Writing 8087 Reals SUMMARY

Appendix A

SUMMARY OF STANDARD PROCEDURES
AND FUNCTIONS

Writing 8087 Reals

8087 Reals are written on a format slightly different from the standard

format, as described below.

R The decimal representation of the value of R is output in a field 23 char-
acters wide, using floating point format. For R > = 0.0, the format is: .
This appendix lists all standard procedures and functions available in
TIRE - o D TURBO Pascal and describes their application, syntax, parameters, and
type. The following symbols are used to denote elements of various
For R < 0.0, the format is: types: :
e T type any type
string any string type
where L represents a blank, # represents a digit, ahd * represents ei- file any file type
ther plus or minus. scajar any scalar type
pointer any pointer type
R:n The decimal representation of the value of R is output, right adjusted in

a field n characters wide, using floating point format. For R > = 0.0:
blanks#.digitsE*##

For R < 0.0:
blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from 1
to 14 digits, # represents a digit, and * represents either plus or minus.

Internal Data Format

302

The 8087 chip supports a range of data types. The one used by
TURBO-87 is the long real; its 64-bits yielding 16 digits accuracy and a
range of 4.19E-307 to 1.67E + 308.

This 8-byte Real is not compatible with TURBO standard or BCD Reals.
This, however, should only be a problem if you develop programs in
different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCIHl format, for instance.

TURBO Pascal Reference Manual

wvwfastio.com

Where parameter type specification is not present, it means that the
procedure or function accepts variable parameters of any type.

Input/Output Procedures and Functions

The following procedures use a non-standard syntax in their parameter
lists:

_procedure

Read (var F: file of type; var V: type);
Read (var F: text; var I: Integer);
Read (var F: text; var R: Real);

Read (var F: text; var C: Char);

Read (var F: text; var S: string);
Readin (var F: text);

Write (var F: file of type; var V: type),
Write (var F: text; /: Integer);

Write (var F: text; R: Real);

Write (var F: text; B: Boolean);

Write (var F: text; C: Char);

Write (var F: text; S: string);

Writeln (var F: text);

: ‘ TURBO-87 303

http://www.fastio.com/

Arithmetic Functions

Arithmetic Functions

function

Abs (I: Integer): Integer;
Abs (R: Real): Real;
ArcTan (R: Real): Real;
Cos (R: Real): Real;
Exp (R. Real): Real;
Frac (R: Real): Real;
Int (R: Real): Real;

Ln (R: Real): Real;

Sin (R: Real): Real;
Sar (I: Integer): Integer;
Sar (R: Real): Real;
Sqrt (R: Real): Real;

Scalar Functions

function

Odd (I: Integer): Boolean;
Pred (X: scalar): scalar;
Succ (X: scalar): scalar;

Transfer Functions

function

304

Chr (I: Integer): Char;
Ord (X: scalar): Integer;
Round (R: Real): Integer;
Trunc (R: Real): Integer;

wvwfastio.com

TURBO Pascal Reference Manual

String Procedures and Functions

String Procedures and Functions

The Str procedure uses a non-standard syntax for its numeric parame-
ter.

procedure
Delete (var S: string; Pos, Len: Integer);
Insert (S: string; var D: string; Pos: Integer);
Str (I: Integer; var S: string);
Str (R: Real; var S: string);
Val (S: string; var R: Real; var P: integer),
Val (S: string; var 1, P: Integer),

function
Concat (S1,82,...,Sn: string): string;
Copy (S: string; Pos, Len: Integer): string;
Length (S: string): Integer; .
Pos (Pattern, Source: string): Integer; 4

File Handling Routines

procedure
Append (var F: file; Name: String);
Assign (var F: file; Name: string);
BlockRead (var F: file; var Dest: Type; Num: Integer);
BlockWrite (var F: file; var Dest: Type; Num: Integer);
Chain (var F: file);
Close (var F: file);
Erase (var F: file);
Execute (var F: file);
Rename (var F: file; Name: string);
Reset (var F: file);
Rewrite (var F: file);
Seek (var F: file of type; Pos: Integer);

function
Eof (var F: file): Boolean;
Eoln (var F: Text): Boolean;
FilePos (var F: file of type): Integer;
FilePos (var F: file): Integer;
FileSize (var F: file of type): Integer;
FileSize (var F: file): Integer;
SeekEof (var F: file): Boolean;
SeekEoln (var F: Text): Boolean;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 305

http://www.fastio.com/

11 PD

Heap Control Procedures and Functions

Heap Control Procedures and Functions

procedure
Dispose(var P: Pointer);
FreeMem(var P: Pointer, I: Integer);
GetMem (var P: pointer; I: integer);
Mark (var P: pointer);
New (var P: pointer);
Release (var P: pointer);

function
MaxAuvail: Integer;
MemAuvail: Integer;
Ord (P: pointer): Integer;
Ptr (I: Integer): Pointer;

Screen Related Procedures and Functions

procedure
CrtExit;
Crtlnit;
CirEol;
CirScr;
DelLine;
GotoXY (X, Y: Integer);
InsLine;
LowVideo;
NormVideo;

function
WhereX: integer; (IBM PC only)
WhereY: integer; (IBM PC only)

306 TURBQO Pascal Reference Manual

wvwfastio.com

Miscellaneous Procedures and Functions

Miscellaneous Procedures and Functions

procedure
Bdos (Func,Param: Integer); (CP/M only)
Bios (Func,Param: Integer); (CP/M only)
ChDir (Path: String);
Delay (mS: Integer);
FillChar (var Dest, Length: Integer; Data: Char);
FillChar (var Dest, Length: Integer; Data: byte);
Halt;
GetDir (Drv:integer; var Path: String),
MkDir (Path: String);
MsDos (Func: Integer; Param: record); (PC/MS-DOS only)
Move (var Source,Dest:type; Length: Integer);
Randomize;
RmDir (Path: String);

function
Addr (var Variable): Pointer; (PC/MS-DOS, CP/M-86)
Addr (var Variable): Integer; (CP/M-80)
Addr (< function identifier >): Integer; (CP/M-80)
Addr(< procedure identifier >): Integer;(CP/M-80)
Bdos (Func, Param: Integer): Byte;
BdosHL (Func, Param: Integer): Integer;
Bios (Func, Param: Integer): Byte;
BiosHL (Func, Param: Integer): Integer;
Hi (I: Integer): Integer;
I0result : Boolean;
KeyPressed : Boolean;
Lo (I: Integer): Integer;
ParamCount : Integer;
ParamStr (N: Integer): String
ParamCount: Integer;
ParamStr (N: Integer): String;
Random (Range: Integer): Integer;
Random : Real;
SizeOf (var Variable): Integer;
SizeOf (< type identifier >): Integer;
Swap (I: Integer): Integer;
UpCase (Ch: Char): Char;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 307

http://www.fastio.com/

IBM PC Procedures and Functions

IBM PC Procedures and Functions

The following procedures and functions apply to the IBM PC implemen-
tations only.

Basic Graphics, Windows, and Sound ‘

procedure
Draw(X1,Y1,X2,Y2,Color);
GraphBackground(Color:integer);
GraphColorMode;
GraphMode;
GraphWindow(X1,Y1,X2,Y2:Integer);
HiRes;
HiResColor(Color:Integer);
NoSound;
Palette(Color:Integer);
Plot(X,Y,Color:Integer);
Sound(l: Integer);
TextBackground(Color:integer);
TextColor(Color:Integer);
TextMode(Color:integer);
Window(X1,Y1,X2,Y2:Integer);

function
WhereX:integer;
‘WhereY:integer;

constant
BWA40:Integer;
C40:Integer;
BW80:Integer;
C80:integer;
Black:Integer;
Blue:integer;
Green:Integer;
Cyan:Integer;
Red:Integer;
Magenta:Integer;
Brown:integer;
LightGray:Integer;
DarkGray:integer;
LightBlue:Integer;
LightGreen:Integer;

O T T T T
2OONOUAWN=SOWN=O

o

308 TURBO Pascal Reference Manual

wvwfastio.com

IBM PC Procedures and Functions

LightCyan:Integer; = 11

LightRed:integer; = 12

LightMagenta:Integer; = 13

Yellow:Integer; = 14

White:Integer; = 15

Blink:Integer; = 16
Extended Graphics
procedure

Arc(X,Y,Angle,Radius,Color: integer);

Circle(X,Y,Radius,Color: Integer);

ColorTable(C1,C2,C3,C4: Integer); j
FillScreen(Color: Integer); .
FillShape(X,Y,FillColor,BorderColor: Integer);
FillPattern(X1,Y1,X2,Y2,Color: Integer);

GetPic(var Buffer: AnyType;X1,Y1,X2,Y2: Integer);

Pattern(P: array[0..7] of Byte);

PutPic(var Buffer: AnyType;X,Y: Integer);

function
GetDotColor(X,Y: Integer): Integer;

Turtlegraphics

procedure
Back(Dist: Integer);
ClearScreen;
Forward(Dist: Integer);
HideTurtle;
Home;
NoWrap;
PenDown;
PenUp;
SetHeading(Angle: Integer);
SetPenColor(Color: Integer);
SetPosition(X,Y: integer);
ShowTurtle;
TurnLeft(Angle: Integer);
TurnRight(Angle: Integer);
TurtleWindow(X,Y,W,H: Integer);
Wrap;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 309

http://www.fastio.com/

Turtlegraphics

function
Heading: Integer;
Xcor: Integer;
Ycor: Integer;
TurtleThere: Boolean;

constant
North:Integer constant =0
East:integer constant = 90
South:Integer constant = 180
West:Integer constant = 270
310 TURBO Pascal Reference Manual

wvwfastio.com

SUMMARY OF OPERATORS

Appendix B

- SUMMARY OF OPERATORS

The following table summarizes all operators of TURBO Pascal. The
operators are grouped in order of descending precedence. Where Type

of operand is indicated as Integer, Real, the result is as follows:

Operand Result

Integer, Integer Integer

Real, Real Real

Real, Integer Real

Operator Operation ‘Type of operand(s) Type of result

+ unary sign identity Integer, Real as operand

- unary sign inversion Integer, Real as operand

not negation Integer, Boolean as operand

* muiltiplication Integer, Real Integer, Real
set intersection any set type as operand

/ division Integer, Real Real

div Integer division Integer Integer

mod modulus Integer Integer

and arithmetical and Integer Integer
logical and Boolean Boolean

shl shift left Integer Integer

shr shift right Integer Integer

+ addition Integer, Real Integer, Real
concatenation string string
set union any set type as operand

- subtraction Integer, Real Integer, Real
set difference any set type as operand

or arithmetical or Integer Integer
logical or Boolean Boolean

xor arithmetical xor Integer Integer
logical xor Boolean Boolean

SUMMARY OF OPERATORS 311

http://www.fastio.com/

SUMMARY OF COMPILER DIRECTIVES

Appendix C

PD

Operator Operation Type of operand(s) Type of result SU M M ARY OF C OM Pl LE R
= equality any scalar type Boolean
equality string Y Boolean Dl R E CTIVE S
equality any set type Boolean
equality any pointer type Boolean
<> ?nequality any scalar type Boolean A number of features of the TURBO Pascal compiler are controlied
!nequalgty string Boolean through compiler directives. A compiler directive is introduced as a com-
!nequalgty any set type Boolean ment with a special syntax which means that whenever a comment |s al-
S meqttJaIlty | any poir|1tert type goo:ean lowed in a program, a compiler directive is also allowed.
= greater or equa any scalar type oolean “y
greater or equal string Boolean A compiter directive consists of an opening bracket immediately followed
set inclusion any set type Boolean by a dollar-sign immediately followed by one compiler directive letter or a
<= less or equal any scalar type Boolean list of compiler directive letters separated by commas, ultimately ter-
less or equal string Boolean minated by a closing bracket.
set inclusion any set type Boolean
greater than any scalar type Boolean Examples:
greater than string Boolean {$1-}
less than any scalar type Boolean {$I INCLUDE.FIL}
less than string Boolean {$B-,R+,V-}
in set membership see below Boolean (*$U+*)

The first operand of the in operator may be of any scalar type, and the

second operand must be a set of that type.

312

wvwfastio.com

TURBQO Pascal Reference Manual

Notice that no spaces are allowed before or after the dollar-sign. A +
sign after a directive indicates that the associated compiler feature is en-
abled (active), and a minus sign indicates that is disabled (passive).

IMPORTANT NOTICE

All compiler directives have default values. These have been chosen
to optimize execution speed and minimize code size. This means
that e.g. code generation for recursive procedures (CP/M-80 only)
and index checking has been disabled. Check below to make sure
that your programs include the required compiler directive settings!

SUMMARY OF COMPILER DIRECTIVES 313

http://www.fastio.com/

Common Compiler Directives
Common Compiler Directives

B - I/O Mode Selection
Default: B +

The B directive controls input/output mode selection. When active,
{$B +)}, the CON: device is assigned to the standard files Input and Out-
put, i.e. the default inputfoutput channel. When passive, {$B-}, the TRM:
device is used. This directive is global to an entire program block and
cannot be re-defined throughout the program. See pages 105 and 108
for further details.

C - Control C and S
Default: C +

The C directive controls control character interpretation during console
1/0. When active, {$C +}, a Ctrl-C entered in response to a Read or
Readin statement will interrupt program execution, and a Ctrl-S will tog-
gle screen output off and on. When passive, {$C-}, control characters
are not interpreted. The active state slows screen output somewhat, so
if screen output speed is imperative, you should switch off this directive.
This directive is global to an entire program block and cannot be re-
defined throughout the program.

| - I/O Error Handling
Default: | +
The | directive controls 1/O error handling. When active, ($! +}, all /O
operations are checked for errors. When passive, {$I-}, it is the respon-
sibility of the programmer to check 1/O errors through the standard func-
tion /Oresult. See page 116 for further details.

| - Include Files
The | directive succeeded by a file name instructs the compiler to in-

clude the file with the specified name in the compilation. Inciude files are
discussed in detail in chapter 17.

314 TURBO Pascal Reference Manual

PD wvwfastio.com

Common Compiler Directives

R - Index Range Check

Default: R-

The R directive controls run-time index checks. When active, ($R + }, all
array indexing operations are checked to be within the defined bounds,
and all assignments to scalar and subrange variables are checked to be
within range. When passive, {$R-}, no checks are performed, and index
errors may well cause a program to go haywire. 1t is a good idea to ac-
tivate this directive while developing a program. Once debugged, execu-
tion will be speeded up by setting it passive (the default state).

V - Var-parameter Type Checking

Default: V +

The V compiler directive controls type checking on strings passed as
var-parameters. When active, {$V +), strict type checking is performed,
i.e. the lengths of actual and formal parameters must match. When pas-
sive, {$V-), the compiler allows passing of actual parameters which do
not match the length of the formal parameter. See pages 203, 236, and
267 for further details.)

U - User Interrupt

Default: U-

The U directive controls user interrupts. When active, {$U + }, the user
may interrupt the program anytime during execution by entering a Ctrl-
C. When passive, ($U-}, this has no effect. Activating this directive will
significantly siow down execution speed.

' f SUMMARY OF COMPILER DIRECTIVES 315

http://www.fastio.com/

PD

PC-DOS and MS-DOS Compiler Directives

PC-DOS and MS-DOS Compiler Directives

The following directives are unique to the PC/MS-DOS implementations:

G - Input File Buffer

Defauit: GO

The G (get) directive enables |/O re-direction by defining the standard
Input file buffer. When the buffer size is zero (default), the Input file
refers to the CON: or TRAM: device. When non-zero (e.g. {$G256}), it
refers to the MS-DOS standard input handle.

The D compiler directive applies to such non-zero-buffer input and out-
put files. The G compiler directive must be placed before the declaration
part.

P - Output File Buffer

Default: PO

The P (put) directive enables|/O re-direction by defining the standard
Output file buffer. When the buffer size is zero (default), the Output file
refers to the CON: or TRM: device. When non-zero (e.g. {$G512}) it
refers to the MS-DOS standard output handle.

The D compiler directive applies to such non-zero-buffer input and out-
put files. The P compiler directive must be placed before the declaration
part.

D - Device Checking

316

wivwy.fast

Default: D +

When a text file is opened by Reset, Rewrite or Append, TURBO Pascal
asks MS-DOS for the status of the file. If MS-DOS reports that the file is
a device, TURBO Pascal disables the buffering that normally occurs on
text files, and all I/O operations on the file are done on a character by
character basis.

TURBQO Pascal Reference Manual

[10.COM

PC-DOS and MS-DOS Compiler Directives

The D directive may be used to disable this check. The default state
($D +}, and in this state, device checks are made. In the {$D-} state, no
checks are made and all device I/O operations are buffered. In this case,
a call to the standard procedure Flush will ensure that the characters
you have written to a file have actually been sent to it.

F - Number of Open Files

Defauit: F16

The F directive controls the number of files that may be open simultane-
ously. The default setting is ($F16}, which means that up to 16 files
may be open at any one time. This directive is global to a program and
must be placed before the declaration part. The F compiler directive
does not limit the number of files that may be declared in a program,; it
only sets a limit to the number of files that may be open at the same
time.

Note that even if the F compiler directive has been used to allocate
sufficient file space, you may still experience a 'too many open files’ er-
ror condition if the operating system runs out of file buffers. If that hap-
pens, you should supply a higher value for the files =xx parameter in
the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

PC-DOS, MS-DOS, and CP/M-86 Compiler Directive

The following directive is unique to the 16-bit implementations:

K - Stack Checking

Default: K +

The K directive controls the generation of stack check code. When ac-
tive, {$K + }, a check is made to insure that space is available for local
variables on the stack before each call to a subprogram. When passive,
{$K-}, no checks are made.

SUMMARY OF COMPILER DIRECTIVES 317

http://www.fastio.com/

CP/M-80 Compiler Directives TURBO VS. STANDARD PASCAL

Appendix D

CP/M-80 Compiler Directives TURBO VS. STANDARD PASCAL

The following directives are unique to the 8-bit implementation:

A - Absolute Code

Default: A +

The TURBO Pascal language follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor
differences introduced for the sheer purpose of efficiency. These
differences are described in the following. Notice that the extensions
offered by TURBO Pascal are not discussed.

The A directive controls generation of absolute, i.e. non-recursive, code.
When active, {$A + }, absolute code is generated. When passive, {$A-},
the compiler generates code which allows recursive calls. This code re- ; - .
quires more memory and executes slower. ‘ Dynam'c Variables

. . The procedure New will not accept variant record specifications. This
W - Nesting of With Statements : restriction, however, is easily circumvented by using the standard pro-.
cedure GetMem.

Default: W2

The W directive controls the level of nesting of With statements, i.e. the . Recursion
number of records which may be 'opened’ within one block. The W

must be immediately followed by a digit between 1 and 9. For further
details, please refer to page 81.

CP/M-80 version only: Because of the way local variables are handled
during recursion, a variable local to a subprogram must not be passed
as a var-parameter in recursive calls.

X - Array Optimization
‘ Get and Put

The standard procedures Get and Put are not implemented. Instead,
the Read and Write procedures have been extended to handle all 1/O
needs. The reason for this is threefold: Firstly, Read and Write give
much faster 1/O; secondly, variable space overhead is reduced, as file
buffer variables are not required, and thirdly, the Read and Write pro-
cedures are far more versatile and easier to understand that Get and
Put.

Default: X +
The X c_iirective controls array optimization. When active, {$X + }, code
generation for arrays is optimized for maximum speed. When passive,

{$X-), the compiler minimizes the code size instead. This is discussed
further on page 75.

Goto Statements

A goto statement must not leave the current block.

318 TURBO Pascal Reference Manual TURBO VS. STANDARD PASCAL 319

b PDF - wwvvy.fastio.com

http://www.fastio.com/

Page Procedure COMPILER ERROR MESSAGES

Appendix E
COMPILER ERROR MESSAGES

Page Procedure

The standard procedure Page is not implemented, as the CP/M operat-
ing system does not define a form-feed character.

The following is a listing of error messages you may get from the com-
piler. When encountering an error, the compiler will aiways print the er-
ror number on the screen. Explanatory texts will only be issued if you
have included error messages (answer Y to the first question when you
start TURBO).

Packed Variables

The reserved word packed has no effect in TURBO Pascal, but it is still
allowed. This is because packing occurs automatically whenever possi-
ble. For the same reason, standard procedures Pack and Unpack are .
not implemented. i Many error messages are totally self-explanatory, but some need a little
elaboration as provided in the following.

Procedural Parameters . - 01’} expected

' : 02 ’ expected
Procedures and functions cannot be passed as parameters. .03’ expected

'’ expected

’y expected
' =’ expected
» =’ expected
I’ expected
’T expected
’.” expected
’..” expected
BEGIN expected
DO expected
END expected
OF expected
PROCEDURE or FUNCTION expected
THEN expected
TO or DOWNTO expected
Boolean expression expected
File variable expected
Integer constant expected
Integer expression expected
Integer variable expected
Integer or real constant expected
Integer or real expression expected
Integer or real variable expected
Pointer variable expected
Record variable expected

320 TURBO Pascal Reference Manual :;l COMPILER ERROR MESSAGES 321

lG1ibPDF - wvw.fastio.com j

http://www.fastio.com/

COMPILER ERROR MESSAGES

30
31
32
33
34
35
36
37
40

41

42

43
44

53
54

322

Simple type expected

Simple types are all scalar types, except real.

Simple expression expected

String constant expected

String expression expected

String variable expected

Textfile expected

Type identifier expected

Untyped file expected

Undefined label
A statement references an undefined label.

Unknown identifier or syntax error
Unknown label, constant, type, variable, or field identifier, or syntax
error in statement.

Undefined pointer type in preceding type definitions
A preceding pointer type definition contains a reference to an unk-
nown type identifier.

Duplicate identifier or label
This identifier or label has already been used within the current block.

Type mismatch .
1) Incompatible types of the variable and the expression in an assign-
ment statement 2) Incompatible types of the actual and the formal
parameter in a call to a subprogram. 3) Expression type incompatible
with index type in array assignment. 4) Types of operands in an ex-
pression are not compatible.

Constant out of range

Constant and CASE selector type does not match

Operand type(s) does not match operator
Example: "A’ div '2’

Invalid result type
Valid types are all scalar types, string types, and pointer types.

Invalid string length
The length of a string must be in the range 1..255.

String constant length does not match type

Invalid subrange base type
Valid base types are all scalar types, except real.

Lower bound > upper bound
The ordinal value of the upper bound must be greater than or equal
to the ordinal value of the lower bound.

Reserved word
These may not be used as identifiers.

lllegal assignment

TURBQO Pascal Reference Manual

wvwfastio.com

72

73

74
75

76

77

COMPILER ERROR MESSAGES

String constant exceeds line
String constants must not span lines.

Error in integer constant
An Integer constant does not conform to the syntax described in
page 43, or it is not within the Integer range -32768..32767. Whole
Real numbers should be followed by a decimal point and a zero, e.g.
123456789.0.

Error in real constant
The syntax of Real constants is defined on page 43.

lllegal character in identifier

Constants are not allowed here

Files and pointers are not allowed here

Structured variables are not allowed here

Textfiles are not allowed here

Textfiles and untyped files are not allowed here

Untyped files are not allowed here

1/O not allowed here
Variables of this type cannot be input or output.

Files must be VAR parameters

File components may not be files
file of file constructs are not allowed.

invalid ordering of fields

Set base type out of range
The base type of a set must be a scalar with no more than 256 pos-
sible values or a subrange with bounds in the range 0..255.

Invalid GOTO
A GOTO cannot reference a label within a FOR loop from outside
that FOR loop.

Label not within current block
A GOTO statement cannot reference a label outside the current
block.

Undefined FORWARD procedure(s)
A subprogram has been forward declared, but the body never oc-
curred.

INLINE error

lllegal use of ABSOLUTE
1) Only one identifier may appear before the colon in an absolute
variable declaration. 2) The absolute clause may not be used in a
record.

Overlays can not be forwarded
The FORWARD specification cannot not be used in connection with
overlays.

Overlays not allowed in direct mode
Overlays can only be used from programs compiled to a file.

COMPILER ERROR MESSAGES 323

http://www.fastio.com/

COMPILER ERROR MESSAGES

90
91

92
93
97

98
99

324

File not found
The specified include file does not exist.

Unexpected end of source
Your program cannot end the way it does. The program probably has
more begins than ends.

Unable to create overlay file

Invalid compiler directive

Too many nested WITHs
Use the W compiler directive to increase the maximum number of
nested WITH statements. Default is 2. (CP/M-80 only).

Memory overflow
You are trying to allocate more storage for variables than is available.

Compiler overfiow
There is not enough memory to compile the program. This error may
occur even if free memory seems to exist; it is, however, used by the
stack and the symbol table during compilation. Break your source
text into smaller segments and use include files. ~

i

TURBO Pascal Reference Manual

wvwfastio.com

Appendix F.
RUN-TIME ERROR MESSAGES

Fatal errors at run-time result in a program halt and the display of the
message:

Run-time error NN, PC=addr
Program aborted

where NN is the run-time error number, and addr is the address in the
program code where the error occurred. The following contains explana-
tions of all run-time error numbers. Notice that the numbers are hexade-
cimal!

01 Floating point overflow.

02 Division by zero attempted.

03 Sqrt argument error.
The argument passed to the Sqrt function was negative.

04 Ln argument error.
The argument passed to the Ln function was zero or negative.

10 String length error.
1) A string concatenation resulted in a string of more than 255
characters. 2) Only strings of length 1 can be converted to a charac-
ter.

11 Invalid string index.
index expression is not within 1..255 with Copy, Delete or Insert pro-
cedure calls.

90 Index out of range.
The index expression of an array subscript was out of range.

91 Scalar or subrange out of range.
The value assigned to a scalar or a subrange variable was out of
range.

92 Out of integer range.
The real value passed to Trunc or Round was not within the Integer
range — 32768..32767.

FO Overlay file not found.

FF Heap/stack collision.
A call was made to the standard procedure New or to a recursive
subprogram, and there is insufficient free memory between the heap
pointer (HeapPtr) and the recursion stack pointer (RecurPtr).

RUN-TIME ERROR MESSAGES 325

http://www.fastio.com/

PD

RUN-TIME ERROR MESSAGES

326

wvwfastio.com

Notes:

TURBO Pascal Reference Manual

i Appendix G
1/O ERROR MESSAGES

/O ERROR MESSAGES

01

02

03

An error in an input or output operation at run-time results in in 1/O er-
ror. If I/O checking is active (I compiler directive active), an 1/O error
causes the program to halt and the following error message is
displayed:

I/0 error NN, PC=addr
Program aborted

Where NN is the 1/O error number, and addr is the address in the pro-
gram code where the error occurred.

If 1/O error checking is passive ({$I-}), an I/O error will not cause the pro-

gram to halt. Instead, all further 1/O is suspended until the result of the ™

1/O operation has been examined with the standard function /Oresuft. If
1/0 is attempted before /Oresult is called after en error, a new error oc-
curs, possibly hanging the program.

The following contains exptanations of all run-time error numbers. Notice
that the numbers are hexadecimal!

File does not exist.
The file name used with Reset, Erase, Rename, Execute, or Chain
does not specify an existing file.

File not open for input.
1) You are trying to read (with Read or Readin) from a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Rewrite (and thus is empty). 3) You are try-
ing to read from the logical device LST:, which is an output-only dev-
ice.

File not open for output.
1) You are trying to write (with Write or Writeln) to a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Reset. 3) You are trying to read from the
logical device KBD:, which is an input-only device.

| 1/O ERROR MESSAGES 327

http://www.fastio.com/

I/O ERROR MESSAGES

04 File not open. .
You are trying to access (with BlockRead or BlockWrite) a file
without a previous Reset or Rewrite.

10 Error in numeric format.

The string read from a text file into a numeric variable does not con-
form to the proper numeric format (see page 43).

20 Operation not allowed on a logical device. '

You are trying to Erase, Rename, Execute, or Chain a file assigned
to a logical device.

21 Not allowed in direct mode. o
Programs cannot be Executed or Chained from a program running in
direct mode (i.e. a program activated with a Run command while the
Memory compiler option is set).

22 Assign to std files not allowed.

90 Record length mismatch.

The record length of a file variable does not match the file you are
trying to associate it with.

91 Seek beyond end-of-file.

99 Unexpected end-of-file. Sy
1) Physical end-of-file encountered before EOF-character (Ctrl -Z)
when reading from a text file. 2) An attempt was made to read
beyond end-of-file on a defined file. 3) A Read or BlockRead is un-
able to read the next sector of a defined file. Something may be
wrong with the file, or (in the case of BlockRead) you may be trying
to read past physical EOF.

FO Disk write error.

Disk full while attempting to expand a file. This may occur with the
output operations Write, WriteLn, BlockWrite, and Flush, but also
Read, Readln, and Close may cause this error, as they cause the
write buffer to be flushed.

F1 Directory is full. .
You are trying to Rewrite a file, and there is no more room in the disk
directory.

F2 File size overflow.

You are trying to Write a record beyond 65535 to a defined file.

F3 Too many open files.

FF File disappeared. _
An attempt was made to Close a file which was no longer present in
the disk directory, e.g. because of an unexpected disk change.

328 TURBO Pascal Reference Manual

PD wvwfastio.com

TRANSLATING

Appendix H
TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO.MSG.
These messages are in English but may easily be translated into any
other language as described in the following.

The first 24 lines of this file define a number of text constants for subse-
quent inclusion in the error message lines; a technique which drastically
reduces the disk and memory requirements of the error messages. Each
constant is identified by a control character, denoted by a * character
in the following listing. The value of each constant is anything that fol-
lows on the same line. All characters are significant, also leading and
trailing blanks.

The remaining lines each contain one error message, starting with the
error number and immediately followed by the message text. The mes-
sage text may consist of any characters and may include previously
defined constant identifiers (control characters). Appendix E lists the
resulting messages in full.

When you translate the error messages, the relation between constants
and error messages will probably be quite different from the English ver-
sion listed here. Start therefore with writing each error message in full,
disregarding the use of constants. You may use these error messages,
but they will require excessive space. When all messages are translated,
you should find as many common denominators as possible. Then
define these as constants at the top of the file and include only the con-
stant identifiers in subsequent message texts. You may define as few or
as many constants as you need, the restriction being only the number of
control characters.

As a good example of the use of constants, consider errors 25, 26, and
27. These are defined exclusively by constant identifiers, 15 in total, but
would require 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Con-
trol characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A
(*A) into the file, hold down the < CONTROL > key and press first P,
then A. Control characters appear dim on the screen (if it has any video
attributes).

TRANSLATING ERROR MESSAGES 329

http://www.fastio.com/

TRANSLATING ERROR MESSAGES

Notice that the TURBO editor deletes all trailing blanks. The original
message therefore does not use trailing blanks in any messages.

Error Message File Listing

A are not allowed
"B can not be
~*C constant
D does not
*E expression
"F identifier
AG file

“"H here
"KInteger
*LFile
"NIllegal

*0 or
~*PUndefined
*Q match

"R real
ASString
ATTextfile

*U out of range
~V variable
W overflow
*X expected

Error Message File Listing

150F*X

17THEN*X

18TO*0 DOWNTO*X
20Boolean*E*X

21"L*"V*X

22"K"C*"X

23*K"E*X

24*K*"V*X

25*"K*0*R"C*X

26"K*"0*R*E"X

27"K*0*R"V*X

28Pointer*v*X

29Record”"v*X

30Simple*Y*X Cfv
31Simple*E*X

32*S~C*"X

33*S"E*"X

34+S*V*X

35°T*X

36Type*F*X

37Untyped”G*X

40"P label

41Unknown"F*0 syntax error
42*P*1*"Y in preceding’Y definitions
43Duplicate*F*0 label

44Type mismatch

45*C*U

46"C and CASE selector*Y“D"Q

*Y type
A[Invalid 470perand"Y(s)"D*Q operator
~1 pointer 48[result’yY
Oll;v/\x 49'\[S length
02': 14X 50+S~C length*D"Q"Y
03", '~X 51*[subrange base’Y
04'('*X 52Lower bound > upper bound
05") TAY 53Reserved word
06'="'*X 54"N assignment
07':='4X% 55"S"C exceeds line
08'['*X 56Error in integer“C
09']1'"X 57Error in”*R”C
10" . '*X 58*N character in"F
11'..'*X 60*Cs"A*H
12BEGIN*X 61*Ls and”]s*A*H
13D0*X 62Structured*Vs*A*H
14END*X 63"Ts"A"H
330 TURBO Pascal Reference Manual TRANSLATING ERROR MESSAGES 331

wvwfastio.com

http://www.fastio.com/

Error Message File Listing

64"Ts and untyped”"Gs"A"H
65Untyped”Gs"A"H

661I/0"A

67*Ls must be”V parameters
68"L components*B"Gs
697[*0Ordering of fields
70Set base”Y"U

71*[GOTO

72Label not within current block
73"P FORWARD procedure(s)
7T4INLINE error

75N use of ABSOLUTE

90*L not found
91Unexpected end of source
97Too many nested WITH's
98Memory "W

99Compiler W

332 TURBO Pascal Reference Manual

wvwfastio.com

TURBO SYNTAX
Appendix |
TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the
formalism known as the Backus-Naur Form. The following symbols are
meta-symbols belonging to the BNF formalism, and not symbols of the
TURBO Pascal language: .

1= Means “is defined as"’.
| Means “‘or”’.
{} Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is
printed in italics, e.g.: block and case-element. reserved)words are
printed in boldface, e.g.: array and for.

actual-parameter :: = expression | variable
adding-operator :: = + |-1orlxor
array-constant :: = (structured-constant { , structured-constant })
array-type :: = array [index-type { , index-type }] of component-type
array-variable :: = variable
assignment-statement :: = variable : = expression |
function-identifier :: = expression
base-type :: = simple-type
block :: = declaration-part statement-part
case-element :: = case-list . statement
case-label :: = constant
case-label-list :: = case-label { , case-label }
case-list :: = case-list-element { , case-list-element}
case-list-element :: = constant| constant .. constant
case-statement .. = case expression of case-element { ; case-element } end |
case expression of case-element { ;case-element }
otherwise statement { ; statement } end
complemented-factor :: = signed-factor | not signed-factor
component-type :: = type
component-variable :: = indexed-variable | field-designator
compound-statement :: = begin statement { ; statement } end
conditional-statement :: = if-statement | case-statement

TURBO SYNTAX 333

http://www.fastio.com/

TURBO SYNTAX

constant :: = unsigned-number | sign unsigned-number | constant-identifier

| sign constant-identifier | string

constant-definition-part :: = const constant-definition
{ ; constant-definition } ;
constant-definition :: = _untyped-constant-definition |
typed-constant-definition
constant-ldent/f/e = identifier
control-character :: = # unsigned-integer|” character
control-variable :: = variable-identifier
declaration-part :: = { declaration-section }
declaration-section :: = label-declaration-part | constant-definition-part |

type-definition-part | variable-declaration-part |
procedure-and-function-declaration-part

digit::= 0111213141516171819
digit-sequence :: = digit { digit}
empty :: =
empty-statement :: = empty
entire-variable :: = variable-identifier | typed-constant-identifier
expression :: = simple-expression { relational-operator s;mple-expressron }
factor :: = variable | unsigned-constant | (expression)|

function-designator | set
field-designator :: = record-variable . field-identifier
field-identifier :: = identifier
field-list :: = fixed-part! fixed-part ; variant-part | variant-part
file-identifier :: = identifier
file-identifier-list :: = empty | (file-identifier { , file-identifier }
file-type :: = file of type
final-value :: = expression
fixed-part :: = record-section { ; record-section }
for-list :: = initial-value to final-value | initial-value downto final-value
for-statement :: = for control-variable : = for-list do statement
formal-parameter-section :: = parameter-group | var parameter-group
function-declaration :: = function-heading block ;
function-designator :: = function-identifier | function-identifier

(actual-parameter { , actual-parameter })
function-heading :: = function identifier : result-type ; |
function identifier (formal-parameter-section
{ , formal-parameter-section }) : result-type ;

function-identifier :: = identifier
goto-statement :: = goto label
hexdigit ::= digit!AIBICIDIEIF
hexdigit-sequence :: = hexdigit { hexdigit }
identifier :: = letter { letter-or-digit }
identifier-list :: = identifier { , identifier }

334 TURBO Pascal Reference Manual

wvwfastio.com

TURBO SYNTAX

if-statement :: = if expression then statement { else statement }
index-type :: = simple-type

indexed-variable :: = array-vanable [expression { , express:on 1]

initial-value :: = express:on

inline-list-element :: = unsigned-integer | constant-identifier |
variable-identifier | location-counter-reference

inline-statement :: = inline inline-list-element { , inline-list-element }

label :: = letter-or-digit { letter-or-digit }
label-declaration-part :: = label label { , label } ;
letter::= AIBICIDIEIFIGIHIIIJIKILIMI
NIOIPIQIRISITIUIVIWIXIYIZI
ailblcidlelflglhliljlkllIimi
niolpliqlrisitiulviwlixtylzi_
letter-or-digit :: = letter | digit
location-counter-reference :: = * | * sign constant
multiplying-operator :: = * | /i divImod | and | shi | shr
parameter-group :: = identifier-list : type-identifier C™
pointer-type :: = “ type-identifier
pointer-variable :: = variable
procedure-and-function-declaration-part::

{ procedure-or-funct:on—declaratlon }
procedure-declaration :: = procedure-heading block ;
procedure-heading :: = procedure identifier ; | procedure identifier

(formal-parameter-section
{ , formal-parameter-section }) ;
procedure-or-function-declaration :: = procedure-declaration |
function-declaration
procedure-statement :: = procedure-identifier | procedure-identifier
(actual-parameter { , actual-parameter })
program-heading :: = empty | program program-identifier
file-identifier-list
program .. = program-heading block .
program-identifier :: = identifier
record-constant :: = (record-constant-element
{ ; record-constant-element })
record-constant-element :: = field-identifier : structured-constant
record-section :: = empty | field-identifier { , field-identifier } : type
record-type :: = record field-list end

record-variable :: = variable

record-variable-list :: = record-variable { , record-variable)
referenced-variable :: = pointer-variab/e ”

relational-operator := = <> | <=|>=|<|>lin
repeat-statement :: = repeat statement { ; statement } until expression
repetitive-statement :: = while-statement | repeat-statement | for-statement
TURBO SYNTAX 335

http://www.fastio.com/

TURBO SYNTAX TURBO SYNTAX

result-type :: = type-identifier
scalar-type :: = (identifier { , identifier })
scale-factor :: = digit-sequence | sign digit-sequence
set::= [{ set-element }]
set-constant :: = [{ set-constant-element }]
set-constant-element :: = constant| constant .. constant
set-element :: = expression| expression .. expression
set-type :: = set of base-type
sign:= + |-
signed-factor :: = factor| sign factor
simple-expression :: = term { adding-operator term }
simple-statement :: = assignment-statement | procedure-statement |
goto-statement | inline-statement | empty-statement
simple-type :: = scalar-type | subrange-type | type-identifier
statement :: = simple-statement | structured-statement
statement-part :: = compound-statement
string :: = { string-element }
string-element :: = text-string | control-character
string-type :: = string [constant]
structured-constant :: = constant | array-constant | record-constant |
set-constant
structured-constant-definition :: = identifier : type = structured-constant
structured-statement :: = compound-statement | conditional-statement |
repetitive-statement | with-statement
structured-type :: = unpacked-structured-type |
packed unpacked-structured-type
subrange-type :: = constant .. constant
tag-field :: = empty | field-identifier :
term :: = complemented-factor { muitiplying-operator complemented-factor }
text-string :: = ' { character }’ &
type-definition :: = identifier = type
type-definition-part :: = type type-definition { ; type-definition } ;
type-identifier :: = identifier
type :: = simple-type | structured-type | pointer-type
typed-constant-identifier :: = identifier
unpacked-structured-type :: = string-type | array-type | record-type|
set-type | file-type

unsigned-constant :: = unsigned-number | string | constant-identifier | nil
unsigned-integer :: = digit-sequence | $ hexdigit-sequence
unsigned-number :: = unsigned-integer | unsigned-real
unsigned-real :: = digit-sequence . digit-sequence |

digit-sequence . digit-sequence E scale-factor |

digit-sequence E scale-factor
untyped-constant-definition :: = identifier = constant

variable :: = entire-variable | component-variable | referenced-variable
variable-declaration :: = identifier-list : type|

) identifier-list : type absolute constant
variable-declaration-part :: = var variable-declaration

{ ; variable-declaration } ;

variable-identifier :: = identifier
var/:ant 1= empty| case-label list : (field-list)
variant-part :: = case tag-field type-identifier of variant { ; variant }
while-statement :: = while expression do statement
with-statement :: = with record-variable-list do statement

336 TURBO Pascal Reference Manual TURBO SYNTAX 337

wvwfastio.com

http://www.fastio.com/

TURBO SYNTAX

338

wavwfastio.com

Notes:

TURBQO Pascal Reference Manual

Appendix J
ASCIl TABLE

ASCIl TABLE

DEC HEX CHAR

DEC HEX CHAR

DEC HEX CHAR

DEC HEX CHAR

C
0 00 "@ NUL 32 20 SPC 64 40 @ 196 60 57
1 01 "~A SOH 33 21 ! 65 41 A 97 61 a
2 02 "B STX 34 22 " 66 42 B 98 62 b
3 03 "C ETX 35 23 # 67 43 C 99 63 ¢
4 04 "D EOT 36 24 $ 68 44 D 100 64 d
5 05 "E ENQ 37 25 % 69 45 E 101 65 e
6 06 “F ACK 38 26 & 70 46 F 102 66 f
7 07 *G BEL 39 27 ! 71 47 G 103 67 g
8 08 "H BS 40 28 (72 48 H 104 68 h
9 09 "I HT 41 29) 73 49 1 105 69 i
10 0A *J LF 42 2A * 74 4A J 106 6A j
11 0B *"K VT 43 2B + 75 4B K 107 6B k
12 oC "L FF 44 2C 76 4C L 108 6C 1
13 0D "M CR 45 2D 77 4D M 109 6D m
14 OE "N SO 46 2E . 78 4E N 110 6E n
15 OoF "0 SI 47 2F / 79 4F O 111 6F o
16 10 "P DLE 48 30 O 80 50 P 112 70 p
17 11 *Q DC1 49 31 1 81 51 Q 113 71 q
18 12 "R DC2 50 32 2 82 52 R 114 72 r
19 13 *S DC3 51 33 3 83 53 S 115 73 s
20 14 *T DC4 52 34 4 84 54 T 116 74 t
21 15 "U NAK 53 35 b5 86 55 U 117 75 u
22 16 "V SYN 54 36 6 86 56 V 118 76 v
23 17 "W ETB 55 37 7 87 57 W 119 77 w
24 18 "X CAN 56 38 8 88 58 X 120 78 x
25 19 "Y EM 57 39 9 89 59 Y 121 79 vy
26 1A *Z SUB 58 3A 90 5A Z 122 7A =z
27 1B *[ESC 59 3B ; 91 5B [123 7B {
28 1C "\ FS 60 3C < 92 5C \ 124 7C |
29 1D *] GS 61 3D = 93 5D] 125 17D }
30 1lE ** RS 62 3E > 94 S5E * 126 TE
31 1F *_ US 63 3F *? 95 5F _ 127 7F DEL
ASCII TABLE 339

http://www.fastio.com/

PD

ASCIl TABLE

Notes:

340

wvwfastio.com

TURBO Pascal Reference Manual

KEYBOARD RETURN CODES
Appendix K
KEYBOARD RETURN CODES

This appendix lists the codes returned from all combinations of keys on
the entire IBM PC keyboard, as they are seen by TURBO Pascal. Actu-
ally, function keys and ‘Alt-ed’ keys generate ‘extended scan codes’,
but these are turned into ‘escape sequences’ by TURBO.

To read the escape sequences, you let your read routine check for ESC,
and if detected see if there is another character in the keyboard'buffer.
If there is, an escape code was received, so you read the next character
and set a flag to signal that what you got is not a normal character, but
the second part of an ‘escape sequence’

if KeyPressed then

begin
Read(Kbd, Ch) { ch is char }
if (ch = #27) and KeyPressed then { one more char? }
begin
Read(Kbd, Ch)
FuncKey := True; { FuncKey is boolean }
end
end;

The following table lists the return codes as decimal ASCIl values. Nor-
mal keys only return a single code; extended codes return an ESC (27)
followed by one more character.

Key Unshifted Shift ctrl Alt
Fl 27 59 27 84 27 94 27 104
F2 27 60 27 85 27 95 27 105
F3 27 61 27 86 27 96 27 106
F4 27 62 27 87 27 97 27 107
F5 27 63 27 88 27 98 27 108
F6 27 64 27 89 27 99 27 109
F7 27 65 27 90 27 100 27 110
F8 27 66 27 91 27 101 27 111
FO 27 67 27 92 27 102 27 112
F10 27 68 27 93 27 103 27 113

KEYBOARD RETURN CODES 341

5

http://www.fastio.com/

KEYBOARD RETURN CODES KEYBOARD RETURN CODES
Key Unshifted Shift Ctrl Alt Key Unshifted Shift Ctrl Alt
LArr 27 75 52 27 115 27 178 [91 123 27
RArr 27 77 54 27 116 27 180 \ 92 124 28
UArr 27 72 56 27 160 27 175] 93 125 29
DArr 27 80 50 27 164 27 183 ! 96 126
Home 27 71 55 27 174 0 48 41 27 129
End 27 79 49 27 117 27 182 1 49 33 27 120
PgUp 27 73 57 27 132 27 1786 2 50 64 27 3 27 121
PgDn 27 81 51 27 118 27 184 3 51 35 27 122 o
Ins 27 82 48 27 165 27 185 4 52 36 27 123 ‘ '
Del 27 83 46 27 166 27 186 5 53 37 27 124
Esc 27 27 27 6 54 94 20 27 125
BackSp 8 8 127 7 55 38 27 126
Tab 9 27 15 8 56 42 27 127
RETURN 13 13 10 9 57 40 27 128
A 97 65 1 27 30 * 42 27 114
B 98 66 2 27 48 + 43 43
c 99 67 3 27 46 - 45 95 31 27 130
D 100 68 4 27 32 = 61 43 27 131
E 101 69 5 27 18 , 44 60
F 102 70 6 27 33 47 63
G 103 71 7 27 34 ; 59 58
H 104 72 8 27 35
I 105 73 7 27 23 Table K-1: Keyboard Return Codes
J 106 74 10 27 36
K 107 75 11 27 37
L 108 76 12 27 38
M 109 77 13 27 50
N 110 78 14 27 49
o} 111 79 15 27 24
P 112 80 16 27 25
Q 113 81 17 27 16
R 114 82 18 27 19
S 115 83 19 27 31
T 116 84 20 27 20
16] 117 85 21 27 22
v 118 86 22 27 47
W 119 87 23 27 17
X 120 88 24 27 45
Y 121 89 25 27 21
y4 122 90 26 27 44

342 TURBO Pascal Reference Manual KEYBOARD RETURN CODES 343

wvwfastio.com

http://www.fastio.com/

INSTALLATION

KEYBOARD RETURN CODES
Appendix L
Notes:
INSTALLATION
Terminal Installation
Before you use TURBO Pascal, it must be installed to your particular
terminal, i.e. provided with information regarding control characters re-
quired for certain functions. This installation is easily performed using
the program TINST which is described in this chapter.
After having made a work-copy, please store your distribution diskette
safely away and work only on the copy.
Now start the installation by typing TINST at your terminal. Select
Screen installation from the main menu. Depending on your version of
TURBO Pascal, the installation proceeds as described in the following
two sections.
IBM PC Display Selection
if you use TURBO Pascal without installation, the default screen set-up
will be used. You may override this default by selecting another screen
mode from this menu:
Choose one of the following displays:
0) Default display mode
1) Monochrome display
2) Color display 80x25
3) Color display 40x25
4) b/w display 80x25
5) b/w display 40x25
Which display (enter no. or *X to exit) W
Figure L-1: IBM PC Screen Installation Menu
344 . TURBO Pascal Reference Manual INSTALLATION 345

PD wvwfastio.com

http://www.fastio.com/

Terminal Installation

Each time TURBO Pascal runs, the selected mode will be used and you
will return to the default mode on exit.

Non-IBM PC Installation

346

A menu listing a number of popular terminals will appear, inviting you to
choose one by entering its number:

Choose one of the following terminals:

1) ADDS 20/25/30 15) Lear-Siegler ADM-31

2) ADDS 40/60 16) Liberty

3) ADDS Viewpoint-1lA 17) Morrow MDT-20

4) ADM 3A 18) Otrona Attache

5) Ampex D80 19) Qume

6) ANSI 20) Soroc IQ-120

7) Apple/graphics 21) Soroc new models

8) Hazeltine 1500 22) Teletext 3000

9) Hazeltine Esprit 23) Televideo 912/920/925

10) IBM PC CCP/M b/w 24) Visual 200

11) IBM PC CCP/M color 25) Wyse WY-100/200/300

12) Kaypro 10 26) Zenith

13) Kaypro II and 4 27) None of the above

14) Lear-Siegler ADM-20 28) Delete a definition
Which terminal? (Enter no. or *X to exit):

Figure L-2: Terminal Installation Menu

If your terminal is mentioned, just enter the corresponding number, and
the instaliation is complete. Before installation is actually performed, you
are asked the question:

Do you want to modify the definition before installation?
This allows you to modify one or more of the values being installed as
described in the following. If you do not want to modify the terminal

definition, just type N, and the installation completes by asking you the
operating frequency of your CPU (see last item in this appendix).

TURBO Pascal Reference Manual

wvwfastio.com

Terminal Installation

If your terminal is not on the menu, however, you must define the re-
quired values yourself. The values can most probably be found in the
manual supplied with your terminal.

Enter the number corresponding to None of the above and answer the
questions one by one as they appear on the screen.

In the following, each command you may install is described in detail.
Your terminal may not support all the commands that can be installed. If
S0, just pass the command not needed by typing RETURN in response
to the prompt. If Delete line, Insert line, or Erase to end of line is not in-
stalled, these functions will be emulated in software, slowing screen per-
formance somewhat.

Commands may be entered either simply by pressing the appropriate
keys or by entering the decimal or hexadecimal ASCIi value of the com-

mand. If a command requires the two characters ‘ESCAPE’ and ‘=",
may:

either: press first the Esc key, then the =. The entry will be echoed
with appropriate labels, i.e. <ESC> =.

or: enter the decimal or hexadecimal values separated by spaces. Hexa-
decimal values must be preceded by a dollar-sign. Enter e.g. 27 61
or $1B 61 or $1B $3D which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non-
numeric character, the rest of that command must be defined in that
mode, and vise versa.

A hyphen entered as the very first character is used to delete a com-
mand, and echoes the text Nothing.

Terminal type:

Enter the name of the terminal you are about to install. When you com-
plete TINST , the values will be stored, and the terminal name will ap-
pear on the initial list of terminals. If you later need to reinstall TURBO
Pascal to this terminal, you can do that by choosing it from the list.

INSTALLATION 347

http://www.fastio.com/

Terminal Installation

Send an initialization string to the terminal?
If you want to initialize your terminal when TURBO Pascal starts (e.g. to
download commands to programmable function keys), you answer Y for
yes to this question. If not, just hit RETURN.

Send a reset string to the terminal?
Define a string to be sent to the terminal when TURBO Pascal ter-
minates. The description of the initialization command above applies
here. i

CURSOR LEAD-IN command:
Cursor Lead-in is a special sequence of characters which tells your ter-
minal that the following characters are an address on the screen on
which the cursor should be placed.

When you define this command, you are asked the following supplemen-
tary questions: '

CURSOR POSITIONING COMMAND to send between line and
column:
Some terminals need a command between the two numbers defining
the row- and column cursor address.

CURSOR POSITIONING COMMAND to send after line and column:
Some terminals need a command after the two numbers defining the
row- and column cursor address.

Column first?
Most terminals require the address on the format: first ROW, then
COLUMN. If this is the case on your terminal, answer N. If your ter-
minal wants COLUMN first, then ROW, then answer Y.

OFFSET to add to LINE
Enter the number to add to the LINE (ROW) address.

OFFSET to add to COLUMN
Enter the number to add to the COLUMN address.

Binary address?
Most terminals need the cursor address sent on binary form. If that is
true for your terminal, enter Y. If your terminal expects the cursor ad-
dress as ASCII digits, enter N. If so, you are asked the supplementa-
ry question:

348 TURBO Pascal Reference Manual

wvwfastio.com

Terminal Installation

2 or 3 ASCII digits?
Enter the number of digits in the cursor address for your terminal.

CLEAR SCREEN command:
Enter the command that will clear the entire contents of your screen,
both foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?
This is normally the case; if it is not so on your terminal, enter N, and
define the cursor HOME command.

DELETE LINE command:
Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:
Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:
Enter the command that erases the line at the cursor position from the
cursor position through the right end of the line.

START OF ‘LOW VIDEO’ command:
If your terminal supports different video intensities, then define the com-
mand that initiates the dim video here. If this command is defined, the
following question is asked:

START OF ‘NORMAL VIDEO’ command:
Define the command that sets the screen to show characters in ‘normal’
video.

Number of rows (lines) on your screen:
Enter the number of horizontal lines on your screen.

Number of columns on your screen:
Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):

Delay after CLEAR, DELETE, and INSERT (0-255 ms):

Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255 ms):
Enter the delay in milliseconds required after the functions specified.
RETURN means 0 (no delay).

INSTALLATION 349

http://www.fastio.com/

IHhPD

Terminal Installation

Is this definition correct?

If you have made any errors in the definitions, enter N. You will then re-
turn to the terminal selection menu. The installation data you have just
entered will be included in the installation data file and appear on the ter-
minal selection menu, but installation will not be performed. When you
enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz (for delays):

As the delays specified earlier are depending on the operating frequency
of your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal,
and you return to the outer menu (see section 12). Installation data is
also saved in the installation data file and the new terminal will appear
on the terminal selection list when you run TINST in future.

Editing Command Installation

350

The built-in editor responds to a number of commands which are used
to move the cursor around on the screen, delete and insert text, move
text etc. Each of these functions may be activated by either of two com-
mands: a primary command and a secondary command. The secondary
commands are installed by Borland and comply with the ‘standard’ set
by WordStar. The primary commands are un-defined for most systems,
and using the installation program, they may easily be defined to fit your
taste or your keyboard. IBM PC systems are supplied with the arrows
and dedicated function keys installed as primary commands as
described in chapter 19.

When you hit C for Command installation, the first command appears:

CURSOR MOVEMENTS:

1l: Character left Nothing -> m

TURBO Pascal Reference Manual

wvwfastio.com

1)

2)

Editing Command Installation

This means that no primary command has been installed to move the
cursor one character left. If you want to install a primary command (in
addition to the secondary WordStar-like Ctrl-S, which is not shown
here), you may enter the desired command following the -> prompt in
either of two ways:

Simply press the key you want to use. It could be a function key (for ex-
ample a left-arrow-key, if you have it) or any other key or sequence of
keys that you choose (max. 4). The installation program responds with a
mnemonic of each character it receives. If you have a left-arrow-key that
transmits an <ESCAPE > character followed by a lower case a, and
you press this key in the situation above, your screen will look like this:

CURSOR MOVEMENTS:

1l: Character left Nothing -> <ESC> a ®

Instead of pressing the actual key you want to use, you may enter the
ASCII value(s) of the character(s) in the command. The values of muiti-
ple characters are entered separated by spaces. Decimal values are just
entered: 27; hexadecimal values are prefixed by a dollar-sign: $1B. This
may be useful to install commands which are not presently available on
your keyboard, for example if you want to install the values of a new
terminal while still using the old one. This facility has just been provided
for very few and rare instances, because there is really no idea in
defining a command that cannot be generated by pressing a key. But
it's there for those who wish to use it.

In both cases terminate your input by pressing <RETURN > .Notice
that the two methods cannot be mixed within one command. If you have
started defining a command sequence by pressing keys, you must
define all characters in that command by pressing keys and vise versa.

You may enter a - (minus) to remove a command from the list, or a B to
back through the list one item at a time.

INSTALLATION 351

http://www.fastio.com/

Editing Command Installation Editing Command Installation

The editor accepts a total of 45 commands, and they may all be installed INSERT & DELETE:

to your specification. If you make an error in the installation, like defining

the same command for two different purposes, an self-explanatory error 21: Insert mode on/off Ctri-v
message is issued, and you must correct the error before terminating 22: Insert line Ctrl-N
the installation. A primary command, however, may conflict with one of 25: Delete line Ctrl-y
the WordStar-like secondary commands; that will just render the secon- 24: Delete to end of line Ctrl-Q Ctrl-y
dary command inaccessible. 25: Delete right word Ctrl-T

26: Delete character under cursor Ctrl-G
The following table lists the secondary commands, and allows you to R7: Delete left character

X 28: Alternative: Nothing

mark any primary commands installed by yourself:

BLOCK COMMANDS:

CURSOR MOVEMENTS: 29: Mark block begin Ctrl-K Ctrl-B

1l: Character left Ctrl-S 30: Mark block end Ctrl-K Ctrl-K

2: Alternative Ctrl-H 31: Mark single word Ctrl-K Ctrl-T

3: Character right - Ctrl-D 32: Hidesdisplay block Ctrk-K Ctrl-H

4: Word left Ctrl-A 33: Copy block Ctrl-K Ctrl-C

5: Word right Ctrl-F 34: Move block Ctrl-K Ctrl-V

6: Line up Ctrl-E 35: Delete block Ctrl-K Ctrl-Y

7: Line down Ctrl-X 36: Read block from disk Ctrl-K Ctrl-R

8: Scroll up Ctrl-w 37: Write block to disk Ctrl-K Ctri-w

9: Scroll down Ctrl-Z

10: Page up Ctrl-R MISC. EDITING COMMANDS:

11: Page down Ctrl-C

12: To left on line Ctrl-Q Ctrl-S 38: End edit Ctrl-K Ctrl-D

13: To right on line Ctrl-Q Ctrl-D 39: Tab Ctrl-I ~
14: To top of page Ctrl-Q Ctrl-E 40: Auto tab on/off Ctrl-Q Ctrl-I
15: To bottom of page Ctrl-Q Ctrl-X 41: Restore line Ctrl-Q Ctrl-L —
16: To top of file Ctrl-Q Ctrl-R 42: Find Ctrl-Q Ctrl-F &
17: To end of file Ctrl-qQ Ctrl-C 43: Find & replace Ctrl-Q Ctrl-A B
18: To beginning of block Ctrl-Q Ctrl-B 44: Repeat last find Ctrl-L
19: To end of block Ctrl-Q Ctrl-B 45: Control character prefix Ctrl-P
20: To last cursor position Ctrl-Q Ctrl-p

Table L-1: Secondary Editing Commands

ltems 2 and 28 let you define alternative commands to Character Left
and Delete left Character commands. Normally <BS > is the alterna-
tive to Ctrl-S, and there is no defined alternative to . You may
install primary commands to suit your keyboard, for example to use the
<BS> as an alternative to if the <BS> key is more con-
veniently located. Of course, the two alternative commands must be
unambiguous like all other commands.

352 TURBO Pascal Reference Manual INSTALLATION 353

YPD wvwfastio.com

http://www.fastio.com/

Editing Command Installation CP/M PRIMER

Appendix M
CP/MPRIMER

Notes:

How to use TURBO on a CP/M system

When you turn on your computer, it reads the first couple of tracks on
your CP/M diskette and loads a copy of the CP/M operating system into
memory. Each time you re-boot your computer, CP/M also creates a list
of the disk space available for each disk drive. Whenever you try to save
a file to the disk, CP/M checks to make sure that the diskettes have not
been changed. If you have changed the diskette in Drive A without re-
booting, for example, CP/M will generate the following error message
when a disk-write is attempted:

‘BDOS ERROR ON A: R/O
Control will return to the operating system and your work was NOT

saved! This can make copying diskette a little confusing for the be-
ginner. If you are new to CP/M, follow these instructions:

Copying Your TURBO Disk

To make a working copy of your TURBO MASTER DISK, do the follow-
ing:

1. Make a blank diskette and put a copy of CP/M on it (see your CP/M
manual for details). This will be is your TURBO work disk.

2. Place this disk in Drive A:. Place a CP/M diskette with a copy of
PIP.COM in Drive B (PIP.COM is CP/M’s file copy program that should
be on your CP/M diskette. See your CP/M manual for details).

3. Re-boot the computer. Type B: PIP and then press <RETURN >

4, Remove the diskette from Drive B: and insert your TURBO MASTER
DISK.

5. Now type: A:=B:*_.*[V] and then press <RETURN >
You have instructed PIP it to copy all the files from the diskette in Drive

B: onto the diskette in Drive A:. Consult your CP/M manual if any errors
occeur.

354 TURBO Pascal Reference Manual CP/M PRIMER 355

g;’%\m!)l) wiwvw faslio.com , L

http://www.fastio.com/

PD

Copying Your TURBO Disk

6.

The last few lines on your screen should look like this:

A> B:PIP
A:=B: . *[V]

COPYING - =
FIRSTFILE

LASTFILE
*

Press <RETURN >, and the PIP program will end.

Using Your TURBO Disk

356

Store your TURBO MASTER DiSK in a safe place. To use TURBO
PASCAL, place your new TURBO work disk in drive A: and re-boot the
system. Uniess your TURBO came pre-installed for your computer and
terminal, you should install TURBO (see 12). When done, type

TURBO

and TURBO Pascal will start.

If you have trouble copying your diskette, please consuit your CP/M
user manual or contact your hardware vendor for CP/M support.

TURBO Pascal Reference Manual

wvwfastio.com

HELP!!!

Appendix N
HELP!!!

This appendix lists a nuraber of the most commonly asked questions
and their answers. If you don’t find the answer to your question here,
you can either call Borland’s technical support staff, or you can access
CompuServe’'s Consumer Information 24 hours a day and ‘talk’ to the
Borland Special Interest Group. See insert in the front of this manual for
details.

Q: How do | use the system?
A: Please read the manual, specifically chapter 1 . If you must get start-
ed immediately do the following:
1) Boot up your operating system
2) If you have a computer other than an IBM PC, run Tinst to
install Turbo for your equipment.
3) Run Turbo
4) Start programming!

Q: 1 am having trouble installing my terminal!

A: If your terminal is not one that is on the installation menu you must
create your own. All terminals come with a manual containing infor-
mation on codes that control video I/O. You must answer the ques-
tions in the installation program according to the information in your
hardware manual. The terminology we use is the closest we could
find to a standard. Note: most terminals do not require an initializa-
tion string or reset string. These are usually used to access
enhanced features of a particular terminal; for example on some ter-
minals you can send an initialization string to make the keypad act as
a cursor pad. You can put up to 13 characters into the initialization or
reset strings.

: | am having disk problems. How do | copy my disks?

: Most disk problems do not mean you have a defective disk.
Specifically, if you are on a CP/M-80 system you may want to look
up the brief CP/M primer on page 355 . If you can get a directory of
your distribution disk, then chances are that it is a good disk.

>0

HELP!!! 357

http://www.fastio.com/

HELP!!!

To make a backup copy of Turbo you should use a file-by-file copy pro-

HELP!!

Q: How do | read from the keyboard without having to hit return

gram like COPY for PC/MS-DOS or PIP for CP/M-80/86. The reason is (duplicate BASIC’s INKEY$ function)?

that for those of you who have quad density disk drives, you may have A: Like this: read (Kbd, Ch) where Ch:Char.

trouble using a DISKCOPY type program. These programs are expect-

ing the exact same format for the Source diskette as well as the Desti- Q: How do | get output to go to the printer?

nation diskette. A: Try: Writeln(Lst, ...).

Q: Do | need an 8087 chip to use Turbo-877? Q: How can | get a listing of my source code to my printer?

A: Yes, if you want to compile programs for the 8087 chip, that chip A: You can use the following program. If you wish to have a listing that
must be in your machine. The standard TURBO compiler, however, is underlines or highlights reserved words, puts in page breaks, and
included on the Turbo-87 disk, so you can have it both ways! lists all Include files, there is one included free (including source) on

the Turbo Tutor diskette.

Q: Do | need any special equipment to use TURBO-BCD?

A: No, but the BCD reals package works on 16 bit implementations of program TextFileDemo;

Turbo only.
var

Q: Do | need Turbo to run programs | developed in Turbo? TextFile : Text;

A: No, Turbo can make .COM or .CMD files. Scratch : String[128];

Q: How do | make .COM or .CMD files? begin

A: Type O from the main menu for Compiler Options and then select Write('File to print: '); { Get file name }
“C” for .COM or .CMD file. Readln(Scratch);

Assign(TextFile, Scratch); { Open the file }

Q: What are the limits on the compiler as far as code and data? {$1-}

A: The compiler can handle up to 64K of code, 64K of data, 64K of Reset(TextFile);
stack and uniimited heap. The object code, however, cannot exceed {$I+}
64K. if IOresult <> 0 then

Writeln('Cannot find ', Scratch) { File not found }

Q: What are the limits of the editor as far as space? else { Print the file.. }

A: The editor can edit as much as 64K at a time. If this is not enough, begin
you can split your source into more than one file using the $/ com- while not Eof(TextFile) do
piler directive. This is explained in chapter 17. begin

Readln(TextFile, Scratch); { Read a line }
Writeln(Lst, Scratch) { Print a line }

Q: What do | do when | get error 99 (Compiler overflow)? end; { while }

A: You can do two things: break your code into smaller segments and Writeln(Lst) { Flush printer buffer }
use the $/ compiler directive (explained in chapter 17) or compile to a end { else }

.COM or .CMD file. end.

Q: What do | do if my object code is going to be larger than 64K? Q: How do | get output to and input from COM1:?

A: Either use the chain facility or use overlays. A: Try: writeln(AUX, ...) after setting up the port using MODE from
MSDOS or an equivalent ASSIGN type program from CP/M. To read
try read(AUX, ...). You must remember that there is no buffer set up
automatically when reading from AUX.

358 TURBO Pascal Reference Manual ‘ HELP!! 359
qill HhPDE - wivw.lastio.com : k

http://www.fastio.com/

HELP!!!

360

Q:
A: Function keys generate ‘extended scan codes’ which are turned into

How do | read a function key?

‘escape sequences’ by TURBO, that is, two characters are sent from
the keyboard: first an Esc (decimal ASCII value 27), then some other
character. You'll find a table of all values on page 341.

To read these extended codes, you check for ESC and if detected
see if there is another character in the keyboard buffer. If there is, a
function key was pressed, so you read the next character and set a
flag to signal that what you got is not a normal character, but the
second part of an ‘escape sequence’

if KeyPressed then

begin
Read(Kbd, Ch) {ch is char}
if (ch = #27) and KeyPressed then {one more char?}
begin
Read (Kbd, Ch)
FuncKey := True; {FuncKey is boolean}
end
end;

Q: 1 am having trouble with file handling. What is the correct

order of instructions to open a file?

A: The correct manner to handle files is as follows:

To create a new file:
Assign(FileVar, 'NameOf.Fil');
Rewrite(FileVar);
élose(FileVar) ;

To open an existing file:
Assign(fileVar, 'NameOf.Fil');

Reset(FileVar);

Close(FileVar);

TURBO Pascal Reference Manual

wvwfastio.com

0 20 20

> 0 » O PO

HELPI!!!

Why do my recursive procedures not work?
Set the A compiler directive off:{$A-}(CP/M-80 only)

How can | usé EOF and EOLN without a file variable as a parameter?
Turn off buffered input:{$B-}

How do | find out if a file exists on the disk?
Use {$I-} and {I+)}. The following function returns True if the file
name passed as a parameter exists, otherwise it returns False:

type
Name=string[66];

function Exist(FileName: Name): Boolean;
Var
Fil: file;
begin)
Assign(Fil, FileName);
{$1-}
Reset (Fil);
($I+)
Exist := (IOresult = 0)
end; '

: How do | disable CTRL-C?
: Set compiler directive: {$C-).

: | get a Type Mismatch error when passing a string to a function or

procedure as a parameter.

: Turn off type checking of variable parameters: {$V-}.

: | get file not found error on my include file when | compile my

program - even though the file is in the directory.

: When using the include compiler directive ($/ filename.ext) there

must be a space separating the filename from the terminating brace,
if the extension is not three letters long: {$ISample.F }. Other-
wise the brace will be interpreted as part of the file name.

: Why does my program behave differently when | run it several times

in a row?

A: If you are running programs in Memory mode and use typed con-

HELP!!!

stants as initialized variables, these constants will only be initialized
right after a compilation, not each time you Run the program as they
reside in the code segment. With .COM files, this problem does not
exist, but if you still experience different resuits when using arrays
and sets, turn on range checking {$R + }.

361

http://www.fastio.com/

hhPD

HELP!!!

362

Q:
A:

>0

I don’t get the results | think | should when using Reals and

Integers in the same expression.

When assigning an Integer expression to a Real variable, the expres-

sion is converted to Real. However, the expression itself is calculated

as an integer, and you should therefore be aware of possible integer

overflow in the expression. This can lead to surprising results. Take

for instance:
RealVar := 40 * 1000;

First, the compiler multiplies integers 40 and 1000, resulting in 40,000

which gives integer overflow. It will actually come out to -25536 as

Integers wrap around. Now it will be assigned to the RealVar as

-25536. To prevent this, use either: :

RealVar :

40.0 * 1000;
or
RealVar :

1.0 * IntVarl * IntVarg;

to ensure that the expression is calculated as a Real.

: How do | get a disk directory from my TURBO program?
: Sample procedures for accessing the directory are included in the

TURBO Tutor package (see how to order the TURBO Tutor on page
3).

: My program works well with TURBO 2.0, but now it keeps getting

1/O Error F3 (or TURBO Access error 243)

A: TURBO 3.0 uses DOS file handles. When booting your computer,

you should have a CONFIG.SYS file in the root directory of your boot
drive. Place the statement:

FILES=16

in this file and re-boot your system. For more information about file
handles, please refer to your DOS reference manual.

NOTE: If you distribute your programs, you should include similar in-
structions in the documentation that you provide.

TURBQ Pascal Reference Manual

wvwfastio.com

Appendix O.
SUBJECT INDEX

A

A-command, 192, 229

A-compiler directive, 286

Abort command, 34

Abs, 139

Absolute address function,
204, 237

Absolute value, 139

Absolute variable, 203,
236, 261, 267

Adding operator, 51, 563

Addr, 204, 237

Addr Function, 268

Allocdting variable (New),
120

Append procedure, 200

Arc, 173

ArcTan, 139

Arithmetic functions, 139,
304

Array component, 75

Array constant, 90

Array definition, 75

Array of characters, 112

Array subscript optimization,
269

Array, 75, 219, 224, 254,
285, 249, 281

Assign, 94

Assignment operator, 37

Assignment statement, 55

Auto indent on/off switch, 31

Auto indentation, 35

Automatic overlay management,

SUBJECT INDEX

B
Back, 178
Background color, 161
Backslash, 188
Backspace, 109
Backup, 17
BAK file, 17
Basic data types, 216, 246,
278
Basic graphics, 171
- Windows, and sound, 308
Basic movement commands, 22
Basic symbols, 37
BCD range, 293
BDOS, 261
Bdos procedure and function,
271
BdosHL function, 271
Begin biock, 28
Bios procedure and function,
272
BiosHL function, 272
Blanks, 39
Blink, 161
Block, 127
Block size, 235
Block commands, 28
Begin block, 28
Copy block, 29
Delete block, 29
End block, 28
Hide/display block, 29
Mark single word, 28
Move block, 29
Read block from disk, 29
Write block to disk, 30
BlockRead, 114

363

http://www.fastio.com/

	./tp3_302-303.tif
	./tp3_304-305.tif
	./tp3_306-307.tif
	./tp3_308-309.tif
	./tp3_310-311.tif
	./tp3_312-313.tif
	./tp3_314-315.tif
	./tp3_316-317.tif
	./tp3_318-319.tif
	./tp3_320-321.tif
	./tp3_322-323.tif
	./tp3_324-325.tif
	./tp3_326-327.tif
	./tp3_328-329.tif
	./tp3_330-331.tif
	./tp3_332-333.tif
	./tp3_334-335.tif
	./tp3_336-337.tif
	./tp3_338-339.tif
	./tp3_340-341.tif
	./tp3_342-343.tif
	./tp3_344-345.tif
	./tp3_346-347.tif
	./tp3_348-349.tif
	./tp3_350-351.tif
	./tp3_352-353.tif
	./tp3_354-355.tif
	./tp3_356-357.tif
	./tp3_358-359.tif
	./tp3_360-361.tif
	./tp3_362-363.tif

