REVIEW

Radio Shack may have trouble with this one.

Model IT Compiler Basic

Mode! Il Compiler Basic
Tandy/Radio Shack

Fort Worth, TX

$199

Larry Clark

Perimeter Data Systems
4449 Oak Trail Drive
Atlanta, GA 30338

As a professional programmer en-
gaged in building large applications
systems, | eagerly awaited Radio Shack’s
Compiler Basic for the Model Il. | anticipat-
ed a significant performance advantage
over the interpretive Basic that comes with
the system. In addition, | felt that the ability
to distribute programs in object form would
provide increased protection against soft-
ware piracy.

I knew that my existing programs would
require modification. Radio Shack clearly
indicates that the language differs from in-
terpretive Basic, and suggests that it is pri-
marily suitable for new application devel-
opment. To achieve higher performance, |
expected that the compiler language would
require some additional specification. But |
was utterly unprepared for what | encoun-
tered: gratuitous changes for the sake of
change, callous disregard for human factors,
-and woefully disappointing performance.

The Development System

Programs are normally written and de-
bugged using the Development System.
This is a complete environment that closely
resembles interpretive Basic—programs
can be written, saved, executed, modified,
etc., without returning to TRSDOS. There is
also a stand-alone editor called BEdit,
which allows more powerful editing opera-
tions, and a stand-alone run-time package
that can execute previously compiled
programs.

The editing commands in the Develop-

148 * 80Microcomputing, February 1982

ment System are annoyingly different from
the familiar Edit command of interpretive
Basic. In fact, there is no Edit command; its
function is performed by Change, which is
better suited to global changes than to in-
tra-line corrections. The BEdit program
uses another scheme (including an Edit
command), but differs from both of the
above mentioned, and from Edit-80, which it
closely resembles. This makes it incredibly
difficult to switch from the Development
editor to BEdit. The difficulty is compound-
ed if the user also works in interpretive
Basic andlor Edit-80 (e.g., for Assembly-
code or Fortran work).

If you have existing programs in interpre-
tive Basic, forget trying to use them as a
starting point. The file format used for stor-
ing source programs by Compiler Basic is
different from either of the formats used by
interpretive Basic. | managed to write a con-
version program, but the language differ-
ences are so significant that I'd have been
better off starting over.

Data Types

The compiler supports only two types of
numeric data, integer and real. Integers oc-
cupy two bytes and perform as in interpre-
tive Basic. Reals, on the other hand, are
stored in floating packed decimal, and oc-
cupy eight bytes each. Each real number
carries up to 14 significant digits. The use
of a decimal base would seem a good
choice for accounting work, since it elimi-
nates the possibility of roundoff errors.

Strings have both maximum and current
lengths. The default maximum is 255 (as
with interpretive Basic). However, if the user
knows that the string will never be that long,
he can assign a shorter maximum to save
space. Unlike interpretive Basic; strings
always require enough storage to hold their
maximum length. This avoids the inter-
preter’s string compaction delays, but may

prevent programs with large string arrays
from fitting into memory. .

Variable names may be arbitrarily long,
and the first six characters are significant.
Thus, Joe and Joseph are different vari-
ables, although Joseph and Josephine are
the same. A variable’s type may be set im-
plicitly (Real is the default), or specified by
appending a type tag ($, %, or #). The first
mention of a variable is binding—if the first
line of a program refers to A$, the compiler
treats every reference to A as a string,
regardless of the presence of the $ tag, and
the variables A% and A# are not available.

Arrays of ali data types are available, but
may not have more than two dimensions.
Although relatively few programs need
more than this, those that do become
extremely awkward. The limitation seems
arbitrary.

Needless Differences

Some of the other differences seem
pointless. Their primary effect is to frus-
trate users who are accustomed to interpre-
tive Basic.
® Quotation marks are not used around
filespecs on commands such as
Save and Kill.

® Load will load only an object file, not
a source file. You must use Old for
source files.

® LLIST <range> is replaced by List

<range> {PRT}. The braces are man-
datory.

®In concatenating strings, the plus

sign has been replaced by an amper-
sand.

® In debugging a program, you cannot

use Print <var> to see its value; you
must Display <var> or DI <var>).

@ RENUM is not recognized, but Re-

number and RE are.

® Print @(6,3),<list> must be written as

Print CRT(6,3);<list>.
®To determine the cursor position,

%———_A

“A close reading. . . reveals

that Compiler Basic is

not a true compiler.”

ROW(x) and POS(x) have been re-
placed by CRTX and CRTY. (This
would be fine if they hadn’t reversed
the normali usage of the coordinates.)

® The End statement marks the end of
complication, not the end of execu-
tion.

® The INSTR function has been rela-
beled POS, and accepts only the two-
argument form.

® The MIDS$ function has been renamed
SEGS.

The above list is far from complete, but
indicates the nature of the changes. If the
compiler were to be used in a vacuum, the
choice of syntax wouldn’t matter. But every
Model Il is already supplied with interpre-
tive Basic, and most potential users of
Compiler Basic are probably already using
it. (If they wanted to start from scratch, they
would be better off using a language other
than Basic.) So these changes simply make
life needlessly difficult.

Input/Output

The file I/O commands are also markedly
changed, but in this case there is some jus-
tification. Compiler Basic provides a rich
variety of /O options, including fixed or vari-

able-length records; sequential, direct, or

indexed access; and stream, formatted, or
binary formats. However, most of the inter-
esting combinations seem to waste an inor-
dinate amount of space.

Direct access files automatically include
two bytes of overhead per record—one for
the record length and a second that’s un-
used. (The record length indicates how
much of the record is actually used, even
though the physical records must be fixed
in length.)

ISAM files also have two bytes of over-
head per record, but round the storage to
the next larger multiple of 32 bytes. Thus, a
file with a record length between one and 30
bytes requires 32 bytes per record.

Numbers in formatted files are written in
ASCIL. Thus, an integer may take six bytes,
including sign.

Real numbers within binary files carry a
length byte in addition to the internal repre-
sentation. This means that nine bytes may
be (and therefore are) required to store
a number.

The ISAM format was apparently dictat-
ed by considerations of (limited) compatibil-
ity with the Cobol compiler. Considering
how much these two languages have in
common, | wonder whether (or why) any-
body would even want to try to marry them.

Program Segmentation

Perhaps the most welcome feature of
Compiler Basic is that it allows true subpro-
grams, which can be called by name (not by

150 ¢ 80 Microcomputing, February 1982

GOSUB <line>) and passed arguments. Ex-
cept where declared as Common or as for-
mal parameters, the variables in the sub-
program have nothing to do with those in
the calling program. “At last!”, | thought, “I
can actually write programs with areasona-
ble degree of modularity and structure.”
Wrong!

.A close reading of the manual reveals
that Compiler Basic is not a true compiler. It
does not convert source programs into ma-
chine code, but rather, into an intermediate
pseudo-code, which still must be interpret-
ed at run time. (This is also true of most im-
plementations of Pascal.) The pseudo-code
is more compact than true object code
would be.

Subprograms can be compiled either se-
parately or in conjunction with the main
program. If they are compiled separately,
they can be loaded together before begin-
ning execution, but the result can only be
executed, not saved. The pseudo-code can-
not be linked with true object modules. It is
still possible to invoke machine code, but
the technique is similar to the USR calis of
interpretive Basic—the code must be pre-
loaded into high memory that has been re-
served, and the entry point addresses must
be coded into the program.

The inability to combine independently
compiled modules into a single executable
whole makes the concept of separate com-
pilation virtually useless. In designing large
systems for beginners, | want to give them
simple directions, such as “Enter the com-
mand Do Daily and follow the prompts.” |
certainly don’t want to tell them to enter
RSBasic, load a half-dozen modules, then
say Run. Worse yet, if they have only the
run-time system (sold separately for just
such applications), they can’t load multiple
modules even if | wanted them to. So
without a linkage mechanism, all necessary
subprograms must be compiled at once.

This is easier said than done. The Devel-
opment System requires room in memory
for the entire source program it is compil-
ing, plus the compiler itself. (I suspect it
may also keep the object code in memory,
since | was able to compile an oversize pro-
gram by reducing some dimensions.) Con-
sequently, the largest program that can be
compiled in one shot is limited, and |
reached the limit on my first attempt.

Chaining
So we can’t combine modules that were
compiled separately, and we can’t compile
a very big collection of modules at once.
What'’s left? Chaining.
" The program chaining facility is a mild
improvement over what'’s available in inter-

pretive Basic. It allows you to save the con-
tents of certain variables in Common,
where they can be retrieved by programs
later in the chain. Except for this feature, it
is no different from the Run program state-
ment in interpretive Basic.

I thought there might be some smaller ap-
plications that could benefit from the per-
formance improvements that come from
compilation. To see how much improve-
ment the compiler produced, | wrote a sim-
ple benchmark to find out.

Compiler Basic

Interpretive Basic

10 DEFINT A-Z 10 INTEGER

20 PRINT TIMES 20 PRINT TIMES

30 FORI=1TO 1000 30 FOR{=1TO 1000
40 X=(1"3+6)7 40 X5(1*3 + 6)/7

50 NEXT | 50 NEXT |

60 PRINT TIME$ 60 PRINT TIMES

70 END 70 END

This seemed like a fair test, since both
systems would be doing arithmetic using
the same internal number format. Upon run-
ning these test cases, | was amazed by the
relative performance of the two systems:
Interpretive Basic, 13 seconds; Compiler
Basic, 22 seconds (plus 14 seconds com-
pilation).

Where | expected at least a threefold im-
provement (probably more like tenfold) in
performance, | actually achieved a degrada-
tion of about 70 percent. Either Microsoft
does things awfully well, or Ryan and Mc-
Farland (the authors of Compiler Basic) are
doing something terribly wrong!

Conclusion

| have never bought a program with such
high expectations, and wound up feeling so
totally ripped off. It is inconceivable to me
that a compiled program—or even a partial-
ly compiled one—can perform so poorly.

| am equally appalled by the unnecessary
incompatibilities between this and the stan-
dard version of Basic for the Model II. It
shows an utter lack of concern for the peo-
ple who will inevitably use both.

If the compiler is intended for developing
applications programs, the authors should
recognize that program linkage is a neces-
sity, and that disk space may be a precious
resource. In any case, there is little ration-
ale for needless overhead bytes.

After my first experience with the compil-
er, | put it on the shelf and dismissed it as
useless. Several months later | brought it
back out for another try, hoping against
hope that | had missed something crucial. It
appears that | hadn't.

There may be a few limited applications
where Compiler Basic might be useful. If
you know of one, please contact me. I'm
willing to sell my copy at a sizable
discount.®

	80M_Februari1982_BasicCompiler_0148
	80M_Februari1982_BasicCompiler_0150

