INTRODUCTION TO THE PROGRAMMER 'S BUIDE TO vALDOCS

Developing the integrated software environment of
Valdocs (Valuable Documents) has been a process of evolution.
From the initial concepts of the HASCI (Human Application
Standard Computer Interface) keyboard, to the presentation
of those interface concepts on the Epson @X-10, we’'ve been
guided by the belief that a comfortable, straightforward
design was essential in order to make the computer a tool of
man, rather than the other way around.

This manual documents Valdocs release version 1.18 and
is intended as a preliminary document, illuminating the
mysteries of Valdocs and the integrated software within it.
This is not a manual for first-time users, nor does it
attempt to teach the art of programming to more sophisticated
users. The following chapters provide specific information
necessary for the experienced Programmer to understand WHAT
is being done WHERE, and HOW to use the information for the
application programs being integrated into the Valdocs
environment.

The manual assumes the reader has sufficient experience
with TPM~I11 or CP/M 2.2 to realize the similar nature of the
two operating systems and appreciate the differences. ™M,
the operating system upon which Valdocs is built, is
completely CP/M compatible, and any pProgram running with CP/M
2.2 (or 1.4) will run on the @X-10 through Valdocs. Indeed,
programmers should feel free to take full advantage of the
ability to shuttle between the two; the extended capabilities
of TPM-II will enhance a pProgram’s response within the
Valdocs environment.

The first part of the manual discusses the conceptual
basis of HASCI and Valdocs, and introduces the resident
modules, as they are loaded from the disk.

A cursory description of the TPM-11I operating system
follows——how it is loaded, how memory is organized, how the
Zapple Monitor program functions as both 1/0 handler and
debugging tool for the programmer——as well as a description
of all of the function calls in both TPM-II and CP/M modes.
(This is not, however, the TPM-II manual for learning about
TPM—-II or operating systems. A TPM-II manual is available
either through your Epson dealer or Rising Star Industries.)

An entire document, Sysinit Functions, is devoted to a
discussion of the Call 40 Multibank Functions, and the
specific capabilities and command parameters that allow use
of "back door" subroutines, spooler routines, and interrupt
routines.

An explanation of the Video Driver Program, accessed by
Function Call 39, follows. This section details the D-opcode
system (Drawing Operation Codes), describes the specific
Drawing Operation Codes, and tells how to handle screens and
manipulate video operations on the @X-10. A brief discussion
of character fonts and how they are created is included.

Next, we describe the Valdocs Indexer Program and the
Editor, providing the file handling specifications for a
~Valdocs file, along with the incantations and imbedded
sequences used by the Editor to work its magic.

Applications programs, such as the Menu, Scheduler,
Calculator, Draw, Print, and Mail, are described in chapters
that follow. :

Finally, we have provided several important charts, such
as the RS232 Pin Assignments, CMOS Clock RAM, and Keyboard
Assignments Chart, in the Appendixes.

We reiterate, this manual is in its early stages.
Evolution does not stop, and neither have we. We mean to do
our best to continue to provide as much information as
possible, as soon as possible. Our aim is to improve the
Valdocs Programmer ‘s Manual to a point where we can do for
manual users, what Valdocs has done for computer users.

Welcome to our machine.

Chapter I

HABCI--THE HUMAN APPLICATIONS
STANDARD COMPUTER INTERFACE

By Chris Rutkowski
President — Rising Star Industries

Develcpment and Theory

Many people see the personal computer as merely a
cheaper, smaller, and slower version of its larger data-
processing relatives. However, it's becoming apparent that
the personal computer is an entirely different type of
machine, shaped by a technological evolution that should
result in computers that work for people, rather than the
other way around.

The proposed Human Applications Standard Computer
Interface (HASCI) was designed as an important step in that
evolutionary process. It is the result of approximately six
years of effort, proceeding from the most general
considerations to a very specific result. First we'll examine
the theory and principles behind the HASCI interface-——we 11
learn why the interface is needed and what it is generally
intended to do. Next, we‘'ll look at the actual implementation
and design specifications of the interface.

Theoretical Background

I entered the microcomputer marketplace in 1975, during
the infancy of our industry. Then, as now, those of us on the
"inside" saw visions of microcomputers gracing every desk in
the world, when the industry grew up.

Then as now, the consensus of opinion within the industry
was that the microcomputer would be the bright star of the
future. We knew it was so, but we couldn‘t prove itj
therefore, financial backing was hard to come by. It is easy
to forget that, in 1975, the microcomputer was not yet the
darling of the venture-capital set; Wall Street had taken a
bath on computer companies just a year or two earlier during
a recession, and our claims to have found a magic formula for
success fell upon jaundiced ears. The one precept on which
everyone seemed to agree was that no one could predict such a
fast-changing market more than a year or so in advance.

In the intervening years, I°'ve heard that phrase a
hundred times or more; 1 suspect you have too. It’'s one of
those pieces of common wisdom that sounds good in a speech
and makes for good press: the media repeat it, the
bureaucrats who read the media repeat it, and the media

repeat it again. This sort of publicity is discouraging.
Nevertheless, with blinders firmly in place, enterprising
companies continue the struggle to design their way into a
murky future.

The Challenge Accepted

In 1976, during the first Atlantic City Computer Show
(thank you, John Dilks, for your vision), the "can't predict"
motto rang loudly in my ears. It was plain at the time that
if our industry was to put a microcomputer in every home, the
two essentials were money (lots of it) and manufacturing
capability. It was also plain that prediction precedes
production; no company executives in their right minds would
put up the megabucks necessary to develop the microcomputer
without knowing where that development would lead. Tooling
for extreme mass production costs millions; for that kind of
investment a one-year prediction lead was far from adequate.

Thus it was not until 1981 that IBM entered the personal
computer market. It is to 'that'company's credit that its
machine avoids most if not all of the inanities perpetrated
by IBM's peers. Witness the pitiful efforts of most
minicomputer companies to introduce personal computers over
the last few vyears; most if not all of these machines were
obsolete before the first carton was shipped. The only
prediction those companies could make was that their
profitability would plummet within a few vyears if they
couldn’t penetrate the microcomputer field. And in fact, this
has come to pass.

On the subject of market predictability, many heated
discussions took place comparing various hardware and
software components, but I realized that further arguments on
the advantages of one processor over another, one operating
system over another, or one language over another were wasted
words unless you knew how those items related to the
evolutionary path of the industry——the vardstick for
measuring potential worth. And I took it upon myself to
research the question of prediction.

Research Methodology

I chose a wmost unscholarly methodology, but one well
suited to the task. Rather than dig through stacks of
ponderous marketing tomes in dusty libraries and research
what had already been done, I reasoned that any worthwhile
work was probably buried so deep as to be invisible. After
all, if viable principles of predictability (in terms of the
computer market) were available, why weren't they in use? I
therefore decided to conduct a broad survey of earlier
technological industries, narrowed down to those that had
reached the mass consumer markets.

I scanned the marketing history of twentieth-century
Western civilization, seeking instances where highly
technical products were converted into mass—mar ket
commodities over a relatively short period of time. If you
think this through vyourself, you'll find several examples,
including radio, television, electric lightbulbs, and of
course the automobile.

I soon perceived a pattern in the emergence of these
products that either had gone unnoticed before or had been
erroneocusly classified as unimportant. To illustrate this,
let ‘s consider how one such product evolved.

Case Study: The Automobile

I ask you to turn your mental clock back to the year 1905
and consider the state of the automobile market at that time.

First, the automobile was nowhere near mass production
yet. Most manufacturers were backyard experimenters (1
suggest that the phrase "garage shop" must have originated
somewhere around here). They were technology freaks working
on the hottest gadget then conceivable.

Peruse some of the popular literature of the time; items
about the coming wave of horseless carriages abounded. There
were literally hundreds of fledgling manufacturers——every
bicycle and carriage shop fancied itself to be the next
Pullman Company (the coach manufacturer that became very
successful making railroad cars). And what cars they made!
Although most had four wheels, their similarity to the
automobile of today stops there. Some of these contraptions
were steered with tillers like a boat, while others had reins
like a wagon. A few had three wheels. They had handbrakes on
the right and footbrakes on the left; fixed throttles and
throttles on the dash. Few if any were closed in with a roof.
And not one was truly practical for the average person. (Does
this sound familiar?)

It's easy to look back at these early machines and say,
"How quaint."” It's easy to overlook the fact that every
single engineer and user had his or her own idea of
perfection. Ideas abounded, and while each no doubt had some
validity, no one could agree on what was valid and what
wasn’'t. In modern terminology we would say that the engineers
were coming up with possible design elements that were
combined almost at random into architectures (a collection of
design elements).

Now turn your mental clock forward to 1925, and consider
again the state of the automobile. Things had definitely
changed. The auto was in mass production. Hundreds of
thousands per year were being added to a blossoming economy.

And more important, we find that every car on the road had a
steering wheel and a throttle, brake, and clutch on the
floor. It had windshields and headlights. We find that, with
the exception of a relatively few details, you would be able
to climb into the typical automobile of 1925 and drive it
away.

Architectural Stabilization

By 1925, the architecture of the automobile had become
standardized. That architecture has not altered significantly
in the ensuing 57 years. Today, the products that you see
parked on the streets and recognize as automobiles are
architecturally identical to each other. No architectural
difference exists between a Subaru and a Rolls—Royce.

If you check other technical marketplaces (for example,
that of television), you will see that this same phenomenon
has occurred. First, independent engineers developed a wide
variety of design elements. Then their ideas were assimilated
and adapted until, now, the architecture has ceased to
change. I call this phenomenon architectural stabilization.

In the period following architectural stabilization, the
design effort and creativity that were previously engaged in
the random creation of architectures is now geared toward the
refinement of the design elements that comprise the
stabilized architecture.

This point is crucial: a stabilized architecture ends the
game of random invention and redirects the tremendous
creative energy of engineers to a better—focused goal—-—the
improvement of the design elements. The improvements realized
may be quite substantial. For example, consider suspension
systems. Before 1925 no automobile had a suspension system
truly worthy of the name. In the ensuing years such comfort
items evolved beyond all prediction.

Thus we see that while architectural stabilization may
seem to limit certain aspects of design, it can and should
precipitate a design revolution far more exciting than pure
laissez—faire engineering.

The Mechanics of Stabilization

A detailed analysis of the marketing factors that affect
each step of a product's life span is beyond the scope of
this manual. However, the results of my investigations
revealed the following sequence of events leading to
architectural stabilization:

#First, engineers (or technical specialists) conceive of a
new product class and build it for its own sake.

*Engineers then use the product.

*If the product promises to fundamentally revise the quality
of life for its users, the number of participating engineers
will swell. (They sense the market potential and have visions
of wealth and fame.)

*Eventually, this growing enthusiasm gains popular notice,
and certain non-engineers purchase the product. These non-—
engineers find the architectures designed by engineers to be
difficult to use; they recommend improvements but are willing
to undergo difficulty in wusing the product. They are
"enthusiasts."

*Increasing demand increases production, which lowers the
product ‘s price.

*People who are not willing to undergo substantial difficulty
in using the product purchase it. These users are
disappointed by the currently available products. They are
consumers——they want the benefits without the difficulties.

*More communication about the product occurs in the popular
media.

#1f the product does not fill a truly fundamental need, its
popularity subsides, leaving a core group of enthusiasts that
will then grow at a slower rate. The product will show a
gradual evolution of architecture across time.

*If the need for the product is truly fundamental , demand
continues to grow, but actual market growth may slacken.

*This growth of demand (potential market) motivates engineers
and enthusiasts to redesign the product to make it easy to
operate. In other words, swelling demand precipitates the
creation of a human interface that makes the device easy to
use.

*An easy-to-use version of the product finds a ready and
willing market.

*The first manufacturer to implement ease of use soon gains a
market edge.

#0ther manufacturers either follow suit or perish.

This sequence, or one closely analogous to it, occurs in
the evolution of all product markets. For the microcomputer
market, certain factors have become clear. First, the
microcomputer market has not vyet achieved architectural
stabilization. Second, the microcomputer appears to have all
the elements necessary to cause architectural stabilization

to occury that is,. its impact on users is of sufficient
importance to force stabilization to occur. Third, the
microcomputer market has currently reached that step of
increased popular demand that should precipitate the

development of an easy-to-use version of the product.

It’'s no accident that human—-factors engineering has risen
to such prominence over the last year. It is a natural and
necessary step in the evolution of the product classification
from a technical specialist’s market to an enthusiast’'s
market and finally to a consumer 's market.

Thus the development of a human interface coupled with
mass—production technology should be the key to opening the
consumer market for the computer.

Let me digress for a moment to observe that architectural
stabilization occurs at many levels of observation, not only
with products such as those discussed here but also with
subproducts——raw materials and their elemental forms. All
undergo microcosmic architectural stabilization. Likewise,
stabilization tends to occur in structures far larger than
products: nations, families, and businesses. All exhibit
variations of this same phenomenon. It thus appears that
architectural stabilization is a fundamental mechanism of
systems evolution: the imposition of a mutually accommodative
interface between two counter efforts, thoughts, forces, or
intentions.

In SBearch of a Human Interface

The many clues that led to the development of our
proposed human interface (HASCI) came primarily from fields
far removed from the normal realm of computer science. The
difficulty was this: before an interface could be designed,
the actual relationship of man and computer had to be
defined. I had concluded early on that the entire question of
artificial intelligence could be ignored in the design of an
interface, which was fortunate since no workable definition
of intelligence exists. Rather, an interface involves
questions of capability: What can people do, and what are
they good at? This approach proved very profitable.

"Even if vyou were offered a million dollars to manually
multiply two times two a million times, you would have a very
difficult time completing the task; most humans would be
psychologically incapable of completing the job. Yet
virtually any computer can do it easily and with remarkable
speed. Conversely, such problems as "recognize a certain
person‘s voice," solved by almost any infant (especially if
the voice belongs to the child’'s mother) still represent a
major challenge to even the finest computers and programwmers.

An analysis of these problems suggests that people are
much better than computers at recognizing patterns, while
computers are much better than people at manipulating
symbols.

Foliowing this logic, the ideal relationship of computer
and user should involve the computer as a symbolic
manipulator and the user as a pattern recognizer.

This explains the overwhelming popularity of wor d
processors and spreadsheet calculators. One manipulates words
and letters, the primary symbols of man. The other
~manipulates numbers, man’'s second most important symbol set.

It follows that a complete computer for the typical user
should provide the facilities for manipulating all the
primary symbols of man (words and letters, numbers, general
symbols or drawings, and the temporal relationships between
these symbols——time).

We wusually manipulate these symbols on pieces of paper ,
which if saved for later reference may be generically called
documents. We require a means of storing, retrieving, and
indexing these documents and of communicating their contents
to some other person.

These considerations gave birth to a hardware-software
synthesis. Rather than take the accepted path of
generalization--designing the computer interface to
accommodate any imaginable task-—-we conceived of an interface
that would be specifically designed for symbolic manipulation
tasks as described herein. The HASCI keyboard was the result.

Fundamental Principles

The described theoretical explorations led to the
evolution of a number of principles that form the rationale
of the HASCI standard. A detailed examination of these
principles follows.

The Computer Is a Tool

The computer as symbol processor and the user as pattern
recognizer complement each other well. In this arrangement,
the weaknesses of each can be ignored; together their
strengths form a synergetic whole far more powerful than
either, and such a blending of 5trengths is the functional
property of any tool. :

A hammer uses the advantage of a steel working face
(hardness and mass) combined with the advantages of the human
arm (motion and leverage) joined by an interface (the handle)

to perform some task dictated by intellect. Similarly, the
computer uses the advantages of electronics (rapid
manipulation of symbols) combined with the capabilities of
the human mind (pattern recognition), joined together by an
interface (keyboard and screen) in order to perform tasks
dictated by intellect.

In an ideal situation the relationship of user and tool
approaches one of transparency. The user is able to apply
intellect directly to the task; the tool itself seems to
disappear. This transparency is characteristic of all expert
applications of tools—-—everything from hacksaws to racing
cars.

Thus, a study of tools as a class can provide us with a
set of rules that are applicable to a computer interface:

*The interface is a means of controlling the tool.

*The interface must accommodate the needs of both the
application and the user.

*The interface itself must present the information necessary
for its use.

*Mastery of the interface may require practice.

*With mastery, the interface must become transparent to the
user.

Clearly Label the Controils

Televisions are easy to operate. They have a limited
number of controls. A stereo may have many more controls——
complex models have dozens. But in each case, the controls
either produce an immediately observable effect or are very
clearly labeled as to their function. In each case, a
relatively casual comparison of the controls on the device
with the results produced and the understanding provided by
intellect makes operation almost self-evident. Such is true
of all mass—consumed products. However, on the average
computer there are numerous functions that are in no way self-
evident.

Perform this test: walk up to a computer you're not
familiar with and pretend it's the first computer you've ever
looked at. Then guess how to save or load a file of
information. Get it? No way! You’'ve got to study the manual
and learn the code. You’'re required to learn and memorize the
information. A little memory requirement is a positive thing:
it makes the skill more valuable. But when you must rely on
memory, the interface is effectively in you head rather than
on the machine. (Imagine the potential hazards if a power saw
were designed this way.)

We therefore see the necessity of providing controls for

the major functions of the computer and of clearly labeling
these controls. Ideally, activating the controls should

10

generate an instant feedback to the user: not just an audible
"click" to prove the button was pushed, but also a
significant change in status (such as a new message on the
video display) indicating that something is happening.

Transportable Knowledge

The concept of transportable operator knowmledge refers to
the fact that users of consumer products expect and demand
that the skills they acquire in learning to operate one
- machine be applicable to any machine of the same class.

For example, consider the typewriter. There are minor
differences in the placement of certain controls, but a user
who has learned on one typewriter can pretty well sit down at
any typewriter in the world and type away. This is not
because the task is overly simple: a typist must learn to
manipulate a hundred or more keys, switches, and levers to
operate the machine in differing circumstances. However, the
typewriter as an architecture is fully stabilized to perform
its appointed task. All typewriters have carriage returns, a
means of setting tabs, a margin release, etc. These are
sufficiently clear than an inspection of any machine rapldly
reveals how to perform these functions.

Now consider the computer. Nearly every software writer
and hardware designer has a unique way of telling a computer
to save and load a file. Even though virtually every operator
needs to perform these functions with great frequency, every
time you change machines or programs you have to learn how to
save and load all over again. (This is not to say that any
one of these ways is wrongs rather, than on a consumer
computer the basics should be done in one workable, learnable
way.)

It is ironic that the data—-processing and computer
science industries have given so much attention to
transportability of software. The benefits of this
transportability appear to accrue primarily to programmers,
and while it’'s understandable that people should create tools
that they themselves need, transportable software eases only
the programmer ‘s burden. Transportable operator knowledge
serves all users.

In a similar vein, it becomes clear that arguing the
benefits of 1é-bit versus B8-bit machines is analogous to
arguing the merits of 8-cylinder versus 4-cylinder engines.
Your choice should be based on how much payload you expect to
haul, not whether you get a steering wheel with the vehicle.
Performance from the consumer 's standpoint is the ease with
which desired tasks are accomplished: fast and difficult is
still difficult.

11

When we approach the matter in this light, we realize
that consumers will expect computers, both complex and
simple, to have interfaces that are virtually identical. For
all intents and purposes, anything that can be run on a 48000
microprocessor should be able to run on an 8080; the
difference should be in how fast and how much, not how.

In terms of operating systems, while Unix may have
certain advantages over CP/M (or vice versa), this is of no
interest to the average user. Operating systems are tools for
programmers. The symbol manipulator should function as an
intelligent interpreter between the user and the operating
system, and that interpreter should function almost
identically on any operating system. (Most applications
programs are considered as running urnder an operating system.
The interface, however, should be considered as running over
the operating system. It actually mediates between the
operating system and the user just as would a programmer. In
this case the interface is the expert who makes the difficult
seem easy.) '

"Design Out Technical Choices

In the early days of the S5-100 bus, I put together a kit
for a serial interface board (the 3P + S). It was guite
marvelous and went together easily, that is, until I got to
the " jumper operations." There were dozens of options. You
could configure the system just about any way you might
imagine: number of data bits, parity, stop bits, and so on.
All fine except for one small problem——1 was a novice
computer user and had no possible way of knowing which of
these options served my purposes. After a few days of messing
about and getting nowhere I asked a computer expert for help.
He had the board configured for my system in a matter of
minutes.

This highlights a typical problem. Because a computer can
be configured in many ways, experts often want to build in
every conceivable option because "you never know what the
user may want to do with the system." However, we have
already accepted the concept that the consumer computer is a
tool for manipulating symbols. So we do have an idea of what
the user will want to do.

Even a so—called user—friendly system may have an
incredible array of choices. I recently bought what was illed
as a user—friendly electronic mail system. It offered me
options of stop bits and parity and data rate-—just like the
old 3P + 8. It also presented a vast array of choices of how
to send the data: compacted format, binary code, straight
ASCII (American Standard Code for Information Interchange),
and more. The designer of this code apparently confused "user-
friendly” with "all possible options accessible." (The term

12

"user friendly" must surely rate as the inanity of the
decade. When was the last time you thought of a tool as
"friendly"? "Usable" and "useful” are the appropriate
aperative terms.)

Burdening the user with decisions concerning technical
choices in no way addresses the task to which the tool will
be applied, i.e., the manipulation of symbols. The system
should automatically test the lines and choose settings
appropriate for the circumstances. The user is then free to
concentrate on the act of manipulating symbols rather than on
the hardware. (This is how transparency is achieved.)

Thus a rule of thumb evolved: technical choices
irrelevant to the symbol—-manipulation task at hand should be
eliminated from the user interface.

Predictability

In order to ease the chore of learning the HASCI system,
we have attempted to keep the system as straightforward and
predictable as possible. We try to allow different operations
to be performed in a similar fashion whenever possible or
appropriate. This does not require that there be only one way
of doing each function, however.

For example, you can move the video cursor by pressing
cursor keys on the HASCI keyboard. These arrow keys, when
pressed in combination with the Shift key, or in combination
with arguments such as WORD, move the cursor by different
units. Even the novice experiences little difficulty with
this scheme. Learning is accomplished by inspection and some
experimentation.

However , experienced users may find this method
cumbersome; moving their fingers from the main keyboard to
type on a different group of keys slows them down. For the
more—than—casual user, Control-letter functions (where you
press a control key and a letter key simultaneously instead
of a separate cursor key) are much quicker. Therefore, the
HASCI processor also recognizes control key combinations for
these same functions.

In this fashion both the novice or occasional user as
well as the professional are well accommodated.

Bimplicity
In designing a user interface it’'s important to keep
simple things simple. More complex functions may be handled

in a more complex manner because these will typically be used
by more experienced users.

13

It's easy for experienced users to forget just how
overwhelming a microcomputer can be. We attempt to judge the
value of any product solely by the number of features offered
for a given price. But what of the neophyte? Novices can
assimilate only so much in one gulp, and that gulp is apt to
"be a small one. :

A year and a half ago 1 tested the concept of a seven—
function word processor, analogous to a four—function
calculator. My premise was that seven functions are
absolutely necessary for a useful screen editor: text entry,
moving the cursor, insert character, delete character, save
file, load file, and print file. With these functions, you
can handle almost any word-processing task. More advanced
functions can expand these capabilities and increase ease of
use. :

I tested the validity of this screen editor on a number
of nontechnical users and found that they could be taught
these basic functions in a few minutes of verbal instruction.
And with only these functions, the system was truly useful.
In fact, some of the users never asked if there were more
functions. Even such a bare-bones editor proved to be a very
useful tool, about as far ahead of a typewriter as the
typewriter is ahead of clay tablets and sharp sticks.

I am not recommending that a screen editor be limited to
these functions. On the contrary, I believe that constantly
increasing the power of the system to manipul ate symbols is
mandatory and very desirable. However, the basics must not be
obscured by the complexities of more advanced functions.

The HASCI standard calls for a selection of the most
desirable functions to be placed directly on the keyboard
with dedicated function keys. Many users will never venture
beyond this—-they will never feel the need to do so. More
complex functions can be accessed via the use of Control-
letter functions for access to specialized menus.

Defang the Computer

Over the years I‘'ve seen dozens of ways to get bitten by
a computer. For example, one popul ar computer uses 8-inch
drives for increased storage. There’'s a catch, however: the
disks absolutely must be removed from the machine before it
is turned off; failure to do so results in absolute and
complete loss of all data on every disk in the system. Now
it's easy to say, "Always remember to take out the disks,"
but in fact even experienced users occasionally fail to
remember. They get so wrapped up in the job they ‘re doing (as
they should) that they forget that the hardware itself needs
this critical piece of attention. ;

14

Another computer hazard shows up in the use of editors.
Have you ever deleted something and then wished you hadn't?
Silly question. I know of no more awful feeling than to have
just erroneously deleted a document that I put a week's work
into. The system should be smart enough to alleviate or
entirely eliminate these dangers.

One answer to this problem is to deliberately place a
slower menu structure in the way of any potentially
destructive action. This often takes the form of a query,
such as: "Your action will cause [a certain consequencel to
occur. Please confirm this before I continue."

Another solution would allow you to change any decision
even after the computer has acted on it. This is expressed as
an Undo function key. Literally, this key allows you to undo
or reverse your decision. For example, pressing the Undo key
within a menu would take vyou to the prior menu. Pressing Undo
within an editor after you had made a deletion would bring
back the deletion. However, in order to fully defang the
system, you should not allow the operator to undo everything.
For example, suppose you just typed in three pages of text
and pressed the Undo key: would you want the system to Undo
your three pages of text? Hardly.

The HASCI concept requires that designers allow people to
be people, not machines. Even the best of us occasionally
forgets the right sequence or fails to do some required part
of a protocol. It is the responsibility of the systems
designers to defend the right of users to be human beings.

One shortcoming of many computer systems involves the use
of modes. I don't see modes as inherently bad; certainly a
human being does only one function at a time——you can’'t do
order entry and write a letter at the same time. However, the
problem in most system designs is that it is very difficult
to change between functions.

Suppose you are merrily typing away and you need to
calculate a few numbers for the document. Should you have to
save the file, load the calculator, perform the computation,
print the results, and reload the editor, all just to enter
the result of your calculation? That's the trouble with
modes. They make it difficult to change between functions and
trap the user in the complexities of system integration. -
Common symbol-manipulation tasks and document—manipulation
tasks should be accessible with push-button ease. HASCI
allows you to change functions at will by pushing the
appropriate control. Furthermore, when appropriate, if a
prior function is recalled, you should find that function
configured as you left it.

15

In an ideal implementation of HASCI, you should be able
to turn the machine off, then power it back up and find it
just as you left it, even if it was running a program at the
time. -

“h.t YOU 8.. . [] - ’

The phrase "What you see is what you get"” summarizes a
concept of text display on word processors whereby formatting
commands no longer appear as obscure codes imbedded in the on-
screen text. Instead, the commands appropriately modify the
displayed text so that you can see your specified formats on
the screen before you print out hard copy. For example, if
you indicate that a line is to be centered, it will appear
centered in the displayed text. In addition, if you specify a
change in type style, the altered text will appear in a
graphic approximation of that style, enabling you to visually
distinguish it from the surrounding text.

When we got the first sample of the Epson MX—-80 dot
matrix printer way back when, it already had a terrific
selection of type styles available: emphasized, double-
emphasized, compressed, etc. This opened up a whole new era
of correspondence—quality printing, where the perfection of a
fully formed character is gladly traded off for vastly
increased versatility coupled with adequate legibility. The
MX-80 was, of course, only the start. The newest printers now
ofter as many as 40 or 70 different type styles, and they
also offer programmable character fonts. We may certainly
expect to see the matrix densities of these machines increase
very substantially over the next year or two, widening still
further their performance gap over the fully formed character
printer.

But then, as now, the problem was that the editors and
personal computers available were designed to display on
their screens only one or at best two or three different type
styles——far fewer than even the first MX-B80 was capable of

printing.

This meant that although the printers had the capability,
the computers were far behind in making this capability
available in anything resembling an easy-to-use fashion. Most
of us have had to settle for inserting control codes using
one language—-like protocol or another. This is clearly
unacceptable because it violates the "easy to learn" maxim.

Here is a case where very useful symbolic manipulation
features are very difficult to access. The answer is to
design the system with this capability in mind, make these
functions easy to access, and at least where desktop units
are concerned, place these changes right on the screen. This
establishes a feedback loop which makes the system easy to
operate. ~

16

"What you see is what you get" is more than a maxim. It
is a crucial consideration in the effort to make the symbol
manipulators-—computers——easy to use.

Consumer Quality

All the above principles and guidelines add up to make
the computer a consumable product. With the computer, as with
any good stereo, television, or automobile, we expect to be
able to gain access to substantial capabilities with littie
if any specialized knowledge. Manuals are for reference; you
shouldn‘t need an advanced degree just to open the box. You
should be able to set up the computer, hook up the cables in
the obvious places, turn it on, and have it work right the
first time and every time. Using computers to advantage hould
be a game that everyone can win.

Beyond Theory

Now that the theory and principles behind the HASCI
system have been explained, some obvious questions arise:
"How can this idea actually be implemented on a personal
computer? What specific keys do we need? What should they do?
And what should be displayed on the monitor screen?"

The Menu

Menus present an exceptionally easy way of introducing
the newcomer to the operation of a system. They tend to fail,
however, on two points: first, some designers create unwieldy
menus by trying to throw in everything but the kitchen sink;
second, they provide no alternative for experience users who
eventually learn the menus cold and find it irritating to
have to wait for each menu to appear.

In the HASCI scheme, the problem of cumbersome menus is
eliminated by treating the entire computer system as a series
of interconnected choices in an inverted tree of decisions.
Each branch of the tree represents a possible function that
the computer can perform for you. Also, in virtually all
cases, the number of choices in a menu is kept below eight.
This number of choices has proven to be a perceptual limit
for understandability.

The problem of menus that make you wait is solved by
allowing you to input menu selections as fast as you can make
them; thus, the tedium of sitting through long, familiar
menus is entirely eliminated.

17

The Choices

When dealing with HASCI, as with any computer system,
your first choice is whether or not you want to use the
computer. If you do, you must of course turn the machine on.
When power is first applied, the system comes up
automatically as a word processor——you needn ‘'t access the
operating system.

The HASCI keyboard controls are divided into seven main
groups of keys. Of these, the following three groups are
typical of many contemporary keyboards in their configuration
and layout:

#*#typing keys
#editing and cursor—movement keys
#*#the numeric keypad

The remaining four groups take the place of programmable-—
function keys (which have always had such clever names as F1,
F2, F3, and so on). These groups give you access to the most
essential functions of the system: ‘

#system controls

#file controls
*applications controls
*typestyle controls

Each of these four groups is clearly labeled on the keyboard
itself. In contrast, the first three groups are self-—
explanatory and are not labeled.

- This arrangement of the keyboard provides the first menu
level of the system: you choose the group whose function
title (or self-evident application) most closely matches your
needs.

People should be able to guess which group, and which key
within each group, performs any given function. The titles of
the groups and the individual keys on the HASCI keyboard have
been chosen to facilitate this capability. (The keyboard has
been tested on a large number of people unfamiliar with
computers; virtually everyone was able to correctly guess the
~intended function of each key the first time.) In addition,
after selecting any given key, the effect on the system is
immediately obvious. And, if all else fails, the HASCI system
has a Help key. Thus the HASCI system is nearly manual
independent.

The second menu level involves choosing an individual key
from among the seven groups on the keyboard. As mentioned
before, the keys of the first three groups are already fairly
familiar. Of greater interest are the individual keys of the
four function contral groups.

18

The System Controls

The four system controls affect the execution of a system
program already in progress:

Btop takes the place of more usual Pause and Break keys.
When pressed, it effectively halts system execution and asks
if you wish to stop or continue.

Help provides you with specific information relating to the
nature of the choices available at any point in the decision
tree. Your options are explained in some detail.
Additionally, you may access information about any specific
function.

Copydisk lets you do just that: copy a disk. (We didn't use
a Backup key because inexperienced computer users expect
Backup to make the machine go backward.) Al though Copydisk is
a fundamentally necessary function in any floppy—-disk-based
system, this key might not be used in other implementations
of HASCI.

Undo is an "undecided" key. At any point, virtually any
decision can be undone with this key. It protects you from
accidental deletions and also allows you to skip rapidly back
up a menu tree.

The File Controls

File controls allow you to easily manipulate your files
(i.e., the places where your documents are kept):

Btore places a document you’'ve created into the mass storage
files.

Retrieve is the complement of Store. It allows you to
procure a specific document for further symbol manipulation.

Print allows you to print the contents of any document on
the system printer. Numerous print-time options are provided.

Index may be the most novel and useful key on the machine.
It displays an index of all files in the system. All files
are filed by date and time or sequence of creation. This
information is automatically assigned by the system. The name
of the file or index reference is requested by the computer
in response to the Store command; you may specify a reference
of up to eight words in length. When Index is pressed, you
are offered three choices. You may view the index (1)
sequentially by date and time of creation; (2) alphabetically
by index reference; or (3) alphabetically

19

cross—indexed, with every word in each reference cross-
referenced to every other word. (This is exactly what most
people wish they could do with their manual systems.)

Mail accesses a complete electronic-mail system such as the
Valdocs system, which implements the HASCI system on the
Epson @X-10.

The Applications Keys

- The applications keys cover the entire family of symbol
processors. If you recall, a computer is basically a symbol
manipulator, and there are four kinds of symbols that we need
to manipulate: words and letters, numbers, graphic symbols,
and the temporal relationships among these symbols (time).

The manipulation of words is accomplished with the typing
keys and is essentially self-evident. 0Of the four keys in
this groups, three are dedicated to the remaining symbol
types. These keys are labeled Calc (for calculator), Draw
(for graphics utilities), and Sched (for schedule).

The nature of each of these programs is flexible: while a
four—function calculator may be enough for me, you may
require a sophisticated scientific processor, and a
spreadsheet calculator may be ideal for someone else.
Likewise, some people have simple appointment-scheduling
needs, while others require complicated systems such as the
Performance Evaluation Review Technique (PERT) or the
Critical-Path Method (CPM). The same is true for the Draw
utility. Thus, no standard exists for these functions.
However , HASCI standardizes the means by which one enters and
departs from any symbol processor.

You switch from one application type to another by
pressing the appropriate key. On larger systems these keys
would have indicator lights to show when they were selected.
The selection would also be clearly indicated on the screen.

The fourth key of this group is labeled Menu. As you
might guess, it is the garbage can; everything else is found
there: languages, utilities, all the stuff that normally
clutters up a directory listing. Ideally, any programs
resident on the particular operating system that had not been
converted to use the functions and protocols of HASCI would
appear under Menu. In other words, a HASCI system running
over CP/M should be capable of running any standard CP/M
software. The same would be true for a system running Unix or
any other operating system.

20

The Typestyle Keys

You can alter the symbol type style displayed on the
screen in alphanumerics by using one of the four typestyle
control keys: Italic, Bold, Size, and Style.

The Italic and Bold keys operate immediately. If either
key is pressed while typing, all subsequent text entered will
assume that type style. Pressing the key again reverts to the
previous type style. The Size and Style keys access menus
that allow you to select from whatever choices are supported
by the terminal and printer used. In regard to Style, a
machine must have at least one font; however, two (one serif
and one sansserif font) would be desirable.

The Third Menu Level

The third menu level occurs after a function has been
selected by pressing its key. In some cases, there is no
third level; the functions act immediately. Examples include
the cursor keys and the Italic and Undo keys. Other keys may
have one or more levels of menu existing beyond the keyboard.
These levels are indicated on the display screen.

Screan Standardization

The screen layout should be essentially identical from
menu to menu and present all necessary information in an easy-
to-understand manner. The HASCI screen is divided into three
windows, each of which contains a specific type of
information.

The document windom contains the main document, which
holds the symbols under inspection or manipulation. When the
machine is first powered up, the display resembles that of a
word processor-—the document window fills the screen.

The document window may contain visual devices to
simplify the manipulation of the symbol type in question. In
the case of a word processor, this window contains a ruler
line, which marks column positions, shows current column
position, shows tab settings, and so forth. The window also
contains a status line showing the name of the document under
inspection along with such mundane items as date and time.

- When you’'re browsing through a file, examining a
directory, or performing some similar task where you may wish
to select from among many choices, the document being
examined for these choices (for example, an index) would
appear in the document window. If you are to make a choice

from such a document, a cursor will appear to indicate that a
selection is expected. But there is never more than one
cursor at a time on the screen.

21

The interaction window appears only when the machine
requires some discrete information or a specific response. It
always appears below the document window. On an 80-column by
25—-line screen, this window is 80 columns by 8 lines in size.

Two classes of interaction can occur. In the first, the
computer may request a string of typed characters. For
example, the system may ask, "What is your name?" The _
question is presented in the interaction window, along with a
cursor indicating where your response will be entered. In the
second class of interaction the computer requests a selection -
from a menu. All menus appear in the interaction window.
Whenever you have to make a decision, the system prompts that
explain the choices appear in the interaction window.

The prompt window is a small window at the bottom of the
display that contains brief reminders (prompts) or flags of
use for any given situation. They are optional with the
software designer.

Rules for Menus

Menus must follow certain rules. First, menus should
always appear in the same place on the screen. Second, menus
should be designed so that you may indicate your choice by
one of two standard method: type the first letter of the
first word and press the Return key, or move the cursor until
it is over that letter and press Return. A third, optional
method, which can be activated by a software switch, would be
to type the letter without pressing Return to activate the
choice immediately. The first two schemes allow the casual
user simple and failsafe means of choosing from a menu, and
the third method allows experienced users to reduce the
number of keystrokes and access menu choices more rapidly.

Finally, menus should be organized so that the most
common choices occur first in position and potentially
destructive choices occur last.

The HABCI Keyboard

Like it or not, the keyboard is with us to stay. In
designing a keyboard, we chose the format of the typical
office typewriter. The key positions are identical and the
feel is similar, so anyone familiar with a typewriter should
be reasonably comfortable with the HASCI keyboard. However,
by adding just a few additional keys, we were able to have
the keyboard generate an entire 8-bit superset of the ASCII
(American Standard Code for Information Interchange)
character set. Thus the HASCI system is upward compatible
with ASCII-based systems; a computer using HASCI can run any
standard software.

22

Included in the extended ASCII is a set of standard
graphic characters. These allow the creation of accented
letters (by actually overtyping one character on top of
another) and line drawings for boxes and forms. Also included
are some Greek and special-purpose mathematical symbols. You
gain access to these characters by pressing a Graphic-Shift
key, which converts the normal typing keys to symbol
generators. The first set of these symbols should be printed,
etched, stamped, or otherwise marked on the front of the key
caps in a color similar to that of the key cap. This should
not be a high—contrast color; such treatment causes visual
distraction and fatigue.

In addition to this primary set, one may simultanecusly
press Shift and Graphic Shift to access a second set of
graphic characters. Most of these are logically related to
their unshifted character. For example, all Iine symbols have
a double—line counterpart. Thus, while the second set is not
shown on the keycaps, it is easily learned.

Types of Physical Controls

We have avoided using any controls other than keys and
push buttons in the current HASCI standard (although voice
recognition may certainly be incorporated when appropriate).
Of two primary motivations, the first was familiarity.
Contrary to a current myth, keyboards are extremely familiar
objects in our society, and a vast number of potential
computer users are already familiar with their usej no other
practical means of entering textual data into a computer
exists today. Second, the HASCI keyboard must be available on
portable computers as well as on fixed desktop units. If the
interfaces on portable and fixed units are substantially
different, the concept of transportable knowledge would be
violated.

HASCI allows a number of ways of performing certain
actions. No one method is suited to all possible
environments. Accordingly, it is quite possible to have a
Xerox—style "mouse" in a HASCI system (that’'s just one more
way of moving a cursor around a screen and making choices).
Similarly, cursor keys, control keys, joysticks, etc., are
equally valid in the proper time and place. A typewriter
keyboard represents merely one valid method of entering text.
Others will evolve and become common, but typewriter
keyboards are likely to continue in popular use for a long
time.

23

Conclusions

The HASCI interface is by no means an end; rather it
marks the beginning of an era of consumer—oriented computers.

HASCI is not intended to be a fixed thing. We hope it
will evolve and improve with time. Keys will come and go,
menus will change, and groups of keys will grow and shrink.
We expect that computers specifically designed from the
ground up to support HASCI will help to reduce substantially
the overall system cost and increase system performance.

&

24

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

