Chapter 5 DISK FILES

morppprpoErmErorNEEOIErEOENOEAENEAENIOMEEAEOONNN

>10.COM

fas

ClibPD WAV WY

http://www.fastio.com/

(fﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_ﬂ_H_H_M_H_ﬂ_ﬂ_«lfﬂ—ﬂ_dﬁr

This Chapter describes procedures for creating and accessing files on flexible disks
(including disk image RAM) with QX-10 MFBASIC. The types of files which are
covered include program files, random access files, and sequential access files. In
reading this Chapter, keep in mind that disk file management is a process which in-
volves a number of interrelated commands and statements, each of which must be
prepared with consideration for the others. Also be sure to specify file descriptors in
accordance with the rules described in the ‘‘Files’’ section of Chapter 2.

A summary of procedures for handling errors occurring during disk access is includ-
ed at the end of this Chapter, together with a review of general precautions to be
observed in using flexible disks.

5.1 Program Files

This section reviews the commands and statements used to manipulate program files.
In specifying these commands/statements, remember that the disk drive which is
currently logged in (that from which MFBASIC was started) is assumed unless other-
wise specified in < file descriptor >. Also remember that the CP/M operating system
will automatically assume that the file name extension is ‘‘.BAS’’ unless another ex-
tension is explicitly specified.

SAVE < file descriptor>[

,A}]
P

This command writes the program in memory to the disk under the file name
specified in < file descriptor > . If neither the A nor P options are specified, the pro-
gram is written to the disk in compressed binary format. If the A option is specified,
the file is written as a series of ASCII characters. If the P option is specified, the pro-
gram is saved in encoded binary format. A program saved using the P (protect) op-
tion cannot be listed or edited when it is later reloaded; therefore, it is recommended
that you also save an unprotected copy of the program for future listing or editing.

LOAD <file descriptor>[,R]

This command loads the program specified in < file descriptor> into memory from
the disk. If the R option is specified, the program will be automatically executed as
soon as loading is completed. Executing this command without the R option closes
all files which are currently open; however, files will not be closed if the R option is
specified. This makes it possible to chain programs which access the same data files.

RUN <file descriptor>[,R]
If <file descriptor> is omitted, this command executes the program which is cur-

rently in memory. Specifying < file descriptor> causes the specified program to be
loaded into memory from the disk (deleting any program currently in memory) and

5-1

www . fastio.com

http://www.fastio.com/

ClibPD

immediately executes it. As with the LOAD command, all open files are closed upon
execution of this command unless the R option is specified.

MERGE < file descriptor >

The MERGE command loads the specified program into memory from the disk and
merges it with the program in memory. (The program MERGEd must have been
stored in ASCII format.) If any lines of the program loaded have the same line
numbers as those of the program in memory, corresponding program lines in
memory are replaced with those of the program from the disk. MFBASIC always
returns to the command level after execution of a MERGE command.

KILL < file descriptor>

This command deletes the specified file from the disk. The function of this com-
mand is the same regardless of whether the file specified is a system file, program
file, or random or sequential access data file; therefore, great care should be exercis-
ed in using it.

NAME <old filename> AS <new filename >

This command is used to change the name of a disk file. Specify the current file

name in <old filename> and the new name which is to be assigned to the file in
<new filename>. This command can be used to rename any type of file.

www . fastio.com

‘oA s NI I aAT I

http://www.fastio.com/

5.2 Sequential Files

This section describes procedures for creating, accessing, and updating sequential
data files. Sequential files are easier to create than random files, but they are not as
easy to update and take longer to access. As the name implies, the items included in a
sequential file are stored in the file in the order in which they are written, and must
be read back in the same order.

The statements and functions used to write or read sequential files are as follows.

OPEN
PRINT #, PRINT # USING, WRITE #
INPUT #, LINE INPUT # CLOSE, EOF, LOC

5.2.1 Creating sequential files :
The steps involved in creating and accessing a sequential disk file are as follows.

(1) Execute an OPEN statement to assign a file number to the file and to open it in
the ““O”’ (output) mode.

BT OPEN''O”, #1,”'CLIENTS.DAT"

(2) Write data to the file using the PRINT # or WRITE # statement.

IS5 PRINT #1,A8;",":B$;",";C$
WRITE #1,A$,B$,C$

(3) Close the file by executing a CLOSE statement. (This must be done before the
file can be reopened in the ““I’’ (input) mode for input.

CLOSE #1

5.2.2 Accessing sequential files
The procedures for accessing sequential files are as follows.

(1) Execute an OPEN statement to open the file in the “‘I”’ mode.
I OPEN ““I'”, #1,"'CLIENTS.DAT”

(2) Read data from the file into variables in memory by executing the INPUT # (or
LINE INPUT #) statement.

Y INPUT #1,A4,B%,C$

LINE INPUT #1,A$,B$,C$

5-3

kb b b &} &b b M b kb B G (kR R B Rk Gk U (b Bk ik Ak Bk G (R B KN

o

bhPD www . fastio.com

http://www.fastio.com/

(3) Close the file after input has been completed by executing a CLOSE statement.
CLOSE #1

Note that data is read from the beginning of the file each time the file is opened; also
note that, if all data included in the file is to be read at once, a DIM statement must
be executed to dimension one or more variable arrays of appropriate size.

5.2.3 Programming examples for sequential file access
The following is a short program which creates a sequential disk file.

1 OPEN "O",#1,"A:EMPLOYEE.DAT"
20 INFUT "NAME"§N$

3@ IF N$="XX" THEN CLOSE:END
40 INFUT "SECTION";S$

5@ INFUT "DATE OF BIRTH":D$

60 PRINT #1,N$:","iS%:",";D$
79 PRINT: GOTO 2@

RN

NAE? INCLE SCROOGE

SECTION? ACCOINTING

DATE OF BIRTH? 01/12/44

NAVE? HICKEY MOUSE
SECTION ENTERTAINGNT
DATE OF BIRTH? €0/22/83

MAE? LLCKY UG
SECTION? ACCOLNTING
WTE F BIRTH 63/13/48

NAME? VELMA BOOT
SECTION? CUSTOMER SERVICE
DATE O BIRTH? 07/30/%5

NAE? XX
k

In this example, data INPUT into variables N$, S$, and D$ is written to sequential
file “EMPLOYEE.DAT”’ each time the PRINT # statement on line 60 is executed. "
Program execution ends and the file is closed when ‘XX’ is input in response to
“NAME?"”’.

ClibPD www . fastio.com

OO OEEONOOEON NN D

http://www.fastio.com/

—
—
—
e
—
—
—a
—
—
—
—
—
—a
~—
—
—
m—
—
—
=
==
=
—
=
Ly

ClibPDF -

Note that, in the example above, the PRINT # USING or WRITE # statements
could have been used to write data to the file instead of the PRINT # statement.

The following is an example of a program which reads data from the file created
above and displays the names of all employees working in the ACCOUNTING sec-
tion. In this example, the statement on line 20 checks to see whether the end of the
file has been reached before each data item is read. If not, the program goes on to
read the data item; otherwise, execution branches to line 60, where the file is closed
and execution ends. (Note that an ‘‘Input past end’’ error will occur if an attempt is
made to read data from a sequential file after the end of that file has been reached.)

12 OFEN"I", #1, "M EMPLOYEE.DAT"

20 IF EOQF (1) THEN GOTO &%

0 INFUTH1,M%, 5%, D%

49 IF SH="ACCOUNTING" THEN FPRINT N$
50 G0TO 2o

69 CLOSE: ENMD

Ok

RN

UNCLE: SCROOGE
LUCKY FUNG

5.2.4 Updating sequential files
This section discusses a method of updating sequential files.

After a sequential file has been written to a disk, it is not possible to add data to that
file once the file has been closed. The reason for this is that the contents of a sequen-
tial disk file are destroyed whenever that file is opened in the ‘“O’’ mode. To over-
come this, the following procedure can be used.

(a) Open the existing file in the ‘I’ mode.

(b) Open a second file on the disk in the ““O”’ mode under a different file name.

(c) Read in data from the original file and write it to the second file.

(d) After all data included in the original file has been written to the second file,
close the original file and delete it with the KILL command.

(e) Write the new information to the second file.

(f) Rename the second file using the name which was assigned to the original file,
then close the file.

5-5

www . fastio.com

http://www.fastio.com/

ClibPDF -

The result is a sequential disk file which has the same file name as the original file,
and which includes both the original data and the new data. A sample program il-
lustrating this technique is shown below. -

i3 ON ERROR GOTO 210

20 OPEN"I",#1,"A:EMPLOYEE.DAT"

@ CIF FILE EXISTS, WRITE IT TO "A: TEMFY
46 OPEN"QO",#2,"A: TEMP"

5S¢ IF EOF (1) THEN 99

60 LINE INPUTH1,A$

79 PRINTH#2,A%

80 GOTO S0

F0 CLOSE#1

100 KILL “"A:EMPLOYEE.DAT"

119 *ADD NEW ENTRIES TO FILE

126 INPUT "NAME”iN$

130 IF N$="XX" THEN 18@

140 LINE INPUT "SECTION? "iG$

156 LINE INFUT "DATE OF BIRTH? "iD$

160 PRINTH2,N$:",":5%3","iD$

170 FPRINT:GO0TO 120

189 CLOSE

196 *CHANGE FILENAME BACK TO "EMPLOYEE.DAT"
200 NAME "A: TEMP" A8 "A:EMPLOYEE.DAT"
210 IF ERR=53 AND ERL=2¢ THEN OFPEN"OQ",#2,"A:EMPLOYEE.DAT"
220 ON ERROR GOTO ©

The example above illustrates use of the LINE INPUT # statement to read data
items consisting of character strings which include commas. As indicated in the
description of the LINE INPUT # statement, this statement reads all string data
preceding a carriage return as one item (quotation marks and commas are not
recognized as delimiters).

Also note that the contents of the original file could be changed by replacing the con-
tents of variables before writing them to the second file. This could be done by add-
ing the following sequence between lines 60 and 70.

61 PRINT A%
&2 PRINT"CHOANGE ENTRY (Y/N)7?":YN$=INPUT®(1):IF YN%

="Yy" THEN 63 ELSE IF YN$="N" THEN 70 ELSE 62
63 INPUT"ENTER NEW NAME"jNN#$

64 INPUT"ENTER NEW SECTION";SS$

46 INPUT"ENTER NEW DATE OF EBIRTH"iDD$

&7 AB=NNS$+", "+DD$+", " +DD$

www . fastio.com

N O Ry O Oy O T O O O O O

http://www.fastio.com/

1TV

-

ClibPD

5.3 Random Files

More program steps are required to create and access random files than is the case
with sequential files; however, random files have two advantages which make them
more useful when there are large quantities of data which must be frequently up-
dated. The first is that random files require less disk space for storage because data is
recorded using a packed binary format, whereas sequential files are written as series
of ASCII characters. The second advantage is that random files allow data to be
accessed anywhere on the disk; it is not necessary to read through each data item in
sequence, as is the case with sequential files. Random access is made possible by
storing and accessing data in distinct, numbered units called records.

The statements and functions which are used with random files are as follows.

OPEN, FIELD, LSET/RSET, GET
PUT, CLOSE, LOC, LOF

MKI$, CVI

MKS$, CVS

MKD$, CVD

5.3.1 Creating random access files
The steps required to create random files are as follows.

(1) Open the file in the “‘R’’ mode.
2N OPEN ““R”, #1,"’STOCKLST.DAT’’,50

This example specifies a record length of 50 bytes.
Records consisting of 128 bytes are assumed if the record length is omitted.

(2) Using the FIELD statement, allocate space in the random file buffer for
variables which are to be written to the random file.

[N FIELD #1 10 AS S$,30 AS N$,10 AS C$

(3) Use the LSET or RSET statements to load data into the random file buffer. Note
that numeric values must be converted to strings before they are placed in the
buffer; this is done using the MKI$, MKS$, and MKD$ functions.

Y LSET S$ = MKI$(S%)

LSET N$ =A$
RSET C$ =MKSs$(C!)

nwfastio.com

http://www.fastio.com/

ClibPD

(4) Write data to the file from the random file buffer with the PUT statement.
PUT #1,5%

The following program example allows data to be input from the keyboard for
storage in a random access file. In this example, one record is written to the file out-
put buffer each time the PUT statement on line 90 is executed. The record number
which is used by the PUT statement is that which is input at line 30.

19 OPEN"R",#1,"A:STOCKLST.DAT", 36

20 FIELD #1,2 AS 8%,30 AS N$,4 AS C%
Z@ INPUT "ENTER STOCK NO.";S8%

4o INPUT "ENTER ITEM NAME":AS$

99 INFUT "ENTER COST"iC!

60 LSET S%=MKI$ (8%)

70 LSET N$=A%

80 LSET Ce=MHKE$S(C!)

90 PUTH#H1,85%

199 6GOTO o

NOTE:

Once a variable name has been FIELDed, do not use it in an INPUT or LET state-
ment. The FIELD statement assigns variable names to specific positions in the ran-
dom file buffer, and using an INPUT or LET statement to store values in a FIELDed
variable will cancel this assignment and reassign the names to normal string space, in-
stead of to the random file buffer.

5.3.2 Accessing random access files
The following steps are required to access a random access file.

(1) Open the file in the ‘‘R’’ mode.
20 OPEN ““R’’, #1,”’STOCKLST.DAT"’,50

(2) Using the FIELD statement, allocate space in the random file buffer for
variables which are to be read in from the random file.

EZETTI FELD#1 10 AS S$,30 AS N$,10 AS C$
NOTE:
If the same program both writes data to a file and reads data from it, it is often possi-

ble to use just one OPEN statement and one FIELD statement.

(3) Move the desired record into the random file buffer with the GET statement.

0 GET #1,5%

www . fastio.com

AR OABEORRABARNN]

}

i

1

}

o aomnn

http://www.fastio.com/

(4) Data in the random file buffer can now be used by the program. Be sure that
numbers which were converted to ASCII strings for storage in the file are con-
verted back into numeric values for use by the program; this is done using the
CVI, CVS, and CVD functions.

EZNE PRINT CVI(S$),N$,CVS(CS$)

The following sample program accesses random file “STOCKLST.DAT”’, created
using the program example shown in paragraph 5.3.1 above. Data records are read in
and displayed by entering the stock number (record number) from the keyboard.

14
20
39
49
56
&9
7o
86

OFEN"R",#1, "A: STOCKLST.DAT", 36
FIELD#1,2 AS S%,30 AS N$,4 AS C%
INPUT "ENTER STOCK NO."3iS8%

GET#1, 5%

PRINT USING "###";CVI (5%) 3 :PRINT" "y
PRINT USING "&"jN$j;:PRINT" "3

PRINT USING "####.##";CVS(CS)

60TO 36

With random files, the LOC function returns the current record number; i.e., the
record number which is one greater than the number of the record last accessed by a
GET or PUT statement. This function can be used to control the flow of program ex-
ecution according to the total number of records which have been written to the file.
For example, the following statement ends program execution if the current record
number for file #1 is greater than 50.

IF LOC(1)>50 THEN END

F - www.fastio.com

http://www.fastio.com/

ClibPD

A program which uses random access for inventory management is shown in the ex-
ample below. In this program, the random access record number is used as the stock
number and a menu for selecting the type of processing to be performed is displayed
by 40 lines to 100. Entering one of the numbers displayed in the menu causes execu-
tion to branch to the subroutine which does the work indicated in the menu entry.

1o CLS

20 OFPEN"R",#1,"a:8TOCKLST.DAT", 39

3o FIELD#1,1 AS F%,30 AS D$,2 AS O%,2 AS R$,4 AS F
k3

49 PRINT "HIT ANY KEY":A$=INPUT$(1):CLS:PRINT: FPRIN
T "#%%% MENU *%%x": FRINT

5@ FRINT 1,"INITIALIZE FILE"

&2 PRINT 2, "CREATE A NEW ENTRY"

79 PRINT I, "DISPLAY STOCK LEVEL FOR ONE ITEM"

8¢ PRINT 4,"ADD TO STOCK" ’

9 PRINT 3, "SUBTRACT FROM STOCK"

100 PRINT &,"DISPLAY ALL ITEMS BELOW REORDER LEVEL

119 PRINT:PRINT: INPUT"ENTER FUNCTION"3FUNCTION
126 IF (FUNCTION<1) OR (FUNCTION36) THEN PRINT “BA
D FUNCTION NUMBER":GOTO 4@

130 ON FUNCTION GOSUB 67@,150,290,3860,460,580
14@ GOTO 4@

156 °BUILD NEW ENTRY

160 GOSUE 640

176 IF ASC(F$)<3>255 THEN INPUT"OVERWRITE (Y/N)";A$:
IF A%$<>"Y" THEN RETURN

180 LSET F$=CHR% (&)

199 INPUT"DESCRIPTION"; DESCS

200 LSET D$=DESC$

210 INPUT"QUANTITY ON HAND"; Q%

226 LSET G$=MKI$ (Q%)

236 INPUT"REORDER LEVEL";RY%

240 LSET R$=MKI$(R%

256 INPUT"UNIT PRICE";P

260 LSET P$=MKSS (F)

270 PUT#H#1,PARTY

280 RETURN

2960 *DISFLAY ENTRY

00 GOSUB &40

310 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
320 PRINT USING"PART NUMBER ###";PARTY

330 PRINT D%

344 PRINT USING"QUANTITY ON HAND #####°:1CVI (0%)
350 PRINT USING"REORDER LEVEL #####";CVI (R$)
360 PRINT USING"UNIT PRICE $$##.##";CVS (P$)

376 RETURN

=86 "ADD TO STOCK

390 GOSUE 646

406 IF ASC(F$)=25 THEN PRINT"NULL ENTRY":RETURN
41¢ PRINT D$: INFUT"QUANTITY TO ADD";A%

429 QL=CVI Q) +A%

470 LSET O%=MKI$(Q%)

449 PUTH#1,PARTY

450 RETURN

466 *SUBTRACT FROM STOCK

470 GOSUER 646

483 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
499 PRINT D%

5-10

www . fastio.com

oo EnnN,;

http://www.fastio.com/

W0 F Rk gb oAb Mg MR RERE F BF &k BE BF &F &F &F M OF &K & f A

IbPD
R

C

500 INFUT"QUANTITY TO SUBTRACT";SY

510 Q%=CVI(0%$)

520 IF (@%-S%)<® THEN PRINT "ONLY";0%:;"IN STOCK":G

070 5060

536 0%=0%-5%

549 IF O%<=CVI(R$) THEN PRINT "QUANTITY NOW":Q%:"R

EORDER LEVEL"3CVI (R$)

550 LSET Q$=MKI$(0%)

560 PUT#1,PARTY

57¢ RETURN

580 "DISPLAY ITEMS BELOW REORDER LEVEL

59¢ FOR I=1 TO 1060

600 GETH#1,1

61@ IF ASC(F$) <255 AND CVI(G$)<CVI(R$) THEN PRINT
I:D$:" QUANTITY";CVI(O$); TAB(S®) § "REORDER LEVEL";

CVI(R$)

620 NEXT I

636 RETURN

644 CLS: INPUT "STOCK NUMBER";PARTY

656 IF (PARTZ<1) OR (PARTZ>100) THEN PRINT "BAD PA

RT NUMBER":GOTO 64¢:ELSE GET#1,PART%Z: RETURN

660 END -

676 T INITIALIZE FILE

486 INPUT"ARE YOU SURE (Y/N)";B$:IF B$<>"Y" THEN R

ETURN

699 LSET F$=CHR$ (255)

706 FOR I=1 TO 100

710 PUT#1,1

720 NEXT I

736 RETURN

www . fastio.com

http://www.fastio.com/

5.4 Hints for Increased Performance

(a) When MFBASIC is started, memory is automatically reserved for use as random
file buffers. The amount of memory reserved equals the number of bytes
specified in the /S: option (the maximum record length of random files) times
the number of files specified in the /F: option (the maximum number of files
which can be opened at one time). Specify 0 in the /S: option to conserve
memory if random files are not to be used. Also, specify /F: <number of files>
in the MFBASIC command if fewer than three files (the default value) are to be
used.

(b) The default value for the /S: option is 128 bytes; i.e., a buffer of 128 bytes is used
for random access files. However, since data is read from and written to disks
in units of 1024 bytes, a significant increase in the speed of random access can be
achieved by specifying 1024 in the /S: option when MFBASIC is started and
OPENing random files with a buffer length of 1024 (although the benefit will be
of little consequence if only one file is open at a time).

(c) Sequential files use a 128-byte buffer; however, it is possible to use pseudo-
sequential access with files opened in the ‘“‘R’> mode to achieve the benefits of
faster access which are provided by using 1024-byte random file buffers.

For example, the following sequence could be used to create an ordinary sequen-
tial file containing 500 items.

10 'BAPLE 1

20 OPEN'0",#1,"ATFILEL
¥ FTE

40 FOR 1=1 70 508

50 PRINT #1,5TR$(1)

60 NEXT :

79 PRINT “TIME REQUIRED: " ; TIME-A; " SECONDS"
80 CLOSE

Ok

RIN

TIME REQUIRED: 5 SECONDS
1§

5-12

ClibPD www . fastio.com

EARANRRORRERBRREE RSN |

http://www.fastio.com/

To copy this file to another without making any changes in it, the following sequence
could be used.

10 "EXAPLE 2

20 OPEN'T" 41, "AFILEL
3 OPEN'O" 42, "AFILE"
8% AT

% IF EOF(1) THEN 90

60 INPUTH, AS

0 PRINTH2,A$

80 G0TO 50

90 PRINT "TIME REQUIRED: " ;TIME-A; " SECONDS”
108 (LOE

1§

RN

TIME REQUIRED: 26 SECONDS
k

With pseudo-sequential I/0, the original file is created by using a file opened in
the “R”’ mode with a 1024-byte buffer; an example is shown below.

LIST

10 "EXAPLE 3

20 ON ERROR GOTO 120

30 OPEN "R", 41, "AXFILEL", 104
AT

5 FOR I=1 T0 500

60 PRINT #1,5TR$(1)

0 NEXT

80 PRINTH,"//end"

99 PRINT "TIME REQUIRED: " ;TIME-A; " SECONDS"
100 ON ERROR GOTO @:PUTHL:CLOSE

110 END

120 IF ERR=5 THEN PUT #1:RESME 60
k

RN

TIME REQUIRED: 6 SECONDS

1§

dF OF &b b ol G dE RE R dE G dE RE E GE dE kD RE RE AE RE kDR

&l

5-13

ClibPD www . fastio.com

http://www.fastio.com/

ClibPD

In the example above, items are loaded into the buffer by executing the PRINT #
statement. This does not write data to the disk, so a *“‘FIELD overflow’’ error (error
code 50) occurs when the buffer becomes full. When this happens, execution bran-
ches to the error processing routine on line 120, which PUTs the contents of buffer
#1 to the disk (thereby clearing the buffer), then goes back to line 60 to place the
item causing the ““FIELD overflow’” error in the buffer. This is repeated until all 500
items have been placed in the buffer, after which *‘//end”’ (a pseudo end-of-file
code) is loaded into the buffer and the buffer is written to the disk for the last time.
As can be seen, the time required for file creation is approximately the same in both
examples 1 and 3.

Copying the pseudo-sequential file is accomplished in much the same manner, as
shown in the example below.

10 'EAPLE 4

20 OPEN "R"#1,"AXFILED", 1004

3 (PEN "R"42,"AFILEZ", 1004

0 ATIE

59 ON ERROR GOTO 120

60 GET #

0 INUT 41,48

80 PRINTH2, A8

9 IF A$O"//end” THEN 70 ELSE ON ERROR GOTO @
100 PRINT “TIME REQUIRED:" ;TIME-A;" SECONDS " :CLOSE
116 BN

120 IF ERL=T6 THEN GET#1:RESUME 79 ELSE PUTH2:RESLME 30
1§

RN

TIME REQUIRED: 7 SECONDS

1§

In this example, data from the file being copied is brought into file buffer #1 with
GET and passed to the program with INPUT #; data is written to the new file being
created using the procedure described in example 3 above. As with the PRINT #
statement, successive executions of the INPUT # statement ultimately result in a
“FIELD overflow’’ error, causing execution to branch to the error processing
routine on line 120. When the “FIELD overflow”’ error is due to an INPUT # state-
ment, the GET # statement is executed to bring more data into buffer #1; when it
occurs due to a PRINT # statement, PUT is executed to write data accumulated in

buffer #2 to the new file.

As can be seen, this method requires only about half the time consumed in copying a
file with ordinary sequential access.

5-14

www . fastio.com

AR IRl A RPN AN,

http://www.fastio.com/

1 O 0 O

ClibPD

"H_llﬂll_lll_dﬂlrdl_ﬂ_ﬂ

3.5 Precautions on Changing Flexible Disks

Before removing a flexible disk from a drive, be sure that all currently open files on
that disk are closed. The reason for this is that, when disk files are opened in the
“O” or ‘R’ mode, output data (placed in the file output buffer by statements such
as PRINT # or PUT) may not actually be written to the disk until the file is closed.
Therefore, the contents of the file may not be complete if the disk is removed before
closing all files, and there is no assurance that the file will be usable. Further, if
another disk is inserted before closing files which are open, the contents of that disk
may be destroyed when BDOS tries to write data to it when files are closed.

To the maximum extent possible, CP/M is designed to prevent data from being
destroyed in this manner. This protection is provided by a function which
automatically inhibits data from being written to a drive when the disk in that drive
is replaced with another one. A ‘‘Disk write protect’’ error will occur if an attempt is
made to write data to a drive while it is in this condition.

The RESET statement is included in MFBASIC to make it possible to reenable
writes to the drive. However, note that execution of the RESET statement
reinitializes the disk system, resulting in loss of the contents of any file data which is
pending output at the time.

Therefore, it is recommended that the following procedures be observed whenever
disks are replaced.

¢ In the direct mode

Execute a CLOSE statement.
Replace the disk.

Execute a RESET statement.

¢ In the program execution mode

100 CLOSE

110 PRINT “REPLACE DISK THEN PRESS ANY KEY”’
120 A$=INPUT$(1)

130 RESET

5-15

www . fastio.com

http://www.fastio.com/

ClibPD

3.6 Error Messages
The following errors may occur during access to disk files.

(a) Disk read error
This error message is issued when an error occurs while a disk file is being read.

(b) Disk write error
This error message is issued when an error occurs while a disk file is being written.

(c) Device unavailable
This error message is issued if an attempt is made to access a file in a drive which
does not contain a flexible disk or if the specified disk drive is not connected.

(d) Disk write protect

This error message is issued when an attempt is made to write data to a disk to which
a write protect tab has been affixed. It also occurs when an attempt is made to write
data to a file after the disk in the applicable drive has been replaced with another one
without executing the RESET command, or when an attempt is made to write data

to a file which has been made Read Only with the SET command or STAT command .

of CP/M.
3.7 Error Processing

This section describes procedures to be observed in handling errors which occur dur-
ing access to disk files.

(a) Errors occurring when a file is opened
Reexecute the OPEN statement after determining and eliminating the cause of the
error.

(b) Errors occurring during output

Files should be closed immediately if a ‘‘Device unavailable”’, ‘‘Disk write protect”’,
or ““Disk write error’’ occurs during output to the disk with the PUT statement (for
random access files) or statements such as PRINT # (for sequential files). The reason
for this is that the contents of the file may be destroyed if output is continued
without first closing and reopening the file.

(¢) Errors occurring during input
Files should be closed immediately if a ‘‘Device unavailable’’ or *“Disk read error’’

occurs while a file is being input using statements such as GET or INPUT #. Other-
wise, there is a possibility that invalid data will be input.

5-16

www . fastio.com

BB anLonnLaoananannn|

http://www.fastio.com/

'”H_llﬂﬂl_ﬂ_lll_dl_ﬂ_ﬂ_ﬂ_H_M_ﬂ_lrﬂ_ﬂ_ﬂ_ﬂ_ﬂ_u_ﬂ_ﬂ—ﬂ—ﬂ_ﬂ—r

(d) Errors occurring when files are closed
If an error occurs when the CLOSE statement is executed for one file, that file will
be closed but there is a possibility that its contents will be destroyed.

If an error occurs during execution of a CLOSE statement for more than one file,
there is a possibility that some files will not be closed. In such cases, the CLOSE
statement should be executed repeatedly until the error no longer occurs.

(e) ‘“‘Disk write protect’’ errors

When this type of error occurs because the disk in the accessed drive has been replac-
ed, the write protect condition can be cleared by executing the RESET statement.
However, note that execution of this statement will close all files which are currently
open for output, and that this may result in another ‘‘Disk write protect’’ error. For
this reason, the CLOSE statement (without file number specifications) must be ex-
ecuted repeatedly until no errors occur before executing the RESET statement.

www . fastio.com

http://www.fastio.com/

ClibPD

5.8 Disk protection

This section describes procedures to be observed to protect flexible disks and their
contents from accidental destruction.

(a) Write protect tabs

The square notch on the left side of the envelope containing a flexible disk is called a
write protect notch. This notch is checked by the computer to determine whether or
not data can be written to the disk when output statements such as PRINT #, PUT,
or SAVE are executed. When the notch is open, executing a RESET statement as
described in the section above makes it possible to write data to the disk; when the
notch is covered with one of the silver-colored write protect tabs provided with flexi-
ble disks, writes to the disk are inhibited.

Covering the write protect notch with a write protect tab is a good method of protec-
ting the disk’s contents from being accidentally destroyed through inadvertent ex-
ecution of a FORMAT or KILL command. Therefore, it is recommended that these
tabs be used to protect the contents of disks which contain important files.

(b) Precautions concerning handling of flexible disks

Flexible disks are coated with a magnetic material which can be easily damaged
through careless handling. The QX-10 Operation Manual contains a list of precau-
tions which should be observed for handling and storage of flexible disks; be sure to
read and observe those instructions.

5-18

www . fastio.com

‘TronomrnnonommamannnannoenmrnmnrnrnrrnNnrnDmnmn

http://www.fastio.com/

	./5_00.tif
	./5_01.tif
	./5_02.tif
	./5_03.tif
	./5_04.tif
	./5_05.tif
	./5_06.tif
	./5_07.tif
	./5_08.tif
	./5_09.tif
	./5_10.tif
	./5_11.tif
	./5_12.tif
	./5_13.tif
	./5_14.tif
	./5_15.tif
	./5_16.tif
	./5_17.tif
	./5_18.tif

