from stdin, delivers the input
according to the specified formats, and deposits

- the input in the storage area pointed to by the

respective argument pointers. For input from
other streams than stdin use fscanf; for input
from a character array use sscant. Scanf returns
the number of successfully handled input
arguments, or EOF on end-of~input.

Example:

long number;

scanf ("%1d4d", &number) ;
(printf (number%2?"%1d is odd":"$1d is even",number));

ke

$include <stdio.h>

sscanf (s, format [, pointer]...)
char *s;

char *format;

Sscanf accepts input from character string "s",
delivers the input according to the specified
formats, and deposits it into the storage area
pointed to by the respective argument pointers.
This function returns the number of successfully
handled input arguments.

XENIX Programming XENIX Programming

Example:

char datestr[] = {"THU MAR 29 11:04:40 EST 1983"};
char month{4];
char year([5];

sscanf(datestr,"%*3s%3s%*23%*85%*3s%4s",month,year);
printf("%s, %s\n",month,year);

The result is:
MAR, 1983

ungetc
#include <stdio.h>
int ungetc (c, stream)
" int c;

FILE *stream; .

Ungetc puts the character "c" back on the file
associated with "stream". One character (but
never EOF) is assured of being put back. If
successful, the function returns "c", otherwise
EOF. :

Example:

while(isspace (c getc(stdin)))

14
ungetc (c,stdin) ;

This code puts the first character that is not
white space back onto the standard input stream.

2.3.5 Output Functfons

fflush
#include <stdio.h>
int fflush (stream)
FILE *stream;

Fflush takes action to guarantee that any data
contained in file buffers and not yet written out
will be written. It is used by fclose to flush a
stream. No action is taken on files not open for
writing. The return values are zero for success,
EOF on error.

2-39

XENIX Programming XENIX Programming

fprintf
$include <stdio.h>
int fprintf (stream, format([, arg J]...)
FILE *stream;
char *format;
Fprintf provides formatted output to a named
stream. The function printf may be used if the
destination is stdout. Fprintf returns nonzero
on error, otherwise zero.
Example:
int *filename;
int ¢;
if (c==EOF)
fprintf(stderr, "EOF on %s\n",filename);'
fputc
#include <stdio.h>
int fputc (c,stream)
int c;
FILE *stream;
Fputc performs the same task as putc; that is, it
writes the character "c¢" to the file associated
with "stream", but is implemented as a function
rather than a macro. Fputc is preferred to putc
when the side effects of macro processing o
arguments are a problem. On success, it returns
the character written; on failure it returns EOF.
Example:
FILE *in, *out;
int ¢;
while ((c¢ = fgetc(in)) = EOF)
fputc{c,out);
fputs

#include <stdio.h>
int fputs(s,stream)
char *s;

FILE *stream;

Fputs copies a string to the output file
associated with "stream", using the function putc

XENIX Programming XENIX Programming

to do this. It is different from puts in two
ways: fputs allows any output stream to be
specified, and does not affix a newline to the
output. For an example, see puts.

fwrite
$include <stdio.h>
int fwrite ((char *)ptr, sizeof (*ptr),nitems,stream)
FILE *stream;

Beginning at "ptr", this function writes up to
"nitems" of data of the type pointed to by "ptr"
into output "stream". It returns the number of
items actually written.’ Like fread, this
function should be used ' in conjunction with
ferror to detect the error condition.

Example:

char mesg[] ={"My message to write out\n"};
FILE *pstrm; ‘

if (fwrite(mesg, (sizeof (*mesg)-1),1,pstrm) (= 1)
fprintf (stderr, "Output error\n");

printf
#include <stdio.h>
int printf(format[, argl...)
char *format;

Printf provides formatted output on stdout.
Fprintf and sprintf are related functions that
write output onto other than the standard output
device. In case of error, implementations are
not consistent in their output. On error, printf
returns _nonzero, otherwise zero. In later
releases .33 the ¢ library, rintf returns the
number of characters transmitted, or a negative
value on error.

Example:
int num = 10;
char msg[] = {"ten"};

printf("sd - %o - %s\n", num, num, msg);

results in the line:;

2~-41

XENIX Programming - . 'XENIX Programming

putc

putchar

puts

10 - 12 - ten:

$#include <stdio.h>
int putc (c¢,stream)
int c;

FILE *stream;

Putc writes the character ¢ to the file
associated with stream. On success, it returns
the character written; on error it returns EOF.
Because it is implemented as - a macro, side
effects may result from argument processing. In
such cases, the equivalent function fputc should
be used. '

Example:

#define PROMPT () putc('\7',stderr)
/* Prompt is BELL character */

#include <gtdio.h>
int putchar(c)
int c¢;

Putchar is defined as:

putc (c, stdout)

Putchar returns the character written or EOF if

an error occurs.

Example:

cha?g*cp;
char x[SIZE];

for {cp=x;Ccp< (Xx+SIZE) ;cp++)
putchar (*cp) ;

$include <stdio.h>
int puts(s)
char *s;

The function puts copies the string pointed to by
"g" without 1its terminating null character to
stdout. A newline character is appended. XENTIX

XENIX Programming XENIX Programming

putw

sprintf

uases the macro putchar (which calls putc).

Example:

puts("I will append a newline");
fputs("\tsome more data ", stdout);
puts("and now a newline");

The resulting output is:

I will append a newline
some more data and now a newline

$include <stdio.h>
int putw(w,stream)
FILE *stream;

int w;

Putw appends word "w" to the output "stream". As
with getw, the proper way to check for an error
or end-of-file is to use the feof and ferror
functions.

Example:

int info;

while(!feof (stream))
putw(info,stream) ;

#include <stdio.h>

int sprintf(s, format, [, argl...)
char *s; .

char *format;

Sprintf allows formatted output to be placed in a
character array pointed to by "s". Sprintf adds
a null at the end of the formatted output. It is
the user's responsibility to provide an array of
sufficient length. The related functions printf
and fprintf handle similar kinds of formatted
output. The comparable input function is sscanf.
On error, sprintf returns nonzero, otherwise
zero.

XENIX Programming XENIX Programming

Example:

char cmd([100];

char *doc " /usr /src/cmd/cp.c”
int width 50;

int length = 60;

sprintf(cmd, "pr -w%d ~1%d %s\n",width,length,doc);
system(cmd) ;

The above code executes the pr command to print
the source of the c¢cp command.

2.3.6 String Functions

‘ strcat

char *strcat(dst,src)
char *dst, *src;

Strcat appends characters in the string pointed
to by "src" to the end of the string pointed to
by "dst", and places a null character after the
last character copied. It returns a pointer to
"dst". To concatenate strings up to a maximum
number of characters, use strncat.

Example:

char *myfile;
char dir (L cuserid+5] = "/usr/";

’

myfile = {strcat(dir,cuserid(0)}));

. The result is the concatenation of the login name
onto the,end of the string "dir".

strcmp

char *strcmp(sl,s2)
char *sl, *s2;:

Strcmp compares the characters in the string "sl"
and "s2", It returns an integer value, greater
than, equal to, or less than zero, depending on

whether "sl" 1s lexicographically greater than,
equal to, or less than "s2".

XENIX Programming : XENIX Programming

strcpy

strlen

strncat

Example:

#define EQ(x,Vy) Istremp (x,Y)

char *strcpy(dst, src)
char *dst, *src;

Strcpy copies the characters (including the null
terminator) from the string pointed to by "src"
into the string pointed to by "dst". A pointer
to "dst" is returned.

Example:
char dst[] = "UPPER CASE";
char srcf[] = "this is lowercase";

printf ("$s\n",strcpy(dst,src+8));
results in:

lowercase

int strlen(s)
char *s;

Strlen counts the number of characters starting
at the character pointed to by "s" up to, but not
including, the first null character. It returns
the integer count.

Example:
“
char nextitem[SIZE];
char series[MAX];

if(strlen{(series)) strcat(series,","):
strcat(serien, nextitem) ;

char *strncat{dst, src, n)
char *dst, *src;
int n;

Strncat appends a maximum of "n" characters of
the string pointed to by "src" and then a null

XENIX Programming XENIX Programming

strncmp

strncpy

character to the string pointed to by "dst". It
returns a pointer to "dst".

Example:
char dst][] = "cover";
char src[] = "letter";

printf("$s\n",strncat(dst,src,3));
The output is:

coverlet

int strncmp(sl,s2,n)
char *sl, *s2;
int n;

Strncmp compares two strings for at most “n"
characters and returns an integer value greater
than, equal to, or less than zero depending on
whether "sl" is lexicographically greater than,
equal to or less than "s2".

Example:
char filename [] = "/dev/ttyx";
if(strncmp (filename+5, "tty",3) == 0)

printf("success\n") ;

char *strncpy (dst,src,n)
char *dst, *src;
int n:

Strncpy copies "n" characters of the string
pointed to by "src" into the string pointed to by
"dst". Null padding or truncation of "src"”
occurs as necessary. A pointer to "dst" is
returned.

Example:

XENIX Programming XENIX Programming

char buf [MAX]:
char date [29] = {"Fri Dec 29 09:35:44 EDT 1982"};
char *day = buf;

strncpy (day,date,3) ;

After executing this code, "day" points to the
string "Fri".

2.3.7 Character Classification

isalnum
#include <ctype.h>
int isalnum(c)
int c;
This macro determines whether or not the ,
character "c" is an alphanumeric character ([A-
Za-20-9]). It returns zero for false and
nonzero for true. B

isalpha
#include <ctype.h>
int isalpha(c)
int c;
This macro determines whether or not the
character "c¢" 1is an alphabetic character ([A-
Za-z]). It returns zero for false and nonzero
for true.

isascii
$include <ctype.h>
int isascii(c)
int c; "
This macro determines whether or not the integer
value supplied is an ASCII character; that is, a
character whose octal value ranges from 000 ¢to
177. It returns zero for false and nonzero for
true.

iscntrl

#include <ctype.h>
int iscntrl(c)
int ¢;

This macro determines whether or not the
character "c" when mapped to ASCII is a control

(3]

~-47

XENIX Programming XENIX Programming

isdiqgit

islower

isprint

ispunct

isspace

character (that is, octal 177 or 000~037). It
returns zero for false and nonzero for true.

¢include <ctype.h>
int isdigit(c)
int c;

This macro determines whether or not the
character "c¢c" is a digit. It returns zero for
false and nonzero for true, (that 1is, 1is an
ASCII code between octal 041 and 176 inclusive).

#include <ctype.h>
int islower(c)
int c;

This macro determines whether or not the
character "¢c" is a lowercase letter. It returns
zero for false and nonzero for true.

#include <ctype.h>
int isprint(c)
int c;

This macro determines whether or not the
character "c" 1is a printable character. (This
includes spaces.) It returns zero for false and
nonzero for true.

include <ctype.h>

int ispunct(c)

int c;

This macro determines whether or not the
character "c¢" is a punctuation character (neither
a control character nor an alphanumeric). It
returns zero for false and nonzero for true.

#include <ctype.h>
int isspace(c)
int c;

This macro determines whether or not the
character "c¢" is a form of white space (that is,
a blank, horizontal or wvertical tab, carriage
return, form-feed or newline). It returns zero

2-48

XENIX Programming XENIX Programming

for false and nonzero for true.

isupper
#include <ctype.h>
int isupper (c)
int c;

This macro determines whether or not the

character "c" is an uppercase letter. It returns
zero for false and nonzero for true.

2.3.8 Character Translation

toascii
#include <ctype.h>
int toascii (c¢)
int c;
The macro toascii usually does nothing: its
purpose is to map the input character into its
ASCII equivalent.
Example:
FILE *oddstrm;
if(tisdigit (toascii(getw(oddstrm))))
fprintf(stderr,"bad data\n");
tolower

$include <ctype.h>
int tolower (c¢)
int c;

If the argument "c" passed to the function
tolower is an uppercase letter, the lowercase
representation of "c¢" is returned, otherwise "c"
is returned unchanged. For a faster routine, use
tolower, which is implemented as a macro;
however, the argument must already be an
uppercase letter.

Example:

if (tolower (getchar()) t= 'y"')
exit (0);

2-49

XENIX Programming XENIX Programming

toupper

2.3.9

calloc

free

$ include <ctype.h>
int toupper (c)
int c;

If the argument "c" passed to the function
toupper 1is a lowercase letter, the uppercase
representation of "c" is returned, otherwise "c"
is returned unchanged. For a faster routine, use
toupper, however, the argument must already be a
lowercase letter.

Example:

if (toupper (getchar()) != 'Y")
exit(0);

Space Allocation

char *calloc(n, size)
unsigned n, size;

Calloc allocates enough storage for an array of
"n" items aligned for any use, each of "size"
bytes. The space is initialized to zero. Calloc
returns a pointer to the beginning of the
allocated space, or a NULL pointer on failure.

Example:
char *t;
int n:

unsdggned size;

if (t=calloc((unsigned)n, size) == NULL)

fprintf(stderr,"Out of space.\n")

free(ptr)
char *ptr;

Free is wused in conjunction with the space
allocating functions malloc, calloc, or realloc.
"Ptr" is a pointer supplied by one of these
routines. The function frees the space
previously allocateua.

-
’

XENIX Programming XENIX Programming

malloc

realloc

char *malloc(size)
unsigned size;

Malloc allocates "size" bytes of storage
beginning on a word boundary. It returns a
pointer to the beginning of the allocated space,
or a NULL pointer on failure to acquire space.
For space initialized to zero, see calloc.

Example:
int n;
char *t;

unsigned size;

if (t=malloc((unsigned)n) == NULL)

fprintf(stderr,"Out of space.\n");

char *realloc (ptr, size)
char *ptr;
unsigned size;

Given "ptr" which was supplied by a call to
malloc or calloc, and a new byte size, "size",
realloc returns a pointer to the block of space
of M"size" Dbytes. This function 1is used to
compact storage, and is used with the functions
malloc and free.

XENIX Programming | XENIX Programming

2.4 Include Files

The following pages contain the contents of the three most
impor tant include flles: «otype.h, stdio.h, and signal.s.

These files are well worth some study, as the defline a
standard interface to the internals of the XENIX system.

2.4.1 ctype.h

$define U 01
#define _L 02
$define N 04
#define _S 010
#define _P 020
#define C 040
$define B 0100
extern char _ctype_ [];

ctype+1) [c]l&(_U|_L))
ctype +l)[c]& U)
“ctype_+1) [¢]&_L)
ctype +l)[c]& N)

#define isalpha(c) ((
$define isupper(c) ((
#define islower (c) ((
#define isdigit(c) ((
$define isspace(c) ((Cctype +1) [c]l&(_S]|_B))
#define ispunct(c) ((_ctype_+1) [cl&_ P)

$define isalnum(c) ((ctype_+1) [cl&(U‘ Ll _N))
#define isprint(c) ((_ctype_+1) [c]&(_P _L|_N|_B))
$define iscntrl(c) (" _ctype_ “+1) [cl & C)

#define isascii (c) ((uns1gned)(c)<—0177)
$define _toupper (c) ((c)~-'a'+'A")
#define _tolower (c) ((cy~-'Aa'+'a')
tdefine toascii(c) ((c)&0177)

XENIX Programming XENIX Programming

2.4.2 signal.h

#define NSIG 16
#define SIGHUP 1 /* hangup */
#define SIGINT 2 /* interrupt */
$define SIGQUIT 3 /* quit */
#define SIGILL 4 /* illegal instruction #*/
/* (not reset when caught) */
$¢define SIGTRAP 5 /* trace trap */
/* (not reset when caught) */
$define SIGIOT /* IOT instruction */

#define SIGFPE /* floating point exception */
$define SIGKILL /* kill (cannot be */
/* (caught or ignored) */

6

$define SIGEMT 7 /* EMT instruction */
8
9

#define SIGBUS 10 /* bus error */
$define SIGSEGV 11 /* segmentation violation */
$define SIGSYS 12 /* bad argument to system call */
$define SIGPIPE 13 /* write on a pipe */
/* with no one to read it */
$define SIGALRM 14 /* alarm clock */
#define SIGTERM 15 /* software termination */
/* signal from kill */
int (*signal()) ();
$define SIG_DFL (int (*)())O
$define SIG_IGN (int (*) (1)1

XENIX Programming

XENIX Programming

2.4.3 stdio.h
#define BUFSIZ 512
$define _NFILE 20
ifndef FILE
extern struct iobuf {

char * ptr;

int _cnt;

char * base;

char _flag;

char _file;
} _iobl[NFILE];
endif
#define _IOREAD 01
tdefine IOWRT 02
#define _IONBF 04
$define _IOMYBUF 010
$define IOEOF 020
#define _IOERR 040
$define _IOSTRG 0100
#define _IORW 0200
#define NULL 0
#define FILE struct _iobuf
$define EOF (-1)
$define L _ctermid 9
#define L_cuserid 9
#define L_tmpnam 19
#define stdin (& iob[0])
#define stdout (& iob{[1l]1)
#define stderr (& iob[2])
¢define getc(p) (== (p)=>_cnt>=07?\

* (p)->_ptr++&0377:_£filbuf(p))
#define getchar () getc(stdin)
#define putc (x,p) (== (p) ->_cnt>=02\
((int) (*(p) ->_ptr++=(unsigned) (x})) :\
flsbuf ((unsigned) (x) ,p))

#define putchar (x) pute (x,stdout)
#define feof (p) (((p)->_flag&_IOEOF) |=0)
tdefine ferror (p) (((p)-> flag& IOERR) !=0)
tdefine fileno (p) p-> file -
FILE *fopen{) ;
FILE *freopen{);
FILE *fdopen():
long ftell():;
char *fgets():

XENIX Programming XENIX Programming

2.5 XENIX MC68000 Assembly Language Interface

The XENIX system is designed so that there should be 1little
need to program in assembly language. Occasionally, however,
the need does arise, and you may need to Kknow the
conventions for storing words in memory and for accessing
parameters on the stack in a way compatible with the C
runtime environment. Remember, however, that programming in
assembly language is highly machine-dependent, and that you
sacrifice portability whenever you forsake C for whatever
low-level advantages you might gain.

If you do choose to mix MC68000 assembly language routines
and compiled C routines, there are several things to be
aware of: :

® Registers and return values
® Calling sequence
& Stack probes

With an understanding of these three topics, you should be
able to write both C programs that call MC68000 assembly
language routines and assembly language routines that call
compiled C routines.

2.5.1 Registers and Return Values

Function return values are passed in registers if possible.
The set of machine registers used is called the save set,
and includes the registers from 42-d7 and a2-a7 that are
modified by a routine. The compiler assumes that these
registers are preserved by the callee, and saves them itself
when it 1is generating code for the callee. (When a C
compatible routine is called by another routine, we refer to
the «calling routine as the caller. We refer to the called

routine as the callee.) Note that a6 and a7 are in effect
saved by a link instruction at procedure entry.

The function return value is in 4. The current floating
point implementation returns the high order 32 bits of
doubles in dl, and the low order 32 bits in dO0. Functions
return structure values (not pointers to the values) by
loading d0 with a pointer to a static buffer containing the

XENIX Programming XENIX Programming

structure value.
This makes the following two functions equivalent:

struct list proc (){
struct list this;

LR I

return (this);

}

struct list *proc (){
struct list this;:
static struct list temp;
temp = this;
return (&temp);

}

This implementation allows recursive reentrancy (as long as
the explicit form is not used, since the first sequence is
indivisible but not the second) . However, this
implementation does not permit multitasking reentrancy.
Note that the latter includes the XENIX signal(3) call.

Setimp(3) and longjmp(3) cannot be implemented as they are
on the PDP-11, because each procedure saves only the
registers from the save set that it will modify. This makes
it difficult to get back the current values of the register
variables of the procedure that is being setjmped to. Hence,
register variable values after a longjmp are the same as
before a corresponding setjmp is called. If you need 1local
variables to change between the call of setjmp and longjmp,
they cannot be register variables.

2.5.2 Calling Sequence

The calling sequenc® is straightforward: arguments are
pushed on the stack from the last to first: i.e., from right
te left as you read them in the C source. The push quantum
is 4 bytes, so 1if you are pushing a character, you must
extend it appropriately before pushing. Structures and
floating point numbers that are larger than 4 bytes are
pushed in increments of 4 bytes so that they end up in the
same order in stack memory as they are in any other memory.
This means pushing the last word first and long-word padding
the last word (the first pushed) if necessary. The caller is
responsible for removing his own arguments. Typically, an

addql #constant, sp

XENIX Programming XENIX Programming

is done. It is not really important whether the caller
actually pushes and pops his arguments or just stores them
in a static area at the top of the stack, but the debugger,
adb, examines the addql or addw from the sp to decide how
many arguments there were.

2.5.3 Stack Probes

XENIX is designed to dynamically allocate space on the stack
for local variables, function arguments, return addresses,
and other information. When additional space is needed and
an instruction causes a memory fault, the XENIX kernel
checks the offending instruction. 1If the instruction is a
stack reference, the kernel maps enough stack memory for the
instruction to complete its execution successfully. Then the
procedure continues execution where it left off. Generally,
this means restarting the offending memory reference
instruction (usually a push or store). The MC68000 does not
provide a way to restart instructions; therefore, we need to
perform a special instruction that can trigger the memory
fault, but that has no ill effect other than triggering the
fault. This instruction we call a stack probe.

When we perform a stack probe and a memory fault occurs, the
kernel allocates additional memory for the stack. The XENIX
kernel can allocate this needed stack memory, ignore the
fact that the stack probe instruction did not complete, and
then continue on to the next instruction.

The stack probe instruction for the MC68000 XENIX is
tstb -value (sp)

The value argument must be negative, because a negative
index from the stack pointer is above the top of the stack.
This is an otherwise absurd reference that XENIX recognizes
as a stack probe.

For the general case, use the following procedure entry
sequence:

procedure_entry:
link a6, #-savesize
tstb -pushsize-extra-8 (sp)

Any registers among d2-d7 and a2-a5 that are wused in this
procedure are saved with a moveml instruction after this
sequence. The number of registers saved in the moveml
instruction needs to be accounted for in the push size.
Thus, pushsize is the sum of the number of bytes pushed as

XENIX Programming 4 XENIX Programming

temporaries, save areas, and arguments by the whole
procedure. The 8 bytes are the space for the return address
and frame pointer save (by the link instruction) of a nested
call. The extra 1is tolerance so that extremely short
runtimes that use 1little stack do not need to perform a
stack probe. The tolerance is intentionally kept small to
conserve memory, SO make sure you understand what you are
doing before you consider leaving out a stack probe in your
assembly procedures.

In most cases, unless you are pushing huge structures or
doing tricks with the stack within your procedure, you can
use the following instruction for your stack probe:

tstb ~100 (sp)

This instruction makes sure that enough space has been
allocated for most of the usual things you might do with the
stack and is enough for the XENIX runtimes that do not’
perform stack probes. Note that you do not need to consider
space allocated by the link instruction in this stack probe,
since it is already added by indexing off the stack pointer.

2~-58

3/Software Tools

CHAPTER 3

SOFTWARE TOOLS

CONTENTS

3.1. Introduction.-o.--.--'t..0.Q..oo;co.olcocoooyol.-.

3.2 BaSiC TOOlS..-..-.-.o-.--..-..............----.-..

3.3 Other ToOlS..eetecncees

s

® e 6 &0 5 8 3 e e w0

Software Tools Software Tools

3.1 Introduction

This chapter discusses the tools available for use in
software development on the XENIX System. The wide variety
of available tools makes for a rich environment for
programmers and software engineers. Often, tools are
combined in shell procedures to perform whatever programming
task desired. However, because their are so many different
commands available to the programmer, it is often difficult
to know what subset 1is especially useful in software
development. To solve this problem, this chapter
circumscribes a set of commands that are known to be of use
in software development, and then summarizes the function of
each command. 1In addition, this chapter contains a section
describing the basic tools required in developing software
on the XENIX system. Most of these basic tools have late
chapters devoted to them.

3.2 Basic Tools

The tools used to create executable C programs are:

cc The XENIX C compiler.

lint The XENIX C program checker.
14 The XENIX loader.

as The XENIX assembler.

adb The XENIX debugger.

make The XENIX pfogram maintainer.

Note that cc automatically invokes both the loader and the
assembler so that ,use of either is optional. Lint is
normally used in the early stages of program development to
check for illegal and improper usage of the C language. The
program adb is used to debug executable programs. The
program make is used with the above tools to automatically
maintain and regenerate software in medium scale programming
projects.

All the above tools are used in creating executable C
programs. These programs are created to run in the XENIX
environment. This environment is manifested in the wvarious
subroutines and system calls available in several subroutine
libraries.

Software Tools Software Tools

Note that not all programming pfojects are best implemented
in C, even if they are programs written for XENIX. Often,
simple programs can be written in the shell command language

much more quickly than they can be in C. For some
complicated programs, lex and yacc may be just what is
required. Lex is a lexical analyzer that can be used to

accept a given input language. Yacc is a program designed
to compile grammars into a parsing program. Typically, it
is used to compile languages that are recognized by lex.
For this reason, lex and vyacc are often used together,
although either can be used separately.

3.3 Other Tools

Other tools useful in software development are described
below:

ar Archives files and maintains libraries. Useful
when constructing or maintaining large object
libraries.

at Execute commands at a later time. Used toO

execute time consuming compilations, printouts,
and makes, so that they execute when the system
isn't busy.

awk Recognizes text patterns and performs
transformation operations based on the awk
language.

basename Strips directory affixes and filename prefixes

from a filename or pathname. Useful in shell
scripts to obtain the filename part of a
pathname or to strip off filename extensions.

cb Beautifies Cc programs, improving their
readability. Note that the output from cb is not
necessarily attractive to all programmers.

chgrp Changes the group affiliation of a file, so that
it has the proper group permission when it is
accessed or, if it is an executable file, when
it is executed.

chown Changes the owner of a file, so that it has the
proper owner when it is accessed or, if it is an
executable file, when it is executed.

cmp Compares two sorted‘ files. Useful when
comparing object files and other binary images.

3-2

Software Tools Software Tools

comm

copy

csh

ctags

dd

daf

diff
diff3

du

file

find

fsck

In

lorder

Compares sorted lists by either selecting or
rejecting common lines.

Copies groups of files. Useful in recursively
copying directories or in creating filesg that
are linked to another set of files. Note that
cp does not copy recursively.

Interprets and executes commands taken from the
keyboard or from a command file. The "C shell"
supports a C-like command language, an aliasing

facility, and a command history mechanism.

Creates a tags file so that C functions <can be
quickly found in a set of related C source
files.

Converts and copies a file to the standard
output. Used to read in files from various
media. A variety of formats and conversions are
available,

Reports the amount of space that is free and
available in a given file system.

Compares two text files, line by line.
Compares three text files, line by line.

Summarizes disk usage. Used to determine how
much disk space you are using.

Determines the file type of given files Use this
to examine files to determine whether they are
directories, special files, or executable files.

Finds fg%enames in a filesystem and optionally
may perform commands that affect the found
files. Used in performing complex operations on
a selected set of files.

Checks file system consistency and if possible,
interactively repairs the file system when
inconsistencies are found.

Creates a link of a file to another file so that
file contents are shared and both filenames
refer to the same file.

Finds ordering relation for an object library.

Software Tools Software Tools

mé

mkfs
mknod

mkstr

mount
ncheck
nice
nm

od

printenv
prof
pstat
quot

ranlib

settime

size
sleep

strings

strip

su

Processes input text performing several
functions, including macro definition and
invocation.

Constructs a file system.
Creates a special file,.

Creates an error message file by examining a C
source file.

Mounts a file system on the given directory.
Generate file names from inode numbers.

Runs a command at a lowerApriority.

Prints the list of names in a program.

Performs an "octal dump" of given files,
printing files 1in a variety of formats, one of
which is octal.

Prints out the environment.,
Displays profile data,

Prints system facts.

Summarizes file'system anership.

Converts archive libraries to random libraries
by placing a table of contents at the front of
each library. '

Change the access and modification dates of
files. ‘

Reports the size of an object file.
Suspends execution for a given period of time.

Finds and prints readable text (strings) in an
object or other binary file.

Removes gymbols and relocation bits from
executable files.

Logs in user as super-usgser or other user.

Software Tools Software Tools

sum

sync

tar

time

touch

tr

tsort

umount

Xstr

Computes check sum for a file and counts blocks.
Useful in looking for bad spots in a file and in
verifying transmission of data between systems.

Updates the super block so that all input and
output to the disk is completed before the sync
command finishes.

Archives files to tape or other similar device.
Also used in moving large sets of files.

Times a given command. Used in taking
benchmarks for execution-time of programs.

Updates the modification date of a file without
altering the contents of the file.

Translates a one given set of characters to
another set for all characters in a file.

Topologically sorts object libraries so that
dependencies are apparent.

Unmounts a mounted file system.

Extracts strings from C programs to implement
shared strings.

s

4/Cc: AC Compiler

CHAPTER 4
CC: A C COMPILER

CONTENTS

INEroAUCEION. c v v eecocsecsnscscsessscssnesssscsses .
Invocation Switches....eeecenn tesssssesessan e

The LOAAErc.eesseeoececrosvsanssssnsssssssnsssesssnas

FlleS ------ e s e 6800 000 ® 9 8 8 £ 8 &P 5 OGS S BT OSSR ne

cCc cC

4.1 Introduction

Cc is the command used to invoke the XENIX C compiler.
Since the entire XENIX system is written in the C language,
cc is the fundamental XENIX program development tool. The
emphasis in this chapter 1is on giving insight into cc's
operation and use. Special emphasis is given to input and
output files and and to the available compiler options.
Throughout, familiarity with compilers and with the C
language is assumed. For more information on programming in
C, see The C Programming Language, by Kernighan and Ritchie.

The fundamental function of the C compiler is to produce
executable programs by processing C source files. The word
"processing" is the key here, since the compilation process
involves several distinct phases: These phases are described
below:

Preprocessing

In this phase of compilation, your C source
program is examined for macro definitions and
include file directives. Any include files are
processed at the point of the include statement;
then occurrences of macros are expanded throughout
the text. Normally, standard include files found
in the /usr/include directory are included at the
beginning of C programs. These standard include
files normally are named with a ".h" extension.
For example, the following statement includes the
definitions for functions in the standard 1I/0
library:

#include <stdio.h>

Note that the angle brackets indicate that the
file is presumed to exist in /usr/include. The
effects of preprocessing on a file can be captured
in a fi by specifying the ~P switch on the cc
command line. The -E switch performs a similar
function useful tor debugging when you suspect
that an include file or macro is not expanding as
desired.

Optimization :

Optimization of generated code can be specified on
the cc command line with the -0 switch. This
option should be used to increase execution speed
or to decrease size of the executing program.
Since programs will take longer to’ compile with
this option, you may want to use this option only
after you have a working debugged program.

4-1

CcC

Generation of Assembly Source Code

Assembly

The C compiler generates assembly source code that
is later assembled by the XENIX assembler, as.
Cc's assembly output can be saved in a file by
specifying the -S switch when the compiler is
invoked. Assembly source output is saved in a file
whose name has the ".s" extension.

To assemble the generated assembly code, cc calls
as to create a ".o" file. The ",0" file is used in
the next step, linking and loading.

Linking and Loading

The final phase in the compllatlon of a C program
is 1linking and loading. The program responsible
for this is the XENIX loader, ld. Loader options
can be specified on the cc command line. These
options are discussed later in the section on the
loader.

It is important to realize that all of the above
phases can be controlled at the cc command level:
they do not have to be invoked separately. What
normally happens when you execute a cc command is
that a sequence of programs processes the original
C source file. Each program creates a temporary
file that is used by the next program in the
sequence. The final output is the load image that
is loaded into memory when the final executable
file is run.

4.2 Invocation Switches

A list of

some of the available switches follows. Other

switches may be descrlbed in cc(ls).

-C

Suppress the loading phase of the compilation, and
force an object file to be produced even if only
one program is compiled.

Arrange for the compiler to produce code which
counts the number of times each routine is called.
Also, if loading takes place, replace the standard
startup routine by one that automatically calls
monitor (3) at the start and arranges to write out
a mon.out file at normal termination of execution
of the object program. An execution profile can
then be generated by use of prof(l).

cC cC

-0 Invoke an object-code optimizer.

~-S Compile the named C programsg, and leave the
assembler-language output on corresponding files
suffixed ".s". :

-P Run only the macro preprocessor and place the
result for each ".c" file in a corresponding ".i"
file. The resultant file has no "#" lines in it.

-0 output
Give the final output file the name specified by

output. If this option 1is used the file a.out
will be left undisturbed.

-Dname=def
Define the name to the compiler preprocessor, as
if by "#define". 1If no definition is given, then
name is assigned the value 1.

Remove any initial definition of name.

Any "#include" files whose names do not begin with
"/" and that are enclosed within angle brackets (<
and >) are searched for first in the directory of
the file argument, then in directories named in ~I
options, then in directories given by a standard
list. :

Other arquments are taken to be either 1loader option
arguments, or C-compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C-
compatible routines created with the assembler. These
programs, together with the results of any compilations
specified, are loaded (in the order given) to produce an
executable program with the name a.out.

Note that some versions of the C compiler support additional
switches. These switches and their function are described in
the reference section of this manual.

4.3 The Loader

As mentioned in the above sections, the XENIX loader, 14,
plays a fundamental role in the development of any C
program. For this reason it is discussed as part of cc; it
can however, be used as a stand-alone processor of object
files. Note that arguments 1o Id can be given on the cc

cC

cC

command line and are a part of the syntax of the cc command.

Some of the available loader switches are 1listed below.
Except for -1, they should appear before filename arguments.
Other switches are described in 1d(15).

-S

-u

1?—(

-X

-n

"Strip" the output, that is, remove the symbol
table and relocation bits to save space (but
impair the usefulness of the debugger). This
information can also be removed by strip(lS).

Take the following argument as a symbol and enter
it as undefined in the symbol table. This is
useful for loading wholly from a library, since
initially the symbol table 1is empty and an
unresolved reference is needed to force the
loading of the first routine.

This option is an abbreviation for the library
name /lib/libx.a, where x is a string. If that
does not exist, '1d tries /usr/lib/libx.a. A
library is searched when its name is encountered,
so the placement of a -1 is significant.

Do not preserve local {non-.globl) symbols in the
output symbol table: enter only external symbols.
This option saves some space in the output file.

Save local symbols except for those whose names
begin with "L". This option is used by cc to
discard internally generated labels while
retaining symbols local to routines.

Arrange that when the output file is executed, the
text portion will be read-only and shared among
all users executing the file.

When the 6htput file is executed, the program text
and data areas will 1live 1n separate address
spaces. The only difference between this option
and -n is that here the data starts at location 0.

The name argument after -o is used as the name of
the 1d output file, instead of a.out.

For more information on the loader, see 1d in the reference
section of this manual.

cc CcC

4.4 PFiles

The files making up the compiler, as well as those files
needed, used, or created by cc are listed below:

file.c input file

file.o object file

a.out loaded output
/tmp/ctm? temporaries for cc
/lib/cpp preprocessor
/1lib/c01] compiler for cc
/1lib/c2 optional optimizer
/lib/crt0.o runtime startoff
/lib/mcrt0.0 startoff for profiling
/1lib/libc.a standard library
/usr/include standard directory for "#include" files

4-5

\ 5/Lint: A C Program Checker

CHAPTER 5

LINT: A C PROGRAM CHECKER

CONTENTS

Introduction...................{................ 5~-1
A Word About PhiloSOpPhy...eeevieececeecnesnocsas 5~2
Unused Variables and FunctioOnS.....eececccscacas 5-2
Set/Used Information....eeeeenncaccnaneascensacs 5-3
Flow Of CONntrol...iveseesencesscssassccsscssnsss 5-4
Function ValuesS........ sraeenna cesssserasveeensa 5-4
Type Checking..eeeveeencesncn tessseannenneevanas 5-5
Type CastSeesesvscanceasccnsena et rasanaenne 5-6
Nonpor table Character Use.....cccetecscccsnnsnne 5-7
Assignments of longs tO INtS..ccereseececrescnns 5-7
Strange Constructions......... ceersesasseasaneee 5-8
HistOrV..eeeevvoooeeveaans ceessseesssaseesessens 5-9
Pointer Alignﬁ;nt..;...... ceeesessseasssss 5-10
Multiple Uses and Side Effects...v.vecccesns cees 5-10
Shutting Lint Up.eseseeveensennns ceeeossasersasss 5-11

Library Declaration FilesS.....sceassnsssssscsane 5-12

13

NOteS...---o-.... * ® 8 P R e 8 B S L S e s e s e s e 5

Current Lint Options...... e eeeaeneraseeeseseass 5-14

0
I
>
T
-
m
X
141

Lint Lint

5.1 Introduction

Lint is a program that examines C source programs, detecting
a number of bugs and obscurities. It enforces the type
rules of C more strictly than the C compilers. It may also
be used to enforce a number of portability restrictions
involved in moving programs between different machines
and/or operating systems. Another option detects a number
of wasteful, or error prone, constructions which
nevertheless are, strictly speaking, legal.

The separation of function between Lint and the C compilers
has both historical and practical rationale. The compilers
turn C programs into executable files rapidly and
efficiently. This is possible in part because the compilers
do not perform sophisticated type checking, especially
between separately compiled programs. Lint takes a more
global, leisurely view of the program, 1looking much more
carefully at the compatibilities.

This section discusses the use of Lint, gives an overview of
the implementation, and gives some hints on the writing of
machine independent C code.

Suppose there are two C source files, filel.c and file2.c,
which are ordinarily compiled and loaded together. Then the
command

lint filel.c file2.c

produces messages describing inconsistencies and
inefficiencies in the programs. The program enforces the
typing rules of C more strictly than the C compilers (for
both historical and practical reasons) enforce them. The
command

lint -p filelyc file2.c

produces, in addition to the above messages, additional
messages that relate to the portability of the programs to
other operating systems and machines. Replacing the -p by
-h produces messages about various error-prone or wasteful
constructions that, strictly speaking, are not bugs. Saying
-hp gets the whole works.

The next several sections describe the major messages; the
discussion of Lint closes with sections discussing the
implementation and giving suggestions for writing portable
C. The final section gives a summary of Lint command line
options. o

Lint Lint

5.2 A Word About Philosophy

Many of the facts about a particular C program that Lint
needs may be impossible for it to discover. For example,
whether a given function in a program ever gets called may
depend on the input data. Deciding whether exit is ever

called 1is equivalent to solving the famous "halting
problem," known to be recursively undecidable.

Thus, most of the Lint algorithms are a compromise. If a
function 1is never mentioned, it can never be called. If a
function is mentioned, Lint assumes it can be called: this
is not necessarily so, but in practice it is quite
reasonable. o

Lint tries to give information with a high degree of
relevance. Messages of the form "xxx might be a bug" are
easy to generate, but are acceptable only in proportion to
the fraction of real bugs they uncover. If this fraction of
real bugs is too small, the messages lose their credibility
and serve merely to clutter up the output, obscuring the
more important messages.

Keeping these issues in mind, we now consider in more detail
the classes of messages that Lint produces.

5.3 Unused Variables and Eunctions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused; it
is not uncommon for external variables, or even entire
functions, to become unnecessary, and yet not be removed
from the source. These "errors of commission" rarely cause
working programs to fail, but they are a source of
inefficiency, and make programs - harder to understand and
change. Moreover, = information about such unused variables
and functions can occasionally serve to discover bugs. If a
function does a necessary 7job, and is never called,
something is wrong!

Lint complains about variables and functions that are
defined but not otherwise mentioned. An exception is made
for variables that are declared through explicit extern
statements but ave never referenced. Thus, the statement

extern float sin()§

will evoke no comment if «in is never used. This agrees
with the semantics of the C comp:tier.

Lint Lint

In some cases, these unused external declarations might be
of some interest: they can be discovered by adding the -x
flag to the Lint invocation.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The -v option
is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are
produced about unused arguments except for those arguments
which are unused and also declared as register arguments.
This can be considered an active (and preventable) waste of
the register resources of the machine.

There 1is one case where information about wunused, or
undefined, variables is more distracting than helpful. This
is when Lint is applied to some, but not all, files out of a
collection that are to be loaded together. In this case,
many of the functions and variables defined may not be used,
and, conversely, many functions and variables defined
elsewhere may be used. The -u flag may be used to suppress
the spurious messages that might otherwise appear.

5.4 Set/Used Information

Lint attempts to detect cases where a variable is used
before it is set. This is very difficult to do well: many
algorithms take a good deal of time and space, and still
produce messages about perfectly wvalid programs. Lint
detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the
input file than the first assignment to the variable, It
assumes that taking the address of a variable constitutes a
"use," since the actual use may occur at any later time, in
a data dependent fashion.

L] |

The restriction to the physical appearance of variables in
the file makes the algorithm very simple and quick to
implement, since the true flow of control need not be
discovered. It does mean that Lint can complain about some
legal programs, but these programs would probably be
considered bad on stylistic grounds (for example, they might
contain at least two goto's). Because static and external
variables are initialized to 0, no meaningful information
can be discovered about their uses. The algorithm deals
correctly, however, with initialized automatic variables,
and variables which are used in the expression which first
sets them.

Lint Lint

The set/used information also permits recognition of those
local wvariables that are set and never used: these form a
frequent source of inefficiencies, and may also be
symptomatic of bugs.

5.5 Flow of Control

Lint attempts to detect unreachable portions of program
code. It will complain about unlabeled statements
immediately following goto, break, continue, or return
statements. An attempt is made to detect loops that can
never be left at the bottom, detecting the special cases
while(1) and for(;; as infinite loops. Lint also
complains about loops which cannot be entered at the top:
some valid programs may have such loops, but at best they
are bad style and at worst, bugs.

Lint has an important area of blindness in the flow of
control algorithm: it has no way of detecting functions
which are called and never return. Thus, a call to exit may
cause unreachable code which Lint does not detect; the most
serious effects of this are in the determination of returned
function values, discussed in the next section.

One form of unreachable statement is not usually complained
about by Lint: a break statement that cannot be reached
causes no message. Programs denerated by yacc and
especially lex may have literally hundreds of unreachable
break statements. Using the -0 switch with the C compiler
will often eliminate the resulting object code inefficiency.
Thus, these unreached statements are of little importance.
There is typically nothing the user can do about them, and
the resulting messages would clutter up the Lint output. If
these messages are desired, Lint can be invoked with the -b
option.

5.6 PFunction Values

Sometimes functions return values which are never used;

sometimes programs incorrectly use function "values" which
have never been returned. Lint addresses this problem in a
number of ways. L

Locally, within a function definition, the appearance of
both

return (expr);

and

5-4

Lint Lint

return ;

statements is cause for alarm. In this case, Lint produces
the following error message: :

function name contains return(e) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the
end of the function. This can be seen with a simple
example: :

£ (a) {
if (a) return (3)

?().

Notice that, if a tests false, f will call g and then return
with no defined return value; this will trigger a complaint
from Lint. 1If g, like exit, never returns, the message will
still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been
discovered by this feature. It also accounts for a
substantial fraction of the "noise" messages produced by
Lint.

On a global scale, Lint detects cases where a function
returns a value, but this value is sometimes, or always,
unused. When the value is always unused, it may constitute
an inefficiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious
problem. 4

5.7 Type Checking

Lint enforces the type checking rules of C more strictly
than do the compilers. The additional checking is in four
major areas:

l. Across certain binary operators and implied
assignments :

2. At the structure selection operators

Lint ' Lint

3. Between the definition and uses of functions
4. In the use of enumerationsg
There are a number of operators that have an implied

balancing between types of the operands. The assignment,
conditional (?:), and relational operators have this

property. The argument of a return statement, and
expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long,

unsigned, float, and double types may be freely intermixed.
The types of pointers must agree exactly, except that arrays
of x's can be intermixed with pointers to x's.

The type checking rules also require that, in structure
references, the left operand of a pointer arrow symbol (->)
be a pointer to a structure, the left operand of a period
“.' be a structure, and the right operand of these operators
be a member of the structure implied by the 1left operand.
Similar checking is done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with
their declared counterparts. :

With enumerations, checks are made that enumeration
variables or members are not mixed with other types, or
other enumerations, and that the only operations applied are
=, initialization, ==, !=, and function arguments and return
values.

5.8 Type Casts

The type cast feature in C was introduced largely as an aid

to producing mor e por table programs. Consider the
assignment

p=1;
where p is a character pointer. Lint quite rightly
complains. Now, consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this, and has clearly signaled his

Lint Lint

intentions. It seems harsh for Lint to continue to complain
about this. On the other hand, if this code is moved to
another Mmachine, such code should be locked at carefully.
The -c flag controls the printing of comments about casts.
When ~-c is in effect, casts are treated as though they were
assignments subject to complaint. Otherwise, all legal casts
are passed without comment, no matter how strange the type
mixing seems to be. :

5.9 Nonportable Character Use

Lint flags certain comparisons and assignments as being
illegal or nonportable. For example, the fragment

char c;

* e .

if((¢ = getchar()) < 0)

works on some machines, but will fail on machines where
characters always take on positive wvalues. The real
solution is to declare ¢ an integer, since getchar is
actually returning integer values. 1In any case, Lint issues
the message:

nonpor table character comparison

A similar issue arises with bitfields. When assignments of
constant values are made to bitfields, the field may be too
small to hold the value. This is especially true because on
some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a two
bit field declared of type int cannot hold the value 3, the
problem disappears if the bitfield is declared to have type
unsigned. .

5.10 Assignments of“longs to ints

Bugs may arise from the assignment of long to an int, which
loses accuracy. This may happen in programs which have been
incompletely converted to use typedefs, When a typedef
variable is changed from int to long, the program can stop
working because some intermediate results may be assigned to
integer values, losing accuracy. Since there are a number
of legitimate reasons for assigning longs to integers, the
detection of these assignments :s enabled with the —a flag.

5-17

Lint Lint

5.11 Strange Constructions

Several perfectly legal, but somewhat strange, constructions
are flagged by Lint. The messages hopefully encourage
better code quality, clearer style, and may even point out
bugs. The -h flag is used to enable these checks. For
example, in the statement

*p++ 3

the star “*' does nothing. This provokes the message "null
effect" from Lint. The program fragment

unsigned x ;
if(x <0) ...

is clearly somewhat strange. The test will never succeed.
Similarly, the test

if(x> 0) ...
is equivalent to
if(x '= 0)

which may not be the intended action. In these cases Lint
prints the message:

degenérate‘unsigned comparison
If one says
if(1 1=0)

Lint reports "constant in conditional context", since the
comparison of 1 with 0 gives a constant result.

Another construction detected by Lint involves operator
precedence. Bugs which arise from misunderstandings about

the precedence of operators can be accentuated by spacing
and formatting, making such bugs extremely hard to find.

For example, the statements
if(x&077 == 0) ...
or

X<<2 + 40

probably do not do what is intended. The best s8olution is
to parenthesize such expressions, and Lint encourages this

Lint Lint

by an appropriate message.

Finally, when the ~h flag is in force, Lint complains about
variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal,
but 18 considered bad style, usually unnecessary, and
frequently a bug. '

5.12 History

There are several forms of older syntax that are discouraged
by Lint . These fall into two classes, assignment operators
and initialization. ' :

The older forms of assignment operators (e.g., =+, =—, ...)
could cause ambiguous expressions, such as

a =-1;

which could be taken as either
or

The situation is especially perplexing if this kind of
ambiguity arises as the result of a macro substitution. The
newer, and preferred operators (+=, -=, etc.) have no such
ambiguities. To spur the abandonment of the older forms,
Lint complains about these o0ld fashioned operators.

A similar issue arises with initialization. The older
language allowed :

int x 1 :

to initialize x to 1. This also caused syntactic
difficulties. For example

int x (-1) ;

looks somewhat like the beginnihg of a function declaration:
int x (y)y{ ...

and the compiler must read é fair wéys past x in order to

sure what the declaration really is. Again, the problem is
even more perplexing when the initializer involves a macro.

Lint Lint

The current syntax placés an equals sign between the
variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

5.13 Pointer Alignment

Certain pointer assignments may be reasonable on some
machines, and 1illegal on others, due entirely to alignment
restrictions. For. example, on some machines, it is
reasonable to assign integer pointers to double pointers,
since double precision values may begin on any integer

boundary. On others, however, double precision values must
begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where

pointers are assigned to other pointers, and such alignment
problems might arise. The messade "possible pointer
alignment problem"™ results from this situation whenever
either the -p or -h flags are in effect.

5.14 Multiple Uses and Side Effects

In complicated expressions, the best order in which to
evaluate subexpressions may be highly machine dependent.
For example, on machines in which the stack runs backwards,
function arguments will probably be best evaluated from
right-to-left; on machines with a stack running forward,
left-to~right seems most attractive. Function calls
embedded as arguments of other functions may or may not be
treated similarly to ordinary arguments. Similar issues
arise with other operators which have side effects, such as
the assignment operators and - the increment and decrement

operators. o

In order that the efficiency of C on a particular machine
not be unduly compromised, the C language leaves the order
of evaluation of complicated expressions up to the local
compiler, and, 1in fact, the various C compilers have
considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any
variable is <changed by a side effect, and also used
elsewhere in the same expression, the result is explicitly
undefined. '

Lint checks for the important special case where a simple
scalar variable is affected. For example, the statement

~10

o

Lint Lint

ali] = bli++] ;
will draw the complaint:

warning: i evaluation order undefined

5.15 Shutting Lint Up

There are occasions when the programmer 1is smarter than
Lint. There may be valid reasons for "illegal" type casts,
functions with a variable number of arguments, etc.
Moreover, as specified above, the flow of control
information produced by Lint often has blind spots, causing
occasional spurious messages about perfectly reasonable
programs. Thus, some way of communicating with Lint,
typically to shut it up, is desirable. Therefore, a rumiiay
of words are recognized by Lint when they were embedded 1in
comments. Thus, Lint directives are invisible to the
compilers, and the effect on systems with the older
preprocessors is merely that the Lint directives don't work.

The first directive 1is concerned with flow of control
information. If a particular place in the program cannot be
reached, but this is not apparent to Lint, this can be
asserted at the appropriate spot in the program by the
directive: ’ :

/* NOTREACHED */

Similarly, if it is desired to turn off strict type checking
for the next expression, use the directive:

/* NOSTRICT */

The situation reverts to the previous default after the next
expression. The -y flag can be turned on for one function
by the directive:

/* ARGSUSED */

Complaints about variable number of arguments in calls to a

function can be turned off by preceding the function
definition with the directive:

/* VARARGS */
In some cases, it is desirable to check the first several
arguments, and leave the later arguments unchecked. This

can be done by following the VARARGS keyword immediately
with a digit giving the number of arguments that should be

5-11

Lint Lint

checked. Thus:
/* VARARGSZ2 */

causes the first two arguments to be checked, the others
unchecked. Finally, the directive

/* LINTLIBRARY */
at the head of a file identifies this file as a library

declaration file, discussed in the next section.

5.16 Library Declaration Files

Lint accepts certain library directives, such as

—1y -
and tests the source files for compatibility with these
libraries. This is done by accessing library description

files whose names are constructed from the library
directives. These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions.
The critical parts of these definitions are the declaration
of the function return type, whether the dummy function
returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED directives <can be
used to specify features of the library functions.

Lint 1library files are processed almost exactly like
ordinary source files. The only difference is that
functions that are defined on a library file, but are not
used on a source file, draw no complaints. Lint does not
simulate a full libriry search algorithm, and complains if
the source files contain a redefinition of a library routine
(this is a feature!).

By default, Lint checks the programs it is given against a
standard library file, which contains descriptions of the
programs which are normally loaded when a C program is run.
When the -p flag is in effect, another file is checked
containing descriptions of the standard I/0 library routines
which are expected to be portable across various machines.
The -n flag can be used to suppress all library checking.

Lint Lint

5.17 Notes

Lint is by no means perfect. The checking of structures and
arrays 1is rather inadequate; size incompatibilities go
unchecked; and no attempt is made to match up structure and
union declarations across files.

un

i
-
e

Lint Lint

5.18 Current Lint Options
The command currently has the form
lint [-options] files... library-descriptors...

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused extérﬁal,declarations

a Report assignments of long to int or shorter.

¢ Complain about questionable casts

n No library checking is done |

s Same as h (for historical reasons)

6/ADB: A Program
Debugger

CHAPTER 6

ADB: A PROGRAM DEBUGGER

'CONTENTS

IntrOdUCtion.‘......-.. ----- wuu-'...o.aco.-.o ooooo ‘

INVOCAtION. e cveaesaossssrnssosssasescscsssasssnsaass
The Current Address - DOE e v eseeenonsnnanananennn
FOrmatS..eeeeeceoesones eds e haseaens ceesenasan .
General Request Meanings..;.....................

Debugging C Programs....... seeeesesastrees sy
6.6.1 Debugging A Core ImMAge c.eseococeaccnsas
6.6.2 Multiple FunctionsS.....ceeoceeccecassoss
6.6.3 Setting BreakpointsS...ceeennescecanerven
6.6.4 Other Breakpoint FacilitiesS........ crees

Maps.‘ ® % » " 4 & 9 ¢ 5 s e PP DS . 5 8 8 ¢ 0 8 H O 8 ® s S o2

dvanced Usage.....c... fe e s st ceaencesaseeens
1 Formatted dump..... e cesasascesssacsse s
2 Directory Dump....... cesreeessasesennane
3 Ilist DUMPeeeenvnn eeresanenessecsassanecs
4 Converting values..... ceesesear s ceens

Patching.....l...’ v..{....f...............
NOLESeeoeaeeoasuneonnencensons S .
FiguUresS..eeesesenoneneen- e e seeenas e .
ADB SUMMALY 4 s s nacvnsosisose. snee se e e ce e e e

6.12.1 Format SUMMAILY....cveeeaoeasenn Ciee e .
6.12.2 EXpression SUMMAIY...ce.seecesosnsosecscs

6-4
6-4
6-6
6-7
6-9

O
I
>
0
-
i 1
)

6.1 Introduction

ADB is an indispensable tool for debugging programs or
crashed systems. ADB provides capabilities to look at core
files resulting from aborted programs, print output in a
variety of formats, patch files, and run programs with
embedded breakpoints. This chapter provides an introduction
to ADB with examples of its use. It explains the various
formatting options, techniques for debugging C programs, and
gives examples of printing file system information and of
patching. : :

6.2 Invocation
The ADB invocation syntax is as follows:

adb objectfile corefile

Here objectfile is an executable XENIX file and corefile is
a core image file. Often this will look like:

adb a.out core
or more simply:
adb

where the defaults are a.out and core, respectively. The
filename minus (-) means ignore this argument as in:

adb - core

ADB has requests for examining locations in either file. A
qguestion mark (?) request examines the contents of
objectfile; a slash (/) request examines the corefile. The

general form of these requests is:

address ? format

or

address / format

ADB ADB

6.3 The Current Address - Dot

ADB maintains a pointer to the current address, called dot,
similar in function to the current pointer in the editor,
ed(l). When an address is entered, the current address is
set to that location, so that:

012621

sets dot to octal 126 and prlnts the instruction at that
address. The request

.,10/4d

prints 10 decimal numbers starting at dot. Dot ends up
referring to the address of the last item printed. When
used with the question mark (?) or slash (/) reguest, the
current address can be advanced by typing a newline; it can
be decremented by typing a caret (7).

Addresses are represented by expressions. Expressions are
made up from decimal, octal, and hexadecimal integers, and
symbols from the program under test. These may be combined
with the following operators:

+ aAddition

- Subtraction

* Multiplication

% Integer Division
& Bitwise AND

| Bitwise inclusive OR
Round up to the next multiple
Not

Note that all arithmetic within ADB is 32-bit arithmetic.
When typing a symbolic address for a C program, type either
"name" or " _name"; ADB recognizes both forms. Because ADB
will find only one of "name" and "_name", (generally the
first to appear in the source) one will mask the other if
they both appear in the same source file.

ADB ADB

6.4 Formats

To print data, a user specifies a collection of letters and
characters that describe the format of the printout.
Formats are "remembered" in the sense that typing a request
without one will cause the new printout to appear in the
previous format. The following are the most commonly used
format letters:

Letter Format

b one byte in octal

one byte as a character

one word in octal

one word in decimal

one word in hexadecimal

two words in fleoating point
machine instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot

M S SO N HFMX L0 O

(Format letters are also available for "long" values, for
example, D for 1long decimal, and F for double floating
point.) '

6.5 General Request Meanings
The general form of a request is:
address,count command modifier

which sets "dot" to address and executes the command count
times. :

The following table illustrates some general ADB command
meanings:

Command Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot"
Breakpoint control
Miscellaneous requests

Request separator

Escape to shel’

W

e we L[} o

ADB catches signals, so a user cannot use a quit signal to
exit from ADB. The request $g or $Q (or <CONTROL-D>) must
be used to exit from ADB.

6.6 Debugging C Programs

The following subsections describe use of ADB in debugging
the € programs given in figures at the end of this chapter.
Refer to these figures as you work your way through these
examples. :

6.6.1 Debugging A Core Image

Consider the C program in Figure 1. The program is used to
illustrate a common error made by C programmers. The object
of the program is to change the lower case "t" to upper case
in the string pointed to by char and then write the
character string to the file indicated by argument 1. The
bug shown is that the character "T" is stored in the pointer
charp instead of the string pointed to by charp. Executing
the program produces a core file because of an out of bounds
memory reference.

ADB is invoked by typing:
adb a.out core

The first debugging request
$c

is used to give a C backtrace through the subroutines
called. As shown in Figure 2, only one function, main, was
called and the arguments argc and argv have hex values 0xZ
and O0x1fff90 respectively. Both of these wvalues look
reasonable; 0x2 = two arguments, Ox1fff90 = address on stack
of parameter vector. Thesc values may be different on your
system due to a different mappiny of memory.

The next request
Sr

prints out the registers including the program counter and
an interpretation of the instruction at that location.

The request:

’

Se
prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the
a.out file 1is referenced with a guestion mark (?), whereas
the map for the core file is referenced with a slash (/).
Furthermore, a good rule of thumb is to use question mark

for instructions and slash for data when looking at
programs. To print out information about the maps type:
$m

This produces a report of the contents of the maps. More
about these maps later.

In our example, it is useful to see the contents of the
string pointed to by charp. This is done by typing

*charp/s

which says use charp as a pointer in the core file and print
the information as a character string. This printout shows
that the character buffer was incorrectly overwritten and
helps identify the error. Printing the locations around
charp shows that the buffer is unchanged but that the
pointer is destroyed. Using ADB similarly, we could print
information about the arguments to a function.

0x1£££90,3/X

prints the hex values of the three consecutive cells pointed

to by argv in the function main. Note that these values are
the addresses of the arguments to main. Therefore:

Ox1fffb6/s

prints the ASCII vaFae of the first argument. Another way
to print this value would have been

*!I/S

The double quote mark (") means ditto, i.e., the the last
address typed, in this case 0x1fff90 ; the star (%)

instructs ADB to use the address [ield of the core file as a
pointer,

The request

I=x

ADB ’ ADB

prints the current address (not its contents) in hex which
has been set to the address of the first argument. The
current address, dot, is used by ADB to '"remember" its
current location. It allows the user to reference locations
relative to the current address, for example:

.~10/4

6.6.2 Multiple Functions

Consider the C program illustrated in Figure 3. This
program calls functions "f", "g", and "h" until the stack is
exhausted and a core image is produced.

Again you can enter the debugger via:
adb |

which assumes the names g.dut and core for the executable
file and core image file respectively. The reguest

$c

fills a page of backtrace references to "f", "g", and "h".
Figure 4 shows an abbreviated 1list (typing will
terminate the output and bring you back to ADB request
level. Additionally, some versions, will automatically quit
after 15 levels unless told otherwise with the command:

levelcountSc
The request
58c
prints the five most recent activations.

Notice that each function ("f", "g", and "h") has a counter
that counts the number of times each has been called.

The request
fent/D

prints the decimal value of the counter for the function f£.
Similarly "gcnt” and "hcent® could be printed. Notice that
because "fcnt", "gcnt", and "hent® are int variables, and on
the MC68000 int is implemented as long, to print its value
you must use the two word format D.

6.6.3 Setting Breakpoints

Consider the C program in Figure 5. This program, which
changes tabs into blanks, is adapted from Software Tools by
Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see
Figure 6) by typing: -

adb a.out -

Breakpoints are set in the program as:
address:b [request]

The requests

settab+8:b
fopen+8:b
tabpos+8:b

set breakpoints at the start of these functions. C does not
generate statement labels. Therefore, it is currently not
possible to plant breakpoints at locations other than
function entry points ~without a knowledge of the code
generated by the C compiler. The above addresses are
entered as “symbol+8", so that they will appear in any C
backtrace since the first two instructions of each function
are used to set up the local stack frame. Note that some of
the functions are from the C library.

To print the location of breakpoints one types:
$b

The display indicates a count field. A breakpoint is
bypassed count-~1 times before causing a stop. The command
field indicates the ADB requests to be executed each time
the breakpoint is encountered. 1In our example no command
fields are present. :

By displaying the original instructions at the function
settab we see that the breakpoint is. set after the tstb
instruction, which is the stack probe. We can display the
instructions using the ADB request: '

settab,5%ai

This request displays five instructcions starting at settab
with the addresses of each 1location displayed. Another
variation 1is

settab,57?71

which displays the instructions with only the starting
address.

Notice that we accessed the addresses from the a.out file
with the question (?) command. In general when asking for a
printout of multiple items, ADB advances the current address
the number of bytes necessary to satisfy the request. In the
above example, five instructions were displayed and the
current address was advanced 18 (decimal) bytes.

To run the program one type:
ir

To delete a breakpoint, for instance the entry to the
function settab, type:

settab+8:d

To continue execution of the program from the breakpoint
type:

:C

Once the program has stopped (in this case at the breakpoint
for fopen), ADB requests can be used to display the contents
of memory. For example:

Sc
to display a stack trace, or:
tabs,6/4X

to print 6 lines of 4 locations each from the array called
tabs. By this t¥me (at location fopen) in the C program,
settab has been called and should have set a one in every
eighth location of tabs.

The XENIX quit and interrupt signals act on ADB itself
rather than on the program being debugged. If such a signal
occurs then the program heing debugged is stopped and
control is returned to ADB. The signal is saved by ADB and
is passed on to the test program it

:C

is typed. This can be wuseful when testing interrupt
handling routines. The signal is not passed on to the test

ADB

program if

:c 0

is typed.

6.6.4 Other Breakpoint Facilities

® Arguments and change of standard input and output are

passed to a program as: |

:r argl arg2 ... <infile >outfile

This request kills any existing program under test and
starts the a.out afresh.

The program being debugged can be single stepped by
typing: ' '

S

If necessary, this request starts up the program being

debugged and stops after executing the firsc
instruction. :

ADB allows a program to be entered at a specific
address by typing:

address:r

The count field can be used to skip the first n
breakpoints as:

(Nr
The request

,N:C
may also be used for skipping the first n breakpoints
when continuing a program.
A program can be continued ai an address different from
the breakpoint by typing:

address:c

The program being debugged runs as a Separate process
and can be killed by typiug:

6.7 Maps

XENIX supports several executable file formats. These are
used to tell the loader how to load the program file.
Nonshared program files are the most common and is generated
by a C compiler invocation such as:

cc pgm.c

A shared file is produced by a C compiler command of the
form '

cc -n pgm.cC

Note that separate instruction/data files are not supported
on the MC68000 ' '

ADB interprets these different f{ile formats and provides
access to the different segments through a set of maps. To
print the maps type:

$m
In nonshared files, both text (instructions) and data are
intermixed. This makes it impossible for ADB to

differentiate data from instructions and some of the printed
symbolic addresses look incorrect; for example, printing
data addresses as offsets from routines.

In shared text, the instructions are separated from data and
the "?*" accesses the data part of the a.out file. The "2*"
request tells ADB to use the second part of the map in the
a.out file. Accessing data in the core file shows the data
after it was modified by the execution of the program.
Notice also that the data segment may have grown during
program execution. In shared files the corresponding core

file does not contain the program text.

Figure 7 shows the display of three maps for the same
program linked as a nonshared and shared respectively. The
b, e, and f fields are used by ADB to map addresses into
file addresses. The "f1" field in the length of the header
at the beginning of the file (0x34 bytes for an a.out file
and 02000 bytes for a core file). The "f2" field is the
displacement from the beginning of the file to the data.
For unshared files with mixed text+ and data this is the same
as the length of the header: for shared files this 1is the
length of the header plus the size of the text portion.

&3]
§
-

5
o

ADD

The "b" and "e" fields are the starting and ending locations
for a segment. Given an address, A, the location in the
file (either a.out or core) is calculated as:

bl<A<el => file address
b2<A<e2 => file address

{(A-bl)+f1l
(A=b2)+£2

0ou

A user can access locations by using the ADB defined
variables. The "Sv" request prints the wvariables
initialized by ADB:

b base address of data segment
d length of the data segment
s length of the stack :
t length of the text ,
m execution type {(407,410,411)
In Figure 7 those variables not present are zero. Use can

be made of these variables by expressions such as
<b

in the address field. Similarly the value of the variable
can be changed by an assignment reguest such as:

02000>b
that sets b to octal 2000. These variables are useful to
know 1if the file under examination 1s an executable or core

image file.

ADB reads the header of the core 1image file to find the

values for these variables. If the second file specified
does not seem to be a core f:ile, or if it is missing then
the header of the executable file is used instead.

6.8 Advanced Usage::
It is possible with ADB to combine formatting requests to
provide elaborate displays. Below are several examples.
6.8.1L PFormatted dump
The line

<b,=1/404"8Cn

prints 4 octal words followed by their ASCII interpretation
from the data space of the caso 1mage file. Broken down,

the various request pieces mean:
<b The base address of the data segment.

<b,-1 Print from the base address to the end of file. A

negative count is used here and elsewhere to loop
indefinitely or until some error condition (like
end of file) is detected.

The format "40478Cn" is broken down as follows:

4o Print 4 octal locations.

4" Backup the current address 4 locations (to the
original start of the field).

8C Print 8 consecutive characters using an escape
convention; each character in the range 0 to (37
is printed as an at-sign (@) followed by the

corresponding character in the range 0140 to 0177.
An at-sign is printed as "@@".

n Print a newline.
The request:
<b,<d/40478Cn

could have been used instead to aliow the printing to stop
at the end of the data segment {<d provides the data segment
size in bytes).

The formatting requests can be combined with ADB's ability
to read in a script toc produce a core image dump script.
ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is:

ADB ADB

1208w

40958%s

Sv

=3n

$m

=3n"C Stack Backtrace"”
$C

=3n"C External Variables®
Se

=3n"Registers"

Sr

0Ss

=3n"Data Segment"
<b,-1/80na

The request
1208w

sets the width of the output to 120 characters (normally,
the width 1is 80 characters}. ADB attempts to print
addresses as:

symbol + offset

The request

40958s
increases the maximum permissihle offset to the nearest
symbolic address from 255 (deruuic) to 4095. The equal sign
request (=) can be used to print literal strings. Thus,

headings are provided in this Jump program with requests of
the form:

=3n"C Stack Backtrace"

This spaces three lines and prints the literal string. The
request

Sv
prints all non-zero ADB vafﬁabims. The request

038s
sets the maximum offset fof symbol matches to zero thus
suppressing the printing of symbolic labels in favor of

octal values. Note that this is only done for the printing
of the data segment. The request:

ADB ADB

<b,-1/8ona

prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Figure 9 shows the results of some formatting requests on
the C program of Figure 8.

6.8.2 Directory Dump

As another illustration (Figure 10) consider a set of
requests to dump the contents of a directory (which is made
up of an integer inumber followed by a .14 character name):

adb dir -
=n8t"Inum"8t"Name"
0,-1? u8tldcn

In this example, the u prints the inumber as an unsigned
decimal integer, the "8t" means that ADB will space to the
next multiple of 8 on the outnut line, and the "ld4c" prints
the 14 character file name. :

6.8.3 Ilist Dump

Similarly the contents of the iiist of a file system, (e.g.,

/dev/src) could be dumped with the following set of
requests:

adb /dev/src -

02000>b

?m <b ,
<b,-1?"flags"8ton"links,uidg,g1d"8t3bn",...

(Note that the two lihes separated by ellipses should be
entered as one line with no intervening space. The line is
broken here so that it will fit on the page.) In this
example the value of +the base for the map was changed to
02000 by typing :

?m<b

since that is the start of an ilist within a file system.
"Brd” above was used to print the 24 bit size field as a
byte, a space, and a decimal integer. The last access time
and last modify time are printed with the "2Y" operator.
Figure 10 shows portions of thess -equests as applied to a

directory and file system.

ADB ADB

6.8.4 Converting values

ADB may be used to convert values from one representation to
another. For example:

072 = odx
prints
072 58 #3a

which is the octal, decimal and hexadecimal representations
of 072 (octal). The format is remembered so that typing
subsequent numbers will print them in the given formats.
Character values may be converted similarly, for example:

prints
a 0141

It may also be used to evaluate expressions but be warned
that all binary operators have the same precedence which is
lower than that for unary operators.

6.9 Patching

Patching files with ADB is accomplished with the write (w or
W) request. This is often used in conjunction with the
locate, (1 or L) request. 1In general, the request syntax
for 1 and w are similar:

?1 value

The request 1 is used to match on two bytes; L is used for
four Dbytes. The request w 1is used to write two bytes,
whereas W writes foyr bytes. The value field in either
locate or write equests 1is an expression. Therefore,
decimal and octal numbers, or character strings are
suppor ted.

In order to modify a file, ADB must be called as:
adb -w filel file2

When called with this option, filel and file2 are created if
necessary and opened for both reading and writing.

For example, consider the C program shown in Figure 8. We

can change the word "This" to "The " in the executable file
for this program, ex7, by using the following requests:

6-15

adb -w ex?7 -
?1 'Th'
?W 'The'

The request
?1

starts at dot and stops at the first match of "Th" having
set dot to the address of the location found. Note the use
of the question mark (?) to write to the a.out file. The
form "?*" would have been used for a 411 file.

More frequently the request will be typed as:
?21 'Th'; ?s

and locates the first occurrence of "Th" and print the
entire string. Execution of this ADB request will set dot
to the address of the "Th" characters.

As another example of the utility of the patching facility,
consider a C program that has an internal logic flag. The
flag could be set by the user through ADB and the program
run. For example:

adb a.out -
:s argl arg2
flag/w 1

:C

The ":s" request is normally used to single step through a
process or start a process in single step mode. In this
case it starts a.out as a subprocess with arguments argl and
arg2. If there 1is a subprocess running ADB writes to it
rather than to the file so the w request causes flag to be
changed in the memory of the subprocess.

6.10 Notes

Below is a list of some things that users should be aware
of:

1. Function calls and arguments are put on the stack by
the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not
to have been called when the breakpoint occurs.

2. When printing addresses, ADB uses either text or data
symbols from the a.out file. This sometimes causes

6-16

unexpected symbol names to be printed with data (e.g.,
"savr5+022"). This does not happen if gquestion mark
(?) is used for text (instructions) and slash (/) for

data.

Local variables cannot be addressed.

6-17

ADB ADB

6.11 PFigures

Figure 1: C program with pointer bug

#include <stdio.h>
struct buf {
int fildes;
int nleft;
char *nextp; .
char buff(512];
}bb;
struct buf *obuf:

char *charp = "this is a sentence.";

main(argc, argv)

int argc;

?har **argv;

1
char ceC;
FILE *file;

if (argc < 2) { :
printf ("Input file missing\n");

exit(8);

}

if ((file = fopen(argv({l],"w")) == NULL){
printf("%s : can't open\n", argv(l]);
exit(8);

}

charp = 'T';
printf("debug 1 %s\n",charp);
while(cc= *charp++)

putc (cc, file) ;
fflush(file);

6-18

ADB

Figure 2: ADB output for C program of figure 1

adb
Sc

start+44:
Sr
do
dl
daz2
a3
d4
ds
deé
a7

0x0
0x8
0x0
ox0
0x0
0x0
0x0
0x0

0x0
0x80E4

ps
pc
Se
environ:
“errno: 0x19
_bb: 0x0
_obuf: 0x0
_charp: 0x55
__iob: O0x9B1C
__sobuf:
__lastbu:
sibuf:
_allocs:
_allocp:
_alloct:
allocx:
“end: 0x0
_edata: 0x0
$m
? map
bl = 0x8000
b2 = 0x8000
/ map -
bl = 0x0
b2 = 0x0
*charp/s
0x55:

“a.out’

_main (0x2,

_main+160:

OxX1FFFOC

0x64656275
0x96F8

0x0

0x0

0x0

0x0

0x0

0x970C

el =
e2 = 0x970C

%
0x1000000
0x0

el
e2

fl U

data address not found

Ox1£££90,3/X
0x1FFF90:
0x1ff£fb0/s
O0x1FFFBO:

/s

0x1FFFBO:
=X

0x1FFFBO
a.out
a.out

O0x1FFFBO

O0xX1FFF90)
a0 0x54
al O0x1FFF90
a2 0x0
a3 0x0
a4 0x0
as 0x0
a6 O0x1FFF7C
sp Ox1FFF74
movb (al0),-1. (ab)
f1 = 0x20
£2 = 0x20
fl1 = 0x0
£f2 = 0x0
O0x1FFFB6 0x0

.-10/4
O0x1FFFA6:
$q

65497

6-20

ADB

Figure 3: Multiple function C program

int fent,gent, hent;
?(x,y)

int hi; register int hr;
hi = x+1;

hr = x-y+1;

hent++ ;

hj:

f (hr,hi) ;

?(prq)

int gi; register int gr;
gi = g-p;

gr = g-p+l;

gcent++

9j:

h(gr,gi);

f(a,b)
{

int fi; register int fr;
fi = a+2*b;

fr = a+b;
font++
£5: #

g(fr,£fi);

main ()

£(1,1);

6-21

Figure 4:

$c
_h+46:
_g+48:
_£+70:
_h+46:
_g+48:
_f+70:
_h+46:
_g+48:
<INTERRUPT>
adb
,58c
_h+46:
_g+48:
_£+70:
_h+46:
_g+48:
fent/D
_fent:
gent/D
_gcnt:
hent /D
_hent:

$q

ADB output for C program of Figure 3

I
ID‘“H\'\Q ::rlr-nlnnls"m

o Hh

1175
1174
1174

K

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)
(0x92B, 0x1254)
(0x2, 0x929)
(0x928, 0x927)

(0x2, 0x92D) -
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)

6-22

Figure 5: C program to decode tabs

#includev<stdio.h>
$define MAXLINE 80

#define YES 1
#define NO 0
#define TABSP 8
char input[] = "data";
char ibuf([518];

int tabs [MAXLINE];
main ()

int col, *ptab;
char c¢;

ptab = tabs;
settab (ptab) ; /*Set initial tab stops */
col = 1;
if (fopen(input,ibuf) < 0) { A
' printf("ss : not found\n", input);

exit(8);
while((c = getch(ibuf)) 1= -1) {
switch(c)
case '"\t': /* TAB */
while (tabpos(col) != YES)
/* put BLANK */
putchar(' '):
} Ccol++ ;
break:;
case '\n': /*NEWLINE */
% putchar('\n');
col = 1;
break:
default:
putchar(c) ;
col++

ADB

/* Tabpos return YES if col is a tab stop */

tabpos(col)
int col;

if (col > MAXLINE)
return(YES) ;

else
return(tabs[col]):;

/* Settab - Set initial tab stops */ -

settab(tabp)
int *tabp;

int 1i;

for (i = 0; i<= MAXLINE; i++)
(if*TABSP) ? (tabs[i]

= NO)

(tabs[il]

= YES) ;

/* getch(ibuf) - Just do a getc call, but not a macro */

getch (ibuf)
FILE *ibuf;

return(getc (ibuf)) ;

6-24

Figure 6: ADB output for C program of Figure 5

6—-25

adb a.out
settab+8:b
fopen+8:b
getch+8:b
tabpos+8:b
$b
breakpoints
count bkpt command
1 _tabpos+8
1 _getch+8
1 _fopen+8
1 _settab+8
settab,5?ia .
_settab: link a6, #0xFFFFFFFC
_settab+4: tstb -132. (a7)
_settab+8: moveml #<>,~(a7)
_settab+12: clrl ~-4. (ab)
_settab+16: cmpl #0x50,~-4. (a6)
_settab+24:
settab,57?i
_settab: link a6 , #0XFFFFFFFC
tstb -132. (a7)
moveml #<>,-(a7)
clrl -4, (ab)
cmpl #0x50,-4. (ab)
:r
a.out:running
breakpoint _settab+8: moveml #<>,~(a7)
settab+8:d
:C
a.out:running
breakpoint _fopen+8: jsr - __findio
$c
_main+52: _fopen (0x9750, 0x9958)
start+44;: _main (0x1, Ox1FFF98)
tabs,6/4X :
_tabs: O0xl 0x0 0x0 0x0
0x0 0x0 0x0 0x0
0x1 0x0 0x0 0x0
0x0 0x0 0x0 0x0
0xl 0x0 0x0 0x0
0x0 0x0 0x0 0x0

aub

ADB

Figure 7: ADB output for maps

adb a.out.unshared core.unshared

$m

? map “a.out.unshared'

bl = 0x8000 el = O0x83E4
b2 = 0x8000 e2 = 0x83E4

/ map “core.unshared’

bl = 0x8000 el = 0x8800
b2 = 0x1EB00O e2 = 0x200000
Sv

variables

b = 0x8000

d = 0x800

e = 0x8000

m = 0x107

s = 0x15000

$q

adb a.out.shared core.shared

$m
? map “a.out.shared'
bl = 0x8000 el = 0x8390

b2 = 0x10000 e2 = 0x10054
/ map “core.shared'

bl = 0x10000 el = 0x10108
b2 = 0x1EB0OQO e2 = 0x200000
$v

variables

b = 0x10390

d = 0x800

e = Ox8000

m = 0x108

s = 0x15000

$q *

6-26

fl
£2

£l
f2

fl
£2

fl
£2

[}

0x20
0x20

0x800
0x1000

0x20
0x3B0

0x800
0x1000

Figure 8
patching

char
int
int
long
float
char
main()

: Simple C program illustrating formatting and

strlf(]
one
number
lnum
fpt
str2(]

one = 2

-4

nuwun u

"This
1;
456;
1234;
1.25;
"This

%

is a character string";

is the second character string";

6-27

ADB output illustrating fancy formats

Figure 9:

adb a.out.shared core.shared

<b,~1/8ona

_strl: 052150 064563 020151

_strl+lé6: 072145 071040 071564

_number:

_number: 0 0710 0

_str2+4: 020151 071440 072150

_str2+20: 064141 071141 061564

$nd:

$nd: 01 0140

<b,20/404"8Cn

_strl: 052150 064563 020151
060440 061550 060562
072145 071040 071564
067147 0 0

_humber: 0 0710 0

_fpt: 037640 O 052150
020151 071440 072150
071545 061557 067144
064141 071141 061564
020163 072162 064556

$nd: 01 0140

data address not found

<b,20/404"8t8Cna

_strl: 052150 064563 020151

strl+8: 060440 061550 060562

_strl+lé: 072145 071040 071564

_strl+24: 067147 O 0

_number :

_number: 0 0710 0

_fpt:

_fpt: 037640 O 052150

_str2+4: 020151 071440 072150

_str2+12: 071545 061557 067144

_8tr2+20: 064141 071141 061564

str2+28: 020163 072162 064556

Snd:

$nd: 0l 0140

data address not found

<b,10/2b8t"2cn

_strl: 0124 0150

6-28

071440
071151

02322
062440
062562

071440
060543

071151

01
02322

064563
062440
020143
062562
063400

071440
060543
071151
01

02322

064563
062440
020143
062562
063400

Th

060440 061550 060562 060543
067147 0 0 01
037640 0 052150 064563

071545 061557 067144 020143
020163 072162 064556 063400

This is

a charac :
ter stri
nge*e*e@ @ @ ea

@ @“eaHR @"@dR

? @@ This
is the
second ¢
haracter
stringe@®

This is

a charac

ter stri
ng@~@*@e~ @ e ea

@~@“eaHe@ @ @dRr

? @@ This
is the

second ¢

haracter
string@”

$q

0151
040

0163
0141
0143
0141
0141
0164
0162

0163
0151
040
040
0150
0162
0143
0145
040

6-29

is

ch
ar
ac
te

Figure 10: Directory and inode dumps
adb dir -

=nt"Inode” t"Name"

0,-1?utldcn

Inode Name

0: 652 .
82 .
5971 cap.cC
5323 cap
0 PP

adb /dev/src -
02000>b
?m<b
new map */dev/src’
bl 02000 el
b2 0 e2
$v
variables
b = 02000
<b,~12?"flags"8ton"links,uid,gid"8t3bn"
size"8tbrdn"addr"8t8un"times"8t2Y2na
(type above two lines all on one line)
02000: flags 073145
links,uid,gid 0163 0164 0141
size 0162 10356

0100000000 £l
0 f£2

nu
o

addr 28770 8236 25956 27766 25455 8236 25956 25206

times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 % 30050 8294 25130 15216 26890 29806

times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6-30

6.12 ADB Summary

Command Summary

a. Formatted

? format

/ format

= format

?W expr

/W expr

?1 expr
b. Breakpoint

:b
o4
:d
1k
:xr
: S

printing
print from a.out file according to
format
print from core file according to
format :
print the value of dot

write expression into a.out file
write expression into core file

locate expression in a.out file
and program control

set breakpoint at dot

continue running program

delete breakpoint

kill the program being debugged
run a.out file under ADB control
single step

c. Miscellaneous printing

$b
$c
$e
3
$m
$q
$r
$s
Sv
Sw

d. Calling th

print current breakpoints
C stack trace

external variables

floating registers

print QPB segment maps

exit from ADB

general registers

set offset for symbol match
print ADB variables

set output line width

e shell

call shell to read rest of line

e. Assignment to variables

>name

assign dot to variable or register name

6-31

ADB

ADB

6.12.1 Format Summary

2 X CIDURRDIORMQAUAQUDD

the value of dot

one byte in octal

one byte as a character

one word in decimal

two words in floating point
machine instruction

one word in octal

print a newline

print a blank space

a null terminated character string
move to next n space tab

one word as unsigned integer
hexadecimal :
date

backup dot

print string

6.12.2 Expression Summary

a. Expression components

decimal integer e.g. 256

octal integer e.g. 0277

hexadecimal e.g. #ff

symbols e.g. flag _main main.argc
variables e.g. <b

registers e.g. <pc <r0

(expression) expression grouping

b. Dyadic operators

w2 P % | +

add

subtract

multip

integer” division

bitwise and

bitwise or

round up to the next multiple

c. Monadic operators

o~

*

not
contents of location
integer negation

6-32

	XSSD_00_0001
	XSSD_00_0002
	XSSD_00_0003
	XSSD_00_0004
	XSSD_00_1001
	XSSD_00_1002
	XSSD_00_1003
	XSSD_00_1004
	XSSD_01_0001
	XSSD_01_0002
	XSSD_01_1001
	XSSD_01_1002
	XSSD_01_1003
	XSSD_01_1004
	XSSD_02_0001
	XSSD_02_0002
	XSSD_02_1001
	XSSD_02_1002
	XSSD_02_1003
	XSSD_02_1004
	XSSD_02_1005
	XSSD_02_1006
	XSSD_02_1007
	XSSD_02_1008
	XSSD_02_1009
	XSSD_02_1010
	XSSD_02_1011
	XSSD_02_1012
	XSSD_02_1013
	XSSD_02_1014
	XSSD_02_1015
	XSSD_02_1016
	XSSD_02_1017
	XSSD_02_1018
	XSSD_02_1019
	XSSD_02_1020
	XSSD_02_1021
	XSSD_02_1022
	XSSD_02_1023
	XSSD_02_1024
	XSSD_02_1025
	XSSD_02_1026
	XSSD_02_1027
	XSSD_02_1028
	XSSD_02_1029
	XSSD_02_1030
	XSSD_02_1031
	XSSD_02_1032
	XSSD_02_1033
	XSSD_02_1034
	XSSD_02_1035
	XSSD_02_1036
	XSSD_02_1037
	XSSD_02_1038
	XSSD_02_1039
	XSSD_02_1040
	XSSD_02_1041
	XSSD_02_1042
	XSSD_02_1043
	XSSD_02_1044
	XSSD_02_1045
	XSSD_02_1046
	XSSD_02_1047
	XSSD_02_1048
	XSSD_02_1049
	XSSD_02_1050
	XSSD_02_1051
	XSSD_02_1052
	XSSD_02_1053
	XSSD_02_1054
	XSSD_02_1055
	XSSD_02_1056
	XSSD_02_1057
	XSSD_02_1058
	XSSD_03_0001
	XSSD_03_0002
	XSSD_03_1001
	XSSD_03_1002
	XSSD_03_1003
	XSSD_03_1004
	XSSD_03_1005
	XSSD_04_0001
	XSSD_04_0002
	XSSD_04_1001
	XSSD_04_1002
	XSSD_04_1003
	XSSD_04_1004
	XSSD_04_1005
	XSSD_05_0001
	XSSD_05_0002
	XSSD_05_1001
	XSSD_05_1002
	XSSD_05_1003
	XSSD_05_1004
	XSSD_05_1005
	XSSD_05_1006
	XSSD_05_1007
	XSSD_05_1008
	XSSD_05_1009
	XSSD_05_1010
	XSSD_05_1011
	XSSD_05_1012
	XSSD_05_1013
	XSSD_05_1014
	XSSD_06_0001
	XSSD_06_0002
	XSSD_06_1001
	XSSD_06_1002
	XSSD_06_1003
	XSSD_06_1004
	XSSD_06_1005
	XSSD_06_1006
	XSSD_06_1007
	XSSD_06_1008
	XSSD_06_1009
	XSSD_06_1010
	XSSD_06_1011
	XSSD_06_1012
	XSSD_06_1013
	XSSD_06_1014
	XSSD_06_1015
	XSSD_06_1016
	XSSD_06_1017
	XSSD_06_1018
	XSSD_06_1019
	XSSD_06_1020
	XSSD_06_1021
	XSSD_06_1022
	XSSD_06_1023
	XSSD_06_1024
	XSSD_06_1025
	XSSD_06_1026
	XSSD_06_1027
	XSSD_06_1028
	XSSD_06_1029
	XSSD_06_1030
	XSSD_06_1031
	XSSD_06_1032

