dBASE II

Assembly Language

Relational vatavase management System

REFERENCE MANUAL

4.0

5.0
0.0
7.0
8.0

9.0

CONTENTS
USing ABASE.cessescsssssscscnsscscssscccnscscel
System Requiremsnts.r..,...,.................4
ABASE FileS.c.cceceesecccssscccscaccspocscsced

Database FileS..ciccoeeccscsccocccased
Memory FileS..eeesseessceccacacsscsssd
Command Fil€S.ececosescosevecssaosaasl
Report Form FileS..cccecccsvansasaess?
Text Output FileS...eeeececccccccosaslB
Index FileS..ececccecceconnnscscscseed
Format FileS..ecoeseccscscscscccsvoeoed

u:wwwu:wt_a-‘
. .
NV EWN -

'Y

EXPressionS..ccccecccscoscessanscasccssssscecnsd

4.1 FunctionS.ceeees-eccccescccccssccessll
4.2 0OperationS....ceceesessscssccasssessld

Macro Substitution.cecescccisccccescsscnccsssly
Interfacing with Non-dBASE Processors......20
Classes Of ComMANdS.ceevevcocasedoscccsssqoell
Full Soreen Operations..c.csssseecsescoscsse2l
COMMANGS .« eceecvassenssoccssssscstoaanssseesd

9.1 Symbol Definitions...ceesessesoscesss
9.2 Rules of Commands....ecccececcccvoscss

Appendices
A) Command File EXample....ccecceseeessllib
B) List of CommBnds.....cceveecsecssss153
C) Limitations nnd‘COnatraints......;.156
D) Error ,Hessasqa..,..................157

1.0 USING dBASE

To execute the dBASE program, place the dBASE distribution
diskette (or preferably, 'a copy of that diskette) into any
available disk drive. Set that drive to be the default drive
(e.g. if the disk is placed into the "B® drive, type in "B:®
followed by a carriage return) and tnen type in the following
line:

DBASE

The program will tnen be loaded into memory, and wiil start
.execution with a date request:

£ENTER DATE AS MM/Du/YY OR RETURN FOR NONE:

This date will be posted-on any database that is altered during
the foilowing run and will also be printed in REPORT headings for
any report generated in that run. The date is checked for
calendar accuracy. WARNING: The calendar check is not valid for
February 29 in the years 1900 and 2100. A slash or any speciai
character (except a period) may be used to deiimit the numbers.

Examples of valid dates:

1,1,81
0z 02 82
3/17/83

Then the sign-on message is displayed:

‘##% 4BASE 11 VER Z.xxx®e#

The period on the second 1ine is the dEBASE prompt, indicating
that dBASE is ready to accept commands. Commands to dbASE are
&eénerally -imperative sentences: a verb possibly toliowed by
phrases -that give further direction about the action to be taken.
dBASE scans each line completeliy before executing any part of it.
;r dBASE detects an error in the command then the user .is
notified via error messages on the console. Generali.y, the user:
may correct the erroneous command and re-issue rather than re-
enter the entire command. When dBASE detects an error that it
can't describe explicitly, it assumes that the error is a syntax
error and displays the erroneous iine with a question mark at the
beginning of the phrase that caused the confusion.

Error recovery examples:

. DISPRAY . K MEMORY

##8 UNKNOWN .COMMAND
DISPRAY MEMORY :
CORRECT AND RETRY? Y
CHANGE FROM :PR
CHANGE TO TPL
DISPLAY MEMORY

MORE CORRECTIONS? (cr)

. STORE (2+2 T0 X .
sas SYNTAX ERROR ###
.
STORE (2+2 TO X :
CORRECT AND RETRY? X
CHANGE FROM :42
CHANGE TO :+42)
STORE (2+2) TO X
MORE CORRECTIONS? N
Y

. SlM TO X

NO EXPRESSION TO SUM
. SUM TO X '

CORRECT AND RETRY? N

erroneous command- echoed
Yes, correct

change the letters PR
to PL

after the change

return = no mord changes

the string (2+2 is indjcated

N(o) more changes
the ‘result

© explanation

no.cnange, abor: this command

The program can also be executed in the following manner:

DBASE <f11ename?'

This will load dEASE into memory, access & command file
<filename>, and begin immediate gxeéution of that command file.
-This form is egpecially useful- when using dBASE in a SUBMIT file
or -when using the chaining option of the dBASE QUIT command.

. CONTROL CHARACTERS

ctl-P - Toggles print switch (see also SET PRINT command)

cti-U - Deletes curfent-line

etl-X. =~ Deletes current line (except in full screen edit)

Rubdut - Deletes last character entered

ctI-H (qr}backspaée) - Deietes the 1as§_éharacter entered

- Escapes from certain-possibiy iong-running commands.
I.e. DISPLAY, COUNT, DELETE, INPUT, LIST, LUCATE,
RECALL, REPLACE, SKIP, and SUM. Aliso ESC serves as an
escape from ACCEPT, 1INPUT, REPORI (dialogue), and
WAIT. In ali cases, ESC returns control to the
interactive monitor and dispiays a dot prompt.

When in a command file execution, dBASE checks for an
ESC character before starting every command iine.

NOTE: This escape capability can be disabled by the
SET ESCAPE OFF coummand. . i '

2.0 SYSTEM REQUIREMENTS

In order for dBASE to operate properly, a system with the
following attributes should be made available.

a)

b)

¢

~

d)

e)

f)

8060 or 2-60 based microprocessor system;

48K bytes (or more) of memory including CP/M

(4BASE uses memory up to A400 hex). Note: on some
machines, including Apple, Heath, and Northstar, more
than 48K is required because of an ove ‘ized CP/M moduie;
CP/M operating system (version 1.4 or 2.2

One or more mass storage devices operating wnder CP/M
(usually floppy or rigid disk drives);

A cursor addressable CRT device (preferabiy a 24 line by
80 column CRT) if full screen operations are to 3 used;

Optional text printer (for some commands).

5.0 dbASE FILES

Bisically, a file is a collection of information residing on a
mass storage -device that contains the user's data. The
information can be stored to or -retrieved from the file. Filey
can be grouped into six types, each one either concerned with a
particuiar operation of or created by dBASE.

All dBASE files are standard CP/M files with a name field of
eight characters and a file type of three characters. Listed
below are the default fiie types used by UBASE. For each command
that accesses a file, the type field may be left off and dBASL
'will assume the default type for that command. For instance, if a
database file already has DBF as its type, then ‘it need not be
specified in any of the fiie manipulation commands.

' DATABASE FILES - DBF
MEMORY FILES - MEM
COMMAND FILES - MY

REPORT FORM FILES - .FRM
TEXT OUTPUT FILES - .TXT
INDEX FILES - NDX
FORMAT FILLS - JFMT

Any legitimate CP/M filename may be used to rerer to dBASE ﬁlea-
Remember, if, during an access of any file, the type is not
supplied by the user, dBASE wiil assume the above file types..
For further information regarding the use ‘of filenames and types
refer to the Digital Kesearch publication "CP/M User's Guide".

3.1 DATABASE FILES (.DEF)

Databases are what dbASE is all about. dbASE's database files
consist of a structure record and zero to 65535 data records. The
structure record is essentialiy a map of the data record format.
The structure can contain up to thirty-two different entries.
Each entry in the structure refers to a field of data in the data
records. The structure holds the foliowing data:

® The nage of the data tieids

® The type of data within data fields-

® The size of the data fields

® The position of the data within records

DATA FLELD NAmE - Tue name may be up.tc 10 characters iong. In
all operations during a dBASE run the dati fieids wiii be
referenced by this name. Field names are hiphanunerw (plus
coions) by nature. However, fieids must begin with a ietter and,
£olons must be embedded in the name. Some -examp.es foliow.

The SAVE command wilL write all current memory variables to a
memory file; and the RESTORE command will read a aaved memory
file back into the meumory variables.

3.3 COMMAND FILES (.CMD)

A command file contains a sequence of dBASE command statements.
This provides the user with a method of saving a set of
frequently used command sequences which then- allows one to more
easily manipulate database files.

Command filies may be created and modified by text editors and/or
word processors, although dBASE now has the capability to
create/edit command files itself with the MODIFY COMMAND. Command
files are started by the DO command. Command files may contain
any dBASE commands, however, one shouid be careful since some of
the commands (CREATE, INSBRT, APPEND (from the keyboard)) require
user inputs beyond the command file contents.

Command files may be nested, i.e. command files may contain DO
commands 'which are then executed. Again, care should be
éxercised in that, JdBASE allows, at most, 16 files to be open at
any given time. Therefore, if there is a file in USE, oniy 15
command files may be nested. Certain commands also use .work files
(e.g. SORT uses 2 addl.t.ional’_fues; REPORT, INSERT, COPY, SAVE,
RESTORE, and PACK us:s one additional file). For instance, if a
SORT commarid is issued from the lowest command file in a nest,
then only 13 levels of command file could be used (i.e. the USE
file, 2 SORT work files and 13 command files = 16). Whenever a
command file issues ‘the RETURN command or whenever the end-of-
file is encountered on a command file, “he command file is closed
and its resources are available for other commands.

3.4 REPORT FORM FILES (.FRM)

The REPORT command either generates a form file or uses an
existing foru file. The form file contains instructions to the

report generator on titles, headings, totaling, and column

contents. Form files are constructed by dBASE as part of the
REPORT dialog. They can be modified by text editors or word
processors, however, it is usually easier to define a new report
form from the start.

Examples of data field names:

A

A12345678Y

ABC:DEF -

AsB:C:D:E

ABCD: invaiid, colon not embedded
ABC,DEF invalid, comma is illegal

DATA TYPE - dBASE allows three types of data to be used to
specify the contents of the data fields. They are: character
strings ('ABCD'), numeric quantities (2 or 5%18), and logicais
(true/false).

FIELD SJZE - This is the number of character positions (width)
needed to contain the data that will be placed into this field.
Character string fields and numeric f'ields may be from ‘1 to <5u.
positions in length. The count for a numeric field shouid include
the decimal point. Logicali fields are aiways one poaition in
length. Also, for numeric fields, the number of positions to the
right of the decimal point may also be contained in the
structure.

Once the structure has been defined, the user can enter data
values into the fields for as many records as are desired.
Usually, there is only one structured data file available to the
user at any given time (this is referred to as the USE file or
the file in USE). There is however, a way to use two databases at
one time. See the commands SELECT and JOIN.

3.2 MEMORY FILES (.MEM)

Memory files are static files of memory which are divided into
variables similar to record variables. Tnese variables are known
as memory variables and are limited to o4 in number.

The values of memory variables are independent of the database -in
yse. That is, the record position cof the~file in USE has no
boaring on the variables in the memory fiie. Memory variables are
used to contain constants, results of computations, and symboliic
substitution strings (See Section 5), etc. The rules of naming,
typing, and sizing of memory variables are identical to those of
the field variables described above.

3.5 TEXT OUTPUT FILE (.TXT)

The text output files are created when the "SET ALTERNATE TO
<filename>" and "SET ALTERNATE ON" commands have been specified.
See SET .command for more details. Also, the COPY and APPEND
commands assume a text (.IXT) file whenever the SDF (Syatem Data
Format) or DELIMITED options are used.

3.6 INDEX FILES (.NDX)

Index files are generated by the INDEX command of dBASE. They
contain keys and pointers to records of a database file. Indexing
is a dBASE technique that gives rapid location of data in a large
database. See the INDEX command for more information.

8.7 FORMAT FILES (.FMT)

A format file contains ohly "@" statements and "*" comments. It
is identified by the "SET FORMAT TO <filenameX command and is
activated by subsequent READ commands. Like command riles (which
format files resemble), format files are created and modified by
any good text processor or the MODIFY COMMAND capability. Format
files are not, however, nesessary. “€%'s and "#"'s statements are .
.sually built into the command file that needs them.

4.0 EXPRESSIONS

An expression in JBASE is a group of simple items and operators
that can be evaluated to form a new simple value. For examplé€
n2,2" {s an expression that can be evaluated to the value "“i=.
Expressions are not necessarily always numeric in nature. The
expression ‘'apc'+'def'! can be evaluated to the value ‘'abcdef’
(character string concatenation), or the expression 1>2 can be
evaluated to the logical (Boolean) vaiue of ".F." (false).

Expressions in dBASE are formed from the following components:

patabase field variables

®- Memory variables

% Constants within the commands (literals)
® Functions

® (Operations

VARIABLES - A variable in dBASE is any data field whose value may
change. The field names of the currently referenced record in 2
dBASE file are variables. Their contents may be changed by moving
the file pointer or by editing the current record. Variablesare
also created and changed by the commands, STORE, RESTORE, COUNT,
SUM, WAIT, ACCEPT, or INPUT. These are called memory variables.

A variable may be one of three types:

* Character strings
® Numeric quantities
* Logicals

CONSTANTS - A constant (or literal) is a data item which has an-
invariant, self-defined value. For instance, 1, 'abe’, and .T.
are constants which have a constant value regardless of the
position of the database or any memory variable commands. They
are literals since they ARE the value they represent - (as opposed
to variables which are names representing a value). The values
they represent are, respectively: a numeric one, a character
string (containing the letters "a", np*, and "c"), and a logical
(Boolean) value of TRUE (".T.").

Cnaracter string constants must be enclosed in single quotes ('),
double quotes ("), or in square brackets (i,i). If a character
string contains one of these "delimiters", then it shouid be
enclosed in a pair-of ong of the other ones. For example the
strings 'abc(def jghi' and (abc'def'ghi] are valid character
strings while 'abc'def'ghi' is not.

Logical constants (true/false) are represented by "T", "t%, "Y",
9r "y" for true values (denoting true or yes) and "F", "f", "N",
or "n" for false values (denoting false or no). '

4.1 FUNCTIONS

Funstions are special purpose operations that may be used in
expressions to perform things that are difficult or impossible
using regular expressions. In dBASE, there are three basic types
.of functions: numeric, character, and logical. The function type
is based on the type of value that functions generate.

INTEGER FUNCTION:

INT(<numeric expression>)

This. function evaluates a numeric expression and discards the
fractional part (if any) to yield an integer value. The value of
the INT function is. the truncated value of the numeric expression
within.

Examples:

. 7 INT(123.456)
123 ,
« STORE 123.456 TO X
123.456
. 2 INT(X)
123

RECORD NUMBER FUNCTION:

L

The vaiue of the record number function is the integer
corresponding to the current record number.

Examples:
7

] (assuming that a database is in USE and is positioned at
‘Tecord number 4)

STRING FUNCTION:

STR(<numeric exprbsaion),{length>,i<dec1ﬁals>])

This function cvaluates a numeric expression and yields a
character string. The value of the STR function is a character
string of length <length>. If <decimals> is specified, it is the
number of digits to the right of the decimal point. All
specifiers may be literals, variables, or expressions.

CAUTION: When this function is used to generate a key for
indexing, the specifiers MUST be literals.

Example:

. 7 STR(123.45639,3)
123.456

SUBSTRING FUNCTION:

L2

$(<char expresaion),<start>,<1eng@h>)

This function forms a character string from the specified part of
another string. The value of the substring function is a
character string of length {length> filled with characters from
the character expression starting with character number {start>
for <length> characters. <start> and <length> may be literals,
variables or expressions.

If <length> is longer thana the <char expression or if bdbetween
the <length> and (start> the <char expression> "runs out®, of
characters, then the result will be only those characters that
are there. See the following examples.

CAUTION: When the function is used to generate 2 '« ter
indexing, the specifiers MUST be literals.

Examples:

] 3('abcdef3h1',3,3)
cde
. store 3 tom

3
. store 3 ton

3

. 7 $('abcdefghi’,m,n)
cde :

? $('abcdefgh1',6,7)

fghi

DISPLAY FOR !8080°$TITLE

.

1"

STRING TO NUMERIC FUNCTION:
'VAL(<char string))

This function forms an integer from a character strihg made of
digits, signs, and up to one decimal point. The length of-the
integer is equal to the number of characters in the string. If
the character string begins with numeric characters but has non
numeric characters, then the value generated by the VAL function
is the leading numeric characters.

Another way to convert character numbers into numerics is the use
the "&" (see 5.0 Macros). The "&" will convert the string into a
numeric (including - the decimal) when the substitution is
encountered.

Examples:

« 7 VAL('123')

123
- 7 VAL("123xxx')

123
+ ? VAL('123.456)

123

. STORE '123.456' TO NuM
123.456
« 7 1% + &NUM

137.456

LENGTH FUNCTION:

LEN(<char string>,

This function yields an integer whose value is the number of
characters in the named string.

Example:
+ STORE ‘abc! TO STRING

- ? LEN(STRING)
3

12

DELETED RECORD FUNCTION:

This 1s a logical function which is .TRUE. if the current'record
has been marked for deletion, and .FALSE. otherwise.

Example:
.7 ®
.T. (assuming that a database ia in USE and that ig;
current recocd has been deleted using the DELETE
command)

END-OF-FILE FUNCTION:

EOF

This is a logical function which is .TRUE. if the end of file has
been reached for the file in USE (the current record will be the
1ast record in the database).

Sxamples:

. 7 EOF .

.F. {assuming that a database 1is in USE and is not
positioned at the last record)

. GOTO BOTTOM

. 7 EOF

.F.

. SKIP

. 7 EOF

.T.

SUBSTRING SEARCH FUNCTION:

e e ———

@(<char st-ing 1>,<char string >)

This function yieids an integer W“hose value is the character
number in <char string 2> which begins a substring identical to
<char string 1>. If string 1 does not occur in string 2-then the
® function will be of value zero. Note: the @ function i3 similas
to the substring operator "$" except that Lt tells where the
first string is found in the second string, and can well de
pronounced "where is string 1 AT in string 2".

Zxample-

7 #('der','abcdefghi’)
u

UPPER CASE FUNCTION
{{<char string expression))

This function yields the same acbing as the character string

expression except that all lower case characters are converted to
upper case.

Example:

. 7 1(*abe*)
ABC

NUHBEB TO CHARACTER FUNCTION
CHR(<numeric expression>)

:This function yields the ASClI character equivalent of the
numeric e;pression. That is, if the expression were the number
13, then CHR(13) generates a carriage return ASClI character.
This function is useful when the user needs to send direcc
-controls to harnwara aevices, moa: olten printers.

Example:

«- 7 'abed'+CHR(13)«" '
abed

DATE FUNCTION

DATE()

This function will generate a character string that contains the

system date in the format MM/DD/YY. The charactar
string always has a length of 8. Nothing goes Detween
the parenthesis, they only indicate a funccion (to
avolid problems with varxables named "DATE".)

The dBASE system date .can be entered at ‘dBASE s:;rt -up
time or at anytime uslng the SET DATE TO command.

Examples:

« 7 DATE()

08/15/81)

. STORE DATE() TO MEMVAR
0o/ 15781

« SET DATE TO 4 1 ¥2

. ? DATE()

04/01/82

.REV A.14

FILE FUNCTION
FILE(<string exp>)

“This is a logical function which is .TRUE. if the <string exp>
exists and is .FALSE. if it does not.

ﬁxample:
«? FILE('TRACE')
.T.
.USE TRACE
TYPE FUNCTION
TYPE(<exp>)
This function yields a one-character string that contains a ‘C',
'N', or 'L' if the <exp> is of type Character, Numeric, or
Logical respectively.
Example:
. STORE 1 TO X
« 7 TYPE(X)
N
TRIM FUNCTION
TRIM(<cstring>)
The TRIM function removes trailing blanks from a field. Usually
dBASE carries trailing blanks on all variables to avoid column

alignment problems on displays.

NOTE: This function must NOT be used in the INDEX command as the
key length must be computable for internal.dBASE usage.

Examples;

. STORE 'ABC ' T0 S
. 7 LEN(S)
€

. STORE TRIM(S) TO S
- 7 LEN(S)
3

4.2 OPERATIONS

There are four basic types of operations, arithmetic, comparison,
logical and string. The specific.operators in each class are
1isted below, and examples follow for the less familiar ones.

It is important to know that both nsides" of the operators must
be the same type. That is, one may only add integers to integers
or concatenate characters with characters, adding an integer to a
character results in dBASE seeing a syntax error.

. STORE 3 TO A
3
. STORE '3' TO B
3
. 7 MB

#%4% SYNTAX ERROR *8#%
?
? A+B
CORRECT AND RETRY(Y/N)?

This error occurs because numerics and characters are seen
differently at the machine level; a numeric 3 is just that--3
hex, while a character 3 has the ASCII value of 33 hex. The
program becomes confused, it does not know whether or not an
addition is taking place or a concatenation. Using the same
variables as in the previous example:

. 7 A+VAL(B)
6

The string '3’ has been converted to an integer and the addifion
perforuwed.

ARITHMETIC OPERATORS (generate arithmetic results)

+ = addition
- = subtraction
= multiplication
/ = division
() = parentheses for grouping
Examples:
. 2 (4e2)%3 An example of use of
18 arithmetic parentheses
. 7 4 (293) used for grouping
10 in calculations

16

COMPARISON OPERATORS (generate logical results)

< = less than
> = greater than
= = equal
= not equal
{z = less than or equal
>z = greater than or equal
4 = substring operator (e.g. if A and B are
character strings, A$B will
be TRUE if and only if
string A is equal to B, or
is contained in B
Examples:
. 7 'abc'$'abedefghi’ An example of the $
.T. substring operator
. 7 'abcd'$'ghijkl’
.F.
. DISPLAY FOR '8080'$TITLE Results in all records with

'8080' somewhere in the field
TITLE being displayed on the
screen

LOGICAL OPERATORS (generate logical results)

.OR. = boolean or
.AND. = boolean and
.NOT. = boolean not (unary operator)

Examples:

. store t to a
.T.
. Store f to b
.F.
. 7a .0or. b
.T.
. store .not. b to ¢
.T.
7 a .and. ¢
.T.

STRING OPERATORS (generates string result)

+ = string concatenation
- = string concatenation with blank squash

Examples:

. STORE 'ABCD 'TO A
ABCD
. STORE 'EFGH' TO B
EFGH
. 2 MB
ABCD EFGH
. STORE 'ABCDE ' TO A
ABCDE

-, STORE '123% 67' T0 B
1234 67
. 7A-B

* ABCDE1234 67

ORDER OF EXECUTION

In a string concatenation
the two strings are just
appended to each other.

In a string concatenation
with blank squash, the trail-
ing blanks are moved to the’
end of the string. Leading and

embeded blanks are not

altered.

W
The sets of operators for the arithmetic, string and logical have
an order in which they are satisfied. That is, what operation is

done before what other operations.

The following table indicates

the order of pretedence for each of the three major operator
classes. In each of the "levels®" (1, 2, etc.) the order of

execution is left-to-right.

Example:

. 7 B2e3
10

Arithmetic operator | String operator | Logicil
precedence | precedence
| |
1) parenthesis, | _ parenthesis, | .NOT.
functions | functions I
I |
2) unary +,- | relations, $(sudstring op) | .AND.
| |
3) %0,/ | +,- (concatenation) | .OR.
: | I
4) * - | |
| I
| |

5) relations

18

5.0 MACRO SUBSTITUTION

Whenever an ampersand (%) followed by the name of a character
string memory variable is encountered in a command, dBASE
replaces the & and memory variable name with the memory
variable's character string. This allows the user to define some
parts of a command once and call it out any number of times in
various commands.

Macros are useful when complex expressions must be frequently
used. They also allow parameter passing within command file
nests. All characters between the ampersand and the next special
character (including space) are taken as the memory variable
name . '

If the user desires to append characters to the symbolic
substitution, then the memory variable name should be terminated
with a period. The period will be removed like the ampersand at
substitution time.
If an ampersand is not followed by a valid memory variable name
then no expansion is attempted and the ampersand remains in the
command line.
Examples:

. ACCEPT "Enter data disk drive letter” to DR

'USE &DR:DATAFILE -(at execution time will be USE B:DATAFILE ir
wB" yas entered in response to the ACCEPT)

. STORE 'DELETE RECORD ' TO T
&T 5 (at execution time will be DELETE RECORD 5)

See lppondix A for further. examples.

\WV\\ m\'\,; (Cr \\,(va‘)ogﬁ, r{ H\AA \G‘L(/ahm\
Wn menory onomannd < chae. Shang .

19

©.0 INTERFACING WITH NON-dBASE PROCESSURS

dBASE can read data from files which were created by processors
other than dbASE (e.g. BASIC, FORTRAN, PASCAL) and can generate
f'iles which can be accepted by other proces:ors.

The APPEND command has the abiliity to read staidard ASZIY text
files (using the CP/M convention of a iine of text foilowed by a
carriage return and iine feed) by specifying the SDF (System vata
Format) option. Similarly, the COPY command generates standard
ASCII format files when the SDF option is used. Unless explicitiy
‘overridden, the file types of files created with tne SDF and
DELIMITED options will be .TXT.

Some processors and languages read and write files in z dsiimited
format. In this form all fields are separated by commas ana
character strings are enclosed in quotes. dbASE can APPEND and
COPY these files when the DELIMITED keyword is included in the
command. If the DELIMITED feature is used, SUF is assumed.

Since some processors use single quotes and some. use doubie
quotes to deiimit character strings, APPENL wiil accept either.
The COPY command normalliy generates single quotes bDut wili output
any character as defirned by the WITH phrase of the DELIMITED
clause. [t is strongiy recommended that only single and doubie
Qquotes be used.

A special case occurs when a "," is used in the WITH phrase for a
COPY. All trailing bianks in character strings and leading
blanks in numerics are trimmed. Also, character strings will not
be enclosed with quotes or any other character.
M

Exampies:

.USE <FILENAME>.DBF
.COPY TO <FILENAME>.TXT DELIMITED WITH "

.USE <FILENAME>.DBF
-APPEND FROM <FILENAME>.DAT SDF

20

7.0 CLASSES OF LOMMANDS

puring the normal use of dBASE, various commands are used in
combination to accomplish a particular task. Such groups are
shown below. Some dBASE commands are patterned after the

structured constructs that most "modern" computer languages use.

These commands are in the :CUMMAND. FILE class of commands. There
are some special rules that control ‘the use of these commands,
which are expounded upon in section Y.0.

CREATION OF FILES -~ the following commands create database files
and associated files:

CREATE -
COPY -
MODIFY -
REPORT -
SAVE -
INDEX -
REINDEX

JOIN -
TOTAL -

® % ® & X B ¥ B ¥

ADVITION OF DATA -

create new structured database f'iles

copy existing databases to create copies
alters database structures

create 'a report form filie

copy the memory variabies to mass storage
creates an index file

realigns an old index rilie

outputs ‘the JOIN of two databases
outputs a database of totalled records

the foliowing commands aad new data records to

databases:
* APPEND - add data at end of a file
®* CREATE - allows additiorn. of data at creation
* INSERT - insert data into a file
EDITING~ OF DATA - the foliowing commands edit the data within a
database:
CHANGE -~ edit coiumns of fieids
* BHOWSE - fuli screen window viewing and editing
* DELETE - marks records for deletion
*® EDIT - alter specific data fields in a database
* PACK - removes records marked for deietion
®* RECALL -~ erases mark for deietion
REPLACE - replaces data fieids with vaiues
* READ - replaces data from user defined full-screen
* UPUDATE - ailows batch updates of a database

21

DATA. DISPLAYING COMMANDS - the following commands display
selected data from a database:

POSITIONING

e.
BROWSE

COUNT

< displays user formated data on CRT or printer
- displays up to 19 records with as many fields

as will fit on the screen

- count the number of records that meet some

conditional expression

DISPLAY - displays records, fields, and expressions

READ

REPORT
SUM

?

- displays data and prompting information in
full-screen mode

- format and display a report of data

- compute and display the sum of an expression
over a group of database records

- displays an expression list

COMMANDS - the following commands position the

current record pointer to records as directed:

® CONTINUE- positions to next record witn conditiors

FILE MANIPULATING

FIND

GOTO
LOCATE
SKIP

database files:

- 8

APPEND

COPY

DELETE
Do

RENAME
SELECT
SORT

USE

specified in the LOCATE command

positions to record corresponding tc a key ‘on
indexed files

- position to a specific record

- find a record that fits a condition

- position forwards or backwards

COMMANDS - the following commands affect entire

append dBASE files or files in

Systeh Data Format (SDF)

copy .databases to other databases or SDF
files

delete files

specifies a command file frox which subsequent
commands are to be taken -

rename a file

switches between USE file

create a copy of a database which is sorted
on one of the data fields -
specifies the database file to be used for
all operations until ‘another USE is 1issued

22

MEMORY VARIABLE COMMANDS - the following commands manipulate the

memory variables:

ACCEPT
COUNT
DISPLAY
INPUT
RESTORE
SAVE
STORE
SUM

WAIT -

stores a char string into memory variables

" stores counts into memory variables

can display memory variables

stores eéxpressions into memory variables
retrieves sets of stored memory variables
save the memory variables to a file

stores expressions into memory variables
stores sums into memory variables

accepts a single keystroke into a memory
variable

COMMAND FILE COMMANDS - the - following commands assist in the
control and usage of command files:

®* ACCEPT

® CANCEL
* DO
*IF

®* ELSE

* ENDDO
* ENDIF
* INPUT

* LOOP

* MODIFY
COMMAND

* RETURN

* SET

* WALT

allows imput of character strings into
memory variables

cancels command file execution

causes command files to be executed and
allows structured loops in command files
allows conditional execution of commands
alternate path of command execution
within IF

terminator for DO WHILE command
terminator for IF command

allows input of expressions into memory
variables

skips to beginning of DO WHILE

allows editing of command files

ends a command file
sets dBASE control parameters
suspends command file processing

DEVICE CONTROLLING COMMANDS - the following commands control
peripheral devices i1ike printers. and CRT's:

® EJECT
& ERASE

ejects a page on the list device
clears the CRT

8.0 FULL SCREEN OPERATION

The following are cursor control keys for full screen operation:

ctl-E,A
ctl-X,F

ctl-S
etl<D

ctl-Y
ctl-G
RUBOUT

ctl-Q

When in EDIT:

ctl-U
ctl-R
ctl-C

ctli-W or
etl-0

Wnen in MODLIFY

ctl-N
ctl-T

ctl-C
ctl-R
ctl-W or
etiwd
etl-Q

Backs up to previous data field.
Advances to next data field.

Backs up one character in data field.
Advances one character in data field.

Clears out current field to blanks.

Switches (toggles) between overwrite and insert
modes.

Deletes character under .cursor.
Deletes character to left of cursor.

Aborts full screen and returns to normal dBASE

control. Changes to database variables are
abandoned.’)

Switches (toggles) the current record between
being marked for deletion and unmarked.

Writes current record back to disk and displays
previous record i.e. backs up a record.

Writes current record back to disk and displays
next record i.e. advances to next record.

Writes current record to disk and exits screen
edit mode. (ctl-0 is for Superbrain)

Moves all items down one to make room for an

insertion of a hew field.

Deletes the field where the cursor is and moves
all lower fields up.

Scrolls fields down.

Scrolls fields up.

Writes data to .the disk and resumes normal
operations. (ctl-0 is for Superbrain).

Exits without saving changes.

when in APPEND, CREATE, or INSERT:

cti-C or

ctl-R - Write current record to disk and proceed to next
record.

Carriage return when no changes have been made and cursor is in
initial position - terminate operation and

resume normal dBASE operations.

Wnhen in BROWSE:

ctl-U - Switches (toggles) the current record between
being marked for deletion and unmarked.

Gtl-R - Writes current reqord back to disk and displays
previous record i.e. backs up a record.

cti-C - Writes current record back to disk and displays
next record i.e. advances to next record.

ctl-Wor - Writes current record to disk and exits screen

ctl-0 edit mode. (ctl-0 is for Superbrain)

ctl-2 - Pans the window left one field.

ctl-B - Pans the window right one field.

