ClibPD

TPM-II USER'S GUIDE CHAPTER 10

CHAPTER X

TPM-II SYSTEM CALLS

In the next few pages, we'll get to the core of the process
of interfacing vyour program with TPM-II. The main mechanism
involved is the system call. System calls provide a consistent
and well-defined access point to the common programming tasks
executed by TPM-II. We'll cover the concept and protocol of
these system calls first, then examine each call in detail.

SYSTEM CALLS IN GENERAL

A system call is nothing more than the issuing of a command
to TPM-II. A program can issue a broad range of system calls,
encompassing character I/0, disk file tasks, and several other
commands such as requesting and receiving the time of day.

Depending on the command the program wants executed, it can
issue one of several types of system calls. Let's review these
generic types:

Non-data commands: These system calls instruct TPM-II to execute

a command thatdoesn't involve the input or output of data. An
example would be the warm boot system call which signals to TPM-
II that a program has terminated execution, and that a warm boot
should be executed.

Byte I/0: System calls in this category pass a single character
between the calling program and TPM~-II. In most cases, these
calls involve one of the character-oriented logical devices, such
as the Console.

Block 1/0: These system calls are primarily disk- oriented, and

involve the passing of blocks of data or command parameters
between the calling program and TPM-IT.

System Call Protocol

Certain elements of the system call protocol are common to
all three types of system calls. First, the call number (or
function number) must be passed to TPM-II. Each of the system
calls has an assigned number, and the calling program must inform
TPM-II as to which call it wants executed. Secondly, all system
calls must be initiated via a Z80 CALL instruction to memory
location 0005H.

10-1

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

Finally, any data which is necessary to initiate the system
call, or which results from it, must be transferred between TPM-
II and the calling program. Byte I/0 system calls pass data one
byte at a time. These calls use the internal registers of the
780 as the transfer medium. Block I/O calls, on the other hand,
use system memory to transfer the block of data and parameters
that are necessary for, or result from, their operations. With
these system calls, the address of the block of memory is passed
in the internal registers of the 2780. ‘

Setting up a system call is quite simple. The number of the
desired system call is placed in register C, and the data trans-
fer mechanism is set up. If the system call is a Block I/0 type
call, the beginning address of the parameter or data block is
placed in register set DE. If the call involves Byte I1I/0, the
register used to pass the character is dependent on the direction
the byte is being passed. If the calling program is passing a
byte to TPM-II (as in the Console Output «call), the byte is
placed in register E. If the program is getting a byte from TPM-
II (Console Input call), the value is returned in register A.

To summarize, executing a system call is a four-step process.
The function call number is placed in register C, the byte or
block address (if any) is set, a 780 CALL 0005H instruction |is
executed, and finally, the status, and data (in the case of byte
or block input functions) is checked by the calling program.

TPM-I1's Use Of Registers

Most TPM-II functions return a result in the A register
(usually the byte input in an I/O operation or an error code
indicating success or failure of a disk operation). Word results
are usually returned in the BC register.

When TPM-II is called, the HL, DE, X and Y registers are saved
and restored unaltered upon return to the program, unless they
are used to return results.

The BC and PSW registers are always cleared, unless they are
used to hold function results. The prime registers (reached via
the EXX instruction) are not used by TPM. However, other programs
may use them, so any interrupt routines that make use of such
registers should be adjusted accordingly.

System calls have been broken down into three groups: system
calls dealing with input/output of characters to/from the four
logical devices (Console, Punch, Reader, and List); file opera-
tions; and all functions not included in the first two groups,
e.g., setting time-of-day, getting the version number, warm boot.

10-2

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

TPM~-II'S DUAL MODE

Before we begin, one topic must be mentioned. TPM-I1 was
originally written prior to the introduction of CP/M version 2.2
and its subsequent revisions (the version preceding 2.2 was 1.4).
CP/M 1.4 supported only 28 system calls (0 through 27). These
function calls have been faithfully repeated in TPM-II. However,
extensions to the basic CP/M 1.4 repertoire were included in the
original TPM, in which function calls 28 through 36 were used.
When CP/M 2.2 was introduced, a conflict arose, since the new
version of CP/M also used these function calls, but for different
functions.

This conflict has been reconciled in TPM-II through a dual
set of function calls. In the TPM mode, function «calls 28
through 36 correspond to the TPM extensions, whereas in the CP/M
mode the CP/M version 2.2 calls are executed. A program may
select either mode, or switch between the two modes at any time.

The filetype or extension determines the default mode. If
the program has a filetype .SYS, the TPM mode is selected when
the program is invoked, whereas a .COM filetype will select the
CP/M mode. Function 12 (Get Version Number) has been enhanced to
allow a program to change modes, "in midstream" so to speak. If
the DE register pair contain the value 0CCCCH, the CP/M mode is
activated. A value of OAAAAH sets up the TPM mode. Any other
value in DE leaves the mode unchanyed. This allows a program the
best of both worlds: standard CP/M function calls, as well as
TPM-II extensions.

(Text continues on next page)

10-3

www . fastio.com

http://www.fastio.com/

TPM-II USER'S GUIDE CHAPTER 10

%% TABLE 10 - 1 **x%

TPM-II SYSTEM CALLS
TPM-II AND CP/M MODES

CALL NUMBER FUNCTION
0 Reset System (Warm Boot)
1 Read Console Character w/echo
2 Write Console Character
3 Read Character from Reader
4 Write Character to Punch
5 Write Character to List Device
6 Get Serial # and Direct Console I1/0
7 Get IOBYTE
8 Set IOBYTE
9 Write Buffer To Console
10 Read Console Buffer
11 Get Console Status
12 Return Version and Set Mode
13 Reset Disk System
14 Log In Disk Drive
15 Open Disk File
16 Close Disk File
17 Search For Disk File
18 Search For Next Disk File
19 Erase Disk File
20 Read Disk File Record
21 Write Disk File Record
22 Create New Disk File
23 Rename Disk File
24 Return Login Vector
25 Identify Logged-In Disk Drive
26 Set Disk I/0 Address
27 Get Disk Parameters

(Table continues on next page)

10-4

ClibPD www . fastio.com

http://www.fastio.com/

TPM~II USER'S GUIDE

CALL NUMBER

28

29
30
31
32
33
34
B 35
36

37
38

39
40

ClibPD www . fastio.com

CP/M FUNCTION
Write Protect Disk

Get Read/Only Vector
Set/Reset File Attributes
Get Disk Parameter Block
Set/Get User Group Number
Read Random Record

Write Random

Computer File Size

Set Random Record

Reserved For Future Use
Unused

Unused
Write Random w/Zero Fill

kkkk

10-5

CHAPTER 10

TPM-II FUNCTION

Read Console without
echo

Get System Date

Get Time

Trap Control

Set Date/Time

Chain Program

Get TPM Version Number
Do Direct Disk I/0
Create File Control
Block

Return Time In Seconds
Set /Reset File
Attributes

Graphics Driver Support
Multibank & Interrupt
Support

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

BASIC I/0 SYSTEM CALLS

The Basic I/0 calls provide input and output for the four
logical character I/0 devices, namely the Console, Reader, Punch,
and List. All employ byte I/O0 conventions, with the exception of
the two buffered Console functions, which employ block I/0.

READ CONSOLE CHARACTER

Function number: 1
I/0 mode: byte
CP/M-TPM mode: Both

Reads an input character from the console keyboard and returns
it in the A register. Control characters CTRL-C, CTRL-P, CTRL-Q,
CTRL-S, CTRL-B, and CTRL-\ are trapped by TPM and are not
returned to the program. Each non-control character entered at
the keyboard is echoed on the console screen. Default tabs are
set in every eighth column.

READ CONSOLE CHARACTER WITHOUT ECHO

Function number: 28
I/0 mode: byte
CP/M-TPM mode: TPM

Identical to Function 1, except that the characters entered
at the keyboard are not echoed on the console screen.

DIRECT CONSOLE I/O

Function number: 6
I/0 mode: byte
CP/M-TPM mode: CP/M

Allows characters to be input or output to the Console device
without intervention from TPM-II. The input is not echoed, nor
are the various control characters trapped.

The value in register E determines the direction of opera-
tion. If E contains OFFH, TPM-II assumes an input operation, and
the character is returned in register A. Any other value in E is
considered an output value and will be output to the Console.

This function is the one exception to complete TPM-II compa-

tibility with CP/M function calls 0 - 27. In the TPM-II mode,
this call will return the base address of a 6-byte bhlock of

10-6

www . fastio.com

http://www.fastio.com/

TPM-II USER'S GUIDE CHAPTER 10

memory containing the TPM-II serial number. In the TPM-II mode
use function call 28 for console input without echo, and function
2 to output to the console.

WRITE CONSOLE CHARACTER

Function number: 2
I/0 mode: byte
CP/M-TPM mode: Both

Writes the character in E to the console. The tab character
(09H) 1is expanded to enough spaces to reach the next default tab
stop (default tab stops are defined every eight characters). All
other characters are written directly; vyour program is therefore
responsible for initiating any special control functions provided
by the terminal in response to the keyboard entries. No result is
returned by this function.

READ CONSOLE BUFFER

Function number: 10
I/0 mode: block
CP/M-TPM mode: Both

Used by TPM to read console commands. Characters input at the
keyboard are buffered and echoed on the console screen until a
carriage return <CR> is typed. The usual TPM-II editing control
characters are supported.

The characters are stored in a buffer that starts at the
address pointed to by the DE register. The first byte of this
buffer must state the maximum buffer length (up to 255 bytes
allowed); on return, the second byte contains the current buffer
length. (These two bytes are not included in the count.) The
input characters start in the third buffer position. The carriage
return does not appear in the buffer; however if you enter a
line~-feed (0AH) to perform a physical carriage return without
terminating the input, the line-feed character will appear in the
buffer and be counted.

If the buffer fills before you enter a carriage return, no

additional characters will be accepted and the console bell will
ring. Any unused portion of the buffer will remain empty.

10-7

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~II USER'S GUIDE CHAPTER 10

WRITE BUFFER TO CONSOLE

Function number: 9
I/0 mode: block
CP/M-TPM mode: Both

Writes the buffer pointed to by the DE register to the con-
sole. The buffer is terminated by a null (00H) or dollar sign (S,
24H), neither of which is displayed. You can also terminate the
buffer by setting the high-order bit of the last byte to be
displayed. Your program 1is responsible for console control
characters such as carriage return and line feed.

INTERROGATE CONSOLE STATUS

Function number: 11
I/0 mode: byte
CP/M-TPM mode: Both

Determines whether console input is waiting to be read by ydur

program. If input is waiting, the A register is set to non-zero;
otherwise, a 00H is returned.

WRITE CHARACTER TO LIST DEVICE

Function number: 5
I/0 mode: byte
CP/M-TPM mode: Both

Character in the E register is written to the 1list device.
The characters are output in a literal manner. All special print
characters, such as Tab, Linefeed, and Formfeed, , are passed
directly to the list device, and no attempt is made to interpret
them, as in the case of the Console output (function 2).

READ CHARACTER FROM READER

Function number: 3
I/0 mode: byte
CP/M-TPM mode: Both

Reads a single character from the device currently defined as

the logical Reader (usually a modem on the QX-10's serial port).
The character is returned in the A register.

10-8

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

WRITE CHARACTER TO PUNCH

Function number: 4
I/0 mode: byte
CP/M-TPM mode: Both

Character in the E register is written to the logical Punch
device (usually a modem on the QX-10's serial port). No result
is returned. '

READ I/O ASSIGNMENT BYTE

Function number: 7
I/0 mode: byte
CP/M-TPM mode: Both

Returns the I/0 assignment byte in the A register. The 1I/0
assignment byte consists of four fields of two bits each, with
each field describing the current assignment of one of the four
logical I/0 devices, as shown below:

(Table on next page)

10-9

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

%k TABLE 10 - 2 ***x

I/0 BYTE

LOGICAL DEVICE PHYSICAL ASSIGNMENT

LIST (LL) 00 CRT
01 TTY
10 LIST
11 USER *

PUNCH (PP) 00 CRT
- 01 TTY

10 USER 1 *

11 USER 2 *

READER (RR) 00 CRT
01 TTY
10 USER 1 *
11 USER 2

CONSOLE (CC) 00 CRT
01 TTY
10 USER *
11 N/A

* Denotes user-supplied driver. See Chapter 11 for details.

*kkk

In the QX-10, the Zapple resident monitor handles I1/0 manipu-
lations for the console (CRT), for both disk drives, for the
printer (LIST), and for the RS-232C serial port (TTY). The
physical devices marked with an asterisk (*) require you to
provide your own I/O drivers if you wish to add them to the QX-
10.

10-10

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

MODIFY I/0 ASSIGNMENT BYTE

Function number: 8
I/0 mode: byte
CP/M-TPM mode: Both

Replaces the I/O assignment byte with the value you place in
the E register.

DISK I/0 SYSTEM CALLS

The disk I/O system calls are similar in structure to the
basic I/O calls. The call number is placed in the C register and
the TPM-II entry point (0005H) is called. However, with the
basic I/O calls, we usually deal with only one character at a
time and can therefore pass all of the necessary data to and from
TPM-II in the internal registers (with the exception of the
buffered Console input and output calls). With the disk I/0 we
are dealing with much larger blocks of data -- 128 bytes of data
and 36 bytes or more of parameters. Obviously, the internal
registers of the Z80 can't be used for data transfer.

TPM-II sets up two memory blocks to pass data and parameters
back and forth. The first block, the disk data buffer, is a 128-
byte block of memory that is used for all disk read and write
operations. The second block is the File Control Block (FCB), a
36-byte block of memory used to pass parameters which control the
disk I/0 to and from TPM-II.

File Control Block (FCB) And Disk Data Buffer

The FCB and the disk data buffer can be located anywhere in
memory that doesn't conflict with one of the TPM-II modules or a
reserved memory location. TPM-II provides a "default" location
for the FCB and the disk data buffer. The default FCB is located
at memory location 005CH, and the default data buffer at 0080H.
The exact location of the data buffer is set via a system call
(function 26) if you wish to change it, and the address of the
FCB must be contained in register pair DE during each disk I/O
system call. Each field in the FCB must be filled in properly
before a disk I/0 system call is issued. In general, the first
13 and the last 4 bytes are the responsibility of the programmer
to maintain. Bytes 13 through 31 contain allocation information
and are maintained by TPM-II. They may be read by your program,
but you should not attempt to change them. The FCB format is
shown below:

10-11

www fastio.com

http://www.fastio.com/

ClibPD

- TPM~II USER'S GUIDE CHAPTER 10

*%%% TABLE 10 - 3 **%x*

e i tm—tmm——— +==+
|00]01 02 03 04 05 06 07 08!09 10 11/12]13 14}15| BYTES
e e frrm—————— e +==+
l |
| +--> Record Count
tm————— > TPM-II Flags
tmm - > Extent
P > Filetype
e e > Filename
P e e e e e e e > Drive ID
o e e e +
|16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31| BYTES
e et it +
|
Fom e > Data Map
$ompmm +
|32|33 34 35|
e L +
I
o e > Direct
Address
tem e e > Current
Record

FILE CONTROL BLOCK

10-12

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~II USER'S GUIDE CHAPTER 10

File Maintenance System Calls

In order to properly keep track of the files on a disk, TPM-
I1 requires that some preliminary system calls be issued by a
program before actual read/write operation.

Creating, Deleting, and Renaming files:

If a file doesn't already exist on a disk, it must be created
with the Create system call, which makes a directory entry on the
disk for the file. After that, it can then be accessed by your
program. Note that a file need only be created once. Once a
file has been created, it can be erased with the Delete File
system call, or given a new name with the Rename call.

Opening and Closing Files:

Once a file has been created, there will be one or more
directory entries on the disk for that file. 1In order to read or
write any information, TPM~II must know where the file resides on
the disk. It must, therefore, get the allocation information
contained in the directory into memory, which 1is accomplished
with the Open File call. Open reads the information from the
file's directory into the FCB contained in memory. Prior to
issuing the Open File system call, the FCB for the file will
contain the file name in the first 13 bytes and zeros in all
other fields. After the Open call, the remaining fields will be
filed with data corresponding to the allocation map on the disk
for our particular file.

TPM-II will update the allocation unit map in memory as it
reads and writes new data to the file. Thus, when your program
has finished updating the file, the new allocation unit map must
be written back into the directory so that it will be permanently
stored. This 1is accomplished with the Close File system call.
While reading a file does not change the allocation unit map in
any way (no records are being added or deleted, therefore the
allocation wunit map in the directory is unchanged), it is good
programming practice to Close all files when you are done
reading. If you write anything to a file you must always Close
the file, or the new data may be lost.

Searching For A File:

TPM-II provides a method, the Search File system call, for
determining whether or not a file is on a disk. In order to
support ambiguous filenames, it is possible to place wildcards in
the filename contained in- the FCB. If one or more gquestion
marks, or an asterisk, are encountered in the filename, the
Search File system call will return the first filename that is a

10-13

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

match. In order to find out if there are other files that match,
the Search Next call is used.

CREATE NEW DISK FILE

Function number: 22
I/0 mode: block
CP/M-TPM mode: Both

Used to create a new disk file having the name stored in the
FCB. It terminates the program if the file name turns out to be
invalid.

If the file name is valid, the file is created and left open
so that write operations may begin. If there is no room for the
file on the specified disk, the function returns FFH in the A
register., Any pre-existing file with that name and protection
level is erased. :

ERASE DISK FILE

Function number: 19
I/0 mode: block
CP/M-TPM mode: Both

Deletes any files matching the file name, extension, user
code, and protection level supplied in the FCB (providing the
rules concerning protection levels have been observed). Ambiguous
file names, extensions, and user codes may be placed in the FCB
and erased.

RENAME DISK FILE

Function number: 23
I/0 mode: block
CP/M-TPM mode: Both

Changes file names on the disk from within a program. The
program must load the old file name into the first 16 Dbytes of
the FCB (for example, at 5CH) and the new file name in the second
16 bytes, beginning at 6CH (four bytes following the first file
name are not used). No result is returned.

You can rename files having ambiguous file names, but they

must be ambiguous in the same relative positions to avoid naming
conflicts during the renaming operation.

10-14

www fastio.com

http://www.fastio.com/

ClibPD

TPM~II USER'S GUIDE CHAPTER 10

Using this routine, your application program can also set a
new protection level on the renamed file, as follows:

If the low order bit of the first byte of the second file name
(i.e., the disk drive ID) is set to one, the protection code is
set to the high-order three bits of that byte. The disk drive ID
of the first file name is assumed for both.

OPEN DISK FILE

Function number: 15
I/0 mode: block
CP/M-TPM mode: Both

Opens the file specified in the FCB, i.e., it prepares the
file for read and write operations. All disk files must be opened
with Function 15 or Function 22 (create new file) before read and
write operations can be performed. If the file to be opened
doesn't exist, function 15 returns FFH in the A register.

CLOSE DISK FILE

Function number: 16
I/0 mode: block
CP/M-TPM mode: Both

Allows you to close a disk file from within a program by
specifying the file name in the FCB. Of course, the file must
have been opened or created before it can be closed. If the
specified file name is not present in the disk directory, the
routine returns FFH in the A register. This error indication is
usually caused by a disk or disk file being write-protected;
sometimes, however, it can mean that the operator switched disks
before the application had a chance to close all files.

Disk files that have not been written to need not be closed.
However, files that have been written to should always be closed,
since the disk directory entries describing the space in use by
the file are updated at closing.

SEARCH FOR DISK FILE

Function number: 17
I/0 mode: block
CP/M~-TPM mode: Both

Determines whether or not a specified file name, having parti-
cular attributes, exists in the directory of the logged in disk

10-15

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

drive. When Function 17 is called, TPM returns, in the A regis-
ter, the address of the disk directory entry for the first FCB
that matches the specified file name and attributes. The address
of the directory entry is used to allow the user program to
examine the directory entry. If no match 1is found, FFH is
returned.

As part of this function, TPM reads a 128-byte directory block
(four FCB entries) into the disk I/0 buffer, If an FCB match is
found within the block, its number within the block is determined
by taking the residue of the A register module 4 (i.e., the low
order two bits). Each FCB occupies 32 bytes, so the following
code would place the address of the desired directory entry into
the HL register:

LXI H,<disk I/0 address>
ANI 03 ;mod 4

RRC ;multiply A by 32
RRC
RRC
MOV
MVI
DAD

oom™
o p

You can use Function 17 to search for an ambiguous file name,
but you must then use Function 18, Search Next (see below) to get
subsequent directory entries.

Normally, only the disk FCB entry for the first extent of a
file 1is returned by the search function; however, placing a
question mark (?) in the FCB extent field will return directory
entries for all extents.

SEARCH FOR NEXT DISK FILE

Function number: 18
I/0 mode: block
CP/M~-TPM mode: Both

Similar to Function 17 (see above), but returns the byte
address of the next disk directory FCB that matches the specified
file name and attributes. No intermediate TPM disk I/O calls are
allowed between functions 17 and 18 or between function 18 and
the next call to 18. The address of the FCB must not be changed
between calls,

10-16

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

File Read And Write System Calls

Once a file has been opened or created, reading and writing
data is fairly simple. The last two bytes of the FCB are reser-
ved for a Random Access Record Number, which can be anywhere from
1l to 65,535. Set these two bytes to indicate the record you wish
to access prior to issuing either a read or write system call.
Once the FCB has been set up properly, either a read or write
operation can be initiated.

In the TPM mode, the Random Access Record Number should be
set to the absolute record number you want to access. TPM will
automatically perform the absolute record to extent and record
conversion., After each read (function 20) or write (function 21)
operation, the Random Access Record Number will be incremented by
one, allowing easy sequential access. To perform random access,
the Random Access Record Number is simply set before each read or
write operation. For sequential access, it is only set on the
first such operation.

In the CP/M mode, two read/write modes are used: random
access and sequential access. Sequential access is far less
flexible than the random access method. We won't discuss the
details here (consult your CP/M documentation), except to mention
one important point; sequential access uses the extent and record
number to indicate the record, while random access uses the
Random Access Record Number. Also, there are two sets of read
and write commands. The sequential access mode uses function
calls 20 (read) and 21 (write) while the random access mode uses
33 (read) and 34 (write). The sequential read and write opera-
tions are much faster than the random operations. Therefore,
unless vyou need the random access capabilities, sequential |is
recommended. We won't discuss the details here, but sequential
access causes the system to read the next sequential 128-byte
record from the specified disk file into the disk I/0 address.
The file must previously have been opened or created. (See sec-
tion on Function 26: Set Disk I/O Address.)

A byte describing the result of the read operation is returned
in the A register, as follows:

00 - Successful read.

01 - End of File.
02 - Attempted to read unwritten records.

10-17

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~II USER'S GUIDE CHAPTER 10

WRITE DISK FILE RECORD

Function number: 21
I/0 mode: block
CP/M-TPM mode: Both

Function 21 writes the record stored in the 128 byte disk I/0
area to the indicated disk file at the next sequential location.
The file must be named in the FCB and must have previously been
opened or created. The result returned in the A register has one
of the following meanings:

00 - Successful write.

01 - File exceeds maximum size.

02 - No more space on disk for the file.

03 - Write protection violation. (See protection code rules in

Chapter 3.)
FFH - No more space in disk directory.

READ RANDOM RECORD

Function number: 33
I/0 mode: block
CP/M-TPM mode: CP/M

Lets you read directly from an open file. You specify the
required record in bytes 21H, 22H, and 23H of the FCB, from which
the LIOS determines the required extent number, calculates the
correct allocation block within the extent, and looks up the
entry in the extent data map. It then finds the record on the
disk, reads it into the current file buffer, and returns 00 in A
to indicate a successful read.

Tf the current extent isn't the one required, LIOS updates the
directory entry for the current extent (if it has been modified)
then copies the correct extent number into the FCB.

One of the virtues of random access is that you can alternate-
ly read and write to the same file. Unfortunately, random access
files wusually have holes in them, unless you've taken precau-
tions. If the block you're reading has ever been part of another
file, it could be filled with garbage, so watch out.

Function 33 returns a result in A, as follows:

00 - Successful read completed.

01 - Attempted to read unallocated record.
03 - Cannot close/update current FCB.

04 - Attempted to read unallocated extent.
06 - Direct address larger than allowed.

10-18

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~-II USER'S GUIDE CHAPTER 10

WRITE RANDOM RECORD

Function number: 34
I/0 mode: block
CP/M-TPM mode: CP/M

Lets you write directly to an open file. You specify the
required record in bytes 21H, 22H, and 23H of the FCB, from which
the LIOS determines the required extent number, calculates the
correct allocation block within the extent, and then writes the
record. If the record already exists, the LIOS overwrites it with
the new data. If no block has been allocated in this extent, LIOS
assigns one. If the current extent is not the one required, LIOS
updates the directory entry for the current extent (if it has
been modified) and then copies the correct extent number into the
FCB.

Unfortunately, you can easily create holes in which there is
no useful data with random access files. The directory program
doesn't know that such data is garbage, so if the block has ever
been written to before, the directory will view it as full, even
if you've only written to its first record. (See Function 35,
below.)

Function 34 returns the same result codes as 33 in A, but adds
the following:

05 - Directory overflow; new extent not created.

GET RANDOM RECORD ADDRESS

Function number: 36
I/0 mode: block
CP/M~-TPM mode: CP/M

Calculates (from the extent and record number) the Random
Access Record Number. Please refer to your CP/M documentation
regarding the use of this function to aid on switching between
sequential and random access modes.

COMPUTE FILE SIZE

Function number: 35
I/0 mode: block
CP/M-TPM mode: CP/M

Computes the size of the file pointed to by the DE register so

that you can add data sequentially to its end, read 1its last
record directly (Function 33), and so on.

10-19

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

Of course, 1if the file whose size you're checking was written
directly, PFunction 35 returns only the identity of the highest
numbered record in the directory FCB. As indicated above, the
LIOS has no way to distinguish between meaningful data and non-
sense in the record, so a random file with holes in it will
generally appear larger than it actually is.

Miscellaneous Disk I/0 Function Calls

RESET DISK SYSTEM

Function number: 13
I/0 mode: non-data
CP/M-TPM mode: Both

Resets the disk system. Drive A is logged in, and the disk I/0

address is set to its default, 80H (see section below on setting
disk I1/0 address). Any waiting console input is flushed.

IDENTIFY LOGGED-IN DISK DRIVE

Function number: 25
I/0 mode: byte
CP/M-TPM mode: Both

Returns a hexadecimal value representing the number of the
currently logged-in disk drive. The value is returned in the A
register. 00H means drive A, O0lH drive B, and so on. Note that
this 1is not the same convention as for the drive number in the
FCB where 00H = current drive, 0lH = A, etc.

LOG IN DISK DRIVE

Function number: 14
I/0 mode: byte
CP/M-TPM mode: Both

Lets you log in a particular disk drive by placing a hexadeci-
mal value in the E register. O00H logs in drive A, 0l1H drive B,
and so on. Note that this is not the same convention as for the
drive number in the FCB where Q0H = current drive, 0lH = A, etc.

10-20

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

SET DISK I/O ADDRESS

Function number: 26
I/0 mode: byte
CP/M-TPM mode: Both

Every disk write or read requires the transfer of 128 bytes to
or from the disk I/O buffer. At every system initialization,
whether cold start or warm boot, the address of this buffer is
set to 80H (the default I/O buffer). You can set the I/0 buffer
address to a different value by using Function 26.

If the application requires that several disk files be opened
simultaneously, we recommend that you allocate a separate 128-
byte buffer for each file, and call Function 26 for every read or
write, making a positive buffer selection for every operation.

Since TPM uses the default I/O buffer for all file opens and
closes, except for program chaining (see Function 33, above), you
should set a new I/0 buffer address if your program will need to
access the information in it after it has been written out.

GET DISK INFORMATION

Function number: 27
I/0 mode: byte
CP/M-TPM mode: Both

Returns a set of addresses which point to the information TPM
maintains concerning disk drives. The program may then access
whatever information is desired. Needless to say, these tables
should not be altered in any way.

The addresses returned are as follows:

IX: Generic Information for the selected disk drive. The follow-
ing table lists the definition of each parameter as well as its
size, hex offset from the beginning of the block, and label for
the parameters that have equivalents under CP/M. This informa-
tion is equivalent to the CP/M Disk Parameter Block (DPB).

10-21

www . fastio.com

http://www.fastio.com/

TPM~-II USER'S GUIDE CHAPTER 10

%% TABLE 10 - 4 *%**

OFFSET SIZE LABEL DEFINITION
00 WORD SPT Sectors Per Track
02 BYTE BSH Block Shift Factor
03 BYTE BLM Block Mask
04 BYTE EXM Extent Mask
05 WORD DSM Number of Blocks - 1
07 WORD DRM Number of Directory Entries - 1
09 WORD ALV Directory Allocation Mask

0B WORD CKS Directory Check Size
0D WORD OFF Directory Track
OF WORD * Total Track in this Unit

11 WORD * Total Bytes for Allocation Map

13 BYTE * KBytes per Block

14 BYTE * Error Retry Count

15 BYTE * Sector Count in Track 00

16 BYTE * S-Flag (If bit 0 = 1, a Skew Table is
present)

17 WORD * Address of Physical Device Handler

19 BYTE * X-Flags

1A WORD * Physical Media Sector Size

1C BYTE * Blocking/Deblocking Mask

1D n BYTES * Skew Table Size (used to map Logical to

Physical Sector Numbers. n is equal to
the number of sectors per track (SPT above).

* denotes parameter unique to TPM-II

kk k%

10-22

ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

TPM~II USER'S GUIDE CHAPTER 10

IY: Current Information for the selected disk drive. The informa-
tion is equivalent to the CP/M Disk Parameter Header (DPH).

*k%%x TABLE 10 - 5 ****

OFFSET SIZE LABEL DEFINITION
00 WORD * Current Track Number
02 WORD * Current Sector Number

04 BYTE * Online Flag. (If bit 0 = 1, disk is mounted
in drive and ready to use.)

05 BYTE * PIOS System Flag Byte

06 BYTE * Current User Group Number

07 32 BYTES * Directory Check Vector for CP/M 2.2

27 WORD * Translation Table Address

29 WORD * CP/M Scratch Pad Area # 1

2B WORD * CP/M Scratch Pad Area # 2

2D WORD * CP/M Scratch Pad Area # 3

2F WORD DIRBUF Directory Buffer Address ‘

31 WORD PDB Address of DPB (IX register contents)
33 WORD csv Address of Check Vector

35 WORD * Address of Allocation Map
37 Variable ALV Allocation Map Vector. (One bit per
available

block on disk. Bit 0 of lst byte represents
first block, Bit 1 the second block, and so

on.
If the bit is 1, block is in use. A 0
indicates

block is available. The word in bytes 11 &
12

of DPB contains total number of block on
disk.)

* denotes parameter unique to TPM-II

*kk Kk

HL, BC: Allocation vector for the selected disk drive. The allo-
cation table is actually contained within the current information
table, as shown below, so it may accessed via the IY register as
well,

10-23

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

DIRECT DISK I/O

Function number: 35
I/0 mode: byte
CP/M~-TPM mode: TPM

Performs disk I/O at any track and sector, and It effectively
bypasses the standard TPM disk file interface. Be careful: This
function can wreak havoc on the content of a disk.

The Function Codes given below define the operation to be
performed; the Parameters defined in the table specify register
usage for the codes.

*k%% TABLE 10 — 6 *x*x

FUNCTION CODE OPERATION PARAMETERS
00 Home Head : None
01 Select Drive Drive number in L.
A=00, B=01l, etc.
02 Set Track # Track number in HL.
(Note: track #s start
with 0)
03 Set Sector # Sector number in L.
(Note: sector #s start
with 1)
04 Set I/0 address New address is in HL.
05 Read Disk Sector Retry count is in L.
06 Write Disk Sector Retry count is in L.
%* %k k k

To perform direct disk I/0 with Function 35, set the address
where the I/0 will take place, select the desired drive, track,
and sector, and initiate the read or write. If required, use
Function 27 (see above) to determine the characteristics of the
particular drive in use.

If the read or write fails on the initial try, TPM will retry
the operation the number of times you specify in the L register,
and will return an error code only when the retry is exhausted.
Error codes are returned in the A register; =zero in A therefore
means that the operation was successful.

Table 10 - 7 1lists disk 1I/O error codes for the QX-10

implementation of TPM-II. Any error with bit 7 set is considered
fatal, and operator intervention is required to clear it.

10-24

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

*%k% TABLE 10 — 7 *%%*

ERROR CODE DEFINITION
00H Blank Unformatted Disk
04H Lost Data (speed wrong)
08H CRC Error (data) encountered
10H Requested record header not found
18H CRC Error (header) encountered
COH Disk Physically write-protected
FFH Drive empty
%k %k %k %k

PARSE DISK FILE NAME

Function number: 36
I/0 mode: byte
CP/M-TPM mode: TPM

The TPM internal Function that parses disk file names for
programs (normally executed at address 5CH) is also available for
use in application programs, as follows:

Function 36 attempts to parse a file name from the string
pointed to by HL. If a valid file name is found it is placed in
the 12-byte area pointed to by the DE register. The result is in
the format of the first 12 bytes of a file control block.

Function 36 terminates the file name string at the first charac-
ter that is not valid in a TPM file name. ([l= :;<>,). The BC
register returns the address of the byte that follows the last
byte of the valid file name.

When the file name string in HL is ambiguous (contains * or
?), Function 36 expands the asterisk (*) to enough question marks
(three to eight) to produce the proper FCB format.

When only a disk drive ID is found (that is, when the string
terminator 1is :) Function 36 leaves the file name and file type
blank.

The A register returns a byte that codes the result of the

Function, as shown below. The codes are indicated by the corres-
ponding bit being set to 1.

10-25

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~-II USER'S GUIDE CHAPTER 10

%k% TABLE 10 ~ 8 *%*%
BIT DEFINITION

Error, No File Name Found
Only Disk Drive ID Found

No File Type Supplied

File Name is *.* (all files)
File Name Ambiguous

~NAaANMHEHO

*k*k*k

WRITE PROTECT DISK

Function number: 28
I/0 mode: byte
CP/M~-TPM mode: CP/M

Sets the write-protect bit on the default drive. The write
protection remains in effect until the next warm boot. Once this
bit is set, any attempt to write to this drive will generate a
write-protect message: "*The Diskette is Write Protected*," which
the operator can override by typing RETURN. Entering a CTRL-C
will abort the operation.

Calling Function 28 a second time resets the write-protect bit
to remove the protection. ‘

GET READ-ONLY VECTOR

Function number: 29
I/0 mode: byte
CP/M-TPM mode: CP/M

Identifies drives for which the write protect bit has been
set. This allows an application program to discover if a disk is
Write Protected. A drive is considered Write Protected if either
the notch is covered (hardware) or if the Write Protect bit has
been set via function 28 (software). The Least Significant Bit
(LSB) represents Drive A: -- the Most Significant Bit (MSB) drive
P:.

10-26

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

SET/RESET FILE ATTRIBUTES

Function number: 30
I/0 mode: byte
CP/M-TPM mode: Both

Searches the directory of the selected drive for all matches
to the file name stored at the FCB address. When a match is
found, bytes 01 through 0BH (Filename and Filetype) are replaced
by those in the FCB, which can contain a pattern of most signifi-
cant bits that is different from the disk file. The disk file
directory is thereby updated to a new attribute status.

GET DISK PARAMETER BLOCK (DPB) ADDRESS

Function number: 31
I/0 mode: byte
CP/M~TPM mode: CP/M

Returns the address of the active DPB in HL. For an explana-
tion of DPB refer to Function 27. GET/SET CURRENT USER CODE

Function number: 32
I/0 mode: byte
CP/M-TPM mode: CP/M

Used to interrogate the current User Code by entering FFH in
the E register, or change it by entering the new User Code in E.
(See Chapter 3.) If you interrogate the User Code, the result is
returned in A. There are 256 possible numerical User Codes, from
0 through 255. Note, however, that you can't set the User Code
to 255 with this function since you would need to place OFFH in
register E, thus instructing TPM-II to get the current User Code.
User Code 255 is still a valid code, and may be set with the ICP
User command.

OTHER TPM-II SYSTEM CALLS

In addition to the basic and disk I/O calls we have covered,
TPM-II supports several other calls, which, among others, provide
access to the QX-10's real-time clock and provide a mechanism for
chaining programs via system calls.

10-27

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

CHAIN TO ANOTHER PROGRAM

Function number: 33
I/0 mode: byte
CP/M-TPM mode: TPM

Loads a second program and conditionally executes it. The DE
register must point to an FCB that gives the disk file name of
the program. After the new program is loaded, control is either
returned to the caller (B=0), or the called program is executed
at the <load address>. If TPM encounters an error, it always
returns control to the caller, regardless of the value passed in
B.

Note that the <load address> + <file length> must always be
below the LIOS (the value at address 6, D800), or you will cause
a MEMORY OVFL error.

If the load fails because the called program you try to read
is too large, TPM terminates both programs. A OlH is returned in
the A register if you try to read a random access file that has
"holes" in it. (Refer to section on random access files.)

GET SYSTEM DATE

Function number: 29
I/0 mode: block
CP/M-TPM mode: TPM
Returns the current date, in ASCII, to the 8-byte area pointed
to by the DE register, in the format MM/DD/YY (standard calendar
usage). You can set the date in either of two ways:
-By means of the SET-TIME utility (see Chapter 3).

-By means of TPM Function 32 (see below).

GET SYSTEM TIME

Function number: 30
I/0 mode: block
CP/M-TPM mode: TPM

Returns the current time, in ASCII, to the 8-byte area pointed
to by the DE register, in the format HH:MM:SS ("military" time).
You can set the time in either of two ways:

-By means of the SET-TIME utility (see Chapter 3).

10-28

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

-By means of TPM Function 32 (see below).

GET SYSTEM TIME (IN SECONDS)

Function number: 37
I/0 mode: byte
CP/M-TPM mode: TPM

The current time, expressed in seconds is returned to the HL
register (least significant digits) and the BC register (most

significant digits). When the BC and HL registers are concaten-
ated, they create a 4-byte hexadecimal number that expresses the
total number of seconds elapsed since midnight. The maximum

value is 86,400 seconds (24:00:00 hours).

SET SYSTEM TIME AND DATE

Function number: 32
I/0 mode: block
CP/M-TPM mode: TPM

Under normal circumstances, the operator will set the date and
time via the SET-TIME utility (see Chapter 3). However, 1if an
application requires that the date and time be set or reset under
program control, Function 32 permits you to do so.

Each call to this routine changes either the date or the time,
depending on whether the first hexadecimal byte of the input area
is a zero (date) or one (time). In either case, the remaining
three bytes give the three fields of the date or time, in binary
coded decimal (BCD). For example, to set the date to 10/7/79, the
four input bytes would be: 0, 10, 7, 79. To change the time to
23:09:31 these bytes would be 1, 23, 09, 31.

GET TPM SERIAL NUMBER

Function number: 6
I/0 mode: block
CP/M-TPM mode: TPM

Returns the address of the 6-byte area <containing the TPM
serial number, which is stored as an ASCII value. The address is
returned in the BC register pair. Your program should never write
into the area containing the serial number, for obvious reasons.
Note: this is the single exception to TPM-II's compatibility with
CP/M for function calls 0 through 27. 1In the CP/M mode, function
call 6 is Direct Console I/0.

10-29

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-1I USER'S GUIDE CHAPTER 10

GET SYSTEM IDENTIFICATION

Function number: 12
I/0 mode: block
CP/M-TPM mode: Both

Returns the address of the area containing the current TPM
version number, which is stored as an ASCII value, delimited by a
null (00). The address is returned in the BC register pair. For
obvious reasons, your program should never write into the area
containing the version number.

In keeping with CP/M convention, Function 12 returns zero in
the HL pair if the system is in the TPM mode, and 0022H if it's
in the CP/M mode.

You can examine the DE register pair from your application
program to find out if the system is operating in TPM or cCp/M. I1f
DE returns O0054H (ASCII T), the system is operating in TPM,
regardless of the current mode indicated by HL.

You can shuttle from TPM to CP/M between extended «calls by
passing a unique value in the DE pair before calling Function 12.
This approach allows your program to take full advantage of TPM's
extended capability as well as CP/M 2.2 features. To set the mode
to TPM, pass the value 0AAAAH to the DE pair; to set it to CP/M,
pass 0CCCCH to DE. (Any other value will leave the current mode
unchanged.)

 RESET SYSTEM

Function number: 0
I/0 mode: non-data
CP/M-TPM mode: Both

Identical to a JMP 0. It terminates program execution and re-
initializes the system.

VIDEQO BIT DRIVER SUPPORT

Function number: 39
I/0 mode: block
CP/M~-TPM mode: TPM

Provides access to the QX-10's Video Bit Driver Routines. Due
to its complexity, this function is described in Appendix C.

10-30

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

MULTIBANK AND INTERRUPT SUPPORT

Function number: 40
I1/0 mode: block
CP/M-TPM mode: TPM

Provides the linkage to such Multi-bank Functions as Spooler,
Clock Display, and Serial port buffered reads. A complete des-
cription of these functions is available in the SYSINIT document.

PROGRAMMING NOTES .

When TPM begins executing a user program, the stack pointer
(the SP register) points to the stack used privately by TPM. If
your program will use the stack, move it to some other location
in the TPA. This will keep your program from smashing into TPM.
Here's the fast way:

LXI SP,<top of stack address>

(Remember, the stack grows towards smaller memory addresses.)
If you use Linker to create your program, the code it generates
initializes the stack to the highest address in user memory with:

LSPD 6

NOTE: Your programs should reserve a few extra words of stack
space to allow for compatibility with possible future versions of
TPM.

The 'usual way to terminate a program is to jump to address
zero, which causes TPM to reinitialize itself. A slightly faster
way to terminate the program is to simply return (RET) to TPM,
since TPM actually calls 100H to initiate the program. However,
the program must restore the stack pointer to its original loca-
tion. For example:.

LXI H,0

DAD SP

LXI SP,<user stack address>
PUSH H

This moves the TPM stack pointer into the HL register, and
saves it on the user stack. You can then let the user program run
normally, using its own stack. At the end of the program:

POP H

SPHL
RET

10-31

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 10

This restores the TPM stack pointer from the user stack, and
returns to TPM. The program must not have overwritten any por-
tion of the ICP, or this method will not work. If the ICP is not
intact, a normal warm boot must be executed.

NOTE: This program termination method is very powerful -- but
dangerous. Don't use it in programs that require the operator to
change disks while the program is running; you could do severe
damage to the disk when the operator executes the next program.

END CHAPTER 10

10-32

www . fastio.com

http://www.fastio.com/

	./10-01.tif
	./10-02.tif
	./10-03.tif
	./10-04.tif
	./10-05.tif
	./10-06.tif
	./10-07.tif
	./10-08.tif
	./10-09.tif
	./10-10.tif
	./10-11.tif
	./10-12.tif
	./10-13.tif
	./10-14.tif
	./10-15.tif
	./10-16.tif
	./10-17.tif
	./10-18.tif
	./10-19.tif
	./10-20.tif
	./10-21.tif
	./10-22.tif
	./10-23.tif
	./10-24.tif
	./10-25.tif
	./10-26.tif
	./10-27.tif
	./10-28.tif
	./10-29.tif
	./10-30.tif
	./10-31.tif
	./10-32.tif

