ClibPD

TPM-II USER'S GUIDE CHAPTER 7

CHAPTER VII

INTRODUCTION TO ADVANCED TPM-II FEATURES

The preceding chapters, in which we covered the basics of
TPM-II, assumed no previous knowledge of operating system funda-
mentals, or of CP/M. Starting with this chapter, we're going to
delve into the internals of TPM-II. Our assumption is that either
you are interested in this material out of a misguided sense of
curiosity or you wish to try your hand at some assembly language
programming on the QX-10.

WHAT'S IN THIS SECTION

The first topic we'll discuss is the anatomy of the QX-10:
its memory map, bank switching, and accessing the CMOS RAM and
boot ROM. We'll tackle the other hardware components in the
system: interfacing to the two keyboards, printer and modem
ports, and video display. The layout of the diskette will be
described in detail, including directory format and disk parame-
ters. Although we will attempt to give sufficient information
for programming, we will not get down to the schematic level;
those so inclined are urged to consult the QX-10 Technical
Manual.

Next, we review the tools provided for assembly language
programming. TPM-II doesn't provide you with an assembler or
linker, but in fact this isn't a real deficiency, since most
programmers already have an assembler with which they are fam-
iliar and comfortable. The system does, however, have several
debugging tools and aids.

The final chapters are devoted to detailing the TPM-II inter-
face. Each of the available system calls are presented, along
with general information regarding TPM-II/program interface.

WHAT ISN'T COVERED

The primary purpose of this half of the manual is to aid the
experienced assembly language programmer in writing new programs,

or converting existing programs for the QX-10. As such, it is
not a tutorial or reference manual on assembly language program-
ming. There are many good books available on the subject, and

readers who are interested in expanding their horizons are urged
to read one of these text before, or in conjunction with, the
material presented here.

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 7

Finally, we will not attempt to cover the internal makeup of
the Valdocs system. Valdocs is comprised of a set of interactive
and closely related modules. Many of its functions and features
are a direct result of the flexibility of TPM-II. These features
will described fully when we cover system calls. Other features
are implemented in one of the several modules which comprise the
valdocs systems. The interaction of the Valdocs modules, as well
as information on interfacing them to non-Valdocs programs is
discussed in a separate manual.

END CHAPTER 7

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 8

CHAPTER VIII

QX-10 ANATOMY

TPM-II 1is a flexible operating system that will run on any

Z80-based microcomputer. The QX-10 version, however, has been
modified extensively to take advantage of many unique hardware
features. In this chapter we'll review the QX-10 hardware and

introduce the component parts of TPM-II. Hopefully, by introduc-
ing them together we'll be able to convey the special interaction
between TPM-II and the QX-10.

THE QX-10 MEMORY MAP

The QX-10 contains five major memory components. First,
there are four banks of dynamic RAM, each bank containing 64K.
The minimum RAM configuration is a single 64K bank, although most
0X-10s (all vValdocs systems and the majority of non-vValdocs
systems) are shipped with the four banks populated for a total
dynamic RAM capacity of 256K.

In actual practice, not all of this 256K is available. The
0X-10 has 8K of Resident RAM residing at the top of the 64K
address space. As this 8K is common to all banks, each bank
actually contains 56K of RAM. The memory map of the four banks
and resident RAM is shown below:

BANK 0 BANK 1 BANK 2 BANK 3
FFFF o —————— + Ammmm————— e + mmmmmmmm e +
RES. RAM RES. RAM RES. RAM RES. RAM
E000 Fom—m— + po———————— + e + Fom +
0000 Fom + e + o + Fom +

The second memory component is the 2K boot ROM which holds
the initial power-on initialization and boot code. The ROM
overlays the dynamic RAM from memory locations 0000 - Q7FF. At
power on, the overlay is automatic to facilitate booting. The 2K
ROM may be switched in and out of the memory map via an I/0 port
(we'll discuss this, along with controlling the bank switching

8-1

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 8

shortly).

The third component is the CMOS RAM. The QX-10 contains 2K
of battery-backed CMOS RAM for storing data across a power down.
This RAM may be switched in or out of the memory map from loca-
tions 8000 - 87FF,. When it's switched in, the CMOS RAM will
overlay the dynamic RAM at those addresses.

The real-time clock chip contains 64 bytes of CMOS RAM, which
is also battery-backed and maintains data across power downs.
This RAM is used by the QX-10 and Valdocs to store system para-
meters. As such, your application programs may read the data,
but should be careful when writing to it so that important system
data is not overwritten. This RAM is I/O mapped, so it doesn't
affect our memory map.

The final memory component is the video RAM. The QX-10
contains 128K of video memory for storing characters or pixels,
depending on the display mode. The memory is not accessible by
the 780 CPU; instead, it is controlled by the 7220 graphics
controller. The CPU and graphics controller communicate via I/0
ports with DMA capability.

Controlling The Memory Components

The upper four bits of port 18H control the four RAM banks.
Setting any of these bits to "1" will enable a bank as shown
below. NOTE: DON'T SET MORE THAN ONE BIT AT A TIME TO "1"! You
may disable the dynamic RAM altogether by setting the four upper
bits of 18C to "0".

D7 D6 D5 D4

Remember that this only controls the 56K of RAM in each bank.
The upper 8K of Resident RAM cannot be switched. (In reality,
the resident RAM is the upper 8K of RAM bank 0. When the address
decode logic detects an address of E000H - FFFFH, it overrides
the bank select bits from port 18H and selects bank 0.)

In order to determine which bank is currently selected, the
upper nibble of port 30H must be read. The lower nibble contains
several status bits pertaining to the floppy disk drives and
hence should be masked off. Bits D7 - D4 of 30H correspond to
the same banks as their counterparts in 18H (shown above).

www fastio.com

http://www.fastio.com/

TPM-II USER'S GUIDE CHAPTER 8

The boot ROM is selected automatically at power on. It
overrides the dynamic RAM in addresses 0000H - 07FFH. It is then
deselected (and may subsequently be reselected) with bit 0 (DO0)
of I/0 port 18H. Setting DO to "1" disables the ROM, while
making DO a "0" reselects it.

The CMOS RAM is selected in a similar manner, except that I/0
port 20H is used. . Note that the CMOS RAM is initially deselected
at power-on. To enable it to override the dynamic RAM from 8000E
- 87FFH, set bit DO of 20H to "1". To disable, turn DO off.

The real-time clock RAM requires two I/0 ports to access it.
The address of the RAM (00H - 3FH) is output to port 3DH. The
data for that address may then be read/written to port 3CH.
Again, exercise caution when writing to this RAM as most of it is
either currently used by the QX-10 or Valdocs, or is reserved for
future use. There is, however, some useful information stored in
it. The following table lists the current clock RAM usage:

CMOS CLOCK CHIP RAM LOCATIONS FOR THE EPSON QX-10

ADDRESS VALUE FUNCTION DESCRIPTION
DEC HEX HEX
0 00 54 - SECONDS 0-59 SEC.
- 1 01 00 SECONDS / ALARM
2 02 13 MINUTES 0~-59 MIN.~
3 03 00 MINUTES / ALARM
4 04 18 HOURS 0-23 HOUR
. 5 05 00 HOUR / ALARM
6 06 03 DAYS OF WEEK 1-7 DAYS
7 07 06 DAYS OF MONTH 1-31 DAYS
- 8 08 09 MONTHS 1-12 MONTHS
9 09 83 YEAR 0-99 YEARS
10 0A 2A REGISTER A READ/WRITE
REGISTER)
11 OB 1A REGISTER B READ/WRITE
REGISTER
12 0OC 40 REGISTER C READ ONLY
) REGISTER
13 0D 80 REGISTER D READ ONLY
REGISTER
14 OE 04 Bit 0 = 12/24 hr. Valdocs display
15 OF 70 Video emulation mode byte
16 10 00 System drive default (A)
_ 17 11 01 System User default (0)
18 12 01 Data drive default (B)
19 13 00 Data User default (0)
20 14 00 System drive temp (always A)
21 15 01 System User temp

ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE

22
23
24
25

16
17
18
19

03
02
00
01

26-30 (1lA-1E) are

26
27
28
29
30

31
32
33
34
35
PORT
36
37
38
39
40
41

CHAPTER 8

Data drive temp
Data User temp
Print flags
Editor "Q" flags

RESERVED for future use.

—— - ——— ——— —— — - —

29

MAIL&BYE)

42
43
44
45
46
47

2A
2B
2C

2D

2E
2F

48-61 (30-3D) are

48
49
50
51
52
53
54
55
56
57
58
59
60

Mail protocol options byte
IOBYTE

KEYBOARD REPEAT RATE

KEYBOARD STATUS .

BAUD RATE FOR EXTERNAL SERIAL

VIDEO STATUS

NULLS ON TTY DEVICE OUTPCUT
RESERVED FOR SCHEDULER

Debug & expert status flags
MODEM FILE COUNT KEEPER (BYE)
RINGS BEFORE AUTO ANSWER - 1(

Used by SPOOLER
Reserved for EDITor
MODEM-- TEMP. BAUD RATE
Printer TYPE Byte
RESERVED FOR MAIL
RESERVED FOR MAIL

currently undefined.

www fastio.com

http://www.fastio.com/

ClibPD

TPM=-II USER'S GUIDE CHAPTER 8
61 3D 00
62 3E AA Indicates valid setup done
63 3F A2 SEE IF INITIALIZED

A few caveats regarding memory usage are in order at this
point. First, remember that application programs written with
CP/M in mind don't even know that banks 1 - 3 exist. If you
write a program to run under TPM-II on the QX-10, and want to
take advantage of the bank switch feature, wuse only banks 2 and
3. Bank 1 is reserved for the use of TPM-II, which performs some
bank switching of its own in order to maximize both the number of
features it supports and the size of the Transient Program Area.

TPM-II MEMORY MAP

As we just mentioned, most programs running under TPM-II know
nothing of bank switching. Therefore, the effective memory map
is simply a contiguous 64K of dynamic RAM. This memory can be
divided into six functional areas. We've listed them from the
top of memory down, describing their function and interaction.
TPM-II 1is compatible with CP/M, so it stands to reason that
certain portions of the TPM-II memory map will bear a resemblance
to that of CP/M. In order to facilitate your understanding, we
have included the CP/M equivalent where applicable.

(See next page)

8-5

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 8

FFFF T e B +

F000 o e e +
PHYSICAL I/O (PIOS)
(BIOS)
E800 Fomemm e — e — +
LOGICAL I/O (LIOS)
(BDOS)
D800 Fm——— e +

INTERACTIVE COMMAND ,
PROCESSOR (ICP) i

(CCP) |

D800 e e e e e +
|

= TRANSTENT PROGRAM -

- ARFA (TPA) -

(TPA) i

0100 o e - +
|

LOW MEMORY i

0000 o e +

ZAPPLE MONITOR: The ZAPPLE monitor portion of TPM-II serves a
dual purpose. First, it contains the low-level physical drivers
for the @QX-10 hardware. It operates in conjunction with PIOS
(see below) to provide all of the hardware-dependent code neces-
sary for the operation of TPM-II. In addition, it contains a
Monitor for debugging and/or patching code.

PHYSICAL I/O SYSTEM (PIOS): PIOS contains all of the code neces-
sary to complete the hardware interface with the QX-10. Working
in conjunction with ZAPPLE, PIOS provides the high-level physical
drivers, This function is equivalent to that of BIOS in CP/M.
The PIOS is directly equivalent to BIOS -- it contains all of the
standard jump vectors, its base address is stored in memory
locations 0001 and 0002 (warm boot jump), and it resides above
the logical I/0 section.

LOGICAL I/0 SYSTEM (LIOS): LIOS performs all file handling and
logical I/0 tasks for TPM-II. Programs communicate with LIOS via
system calls providing a consistent interface to the 0X-10
hardware. LIOS serves the same function in TPM-TI as BDOS does
in CP/M.

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 8

INTERACTIVE COMMAND PROCESSOR (ICP): The ICP provides the inter-
face between the user and the nucleus. The code for all resident
commands 1is contained here. The ICP is equivalent to the CCP
under CP/M.

TRANSIENT PROGRAM AREA (TPA): The TPA isn't a section of TPM-I1
in the same sense as PIOS or LIOS. The TPA contains no code;
rather, it is the space allocated for application programs to run
in. The TPA extends from 0100H to the bottom of the LIOS module.
The program that runs in the TPA may overwrite the ICP if the
program 1is large enough. The ICP is reloaded after each warm
boot, in the event that the exit program overwrote all or a
portion of it. The TPA serves the same function as CP/M's TPA.

LOW MEMORY: The bottom 256 bytes of bank 0 memory is reserved
for TPM-II operation. This memory block is referred to as Low
Memory, and it contains several important TPM-II mechanisms, such
as the IOBYTE, warm boot and system call jump vectors, default
disk I/0 buffer, and default FCB. As with other components of
TPM-1I, Low Memory is functionally compatible with its CP/M
counterpart.

LOW MEMORY DETAIL

The lowest 256 bytes of bank 0 are generally reserved for
TPM-I1I1 operation. The following table lists the memory blocks
and functions contained within this area. These locations are
the same as the first page of a CP/M system.

ADDRESS SIZE FUNCTION

0000H 3 Warm Boot vector. Locations 0001H & 0002H may be
used to determine the first location of the PIOS jump table by
subtracting 0003H from this address.

0003H 1 IOBYTE image. The value of the I/O byte can't
: be set by writing a new value to this
location. The Set IOBYTE function call must
be used (see Chapter 10).

0004H 1 Current Disk Drive. A=00H, B=01lH, etc.
0005H 3 TPM-II entry point. Locations 0006H and 0007H
contain the address of the beginning of LIOS.

Subtracting 0001H from it will yield the last
address in the TPA.

0008H 40 Z-80 Restart Vectors 1 - 5 (RST1 -~ RST5). Block
of memory is currently unused by TPM-II. It

8-7

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 8

can be used for vectors to support the Z80 RST1-
RST5 instructions.

0030H 8 Z-80 Restart 6 Vector (RST6). Reserved for use
by ZDDT in the QX-10.

0038H 8 Z~80 Restart 7 Vector (RST7). Reserved for use
by ZAPPLE in the QX-10.

0040 28 TPM-II reserved memory. Contains track, sector,
DMA address, current date and time, and other
system data.

005CH 36 Default File Control Block (FCB). The FCB is
described fully in Chapter 10.

0080H 128 Default command line and disk DMA buffer.

We will temporarily suspend our discussion of the TPM-II
memory map, as it will be explored in greater depth in Chapter 9
when we discuss the TPM-II system calls. These system calls
constitute the primary interface between application programs and
TPM-1II (and hence the QX-10).

QX-10 HARDWARE

TPM-II recognizes four logical I/O devices:

* CONSOLE Device

* READER Device/Serial Input
* PUNCH Device/Serial Output
* LIST or PRINTER Device

These 1I/0 devices are supported via system calls. Of the
four, the Console and List devices are the most important. The
Reader and Punch devices, as such, are primarily of interest to a
computer paleontologist. Since one seldom encounters a paper
tape punch and reader, they have been re-assigned to the serial
port on the QX-10.

Each logical I/0 device has its own particular characteris-
tics. The Console device is a bidirectional I1/0 device, i.e., it
can both output and input characters. The List and Punch devices
are output-only, and the Reader is input-only. Beyond this, the
Console and List devices have certain system characteristics not
possessed by the Punch and Reader. For example, all input and
output to the Console may be echoed to the List device by the
operator typing a CTRL-P. These features are discussed in Chap-

8-8

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 8

ter 3 under the heading "TPM-II Control Characters."

The standard release version of TPM-II supports three physi-

cal I/0 devices: N

</

* Keyboard/Screen
* Serial Port
* Parallel Printer Port

These physical 1I/0 devices are linked to one or more of the
logical I/O devices. The standard assignments are: ‘

Console = Keyboard/Screen
Reader = Serial Port Input
Punch = Serial Port Output
List = Parallel Printer Port

These assignments may be changed, or the current assignment
displayed wusing the IOMOD utility. To display the current
assignments, invoke IOMOD with no command line. The default I/0
assignments are used in the following example:

A>IOMOD
C=C R=T P=T L=L

A>

The nomenclature used by IOMOD can be a little confusing: "C" is
used for both the logical Console device and the physical
Keyboard/Screen (the "C" abbreviates to CRT). Remember that they
are different. Also, the Serial I/0 port is referred to as "T"
(for Teletype), and the Parallel Printer port as "L" (for
Lineprinter).

IOMOD can be used to make new assignments. The following
table 1lists all of the legal logical/physical device combina-
tions. The general rule, however, is that any physical device
can be assigned to a logical device as long as they have the same
characteristics. For example, the logical Console must be capa-
ble of both input and output operations. Therefore, an output-
only physical device, such as the parallel printer, can't be
assigned to the Console.

8-9

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~II USER'S GUIDE h CHAPTER 8

LOGICAL DEVICE: CONSOLE READER PUNCH LIST
PHYSICAL DEVICES: CRT Console Console Console
TTY Terminal Terminal Terminal

User User 1 User 1 List

User 2 User 2 User

One final note regarding I/0 assignments: for those of you
who are used to CP/M, TPM-II stores the IOBYTE in memory location
0003H. In order to modify it, system call 8 (Set IOBYTE) must be
used. Writing a new IOBYTE assignment to 0003H will change the
assignment under CP/M, but not under TPM-II.

Disk Drives

The QX-10 is supplied with two double-density, double-sided
floppy diskette drives. Data is stored in 512-byte sectors, with
10 sectors on each track and 40 tracks on each side. This pro-
vides a total capacity of 400K per diskette. However, not all of
this space is available for program and data storage.

Both sides of the first two tracks are reserved for TPM-II.
In addition, 4K is taken up with the diskette directory. TPM-II
allocates enough room to store 128 directory entries on each
diskette. A directory entry consists of a 32-byte block con-
taining the name, size, sector allocations, and other pertinent
information about the files. Directory entries will be discussed
in greater detail in Chapter 9, under File Control Blocks. For
now, you may regard the directory area as simply a second pre-
allocated disk area.

The total amount of space available for data and program

storage 1is 376K on each diskette. This capacity remains the
same, regardless of whether or not the system tracks (0 and 1)
contain TPM-II or how many directory entries are used. The two

tracks and eight sectors are permanently allocated to these
functions, and hence are unavailable for other storage.

END CHAPTER 8

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

CHAPTER IX

ASSEMBLY LANGUAGE PROGRAMMING TOOLS

The following chapter examines the TPM-II tools that will
assist you in writing and debugging assembly language programs.
The basic TPM-II utilities, when added to your editor and assem-
bler, will provide you with an extremely flexible and capable
environment for program deéevelopment.

ASSEMBLERS, LINKERS, AND EDITORS

TPM-II doesn't provide an assembler (and linker in the case
of a relocatable assembler) or an editor for program generation.
As we mentioned earlier, most programmers already have a 780
assembler with which they are familiar and comfortable.

If you don't have an assembler, we recommend the Computer
Design Labs' 780 Assembler, available from:

CDL
342 Columbus Ave.
Trenton, NJ

This assembler produces relocatable 780 code (CDL provides a Z80
linker and library manager to accompany it). Several other good
relocatable assemblers are available, notably Digital Research's
RMAC and Microsoft's MACRO-30. These assemblers produce reloca-
table object files (.REL files) in a format different from that
of the CDL assembler, and one that is incompatible with the ZDDT
debugger. Of course, ZDDT will work with the linked absolute
object code files produced by their respective linkers, but if
you intend to do an extensive amount of programming, you may wish
to consider the CDL assembler, or one which produces .REL files
in a compatible format.

In addition to an assembler, vyou will need to secure an
editor with which to write the code for your programs. The
vValdocs editor is not compatible with assemblers; characters in
the file won't be stored in proper format as it is not possible
to produce a file with a non-indexed file name.

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

THE TPM-II DEBUGGERS

TPM-II provides two assembly language debugging tools. The
first, the ZAPPLE monitor, is completely contained within TPM-II.
7ZAPPLE was discussed in the previous chapter when we examined the
physical drivers for the QX-10's various I/0 devices. In addi-
+ion to these low-level drivers, ZAPPLE contains the code to
support 17 different commands which can be used for debugging
programs.

In addition to ZAPPLE, TPM-II provides a second debugger,
ZDDT, which is actually an extension of ZAPPLE. If you review
the command repertoire of both, you will notice a significant
amount of overlap. Certain command are unigque to each program,
however. = ZDDT has the ability to load a file into memory for
debugging or modification. ZAPPLE contains several commands
dealing with QX-10 hardware, which aren't supported 1in ZDDT.
Taken together, these two programs provide an extensive set of
commands that will make your debugging tasks much easier.

Since the programs are, for the most part, one and the same,
we will document them as such. Each command will be covered in
detail, and we will discuss not only its function and syntax, but
also whether its supported by ZDDT only, ZAPPLE only, or both.
In actual use, you will be able to switch back and forth between
the two. Each has a different prompt character, so it's easy to
tell which one you're in. The prompt for ZDDT is "-", while
ZAPPLE's prompt is ">",

Invoking ZDDT And ZAPPLE

ZDDT is invoked the same as any other TPM-II utility. You
may start ZDDT with or without a file name in the command line.
If you enter a file name, ZDDT will be loaded into memory, and
the file specified will be loaded next, starting a memory loca-
tion (0100H. As ZDDT is loaded, it relocates itself to area in
memory usually occupied by the ICP. 2DDT is the same size as the
ICP, so it extends right up to the base of LIOS, which leaves
room for the program (or file) to be read in its normal location
in memory (starting at the base of the TPA).

ZDDT will sign on with the following message:

ZDDT Vv2.43 [TPM] -07/27/80
#XXXXXX

www . fastio.com

http://www.fastio.com/

ClibPD

TPM~-II USER'S GUIDE CHAPTER 9

If you don't specify a file name in the command line. The
"XXXXXX" in the second line is the serial number. If you enter =z
file name in the command line, the message

NEXT=nnnn

will be displayed immediately below the serial number. This
represents the memory location (rounded up to the nearest 128
bytes) of the first byte of available memory above the file which
has been loaded in. Following the sign-on message, the ZDDT
prompt is displayed ("-"), and you're ready to go.

A two-step process is required to invoke the ZAPPLE monitor.
First, the monitor must be enabled. In order to enable ZAPPLE,
you must get into Valdocs. Using the MENU key, get into the
SETUP program, and select EXPERIENCE LEVEL. Set the level to
"experienced", then exit to the Editor. Now, enter the SETUP
program again. This time, you'll see an option entitled

<C>ntrl-\

Move the cursor over the "C" and press the RETURN key. ZAPPLE is
now enabled. Remember, vyou must first change the Experience
level to "expert", and then re-enter the menu to enable ZAPPLE.
The reason for this "double access" is to prevent the inexper-
ienced user from accidentally enabling ZAPPLE.

If you're wondering about the nomenclature, ZAPPLE is envoked
by typing CONTROL-\. Unlike ZDDT, ZAPPLE can be invoked at any
time, even in the middle of executing another program. The
ZAPPLE prompt is ">". When ZAPPLE is first invoked, it displays
this prompt, followed by the address it will return to in order
to continue execution of the interrupted program.

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-11 USER'S GUIDE CHAPTER 9

ZAPPLE And ZDDT Commands

The wvarious ZDDT and ZAPPLE commands are listed below in
alphabetical order. The commands consist of a single letter
(either upper- or lowercase), followed by certain required and
optional parameters. Required parameters are enclosed in square
brackets "[1", while the optional ones use angled brackets "<
>".

ASSIGN I/0 DEVICES

Command: A
ZDDT/ZAPPLE: ZAPPLE
Syntax: A[l]l=[p]

Sets the TPM-II I/0 Byte (which determines the logical to
physical assignments of the QX-10's input/output devices). TPM-
II supports four logical devices, the Console, Punch, Reader, and
List devices. There are three possible physical 1I/0 devices.
The A command uses the first letters of each device to make the
assignments:

Logical Devices Physical Devices

C - Console T - TTY (RS232 port)

R - Reader C - CRT/Keyboard

P -~ Punch L - Lineprinter (parallel
port)

L - List

BOOT TPM-II

Command: B
ZDDT/ZAPPLE: ZAPPLE
Syntax: B

Only valid if the TPM-II operating system has not been booted
up! Usually, TPM-II will be booted when the system is reset and
a system diskette is in drive A:. However, if the option switch
on the rear panel is set so that switch #2 is down, ZAPPLE will
be read in from the diskette and sign-on, but the rest of TPM-II
will NOT be booted. At this point, the "B" command may be issued
to boot the system. This command is primarily used for system
debugging. Once TPM-II has been booted, the command is de-

activated.

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

CMOS CLOCK & RAM I/O

Command: C

ZDDT/ZAPPLE: ZAPPLE

Syntax: CO[address],[value]
CI[address]

The hardware of the QX-10 contains a battery operated CMOS
clock chip containing 50 bytes of battery back-up RAM in addition
to the clock. The RAM is read and written via two I/0 ports. To
read one of the addresses, use the "CI" (CMOS input) command, and
to write a new value, "CO" (CMOS output). For example:

>C032,55
writes the value 55H to memory location 32H. Data that has been
read is displayed in binary format. If you issue an input com-

mand to that same port, the value 55H will be displayed as fol-
lows: '

>CI32 01010101

RESTART ZDDT

Command: C or K
ZDDT/ZAPPLE: ZDDT
Syntax: C or K

Both the "C" and "K" commands restart ZDDT. The sign-on
message will be re-displayed, but all memory locations will
remain undisturbed (ZDDT is restarted, but it is not re-loaded
from the disk).

DISPLAY MEMORY

Command: D
ZDDT/ZAPPLE: Both
Syntax: D[start address],[end address],<bytes per line>

Allows vyou to view the contents of memory 1in hexadecimal
form. The start and end address must be specified. The ZDDT and
ZAPPLE versions have slightly different display formats. ZDDT
displays only the hexadecimal value of each byte, while ZAPPLE
also displays each byte's ASCII equivalent (provided it is in the
legal ASCII range of 20H to 7FH. Other values are simply dis-

played as a ".").
The number of bytes per line can be modified with both ver-
sions. The default is 16 bytes per line, but any value up to 255

9-5

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

can be selected. However, it is recommended that you choose an
"even" hexidecimal value, such as 32, 64, 8, so that reading the
display doesn't become an impossible task.

FILL MEMORY

Command: F
ZDDT/ZAPPLE: Both
Syntax: Fl[start address],[end address],[byte]

Writes the specified byte into each memory location from the
starting address, up to and including the end address.

GOTO MEMORY WITH OQOPTIONAL BREAKPOINTS

Command: G

ZDDT/ZAPPLE: Both

Syntax:

Gl address],<breakpoint address 1>,<breakpoint address 2>

Starts execution of a program in memory. The program counter
of the 280 1is set to the address you enter, and the program
begins normal execution at that point.

Optional breakpoint addresses may be entered. These break-
points are implemented by replacing the existing instructions
with RST instructions at these addresses. ZDDT uses RST 6, while
ZAPPLE uses RST 7.

Once a breakpoint has been reached, you can execute any valid
command . In order to continue program execution, you must issue
another "G" command, with or without a new starting address. If
you enter a starting address, execution will begin at this new
address. If not, it will be the address in the "P" register. In
most cases, this will be the address after the breakpoint.

The "G" command can be used to exit from either ZAPPLE or
ZDbDpT. If you haven't traced any program execution, you can use
+he "G" command withou* an address. ZAPPLE will return you to the
address vyou were at when you typed CONTROL-' to invoke ZAPPLE,
and ZDDT will warm boot TPM-II. Otherwise, ZAPPLE will return
you to the instruction after the last breakpoin®. Entering "GQO"
witsh zZDDT will execute a warm boot.

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

HEXADECIMAL ARITHMETIC

Command: H
ZDDT/ZAPPLE: Both
Syntax: H[value 11]1,[value 2]

Handy for those who are not lightning quick with their hexa-
decimal math (and who is?). It displays the sum and difference
of the two values. All arithmetic is done as 1l6-bit guantities,
but if a carry bit is generated, it is not displayed. The sum
appears on the right-hand side, and the difference on the left,
as shown in the following example:

>H2000,4F23
6F23 DODD

MEMORY TEST

Command: J
7DDT/ZAPPLE: ZDDT
Syntax: Jlstart addressl],[end address]

Provides a non-destructive test of the memory block specified
by the start and end addresses. If the memory is O.K., the ZDDT
prompt ("-") will simply be redisplayed. If an error is encoun-
tered, the address of the defective byte will be printed along
with a byte printed in binary notation to indicate the defective
bit(s). The defective bits will be marked with a "1", whereas
while the good bits will be marked with "0". The following
example shows that bit 3 of address 405F is defective:

~J100,5000
405F 00001000

MOVE MEMORY BLOCK

Command: M
ZDDT/ZAPPLE: Both
Syntax: M[start address],[end address],[destination address]

Moves a block of memory from one location to another. The
block is defined by its starting and ending addresses. Contents
of this block are moved to the block starting with the destina-
tion address. You must take care that the two blocks don't
overlap, or you may wind up with some not-so-funny results!

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

PUT ASCII FROM KEYBOARD INTO MEMORY

Command: P
ZDDT/ZAPPLE: Both
Syntax: Pladdress]

Turns your QX-10 into a dictating machine. All characters
entered at the keyboard are placed in memory starting at the
specified address. Typing a CONTROL-D terminates the command.
As "P" exits, prints the address of the next byte that would have
been stored, to facilitate storing the characters with the TPM-II
SAVE command.

QUERY I/O PORTS

Command: Q

ZDDT/ZAPPLE: ZAPPLE

Syntax: QI[port]
QO[portl,[bytel

Used to directly read or write one of the QX-10 I/0 ports.
The input command (QI) displays the value in binary form. Any of
the 780's 256 ports can be accessed with this command. The two
examples below show an input and an output operation:

QI18 00101000
QO071,7

READ A FILE

Command: R
ZDDT/ZAPPLE: ZDDT
Syntax: R<bias>

Allows you to read a file into memory from the disk. If no
bias or offset 1is specified, the file is loaded into memory
starting at location 100H. If a bias is specified, it is added
to 100H to determine the starting memory address. For example,
if a bias of 200H is entered, the file will start at memory
location 300H.

Once the "R" command has been entered, with or without the
bias, ZDDT will ask you for the name of the file you want read
into memory. The following example will read the file LIST.SYS
into memory with a 20FFH bias (starting at location 21FFH). The
"R" command will display the next available memory location
(rounded up to the nearest 128) once the file has been loaded
into memory.

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

-R20FF
NAME>LIST.SYS

NEXT=27FF

SUBSTITUTE MEMORY

Command: S
ZDDT/ZAPPLE: Both
Syntax: S[address]

Used to alter a byte in main memory. The current value of
the selected address is displayed; you then have the option of
changing it, or skipping to the next value by hitting the space-
bar . To terminate the command, enter a return instead of pres-
sing the space-bar.

The current address is printed on every 8-byte boundary. A
backspace will cause a re-examination of the previous byte.

TYPE OUT MEMORY

Command: T
ZDDT/ZAPPLE: Both
Syntax: T[starting address],[end address],<bytes per line>

Operates in a manner very similar to the "D" command. The
contents of memory from the start to end addresses are displayed
on the screen. Using the "T" command, the values are displayed
in ASCII characters rather than hexadecimal digits. This command
is most useful for examining files consisting of ASCII charac-
ters. Like the "D" command, you can optionally change the number
of bytes displayed on each line. The default is 64 bytes per
line.

VERIFY MEMORY BLOCKS

Command: V
ZDDT/ZAPPLE: Both
Syntax: V[start address],[end address],[2nd start address]

Compares the block of memory specified by the start and end
addresses, with another block of memory of the same length,
beginning at the second start address. A byte-by-byte comparison

will be made. If any differences are found, the address of the
first block is printed, followed by the byte found in that ad-
dress, and then the corresponding byte in the second block. In

9-9

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-1I USER'S GUIDE CHAPTER 9

the example below, the fourth byte of the two blocks didn't
match:
>v100,200,8000

0103 FF 7F

EXAMINE PROCESSOR REGISTERS

Command: X
ZDDT/ZAPPLE: Both
Syntax: X<'><r>

Used to display and alter the contents of the 7Z80's internal
registers. The ZDDT version will display only the "main" regis-
ters, while ZAPPLE can display both the "main" and "prime" regis-
ter sets. If "X" only (or "X'" in ZAPPLE to indicate the "prime"
register set) is entered, the content of the entire register set

is displayed, in the following format:

-X
A=18 B=AA C=06 D=00 E=04 F=44 H=04 L=2A M=3E P=0219 S=AC96 I=00
>X!
A=01 B=00 C=06 D=00 E=04 F=94 H=04 L=2A M=3E X=0219 Y=01FB R=45

Individual registers can be displayed and altered by entering
the letter assigned to that register after the "X" or "X, The
current contents of the register will be displayed, and you can
then modify them in a manner similar to the "S" command. If you
enter a new value, the contents will be changed to that. Pres~-
sing the space bar will display the contents of the next register
(the register label won't be displayed, but they go in order,
from left to right, as they're displayed). To terminate the
command press RETURN.

SEARCH FOR BYTE STRING

Command: Y
zDDT/ZAPPLE: Both
Syntax: Y[byte],<byte>,<byte>,.......,<byte>

Searches memory for all occurrences of the byte string
entered. The string may be from 1 to 255 characters in length.
The address of the first byte of each matching string is printed.

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

LAST MEMORY SPACE

Command: Z
Z2DDT/ZAPPLE: Both
Syntax: Z

Displays the last available memory location before the begin-
ning of either ZDDT or ZAPPLE, depending on which debugger you're
in when the command is issued.

OTHER ASSEMBLY LANGUAGE TOOLS

In addition to the two TPM-II debugging commands that were
just covered, there are several other programs that will help
immensely in your programming. These utilities and commands are
covered in the remainder of the chapter.

The SAVE Command

Once you've debugged and/or modified a program using ZDDT or
ZAPPLE, it must be saved permanently on a disk, via the SAVE
command. SAVE is part of the ICP, so it's always available, and
it isn't read into the bottom of the TPA (and right over the
program you want to save!) when it's invoked.

SAVE writes the contents of RAM, starting at memory location
100H into a file with the name you specify in the command 1line.
You must also enter the amount of memory that is to be saved.
This quantity is expressed in pages (256-byte blocks), in either

decimal or hexidecimal notation. If the length field 1in the
command line ends with the letter "H", it is assumed to be a
hexadecimal number. If an "H" is not encountered, SAVE assumes

that the field contains the number of pages to be saved in deci-
mal notation.

The syntax of SAVE is:
A>SAVE n filename.typ

where n is the length field, and filename.typ is any legal TPM-II
file name. If the file already exists, SAVE will write over it
without asking, so make sure that your patches are solid before
you replace the old version of a program with the newly patched
one.

www fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

A>SAVE 7 LIST.SYS

will save memory locations 100H - 7FFH as the file LIST.SYS, and
A>SAVE O0AH PAYROLL.DAT

will save the first 10 pages (100H - AFFH) as PAYROLL.DAT.

The hexidecimal notation is particularly helpful when you are
using ZDDT. ZDDT will display the next memory location after the
program (NEXT=nnnn). If you take the first two digits, you will
have the number of pages you need to save, in hexidecimal. For
example, if ZDDT shows the next memory location to be

NEXT=74A3
saving 74H pages with the following command:
SAVE 74H PROGRAM.COM

will save the program and relieve you of the task of converting
74H into its decimal equivalent.

The FILES Utility

The FILES utility allows you to look at the directory entry
of every file on a disk. An explanation of the directory will be
reserved for the next chapter where we'll discuss File Control
Blocks, directory entries, and numerous other topics relating to
the TPM-1I file mechanism.

The name of each file is printed, followed by a hexadecimal
display of the directory contents for that file, printed in eight
groups of four hexadecimal digits that represent the entire 32-
byte contents of the directory entry. The directory entries for
multi-extent files are not always grouped together. The follow-
ing example shows the files PIP.SYS and LIST.SYS on the current
disk.:

A>FILES

PIP SYS

A0504950 20202020 20535953 0000001F 02030000 00000000 00000000
00000000

LIST SYS

A04C4953 54202020 20535953 0000000C 06000000 00000000 00000000
00000000

A>

www . fastio.com

http://www.fastio.com/

ClibPD

TPM-II USER'S GUIDE CHAPTER 9

The DUMPER Utility

The DUMPER utility displays the contents of a file in both
hexadecimal and ASCII notation. The format of the display is
very similar to the ZAPPLE "D" command. DUMPER directs 1its
output to the List device instead of the Console.

The contents of the file are displayed in rows, sixteen bytes
at a time. Both hexadecimal and ASCII values are displayed. The
address at the beginning of each line is the offset from the
beginning of the file. DUMPER prints the name of the file being
displayed as well as the current date and time at the top of
every page, to make it easier to identify the listing at a later
date.

The following example shows the first few lines from the
output of DUMPER displaying the file ZDDT.SYS:

A>DUMPER ZDDT.SYS
ZDDT 08/02/83 20:02

0: 31 80 01 22 06 00 7Cc D6 08 32 3A 01 67 2E 00 E5
l..*..]..2:.G9...
10: EB 21 00 02 E5 21 00 03 06 08 E3 4E 23 E3 79 1F
20: 4F 3E 00 D2 29 01 32 3A 01 86 12 13 23 05 C2 1E
0 ce)etteeectonn

END CHAPTER 9

www . fastio.com

http://www.fastio.com/

	./07-1.tif
	./07-2.tif
	./08-01.tif
	./08-02.tif
	./08-03.tif
	./08-04.tif
	./08-05.tif
	./08-06.tif
	./08-07.tif
	./08-08.tif
	./08-09.tif
	./08-10.tif
	./09-01.tif
	./09-02.tif
	./09-03.tif
	./09-04.tif
	./09-05.tif
	./09-06.tif
	./09-07.tif
	./09-08.tif
	./09-09.tif
	./09-10.tif
	./09-11.tif
	./09-12.tif
	./09-13.tif

