1 PD

I

Memory Management

Memory Management

226

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:0000 - CS:00FF MS-DOS base page.
CS:0100 - CS:EOQOFR Run-time library code.
CS:EQOFR - CS:EOFP Program code.

CS:EQFP - CS:EQFC Unused.

Data segment (DS is the data segment register):

DS:0000 - DS:EOFW Run-time library workspace.
DS:EOFW - DS:EOFM Main program block variables.
DS:EOFM - DS:EOFD Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or O (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $000F.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available. The heap pointer is available to the
programmer through the HeapPtr standard identifier. HeapPtr is a type-
less pointer which is compatible with all pointer types. Assignments to
HeapPtr should be exercised only with extreme care.

TURBO Pascal Reference Manual

wvwfastio.com

Chapter 21
CP/M-86

Thi_s chapter describes features of TURBO Pascal specific to the CP/M-
86 implementation. It presents two kinds of information:

1) Things you should know to make efficient use of TURBO Pascal. Pages
227 through 24Q.

2) The rest of the chapter describes things which are of interest only to ex-

perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

Compiler Options

The O command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help-

;!.Ill function to find runtime errors in programs compiled into object code
iles.

compile -> Memory
Cmd-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 21-1: Options Menu

Memory / Cmd file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de-
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

- CP/M-86 227

http://www.fastio.com/

SibPD

Compiler Options

Cmad-file is selected by pressing C. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file
(or Main file, if specified) and the file type .CMD. This file contains the
program code and Pascal runtime library, and may be activated by typ-
ing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this
line. The compiler writes code to a file with the same name as the Work
file (or Main file, if specified) and the file type .CHN. This file contains the
program code but no Pascal library and must be activated from another
TURBO Pascal program with the Chain procedure (see page 231).

When the Cmd or cHn mode is selected, four additional lines will appear
on the screen:

minimum cOde segment size: XXXX paragraphs (max.YYYY)
minimum Data segment size: XXXX paragraphs (max.YYYY)
mInimum free dynamic memory: XXXX paragraphs
mAximum free dynamic memory: XXXX paragraphs

Figure 21-2: Memory Usage Menu

The use of these commands are described in the following sections.

Minimum Code Segment Size

228

The O-command is used to set the minimum size of the code segment
for a .CMD using Chain or Execute. As discussed on page 231, Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a ‘root’ program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg-
est segments in any Chained or Executed program.

Consequently, when compiling a ‘root’ program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

TURBO Pascal Reference Manual

wvwfastio.com

Compiler Options

inimum Data Segment Size

The D-command is used to set the minimum size of the data segment for a
.CMD using Chain or Execute. As discussed above, a ‘root’ program us-
ing these commands must allocate segments of sufficient size to accom-
modate the largest data of any Chained or Executed program.

Consequently, when compiling a ‘root’ program, you must set the value of
the Minimum Data Segment Size to at least the same value as the largest
data segment size of the programs to be chained/executed from that root.
The required values are obtained from the status printout terminating any
compilation. The values are in hexadecimal and specify number of para-
graphs, a paragraph being 16 bytes.

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ-
ment like Concurrent CP/M-86 to assure that the program does not allo-
cate the entire free memory. The value is in hexadecimal and specifies a
number of paragraphs, a paragraph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .CMD file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error:

CP/M-86 229

http://www.fastio.com/

Compiler Options

Run-time error 01, PC=1B56
Program aborted

Figure 21-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command. When prompted for the address, enter the address given
by the error message: ,

Enter PC: 1B56

Figure 21-4: Find Run-time Error

The place in the source text is now found and pqinted out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 156.

Standard Identifiers

The following standard identifiers are unique to the 16-bit implementa-
tions:

Bdos Intr Ofs Seg
CSeg MemW PortW SSeg
DSeg

TURBO Pascal Reference Manual

|
‘N“’PD‘ - wawwlastio.com

Chain and Execute

Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow
TURBO programs to activate other TURBO programs. The syntax of the
procedure calls are:

Chain(FilVar)
Execute(FilVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.

The Execute procedure is used to activate any TURBO Pascal .CMD
file.

if the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. When the | compiler directive is passive ({$I-)),
program execution continues with the statement following the failed
Chain or Execute statement, and the /Oresult function must be called
prior to further 1/O.

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see pages 228
and 229). When these conditions are satisfied, the variables will be
placed at the same address in memory by both programs, and as
TURBO Pascal does not automatically initialize its variables, they may
be shared.

CP/M-86 231

http://www.fastio.com/

°D

Chain and Execute

Example:
Program MAIN.CMD:

program Main;

var
Txt: string(80];
CntPrg: file;

begin
Write('Enter any text: '); Readln(Txt);

Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);
end.

Program CHRCOUNT.CHN:

program ChrCount;
var
Txt: string(801];
NoOfChar,
NoOfUpc,
I: Integer;

begin
NoOfUpc := O;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');
end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the CP/M command line, you should use an ab-
solute variable at address Dseg:$80. This is the command line length
byte, and when a program is called from CP/M, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between 0
and 127 indicates that the program was called from CP/M, a higher
value that it was called from another TURBO program.

232 TURBO Pascal Reference Manual

wvwfastio.com

Chain and Execute

Chaining and eXecuting TURBO programs does not alter the memory al-
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. ‘Alien’ programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to ac-
commodate largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

Overlays

During executjon, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure

Syntax: OvrDrive(Drive);

where Drive is an integer expression specifying a drive (0= logged

drive, 1 =A:, 2=B;, etc.). On subsequent calls to overlay files, the files

will be expected on the specified drive. Once an overlay file has been

gpened on one drive, future calls to the same file will look on the same
rive.

Example:
program OvrTest;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

CP/M-86 233

http://www.fastio.com/

==

Overlays

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

procedure Dumnmy;

begin
{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

begin
OvrDrive(2);
ProcA;
OvrDrive(0);
ProcC;
OvrDrive(2);
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(0) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over-
lay file here.

The following ProcB statement calls an overlay procedure in the first

overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

234 TURBO Pascal Reference Manual

\pPD: - wawwlastio.com

Files

" Files

" File Names

A file name in CP/M consists of one through eight letters or digits, op-
tionally followed by a period and a file type of one through three letters
or digits:

Drive:Name. Type

Untyped Files
An optional second parameter on Reset and ReWrite may be used to
specify the block size to be used by BlockRead and BlockWrite. For ex-
ample:

Assign(InFile, 'INDATA');
Reset(InFile,BlockSize);

where BlockSize is an integer expression.

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Buffer Size

The text file buffer size is 128 bytes by default. This is adequate for
most applications, but heavily I/O-bound programs, as for example a
copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You are therefore given the option to specify the buffer size when de-
claring a text file:

VAR
TextFile: Text[$1000];

declares a text file variable with a buffer size of 4K bytes.

CP/M-86 235

http://www.fastio.com/

HPD

Absolute Variables

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declaration
the reserved word absolute followed by two Integer constants spec-
ifying a segment and an offset at which the variable is to be located:

var
Abc: Integer
Def: Integer

absolute $0000:$00EE;
absolute $0000:$00F0;

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (CSeg) or the data segment (DSeg):

Patch: array[l..PatchSize] of byte absolute CSeg:$05F3;

Absolute may also be used to declare a variable “‘on top” of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the identifier of a variable or
parameter, the new variable will start at the address of that variable
parameter.

Example:
var
N Str: string[32];
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari-
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

Further details on space allocation for variables are found on page 246.

236 TURBO Pascal Reference Manual

wvwfastio.com

Absolute Address Functions

- Absolute Address Functions

The following functions are provided for obtaining information about pro-
gram variable addresses and system pointers.
 Addr
Syntax: Addr(Name)
‘Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name
is a record, specific fields may be selected. The value returned is a 32
bit pointer consisting of a segment address and an offset.
Ofs

Syntax: Ofs(Name)
Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. if Name
is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

. Seg
Syntax: Seg(Name)
Returns the address of the segment containing the first byte of the vari-
able with the identifier Name. If Name is an array, it may be subscribed,
and if Name is a record, specific fields may be selected. The value re-
turned is an Integer. To obtain the segment address of a procedure or
function, use the CSEG function.

Cseg
Syntax: Cseg

Returns the base address of the Code segment. The value returned is
an Integer.

CP/M-86 237

http://www.fastio.com/

Absolute Address Functions

Dseg
Syntax: Dseg
Returns the base address of the Data segment. The value returned is an
Integer.

Sseg
Syntax: Sseg
Returns the base address of the Stack segment. The value returned is
an Integer.

Predefined Arrays
TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

Mem Array
The predefined arrays Mem and MemW are used to access memory.
Each component of the array Mem is a byte, and each component of
the array Wmem is a word (two bytes, LSB first). The index must be an
address specified as the segment base address and an offset separated

by a colon and both of type Integer.

The following statement assigns the value of the byte located in seg-
ment 0000 at offset $0081 to the variable Value

Value:=Mem[0000:$0081];
While the following statement:
MemW[Seg(Var):0fs(Var)]:=Value;

places the value of the Integer variable Value in the memory location oc-
cupied by the two first bytes of the variable Var.

238 TURBO Pascal Reference Manual

wvwfastio.com

Predefined Arrays

Port Array

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port[56]:=10;

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera-
tions referring to the entire port array (reference without index) are not
allowed.

With Statements

With statements may be nested to a maximum of 9 levels.

- Pointer Related ltems

'MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer specifying
the number of available paragraphs on the heap (a paragraph is 16
bytes).

Pointer Values
In very special circumstances it can be of interest to assign a specific

value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.

CP/M-86 239

http://www.fastio.com/

Pointer Related Items

Assigning a Value to a Pointer

The standard function Ptr can be used to assign specific values to a
pointer variable. The function returns a 32 bit pointer consisting of a
segment address and an offset.

Example:
Pointer:=Ptr(Cseg,$80);

Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard func-
tion Ord can therefore not be used to obtain its value. Instead the func-
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(P*);
OffsetPart:=0fs(P*);

~

Function Calis

For the purpose of calling the CP/M-86 BDOS, TURBO Pascal intro-
duces a procedure Bdos, which has a record as parameter.

Details on BDOS and BIOS routines are found in the CP/M-86 Operat-
ing System Manual published by Digital Research.

The parameter to Bdos must be of the type:

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

Before TURBO calls the BDOS, the registers AX, BX, CX, DX, BP, SI,
DI, DS, and ES are loaded with the values specified in the record param-
eter. When the BDOS has finished operation the Bdos procedure will re-
store the registers to the record thus making any results from the BDOS
available.

240 TURBO Pascal Reference Manual

wvwfastio.com

User Written 1/O Drivers

User Written 1/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard |/O drivers
(although they are not available as standard procedures or functions):

function ConSt: boolean; { 6 }
function Conin: Char; { 6 }
procedure ConOut(Ch: Char); { 6 }
procedure LstOut(Ch: Char); {5}
procedure AuxOuf(Ch: Char); { 4}
function Auxin: Char; { 3}
procedure UsrOut(Ch: Char); { 6)
function Usrin: Char; { 6 }

The ConSt routine is called by the function KeyPressed, the Conin and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers are assigned to the BDOS functions as showed
in curly braces in the above listing of drivers.

This, however, may be changed by the programmer by assigning the ad-
dress of a self-defined driver procedure or a driver function to one of the
following standard variables:

Variable Contains the address of the
ConStPtr ConSt function
ConinPtr Conin function
ConOutPtr ConOQut procedure
LstOutPtr LstOut procedure
AuxOutPtr AuxOut procedure
AuxInPtr - Auxin function
UsrOutPtr UsrOut procedure
UsrinPtr Usrin function
CP/M-86 241

http://www.fastio.com/

User Written I/O Drivers

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a boolean function, a
Conin driver must be a char function, etc.

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant
specifying the name of a file in which executable machine code for the
external procedure or function must reside.

During compilation of a program containing external functions or pro-
cedures the associated files are loaded and placed in the object code.
Since it is impossible to know beforehand exactly where in the -object
code the external code will be placed this code must be relocatable, and
no references must be made to the data segment. Furthermore the
external code must save the registers BP, CS, DS and SS and restore
these before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

The type of the filename is .CMD. Only the code segment of a .CMD file
is loaded. ‘

Example:
procedure DiskReset; external 'DSKRESET';
function IOstatus: boolean; external 'IOSTAT';

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); extermal 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS';

External subprograms and parameter passing is discussed further on
page 252.

242 TURBO Pascal Reference Manual

wvwfastio.com

In-line Machine Code

 In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+l/sort-*+2});

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ‘<’ and ‘>’ characters may be used to override the automatic
size selection described above. If a code element starts with a ‘<’
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a ‘>’ character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

243

http://www.fastio.com/

lihPD

In-line Machine Code

244

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (i.e. variables declared in the main program block) is the
data segment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the current sub-
program) is the stack segment, and in this case the variable offset is re-
lative to the BP (base page) register, the use of which automatically
causes the stack segment to be selected. The base segment of typed
constants is the code segment, which is accessible through the CS re-
gister. inline statements should not attempt to access variables that are
not declared in the main program nor in the current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str);
{Str is type String[255]}

begin
inline .
($C4/$BE/Strg/ { LES DI,Strg[BP] }
$26/$8A/$0D/ { MOV CL,ES:[DI] 3}
$FE/$C1l/ { INC CL }
$FE/$C9/ { Ll: DEC CL }
$74/%$13/ { JZ L2 }
$47/ { INC DI }
$26/880/83D/%61/ { CMP ES:BYTE PTR [DI],'a'}
$72/$F5/ { JB L1 R
$26/$80/$3D/87A7 { CMP ES:BYTE PTR [DI],'z'}
$77/8$EF/ { JA L1 }
$26/$80/$2D/%$20/ { SUB ES:BYTE PTR [DI], 20H}
$EB/$E9) ; { JMP SHORT L1
{ L2:
end; =

inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the registers BP, SP, DS,
and SS must be the same on exit as on entry.

TURBO Pascal Reference Manual

wvwfastio.com

Interrupt Handling

Interrupt Handling

A TURBO Pascal interrupt routine must manually preserve registers AX,
BX, CX, DX, Si, DI, DS and ES. This is done by placing the following in-
line statement as the first statement of the procgdure:

inline ($50/$53/$51/$52/$56/$57/$1E/$06/$FB);

The last byte ($FB) is an STI instruction which enables further interrupts
- it may or may not be required. The following inline statement must be
the last statement in the procedure:

inline ($07/$1F/$5F/$5E/$5A/$59/$5B/$58/$8B/$E5/$5D/$CF) ;

This restores the registers and reloads the stack pointer (SP) and t_he
base page register (BP). The last byte ($CF) is an IRET instruction which
overrides the RET instruction generated by the compiler. '

An interrupt service procedure must not employ any I/O operations us-
ing the standard procedures and functions of TURBO Pascal, as the
BDOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Intr procedure

Syntax: Intr(interruptNo, Resulf)

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

It then makes the software interrupt given by the parameter interruptNo
which must be an Integer constant. When the interrupt service routine
returns control to your program, Resuilt will contain any values returned
from the service routine.

CP/M-86 245

http://www.fastio.com/

Interrupt Handlling Internal Data Formats

Note that the data segment register DS, used to access global variables, : Scalars

will not have the correct value when the interrupt service routine is en-
tered. Therefore, global variables cannot be directly accessed. Typed
constants, however, are available, as they are stored in the code seg-
ment. The way to access global variables in the interrupt service routine
is therefore to store the value of Dseg in a typed constant in the main
program. This typed constant can then be accessed by the interrupt
handler and used to set its DS register.

Internal Data Formats
In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function Seg.

Global and local variables, and typed constants occupy different seg-
ments as follows:

Global variables reside in the data segment and the offset is relative to
the DS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2’s complement 16-bit value with the least significant byte stored first.

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2’s exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

Exponent
@+1 LSB of mantissa

@ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 ($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2°40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

| 246 TURBO Pascal Reference Manual CP/M-86 v 247

il PDE - wvwy fastio.com

=
=

http://www.fastio.com/

Internal Data Formats

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contains the string with the first character stored at the lowest address.
In the table shown below, L denotes the current length of the string, and
Max denotes the maximum length:

@ Current length (L)
@+1 First character
@+2 Second character
@ +L Last character

@+L+1 Unused
@ + Max Unused

Sets

248

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to “‘cut off”” all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element Eis:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

A pointer consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
, most significant bytes the base address. Both are stored in memory us-

- ing byte reversed format, i.e. the least significant byte is stored first. The
;o value nil corresponds to two zero words.

| -Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

. Arrays

The components with the lowest index values are stored at thg lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[l..8,1..8] of Square

you have the following memory layout of its components:

lowest address: Board[l,1]
Board[1,2]

Board[1,8]

Board[2,1]
Board[2,2]

Highest address: Board[8,8]

CP/M-86 249

http://www.fastio.com/

Internal Data Formats

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

Disk Files

Disk fiI_es. are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks
The table below shows the format of a FIB:

@+0 Flags byte.

@+1 Character buffer.

@+2 Number of records (LSB) or buffer offset (LSB).
@+3 Number of records (MSB) or buffer offset (MSB).
©@+4 Record length (LSB) or buffer size (LSB).
@+5 Record length (MSB) or buffer size (MSB).
@+6 Buffer pointer (LSB).

@+7 Buffer pointer (MSB).

@+8 Current record (LSB) or buffer end (LSB).
@+9 Current record (MSB) or buffer end (LSB).
@+10 Unused.

@+ 11 Unused.

@+12 First byte of CP/M FCB.

@ +47 Last byte of CP/M FCB.
@ +48 First byte of sector buffer.

@+ 175 Last byte of sector buffer.

Internal Data Formats

The format of the flags byte at @ + O is:

Bit 0..3 File type.

Bit 4 Read semaphore.

Bit 5 Write semaphore or pre-read character flag.
Bit 6 Output flag.

Bit 7 Input flag.

File type O denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

For typed and untyped files, the four words from @ + 2 to @ + 9 store
the number of records in the file, the record length in bytes, the sector
buffer pointer, and the current record number. For typed files, the sector
buffer pointer stores an offset (0..127) in the sector buffer at @ + 48.
The FIB of an untyped file has no sector buffer, and so the sector buffer
pointer is not used.

For text files, the four words from @ + 2 to @ + 9 store the offset ad-
dress of the buffer, its size, the offset of the next character to read or
write, and the offset of the first byte after the buffer. The buffer always
resides in the same segment as the FIB, usually starting at @ + 48. The
size of a textfile FIB may be larger than indicated, depending on the size
of the buffer. When a textfile is assigned to a logical device, only the
flags byte and the character buffer are used.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

250 TURBO Pascal Reference Manual CP/M-86 251

[
nPDE - www . fastio.com

http://www.fastio.com/

Internal Data Formats

sector 0, byte 0: Number of records (LSB)

sector 0, byte 1: Number of records (MSB)

sector 0, byte 2: Record length (LSB)

sector 0, byte 3: Record length (MSB)
Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into lines. Each line consists of any number of char-
acters ended by a CR/LF sequence (ASCH $0D/ $0A). The file is ter-
minated by a Ctrl-Z (ASCII $1B).

Parameters

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

if an external function has the following subprogram header:

function Magic(var R: Real; S: string5): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result >
< Segment base address of R >
< Offset address of R >
< First character of S >
< Last character of S >
< Length of S >
< Return address > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine shouid
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

252 TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

PUSH BP
MOV BP,SP
SUB SP,WORKAREA

The last instruction will have the effect of adding the following to the

stack:

< Return address > BP
< The saved BP register >

< First byte of local workarea >

< Last byte of local work area > SP
Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL regis-
ter:

MOV AL, [BP+4]

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe-
cuting the RET the parameters may be removed by giving RET a param-
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters

With a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu-
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

| CP/M-86 253

http://www.fastio.com/

S

Internal Data Formats

Scalars
Integers, Booleans, Chars and declared scalars (i.e. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies
only one byte when it is stored, the most significant byte of the parame-
ter is zero.

Reals

A real is transferred on the stack using six bytes.

Strings

When a string is at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets).

Pointers

A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL cor-
responds to two zero words. '

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are
transferred. It is then the responsibility of the subroutine to use this in-
formation to make a local copy of the variable.

254 TURBQO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

. Function Results

User written external functions must remove all parameters and the
function result from the stack when they return.

User written external functions must return their results exactly as
specified in the foliowing:

Values of scalar types, except Reals, must be returned in the AX regis-
ter. If the result is only one byte then AH should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described on page 254. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in the DX:AX.

 The Heap and The Stacks

During execution of TURBO Pascal program the following segments are
allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre-
defined variable HeapPtr contains the value of the heap pointer and al-
iows the programmer to control the position of the heap.

CP/M-86 255

http://www.fastio.com/

Internal Data Formats

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment. ,

On each call to the procedure New and on entering a procedure or func-
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive ({ $K-}).

Memory Management

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:0000 - CS:EOFR Run-time library code.
CS:EOFR - CS:EQOFP Program code.

CS:EQFP - CS:EQOFC Unused.

Data segment (DS is the data segment register):

DS:0000 - DS:Q0FF CP/M-86 base page.

DS:0100 - DS:EOQOFW Run-time library workspace.
DS:EQOFW - DS:EOFM Main program block variables.
DS:EQOFM - DS:EOFD Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
S8 is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

256 TURBQO Pascal Reference Manual

wvwfastio.com

Memory Management

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $000F.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available.

The heap pointer is available to the programmer through the HeapPtr
standard identifier. HeapPtr is a typeless pointer which is compatible
with all pointer types. Assignments to HeapPtr should be exercised only
with extreme care.

257

http://www.fastio.com/

Memory Management

Chapter 22
Notes:

CP/M-80
This chapter describes features of TURBO Pascal specific to the 8-bit
CP/M-80 implementation. It presents two kinds of information:

Things you should know to make efficient use of TURBO Pascal. Pages
’ 259 through 272.

2) The rest of the chapter describes things which are-only of interest to ex-
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

. eXecute Command
You will find an additional command on the main TURBO menu in the
CP/M-80 version: eXecute. It lets you run other programs from within
TURBO Pascal, for example copying programs, word processors - in
fact anything that you can run from your operating system. When enter-
ing X, you are prompted:
Command: ®
You may now enter the name of any program which will then load and
run normally. Upon exit from the program, control is re-transferred to
TURBO Pascal, and you return to the TURBO prompt > .

. compiler Options
The O command selects the following menu on which you may view and
change some default values of the compiler. It also provides a helpful
function to find runtime errors in programs compiled into object code
files.

258 TURBO Pascal Reference Manual § CP/M-80 259

wvwfastio.com

http://www.fastio.com/

1
i
|
i

compiler Options compiler Options

compile -> Memory
Com-file
cHn-file

Start address: XXXX (min YYYY)
End address: XXXX (max YYYY)

command line Parameter: Figure 22-2: Start and End Addresses

Find run-time error Quit

Start Address

[

The Start address specifies the address (in hexadecimal) of the first byte
of the code. This is normally the end address of the Pascal library plus
one, but may be changed to a higher address if you want to set space

) . aside e.g. for absolute variables to be shared by a series of chained pro-
Memory / Com file / cHn-file grams.

Figure 22-1: Options Menu

The three commands M, C, and H select the compiler mode, i.e. where

When you enter an S, you are prompted to enter a new Start address. If
to put the code which results from the compilation.

you just hit <RETURN >, the minimum value is assumed. Don’t set
the Start address to anything less than the minimum value, as the code

Memory is the default mode. When active, code is produced in memory will then overwrite part of the Pascal library.

and resides there ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line. End Address
When active, code is written to a file with the same name as the Work
file (or Main file, if specified) and the file type .COM. This file contains
the program code and Pascal runtime library, and may be activated by
typing its name at the console. Programs compiled this way may be
larger than programs compiled in memory, as the program code itself
does not take up memory during compilation, and as program_ code

starts at a lower address.

The End address specifies the highest address available to the program
(in hexadecimal). The value in parentheses indicate the top of the TPA
on your computer, i.e. BDOS minus one. The default setting is 700 to
1000 bytes less to allow space for the loader which resides just below
BDOS when executing programs from TURBO.

If compiled programs are to run in a different environment, the End ad-

cHain-file is selected by pressing H. The arrow moves to point to this dress may be changed to suit the TPA size of that system. If you antici-

line. When active, code is written to a file with the same name as the
Work file (or Main file, if specified) and the file type .CHN. This file con-
tains the program code but no Pascal library and must be activated from

pate your programs to run on a range of different computers, it will be
wise to set this value relatively low, e.g. C100 (48K), or even A100 (40K)
if the program is to run under MP/M.

} f another TURBO Pascal program with the Chain procedure (see page
‘ 263).

! When Com or cHn mode is selected, the menu is expanded with the fol-
’]‘ lowing two lines:
|

260 TURBO Pascal Reference Manual 261

F-www.lastio.com

http://www.fastio.com/

[

compiler Options

When you enter an E, you are prompted to enter a End address. If you just
hit <RETURN >, the default value is assumed (i.e. top of TPA less 700
to 1000 bytes). If you set the End address higher than this, the resulting
programs cannot be executed from TURBO, as they will overwrite the
TURBO loader; and if you set it higher than the TPA top, the resulting pro-
grams will overwrite part of BDOS if run on your machine.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Runtime Error

262

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .COM file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error, e.g.:

Run-time error 01, PC=1B56
Program aborted

Figure 22-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command on the Options menu. When prompted for the address,
enter the address given by the error message:

Enter PC: 1B56

Figure 22-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

TURBO Pascal Reference Manual

wvwfastio.com

Standard Identifiers

Standard Identifiers

The following standard identifiers are unique to the CP/M-80 implemen-
tation:

Bios Bdos
BiosHL BdosHL

RecurPtr
StackPtr

Chain and Execute

TURBO Pascal provides two standard procedures: Chain and Execute
which allow you to activate other programs from a TURBO program.
The syntax of these procedure calls is:

Chain(FilVar)
Execute(FilVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 260). Such a file contains only program code;
no Pascal library. It is loaded into memory and executed at the start ad-
dress of the current program, i.e. the address specified when the
current program was compiled. It then uses the Pascal library already
present in memory. Thus, the current program and the chained program
must use the same start address.

The Execute procedure may be used to execute any .COM file, i.e. any
file containing executable code. This could be a file created by TURBO
Pascal with the Com-option selected on the Options menu (see page
260). The file is loaded and executed at address $100, as specified by
the CP/M standard.

If the disk file does not exist, an 1/O error occurs. This error is treated as
described on page 116. If the | compiler. directive is passive ({ $i-)), pro-
gram execution continues with the statement following the failed Chain
or Execute statement, and the /Oresult function must be called prior to
further 1/O.

CP/M-80 263

http://www.fastio.com/

Chain and Execute

264

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same memory size (see page 261). When these condi-
tions are satisfied, the variables will be placed at the same address in
memory by both programs, and as TURBO Pascal does not automatical-
ly initialize its variables, they may be shared.

Example:
Program MAIN.COM:

program Main;

var
Txt: string[80}];
CntPrg: file;

begin
Write('Enter any text: '); Readln(Txt);

Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);
end.

Program CHRCOUNT.CHN:

program ChrCount;
var
Txt: string(80];
NoOfChar,
NoOfUpc,
I: Integer;
begin
NoOfUpc := 0O;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');
end.

TURBO Pascal Reference Manual

ClibPDF - www.lastio.com

L

Chain and Execute

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab-
solute variable at address $80. This is the command line length byte,
and when a program is called from CP/M, it contains a value between 0
and 127. When eXecuting a program, therefore, the calling program
should set this variable to something higher than 127. When you then
check the variable in the called program, a value between 0 and 127 in-
dicates that the program was called from CP/M, a higher value that it
was called from another TURBO program.

Note that neither Chain nor Execute can be used in direct mode, i.e.
from a program run with the compiler options switch in position Memory
(page 260).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure
Syntax: OvrDrive(Drive)

where. Drive is an integer expression specifying a drive (0= logged
drive, 1=A:, 2=B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Exampile :
program OvrTest;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

CP/M-80 265

http://www.fastio.com/

Overlays

procedure Dummy;

begin
{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

begin
OvrDrive(2);
ProcA;
OvrDrive(0);
ProcC;
OvrDrive(2);
ProcB;

end.

The first call to OvrDrive specifies overlays to be sougl":t on the B drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(0) statement specifies that following overiays are to
be found on the logged drive. The call to ProcC opens the second over-
lay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call. ~

266 TURBO Pascal Reference Manual

wvwfastio.com

Files

Files
File Names

A file name in CP/M consists of one through eight letters or digits, op-
tionally followed by a period and a file type of one through three letters
or digits:

Drive:Name. Type

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding the reserved word ab-
solute and an address expressed by an integer constant to the variable
declaration.

Example:

var

IObyte: Byte absolute $0003:
CmdLine: string[127] absolute $80:

Absolute may also be used to declare a variable ‘on top” of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the variable (or parameter)
identifier, the new variable will start at the address of that variable (or
parameter).

Example:

var

Str: string[32];

StrLen: Byte absolute Str;

The above declaration specifies that the variable StrLen should start at
the same address as the variable Str, and since the first byte of a string
variable gives the length of the string, StrLen will contain the length of
Str. Notice that only one identifier may be specified in an absolute de-
claration, i.e. the construct:

CP/M-80 267

http://www.fastio.com/

Absolute Variables

Identl, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given on
pages 278 and 288.

Addr Function
Syntax: Addr(name),

Returns the address in memory of the first byte of the type, variable,
procedure, or function with the identifier name. If name is an array, it
may be subscribed, and if name is a record, specific fields may be
selected. The value returned is of type Integer.

Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to directly access CPU memory and data
ports.

Mem Array

The predeclared array Mem is used to access memory. Each com-
ponent of the array is a Byte, and indexes correspond to addresses in
memory. The index type is Integer. When a value is-assigned to a com-
ponent of Mem, it is stored at the address given by the index expres-
sion. When the Mem array is used in an expression, the byte at the ad-
dress specified by the index is used. .

Examples:

Mem[WsCursor] := 2;
Mem[WsCursor+l] := $1B;
Mem[WsCursor+2] := Ord(' ');

IObyte := Mem[3];
Mem[Addr+0ffset] := Mem[Addr];

268 TURBO Pascal Reference Manual

wvwfastio.com

Predefined Arrays

Port Array

The Port array is used to access the data ports of the Z-80 CPU. Each
element of the array represents a data port with indexes corresponding
to port numbers. As data ports are selected by 8-bit addresses, the in-
dex type is Byte. When a value is assigned to a component of Port, it is
output to the port specified. When a component of Port is referenced in
an expression, its value is input from the port specified.

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port cannot function as variable
parameters to procedures and functions. Furthermore, operations refer-
ring to the entire Port array (reference without index) are not allowed.

Array Subscript Optimization

The X compiler directive allows the programmer to select whether array
subscription should be optimized with regard to execution speed or to
code size. The default mode is active, i.e. { $X + }, which causes execu-
tion speed optimization. When passive, i.e. { $X-}, the code size is
minimized.

With Statements

The default ‘depth’ of nesting of With statements is 2, but the W direc-
tive may be used to change this value to between 0 and 9. For each
block, With statements require two bytes of storage for each nesting
level allowed. Keeping the nesting to a minimum may thus greatly affect
the size of the data area in programs with many subprograms.

CP/M-80 269

http://www.fastio.com/

Pointer Related Items CP/M Function Calls

Pointer Related Items CP/M Function Calls

; For the purpose of calling CP/M BDOS and BIOS routines, TURBO Pas-
MemAvail cal introduces two standard procedures: Bdos and Bios, and four stan-
' : dard functions: Bdos, BdosHL, Bios, and BiosHL.
The standard function MemAvail is available to determine the available

space on the heap at any given time. The result is an Integer, and if Details on BDOS and BIOS routines are found in the CP/M Operating
more than 32767 bytes is available, MemAvail returns a negative System Manual published by Digital Research.

number. The correct number of free bytes is then calculated as 65536.0
+ MemAvail. Notice the use of a real constant to generate a Real
result, as the result is greater than GMaxint. Memory management is Bdos procedure and function
discussed in further detail on page 288.
Syntax: Bdos(Func {, Param });

Pointers and Integers The Bdos procedure is used to invoke CP/M BDOS routines. Func and

Param are integer expressions. Func denotes the number of the called

The standard functions Ord and Ptr provide direct control of the address routine and is loaded into the C register. Param is optional and denotes

contained in a pointer. Ord returns the address contained in its pointer a parameter which is loaded into the DE register pair. A call to address 5
argument as an Integer, and Ptr converts its Integer argument into a then invokes the BDOS.

pointer which is compatible with all pointer types.

The Bdos function is called like the procedure and returns an Integer
These functions are extremely valuable in the hands of an experienced result which is the value returned by the BDOS in the A register.
programmer as they allow a pointer to point to anywhere in memory. If
used carelessly, however, they are very dangerous, as a dynamic vari- | i
able may be made to overwrite other variables, or even program code. BdosHL function

Syntax: BdosHL(Func {, Param });

This function is exactly similar to the Bdos function above, except that
the result is the value returned in the HL register pair.

270 TURBO Pascal Reference Manual CP/M-80 271

[
il
I PDF - waww.fastio.com

http://www.fastio.com/

CP/M Function Calls

Bios procedure and function
Syntax: Bios(Func {, Param });

The Bios procedure is used to invoke BIOS routines. Func and Param
are integer expressions. Func denotes the number of the called routine,
with 0 meaning the WBOOT routine, 1 the CONST routine, etc. l.e. the
address of the called routine is Func * 3 plus the WBOOT address con-
tained in addresses 1 and 2. Param is optional and denotes a parameter
which is loaded into the BC register pair prior to the call.

The Bios function is called like the procedure and returns an integer
result which is the value returned by the BIOS in the A register.

BiosHL function
Syntax: BiosHL(Func {, Param });

This function is exactly similar to the Bios function above, except that
the result is the value returned in the HL register pair.

User Written 1/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from external devices. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(aithough they are not available as standard procedures or functions).

function ConSt. boolean;
function Conin:. Char;
procedure ConOut (Ch: Char);
procedure LstOut (Ch: Char);
procedure AuxOut (Ch: Char);
function Auxin: Char;
procedure UsrQOut (Ch: Char);
function Usrin: Char;

272 TURBO Pascal Reference Manual

wvwfastio.com

User Written 1/O Drivers

The ConSt routine is called by the function KeyPressed, the Conin and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers use the corresponding BIOS entry points of the
CP/M operating system, i.e. ConSt uses CONST, Conin uses CONIN,
ConOut uses CONOUT, LstOut uses LIST, AuxOut uses PUNCH, Auxin
uses READER, UsrOut uses CONOUT, and Usrin uses CONIN. This,
however, may be changed by the programmer by assigning the address
of a self-defined driver procedure or a driver function to one of the fol-
lowing standard variables:

Variable Contains the address of the
ConStPtr ConSt function

ConinPtr Conin function

ConOutPtr ConOut procedure

LstOutPtr LstOut procedure

AuxOutPtr AuxOut procedure

AuxinPtr Auxin function

UsrOutPtr UsrOut procedure

UsrinPtr Usrin function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a Boolean function, .
a Conin driver must be a Char function, etc. g

CP/M-80 273

http://www.fastio.com/

External Subprograms

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and an integer constant defining
the memory address of the subprogram:

procedure DiskReset; extermnal $ECO0O0;
function IOstatus: boolean; external $D123

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); externmal $F003;
procedure QuickSort(var List: PartNo); external $1C00;

Parameter passing to external subprograms is discussed further on
page 283.

In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/%2345/count+1l/sort-*+2);

274 TURBOQ Pascal Reference Manual

In-line Machine Code

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ‘<’ and ‘>’ characters may be used to override the automatic
size selection described above. If a code element starts with a ‘<’
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a ‘ >’ character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>%$44);

This inline statement generates three bytes of code: $34, $44, $00.

The foliowing example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

CP/M-80 275

http://www.fastio.com/

in-line Machine Code Interrupt Handling

procedure UpperCase(var Strg: Str); {Str is type String[255)) : Inte"uPt Handllng
$A+ ;
t{)egi}n : The TURBO Pascal run time package and the code generated by the
inline ($2A/Strg/ { LD HL,(Strg) } compiler are both fully interruptable. Interrupt service routines must
$46/ { LD B, (HL) 3 preserve all registers used.
$04/ { INC B }
$05/ { L1: DEC B } If required, interrupt service procedures may be written in Pascal. Such
$CA/*+20/ { JP Z,L2 } w procedures should always be compiled with the A compiler directive ac-
$23/ { INC HL } tive (($A +)), they must not have parameters, and they must them-
$7E/ { LD A, (HL) } selves insure that all registers used are preserved. This is done by plac-
$FE/$61/ { CP 'a' } ing an inline statement with the necessary PUSH instructions at the
$DA/*-9/ { JP C,L1 } very beginning of the procedure, and another inline statement with the
$FE/$7B/ { CP 'z'+l } corresponding POP instructions at the very end of the procedure. The
$D2/%-14/ ¢ JP NC,L1 } last instruction of the ending inline statement should be an El instruction
$D6/$20/ { SUB 20H } ($FB) to enable further interrupts. If daisy chained interrupts are used,
$77/ { LD (HL),A } the inline statement may also specify a RETI instruction ($ED, $4D),
$C3/%-20); { JP L1 } which will override the RET instruction generated by the compiler.
L2: EQU
end; ¢ w s ! The general rules for register usage are that integer operations use only
the AF, BC, DE, and HL registers, other operations may use IX and IY,
Inline statements may be freely mixed with other statements throughout and real operations use the alternate registers.
the statement part of a block, and inline statements may use all CPU . . .
registers. Note, however, that the contents of the stack pointer register An interrupt service procedure should not employ any |/O operations us-
(SP) must be the same on exit as on entry. ing the standard procedures and functions of TURBO Pascal, as these
routines are not re-entrant. Also note that BDOS calls (and in some in-
stances BIOS calls, depending on the specific CP/M implementation)
should not be performed from interrupt handlers, as these routines are
not re-entrant.
The programmer may disable and enable interrupts throughout a pro-
gram using DI and E! instructions generated by inline statements.
If mode O (IM 0) or mode 1 (IM 1) interrupts are employed, it is the
responsibility of the programmer to initialize the restart locations in the
base page (note that RST 0 cannot be used, as CP/M uses locations 0
through 7).
If mode 2 (IM 2) interrupts are employed, the programmer shouid gen-
erate an initialized jump table (an array of integers) at an
absolute address, and initialize the | register through a inline statement
at the beginning of the program.
276 TURBO Pascal Reference Manual . CPM-80 277

wvwfastio.com

http://www.fastio.com/

internal Data Formats

Internal Data Formats

In the following descriptions, the symbol @ denotes the address of the
first byte occupied by a variable of the given type. The standard function
Addr may be used to obtain this value for any variable.

Basic Data Types -

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, Booleans, Chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2’s complement 16-bit value with the least significant byte stored first.

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes which the least significant byte first:

@ Exponent
@ +1 LSB of mantissa
@ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be muitiplied
by 2 "($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

278 TURBO Pascal Reference Manual

F-www.lastio.com

Internal Data Formats

The vaiue of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2 “40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, a 1 indicating that the number is
negative, and a 0 indicating that the number is positive.

Strings

A string occupies the number of bytes corresponding to one plus the
maximum length of the string. The first byte contains the current iength
of the string. The following bytes contain the actual characters, with the
first character stored at the lowest address. in the table shown below, L
denotes the current length of the string, and Max denotes the maximum
length:

Current length (L)
+1 First character

@@

@ +2 Second character
@ +L Last character
@ +L+1 Unused
@ + Max Unused

Sets

An element in a set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to ‘‘cut off”” all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

CP/M-80 279

http://www.fastio.com/

Internal Data Formats

File

280

WAV . [as

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is: v
BitAddress = E mod 8

where E denotes the ordinal value of the element.

Interface Blocks

The table below shows the format of a FIB in TURBO Pascal-80:

@+0 Flags byte.

@+1 Character buffer.

@+2 Sector buffer pointer (LSB).
@+3 Sector buffer pointer (MSB).
@+4 Number of records (LSB).
@+5 Number of records (MSB).
@+6 Record length (LSB).
@+7 Record length (MSB).
@+8 Current record (LSB).
@+9 Current record (MSB).
@+10 Unused.

@+1 Unused.

@+12 First byte of CP/M FCB.

@ +47 Last byte of CP/M FCB.

@ +48 First byte of sector buffer.

@ +175 Last byte of sector buffer.

The format of the flags byte at @ + 0 is:

Bit C..3 File type.

Bit 4 Read semaphore.
Bit 5 Write semaphore.
Bit 6 Output flag.

Bit 7 Input flag.

TURBO Pascal Reference Manual

[10.COM

Internal Data Formats

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical 1/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

The sector buffer pointer stores an offset (0..127) in the sector buffer at
@ + 48. For typed and untyped files, the three words from @ + 4 to
© + 9 store the number of records in the file, the record length in bytes,
and the current record number. The FIB of an untyped file has no sector
buffer, and so the sector buffer pointer is not used.

When a text file is assigned to a logical device, only the flags byte and
the character buffer are used.

Pointers

A pointer consists of two bytes containing a 16-bit memory address, and
it is stored in memory using byte reversed format, i.e. the least
significant byte is stored first. The value nil corresponds to a zero word.

Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A muiti-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array
Board: array[l..8,1..8] of Square

you have the following memory layout of its components:

CP/M-80 281

http://www.fastio.com/

Internal Data Formats

lowest address: Board[1,1]
Board([1,2]

Board[1,8]
Board[2,1]
Board[2,2]

Highest address: anrd[8,8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB) as described on page 280.
In general there are two different types of disk files: random access files
and text files. ’

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

sector 0, byte 0: Number of records (LSB)
sector 0, byte 1: Number of records (MSB)
sector 0, byte 2: Record length (LSB)
sector 0, byte 3: Record length (MSB)

282) TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

Text Files

The basic components of a text file are characters, but a text file is sub-
divided into lines. Each line consists of any number of characters ended
by a CR/LF sequence (ASCIl $0D/ $0A). The file is terminated by a
Ctrl-Z (ASCH $1A).

Parameters

Parameters are transferred to procedures and functions via the Z-80
stack. Normally, this is of no interest to the programmer, as the machine
code generated by TURBO Pascal will automatically PUSH parameters
onto the stack before a call, and POP them at the beginning of the sub-
program. However, if the programmer wishes to use external subpro-
grams, these must POP the parameters from the stack themselves.

On entry to an external subroutine, the top of the stack always contains
the return address (a word). The parameters, if any, are located below
the return address, i.e. at higher addresses on the stack. Therefore, to
access the parameters, the subroutine must first POP off the return ad-
dress, then all the parameters, and finally it must restore the return ad-
dress by PUSHing it back onto the stack.

Variable Parameters
With a variable (VAR) parameter, a word is transferred on the stack giv-
ing the absolute memory address of the first byte occupied by the actual
parameter.

Value Parameters
With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars
Integers, Booleans, Chars and declared scalars are transferred on the -
stack as a word. If the variable occupies only one byte when it is stored,

the most significant byte of the parameter is zero. Normally, a word is
POPped off the stack using an instruction like POP HL.

CP/M-80 283

http://www.fastio.com/

Reals

Internal Data Formats

A real is transferred on the stack using six bytes. If these bytes are
POPped using the instruction sequence:

POP HL
POP DE y
POP BC

then L will contain the exponent, H the fifth (least significant) byte of the
mantissa, E the fourth byte, D the third byte, C the second byte, and B
the first (most significant) byte.

Strings

When a string is at the top of the stack, the byte pointed to by SP con-
tains the length of the string. The bytes at addresses SP + 1 through
SP +n (where n is the length of the string) contain the string with the
first character stored at the lowest address. The following machine code
instructions may be used to POP the string at the top of the stack and
store it in StrBuf:

LD DE, StrBuf
LD HL,O

LD B,H

ADD HL, SP

LD C, (HL)
INC BC

LDIR

LD SP, HL

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets). The following machine code in-
structions may be used to POP the set at the top of the stack and store
it in SetBuf.

TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

LD DE, SetBuf
LD HL,O
ADD HL, SP
LD BC, 32
LDIR
LD SP,HL
This will store the least significant byte of the set at the lowest address
in SetBuf.
Pointers

A pointer value is transferred on the stack as a word containing the
memory address of a dynamic variable. The value NIL corresponds to a
zero word.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually PUSHed onto the stack. Instead, a word containing the ad-
dress of the first byte of the parameter is transferred. It is then the
responsibility of the subroutine to POP this word, and use it as the
source address in a block copy operation.

Function Results

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, must be returned in the HL register pair. If the
type of the result is expressed in one byte, then it must be returned in L
and H must by zero.

Reals must be returned in the BC, DE, and HL register pairs. B, C, D, E,
and H must contain the mantissa (most significant byte in B), and L
must contain the exponent.

Strings and sets must be returned on the top of the stack on the for-
mats described on page 284.

Pointer values must be returned in the HL register pair.

CP/M-80 285

http://www.fastio.com/

Internal Data Formats

The Heap and The Stacks

286

As indicated by the memory maps in previous sections, three stack-like
structures are maintained during execution of a program: The heap, the
CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to the address of the bottom
of free memory, i.e the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation of
expressions and to transfer parameters to procedures and functions. An
active for statement also uses the CPU stack, and occupies one word.
At the beginning of a program, the CPU stack pointer StackPtr is set to
the address of the top of free memory.

The recursion stack is used only by recursive procedures and functions,
i.e. procedures and functions compiled with the A compiler directive pas-
sive ({$A-}). On entry to a recursive subprogram it copies its workspace
onto the recursion stack, and on exit the entire workspace is restored to
its original state. The default initial value of RecurPtr at the beginning of
a program, is 1K ($400) bytes below the CPU stack pointer.

Because of this technique, variables local to a subprogram must not be
used as var parameters in recursive calls.

The pre-defined variables:

HeapPtr: The heap pointer,
RecurPtr: The recursion stack pointer, and
StackPtr: The CPU stack pointer

allow the programmer to control the position of the heap and the stacks.
The type of these variables is Integer. Notice that HeapPtr and RecurPtr
may be used in the same context as any o:ner Integer variable, whereas
StackPtr may only be used in assignments and expressions.

When these variables are manipulated, always make sure that they point
to addresses within free memory, and that:

HeapPtr < RecurPtr < StackPtr

TURBO Pascal Reference Manual

wvwfastio.com

Internal Data Formats

Failure to adhere to these rules will cause unpredictable, perhaps fatal,
results.

Needless to say, assignments to the heap and stack pointers must nev-
er occur once the stacks or the heap are in use.

On each call to the procedure New and on entering a recursive pro-
cedure or function, the system checks for collision between the heap
and the recursion stack, i.e. checks if HeapPtr is less than RecurPtr. If
not, a collision has occurred, which results in an execution error.

Note that no checks are made at any time to insure that the CPU stack
does not overflow into the bottom of the recursion stack. For this to
happen, a recursive subroutine must call itself some 300-400 times,
which must be considered a rare situation. If, however, a program re-
quires such nesting, the following statement executed at the beginning
of the program block will move the recursion stack pointer downwards
to create a larger CPU stack:

RecurPtr := StackPtr -2 *MaxDepth -512;

where MaxDepth is the maximum required depth of calls to the recur-
sive subprogram(s). The extra approx. 512 bytes are needed as a
margin to make room for parameter transfers and intermediate results
during the evaluation of expressions.

CP/M-80 287

http://www.fastio.com/

Memory Management Memory Management

If the error message file is not loaded when starting TURBO, the source
Memory Management text starts that much lower in memory. When the compiler is invoked, it
generates object code working upwards from the end of the source

, text. The CPU stack works downwards from the logical top of memory,

Memory Maps and the compiler’'s symbol table works downwards from an address 1K

The foliowing diagrams illustrate the contents of memory at different ($400 bytes) below the logical top of memory.

stages of working with the TURBO system. Solid lines i?dicatgcgad ;

boundaries (i.e. determined by amount of memory, size of your M, ; o s ,

version of TURBO, etc.), whereas dotted lines indicate boundaries w(;ngh Compilation To Disk

are determined at run-time (e.g. by the size of the source text, and by) o .

possible user manipulation of various pointers, etc.). The sizes of the During compilation to a .COM or .CHN file (Com-mode or cHn-mode on

segments in the diagrams do not necessarily reflect the amounts of compiler Options menu, see page 259), the memory looks much as dur-

ing compilation in memory (see preceding section) except that generated
object code does not reside in memory but is written to a disk file. Also,
the code starts at a higher address (right after the Pascal library instead
o gi ; of after the source text). Compilation of much larger programs is thus
Compilation in Memory possible in this mode. o5 oS

memory actually consumed.

During compilation of a program in memory (Memory-mode on compiler
Options menu, see page 259), the memory is mapped as follows:

0000
CP/M and run-time workspace
Pascal Library

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Turbo interface, editor, and compiler

____________ — — - Error messages, optional

Error messages, optional

Source text Source text

———————————— i ‘l‘ " Object code growing upward

T ‘ T Symbol table growing downward
Symbol table growing downward

T CPU stack growing downward

T CPU stack growing downward

CP/M
HighMem

CP/M
HighMem

Figure 22-5: Memory map during compilation in memory Figure 22-6: Memory map during compilation to a file

288 TURBO Pascal Reference Manual CP/M-80 289

PD wvwfastio.com

http://www.fastio.com/

Memory Management Memory Management

Execution in Memory Execution of A Program File
When a program file is executed (either by the Run command with the

When a program is executed in direct - or memory - mode (i.e. the ’ |
prog vy (Memory-mode on the compiler Options menu selected, by an eXecute

Memory-mode on compiler Options menu is selected, see page 259), the

memory is mapped as follows:

0000 J
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

b v -t - - - o e a—— -

Object code

____________ — = = Default initial value of HeapPtr
l Heap growing upward

I Recursion stack growing downward
| 1L __ Default initial value of RecurPtr

I CPU stack growing downward -
| 1 . Default initial state of StackPtr

$y

Program variables growing downward
CP/M
HighMem

Figure 22-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known. The
heap pointer HeapPtr is set to this value by default, and the heap grows
from here and upwards in memory towards the recursion stack. The
maximum memory size is BDOS minus one (indicated on the compiler
Options menu). Program variables are stored from this address and
downwards. The end of the variables is the ‘top of free memory’ which
is the initial value of the CPU stack pointer StackPtr. The CPU stack
grows downwards from here towards the position of the recursion stack
pointer RecurPtr, $400 bytes lower than StackPtr. The recursion stack
grows from here downward towards the heap.

command, or directly from CP/M), the memory is mapped as follows:

0000

CP/M and run-time workspace
Pascal Library

Default program start address

Object code

e e e e - - L. — — Default initial value of HeapPtr
—l Heap growing upward

_T Recursion stack growing downward
L — Default initial value of RecurPtr

1 CPU stack growing downward
L — Default initial state of StackPtr

Program variables growing downward
__________ . — — Default end address
Loader Maximum memory size

CP/M

HighMem
Figure 22-8: Memory map during execution of a program file

This map resembiles the previous, except for the absence of the TURBO
interface, editor, and compiler (and possible error messages) and of the
source text. The default program start address (shown on the compiler
Options menu) is the first free byte after the Pascal runtime library. This
value may be manipulated with the Start address command of the com-
piler Options menu, e.g. to create space for absolute variables and/or
external procedures between the library and the code. The maximum
memory size is BDOS minus one, and the default value is determined by
the BDOS location on the computer in use.

290

wvwfastio.com

TURBO Pascal Reference Manual

291

http://www.fastio.com/

Memory Management

If programs are to be translated for other systems, care should be take_n
to avoid collision with the BDOS. The maximum memory may be mani-
pulated with the End address command of the compiler Options menu.
Notice that the default end address setting is approx. 700 to 1000 bytes
lower than maximum memory. This is to allow space for the ioader
which resides just below BDOS when .COM files are Run or eXecuted
from the TURBO system. This loader restores the TURBO editor, com-
piler, and possible error messages when the program finishes and thus
returns control to the TURBO system.

TURBO-BCD

Chapter 23
TURBO-BCD

TURBO-BCD is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It employs binary coded de-
cimal (BCD) Real numbers to obtain higher accuracy, especially needed
in programs for business applications.

If you are interested in purchasing TURBO-BCD, please see page 3 for
ordering information.

TURBO-BCD will compile and run any program written for standard
TURBO or TURBO-87 Pascal; the only difference being in real number
processing and real number format.

Files On the TURBO-BCD Distribution Diskette

In addition to the files Iistga on page 8, the TURBO-BCD distribution
diskette contains the file

TURBOBCD.COM
(TURBOBCD.CMD for CP/M-86). This file contains the special TURBO-

BCD system. If you want to install it with TINST, you must first tem-
porarily rename it to TURBO.COM (or .CMD).

BCD Range

TURBO-BCD’s BCD Reals have a range of 1E-63 through 1E + 63 with
18 significant digits.

292 TURBO Pascal Reference Manual ;‘ TURBO-BCD 293

wvwfastio.com

http://www.fastio.com/

Form function

Form function

Syntax: Form(St,Var1,Var2,..,VarN)

The Form function provides advanced numeric and string formatting. St
is a string expression giving an image of the format string, as detailed in
the following, and Var1,Var2,..,VarN are Real, Integer, or String expres-
sions. The result is a String of the same length as St.

St is made up of a number of field specifiers, each of which corresponds
to one parameter in the parameter list. Blanks and characters other than

the ones defined in the following serve to separate fields and will also
appear in the formatted result, viz:

Form('Total: $#, ### ##',61234.56) = 'Total: $1,234.56'

The arguments in the argument list use the field specifiers in the order
of appearance:

Form('Please @REAAA® us at (###) ### ####', 'phone’',408,438,8400) =
'Please phone us at (408) 438 8400 '

If there are more arguments in the argument list than there are field
specifiers in the format string, the arguments in excess are ignored. If
there are less arguments than field specifiers, the field specifiers in ex-
cess are returned unchanged:)

Form('### ##',12.34,43.21) = ' 12.34"
Form('### ## —## ##',123.4) = '123.40 —##. ##'

There are two types of field specifiers: numeric and string.

Numeric Fields

A numeric field is a sequence of one or more of the following characters:

@ * $ - +

294 TURBO Pascal Reference Manual

wvwfastio.com

Form function

Any other character terminates the numeric field. The number is re-
turned right-justified within the field, decimals are rounded if they exceed
the number of decimals specified by the format, and if the number is too
!alr(ge to be returned in the field, all digit positions are filled with aster-
isks.

A digit position. If the numeric field contains no @ or * characters,
upused digits are returned as blanks. f the numeric field- contains no
sign positions (- or “ + '’ characters) and the number is negative, a float-
ing minus is returned in front of the number.)

Examples:

Form('####',34.567) ="' 35

Form('### ##',12.345') = ' 12.35"'

Form('#### ##',-12.3) = ' -12.30"
= |

Form("### ##',61234.5) R XN

A digit position. Unused digits are forced to be returned as zeros instead
of bla_nks. Th|e @ character needs only occur once in the numeric field
to activate thls_ effect. The sign of the number will not be returned unless
the field contains a sign position (-’ or ‘ + ' character).

Examples: |
Form('@##',9) = '009' B
Form('@@@.@@',12.345) = '012.35"

A digit position. Unused digits are forced to be returned as asterisks in-
§tead of blanks. The * character needs only occur once in the numeric
field to activate this effect. The sign of the number will not be returned
unless the field contains a sign position (-’ or ‘ 4’ character).

Examples:
Form('*##.#',4.567) = '**4 57"
Form('****' 123) = '"%#123"
TURBO-BCD 295

http://www.fastio.com/

Form function Form function

$ A digit position. A floating $-sign is returned in front of the number. The String Fields

‘$’ character need only occur once in the numeric field to activate this

effect. A string field is a sequence of # or @ characters. If the string parameter
is longer than the string field, only the first characters of the string are

Examples: returned.

Form('$##### ##',123.45) = ' $123.45' , ,

Form('###sst #$',-12.345) = ' -$12.35° # !f thg field contains only # characters, the string will be returned left

Form('*$#ss ##',12.34) = '*¥*$12 34" justified.

- A sign position. If the number is negative, a minus will be returned in @ If one or more ‘@’ characters are present in the field, the string will be

that position; if it is positive, a blank is returned. returned right justified within the length of the field.

Examples: \ Examples:

Form('-### ##',6-1.2) = '- 1.20'

Form('-### ##',12) - ' 12.00 Form('###stassti#s ', 'Pascal') = 'Pascal !

Form(' *##### ##-',-123.45) = '*¥*¥123 45-" Form('@#####ss#ss#' , 'Pascal') = ' Pascal'
Form('####', 'TURBO Pascal') = 'TURBO '

+ A sign position. If the number is positive, a plus will be returned in that . Form('@@@@', 'TURBO Pascal') = 'TURBO '

position; if it is negative, a minus is returned.

Examples: Writing BCD Reals

Form('+### ##',-1.2) = '- 1.20' . . i
Form(' +### ##',12) = '+ 12.00"' \ S BCD Reals are written on a format slightly different from the standard
Form('*$asss ##+',12.34) = '**¥*§12 344" - ; format, as described below.

, A decimal comma or a separator comma. The last period or comma in R The decimal representation o_f the value of R is output in a field 25 char-
the numeric image is considered the decimal delimiter. acters wide, using floating point format. For R > = 0.0, the format is:
A decimal period or a separator period. The last period or comma in the LAIF AR AR RBHE 2
numeric image is considered the decimal delimiter.

g For R < 0.0, the format is:
Examples: bbb £ 1 4 0
Form('##, ### #u# ##',12345.6) = ' 12,345.60' s s
Form('$#.#u# #u# ##',-12345.6) = ' -$12.345,60' ‘]
Form(' *$, ###, #tt#t ##+ ', 12345.6) = '***$12,345.60+" ' where L represents a blank, # represents a digit, and * represents ei-
Form('##,### . ##' , 123456.0) = TEX KA ek ther plus or minus.

296 TURBO Pascal Reference Manual TURBO-BCD 297

PD wvwfastio.com

http://www.fastio.com/

Writing BCD Reals Internal Data Format
riting

The most significant bit of the first byte contains the sign. 0 means posi-
tive and 1 means negative. The remaining seven bits contain the ex-
ponent in binary format with an offset of $3F. Thus, an exponent of $41
indicates that the value of the mantissa is to be multiplied by 107($41-
$3F) = 102 = 100. If the first byte is zero, the floating point value is

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*##

] considered to be zero. Starting with the tenth byte, each byte of the

For R < 0.0: : mantissa contains two digits in BCD format, with the most significant di-

L. N ' git in the upper four bits. The first digit contains the 1/10’s, the second

blanks-#.digitsE*## contains the 1/100’s, etc. The mantissa is always normalized, i.e. the
where blanks represents zero or more blanks, digits represents from 1 first digit is never O unless the entire number is 0.

to 17 digits, # repref/ents a digit, and * represents either plus or minus. This 10-byte Real is not compatible with TURBO standard or 8087

Reals. This, however, should only be a problem if you develop programs

s in different versions of TURBO which must interchange data. The trick
Formatted Writing then is simply to provide an interchange-format between the programs
The Form standard function can be used as a write parameter to pro- in which you transfer Reals on ASCII fF"ma‘v for instance.

duce formatted output:

Write(Form('The price is $###, ###, ### ##' ,Price));

Internal Data Format

The BCD Real variable occupies 10 bytes, and consists of a fioating
point value with an 18 digit binary coded decimal mantissa, a 7-bi'§ 10’'s
exponent, and a 1-bit sign. The exponent and the sign are‘stored in the
first byte and the mantissa in the next nine bytes with the least
significant byte first:

@+0 Exponent and sign.
@+1 LSB of mantissa.
@+9 MSB of mantissa.
298 TURBO Pascal Reference Manual TURBO-BCD 299

wvwfastio.com

http://www.fastio.com/

Internal Data Format

300

wvwfastio.com

Notes:

TURBO Pascal Reference Manual

TURBO-87
Chapter 24
TURBO-87

TURBO-87
TURBO-87 is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It uses the Intei 8087 math-
processor for real number arithmetic, providing a significant gain in
speed. TURBO-87 does not include the 8087 chip.

If you are interested in purchasing TURBO-87, please see page 3 for
ordering information.

TURBO-87 will compile and run any program written for standard
TURBO Pascal; the only difference being in real number processing and
real number format.

TURBO-87 programs will not run on a computer without the 8087-chip
installed, whereas the opposite will work. ‘ \

Files On the TURBO-87 Distribution Diskette

In addition to the files listed on page 8, the TURBO-87 distribution
diskette contains the file

TURBO-87.COM
(TURBO-87.CMD for CP/M-86). This file contains the special TURBO-87

system. If you want to install it with TINST, you must first temporarily
rename it to TURBO.COM (or .CMD).

TURBO-87 301

http://www.fastio.com/

Writing 8087 Reals SUMMARY

Appendix A

SUMMARY OF STANDARD PROCEDURES
AND FUNCTIONS

Writing 8087 Reals

8087 Reals are written on a format slightly different from the standard

format, as described below.

R The decimal representation of the value of R is output in a field 23 char-
acters wide, using floating point format. For R > = 0.0, the format is: .
This appendix lists all standard procedures and functions available in
TIRE - o D TURBO Pascal and describes their application, syntax, parameters, and
type. The following symbols are used to denote elements of various
For R < 0.0, the format is: types: :
e T type any type
string any string type
where L represents a blank, # represents a digit, ahd * represents ei- file any file type
ther plus or minus. scajar any scalar type
pointer any pointer type
R:n The decimal representation of the value of R is output, right adjusted in

a field n characters wide, using floating point format. For R > = 0.0:
blanks#.digitsE*##

For R < 0.0:
blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from 1
to 14 digits, # represents a digit, and * represents either plus or minus.

Internal Data Format

302

The 8087 chip supports a range of data types. The one used by
TURBO-87 is the long real; its 64-bits yielding 16 digits accuracy and a
range of 4.19E-307 to 1.67E + 308.

This 8-byte Real is not compatible with TURBO standard or BCD Reals.
This, however, should only be a problem if you develop programs in
different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCIHl format, for instance.

TURBO Pascal Reference Manual

wvwfastio.com

Where parameter type specification is not present, it means that the
procedure or function accepts variable parameters of any type.

Input/Output Procedures and Functions

The following procedures use a non-standard syntax in their parameter
lists:

_procedure

Read (var F: file of type; var V: type);
Read (var F: text; var I: Integer);
Read (var F: text; var R: Real);

Read (var F: text; var C: Char);

Read (var F: text; var S: string);
Readin (var F: text);

Write (var F: file of type; var V: type),
Write (var F: text; /: Integer);

Write (var F: text; R: Real);

Write (var F: text; B: Boolean);

Write (var F: text; C: Char);

Write (var F: text; S: string);

Writeln (var F: text);

: ‘ TURBO-87 303

http://www.fastio.com/

	./tp3_226-227.tif
	./tp3_228-229.tif
	./tp3_230-231.tif
	./tp3_232-233.tif
	./tp3_234-235.tif
	./tp3_236-237.tif
	./tp3_238-239.tif
	./tp3_240-241.tif
	./tp3_242-243.tif
	./tp3_244-245.tif
	./tp3_246-247.tif
	./tp3_248-249.tif
	./tp3_250-251.tif
	./tp3_252-253.tif
	./tp3_254-255.tif
	./tp3_256-257.tif
	./tp3_258-259.tif
	./tp3_260-261.tif
	./tp3_262-263.tif
	./tp3_264-265.tif
	./tp3_266-267.tif
	./tp3_268-269.tif
	./tp3_270-271.tif
	./tp3_272-273.tif
	./tp3_274-275.tif
	./tp3_276-277.tif
	./tp3_278-279.tif
	./tp3_280-281.tif
	./tp3_282-283.tif
	./tp3_284-285.tif
	./tp3_286-287.tif
	./tp3_288-289.tif
	./tp3_290-291.tif
	./tp3_292-293.tif
	./tp3_294-295.tif
	./tp3_296-297.tif
	./tp3_298-299.tif
	./tp3_300-301.tif
	./tp3_302-303.tif

