CHAPTER S

THE VIDEO DRIVER PROGRAM
(Video Driver Version 3.40 for Valdocs Version 1.18)

INTERFACING to TPM-I1I

Interfacing to TPM-II is accomplished by a system call to
location O0OSH, with the bit driver call code located in the
C register. The bit driver function code is located in the B
register. The D, E, and L registers may contain additional
data,  depending upon the specified D-opcode operation.
(Vdriver drawing operations will be referred to as D-
opcodes. ) ' :

When control is passed back to the calling program, the A
register will contain either a 00, indicating that the
operation was successful, or an error code specifying the
failing condition will be returned.

GRAPHICS COMPATIBILITY

The D-opcode system was developed to be compatible with the
various types of graphic hardware systems in use, and, with
some modifications, will adapt ¢to future systems, including
the following:

1. Where the host processor and the graphics processor are
the same, as in the case of the Epson @X-10.

2. Where the host and graphics processors are independent
and communicate via parallel or serial ports.

3. Where the host and graphics processors are independent,

but the graphics processor has access to the host
memory to retrieve the D-opcode.

74



BIT DEFINITIONS

Bits 5, 6, and 7 of the operations code have specific meaning
and use: they define how many bytes of data will be needed in
order to perform particular operations. The binary value of
these three bits is the number of bytes of data being passed.
The following table indicates in which Z-80 registers the
data bytes are passed.

BIT CODE REGISTERS USED
Fes- —
-000- D-opcode only.
-001- 1 byte in E register.
-010~- 2 bytes in D and E registers.
~o11- 3 bytes in D, E, and L registers.
-100- 4 bytes in D, E, H, and L registers.
-101- Reserved (not currently implemented).
-110- Reserved (not currently implemented).
—I{i— D-opcode returns data to caller.

795



D-OPCODE ONLY

DECIMAL HEX MNEMONIC DEFINITION

PARAMETERS

5

1

10

00

01

02

03

04

05

06

07

o8

oA

NOPO __ NOP
SETUP SETUP
RESERVED
HOME HOME
INIT INITIAL
BLANK BLANK
‘ PICTURE
UBLANK UNBLANK
PICTURE
RESERVED
CAS CLEAR ALL
SCREENS

CLRSCR CLEAR CURRENT
SELECTED SCREEN

VWAIT VERTICAL WAIT

(No operation)

Sets up graphics
hardware (used by
operating system only).

Home the cursor.

Set screen values to
original condition.

Clears all screens
Clears only the current
screen.

Waits for vertical sync
pulse to be active.

OP-CODES 11-31, (HEX OB-1F) are RESERVED.

76



D-OPCODE + E REGISTER:

( 1 BYTE )

DECIMAL HEX MNEMONIC DEFINITION

PARAMETERS

32

33

34

35

3é6

37

38

39

41

42

43

44

45

46

47

20

21

22
23
24

25

26
27
28
29

2A
2B
2C
2D

Z2E

2F

NOP1

CHROUT
SELSCR
CLRDS

VTYPE

PITCH

BITMOD

CHRMOD

DEFNS

DEFSS

NOP

CHARACTER
OUTPUT

RESERVED

SELECT
SCREEN

CLEAR DESIRED
SCREEN

SET VECTOR
TYPE

SET PITCH

. RESERVED
RESERVED
RESERVED

BIT-MAPPED
MODE

CHARACTER
MODE

RESERVED
RESERVED

DEF INE SCREEN
NON-SCROLLABLE

DEFINE SCREEN
SCROLLABLE

77

{No operation)

E Register = Character

E Register = Screen #.
16 screens valued 00-OF

E Register = Screen #
cleared.

Register contains type:
O (replace)

1 (complement)

2 (reset)

3 (set)

m mmmmm

Register = Pitch

E Register = Screen # .

E Register = Screen # .

E Register = Screen #.

E Register = Screen #
scrollable.



DECIMAL HEX

MNEMONIC DEFINITION

PARAMETERS

48
49

350

51

52

53

56

63

30
31

32

33

34

35

38

3F

RESERVED
RESERVED

SELFNT  SELECT FONT

INITFNT INITIALIZE
FONT

LDFNT LOAD FONT

ENDFNT END FONT

E Register = Font #.

Font #.

il

E Register

E Register = Font data.

E Register = Font #.

OP-CODES 54 & 55, (HEX 346 & 37) are RESERVED.

SCRLN SCROLL LINES

E Register = # of lines
scrolled.

OP-CODES 57-62, (Hex 39-3E) are RESERVED.

CHRFUN CHARACTER
FUNCTIONS

78

E Regiétef = Character
function. See table
on character functions.



DECIMAL HEX

~ D-OPCODE + D & E REBISTERS: ( 2 BYTES )

MNEMONIC DEFINITION

PARAMETERS

64

65

66

&7

76

77

78

40

41

42

43

4aCc

4D

4E

NOP2 -~ NOP
CIRCLE DRAW CIRCLE

SETPAT = SET LINE
PATTERN

ARC CIRCLE ARC

(No operation)

D & E Registers = Radius.

D & E Registers = Pattern

D & E Registers = Radius.

OP-CODES 68-76, (Hex 44-4B) are RESERVED.

ATTSCR  ATTACH
SCREEN |

 RESERVED

ATTFNT ATTACH FONT

OP-CODES 79-95, (HEX 4F-5F)

79

D Register
E Register

D Register
E Register

are RESERVED.

= Window #
Screen #

= Font #
= Screen #

!



DECIMAL HEX

D-OPCODE + D, E, & L REGISTERS: ( 3 BYTES )

REFERENCE

PARAMETERS

96 50
97 61
98 &2
103 &7

MNEMONIC DEFINITION
NOPS NOP
DEFSSA DEFINE SCREEN

START ADDRESS

DEF INE SCREEN

DEFSLN
LENGTH

OP-CODES 99-102, (HEX &3—66) are

DEFWIN DEFINE WINDOW

LENGTH

80

(No operation)

D % E Registers =Starting
address.
L Register = Screen # .

D & E Registers = Length.

L. Register = Screen #.
RESERVED.
D & E registers = Window

Length
L Register = Window #.

' OP-CODES 104-127, (HEX 68-7F) are RESERVED.,



D-OPCODE + D, E, H, & L REGISTERS: ( 4 BYTES )

DECIMAL HEX MNEMONIC DEFINITION ’ w  PARAMETERS

128 80 NOP4 - NOP ai ~ (No operation) |
129 81 VRECT VECTOR D & E Registers = Delta X
RECTANGLE H & L. Registers = Delta Y
130 82 VMOVE VECTOR MOVE D & E Registers = Delta X
: H & L. Registers = Delta Y
131 83 VDRAW VECTOR DRAW D & E Registers = Delta X
, . H & L Registers = Delta Y
132 84 SETANG SET START/ "D & E'Registers = Start angle
: END ANGLE H & L. Registers = End angle
133 85 - RESERVED
134 86 ABSXY SET X, Y ; D & E Registers = Absolute X
LOCATION position
: : H & L Registers = Absolute Y
position
135 87 FILREC FILL D & E Registers = Delta X
RECTANGLE H & L Registers = Delta Y
136 88 FILPAT SET RECTANGLE D % E, H% L Registers =

FILL PATTERN Pattern

OP-CODES 137-159, HEX 89-9F are RESERVED.

81



D-OPCODE : ( S BYTES )

DECIHAL HEX MNEMONIC DEFINITION ~ : PARAMETERS

160 A0 NOPS  NOP | (No operation)

OP-CODES 161-191, (HEX A1-BF) are RESERVED.

D-OPCODE : ¢ & BYTES )

DECIMAL HEX MNEMONIC DEFINITIDN , : PARAMETERS

192 Cco  NOP&  NOP | | (No operation)

OP—-CODES 193-223, (HEX C1-DF) are RESERVED.

8z



D-OPCODE RETURNS DATA TO HOST

DECIMAL HEX MNEMONIC DEFINITIDN

PARAMETERS
224 EO RESERVED
225 El RETPS RETURN FHYSICAL B Register = X \
: SPECIFICATIONS (X,Y Aspect Ratio)
: C Register = Y
D&E Registers = X Dimension
: H¥%. Registers = Y Dimension
226 E2 RESERVED
227 E3 RESERVED
228 E4 RSFS RETURN SELECTED On Return:
FONT SPECS. B % C Registers = Fonts
loaded.
E Register= Font selected
H Register = Vertical.
L Register = Horizontal.
-D Register is reserved.
OP—-CODES 229-238, (HEX ES—EE) are RESERVED.
239  EF RETVER RETURN GRAPHIC On return:
DRIVER DATA C Register = Board type.
D Register = Driver type.
E Register = Version #.
H Register = Revision #.
L Register = Modification
DECIMAL HEX MNEMONIC DEFINITION ’ . PARAMETERS
240 __FO __ RED RETURN E Register = Data
SELECTED DATA returned (see
special section).
241 F1 RETXY RETURN X,Y Returns device or cursor
LOCATION X,Y location.

On Calling:

D % E Registers = X
position.

H % L Registers = Y
position.

E Register specifies type

of data:

Bit#% Definition

O = Nop

1 = Cursor

2 = Light Pen
3 = Reserved

OP-CODES 242-255, (HEX F2-FF) are RESERVED.

83



SPECIAL CHARACTER FUNCTIONS

E REGISTER
CODE ~
HEX MNEMONIC FUNCTION
00 NOP (No operation)
01 WCB - Write complement block at current
location. ‘ (Bit—-mapped only.)
02 SCON Cursor on special. (Bit-mapped only.)
03 SCOF Cursor off special. (Bit—mapped only.)
04 "ATTCUR Cursor attach (goes to last place
cursor was detached).
05 DETCUR Cursor detach (leaves cursor at current
location and turns cursor off).
06 CSETON C-TYPE 'SET’ on (Dverstrike on.)
07 CREPON C-TYPE ‘REFPLACE on (Overstrike off.)
o8 ASON Auto-scroll on.
09 ASOFF “Auto-scroll off.
OA CRLFON Auto-Carriage Return / linefeed on.
OB CRLFOFF Auto—-Carraige Return / linefeed off.
oC REVON Reverse video on.
(0} REVOFF Reverse video off.
OE CLEOL Clear to end of line.
OF CLEDS Clear to end of screen.
10 UNDON Underline on. (Bit-mapped only.)
11 UNDOFF Underline off. (Bit—mapped only.)
12 CCMPON C-TYPE 'COMPLEMENT  on.
13 SECBLK SECRET and BLINK off.
14 CRESON C~-TYPE °‘RESET’ on.
15— RESERVED
i6 ITLON Italics on. (Character mode only.)
17 ITLOFF Italics off. (Character mode only.)
i8 BNKON Blink on. (Character mode only.)
19 BNKOFF Blink off. (Character mode only.)
1A HION Highlight on. (Character mode only.)
iB HIOFF Highlight off. (Character mode only.)
1C SECON Secret on.
iD SECOFF Secret off.
iE STATON Stationary on.
iF STATOF Stationary off.




RETURN SELECTED DATA

s

E REGISTER

CODE

HEX MNEMONIC DATA RETURNED

01 DWOP Returns display window # O parameters .
As defined by DEFSSA D—aopcode # &61H & 62H.
D & E Registers = Starting address in lines.
H & L Registers = Length in lines.

02 DW1P Returns display window # 1 parameters.
As defined by DEFSSA D—opcode # 61H & &2H.
D & E Registers = Starting address in lines.
H & L Registers = Length in lines.

03 CCXY Column & Row X,Y position of current cursor.
Returns in D & E registers. '

04 CCPXY Absolute pixel X,Y position in screen.
(Bit—mapped mode only.)

0S5 RPITCH Return memory pitch in E register.

20 RETSCR Returns currently selected screen # in
E register.

21 RETATT Returns attached screens to display window #0
and display window #1.
D Register = Screen # attached to DW #0.
E Register = Screen # attached to DW #1.
H Register = Mode of DW # O
L Register = Mode of DW # 1

(Bit—mapped mode = 00)
(Character mode = -1)
22 RETFLG Returns Flags.

Register = Is reserved
Register = XFlags

Register (high nibble) = V type
Register {(low nibble) = C-Type

Register = Flagl
Register = Flag2

FT mm ©o0



E REGISTER CODE 'STARTING ADDRESS % LENGTH DATA

HEX o OF SCREEN RETURNED
EO ¥ . Screen # O
Et’ Screen # 1
E2 .~ Screen # 2
E3 ~  Screen # 3
E4 Screen # 4
ES RN Screen # S
Eb& , ' ‘Screen # &6
E7 - Screen # 7
E8 ‘Screen # 8
E?  Screen # 9
EA ‘ Screen # 10
EB Screen # 11
EC ‘ ‘ Screen # 12
ED o ‘Screen # 13
EE R - Screen # 14
EF ; ~ Screen # 15

#FO-FF RESERVED FOR FUTURE SCREENS



v

RETURN FLAGS

FLAGO
BIT# FUNCTION
7 Cursor_bﬁ.
) Cursor detached.
S Auto—carriage return & linefeed active.
4 ~Auto-scroll active.
3 ‘e’ ( period ) active.
2 Escape, 1st / 2nd Flag.
1 "=’ active.
o] Escape sequence active.
FLAG1 5
BIT# FUNCTION .
7 Screen scrollable.
b6 .Reverse video flag.
S Underline flag.
4 Font loading active.
3 Secret flag. ,
2 Highlight flag.
1 Blink flag (character mode only).
0 Italics set (character mode only).
FLAG2
BIT#
3 o Character mode flag.
2 Blinking cursor.
1 &0 00 = Block style.
, 01 = Underline style.
10 = Half high/Half size.
11 = Half intensity (bit-mapped only).
C-Type
HEX FUNCTION
00 Replace (normal mode).
01 : Complement.
02. Reset. V
o3 Set (overstrike).
V-Type :
HEX ~ FUNCTION
00 Replace (normal mode).
01 Complement.
02 Reset.
03 Set (overstrike).

87



ERRORB IN A REGISTER RETURN CODE

A REGISTER CODE ,HEANING
DEC. HEX

-1 FF I1l1legal D-pcode fundtidn.

-2 FE Attempted to attach cursor when not
detached.

-3 FD - Light pen data not available.

-4 FC " Attempted to select a screen that
‘does not exist.

-S FB Window l'ength too large.

-6 Fa Attempted to define a screen that

: does not exnst.

-7 F9 Attempted to define current screen.

-10 "Fé Attempted to do a vector rectangle with the
delta X, delta Y ‘or both, having a 0 value.

-11 F3 Attempted circle arc without doing
Set Start/End instruction.

-14 F2 Type spec:f:ed is 1ncorrect.

-19 ED Attempted to select a font not loaded.

=20 EC The two character escape sequence invalid.
Only valid when using the D-OPCODE system.

-21 EB The escape "." "(any)" sequence invalid.

-22 EA ‘Cannot evaluate command.

-23 E9 Start/End,angle greater than 3,599 (or

' 359.9 % ten). ‘

-26 Eé6 Tried to set or attach a font to a character
defined screen.

-27 ES Attempted a bit-mapped command on a
character defined screen. No can do.

-30 E2 Cannot change existing screen to
character mode. Either the hardware is
bit-mapped only (like the QX-10
Colorboard) or the screen size selected
is not modular 16 (divisible by 16).

-41 D7 Window # not valid.



SCREEN HANDLING OPERATIONS

The Valdocs video driver software allows the video screen to be
manipulated in various powerful and versatile ways. Let us
first define some terms:

1. Picture. The picture that the user sees on the video
screen. On the @X-10 the picture contains 640 pixels
(dots) horizontally and 400 pixels vertically, for a
total of 256,000 pixel paoints.

2. Window. The picture may be divided into two separate
sections called windows. Window O starts at the top of
the screen and extends downward. Window 1 begins after
the last line of window O, and extends to the bottom of
the picture.

3. Screen. Sixteen drawing screens are available to the
user. Each screen corresponds to a specific area in
graphics memory. A screen may be attached to either (or
both) of the display windows. When this is done,
anything that has been, or is written to that screen
will be displayed on the picture.

4, Character Mode. When a screen has been defined as being
in character mode, the data written to the screen memory
is the ASCII value of each character to be displayed.
These values are then used by the character generator
hardware to create the display.

S. Bit—-mapped Mode. When a‘scréen is in bit-mapped mode,
the actual bit pattern for each portion of the display
is stored in the screen memory.

6. Memory Pitch. Pitch is the horizontal size of the
display screens, and is measured in 16-bit words.
Normally, and initially, the pitch is set at 40 words to
match the 640 pixel width of the picture.

7. Video Line. A video line is one row of pixels across
the picture. It is also called one horizontal scan
line.

Each screen has a parameter table that defines the screen and
its current status. Four items in the screen parameter table
are required to define the screen: the screen starting address,
the screen length, whether the screen is scrollable or non-
scrollable, and the screen mode (bit-mapped or character). The
rest of the screen parameters are indicators that may change
during the use of the screen. The following is a list of all
the screen parameters: ’ ‘

89




Parameter name Description

Start address Starting address of the screen in

video lines.
Screen length Number of video lines the screen uses.
Position , Current cursor position.
Font Font currently in use.
Ctype Character type in use.
Vtype Vector drawing type in use.
Flags Bits which tell the on/off condition of
- the following:
cursor on/off cursor detached auto cr/1+
auto scroll escape "." active escape "=" active
escape active screen scrollable reverse video
underline loading font : secret
highlite - blink italic
stationary character mode , blinking cursor
Cursor type Two flag bits that define what kind of

cursor will be displayed.

All of these screen parameter values may be defined or
changed by the user through the use of the various D-opcade
function calls. The screens can e attached to the drawing
- windows at will, without losing the data or screen parameters
of the previously attached screen. Each screen retains all
status information, such as cursor position, font size and
style, and row and column. :

A screen may be written or drawn on when it is not

attached to any window. This allows the user to put a drawing
or text on a screen and then bring it into view instantly.

90



The following descriptions

relate to screen handling operations:

INIT Function number 4

are of the D-opcode functions that

The INIT function sets memory pitch to 40 and sets up
the following initial parameter

all 16 screens

values:
Parameter

Cursor position
Cursor
Auto cr/l1f
Auto scroll
Reverse video
Underline
Secret
Highlight
Blink
Italics
C-type

- V—-type

to

Vector line pattern
Rectangle fill pattern OFFFFFFFFFFFFFFFFH (64 bits)
Font # zero

Selected font

Value or condition

Home
OFff
On
On
Off
O+
Off
O+
Off
o+

Repl ace
Replace

OFFFFH

The following chart shows the initial definition of each of the
16 screens for all bit—-mapped screens

video board).

(as used Ffor a color

SCREEN START ADDRESS LENGTH MODE SCROLLABLE RESERVED

#* (Video line) (lines) FOR

0 o] 400 Bit Yes

1 800 32 Bit No

2 832 16 Bit No

3 848 128 Bit No

4 976 128 Bit No

5 1,104 16 Bit No

& 1,104 16 Bit No

7 1,104 16 Bit No

8 1,104 16 Bit No

9 1,104 16 Bit No

10 1,104 16 Bit No

i1 1,104 i46 Bit No

12 1,120 128 Bit No SYSTEM

13 - 1,248 128 Bit No MAIL

14 1,376 128 Bit No SCHEDULER
15 1,504 128 Bit No SFPOOLER

Note that screens 12 through 15 are reserved for Valdocs use.

1



The following chart shows the initial definitinnﬂof
each of the 16 screens for video boards that support
character generators (ie, @X—-10 without color board).

START/ADDRESS LENGTH MODE SCROLLABLE RESERVED

SCREEN

# (Video line) {lines) FOR
0 o © 400 Bit Yes

1 800 32 Bit No

2 832 16 Bit No

3 1,331 128 Char No

4 1,347 128 Char No

S 1,104 16 Bit No

& 1,104 16 Bit No

7 1,104 16 Bit No

8 1,104 16 Bit No

9 1,104 ; 16 Bit No

i0 1,104 16 Bit No

11 1,104 16 Bit No

12 1,363 ‘ ‘ 128 Char No SYSTEM
13 1,379 128 Char " No MAIL

14 1,395 128 Char No SCHEDULER
15 1,411 128 Char No SPOOLER

Note that screens 12 through 15 are reserved for Valdocs use.

PITCH

Function number 38, 26&H

The PITCH function sets the horizontal size of video
display memory for all screens. Initially this is
set at 40 words to match the 640 pixel width of the
@X-10 picture. If the pitch is set greater than 40,
the horizontal size of the drawing screens will be
greater than the picture size, which makes it
possible to put text or draw into an area not
normally displayed. The purpose of doing this is for
horizontal panning, a feature that will be included
in a future release of the video driver software.
The minimum pitch is 40 words, and maximum pitch is
128 words. When pitch is changed, all screens must
be redefined because the size of a memory line is
directly affected by the pitch setting. The pitch
value to be set is passed in the E register.

'Example: Set memory pitch to 40.

MVI E, 40 ;PITCH IN E REG.
MVI B, PITCH

MVI C, 39

CALL 5

92



SETWIN

Function number 103, 67H

DEF SSA

SETWIN sets the length f the display windows. The
number of the window to be set is passed in the L
register and the window length in video lines in the
DE registers. This +function can only be used to set
the length of window one and above. The size of
window number zero will be 400 minus the combined
length of all other windows. If the size of all
other windows is set to zero then window number zero
will be the whole picture (400 lines). Currently
only windows zero and one are available on the G@X-10.

Example: Set display window #1 to display eight
’ lines of characters having a 16-bit +font
height. Since each character line will
require 16 video lines, the correct number
of video lines for window #1 is 128. Window
#0 will have 400-128 = 272 video lines, or

space for 17 character lines.

LXI D, 128 $SIZE
SO MVI L, 1 s WINDOW #1
MVI B, SETWIN
MVI C, 39
CALL 5

Function number 97, &1H

The DEFSSA function defines the starting address of a
screen. The starting address is the decimal line
number in video memory, and is passed in the DE
registers. The screen number being defined is passed
in the L register. Normally the starting address of
a screen will be greater than the starting address of
the previous screen plus the length of the previous
screen so that the screens do not overlap. It is
possible to define two screens with the same starting
addresses, or with starting addresses and lengths
assigned so that the screens overlap each other in
various ways. ‘

Example: Define screen number 4 to start at video
line number 990.

LXI D, 990 ; STARTING ADDRESS
MVI L, 4 s SCREEN NUMBER
MVI B, DEFSSA
MVI C, 39
cALL S

93

g W~ B



DEFSLN

Function number 98, 62H

BITMOD

Define the 1length of a screen. DEFSLN sets the
number of video lines in a screen. The number of
lines to assign for each line of characters is the
height of the character font being used.

The length of a screen is also used in calculating
the starting address of the next screen. If the
screen is bit-mapped then the starting address of the
next screen is simply the starting address of the
current screen plus the length. In character mode it
is necessary to reserve two video lines for each line
of characters desired. Thus the length of the screen
for this calculation would be the number of video
lines divided by one half the font height.

If a screen is to be defined as scrollable then the
length reserved must be twice that required for the
display. The maximum length of any screen is 1638

‘video lines. If more than 1638 lines are assigned,

graphic memory wrapping will occur. The DE registers
contain the screen length and the L register the
screen number when calling this function.

Example: Set the length of screen number 7 to
display and scroll 16 lines of text. The
font vertical size is 16 bits. The
calculation is: 16 bits per character line
# 16 lines = 256 lines.

LXI D, 256 ;DE = NR OF LINES
CMVI L, 7  $SCREEN NUMBER

MVI B, DEFSLN ;

MVI C, 39

CALL 5

Function number 42, 2AH

The BITMOD function defines the specified screen to
be a bit-mapped screen. When in bit mode, the exact
bit pattern to be displayed is written to the screen
memory. The E register contains the screen number
being set to bit mode.

Example: Set screen number 2 to bit-mapped mode.
MvVI E, 2 sE = SCREEN NUMBER
MVI B, BITMOD

MVI C, 39
CALL S

94




CHRMOD Function number 43, 2BH

CHRMOD defines the specified screen to be in the

character mode. When in character mode, the ASCII
character value of text to appear on the display is
written to the screen memory. The screen number to
set is passed in the E register.

Example: Set screen number 1 to be in :haractef
made.

DEFNS Function number 46, 2EH
DEFNS defines the specified screen as non—scrollable.
No scrolling operations will work. The screen number
to set is passed in the E register.
Example: Set screen number 9 to be non—-scrollable.
MVI E, 9 ;E = SCREEN NUMBER
MVI B, DEFNS '
MVI €, 39
CALL 5
DEFSS Function number 47, 2FH
DEFSS defines the specified screen as scrollable.
All scrolling operations will work. The screen
number to set is passed in the E register.
Example: Set screen number 9 to be scrollable.
MvVI E, 9 $E = SCREEN NUMBER
MVI B, DEFSS
MVI C, 39
CALL 5
CAS Function number 8

The CAS function clears the video memory of all 16
screens. Screens that are defined as character mode

are cleared to contain all 20 hex (ASCII space). Bit-

mapped screens are cleared to all zero unless reverse
video is set, in which case all bits will be set.

Example: MVI B, CAS
MvVI C, 39
CALL 5

3B = FUNCTION NUMBER

i N o,



CLRDS _Function number 36, 24H

CLRDS clears the desired screen, in the same manner
as the CAS function, described above: in character or
bit-mapped mode. The screen number to clear is passed
in the E register.

Example: MVI E, 2 | s E=SCREEN # TO CLEAR
~MVI B, CLRDS '
Mvi €, 39
CALL S
SELSCR Function number 35, 23H
The SELSCR function selects the screen that will be
drawn to. Only one screen may be selected at a time
and all screen parameters defined for that screen
will be in effect. The screen selected does not have
to be attached to a window, so writing to the screen
is not necessarily displayed when being done. The
‘screen number to select is passed in the E register.
Example: Select screen number 10 for drawing.
MVI E, 10 : sE = SCREEN #
MVI B, SELSCR
MVI C, 39
CALL 5
CLRSCR Function number 9

CLRSCR clears the currently selected scraen
according to whether it is a bit-mapped or a
character-defined screen, as explained in the CAS
function description.

Example: MVI B, CLRSCR ;B = FUNCTION #
MVI C, 39 |
CALL 5

ATTSCR Function number 40, 28H

ATTSCR attaches the screen specified in the E

register to the display window specified in the D
register. If the screen being attached is the same
size as the display window, then all of the previous
display in that window will be replaced by the data
in the newly attached screen. If the screen being
attached is smaller than the window, then the bottom
of the display window will show the data in the
graphics memory immediately following the screen. If
the screen is scrollable, part of the data shown at
the end would be from the scrolling mechanism. If
the screen being attached is larger than the display



window, the bottom portion of the screen will not be
displayed.

Example: Attach screen number 11 to display window
number O.

MVI E, 11 sE = SCREEN # TO ATTACH
Mvi D, O sD = WINDOW O
MvIi B, ATTSCR sB = FUNCTION #
MvI C, 39
CALL 5
HOME Function number 3
Positions the cursor to the upper left corner of the
selected screen.
Example: MVI B, HOME ‘ sB = FUNCTION #
MvVI: €, 39
CALL 5
BLANK Function number S
BLANK turns off the picture (makes the entire display
blank). Striking any key or calling the UBLANK
function turns the picture back on.
Example: MVI B, BLANK sB = FUNCTION #
Mvi C, 39 '
CALL 5
UBLANK Function number &
UBLANK turns the screen on after it has been turned
off with the blank function.
SCRLN Function number 56, 38H

I+ the screen selected has been defined as
scrollable, then the S8SCRLN function will scroll the
screen by the number of 1lines specified in the E
register. The screen will scroll up if the value
passed is positive in the range from 1 to 127, or
down if a negative value from —1 to -128 is passed.
The scroll will be the number of lines of characters
specified.

Example: Scroll the currently elected screen up six
lines. ‘
MVI E, 6 sE = # LINES
MVI B, SCRLN
MVI C, 39
CALL S5

97

.



Some {functions that pertain to screen handling, such as auto-
scroll, reverse-video, and cursor control, are handled by
functions CHRFUN, RSD, and RETXY in the character and return
data section of this manual. ‘

98



VECTOR DRAWING OPERATIONS

Vector drawing operations are used to draw straight or curved
lines on the video screen. These operations require functions
to set starting and ending points, and to determine the length,
direction, and curvature of the lines to be drawn.

- The video screen consists of a number of tiny dots, called
pixels, which may be lighted or dark to form the characters or
other patterns you see on the screen. The picture is 640
pixels wide and 400 pixels high, and each pixel has a
corresponding bit in the video memory space which has been
defined for the screen. By writing ones and zeros to the bits
in the video memory, the corresponding pixels on the screen are
illuminated or dark.

In order to provide reference points for line drawing
operations, a coordinate system of XY axes, and a zero or home
position for the screen must be defined. Home for the video
driver is the pixel in the top 1left corner of the screen,
located at XY position 0,0. The absolute X axis extends
horizontally from home to the right side of the screen, and is
numbered from O to 639. The absolute Y axis extends from home
down the left side of the screen to the bottom, and is numbered
from O to 99. Each XY point of this coordinate system
represents one screen pixel (and one bit of video memory).
Note that the positive Y direction is defined as down, rather
than up, as in the standard Cartesian coordinate system.

Another reference point used in drawing is the cursor position
at the beginning of the draw operation. Since all drawing
distances, directions, and angles are referenced to the cursor
position, a sub set of coordinate axes (x,y) is used. These
axes are dimensioned the same as the absolute XY axes, but the
origin is at the current cursor position rather than at home.
For the rest of this document, when the origin is mentioned it
is the origin of the subcoordinate axes (small x,y) at the
cursor position that is being referenced. For the vector
drawing operations, movement in the coordinate axes is
specified as a change in the x direction and a change in the y
direction. The amount of these changes is called "delta x" and
"delta y". These are passed to the video driver routines as
sign-extended 14-bit values in one or more of the Z-BO register
pairs. Since only 14 bits are used, the maximum values passed
are plus/minus 16,384.

The following paragraphs detail the operation and use of the
vector drawing and related functions contained in the video
driver:

- ’ n N\



ABSXY

Function number 134, 86H

The ABSXY function sets the origin (cursor position)
of the subcoordinate axes to any absolute (X,Y)
location on the absolute axes. The X and Y values
are passed to the function as two 16-bit values, the
X value in the DE register pair and the Y value in
the HL registers.

Example: This code would set the origin to the center
of the screen. Point (320,200) absolute.

LXI D, 320 sdelta x
LXI H, 200 sdelta vy
MVI B, ABSXY sfunction #
MVI C, 39
CALL S
VMOVE Function number 130, 82H
VMOVE moves the origin to a new position specified as
the point (x,y) relative to the current origin. The
16-bit values x and y are passed in the DE and HL
register pairs.
Example: This code would move the origin to a new
point, 100 pixels to the right and 10
pixels down from the current origin.
LXI D, 100 sdelta x
LXI H, 10 sdelta y
MVI B, VMOVE
Mvi: C, 39
CALL S
VDRAW Function number 131, B83H

VDRAW draws a 1line on the screen from the origin to
the point (x,y) which is passed in the DE and HL
register pairs. The line drawn will include the
point of origin, but not the point (x,y) that was
passed. Upon completion of a VDRAW, the origin will
be moved to the next pixel past the end of the line
drawn. (Point (x,y)).

Example: Draw a line from the origin, upward and to
the right, to a point 50 pixels over and 50
pixels up.

LXI Db, S0 sdelta x
LXI H, =50 jdelta y
MVI B, VDRAW

Mvi Cc, 39

CALL S

100



Function number 129, 81H

VRECT

VRECT draws a rectangle which is delta x pixels wide

and delta y pixels high. The origin is left where it

started. Delta x and delta y are passed in DE and HL
respectively.

Example: Draw a rectangle which is 100 pixels wide
and 75 pixels high. The origin is at the
upper left corner.

LXI D, 100 jdelta x
LXI H, 75 jdelta vy
MVI B, VRECT
Mvi C, 39
CALL 5

CIRCLE Function number &5, 41H

This function draws a circle whose center is the

origin. The radius of the circle is the positive 14-

bit value passed in the DE register pair. The origin

is not moved.

Example: Draw a circle with a radius of 150 pixels.
LXI D, 150 sDE = RADIUS
MvVI B, CIRCLE
Mvi C, 39
CALL S5

SETANG Function number 132, 84H

Function SETANG sets the starting and ending angle of
the arc to be drawn by the ARC function. The
starting and ending angle values are 16-bit integers
equal to the desired angle values in degrees, times
ten. The start angle is passed in DE, and the end
angle in HL. The angles passed may not be less than
zero or greater than 359.9 degrees. The use of these
angles is further explained in the ARC function
descriptions.

Example: Set the starting angle to 20 degrees, and
the ending angle to 35.5 degrees.

LXI D, 200 520= % 10
LXI H, 355 . 335.5= % 10
MVI B, SETANG

MVI C, 39

CALL S

101



SETPAT

ARC Function number &7, 43H

ARC draws an arc of the circle with a radius equal to
the 16-bit value passed in the DE register pair, with
its center at the origin. SETANG must first be used
to set the start and end angles to draw from and to.
These angles are the number of degrees of arc, from
the point on the negative y axis where the  circle
would intersect the axis, measured in the clockwise
direction. This is a polar coordinate system where
Zzero degrees is north (or up) and 90 degrees is east
(or right). )

Example: Draw a 120 degree arc from 250 degrees to
10 degrees. The radius of the arc is 150
pixels.

LXI D, 2500 ;250= #10 (START)
LXI H, 100 510= % 10 (END)
MVI B, SETANG ;SET THE ANGLE
MVI C, 39

CALL 5 :

LXI D, 150 sDE = RADIUS

MVI B, ARC

MVI C, 39

CALL 5

Function number &6, 42H

SETPAT is used to specify the line drawing pattern
that will be used by all of the vector draw
operations. A 16-bit pattern value passed in the
D & E registers is placed into a pattern register in
the graphics controller hardware. I the pattern
bits are all ones then the lines drawn will be the
usual solid lines but the user may alter the pattern
to create any combination of dots and spaces desired.
The pattern setting operation applies to the
currently selected screen, and does not alter the
pattern that is set for any other screen.

The first time a drawing routine writes a bit into
the screen memory, bit O of the pattern is used to
determine whether a 0 or a 1 is to be written. The
next bit written uses bit 1 of the pattern, etc.
After bit 15 of the pattern has been used, the
operation continues, starting over again at bit O.
This process can also be viewed as always using bit ©
of the pattern register, and then rotating the
register bits to the right by one bit after each
write.

Note that the determination of writing a one or a

zero bit to the screen may be modified by the vector
drawing type (VTYPE).

102



VTYFPE

Function number 37, 25H

FILPAT

VTYPE is used in vector drawing operations only. It
specifies one of four possible modifications to be
performed upon the pattern data as it is written to
the screen memory. The bits written depend on the
VTYPE, the data in the pattern register, and the data
already at the screen locations to be written. VTYPE
modes are selected by the value placed in the E
register. The four possible values are:

0O — Replace 2 — Reset
1 - Complement 3 — Set

As each bit in screen memory is to be written, it is
modified by the value of the next bit in the pattern
register according to the following rules:

REPLACE: The value of the bit in the screen memory is
made the same as the value of the bit in the pattern
register. : '

COMPLEMENT: If the pattern bit is zero, the screen
bit is left unchanged. If the pattern bit is one,
the screen bit is complemented.

RESET: If the pattern bit is zero, the screen bit is
not changed. I¥f the pattern bit is one, the screen
bit is made zero.

SET: If the pattern bit is zero, the screen bit is

not changed. If the pattern bit is one, the screen
bit is made one.

Function number 136, 88H

FILPAT sets up an 8—-bit by 8-bit square pattern to be
used by the FILREC function in drawing a filled
rectangle. Eight bytes of data are passed in two
successive FILPAT calls, and these bytes are put into
a pattern register which can be visualized as an 8
deep push-—-down, pop—up stack. Upon initilization,
the register is filled with all OFFH bytes. To set a
new fill pattern, FILPAT is called with the pattern
bits in the DE and HL register pairs. The registers
are pushed down on the stack (register) in a E DL H
order. To load another 4 bytes, the FILPAT function
is called again, and the first four bytes are pushed
down as the E D L and H registers are again pushed
onto the stack. To make further changes, call FILPAT
again, and the first four bytes are pushed out the
bottom, the second four are now the bottom four, etc.

103



FILREC

Function number 135, 87H

FILREC draws a rectangle which is filled with the
pattern set up by the FILPAT function. The size of
the rectangle will be delta x pixels by delta
pixels. Delta x is passed in DE and delta y in HL.
{See the example under the VRECT function
description.) :

I1f the eight bytes in the pattern register are all
OFFH, the rectangle drawn will be solid (all pixels
within the boundaries of the rectangle will be
illuminated). Otherwise the pattern seen will depend
upon the quadrant of the current subcoordinate (X,y)
axes the rectangle is drawn in. If the rectangle is
drawn in the +x, +y quadrant, the pixels will be
turned on or left off according to the way the bytes
of the pattern register are shown in figure 6.

To see how the fill pattern register bytes modify the
screen pixels for each of the aother three quadrants,
rotate figure 6 so that the filled rectangle shown is
in the quadrant desired. Then reassign the axes back
to normal--the one pointing down is the positive vy
axis, etc. The placement of the bytes and bits shown
in the fill pattern are now correct for this
quadrant. ‘

If the rectangle to be filled is larger than the 8-

by 8-bit size of the fill pattern then the pattern

repeats itself vertically and horizontally. The bits
actually written to the screen are further odified by
the VTYPE mode that has been set. (See the
description of the VTYPE function for further
explanation.) '

104



FONT AND STYLE DESIBN

A font will be defined as any single set of characters, e.g.,
normal text, italics, or graphics. One or more of these fonts (up to
a total of ten) may be combined into a "style." The standard style is
HASCI.STL, consisting of the standard HASCI fonts in addition to
several others, which are selected by various shift and typestyle keys.
Style is selected via the Style key.

When the Style key is selected, a menu of various styles will
appear. Each style will have a 128-byte style header, whose main
purpose is to make a style appear when the Version program is run. The
first three bytes are an absolute jump to zero, OC3h OOh 00h. The next
byte, offset 3, is a start of text indicator, OAAh, which is followed
by 80 bytes or less of text, delimited by a null. Byte 070h contains
the number of fonts in the style. Bytes 071h to 073h contain the
letters STL. The header ends at O7Fh.

Each font begins with 16 bytes of data followed by text.
Individual fonts will be of the form filename.FNT. Fonts will not
appear under the Version program. A utility called MATRIX will
construct each individual font and allow for modification and storage.

The first two bytes of each font are the length of data that must
be sent to the video driver, which includes all data axcept the header.
The length is stored in the order of low byte, high byte.

Bytes 2 and 3 decimal are the size of the characters in the fonts.
Byte 2 is the X value, which is usually 8. As Valdocs stands now,
this byte must be 8. The next byte is the Y value, usually 16. The
compressed, superscripts, and subscripts are all, at present, various 8
by B fonts. Normal text is 8 by 1é. ‘

The next byte in the sequence is the type byte, which has an
offset of 4 decimal. This byte describes the characteristics of the
font according to the following table:

NORMAL __COMPRESSED
O normal text 8 normal compressed
i bold ? Reserved
2 italics 10 italics compressed
3 bold-italics 11 Reserved
4 subscript ' 12 subscript compressed
S superscript 13 superscript compressed
& graphics 14 graphics compressed
7

system graphics 15 system graphics compressed

Byte offset 5 is the font device type, which is used to determine
for which device the font is designed. A 00h in this byte means it is a
screen font. An FX-BO or FX-100 printer font is selected by a Oth in
this byte. Byte six is undefined.

105



The next data byte, offset 7, contains the number of the style in
which the font is contained. A OOH is defined as the HASCI style and an
FFH is defined as not belonging to a style. This byte would be set when
a style is built out of several fonts. Style numbers O through 128 are
reserved. The numbers 128 to 254 are user—defined.

The last two bytes contain character codes. The first, byte offset
8, contains the value of the first character in the font. This byte is
usually space character, a 20H. Byte 9 contains the value of the last
character in the font, usually a 127 decimal.

The next record starts the vector table, which is a list of
pointers into the character font. Each vector points at the horizontal
width byte of the character it represents. The horizontal width byte is
followed by the character itself. The vector is calculated from the
beginning of the vector table. There are 96 vectors in a normal font.
The first vector points at the first character. The vector is in the
order of low byte, high byte.

The font starts just after the vector table, at offset 192
decimal. Normally, each font contains 96 characters, the first starting
just after the vector table. The first byte of each character is the
horizontal width of that character, which allows varible width
characters for line justification in the text editor. The next few
bytes form the character itself. Each assigned bit of a byte is a dot
on the screen. An 8 by 16 font would be 16 bytes of character, plus one
byte for the horizontal width, for a total of 17 bytes. In
hexadecimal, the letter "A" of the HASCI font would look like this:
08 1C 22 41 41 41 41 7F 41 41 41 41 41 00 00 00 00. Bit 0 is sent to
the screen first, so the Hex bit pattern is reversed from the way the
character would appear. The following depicts the character
diagrammatically (08 is the width):

. num. value character

i iC .o dNE, .,
2 22 S
3 41 *eneaatt,
4 41 L P
S 41 L JIPRRE
& 41 ¥, uuaat,
7 7F 222 22T
8 41 .0,
9 41 ¥, 0iaatk,
10 41 L U
11 41 L .

41 Ny nauat,

00 esasosse

00 casannas

00 cozsusan

00 seeseans

The font generally follows the ASCII character set in both
uppercase and lowercase. The first character is the space (20H). The
position of a character would be calculated with the formula:



(character vaiue - 32) # 2 = vector location. Remember that the vector
points at the horizontal width byte, not the first row of dots. A font
that is 17 dots tall by 8 dots wide (8 by 17) would consist of 18
bytes, one width byte, and seventeen 8-dot bytes. A font that is wider
than 8 bits is handled differently. In a ? by 16 font, the first 16
bytes would contain the front 8 dots of the character; the next 16
bytes would contain the remaining dots.

We’'ll use the example of the letter "A" moved right one position.
If this were an B-bit wide font, the right leg of the letter "A" would
be lost. Here is how the letter would appear, moved right, in a 9 by 16
font: 09 70 88 04 04 04 04 FE 04 04 04 04 04 00 00 00 00 OO0 00 01 01 O1
01 01 01 01 01 01 01 OO0 OO0 00 00. As you can see, increasing the width
by one bit doubles the size of the font, but increasing the width by 8
dots sill only doubles it. The diagram below illustrates this example
of the letter "A", shifted two places to the right, in a 9 by 16 font.
Remember that bit O is sent first. ‘ '

09 is the width

Num. Divider Num.
i OE IR 5.2 75N I 00 17
2 11 caad, L W), 00 i8
3 20 R 01 19
4 20 ceFooaoa i N o1 20
1 20 sa¥oLoaa i 01 21
& 20 ce¥onaaa i ¥ 01 22
7 3F o o FHEHRN | X - 01 23
8 20 ce¥oouaa i ® 01 24
Q 20 P R 01 23
10 20 . P L 0} § 26
11 20 R P 01 27
12 20 ceWepnea i o1 28
13 0,0 sescanante 00 29
14 00 cessesssia 00 30
15 00 P 00 31
16 00 casssaantae 00 32

107




	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107

