Chapter 2 PROGRAMMING CONCEPTS

D WAVW

!

N
~ |

B VN G O OO G O O N O O GO O GO O O O O R 6 GO £ LS

http://www.fastio.com/

kKb KEREORE KD R R EP P KT BEOREORD AP AF BF RN M

kb KL OKEOEE KT BT

F

This chapter discusses a variety of concepts which are applicable to programming in
MFBASIC. These are presented in logical order, with the most fundamental con-
cepts presented first. Mastery of this information is essential to realizing the full
- potential capabilities of MFBASIC.

2.1 Program Lines and Statements

All MFBASIC programs are composed of one or more lines, each of which begins
with a line number, ends with a RETURN code, and includes one or more com-
mands or statements. Line numbers indicate the order in which program lines are
stored in memory and executed, and are referenced when editing a program or
changing the flow of program execution with the GOTO or GOSUB statements.
Line numbers must be within the range from 0 to 65529. With MFBASIC, a period,
or full stop, (‘“.”’) may be used in the EDIT, LIST, AUTO and DELETE commands
to indicate the last line currently contained in memory.

Commands and statements are words in the MFBASIC language which instruct
EPSON MFBASIC to perform specific operations. Any number of statements may
be included in one program line by separating them with colons; however, the max-
imum length of a program line is 255 1-byte characters.

www . fastio.com

http://www.fastio.com/

ClibPDF -

2.2 ASCII Characters

The character generator of the QX-10 includes ASCII character sets for the follow-
ing eight countries.

1. United States 2. England
3. Germany 4. France
5. Italy 6. Spain
7. Denmark 8. Sweden

These character sets can be selected by means of the OPTION COUNTRY com-
mand, which also changes assignment of letters to the keyboard to that of the
character set for the specified country. Each character of these character sets is iden-
tified by a I-byte ASCII code; these codes are shown in Appendix H, and the
keyboard arrangements for each of the eight option countries are shown in Appen-
dix G. Differences in ASCII code assignments for the eight option countries are
shown in the table below.

Country
Dec. code

35 (23)
36 (24)
64 (40)
91 (5B}
92 (5C)
93 (5D)
94 (5E)
96 (60)
123 (7B)
124 (7C)
125 (7D)
126 (7E)

>

France | Germany { England | Denmark | Sweden Italy Spain

ol w

D~ 2 @] | ®

>

—

U f=l-=l=] D=]l—|~|®|e|=]| ¥

o le o] [Dlwlo

Ric|o o] » | DO D wn | [
U=~ = |>]=— |~ |®|e|m
Ui 8]~ [>]>0|R|O|«w|=
c: oo |0 |0 fn | S| D] O:f e | T {2
—~lo|ololc|DSlel-| o[@]w|x

NOTES:

1. Figures in parentheses are hexadecimal codes.

2. Blanks are displayed for some character codes when option style 15 or 16 is
selected, or when character style &HOF is selected with the style selection keys.

www . fastio.com

JUI‘J

BN RN NANnN

http://www.fastio.com/

MW RN AR AR R R AR AR AR A

Flr

ClibPD

2.3 Multiple Font Characters

In addition to the ASCII characters described above, MultiFonts BASIC provides 16
other character fonts which are internally represented in 2-byte code. Examples of
MultiFonts characters are shown below. The character sets are illustrated in full in
Appendix J.

OCR B-FONT

BODONI

SIR CHGAISH

FLASN BOLD

COUMERECF AL FERFPT
HELVETICA LIGHT

HELVETICA LIGHT ITALIC
HELVETICA MEDIUM ITALIC
BROADWAY

AMERICAN TYPEWRITER MEDIUM
LIGHT ITALIC

HELVETICA MEDIUM

BODONI ITALIC

SAlle SEBRIF SIHADED
MICROGRAMA EXTENDED
OLD GERMAN

Of the 16 styles, 15 can be input directly from the keyboard by means of the style
selection keys at the top right of the keyboard. Each font is numbered as shown in
Appendix I, and the settings of the style selection keys correspond to these numbers
as follows.

- Assuming that each key corresponds to a logical ‘1>’ when ON and to a logical “‘0”’

when OFF, the settings of the keys correspond to the binary equivalent of the style
number as shown below.

OFF OFF OFF ON Hex. Decimal

® (] () (]
SF2 || SF3 ||| SF4 01 1

ON OFF ON OFF

(] () () (]
SF1|||(SF2 || SF3 |||[SF4 0A 10

ON ON ON ON

() (] (] (]
SF1|lf| SF2 || SF3 |||| SF4 OF 15

www fastio.com

http://www.fastio.com/

MultiFonts characters are provided in two groups, one with codes which range
from &HAOAQ to &HAFFF, and another with codes which range from &HBOAO to
&HCFDF. The former group includes characters which correspond to the OPTION
COUNTRY character sets; these can be selected using the OPTION COUNTRY and
OPTION STYLE commands, the STYLES$ function, or the style selection keys at
the top right of the keyboard. The characters in the latter system are not related to
any of these, but can be output to the display or printer by direct specification of
their 2-byte codes.

USASCTT
MCL=A M0-Q
France
ACL=A AB-§

2-4

ARANAAARR AR AN NN AR

l ClibPD www . fastio.com

http://www.fastio.com/

okl o O N SN E R R R AT A

T

2.4 Control characters

The ASCII character set includes a number of special codes which can be used in
- programs together with PRINT CHRS$ or LPRINT CHRS for control of the screen
or printer. These control codes are used as described below.

2.4.1 Screen control codes
PRINT CHR$(5);

This sequence erases the screen from the current position of the cursor to the end of
the line (same as CTRL and E).

PRINT CHR$(7);
This sequence sounds the speaker built into the QX-10.

PRINT CHR$(8);

This sequence moves the cursor one column to the left (same as the BS key or CTRL
and H).

PRINT CHR$(9);

This sequence moves the cursor to the next tab position on the screen (same as the
TAB key or CTRL and M).

PRINT CHR$(10);
This sequence moves the cursor to the next line on the screen.

PRINT CHR$(11);

This sequence moves the cursor to the upper left corner of the screen (same as the
HOME key or CTRL and K).

PRINT CHR$(12);
This sequence clears the display screen (same as the CLS key or CTRL and L).

PRINT CHR$(13);
This sequence performs the same function as the RETURN key or CTRL and M).

PRINT CHR$(26);

This sequence erases the screen from the current cursor position to the end of the
screen.

PRINT CHR$(27);

This sequence makes it possible to enter special escape codes for screen control. See
Appendix C for the escape codes which can be used with MFBASIC.

PRINT CHR$(28);
This sequence moves the cursor one column to the right (same as the key).

2-5

www . fastio.com

http://www.fastio.com/

ClibPD

PRINT CHR$(29);
This sequence moves the cursor one position to the left (same as the key).

PRINT CHR$(30); ‘
This sequence moves the cursor up to line preceding that on which it is currently

located (same as the key).

PRINT CHR$(31);
This sequence moves the cursor down to the line following that on which it is cur-

rently located (same as the key).

2.4.2 Printer control codes

LPRINT CHRs$(7);
This sequence sounds the buzzer built into the printer.

LPRINT CHR$(10);
This sequence advances the paper by one line.

LPRINT CHR$(12); '
This sequence advances the paper to the top of the next page.

LPRINT CHR$(13);

This sequence returns the print head to the left side of the paper (without making a
line feed).

LPRINT CHR$(27);

This sequence makes it possible to enter special escape codes for printer control. See
Appendix C for the escape codes which can be used with MFBASIC.

2-6

www . fastio.com

b

O O GO O O O Y G O O O O O O A O

http://www.fastio.com/

IR RR I O IR

2.5 Constants

Constants are fixed values which are written into a program and which are used by
the program during its execution. These values may consist of either characters or
numbers; in the former case they are referred to as string constants, and in the latter
as numeric constants. A string constant is any sequence of alphanumeric characters
which is enclosed in quotation marks. Some examples of string constants are shown
below.

"“HELLO"’

My name is Ralph. What's your's?"’

“$25,000.00""

"“The quick brown fox jumped over the lazy yellow dog."’

The length of a string constant cannot exceed the maximum length of a program line
(255 bytes, or 255 1-byte characters).

Numeric constants are positive or negative numbers. There are five types of numeric
constants as follows.

(1) Integer constants
Integer constants are whole numbers in the range from -32768 to + 32767.

(2) Fixed point constants

Fixed point constants are positive or negative real numbers which include a decimal
fraction.

(3) Floating point constants

Floating point constants are positive or negative numbers which are represented in
exponential form. A floating point corfistant consists of an integer or fixed point con-
stant, followed by the letter E (denoting an implicit base of 10) and an exponent.
Either the fixed-point part or the exponent may be preceded by a minus (‘‘-’*) or plus
(““+’) sign to indicate that it is positive or negative; if no sign is present, it is assum-
ed that that portion of the constant is positive. The exponent must be in the range
from -38 to +38.

235.988E-7 = 235.988x 107 = .0000235988
2359E6 = 2359x 10¢ = 2359000000

(With double precision floating point constants, the letter ““D’’ is used to indicate
the implicit base (10) instead of ‘‘E.”” See below for a discussion of single and double
precision numeric constants.)

www . fastio.com

http://www.fastio.com/

' (4) Hexadecimal constants

Hexadecimal constants are numbers which are formed using the numeral set con-
sisting of 0 through 9 and A through F. In this system, the characters A through F
are equivalent to the decimal numbers from 10 to 15. Such constants are identified
by the prefix ‘“&H’’. The decimal equivalents of hexadecimal numbers can be
calculated as shown below.

&H76=7x16'+6x16°=118
&H32F=3x162+2x 161+ 15%x16°=815

(5) Octal constants

Octal constants are numbers which are formed using the numeral set consisting of 0
through 7. Such constants are identified by the prefix “‘&’’ or ‘&0’’. The decimal
equivalents of octal numbers can be calculated as shown below.

&0347=3x82+4x8'+7x8%=231
&1234=1x83+2x82+3x81+4x8°=668

ka)PD www . fastio.com

OO L OO O G O O O O O O

http://www.fastio.com/

C

U R R R R

"ﬂ—

HhPD

2.6 Single and Double Precision Numeric Constants

MFBASIC allows use of both single and double precision numbers. Single precision

- numbers are handled internally as seven significant digits, and are rounded to 6 digits

for display or printout. Double precision numbers are handled internally as 16
significant digits, and are also printed or displayed as 16 digits (with leading zeroes
suppressed).

A single precision constant is any numeric constant that fulfills one of the following
conditions.

(1) Consists of seven or fewer digits

(2) Is represented in exponential form with “E’’, or

(3) Has a trailing exclamation point (!).

A double precision constant is any numeric constant that fulfills one of the following
conditions.

(1) Consists of eight or more digits

(2) Is represented in exponential form with ‘D’’, or

(3) Has a trailing number sign (#).

Single Precision Constants Double Precision Constants

46.8 345692811
-7.09E-06 -1.09432D-06
3489.0 3489.04#

22.5! 7654321.1234

2-9

www . fastio.com

http://www.fastio.com/

 ClibPD

2.7 Variables

Variables are named locations in memory which are used to hold values during ex-
ecution of MFBASIC programs. Names are assigned to variables by the program-
mer, and the values stored in variables are either assigned by the user during program
execution or assigned as a result of program execution itself.

The two general types of variables used in MFBASIC are numeric variables and
string variables. The former are used to store numeric values and the latter are used
to store character strings. The initial values of all variables are 0 or null.

2.7.1 Variable names and type declaration characters

Variable names may consist of up to 40 characters (including all letters, the decimal
point, and all numerals), followed by a type declaration character; however, the first
character of each name must be a letter. Reserved words may not be used as variable
names. (Reserved words are the keywords used in specifying MFBASIC commands
and function names.) Further, the letters ‘“‘FN’’ must not be used at the beginning of
a variable name (MFBASIC will interpret names beginning with FN as calls to a user-
defined function). '

The names of string variables must end with a dollar sign ($); this is the type declara-
tion character which indicates that a variable is used to hold string data.

Numeric variable names may end with type declaration characters which indicate the
type of numeric data which they contain. The type declaration characters for
numeric variables are as follows.

% Integer variable declaration character

! Single precision variable declaration character

Double precision variable declaration character

A single precision numeric variable is assumed if no type declaration character is
specified. '

Examples of variable names are shown below.

Pl # Double precision variable
MINIMUM! Single precision variable
LIMIT% Integer variable

CATEGORY$ String variable

Variables may be defined in advance as string, integer, single precision, or double
precision by means of the DEFINT, DEFSTR, DEFSNG, and DEFDBL statements.
When variable types are specified using this method, type declaration characters are
not required. See the explanations of these statements in Chapter 3 for details.

2-10

www . fastio.com

O UR L O L O OGO UL L UL LU L O A L A

http://www.fastio.com/

o

MM A A A& & &R A AL AE LA AR AL AR

ClibPD www . fastio.com

2.7.2 Array variables

An array is a group of variables which is referred to by a common name. Each

~ variable of an array is identified by one or more subscripts, each of which is specified

as an integer or integer expression. The number of subscripts corresponds to the
number of dimensions of the array; thus, P(x) refers to a specific variable in a one-
dimensional array (where x is the integer or integer expression which identifies the in-
dividual variable), P(x,y) refers to a specific variable in a two-dimensional array, and
so forth. A one-dimensional array can be thought of as a one-column list which con-
tains a certain number of items; the number of items depends on the maximum value
of x. Likewise, a two-dimensional array can be thought of as a table containing a cer-
tain number of rows and columns; the number of rows depends on the maximum
value of x, and the number of columns depends on the maximum value of y.
Theoretically, an array can have any number of dimensions; however, in practice the
number of dimensions and the size of the array are limited by the amount of memory
available. The DIM statement is used to define the number of dimensions of an array

and the size of each dimension. See the explanation of the DIM statement in Chapter
3 for details.

2.7.3 Type conversion of numeric values

MFBASIC automatically converts numeric values from one type to another as
necessary. This section describes the rules governing numeric type conversion for
various types of operations.

(1) Type conversion upon storage in variables

If a numeric constant of one type is assigned to a numeric variable of another type, it
is stored after being converted to the type declared for that variable name. For exam-
ple, if an integer type numeric constant is assigned to a single precision variable, it is
automatically converted to a single precision value at the time it is stored. Note that a
certain amount of error may be introduced by the process of conversion.

10 A-12.34
20 PRINT A1
RN

12

Ok

10 41234
20 PRINT A4
RN
12. 3400001525879
Ok

2-11

http://www.fastio.com/

kC{)PD

(2) Conversion in arithmetic and relational operations

In an arithmetic or relational expression which includes numeric operands of dif-
ferent types, all operands are converted to the same degree of precision (that of the
operand with the highest degree of precision). Further, the results of arithmetic ex-
pressions are returned to the degree of precision of the most precise operand. Note
that error may be introduced when constants are converted from one precision to
another. (Note: Relational operations are described in paragraph 2.8.2 below.)

16 A=64/7.14

20 PRINT A#

RN
004220302113

Ok

In the example above, arithmetic is performed using double precision numbers and
the result is returned in double precision.

10 Ak=64/7.1
20 PRINT A
run

: 336862249
0k -

Here, the single precision value 7.1 is converted to double precision for arithmetic
and the result is returned as a double precision number.

The difference between the result returned in this example and that returned in the
preceding example is due to conversion error.

(3) Conversion for logical operations

During logical operations, non-integer operands are converted to integers and the
result is returned as an integer. The operands of logical operations must be in the
range from -32768 to 32767; otherwise, an ‘‘Overflow’’ error will occur.

2-12

www . fastio.com

TR eeerrel e

http://www.fastio.com/

e e e ees

ClibPD

18 PRINT 6.34 (R 15
RN

1
Gk

See paragraph 2.8.3 for a discussion of logical operations.

(4) Type conversion of floating point numbers to integers
When a floating point number is converted to an integer, the decimal fraction is
rounded to the nearest whole number.

10 (3-55.88
20 PRINT C%

(5) Conversion of single precision numbers to double precision

If a single precision number is assigned to a double precision variable, only the first
seven digits of the converted number are significant. This is because only six digits of
accuracy are provided by single precision numbers.

10 D#=7.12345

20 PRINT D4

RN
7.12385827923584
Ok

2-13

www . fastio.com

http://www.fastio.com/

Y ClibPD

2.8 Expressions and Operations

An expression is any notation within a program which represents a value. Thus,
variables and numeric and string constants constitute expressions, either when they
appear alone or when combined by operators with other constants or variables.

Operators are symbols which indicate mathematical or logical operations which are
to be performed on given values. The types of operations which are performed by
MFBASIC may be divided into four categories as follows.

(1) Arithmetic operations

(2) Relational operations

(3) Logical operations

(4) Functional operations

-

2.8.1 Arithmetic operations
The arithmetic operations performed by MFBASIC include exponentiation, nega-
tion, multiplication, division, addition, and subtraction. The precedence of these
operations is as shown below.

Operator Operation Sample Expression
VAN Exponentiation XAY
- Negation (conversion of the sign of a
value) (=Y
%,/ Multiplication, division X*Y, X/Y
\ Integer division X\Y
MOD Modulus arithmetic XMODY
+,— Addition, subtraction X+Y, X-Y

The concepts of integer division and modulus arithmetic are explained in (1) and (2)
below. : :

The order in which operations are performed can be changed by including parts of
expressions in parentheses according to the normal rules of algebra. When this is

done, the operations within parentheses are performed first according to the normal
rules of precedence.

Sample algebraic expressions and their equivalents in MFBASIC are shown below.

2-14

www . fastio.com

y

\

A S A O SO O O O O O O G O G A O O

http://www.fastio.com/

0 ¢ L R O L O L LB

Algebraic Expression BASIC Expression
X+2Y X+2*%Y
X-Y+Z X-Y/Z
XXY+Z X*Y/Z
X3~ XA)AY
X(Y?) XAY/2)

X% (-Y) X*(-Y)

When there are two consecutive operators in an expression, they must be separated
by parentheses as shown in the last example above.

(1) Integer division

With integer division, the operands of an expression are rounded to integers, then
division is performed and the integer portion of the quotient is returned. The
operator for integer division is the backslash (\).

PRINT 1516
]
L

Ok

PRINT 17.89\.32
4
k

When integer division is performed, both operands must be within the range from
-32768 to 32767.

(2) Modulus arithmetic

Modulus arithmetic is the arithmetic operation which returns the remainder of in-
teger division as an integer. The operator for modulus arithmetic is MOD. The
precedence of modulus arithmetic is just after that of integer division.

PRINT 10.4 H0D 4
X

PRINT 25.68 M0D 6.9
h

a<

2-15

I ClibPD wvawy fastio.com

http://www.fastio.com/

(3) Overflow and division by zero
N

If division by zero is encountered during evaluation of an expression, the ‘‘Division
by zero’’ message is displayed. In this situation, machine infinity is returned as the
result of division, then execution continues.

10 A=30/0

20 PRINT 44

30 PRINT "Progranm line 38"

RN

Division by zero
1.7014117331926450+ 38

Program line 30

k

The ““‘Division by zero’’ message is also displayed and machine infinity returned
when zero is raised to a negative power.

An overflow error is the condition which occurs when the result of an operation is
too large to fit into the memory available for storing the resulting type of numeric
value. Whether or not execution continues depends on the type of operation attemp-
ted.

10 A¥=666"066
20 PRINT A¥
30 PRINT “Program line 3"
49 Ai-666661\5
59 PRINT A%
60 PRINT "Program 1ine 60°
RN
Overflow
1. 7014117331 906450438
Program line 3
Overflow in 40
k

2-16

LC{)PD www . fastio.com

CNAMANARNONNANAAAN AN AR

http://www.fastio.com/

{0

ClibPD

2.8.2 Relational operations

Operations in which two values are compared are referred to as relational opera-
tions. The result returned by such a comparison is either “‘true’’ (-1) or “‘false”’ 0),
and is then used to make a decision regarding subsequent program flow. (See the
discussion of the IF...THEN...ELSE and IF...GOTO statement sequences in
Chapter 3.) .

The relational operators and their meanings are listed below.

Operator Relation Tested Expression

= Equality X=Y

< >,>< Inequality X< >Y, X><Y
< Less than X<Y

> Greater than X>Y

<=,=< Less than or equal to X< =Y, X=<Y
>=,=> Greater than or equal to X>=Y,X=>Y

NOTE:

In a relational expression, the *“="’ sign has a meaning different than when it is used
fo assign a value to a variable. See the discussion of the LET statement in Chapter 3
Sor details on assigning values into variables.

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed first. For example, the expression

X+Y< (T-1)/2

is true if the value of X plus Y is less than the value of T-1 divided by Z.

18 4-1-1

20 PRINT A
30 B34

40 PRINT B
% PRINT 32

2-17

www . fastio.com

http://www.fastio.com/

EC\M)PD

In the example above, line 10 tests for equality between the first and second operands
of the relational expression ‘‘1=1"’, then stores the result (-1, or true) in variable A.
Line 20 then displays the contents of A. Line 30 tests whether the first operand of the
relational expression ‘“3>4"’ is greater than the second, then stores the result (0, or
false) in variable B. The result is then displayed by the statement on line 40. Line 50
evaluates and displays the result of the relational expression ‘“3>2°* (-1, or true).

2.8.3 Logical operations

A logical operation uses Boolean arithmetic to define the logical connection between
the results (-1 or 0) of relational operations (or to set or reset specific data bits accor-
ding to the logical connection between the individual bit states of the operands). In
any given expression, logical operations are always performed after arithmetic and
relational operations. The results of logical operations are determined as shown in
the table below; the operators are listed in the table according to their order of
precedence.

NOT (Negation)
X NOT X
1 0
0 1
AND (Logical product)
X Y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0
OR (Logical sum)
X Y X ORY
1 1 1
1 0 1
0 1 1
0 0 0
XOR (Exclusive —OR)
X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0
IMP (Inclusion)
X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1
EQV (Equivalence)
X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

2-18

www . fastio.com

& O O O T O T O O O O O O O O O O O & O A

http://www.fastio.com/

=
=
=
=
s
-
L
»
E
=
=
=
3
=
=
=
L
L

Since relational operations can be used to make decisions concerning program flow,
logical operators can be used to connect two or more relational operations; this
allows decisions to be based on multiple conditions. (See the discussion of the
IF...THEN...ELSE and IF...GOTO statement sequences in Chapter 3.)

1) IF D<200 AND F<4 THEN 80
This statement branches program execution to program line 80 if the contents of
variable D are less than 200 and the contents of variable F are less than 4.

2) IF I1<10 OR K<0 THEN 50
This statement branches program execution to program line 50 if the contents of
variable I are less than 10 or the contents of variable K are less than 0.

In a logical operation, the operands are converted to signed 16-bit two’s complement .
integers T in the range from -32768 to 32767 before their logical connection is check-
ed according to the operator (an error will result if an operand is not within this
range). The specified operation is then performed for corresponding bits of each
operand (bits in the same positions) and the result returned is the two’s complement
integer equivalent of the results for all bits. The following examples may aid your
understanding of how logical operators work.

10 PRINT 63 AD 16
RN

16
13

In binary notation, the twos complement integer 63 is 111111 and the twos comple-
ment integer 16 is 010000; since 1 AND 0 yields 0 and 1 AND 1 yields 1, the result is
010000, or 16.

1 The first bit of a two’s complement integer indicates whether the integer is positive
or negative. In binary notation, the two’s complement integers from 0 to 32767 are
expressed as 0000000000000000 to 0111111111111111. The integers from -1 to -32768
are expressed as 1111111111111111 (-1) to 1000000000000000 (-32768). The value
1111111111111111 is obtained by adding 1 to the complement of 0000000000000001
(.e., 1111111111111110+1 =1111111111111111). The binary representations of
other negative two’s complement integers can be obtained in the same manner.

2-19

www . fastio.com

http://www.fastio.com/

10 PRINT 21 ¥R 17
RN
!
"

The two’s complement integer 21 is expressed in binary as 10101, while the two’s
complement integer 17 is expressed as 10001; since 1 XOR 1 and 0 XOR 0 yield 0,
while 1 XOR 0 yields 1, the result is 00100, or 4. '

[Example VLIRS
RN
1
k

The two’s complement integer -1 is expressed in binary as 1111111111111111, while

the twos complement integer -2 is expressed as 1111111111111110; since both 1 OR 1
and 1 OR 0 yield 1, the result 1111111111111111, or -1.

Logical operators can be used to test data bytes for a particular bit pattern. For in-
stance, the AND operator can be used to mask all but one bit of a status byte to ob-
tain the status of a device 170 port; or, the OR operator can be used to merge two
data bytes to obtain a particular binary value.

2.8.4 Functions

Functions are operations which return a specific value for a single operand. For ex-
ample, the function SIN(X) returns the sine of the numeric value stored in variable X
(where the value in X is in radians). A variety of functions are built into EPSON
MFBASIC; these are referred to as intrinsic functions, and are described in Chapter
4.

MFBASIC also makes it possible for the programmer to write user defined func-
tions; see the discussion of the DEF FN statement in Chapter 3 for details.

2.8.5 String operations

String operations involve manipulation of character strings with operators. For ex-
ample, the ¢“ +°’ operator makes it possible to concatenate (link) strings as shown in
the example below.

2-20

kC\mPD www . fastio.com

AR ARAARAAAR

http://www.fastio.com/

k&G AF A A A& A AT AN LE DK AR A

ClibhPD

10 AR"FILE" :Be="NAME"
20 PRINT A$+BS

30 PRINT "NEW "+Ag+B$
RN

FILENAE

NEW FILENAME

Ok

Character strings can also be compared using the same relational operators as are us-
ed with numeric values.

10 AG="ALPHA'

20 B"BETA

3 IF ASCBS THN 40 ELSE 60

40 PRINT A3;" IS LOWER THAN “;B%

% B0

60 PRINT A$;" IS NOT LOER THAN *;B$
RN

ALPHA TS LOWER THAN BETA

Ok

Strings are compared by taking one character at a time from each string and compar-
ing their ASCII codes. The strings are equal if all codes are the same; if the codes dif-
fer, the character with the lower ASCII code is regarded as lower. Comparison ends
when different characters are encountered in the two strings or when the end of one
of the strings is reached; in the former case, the string in which the lower code was
encountered is regarded as lower, and in the latter case, the shorter string is regarded
as lower. Spaces included in strings are also significant; thus, the message on line 60
will be displayed by the example above if the character string stored in B$ is
‘“ BETA” (with a leading space). Further examples are shown below.

“AA” is less than ‘“AB”

“FILENAME”’ is equal to ‘“‘FILENAME”’

“X&”’ is greater than “X #”’

“CL” is greater than ‘‘CL”’

2-21

www fastio.com

http://www.fastio.com/

““kg’’ is greater than “‘KG”’
“SMYTH?”’ is less than “SMYTHE”’

Thus, string comparisons can be made to test string values and to alphabetize strings.
All string constants used in relational expressions must be enclosed in quotation
marks.

2-22

IO ARAAOIAR

\ ClibPD www . fastio.com

http://www.fastio.com/

A4 A4 4L L L O L L

ClibPDF -

2.9 Files

In general, a file is any set of data records which is output to or input from an exter-
nal device (such as a disk drive) under a common identifier. This includes text files
containing the program lines of MFBASIC programs, machine language program
files, and data files. Files are stored on flexible disks; however, they may also be in-
put from and output to other devices. (See Chapter 5 for information on the types of
file organizations used by MFBASIC.)

With MFBASIC, files are identified by means of descriptors which consist of a
device name and a file name. Together, these are referred to as the “‘file descriptor’’
and are specified as follows.

" < device name > :[< filename >]"’

(1) File names

A file name is composed of a primary name of up to 8 alphanumeric characters and
an extension consisting of a period (‘*.””) and up to 3 alphanumeric characters. With
the LOAD, MERGE, RUN, LIST, and SAVE commands, the extension ‘‘.BAS”’ is
assumed if only the primary name is specified in the command’s operand. With the
FILES, KILL, or NAME commands, extensions must be specified.

(2) Device names

With MFBASIC, the format of all input and output commands is the same
regardless of the type of 1/0 device. I/0 devices are distinguished from one another
by means of device names; the devices which can be addressed for I/O operations are

- as follows.
Device name Device

KYBD: Keyboard (input only)
SCRN: Display screen (output only)
LPTO: Printer (output only)
COMO: Standard RS-232C interface
COM1: to COM4: Expansion RS-232C interfaces
A: Disk drive A
B: Disk drive B
E: Disk image RAM (256K byte version only)
CMOS: CMOS RAM

2-23

www . fastio.com

http://www.fastio.com/

ClibPD

(3) File numbers

With MFBASIC, a logical file number must be assigned to each file which is read or
written by a program (except when a text file is accessed using the LOAD, MERGE,
RUN, LIST, or SAVE commands). This is. done by means of the OPEN statement,
which links the logical file number to the physical I70 device defined in the file
descriptor. Unless otherwise specified with the /F: option when MFBASIC is ac-
tivated, the maximum number of files which can be open at one time is 3. See the
discussion of the OPEN statement in Chapter 3 for the procedure for assigning file
numbers.

2-24

www . fastio.com

o OO L O O A T L A G & 5 5 O

http://www.fastio.com/

IR E e R e M eI e Ee's

ClibPD

2.10 Display Screen

This section describes the character screen modes supported by MFBASIC (in-
cluding the graphics mode and screen attributes), the systems of coordinates which
are used for specifying the positions of characters and graphics on the display screen,
and MFBASIC’s color display support feature.

2.10.1 Screen modes

MFBASIC supports two modes of screen operation for the display of characters.
These are referred to as the standard mode and the double width mode. The stan-
dard mode is that which is effective when MFBASIC is activated, and the double
width mode is that which is entered by executing WIDTH 40. To return to the stan-
dard mode from the double width mode, execute WIDTH 80.

(1) Standard mode

In this mode, a maximum of 1600 1-byte characters can be dlsplayed on the screen at
one time, with 80 characters on each of the screen’s 20 lines. Two 1-byte character
positions are used for display of each 2-byte character. Such characters are displayed
in the style which corresponds to the first byte of their 2-byte code; see section 2.3
above and Appendix J for details.

(2) Double width mode

In this mode, the display width of each character is twice its width in the standard
mode; thus, a maximum of 800 1-byte characters can be displayed on the screen at
one time, with 40 characters on each of the screen’s 20 lines. As in the standard
mode, each 2-byte character is displayed using the character positions for two 1-byte

- characters, and the style in which such characters are displayed is that which cor-

responds to the first byte of their 2-byte codes.

A unique feature of the double width mode is that any of 16 different character
styles can be specified for 1-byte characters with the OPTION STYLE statement
(this is not possible in the standard mode); use of the OPTION STYLE statement is
described in Chapter 3.

(3) Graphics

Regardless of the mode of character display, the size of the graphic screen is 640
(horizontal) X 400 (vertical) dots. MFBASIC features a variety of statements and
functions which allow. the settings of these dots to be controlled individually or in
groups for display of graphics. Use of these statements/functions is described in
detail in Chapters 3 and 4. When the optional color display interface board is install-
ed, any of 8 different colors can be specified for individual dots.

(4) Attributes
Regardless of whether the optional color display interface board is installed, the

COLOR statement can be used to specify a variety of attributes for display of
characters; these include automatic underlining of characters and reverse display. By

2-25

nwfastio.com

http://www.fastio.com/

ClibPD

using the COLOR statement to specify the same color for both the background and

foreground color of characters, it is also possible to make characters displayed invisi-
ble.

2.10.2 Coordinate specification

(1) Character coordinates

Character coordinates are used together with the LOCATE statement and the
SCREEN, POS, and CSRLIN functions to specify or determine the positions in
which characters are displayed. In the standard mode, horizontal coordinates are
specified as numbers from 1 to 80, with 1 corresponding to the column on the left
side of the screen and 80 corresponding to the column on the right side. Similarly, in
the double width mode, horizontal coordinates are specified as numbers from 1 to
40. In either mode, vertical coordinates are specified as numbers from 1 to 20, with 1
corresponding to the top line of the screen and 20 corresponding to the bottom line.
Thus, in the standard mode the character position at the top left corner of the screen
is specified as (1,1), that at the bottom right corner is specified as (80,20), and so
forth.

(1, 1) (40 or 80, 1)

(1, 20) (40 or 80, 20)

2-26

www . fastio.com

B O O G

http://www.fastio.com/

‘HEErr eI rrerrere's

ClibPD

(2) Graphic coordinates

Graphic coordinates are used to specify the positions of individual dots on the
screen, and are used with statements such as PSET, PRESET, and POINT.
Horizontal graphic coordinates are specified as numbers from 0 to 639, with 0 cor-
responding to the column of dots on the left side of the screen and 639 corresponding
to the column of dots on the right side. Vertical coordinates are specified as numbers
from 0 to 399, with 0 corresponding to the row of dots at the top of the screen and
399 corresponding to the row of dots at the bottom.

(0, 0) (639, 0)

(0, 399) (639, 399)

In most cases, graphic coordinates can be specified in either absolute or relative
terms. Absolute coordinates are specified directly in the following form.

(< horizontal position >, <vertical position>)

This form of coordinate specification can be used with all graphic statements and
functions.

Relative coordinates are specified in the following form.
STEP (< horizontal position>, < vertical position>)

Here, the effective position of the point specified is that of the coordinates of the last
reference pointer plus the values specified for <horizontal position> and < vertical
position >. Relative coordinate specification is possible with the PSET, PRESET,
CONNECT, LINE, PAINT, GCURSOR, CIRCLE, and GET@ statements. The
coordinates indicated by the last reference pointer are changed whenever one of
these statements or the PUT @ statement is executed.

2-27

www . fastio.com

http://www.fastio.com/

L ClibPD

2.10.3 Color support

The statements and functions of QX-10 MFBASIC support color display using the
optional color interface board. When this interface board is installed, any of 8 dif-
ferent colors can be specified for each of the screen’s 640 x 400 graphic display dots.
The foreground and background colors which are used as the default values for
display of characters and graphics are specified with color codes by the COLOR
statement. The foreground color is the color which is used for display of characters
by statements such as PRINT, and is also the color which is assumed when a color
code is not explicitly specified in the PSET, LINE, CONNECT, or CIRCLE
statements.

The color codes are also significant when the optional color interface board is not in-
stalled. In this case, a color code of 0 corresponds to black (dot off) and the color
codes from 1 to 7 correspond to white (dot on).

If the setting of a dot is read with the POINT function at this time, a color code of 7
is returned if the dot is set (on) and a color code of 0 is returned if the dot is reset

(off).

However, the size of variable arrays required for pattern storage and display with the

GET@ and PUT @ statements differs according to whether the color interface board
is installed. When the color interface board is not installed, only one bit is used for
each dot of the pattern (since only information concerning whether individual dots
are set or reset need be stored); when the color interface board is installed, three bits
are required to store the color code of each dot, and therefore about three times as
much memory is required.

See the explanation of the COLOR statement in Chapter 3 for a full description of
the meanings of the color codes.

2-28

www . fastio.com

B 5 O O O O O O O O O O A A A

http://www.fastio.com/

I

&l b

il & A0 A o)A AT AT T AT R ET AT

ClibPD

2.11 Input/Output Device Support

MFBASIC supports data input/output (I/0) for a variety of peripheral devices.
These include the built in flexible disk drives; a user memory bank referred to as disk
image RAM (which can be used in exactly the same manner as the disk drives, but
which provides much faster access); sequential access devices such as the display
screen and RS-232C interface; and several special function devices.

2.11.1 Random access devices

Random access devices supported by the QX-10 are the built-in flexible disk drives
and disk image RAM. These devices can be opened in either the random (*‘R’’) or se-

quential (“‘O’’) access modes, and can be used with all file input/output statements
and functions.

The device names of the random access devices are as follows; these device names are
included in the file descriptor with the file name as described in section 2.9.

Flexible disk drives ---- A: and B:
Disk image RAM E:

2.11.2 Sequential access devices

Sequential access devices are devices which can be opened as files for input (the “‘I”’
mode), output (the ‘“O”’ mode), or both. An OPEN statement includes a mode
specification (“I’” or *“O”’), a file number, and a file descriptor as described in sec-
tion 2.9. However, unlike the random access devices, no file name is specified in the
file descriptor. The device names under which these devices are opened as files, the

170 modes in which they can be used, and applicable input/output statements are as

follows. Note that the colon must be specified following the device name even
though it is not followed by a file name.

KYBD: Keyboard; input only, using INPUT #, LINE INPUT #, and
INPUTS.

SCRN: Display screen; output only, using LIST, SAVE, PRINT #,
PRINT # USING, POS, and WRITE #.

LPTO: Line printer; output only, using the same statements as are used
with SCRN:.

COMO: Standard RS-232C communications interface; both input and

output, using LOAD, RUN<file descriptor>, MERGE, IN-
PUT#, LINE INPUT #, INPUT$, EOF, LOF, SAVE, LIST,
PRINT #, PRINT # USING, WRITE #, and POS. -
COMLI: to COM4: Same as above for up to four optional RS-232C interface cards.
CMOS: CMOS RAM memory; both input and output, using the same
statements as are used with COMO:.

2-29

www . fastio.com

http://www.fastio.com/

| ClibPD

NOTE:
The format for file specification of the RS-232C interfaces is slightly different from
that of the other sequential access devices. See Chapter 6 for details.

2.11.3 Other devices

Other peripheral devices supported by MFBASIC include the optional light pen, the
console speaker, and the built-in clock.

The light pen is a light sensitive device which makes it possible to read in the coor-
dinates of characters or graphics displayed on the screen without using the keyboard,
allowing the operator to devote undivided attention to the screen.

No device names are assigned to these devices, but they can be used with the follow-
ing statements and fucntions.

Light pen ------------ PEN ON/OFF
PEN functions

Speaker -------m--mmm- BEEP
SOUND

Clock --mmnemsememeees TIME/TIMES
DATE/DATES$
DAY

2-30

wwiw . fastio.com

BOBRDNBEARARRABAARBRERANNDORNDN0NDN R,

http://www.fastio.com/

2.11.4 Commands, statements, and functions usable with
I/0 devices

The table below shows correspondence between the input/output commands,
statements, and functions of MFBASIC and the devices with which they can be used.

General I/O

DEVICE KYBD: | SCRN: LPTO: COMO: CMOS: DISK
to A B E
STATEMENT COM4:

OPEN
CLOSE
INPUT #
LINE INPUT #
INPUT #
PRINT #
PRINT # USING
LOAD
SAVE
LIST
RUN
MERGE
EOF
WRITHE #
LOF
POS
PUT
GET
LOC
ACCESS MODE
|
0
R

XXX |X|X[X[X|X|X|X|[X|[X[X|X]O|O|O]O|O
X |X|X[OX|O|X | XIX[OlO|X[|O|O|X|X|X|O|O
X |X[X|OX|O|X|X|{X[O|O|X|O|O|X |X{X|O|O
X[X|X|OfO|O]O|0O|0O]0O]O|0|0{0|0|0]0|0|0
X |XIX[O|OjO|0O|0|0]O|O|O|0O|O|0|0|0|0]0
OlO|O|0;0|0]|0|0O|0O|0O|O|0OjO|0|0|0|0]0|0

O

o0
o]0
O|0

X | X
xX|0O|X
x| O|%x
X
X

MMM A AR AR A A A AT ARG A KA AW AN

Fll—

2-31

ClibPDF - www.fastio.com

http://www.fastio.com/

2.12 Error Messages

Error messages are displayed if errors are detected during execution of MFBASIC
commands, statements or functions. If such errors occur during program execution,
execution stops and MFBASIC returns to the command level. (However, it is possi-
ble to prevent this by including error processing routines which use the ON ERROR
statement and the ERR and ERL functions in programs; see the explanations in
Chapters 3 and 4 for details.)

Any of three languages (English, French, or German) can be specified for display of
error messages with the /E:n option of the MFBASIC command when MFBASIC is
started; for details, see ‘‘Starting MFBASIC”’ in Chapter 1.

A complete list of the MFBASIC error messages and their corresponding codes is
provided in Appendix A.

2-32

ka)PD www . fastio.com

TR0 000N RN

.

http://www.fastio.com/

	./2-00.tif
	./2-01.tif
	./2-02.tif
	./2-03.tif
	./2-04.tif
	./2-05.tif
	./2-06.tif
	./2-07.tif
	./2-08.tif
	./2-09.tif
	./2-10.tif
	./2-11.tif
	./2-12.tif
	./2-13.tif
	./2-14.tif
	./2-15.tif
	./2-16.tif
	./2-17.tif
	./2-18.tif
	./2-19.tif
	./2-20.tif
	./2-21.tif
	./2-22.tif
	./2-23.tif
	./2-24.tif
	./2-25.tif
	./2-26.tif
	./2-27.tif
	./2-28.tif
	./2-29.tif
	./2-30.tif
	./2-31.tif
	./2-32.tif

