Chapter 8 Alarm/Wake Feature

8.1 General

The MAPLE is furnished with a 7508 4-bit CPU which
controls the software timer (clock) and generates
interrupts to the 280 CPU at specified intervals. The
software timer is supported by the alarm/wake 0OS feature.
The alarm/wake feature is divided into the following
three functions:

1) Alarm function

2) wakel function

3) Wake2 function

These functions are identified by software using a flag:;
only one type of interrupt is generated by the 7508 CPU
for these functions. The 7508 checks for an alarm/wake
time every 10 seconds even if the MAPLE is in the power
off state, that is, the alarm/wake feature remains
available when MAPLE power is off. However, the
alarm/wake processing differs depending on whether MAPLE
power is off or on. The next section explains how
alarm/wake processing proceeds in both power off and on

states (refer to "0S Specifications"” for details).

8.2 Alarm Function
1) what to set
(1) Alarm time (month/day/hour/minute/second (10-
second units))
(2) Alarm message (up to 40 alphanumeric, kana,

and graphics characters)

2) How to set

(1) Use the System Display (second cannot be
specified).

(2) Use the BIOS TIMDAT function (see Chapter 4,
"BIOS Calls").

(3) Load the work areas time data and issue a time
setting command directly to the 7508 CPU (sese
Section 8.7 and Chapter 11, "7508

Explanations").

3) Alarm function in power-on state

The alarm function sounds an alarm and displays the time
and message using the VRAM system screen. This
guarantees that no user data on the screen be destroyed.
When the display is ended, the user data displayed

immediately before the alarm message is restored.

The time display can be terminated when:
(1) The ESC key is pressed.
(2) 50 seconds has elapsed.
(3) The POWER switch is turned off.

(4) A power failure occurs.

4) Alarm function in power-off state

The alarm function performs the same operations as in

the power-on state after the MAPLE is powered on. After
the display is terminated, the original screen before
power is turned on is restored. If power is switched off
and back on again while the alarm function is displaying
the alarm time and message, then the normal power-on

seguence occurs.

8.3 Wakel Function
1) what to set
(1) Wake time (month/day/hour/minute/second (10-
second units))
(2) The name of program to be executed when a wake

condition occurs.

2) How to set

Same as the alarm function in 8.2.

3) Wakel function in power-on state
The wake function treats the wake string as an alarm
string and performs the same operations as the alarm

function.

8~-4

4) Wakel function in power-off state

When power is turned on, the wake function loads the

wake string into the key buffer for execution as power-—

on commands,

-~ When the MAPLE is in the restart mode power-off state
The wakel function executes WBOOT and displays the
Menu, then enables the wake string for execution
under CCP control.

(In QOverseas version 2.3 (B), the function enables
the wake string for execution under CCP without
displaying the menu).

- When the MAPLE is in the continue mode power-off state
The wakel function ignores the wake string and
returns the MAPLE into the state before it is powered

off and continues processing.

The wakel function, when used with the BIOS POWEROFF
function, may find many applications in periodic data
collection and other automatic (unattended) operations

without operator's intervention.

8.4 Wake2 Function

1) What to set

(1) Wake time (month/day/hour/minute/second (10-

second units))

(2) The address of the routine to be executed when

a wake condition occurs.

Z2) How to set

(1) Use the BIOS TIMDAT function (see Chapter 4,

"BIOS Calls").

(2) Load the work areas time data and issue a time

setting command directly to the 7508 CPU (see

Section 8.7 and Chapter 11, "7508

Explanations").

3) Wake2 function in power-on state
The wake2 function calls the specified address.
programming note 5) below for the routine to be

specified at this address.

See

4) Wake2? function in power-off state

- When the MAPLE is in the restart mode power-off state
When power is turned on, the wake2 function calls
the specified address, then returns the MAPLE into
the state (restart mode) before power is turned
off.

- When the MAPLE is in the continue mode power-off state
The wake2 function returns the MAPLE into the state
before it is powered off, then causes a jump to the
specified address. If the destination of the jump
is a RET instruction, control is returned to the
pocint in the program at which the MAPLE was powered

off in the continue mode.

5) Wake2 function programming notes
(1) Neither BDOS nor BIOS system call can be used
in the routine to be called by the wake2 function.
(2) The routine to be executed by the wake2 function
must end with a RET instruction.
(3) When the wake2 function is invoked in the power-off
state, only power to the main board is turned on and no
power is supplied to the I/O devices (e.g., RS-232C,
serial port, and ROM capsules). Furthermore, if this
condition occurs in the continue mode, the routine to be
called by the wake2 function must turn on the power to
these devices before executing the RET instruction. See
the next page for the procedure for turning on the power
to the I/0 devices.
(4) The event which called the wake2 function can be
identified by examining the following work areas:
- ZSTARTFG: Overseas version = OF389H

Japanese-language version = 0F0C9H

Identifies the source of the invocation of the

routine.

0lH: POWER switch on.

02H: Alarm

03H: Wakel

04H: Wake?2

- CNTNFG: Overseas version = (QF330H

Japanese-language version = @F@50H

Identifies the power-off state mode.

00H: Continue mode.

X 00H: Restart mode.

ZSTARTFG | CNTNFG State from which control is passed
to the routine via wake2 function
X@4H NC Power-on state.
=@4H #6H Continue mode power—-off state
=04H X@dH Restart mode power—-off state

The routine called by the wake2 function must examine

the above work areas to identify the power-off state

and immediately set the work areas as follows:

ZSTART

CNTNFG

FG =

= @FFH

8-9

When called in the continue mode power-—-off state, the
croutine must execute the following code before executing

the RET instruction:

LD HL, (ATSOTIME)
LD DE, (TIMERf) Sets the new auto
ADD HL,DE shut-off time.

LD (TIMEEND) , HL

LD A, (SPOPN)

OR A Checks to determine
whether serial or

JR NZ,AAAA RS-232C interface has

LD A, (RSCLSF) been used and, if so,

OR A turns on its driver.

JR NZ ,BBBB

AAAA: Turns on the driver.
LD A, (CTLR2) _1~
SET 4,A
ouT (2),A
CALL STI1ML = lm-second software timer.
SET 3,A
ouT (2),A
CALL ST1@@MI, = 1@fm-second software
RES 4,A timer.
SET 5,A

LD (CTLR2) ,A
ouT (2),A

BBBB:

CCCcC:

LD
OR
JR

LD
outT
LD
ouT
CALL
LD
outT
LD
ourT

XOR
LD

LD
LD
LD
LDIR

D
ouT

LD
D

POP
POP
porP
POP

EX

EXX
POP
POP

RET

A, (RSCLSF)
A
NZ ,CCCC

A,@#BEH
(gDH) ,A
A,@4p9H
(gDH) ,A
ST1@AML

A, (SVRSMOD)
(§DH) ,A

A, (SVRSCMD)
(gDH) ,A

A
(PROMPWR) ,A

HL,MTIMEBUF
DE ,YPOFDS
BC,4

A, (IER)
(g4H) ,A

A, (CNTNILVL)

(INTLEVEL) ,A

HL
DE
BC
AF

AF ,AF'

IY
IX

11

Initializes 8251 if
the RS-232C interface
has been used.

Turns off ROM capsule
power.

Restores registers.

Work area address chart

Overseas Japanese-

Work area name version langgage
version
ATSOTIME F@P27H ED27H
TIMERY F@71H ED72H
TIMEEND F6DCH F46BH
SPOPN F35AH F@82H
RSCLSF F2C8H EFF8H
CTLR2 F@PB2H ED92H
SVRSMOD F6DAH F45DH
SVRSCMD F6D1lH F45CH
PROMPWR F1CAH EEE3H
MTIMEBUF’ F4BDH F232H
YPOFDS F@D9H EDB9H
TIER F@B3H ED93H
CNTNILVL F385H F@CSH
INTLEVEL F@BAH EDS9AH

8.5 Alarm/Wake Function Processing Flow

1) Alarm/Wake processing in the power-off state

\/
Normal power-on
processing

(- Continues
processing if in
continue mode)

Alarm/wake interrupt generated by 75¢8

(DI state).

ALRMFG < 80H
LARMCT <+ JAH
ALRMST < @1H

l

Call ALMHKO

|

ZSTARIFG
ALRMTP+1

7588 automatically turns on main power.

WAKE?2

Set MODEFG
bit @ on

ET

message

Display alarm

l

DT

PW SW

switched from off

to on during
display?

CNTNFG

7891

=goH

Call specified

address

RESET SP to
continue mode
SP value

Call ALMHK1

Return to state
before power-off

8-13

\J
Jump to specified
address (continue
processing with

RET instruction).

2) Alarm/Wake processing in the power-on state

Alarm/wake interrupt generated by 7588
(EI state but interrupts from 7508 are
disabled).

MODEFG Terminates progessipg if.

bit 0,1 alarm message is being displayed.

Does nothing for second and
subsequent interrupts (1@ in
total).

ALRMFG <« 8@H
ALRMCT < @AH
ALRMST < P1H

l

Call
AIMHK 2

YAIMST
YALIMDS

Displays nothing if alarm message
| _is flagged off (by software).

[Enables interrupts because 75¢8
will specify the termination of
| _display of the alarm message.

Enable 75@8
interrupts
[
Display alarm
message
I
Disables 7588
interrupt

Check for power-off
state during alarm
message display

-

\
Interrupt
postprocessing

3) Alarm display processing

WAKE 2

YPOFDS<bit5 on
YALMST<@@H
MODEFG+bitl on

=@3H

Call specified
address

ALRMTP
=@3H

Display alarm
screen using
system screen

Save
key-related
work areas

Alarm dis-
play termination
condition?

Call
AIMHK 4

|

Restore key-
related work

area
l

Restore screen
into original
state

I

YPOFDS bitb off
MODEFG bitl off

=

Alarm or wake 1

ESC key pressed.

5@ seconds has elapsed.
POWER switch set on to off.
Power failure.

4) Alarm processing during l-second interrupt processing

Since alarm/wake interrupts occur every one second, a

total of 10 times during the 10-second period, the

interrupt handler ignores the second and subsequent

interrupts. Accordingly, the OS examines the ALRMFG

flag for 10 seconds (for 10 interrupts) since the first

interrupt occurred using the l-second interrupt

processing routine and indicates the results to the

alarm/wake processing routine.

ALRMFG
bit 7 on?

(ALRMCT) <
(ALRMCT) -1

Set ALRMFG
bit 7 off

The first alarm/wake interrupt sets
ALRMFPG and ALRMCT flags as follows:

8@H
ALRMCT = @AH

ALRMFG

After 1@ seconds, ALRMFG is set to
#PH. The interrupt handler ignores
any alarm/wake interrupts while
ALRMFG is nonzero.

e s

Summary of work

areas used

by the alarm/wake functions

Work area name Size De i btion
(Address) (in bytes) SCT1ptio
ALRMTP (Overseas 1 Identifies the type of alarm/wake functions.
version = @F@P6CH, = @P@H: Undefined
Japanese~language = @PlH: Alarm
version = @EDGDH) = P2H: Wakel
= @3H: Wake2
ALRMAD (Overseas 2 Contains the starting address of the alarm
version = @F@6DH, message or wake string.
Japanese-language
version = @EDGEH)
ALRMST (Overseas 1 Indicates whether an interrupt occurred or not
version = @F@6FH, for the currently set alarm/wake time.
Japanese-language
. = @g@PH: Not occurred.

= PED7@H
version FED7PH) = @H: Occurred.
ALRMFG (Overseas 1 Indicates the time count from the timer when
version = @F@7@H, an alarm/wake interrupt occurred (up to 1§
Japanese-~language seconds) .
version = @ED71H) Bit 7: Set by the first interrupt and cleared

after 12 seconds.
MODEFG (Overseas 1 Indicates the current system status.
version = @F@B8H, Bit @ = 1l: Alarm/wake processing invoked from
Japanese-language power-off state is in progress.
version = @ED98H) Bit 1 = 1: Alarm/wake processing invoked from
power—on state is in progress.

8-17

Work area name

Size

(Address) (in bytes) Description
YAILMDS (Overseas 1 Indicates the alarm/wake disable state.
version = @FPDBH, Bit 7 = 1: Disabled because BIOS is in
Japanese-language execution.
version = @EDBBH) Bit 6 = 1l: Disabled because password is being
entered.
Bit 5 = 1: Disabled because alarm/wake message
is being displayed.
Bit 4 = 1: Disabled because system message is
being displayed.
Bit 3 = 1: Disabled by BASIC,.
Bit 2 = 1: Disabled by scheduler.
Bit 1 = 1: Disabled by MTOS.
Bit @ = 1: Reserved (for applications).
YAIMST (Overseas 1 Indicates that an alarm/wake interrupt occurred
version = @ZF@DCH, when the alarm/wake functions are disabled.
Japanese-language The meanings of the bits are identical to those
version = @EDBCH) of YALMDS.
ALRMCT (Overseas 1 Contains the number of alarm/wake interrupts.

version = @F4E6H,
Japanese-language
version = @F25BH)

The 7508 generates an interrupt every one
second for 1@ seconds (1@ in total) for one
alarm/wake time.

i

8.6 How to Augment the Alarm/Wake Functions Using Hooks
As shown in Section 8.5, the alarm/wake functions has
five hooks. The user can extend the alarm/wake
functions by making patches in these hooks. This

section shows how to make patches for these hooks,.

Hook addresses

Address Label Contents
Overseas Ver. @EF8CH ALMHK@ : JP RETURN
Japanese Ver. Q@QEBD8H
Overseas Ver. OEF8FH ALMHK1: JP RETURN
Japanese Ver. @OEBDBH
Overseas Ver. @EF92H ALMHK2: JP RETURN
Japanese Ver. OEBDEH
Overseas Ver. OEF95H ALMHK3: JP RETURN
Japanese Ver. @EBE1lH
Overseas Ver. OEF98H ALMHK4: JP RETURN
Japanese Ver. @EBE4H
Overseas Ver. OEEB7H RETURN: RET

Japanese Ver. @EB@OBH

The above entries can be hooked to any user-supplied
routines by changing the address portion of the JP

RETURN instruction.

8-19

Programming notes that the user must take when changing
hook addresses follow.

(1) Take care with bank control.

The hook entries are always called when the system is in
the system bank state (addresses @@0@H through 7FFFH are
allocated for ROM and 800@H through @FFFFH for RAM). No
problem will occur as long as the jump addresses in the
hook table point to memory addresses 80@@H and higher;
however, the active bank need be switched to the user
bank whenever hook entries are entered if they point to
addresses between @000H and 7FFFH. Normally no user-
supplied routine can be placed in addresses between
g20PH and 7FFFH.

(2) Reserve a user stack area.

Since control is transferred to the hook with the

stack pointer pointing to the stack for interrupt
routines, if the routine pointed to by the hook is to
use a stack area (e.g., when using CALL and/or PUSH
instructions), it must reserve its own stack area and
restores the stack pointer to the original value when it
terminates execution.

(3) Save the contents of registers and work areas.
Control is passed to the hook without saving the

contents of registers and work areas. Accordingly, if a

user routine specified in the hook is to alter registers
or system work areas, it must save the contents of the
registers and work areas to be changed on entry and
restores them on exit (of course, it can safely alter
the contents of work areas which expect alteration by
the user).
(4) Do not change the interrupt status.
Since ALMHK@-ALMHK4 are invoked when the CPU is in one
of the interrupt states listed below, no user-supplied
routine specified in the hook can change the interrupt
state. If a user-supplied routine need to change the
interrupt state, it must restore the MS into the
original interrupt state before terminating processing.
ALMHKO: DI state
ALMHK1: DI state
ALMHK2: EI state (7508 interrupts are disabled.)
ALMHK3: EI state (7508 interrupts are disabled.)

ALMHKA4 : EI state

(5) Disable interrupts when changing an address in the hook.
The system is highly likely to crash if an interrupt

using a hook entry occurs while the address in that

entry is being changed. Since alteration of jump

addresses in the hook is normally done by the user

program in the TPA, the user program can and should

inhibit such interrupts with a DI instruction to avoid
possible system crash. The program, however, must
executes an EI instruction after terminating its
execution,

(6) Do not call any system routine from the hook.

The hook does not know from what system state it is
called because it is invoked by interrupts. It may be
called while a system routine (BDOS, BIOS, or internal
0S routine) is being executed. A system crash will
occur if a routine in the hook calls a system routine in
such a situation.

(7) Do not perform an I/0 operation.

For the same reason given above, the routines in the
hook must not perform any I/O operations such as display
on the screen, communication through the RS-232C
interface, etc.

(8) Since the jump table in the hook is initialized by
system initialize or reset processing (placed into the
state described on page 8-19), when the hook routines are
to be made resident in memory, write to that effect in the
manual. After system initialize or reset processing is
performed, run a program for setting up the hook jump
table. (Reset processing initializes only the hook jump

table and keeps the user BIOS and RAM disk contents

intact.)
(9) Generally, the routines to be executed in the hook
should be placed in the user BIOS area. This makes them

resident in memory and solves the problem discussed in

(1).

8.7 Making Alarm/Wake Settings Directly for 7508

As explained in Sections 8.2, 8.3, and 8.4, alarm/wake
settings can easily be made by means of System Display
or BIOS calls. When alarm/wake settings are to be made
in interrupt processing routines as scheduled by a
scheduler, however, there is no way but to define
alarm/wake information directly to the 7508 CPU for the

reason given in paragraph (6) in 8.6.

The 7588 subsystem is provided with the following four
functions (commands) associated with the alarm/wake
feature:

- ALARM (WAKE) SET

- ALARM (WAKE) READ

- ALARM (WAKE) ON

- ALARM (WAKE) OFF

See Chapter 11, "7508 CPU" for details on the above

functions and the interface to the 7508.

(

This section describes the procedure for defining the

alarm, wakel, and wake2 information directly to the 7508

CPU.

1) Alarm setting procedure

(1) Disable interrupts from the 7508.
LD A, (IER)
RES 0, A

OUT (4), A

2) Issue ALARM (WAKE) SET to the 7508 (to set the

alarm/wake time).

(

A

3) Set up the work areas.
- Load ALRMTP with O1H.
Load ALRMMSG (OF3FFH for overseas version and

0F174H for Japanese-language version) with an

alarm message in the following format:

41 bytes

| | R

'y

49 bytes
(Actual message text is
loaded here)

Message length (# - 4#) in binary.
that no message text is defined.
- Load ALRMST with @gg@H.

A @ indicates

(4) Issue ALARM (WAKE) ON to the 7588 (to

alarm/wake interrupt).

(5) Enables interrupts from the 7508.

LD A, (IER)

outT (4), A

Take steps (1) through (5) in sequence.

enable

2) Wakel setting procedure
(1) Take the same steps as in alarm setting procedure

except step 3):

(3) Set up the work areas.
- Load ALRMTP with 92H.
- Load ALRMMSG with a wake string in an
appropriate format (a control code is counted
as one byte).

- Load ALRMST with @0H.

3) Wake2 setting procedure
(1) Take the same steps as in alarm setting procedure

except step 3):

(3) Set up the work areas.
- Load ALRMTP with @3H.
- Load ALRMAD with the address of the processing
routine to be executed when a wake interrupt
occurs.,

- Load ALRMST with @8H.

8.8 Relationship to BIOS

Normal alarm processing displays an alarm message
immediately when an alarm interrupt occurs.

When displaying the alarm/wake message, it uses the speaker
and screen which are controlled by the slave CPU (63f1).
The slave CPU does many I/0 operations in addition to
alarm/wake operation. If an alarm/wake interrupt occurs
while the slave CPU is performing an I/0O operation and the
associated interrupt processing routine attempts to use

the slave CPU, the alarm/wake operation overlaps the

executing operation, causing a system hang-up.

The MAPLE takes the following measure to solve this
problem:

Since the slave CPU runs only when BIOS is performing an
I/0 operation, the BIOS preprocessing routine sets a
flag on and the BIOS postprocessing routine resets that
flag. During the time this flag is on, the alarm/wake
interrupt processing routine displays no alarm message
when an alarm/wake interrupt occurs. It does nothing
but flags to indicate that an interrupt has occurred.
The BIOS postprocessing routine examines this flag to

see whether an alarm/wake interrupt has occurred and

displays an alarm/wake message if the flag is on., The
BIOS preprocessing and postprocessing routines are

called PREBIOS and PSTBIOS, respectively.

The flag indicating whether the alarm/wake message

is to be displayed or not is stored in the YALMDS work
area. The flag indicating that an alarm/wake interrupt
has occurred while the display of the alarm/wake message

is disabled is stored in the YALMST work area.

The figure on the next page shows the relationship
between PREBIOS, PSTBIOS, and BIOS, and the relationship

of YALMDS and YALMST to BIOS.

PREBIOS Set YAIMDS
bit 7 to on

i

BIOS Alarm/wake interrupt
as
viewed ‘
from | 1 __ | o L
the BIOS BIOS [1
processing : [
user |
|
| YALMST .
\ | YALMDS :
4] |
l b
[| ¢
Set YALMDS N :
YALMDS = @@H
bit 7 to off : op ¥
! Y H
| L
Y I | pispl 1 b
YAIMST = ggH || oob-ey atam .
message .
‘ 1
N I hy
| .
Set YALMST [H
PSTBIOS bit 7 to off R
Same '
cessi
N pro ing
YALMST = @@H
Display alarm
message
_____ Y Y L ___
8-30
B

8.9 Method of Inhibiting Alarm Message Display from

Application Program

Some application programs may not want the alarm message
to be displayed during execution of some specific
operations. The alarm operation can be disabled by
executing the DI instruction or by inhibiting interrupts
from the 7508 CPU. These measures, however, will also
inhibit other interrupts (e.g., keyboard and power
switch off interrupts). To avoid this, the application
program can and must perform the same operations as

PREBIOS and PSTBIOS do as explained in 8.8.

Display of the alarm message can be disabled using the
YALMDS work area. As explained on page 8-18, YALMDS
specifies what mode inhibits the alarm/wake interrupt.
Bit 0 of YALMDS is reserved for application programs.
The procedure on the next page shows how to inhibit

alarm/wake operation from the application program.

When an alarm/wake interrupt occurs while alarm message
display is disabled (YALMST contains a nonzero value),
set only YALMST bit 7 to on (to make the system believe
that the interrupt occurred during BIOS processing) and
make a dummy call to BIOS. PSTBIOS will then check

YALMST bit 7 and display an alarm message.

Set YAIMDS
bit @ to on

Display of alarm message
due to alarm/wake
interrupt is disabled

]
I
]
!
|
1
|
|
{
|
during this interval. :
|
|
{
|
{

Set YALMDS
bit P to off

Set YAIMST to ,
8fH (set only //
bit 7 to on Y |
and others to /

of f). 4 PREBIOS

Output ESC l
and " (”"
through BIOS BIOS CONOUT
CONOUT l

\ Di 1
. PSTBIOS isplay alarm
\ message

N
\

The BIOS CONOUT function only passes ESC and "(" ,but no

operation results.

8.10 How to Disable System Display Function for

Displaying Alarm/Wake Message

When an application program, e.g., scheduler, controls
alarm/wake function, malfunctions will result if
alarm/wake is set or reset from System Display. To avoid
this, the MAPLE 0OS provides a work area for inhibiting
the control of the alarm/wake functions through the

System Display.

ALRMDS: Overseas version = (OFU6BH
Japanese-language version = 0ED6CH
= Q0H enables the control of the alarm/wake
functions through the system display function.
X 00H disables the control of the alarm/wake

functions through the system display function.

ALRMDS derfaults to 00H.

ALRMDS is set to 00H by a system initialize.

8.11 Precautions on the Use of the Alarm/Wake Functions

(1) An alarm/wake interrupts are deferred up to 10 seconds

in the power-off state. This is because the system checks

the alarm/wake time only once every 10 seconds when the

MAPLE is in the power-off state.

(2) Since display of the alarm message is inhibited

while an BIOS operation is in progress as explained in

8.8, display of the alarm message will be put off

accordingly. This should normally be negligible;

however, it will be in the order of seconds if the MCT

is running.

(3) The Overseas Version B allows the user to change

the interval during which the alarm message is displayed

(default is 50 seconds) in the range from 1 to 255

seconds.

ALRMPROD (0OF2F9H): Load a number from 1-255. Do not
specify 0 because the value 0 is interpreted as 0

second or 256 seconds.

