File Type Definition

The component type of a file may be any type, except a file type. (that

is, with reference to the example above, file of Product is not allowed).
File variables may appear in neither assignments nor expressions.

Operations on Files

The following sections describe the procedures available for file han-

diing. The identifier FilVar used throughout denotes a file variable
identifier declared as described above.

Assign

Syntax: Assign(FilVar, Str);

Str is a string expression yielding any legal file name. This file name is
assigned to the file variable FilVar, and all further operation on FilVar wil
operate on the disk file Str. Assign should never be used on a file which
is in use.

Rewrite

Syntax: Rewrite(FilVan);

A new disk file of the name assigned to the file variable FilVar is created
and prepared for processing, and the file pointer is set to the beginning
of the file, i.e. component no. 0. Any previously existing file with the
same name is erased. A disk file created by rewrite is initially empty, i.e.
it contains no elements.

Reset

94

Syntax: Reset(FilVan);

The disk file of the name assigned to the file variable FilVar is prepared
for processing, and the file pointer is set to the beginning of the file, i.e.
component no. 0. FilVar must name an existing file, otherwise an /O er-
ror occurs.

TURBO Pascal Reference Manual

HHQ‘” PDF - www.lastio.com

Operations on Files

Read

Syntax: Read(FilVar, Var);

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is read from the disk file, and fol-
lowing each read operation, the file pointer is advanced to the next com-
ponent.

Write

Syntax: Write(FilVar, Varn),

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is written to the disk file, and fol-
lowing each write operation, ghe file pointer is advanced to the next
component.

Seek

Syntax: Seek(FilVar, n);

Seek moves the file pointer is moved to the n’th component of the file
denoted by FilVar. n is an integer expression. The position of the first

- component is 0. Note that in order to expand a file it is possible to seek

one component beyond the last component. The statement
Seek(FilVar, FileSize(FilVar));

thus places the file pointer at the end of the file (FileSize returns the
number of components in the file, and as the components are numbered
from zero, the returned number is one greater than the number of the
last component).

FILE TYPES 95


http://www.fastio.com/

Operations on Files

Flush
Syntax: Flush(FilVan;

Flush empties the internal sector buffer of the disk file FilVar, and thus
assures that the sector buffer is written to the disk if any write opera-
tions have taken place since the last disk update. Flush also insures that
the next read operation will actually perform a physical read from the
disk file. Flush should never be used on a closed file.

Close
Syntax: Close(FilVar);
The disk file associated with FilVar is closed, and the disk directory is
updated to reflect the new status of the file. Notice that it is necessary
to Close a file, even if it has only been read from—you would otherwise
quickly run out of file handles.

Erase
Syntax: Erase(FilVar);
The disk file associated with FilVar is erased. If the file is open, i.e. if the
file has been reset or rewritten but not closed, it is good programming
practice to close the file before erasing it.

Rename
Syntax: Rename(FilVar, Str);
The disk file associated with FilVar is renamed to a new name given by
the string expression Str. The disk directory is updated to show the new

name of the file, and further operations on FilVar will operate on the file
with the new name. Rename should never be used on an open file.

Operations on Files

Notice that it is the programmer’s responsibility to assure that the file
named by Str does not already exist. If it does, multiple occurrences of
the same name may result. The following function returns True if the file
name passed as a parameter exists, otherwise it returns False:

type
Name=string[66];

function Exist(FileName: Name): boolean;
Var
Fil: file;
begin
Assign(Fil, FileName);
{$I-}
Reset (Fil);
{$1+}
Exist := (IOresult = 0)
end;

File Standard Functions

The following standard functions are applicable tq files:

EOF
Syntax: EOF(FilVar);

A Boolean function which returns True if the file pointer is positioned at
the end of the disk file, i.e. beyond the last component of the file. If not,
EOF returns Faise.

FilePos
Syntax: FilePos(FilVar);

An integer function which returns the current position of the file pointer.
The first component of a file is 0.

FILE TYPES 97

96 TURBO Pascal Reference Manual

ClihPDF - wyw.faslio.com L

i


http://www.fastio.com/

C

IhPDF -

File Standard Functions

FileSize

Syntax: FileSize(FilVar);

An integer function which returns the size of the disk file expressed as
the number of components in the file. If FileSize(FilVan) is zero, the file is
empty.

Using Files

98

Before using a file, the Assign procedure must be called to assign the
file name to a file variable. Before input and/or output operations are
performed, the file must be opened with a call to Rewrite or Reset. This
call will set the file pointer to point to the first component of the disk file,
i.e. FilePos(FilVar) = 0. After Rewrite, FileSize(FilVar) is 0.

A disk file can be expanded only by adding components to the end of
the existing file. The file pointer can be moved to the end of the file by
executing the following sentence:

Seek(FilVar, FileSize(FilVar));

When a program has finished its input/output operations on a file, it
should always call the Close procedure. Failure to do so may result in
loss of data, as the disk directory is not properly updated.

The program below creates a disk file called PRODUCTS.DTA, and
writes 100 records of the type Product to the file. This initializes the file

‘for subsequent random access (i.e. records may be read and written

anywhere in the file).

TURBOQO Pascal Reference Manual

wvwfastio.com

1

Using Files

program InitProductFile;

const
MaxNumberOfProducts = 100;

type
ProductName = string[20];
Product = record

Name: ProductName;

ItemNumber: Integer;

InStock: Real;

Supplier: Integer;
end;

Var
ProductFile:
ProductRec:
I: Integer;

begin
Assign(ProductFile, 'PRODUCT.DTA');

Rewrite(ProductFile); {open the file and delete any data}
with ProductRec do
begin
Name := '';
for I :=
begin
ItemNumber := I;
Write(ProductFile,ProductRec);
end;
end;
Close(ProductFile);
end.

file of Product;
Product;

InStock := 0; Supplier := 0;
1 to MaxNumberOfProducts do

The following program demonstrates the use of Sseek on random files.
The program is used to update the ProductFile created by the program
in the previous example.

FILE TYPES 99


http://www.fastio.com/

Using Files Text Files

Text Files

program UpDateProductFile;
const
MaxNumberOfProducts = 100;
type
ProductName = string[R0];
Product = record
Name: ProductName;
ItemNumber: Integer;
InStock: Real;
Supplier: Integer;
end;
Var
ProductFile: file of Product;
ProductRec: Product;
I, Pnr: Integer;
begin
Assign(ProductFile, 'PRODUCT.DTA'); Reset(ProductFile);
ClrScr;
Write('Enter product number (0= stop) '); Readln(Pnr);
while Pnr in {1..MaxNumberOfProducts] do
begin
Seek(ProductFile,Pnr-1); Read(ProductFile,ProductRec);
with ProductRec do

begin
Write('Enter name of product (',Name:20,') ');
Readln(Name);

Unlike all other file types, text files are not simply sequences of values
of some type. Although the basic components of a text file are charac-
ters, they are structured into lines, each line being terminated by an
end-of-line marker (a CR/LF sequence). The file is further ended by an
end-of-file marker (a Ctrl-Z). As the length of lines may vary, the position
of a given line in a file cannot be calculated. Text files can therefore only
be processed sequentially. Furthermore, input and output cannot be per-
formed simultaneously to a text file.

Operations on Text Files

A text file variable is declared by referring to the standard type identifier
Text. Subsequent file operations must be preceded by a call to Assign
and a call to Reset or Rewrite must furthermore precede input or output
operations.

Rewrite is used to create a new text file, and the only operation then al-
lowed on the file is the appending of new components to the end of the
file. Reset is used to open an existing file for reading, and the only
operation allowed on the file is sequential reading. When a new textfile
is closed, an end-of-file mark is automatically appended to the file.

Character input and output on text files is made with the standard pro-

cedures Read and Write. Lines are processed with the special text file

j [ i tock (',InStock:20:0,' ') ;
Write('Enter number in stock ( yoh operators Readin, Writeln, and Eoln:

Readln(InStock);
Write('Enter supplier number (',Supplier:20,'}) ');
Readln(Supplier);
ItemNumber:=Pnr;
end;
Seek(ProductFile,Pnr-1);
Write(ProductFile, ProductRec);
ClrScr; Writeln;
Write('Enter product number (0= stop) '); Readln(Pnr);

ReadlLn
Syntax: Readin(Filvar);

Skips to the beginning of the next line, i.e. skips all characters up to and
including the next CR/LF sequence.

end;
8”l(‘lilose( ProductFile); WriteLn
Syntax: WriteLn(Filvar);
Writes a line marker, i.e. a CR/LF sequence, to the textfile.
100 TURBO Pascal Reference Manual FILE TYPES 101
\ ClihPDF - wavw.lastio.com k



http://www.fastio.com/

ChhPDF -

Text Files

Eoin

Syntax: Eoln(Filvar);

A Boolean function which returns True if the end of the current line has
been reached, i.e. if the file pointer is positioned at the CR character of
the CR/LF line marker. If EOF(Filvar) is true, Eoin(Filvar) is also true.

SeekEoln

Syntax: SeekEolIn(FilVan);

Similar to Eoln, except that it skips blanks and TABs before it tests for
an end-of-line marker. The type of the result is boolean.

SeekEof

102

Syntax: SeekEof(FilVar);

Similar to EOF, except that it skips blanks, TABs, and end-of-line mark-
ers (CR/LF sequences) before it tests for an end-of-file marker. The type
of the result is boolean.

When applied to a text file, the EOF function returns the value True

if the file pointer is positioned at the end-of-file mark (the CTRL/Z char-
acter ending the file). The Seek and Flush procedures and the FilePos
and FileSize functions are not applicable to text files.

The following sample program reads a text file from disk and prints it on

the pre-defined device Lst which is the printer. Words surrounded by
Ctrl-S in the file are printed underlined:

TURBO Pascal Reference Manual

wvwfastio.com

Text Files

program TextFileDemo;
Var
FilVar: Text;
Line,
ExtraLine: string[255];
I: Integer;
UnderLine: Boolean;
FileName: string[l14];
begin
UnderLine := False;
Write('Enter name of file to list: ');
Readln(FileName);
Assign(FilVar,FileName);
Reset(FilVar);
while not Eof(FilVar) do
begin
Readln(FilVar,Line);
I :=1; Extraline := '';
for I := 1 to Length(Line) do
begin
if Line[I]<>"S then
begin
Write(Lst,Line[I]);
if UnderLine then Extraline := ExtraLine+'_'
else Extraline := Extraline+' ';
end
else UnderLine := not UnderLine;
end;
Write(Lst,"M); Writeln(Lst,Extraline);
end; {while not Eof}
end.

Further extensions of the procedures Read and Write, which facilitate

convenient handling of formatted input and output, are described on page
108.

FILE TYPES 103


http://www.fastio.com/

lClinPD

Text Files

Logical Devices

CON:

In TURBO Pascal, external devices such as terminals, printers, and
modems are regarded as logical devices which are treated like text files.
The following logical devices are available:

The console device. Output is sent to the operating system’s console
output device, usually the CRT, and input is obtained from the console
input device, usually the keyboard. Contrary to the TRM: device (see
below), the CON: device provides buffered input. In short, this means
that each Read or Readin from a textfile assigned to the CON: device
will input an entire line into a line buffer, and that the operator is provid-
ed with a set of editing facilities during line input. For more details on
console input, please refer to pages 105 and 108 .

TRM: The terminal device. Output is sent to the operating system'’s console

KBD:

LST:

AUX:

USR:

104

output device, usually the CRT, and input is obtained from the console
input device, usually the keyboard. Input characters are echoed, unless
they are control characters. The only control character echoed is a car-
riage return (CR), which is echoed as CR/LF.

The keyboard device (input only). Input is obtained from the operating
system’s console input device, usually the keyboard. Input is not
echoed.

The list device (output only). Output is sent to the operating system’s list
device, typically the line printer.

The auxiliary device. In PC/MS-DOS, this is COM1:; in CP/M it is RDR:
and PUN..

The user device. Output is sent to the user output routine, and input is
obtained from the user input routine. For further details on user input
and output, please refer to pages 209 , 241 , and 272 ..

These logical devices may be accessed through the pre-assigned files
discussed on page 105 or they may be assigned to file variables, exactly
like a disk file. There is no difference between Rewrite and Reset on a
file assigned to a logical device, Close performs no function, and an at-
tempt to Erase such a file will cause an 1/O error.

TURBOQ Pascal Reference Manual

wvwfastio.com

P

Text Files

The standard functions Eof and Eoln operate differently on logical dev-
ices than on disk files. On a disk file, Eof returns True when the next
character in the file is a Ctrl-Z, or when physical EOF is encountered,
and Eoin returns True when the next character is a CR or a Ctrl-Z.
Thus, Eof and Eoln are in fact ‘look ahead’ routines.

As you cannot look ahead on a logical device, Eoln and Eof operate on
the last character read instead of on the next character. In effect, Eof
returns True when the last character read was a Ctrl-Z, and Eoin re-
turns True when the last character read was a CR or a Ctrl-Z. The fol-
lowing table provides an overview of the operation of Eoln and Eof

On Files On Logical Devices

next character
CR or Ctrl-Z or if
EOF is true

Eoln is true if is if current character

is CR or Ctrl-Z

Eof is true if if current character

is Ctrl-Z

next character is
Ctrl-Z or if physical
EOF is met

Table 14-1: Operation of EOLN and Eof

Similarly, the Readln procedure works differently on logical devices than
on disk files. On a disk file, Readin reads all characters up to and includ-
ing the CR/LF sequence, whereas on a logical device it only reads up to
and including the first CR. The reason for this is again the inability to
‘look ahead’ on logical devices, which means that the system has no
way of knowing what character will follow the CR.

Standard Files

As an alternative to assigning text files to logical devices as described
above, TURBO Pascal offers a number of pre-declared text files which
have already been assigned to specific logical devices and prepared for
processing. Thus, the programmer is saved the reset/rewrite and close
processes, and the use of these standard files further saves code:

{  FLE TYPES 105


http://www.fastio.com/

Text Files

Input
The primary input file. This file is assigned to either the CON: device or
to the TRM: device (see below for further detail).

Output
The primary output file. This file is assigned to either the CON: device or
to the TRM: device (see below for further detail).

Con Assigned to the console device (CON:).

Trm Assigned to the terminal device (TRM:).

Kbd Assigned to the keyboard device (KBD:).

Lst Assigned to the list device (LST:).

Aux Assigned to the auxiliary device (AUX:).

Usr Assigned to the user device (USR:).

Notice that the use of Assign, Reset, Rewrite, and Close on these files
is illegal.

When the Read procedure is used without specifying a file identifier, it
always inputs a line, even if some characters still remain to be read from
the line buffer, and it ignores Ctrl-Z, forcing the operator to terminate the
line with RETURN. The terminating RETURN is not echoed, and internal-
ly the line is stored with a Ctrl-Z appended to the end of it. Thus, when
less values are specified on the input line than there are parameters in
the parameter list, any Char variables in excess will be set to Ctrl-Z,
strings will be empty, and numeric variables will remain unaltered.

The B compiler directive is used to control this ‘forced read’ feature
above. The default state is {$B + }, and in this state, read statements
without a file variable will always cause a line to be input from the con-
sole. If a {$B-} compiler directive is placed at the beginning of the pro-
gram (before the declaration part), the shortened version of read will act
as if the input standard file had been specified, i.e.:

Read(v1,v2,...,vn) equals Read(input,v1,v2,...,vn)

and in this case, lines are only input when the line buffer has been emp-
tied. The {$B-) state follows the definition of Standard Pascal 1/O,
whereas the default {$B + ) state, not confirming to the standard in all
aspects, provides better control of input operations.

If you don’t want input echoed to the screen, you should read from the
standard file Kbd:

Read(Kbd, Var)

106 ‘ TURBO Pascal Reference Manual

wvwfastio.com

Text Files

As the standard files Input and Output are used very frequently, they
are chosen by default if no file identifier is stated. The following list
shows the abbreviated text file operations and their equivalents:

Write(Ch) Write(Output,Ch)
Read(Ch) Read(Input,Ch)
Writein Writein(Output)
Readin Readin(input)
Eof Eof(input)

Eoin Eoin(input)

The following program shows the use of the standard file Lst to list the
file ProductFile (see page 99) on the printer: '

program ListProductFile;
const
MaxNumberOfProducts = 100;
type
‘ProductName = string[20];
Product = record
Name: ProductName; ItemNumber: Integer;
InStock: Real;
Supplier: Integer;
end;
Var
ProductFile: file of Product;
ProductRec: Product; I: Integer;
begin
Assign(ProductFile, ' PRODUCT.DTA'); Reset(ProductFile);
for I := 1 to MaxNumberOfProducts do
begin
Read(ProductFile, ProductRec);
with ProductRec do

begin
if Name<>'' then
Writeln(Lst, 'Item: ', ItemNumber:5,' ', Name:20,
' From: ', Supplier:5,
' Now in stock: ',InStock:0:0);
end;
end;
Close(ProductFile);
end.
FILE TYPES 107


http://www.fastio.com/

IClihPD

Text Input and Output

Text Input and Output

Input and output of data in readable form is qone through tex_t flle_=s as
described on page 101. A text file may be assigned to any device, i.e. a
disk file or one of the standard I/O devices. Input and output on tex_t
files is done with the standard procedures Read, Readin, Wr/tg_, and Wri-
teln which use a special syntax for their parameter lists to facilitate max-
imum flexibility of input and output.

In particular, parameters may be of different types, in which case the I/Q
procedures provide automatic data conversion to and from the basic
Char type of text files.

If the first parameter of an 1/O procedure is a variable i_dentifier
representing a text file, then 1/O will act on that file. If not, /O W|_|I act on
the standard files Input and Output. See page 105 for more detail.

Read Procedure

The Read procedure provides input of characters, strings, and numeric
data. The syntax of the Read statement is:

Read(Varl,Var2,...,VarN)
or
Read(FilVar,Varl,Var2,...,VarN)

where Var1, Var2,...,VarN are variables of type Char, String, Integer or
Real. In the first case, the variables are input from the standarq file
Input, usually the keyboard. In the second case, t[le variables are input
from the text file which is previously assigned to FilVar and prepared for
reading.

With a variable of type Char, Read reads one charactfar frpm the fi‘le and
assigns that character to the variable. If the file is a dISk.fl|e, Eoin is true
if the next character is a CR or a Ctrl-Z, and Eof is true if the next char-
acter is a Ctrl-Z, or physical end-of-file is met. If the file is a Ioglca! dev-
ice (including the standard files /nput and Outpui),. Eoln is true if the
character read was a CR or if Eof is True, and Eof is true if the charac-
ter read was a Ctrl-Z.

108 TURBO Pascal Reference Manual

wvwfastio.com

Text Input and Output

With a variable of type string, Read reads as many characters as al-
lowed by the defined maximum length of the string, unless Eoln or Eof
is reached first. Eoln is true if the character read was a CR or if Eof is
True, and Eof is true if the last character read is a Ctrl-Z, or physical
end-of-file is met.

With a numeric variable (Integer or Real), Read expects a string of char-
acters which complies with the format of a numeric constant of the
relevant type as defined on page 43 . Any blanks, TABs, CRs, or LFs
preceding the string are skipped. The string must be no longer than 30
characters, and it must be followed by a blank, a TAB, a CR, or a Ctrl-Z.
If the string does not conform to the expected format, an 1/O error oc-
curs. Otherwise the numeric string is converted to a value of the ap-
propriate type and assigned to the variable. When reading from a disk
file, and the input string is ended with a blank or a TAB, the next Read
or Readin will start with the character immediately following that blank
or TAB. For both disk files and logical devices, Eoln is true if the string
was ended with a CR or a Ctrl-Z, and Eof is true if the string was ended
with a Ctrl-Z.

A special case of numeric input is when Eoln or Eof is true at the be-
ginning of the Read (e.g. if input from the keyboard is only a CR). In that
case no new value is assigned to the variable, and the variable retains
its former value.

If the input file is assigned to the console device (CON:), or if the stan-
dard file Input is used in the { $B + } mode (default), special rules apply
to the reading of variables. On a call to Read or Readin, a line is input
from the console and stored into a buffer, and the reading of variables
then uses this buffer as the input source. This allows for editing during
entry. The following editing facilities are available:

BACKSPACE and DEL

Backspaces one character position and deletes the character there.
BACKSPACE is usually generated by pressing the key marked BS or
BACKSPACE or by pressing Ctrl-H. DEL is usually generated by the key
thus marked, or in some cases RUB or RUBOUT.

Esc and Ctrl-X

Backspaces to the beginning of the line and erases all characters input.

File Types 109


http://www.fastio.com/

Text Input and Output

Ctri-D
Recalls one character from the last input line.

Ctri-R
Recalls the last input line.

RETURN and Ctri-M
Terminates the input line and stores an end-of-line marker (a CR/LF se-
quence) in the line buffer. This code is generated by pressing the key
marked RETURN or ENTER. The CR/LF is not echoed to the screen.

Ctrl-Z
Terminates the input line and stores an end-of-file marker (a Ctrl-Z char-
acter) in the line buffer.

The input line is stored internally with a Ctrl-Z appended to the end of it.
Thus, if fewer values are specified on the input line than the number of
variables in Reads parameter list, any Char variables in excess will be
set to Ctrl-Z, Strings will be empty, and numeric variables will remain un-
changed.

The maximum number of characters that can be entered on an input line
from the console is 127 by default. However, you may lower this limit by
assigning an integer in the range 0 through 127 to the predefined vari-
able BufLen.

Example:

Write('File name (max. 14 chars): '});
BuflLen:=14;

Read(FileName);

Notice that assignments to BufLen affect only the immediately following
Read. After that, BufLen is restored to 127.

ReadIn Procedure
The Readin procedure is identical to the Read procedure, except that
after the last variable has been read, the remainder of the line is
skipped. Le., all characters up to and including the next CR/LF se-

quence (or the next CR on a logical device) are skipped. The syntax of
the procedure statement is:

110 TURBO Pascal Reference Manual

wvwfastio.com

Text Input and Output

Readln(Varl,Var2,...,VarN)
or

Readln(FilVar,Varl,Var2,...,VarN)

A_fter a Readin, the following Read or Readin will read from the begin-
ning of the next line. Readin may also be called without parameters:

Readln
or
Readln(FilVar)

in which case the remaining of the line is skipped. When Readin is read-
ing from the console (standard file Input or a file assigned to CON:), the
terminating CR is echoed to the screen as a CR/LF sequence, as op-
posed to Read.

Write Procedure

The Write proced.ure provides output of characters, strings, boolean
values, and numeric values. The syntax of a Write statement is:

Write(Var1,Var2,...,VarN)
or
Write(FilVar,Var1,Var2,...,VarN)

where Var1, Var2,...,VarN (the write parameters) are variables of type
Char, Sfring, Boolean, Integer or Real, optionally followed by a colon
and an integer expression defining the width of the output field. In the
first case, the variables are output to the the standard file Output, usual-
ly the screen. In the second case, the variables are output to the text file
which is previously assigned to FilVar.

The forma!t of a write parameter depends on the type of the variable. in
the Lol:owmg descriptions of the different formats and their effects, the
symbols:

L, mn denote Integer expressions,
R denotes a Real expression,
Ch denotes a Char expression,
S denotes a String expression, and
B denotes a Boolean expression.
File Types 111


http://www.fastio.com/

Text Input and Output - Text Input and Output

For R < 0.0:
Write Parameters
blanks-#.digitsE*##
Ch The character Ch is output.
where blanks represents zero or more blanks, digits represents from
one to ten digits, # represents a digit, and * represents either plus or
minus. As at least one digit is output after the decimal point, the field
width is minimum 7 characters (8 for R < 0.0).

Ch:n The character Ch is output right-adjusted in a field which is n characters
wide, i.e. Chis preceded by n — 1 blanks.

S The string S is output. Arrays of characters may also be output, as they
are compatible with strings. R:n:m The decimal representation of the value of R is output, right adjusted,

in a field n characters wide, using fixed point format with m digits after

S:n  The string S is output right-adjusted in a field which is n characters o the decimal point. No decimal part, and no decimal point, is output if m
wide, i.e. Sis preceded by n — Length(S) blanks. is 0. m must be in the range 0 through 24; otherwise floating point for-
mat is used. The number is preceded by an appropriate number of
B Depending on the value of B, either the word TRUE or the word FALSE blanks to make the field width n.
is output.

B:n Depending on the value of B, either the word TRUE or the word FALSE Writeln Procedure
is output right-adjusted in a field which is n characters wide.
: The Writeln procedure is identical to the Write procedure, except that a

CR/LF sequence is output after the last value. The syntax of the Writeln
statement is:

1 The decimal representation of the value of /is output.

I:'n  The decimal representation of the value of /is output right-adjusted in a

field which is n characters wide. Writein(Var1,Var1,Var2,...,VarN) or Writein(FilVar,Var1,Var?2,..., VarN)

R The decimal representation of the value of R is output in a field 18 char-

A Writeln with no write parameters outputs an empty line consisting of a
acters wide, using floating point format. For R > = 0.0, the format is:

CR/LF sequence:

W D Writeln or Writeln(FilVar)

For R < 0.0, the format is:
L . HHBRRRH R E Y

where o represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*##

File Types 113

|
|
|
1
‘i 112 TURBO Pascal Reference Manual
i
i

HCHHPDFE - wynwy fastio.com



http://www.fastio.com/

Untyped Files

Untyped Files

Untyped files are low-level I/O channels primarily used for direct access
to any disk file using a record size of 128 bytes.

in input and output operations to untyped files, data is transferred
directly between the disk file and the variable, thus saving the space re-
quired by the sector buffer required by typed files. An untyped file vari-
able therefore occupies less memory than other file variables. As an un-
typed file is furthermore compatible with any file, the use of an untyped
file is therefore to be preferred if a file variable is required only for Erase,
Rename or other non-input/output operations.

An untyped file is declared with the reserved word file:

var
DataFile: file;

BlockRead / BlockWrite

All standard file handling procedures and functions except Read, Write,
and Flush are allowed on untyped files. Read and Write are replaced by
two special high-speed transfer procedures: BlockRead and BlockWrite.
The syntax of a call to these procedures is:

BlockRead(FilVar, Var, Recs)
BlockWrite(FilVar, Var, Recs)

or

BlockRead(FilVar, Var, Recs, Result)
BlockWrite(FilVar, Var, Recs, Result)

where FilVar variable identifier of an untyped file, Var is any variable,
and Recs is an integer expression defining the number of 128-byte
records to be transferred between the disk file and the variable. The op-
tional parameter Result returns the number of records actually
transferred.

|

| 114 TURBO Pascal Reference Manual
M\

\

CHhPDF - wyww.lastio.com

Untyped Files

The transfer starts with the first byte occupied by the variable Var. The
programmer must insure that the variable Var occupies enough space to
accommodate the entire data transfer. A call to BlockRead or
BlockWrite also advances the file pointer Recs records.

A file to be operated on by BlockRead or BlockWrite must first be
prepared by Assign and Rewrite or Reset. Rewrite creates and opens a
new file, and Reset opens an existing file. After processing, Close
should be used to ensure proper termination.

The standard function EOF works as with typed files. So do standard
functions FilePos and FileSize and standard procedure Seek, using a
component size of 128 bytes (the record size used by BlockRead and
BlockWrite).

Thg following program uses untyped files to copy files of any type.
Notice the use of the optional fourth parameter on BlockRead to check
the number of records actually read from the source file.

program FileCopy;

const
RecSize = 128;
BufSize = 200;
var
Source, Dest: File;
SourceName,
DestName: string[14];
Buffer: array[l..RecSize,1l..BufSize] of Byts;
RecsRead: Integer;
begin

Write('Copy from: ');

Readln(SourceName);

Assign(Source, SourceName);

Reset(Source);

Write(' To: ');

Readln(DestName);

Assign(Dest, DestName);

Rewrite(Dest);

repeat
BlockRead(Source,Buffer,BufSize,RecsRead);
BlockWrite(Dest,Buffer,RecsRead);

until RecsRead = 0;

Close(Source); Close(Dest);

end.

File Types- 115


http://www.fastio.com/

I/O checking /O checking
| /O checking When the | directive is passive ({ $I-}), the following standard procedures
should be followed by a check of I0result to ensure proper error han-
The 1 compiler directive is used to control generation of runtime 1/O error dling:
checking code. The default state is active, i.e. { $| +} which causes calls .
to an 1/O check routine after each 1/O operation. I/O errors then cause Append Close Read Seek
the program to terminate, and an error message indicating the type of Assign Erase ReadLn Write
error is displayed. BlockRead Execute Rename WriteLn
BlockWrite Flush Reset
If /O checking is passive, i.e. { $I—}, no run time checks are per- , Chain - GetDir , Rewrite
formed. An 1/O error thus does not cause the program to stop, but ChDir MkDir RmDir

suspends any further /O until the standard function /Oresult is called.
When this is done, the error condition is reset and I/O may be per-
formed again. It is now the programmer’s responsibility to take proper
action according to the type of I/O error.' A zero returned by /Oresult in-
dicates a successful operation, anything else means that an error oc-
curred during the last /O operation. Appendix G lists all error messages
and their Numbers. Notice that as the error condition is reset when
I0result is called, subsequent calls to |Oresult will return zero until the
next 1/O error occurs.

* PC-DOS/MS-DOS only.

The [Oresult function is very convenient in situations where a program
halt is an unacceptable result of an I/O error, like in the following exam-
ple which continues to ask for a file name until the attempt to reset the
file is successful (i.e. until an existing file name is entered):

procedure OpenInFile;
begin
repeat
Write('Enter name of input file ');
Readln(InFileName);
Assign(InFile, InFileName);
{$I-} Reset(InFile) {$I+} ;
OK := (IOresult = 0);
if not OK then
Writeln('Cannot find file ',InFileName);
until OK;
end;

116 TURBO Pascal Reference Manual File Types 117

wvwfastio.com


http://www.fastio.com/

\‘ 1
| I/O checking

Chapter 15
POINTER TYPES

It
‘ Notes:
|

Variables discussed up to now have been static, i.e. their form and size
is pre-determined, and they exist throughout the entire execution of the
block in which they are declared. Programs, however, frequently need
the use of a data structure which varies in form and size during execu-
tion. Dynamic variables serve this purpose as they are generated as the
need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable declara-
tion like static variables, and they cannot be referenced directly by
identifiers. Instead, a special variable containing the memory address of
the variable is used to point to the variable. This special variable is called
a’pointer variable.

Defining a Pointer Variable

A pointer type is defined by the pointer symbol * succeeded by the
type identifier of the dynamic variables which may be referenced by
pointer variables of this type.

The following shows how to declare a record with associated pointers.
The type PersonPointer is is declared as a pointer to variables of type
PersonRecord.

type
PersonPointer = “PersonRecord;
PersonRecord = record
Name: string[50];
Job: string[50];
Next: PersonPointer;
end;
Var
FirstPerson, LastPerson, NewPerson: PersonPointer;

The variables FirstPerson, LastPerson and NewPerson are thus pointer
variables which can point at records of type PersonRecord. As shown
above, the type identifier in a pointer type definition may refer to an
identifier which is not yet defined.

POINTER TYPES 119

118 TURBO Pascal Reference Manual

S ClibPD wawww . fastio.com


http://www.fastio.com/

Allocating Variables (New)

Allocating Variables (New)

: 120

Before it makes any sense to use any of these pointer variables we
must, of course, have some variables to point at. New variables of any
type are allocated with the standard procedure New. The procedure has
one parameter which must be a pointer to variables of the type we want
to create.

A new variable of type PersonRecord can thus be created by the state-
ment:

New(FirstPerson);

which has the effect of having FirstPerson point at a dynamically allocat-
ed record of type PersonRecord.

Assignments between pointer variables can be made as long as both
pointers are of identical type. Pointers of identical type may also be
compared using the relational operators = and < >, returning a
Boolean result (True or False).

The pointer value nil is compatible with all pointer types. nil points to no
dynamic variable, and may be assigned to pointer variables to indicate
the absence of a usable pointer. nil may also be used in comparisons.

Variables created by the standard procedure New are stored in a stack-
like structure called the heap. The TURBO Pascal system controls the
heap by maintaining a heap pointer which at the beginning of a program
is initialized to the address of the first free byte in memory. On each call
to New, the heap pointer is moved towards the top of free memory the
number of bytes corresponding to the size of the new dynamic variable.

f Mark and Release

When a dynamic variable is no longer required by the program, the stan-
dard procedures Mark and Release are used to reclaim the memory allo-
cated to these variables. The Mark procedure assigns the value of the
heap pointer to a variable. The syntax of a call to Mark is:

TURBQO Pascal Reference Manual

I
ChhPDF - www.lastio.com

Mark and Release

Mark(Var);

where Var is a pointer variable. The Release procedure sets the heap
pointer to the address contained in its argument. The syntax is:

Release(Var);

where Var is a pointer variable, previously set by Mark. Release thus
discards all dynamic variables above this address, and cannot release
the space used by variables in the middle of the heap. If you want to do
that, you should use Dispose (see page 124 ) instead of Mark/Release.

The standard function MemAvail is available to determine the available
space on the heap at any given time. Further discussion is deferred to
chapters 20, 21, and 22.

POINTER TYPES 121


http://www.fastio.com/

Using Pointers

Using Pointers

Supposing we have used the New procecure to create a series of
records of type PersonRecord (as in the example on the following page)
and that the field Next in each record points at the next PersonRecord
created, then the following statements will go through the list and write
the contents of each record (FirstPerson points to the first person in the
list):

while FirstPerson <> nil do
with FirstPerson” do

begin
Writeln(Name,' is a ',Job);
FirstPerson := Next;

end;

FirstPerson".Name may be read as FirstPerson’s.Name, i.e. the field
Name in the record pointed to by FirstPerson.

The following demonstrates the use of pointers to maintain a list of
names and related job desires. Names and job desires will be read in un-
til a blank name is entered. Then the entire list is printed. Finally, the
memory used by the list is released for other use. The pointer variable
HeapTop is used only for the purpose of recording and storing the initial
value of the heap pointer. Its definition as a “Integer (pointer to in-
teger) is thus totally arbitrary.

122 TURBO Pascal Reference Manual

wvwfastio.com

procedure Jobs;
type

PersonPointer = “PersonRecord;

PersonRecord = record
' Name: string[50];
Job: string([50];
Next: PersonPointer;

end;
Var
HeapTop: "“Integer;

FirstPerson, LastPerson, NewPerson:

Name: string[50];
begin
FirstPerson :=
Mark(HeapTop);
repeat

nil;

Write('Enter name: ')

Readln(Name);

if Name <> '' then

begin

New(NewPerson);

NewPerson” .Name := Name;
Write('Enter profession: ');
Readln(NewPerson” .Job);

Writeln;
if FirstPerson = nil then
FirstPerson := NewPerson
else
LastPerson” .Next := NewPerson;
LastPerson := NewPerson;
LastPerson” .Next := nil;
end;
until Name='"';
Writeln;

while FirstPerson
with FirstPerson”®
begin
Writeln(Name, '
FirstPerson :=
end;
Release(HeapTop);
end.

POINTER TYPES

<> nil do
do

is a ',Job);
Next;

Using Pointers

PersonPointer;

123


http://www.fastio.com/

Dispose

Dispose

Instead of Mark and Release, standard Pascal’s Dispose procedure may
be used to reclaim space on the heap.

NOTICE that Dispose and Mark/Release use entirely different ap-
proaches to heap management - and never shall the twain meet! Any
one program must use either Dispose or Mark/Release t0 manage the
heap. Mixing them will produce unpredictable resuilts.

The syntax is:

Dispose(Var);

where Var is a pointer variable.

Dispose allows dynamic memory used by a specific pointer variable to
be reclaimed for new use, as opposed to Mark and Release which
releases the entire heap from the specified pointer variable and upward.
Suppose you have a number of variables which have been allocated on

the heap. The following figure illustrates the contents of the heap and
the effect of Dispose(Var3) and Mark(Var3)/ Release(Var3) :

Heap After After
Dispose Mark/Release
R | | ----=o- | R |
| Varl | j Varl | ] Varl |
R | |--ommm- ! |~==-mm- |
| Var2 | | Var2 | | Var2 |
— | | ------- | |===-=--- !
| Var3 | | | | |
| ===mmmme ! | ===-mme- | |====mmm- l
| Var4 | | Var4d | | |
| === | e | R |
| Var5 | | Var5 | | |
|-====m- | |-==--me- | ~-mmmme- |
| Varé | | Varé | | |
| --=----- | | === | | -===---- |
HiMem | Var7 | | Var7 | | |

Figure 15-1: Using Dispose

TURBO Pascal Reference Manual

i “\7
ChbPD wvwfastio.com

Dispose

After Disposing a pointer variable, the heap may thus consist of a
number of memory areas in use interspersed by a number of free areas.
Subsequent calls to New will use these if the new pointer variable fits
into the space.

GetMem
The standard procedure GetMem is used to allocate space on the heap.
Unlike New, which allocates as much space as required by the type

pointed to by its argument, GetMem allows the programmer to control
the amount of space allocated. GetMem is called with two parameters:

GetMem(PVar, I)
where PVar is any pointer variable, and / is an integer expression giving
the number of bytes to be allocated.

FreeMem
Syntax: FreeMem;
The FreeMem standard procedure is used to reclaim an entire block of
space on the heap. It is thus the counterpart of GetMem. FreeMem is
called with two parameters:
FreeMem(PVar, I);
where PVar is any pointer variable, and /is an integer expression giving

the number of bytes to be reclaimed, which must be exactly the number
of bytes previously allocated to that variable by GetMem.

Pointer Types- 125


http://www.fastio.com/

MaxAvail

MaxAvail
Syntax: MaxAvail;

The MaxAvail standard function retumns the size of the largest consecu-
tive block of free space on the heap. On 16-bit systems this space is in
in number of paragraphs (16 bytes each); on 8-bit systems it is in bytes.
The result is an Integer, and if more than 32767 paragraphs/bytes are
available, MaxAvail returns a negative number. The correct number of
free paragraphs/bytes is then calculated as 65536.0 + MaxAvail,
Notice the use of a real constant to generate a Real result, as the result
is greater than Maxint.

Hints dJ

Note that no range checking is done on pointers. It is the responsibility
of the programmer to ensure that a pointer points to a legal address.

!f you have difficulties using pointers, a drawing of what you are tempt-
ing to do often clears up things.

126 TURBO Pascal Reference Manual

wvwfastio.com

Chapter 16

- PROCEDURES AND FUNCTIONS

A Pascal program consists of one or more blocks, each of which may
again consist of blocks, etc. One such block is a procedure, another is a
function (in common called subprograms). Thus, a procedure is a
separate part of a program, and it is activated from elsewhere in the
program by a procedure statement (see page 56). A function is rather
similar, but it computes and returns a value when its identifier, or desig-
nator, is encountered during execution (see page 54). :

Parameters

Values may be passed to procedures and functions through parameters.
Parameters provide a substitution mechanism which allows the logic of
the subprogram to be used with different initial values, thus producing
different results.

The procedure statement or function designator which invokes the sub-
program may contain a list of parameters, called the actual parameters.
These are passed to the formal parameters specified in the subprogram
heading. The order of parameter passing is the order of appearance in
the parameter lists. Pascal supports two different methods of parameter
passing: by value and by reference, which determines the effect that
changes of the formal parameters have on the actual parameters.

When parameters are passed by value, the formal parameter represents
a local variable in the subprogram, and changes of the formal parame-
ters have no effect on the actual parameter. The actual parameter may
be any expression, including a variable, with the same type as the
corresponding formal parameter. Such parameters are called a value
parameter and are declared in the subprogram heading as in the follow-
ing example. This and the following examples show procedure headings;
see page 137 for a description of function headings.

procedure Example(Numl,Num2: Number; Strl,Str2: Txt);

PROCEDURES AND FUNCTIONS 127


http://www.fastio.com/

il

Parameters

128

Number and Txt are previously defined types (e.g. Integer and
string[255]), and Num1, Num2, Str1, and Str2 are the formal parame-
ters to which the value of the actual parameters are passed. The types
of the formal and the actual parameters must correspond.

Notice that the type of the parameters in the parameter part must be
specified as a previously defined type identifier. Thus, the construct:

procedure Select(Model: array[l..500] of Integer);

is not allowed. Instead, the desired type should be defined in the type
definition of the block, and the type identifier should then be used in the
parameter declaration:

type
Range = array[l..500] of Integer;

procedure Select(Model: Range);

When a parameter is passed by reference, the formal parameter in fact
represents the actual parameter throughout the execution of the sub-
program. Any changes made to the formal parameter is thus made to
the actual parameter, which must therefore be a variable. Parameters
passed by reference are called a variable parameters, and are declared
as follows:

procedure Example(Var Numl,Num2: Number)

Value parameters and variable parameters may be mixed in the same
procedure as in the following example:

procedure Example(Var Numl,Num2: Number; Strl,Str2: Txt);

in which Num1 and Num2 are variable parameters and Str1 and Str2
are value parameters.

All address calculations are done at the time of the procedure call. Thus,
if a variable is a component of an array, its index expression(s) are
evaluated when the subprogram is called.

Notice that file parameters must always be declared as variable parame-
ters.

TURBO Pascal Reference Manual

CliIbPDF - wynw [aslio.com

Parameters

When a large data structure, such as an array, is to be passed to a sub-
program as a parameter, the use of a variable parameter will save both
time and storage space, as the only information then passed on to the
subprogram is the address of the actual parameter. A value parameter
would require storage for an extra copy of the entire data structure, and
the time involved in copying it.

Relaxations on Parameter Type Checking

Normally, when using variable parameters, the formal and the actual
parameters must match exactly. This means that subprograms employ-
ing variable parameters of type String will accept only strings of the ex-
act length defined in the subprogram. This restriction may be overridden
by the V compiler directive. The default active state { $V +} indicates
strict type checking, whereas the passive state { $V-} relaxes the type
checking and allows actual parameters of any string length to be
passed, irrespective of the length of the formal parameters.

Example:
program Encoder;
{$v-}
type
WorkString = string[255];
Var
Linel: string[80];
Line2: string{100];
procedure Encode(Var LineToEncode: WorkString);
Var I: Integer;
begin
for I := 1 to Length(LineToEncode) do
LinetoEncode[I] := Chr(Ord(LineToEncode[I])-30);
end;
begin
Linel := 'This is a secret message';
Encode(Linel);
Line2 := 'Here is another (longer) secret message';
Encode(Line2);
end.

PROCEDURES AND FUNCTIONS 129


http://www.fastio.com/

Parameters

Untyped Variable Parameters

If the type of a formal parameter is not defined, i.e. the type definition is
omitted from the parameter section of the subprogram heading, then
that parameter is said to be untyped. Thus, the corresponding actual
parameter may be any type.

The untyped formal parameter itself is incompatible with all types, and
may be used only in contexts where the data type is of no significance,
for example as a parameter to Addr, BlockRead/Write, FillChar, or
Move, or as the address specification of absolute variables.

The SwitchVar procedure in the following example demonstrates the
use of untyped parameters. It moves the contents of the variable A7 to
A2 and the contents of A2 to AT.

procedure SwitchVar(Var Alp,A2p; Size: Integer);
type

A = array[l..MaxInt] of Byte;
Var

Al: A absolute Alp;

A2: A absolute A2p;

Tmp: Byte;
Count: Integer;
begin
for Count := 1 to Size do
begin
Tmp := Al[Count];
Al[Count] := A2[Count];
A2[Count] := Tmp;
end;
end;

Assuming the declarations:

type

Matrix = array[l..50,1..25] of Real;
Var

TestMatrix,BestMatrix: Matrix;

then SwitchVar may be used to switch values between the two ma-
trices:

SwitchVar(TestMatrix,BestMatrix, SizeOf(Matrix));

130 TURBO Pascal Reference Manual

wvwfastio.com

Procedures

Procedures

A procedure may be either pre-declared (or ‘standard’) or user-declared,
i.e. declared by the programmer. Pre-declared procedures are parts of
the TURBO Pascal system and may be called with no further declara-
tion. A user-declared procedure may be given the name of a standard
procedure; but that standard procedure then becomes inaccessible
within the scope of the user declared procedure.

Procedure Declaration

A procedure declaration consists of a procedure heading followed by a
block which consists of a declaration paft and a statement part.

The procedure heading consists of the reserved word procedure fol-
lowed by an identifier which becomes the name of the procedure, op-
tionally followed by a formal parameter list as described on page 127 .

Examples:

procedure LogOn;

procedure Position(X,Y: Integer);

procedure Compute(Var Data: Matrix; Scale: Real);

The declaration part of a procedure has the same form as that of a pro-
gram. All identifiers declared in the formal parameter list and the declara-
tion part are local to. that procedure, and to any procedures within it.
This is called the scope of an identifier, outside which they are not
known. A procedure may reference any constant, type, variable, pro-
cedure, or function defined in an outer block.

The statement part specifies the action to be executed when the the
procedure is invoked, and it takes the form of a compound statement
(see page 57). If the procedure identifier is used within the statement
part of the procedure itself, the procedure will execute recursively.
(CP/M-80 only: Notice that the A compiler directive must be passive {
$A-} when recursion is used, see Appendix C.)

The next example shows a program which uses a procedure and
passes a parameter to this procedure. As the actual parameter passed
to the procedure is in some instances a constant (a simple expression),
the formal parameter must be a value parameter.

PROCEDURES AND FUNCTIONS 131


http://www.fastio.com/

Procedures

program Box;

Var
I: Integer;

procedure DrawBox(X1,Y1l,X2,Y2: Integer);
Var I: Integer;

begin
GotoXY(X1,Y1l);
for I := X1 to X2 do write('-');
for I := Y1+l to Y2 do
begin

GotoXY(X1,I); Write('!');
GotoXY(X2,I); Write('!');
end;
GotoXY(X1,Y2);
for I := X1 to X2 do Write('-');
end; { of procedure DrawBox }
begin
ClrScr;
for I := 1 to 5 do DrawBox(I*4,I*2,10%I,4*I);
DrawBox(1,1,80,23);
end.

Often the changes made to the formal parameters in the procedure
should also affect the actual parameters. In such cases variable parame-
ters are used, as in the following example:
procedure Switch(Var A,B: Integer);
Var Tmp: Integer;
begin
Tmp := A; A := B; B := Tmp;
end;
When this procedure is called by the statement:
Switch(I,J);

the values of | and J will be switched. if the procedure heading in
Switch was declared as:

procedure Switch(A,B: Integer);

i.e. with a value parameter, then the statement Switch(I,J) would
not change / and J.

132 TURBO Pascal Reference Manual

wvwfastio.com

Procedures

Standard Procedures
TURBO Pascal contains a number of standard procedures. These are:
1)  string handling procedures (described on pages 71 pp),
2) file handling procedures (described on pages 94, 101, and 114).
3) procedures for allocation of dynamic variables (described on pages 120
and 125), and
4) input and output procedures (described on pages 108 pp).
in addition to these, the following standard procedures are available,

provided that the associated commands have been installed for your ter-
minal (see pages 12 pp):

Cireol
Syntax: CIrEol;

Clears all characters from the cursor position to the end of the line
without moving the cursor.

CirScr
Syntax: CirScr;
Clears the screen and places the cursor in the upper left-hand corner.

Beware that some screens also reset the video-attributes when clearing
the screen, possibly disturbing any user-set attributes.

Crtinit
Syntax: Crtinit;

Sends the Terminal Initialization String defined in the installation pro-
cedure to the screen.

PROCEDURES AND FUNCTIONS 133


http://www.fastio.com/

Procedures

CrtExit
Syntax: CrtExit;
Sends the Terminal Reset String defined in the installation procedure to
the screen.
Delay
Syntax: Delay(Time);
The Delay procedure creates a loop which runs for approx. as many mil-
liseconds as defined by its argument Time which must be an integer.
The exact time may vary somewhat in different operating environments.
DellLine
Syntax: DelLine;
Deletes the line containing the cursor and moves all lines below one line
up.
InsLine
Syntax: InsLine;
Inserts an empty line at the cursor position. All lines below are moved
one line down and the bottom line scrolis off the screen.
GotoXY
Syntax: GotoXY(Xpos, Ypos);
Moves the cursor to the position on the screen specified by the integer

expressions Xpos (horizontal value, or row) an_d Ypos (vertical value, or
column). The upper left corner (home position) is (1,1).

134 TURBO Pascal Reference Manual

wvwfastio.com

Procedures

Exit
Syntax: Exit;
Exits the current block. When exit is executed in a subroutine, it causes
the subroutine to return. When it is executed in the statement part of a
program, it causes the program to terminate. A call to Exit may be com-

pared to a goto statement addressing a label just before the end of a
block.

Halt
Syntax: Halt;
Stops program execution and returns to the operating system.
In PC/MS-DOS, Halt may optionally pass a integer parameter specifying
the return code of the program. Halt without a parameter corresponds
to Halt(O). The return code may be examined by the parent process us-

ing an MS-DOS system function call or through an ERRORLEVEL test
in an MS-DOS batch file.

LowVideo
Syntax: LowVideo;

Sets the screen to the video attribute defined as ‘Start of Low Video’ in
the installation procedure, i.e. ‘dim’ characters.

NormVideo
Syntax: NormVideo;

Sets the screen to the video attribute defined as ‘Start of Normal Video’
in the installation procedure, i.e. the ‘normal’ screen mode.

Randomize
Syntax: Randomize;

Initializes the random number generator with a random value.

PROCEDURES AND FUNCTIONS 135


http://www.fastio.com/

Procedures

Move

Syntax: Move(var1,var2, Num);

Does a mass copy directly in memory of a specified number of bytes.
var1 and var2 are two variables of any type, and Num is an integer ex-
pression. The procedure copies a block of Num bytes, starting at the
first byte occupied by var? to the block starting at the first byte occu-
pied by var2. You may notice the absence of explicit ‘moveright’ and
‘moveleft’ procedures. This is because Move automatically handles pos-
sible overlap during the move process.

FillChar

136

Syntax: FillChar(Var, Num, Value);

Fills a range of memory with a given value. Var is a variable of any type,
Num is an integer expression, and Value is an expression of type Byte
or Char. Num bytes, starting at the first byte occupied by Var, are filled
with the value Value.

TURBO Pascal Reference Manual

wvwfastio.com

Functions

Functions

Like procedures, functions are either standard (pre-declared) or declared
by the programmer.

Function Declaration

A function declaration consists of a function heading and a block which
is a declaration part followed by a statement part.

The function heading is equivalent to the procedure heading, except that
the heading must define the type of the function result. This is done by
adding a colon and a type to the heading as shown here:

function KeyHit: Boolean;
function Compute(Var Value: Sample): Real;
function Power(X,Y: Real): Real;

The result type of a function must be a scalar type (i.e. Integer, Real,
Boolean, Char, declared scalar or subrange), a string type, or a pointer
type.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as described
on page 57 . Within the statement part at least one statement assigning
a value to the function identifier must occur. The last assignment exe-
cuted determines the result of the function. If the function designator
appears in the statement part of the function itself, the function will be
invoked recursively. (CP/M-80 only: Notice that the A compiler directive
must be passive { $A-} when recursion is used, see Appendix C)

PROCEDURES AND FUNCTIONS 137


http://www.fastio.com/

Functions

138

The following example shows the use of a function to compute the sum
of a row of integers from | to J.

function RowSum(I,J: Integer): Integer;
function SimpleRowSum(S: Integer): Integer;
begin
SimpleRowSum := S*(S+1) div 2;
end;
begin
RowSum := SimpleRowSum(J)~SimpleRowSum(I-1);
end;

The function SimpleRowSum is nested within the function RowSum.
SimpleRowSum is therefore only available within the scope of RowSum.

The following program is the classical demonstration of the use of a re-
cursive function to calculate the factorial of an integer number:

{$A-} {A- directive allows recursion in CP/M-80 version}
program Factorial;
Var Number: Integer;
function Factorial(Value: Integer): Real;
begin

if Value = 0 then Factorial := 1

else Factorial := Value * Factorial(Value-1);
end;
begin

Read(Number) ;

Writeln(*M,Number,'! = ',Factorial(Number));
end.

Note that the type used in the definition of a function type must be pre-
viously specified as a type identifier. Thus, the construct:

function LowCase(Line: UserLine): string[80];
is not allowed. Instead, a type identifier should be associated with the type
string[80], and that type identifier should then be used to define the function

result type, for example:

type
Str80 = string[80];

function LowCase(Line: UserLine): Str80;

TURBO Pascal Reference Manual

- wawwlastio.com

Functions

Because of the implementation of the standard procedures Write and
Writeln, a function using any of the standard procedures Read, Readin,
Write, or Writeln, must never be called by an expression within a Write
or Writein statement. In 8-bit systems this is also true for the standard
procedures Str and Val.

Standard Functions

The following standard (pre-declared) functions are implemented in
TURBO Pascal:

1) s_tring handling functions (described on pages 71 pp),
2) flle_ handling functions (described on pages 94 and 101),
3) pointer related functions (described on pages 120 and 125).
Arithmetic Functions
Abs
Syntax: Abs(Num);
Returns the absolute value of Num. The argument Num must be either
Real or Integer, and the result is of the same type as the argument.
ArcTan
Syntax: ArcTan(Num);
Returns the angle, in radians, whose tangent is Num. The argument‘X
must be either Real or Integer, and the result is Real.
Cos
Syntax: Cos(Num);
Retqrns the cosine of Num. The argument Num is expressed in radians,
and its type must be either Real or Integer. The result is of type Real.
PROCEDURES AND FUNCTIONS 139


http://www.fastio.com/

Functions

Exp

Frac

Int

Ln

Sin

140

wavvw L fast

Syntax: Exp(Num);

Returns the exponential of Num, i.e. enum. The argument Num must be
either Real or Integer, and the result is Real.

Syntax: Frac(Num);
Returns the fractional part of Num, i.e. Frac(Num) = Num - Int(Num).

The argument Num must be either Real or Integer, and the result is
Real.

Syntax: Int(Num); ~
Returns the integer part of Num, i.e. the greatest integer number less
than or equal to Num, if Num > = 0, or the smallest integer number

greater than or equal to Num, if Num < 0. The argument Num must be
either Real or Integer, and the result is Real.

Syntax: Ln(Num);

Returns the natural logarithm of Num. The argument Num must be ei-
ther Real or Integer, and the result is Real.

Syntax: Sin(Num);

Returns the sine of Num. The argument Num is expressed in radians,
and its type must be either Real or Integer. The result is of type Real.

TURBO Pascal Reference Manual

[10.COM

Functions

Sqr
Syntax: Sqr(Num);
Returns the square of Num, i.e. Num * Num. The argument Num must
be either Real or Integer, and the result is of the same type as the argu-
ment.

Sqrt
Syntax: Sqrt(Num);
Returns the square root of Num. The argument Num must be either
Real or Integer, and the result is Real.

Scalar Functions

Pred
Syntax: Pred(Num);

Returns the predecessor of Num (if it exists). Num is of any scalar type.

Succ
Syntax: Succ(Num);

Returns the successor of Num (if it exists). Num is of any scalar type.
Odd
Syntax: Odd(Num);

Returns boolean True is Num is an odd number, and False if Num is
even. Num must be of type Integer.

PROCEDURES AND FUNCTIONS 141


http://www.fastio.com/

Functions

Transfer Functions

The transfer functions are used to convert values of one scalar type to
that of another scalar type. In addition to the following functions, the re-
type facility described on page 65 serves this purpose.

Chr
Syntax: Chr(Num);
Returns the character with the ordinal value given by the integer expres-
sion Num. Example: Chr(65) returns the character ‘A’.

Ord
Syntax: Ord(Var); .
Returns the ordinal number of the value Var in the set defined by the
type Var. Ord(Var) is equivalent to Integer(Var) (see Type Conversions
on page 65. Var may be of any scalar type, except Real, and the result
is of type Integer.

Round
Syntax: Round(Num);
Returns the value of Num rounded to the nearest integer as follows: if
Num > = 0, then Round(Num) = Trunc(Num + 0.5), and if Num <
0, then Round(Num) = Trunc(Num — 0.5) Num must be of type Real,
and the result is of type Integer.

Trunc
Syntax: Trunc(Num);
Returns the greatest integer less than or equal to Num, if Num > = 0,
or the smallest integer greater than or equal to Num, if Num < 0. Num
must be of type Real, and the result is of type Integer.

142 TURBO Pascal Reference Manual

wvwfastio.com

Hi

Functions

. Miscellaneous Standard Functions

Syntax: Hi(/);

The low order byte of the result contains the high order byte of the
value of the integer expression /. The high order byte of the result is
zero. The type of the result is Integer.

KeyPressed

/‘Lo

Syntax: KeyPressed
Returns boolean True if a key has been pressed at the console, and

False if no key has been pressed. The result is obtained by calling the
operating system console status routine.

Syntax: Lo(/);

Returns the low order byte of the value of the integer expression / with
the high order byte forced to zero. The type of the result is Integer.

Random

Syntax: Random;

Returns a random number greater than or equal to zero and less than
one. The type is Real.

Random(Num)

Syntax: Random(Num);

Returns a random number greater than or equal to zero and less than
Num. Num and the random number are both Integers.

PROCEDURES AND FUNCTIONS 143


http://www.fastio.com/

Functions Forward References

ParamCount Forward References
A subprogram is forward declared by specifying its heading separately
from the block. This separate subprogram heading is exactly as the nor-
mal heading, except that it is terminated by the reserved word forward.
The block follows later within the same declaration part. Notice that the

Syntax: ParamCount;

This integer function returns the number of parameters passed to the
program in the command line buffer. Space and tab characters serve as

separators. block is initiated by a copy of the heading, specifying only the name and
no parameters, types, etc.
ParamStr Example:
program Catchl2;
Syntax: ParamStr(N); Var
X: Integer;

This string function returns the N'th parameter from the command line function Up(Var I: Integer): Integer; forward;

buffer. function Down(Var I: Integer): Integer;
begin a\
I :=1div 2; Writeln(I); ‘
SizeOf if I <> 1 then I := Up(I);
end;
Syntax: SizeOf(Name); function Up;
begin
Returns the number of bytes occupied in memory by the variable or type while I mod 2 <> 0 do
Name. The result is of type Integer. begin
I := I*3+1; Writeln(I);
end;
Swap I := Down(I);
end;
Syntax: Swap(Num); begin
Write('Enter any integer: ');
The Swap function exchanges the high and low order bytes of its in- Readln(X);
teger argument Num and returns the resulting value as an integer. X := Up(X);
Write('Ok. Program stopped again.');
Example: end.
Swap($1234) returns $3412 (values in hex for clarity).
When the program is executed and if you enter e.g. 6 it outputs:
UpCase

Syntax: UpCase(ch);

Returns the uppercase equivalent of its argument ch which must be of
type Char. If no uppercase equivalent exists, the argument is returned
unchanged.

144 TURBO Pascal Reference Manual Procedures and Functions- 145

wvwfastio.com


http://www.fastio.com/

Forward References

Chapter 17

] INCLUDING FILES

3
10
5
16 The fact that the TURBO editor performs editing only within memory lim-
8 its the size of source code handled by the editor. The | compiler direc-
4 tive can be used to circumvent this restriction, as it provides the ability
2 to split the source code into smaller ‘lumps’ and put it back together at
1 compile-time. The include facility also aids program clarity, as commonly
Ok. Program stopped again. used subprograms, once tested and debugged, may be kept as a ‘li-

brary’ of files from which the necessary files can be included in any oth-

er program.

The above program is actually a more complicated version of the follow- The syntax for the | compiler directive is:
ing program:

{$I filename}
program Catch222;

Var where filename is any legal file name. Leading spaces are ignored and
X: Integer; lower case letters are translated to upper case. if no file type is
begin specified, the default type .PAS is assumed. This directive must be
Write('Enter any integer: '); specified on a line by itself.
Readln(X);
while X <> 1 do Examples:
begin {$Ifirst.pas}
if Xmod 2 = 0 then X := X div 2 else X := X*3+1; {$I COMPUTE.MOD}
Writeln(X); {$iStdProc }
end;
Write('0k. Program stopped again.'); Notice that a space must be left between the file name and the closing
end. brace if the file does not have a three-letter extension; otherwise the

brace will be taken as part of the name.
It may interest you to know that it cannot be proved if this small and
very simple program actually will stop for any integer! To demonstrate the use of the include facility, let us assume that in your
‘library’ of commonly used procedures and functions you have a file
called STUPCASE.FUN. It contains the function StUpCase which is
called with a character or a string as parameter and returns the value of

this parameter with any lower case letters set to upper case.

146 TURBO Pascal Reference Manual - INCLUDING FILES 147

wvwfastio.com


http://www.fastio.com/

	./tp3_094-095.tif
	./tp3_096-097.tif
	./tp3_098-099.tif
	./tp3_100-101.tif
	./tp3_102-103.tif
	./tp3_104-105.tif
	./tp3_106-107.tif
	./tp3_108-109.tif
	./tp3_110-111.tif
	./tp3_112-113.tif
	./tp3_114-115.tif
	./tp3_116-117.tif
	./tp3_118-119.tif
	./tp3_120-121.tif
	./tp3_122-123.tif
	./tp3_124-125.tif
	./tp3_126-127.tif
	./tp3_128-129.tif
	./tp3_130-131.tif
	./tp3_132-133.tif
	./tp3_134-135.tif
	./tp3_136-137.tif
	./tp3_138-139.tif
	./tp3_140-141.tif
	./tp3_142-143.tif
	./tp3_144-145.tif
	./tp3_146-147.tif

