ClibPD

6.3 Keyboard

PX-8 BASIC also allows the keyboard to be handled as a sequential access in-
put device. When the keyboard is opened as a file, data input is assigned to vari-
ables using INPUT #, LINE INPUT # and INPUTS (X, <file no.>) instead
of the corresponding dedicated keyboard input statements. This makes it possi-
ble to use common routines for input of data from the keyboard, disk device
files and the RS-232C interface.

The device name used to OPEN the keyboard as a device file is “KYBD:".

(1) Statements o
Statements which can be used for input from the keyboard when it is han-

dled as a device file are as follows:

CLOSE, INPUT #, INPUTS$ (X, <file no.>),
LINE INPUT #, LOAD, OPEN “1”

(2) Errors _
A “Bad file descriptor” error will occur if an attempt is made to open the

keyboard in the “O” mode.

6-14

wavwlastio.com

1)

o

ol

™

CAGNANAR

alblylel

L

™

OO @

5

HOERHe

\idassrdds

igle

YH OB O

\o\s

!E(’

Appendix A ERROR CODES AND
ERROR MESSAGES

When an error occurs in a BASIC program, it is detected by the interpreter and
a message is printed. In most cases the error stops the program and will not
allow it to continue. BASIC will return to the direct mode and present the error
message. It will not always be obvious what exactly has caused the error. It may
be something as simple as a mistyped command which BASIC does not recog-
nise, an error of logic or any one of a series of programming faults. This appen-
dix is an attempt to help the user/programmer to find out what exactly he has
done wrong. It is not easy to cover each and every cause of an error, because
some errors are particular to the logic of a program and simply cannot be predict-
ed. However, many are due to definite reasons, and these are described below.

Each error has a code associated with it, which is useful for trapping errors and
also simulating them. See ERROR, ON..ERROR, ERR and ERL in Chapter
4 for details of their use. A list of errors in numerical order is given at the end
of this section. However, as the error is normally encountered as a message, the
details of each error are given in alphabetical order. The number at the left of
each error is the error code.

54 Bad file mode

A statement or function was used with a file of the wrong type.

Possible causes:

() An attempt was made to use PUT, GET or LOF with a sequential file.
(ii)) A non BASIC program file was specified in a LOAD command.

(iii) A file mode other than I, O, or R was specified in an OPEN statement.
(iv) An attempt was made to MERGE a file that was not saved in ASCII format.

64 Bad file descriptor

An illegal file name was specified in a LOAD, SAVE or KILL command or an
OPEN statement (for example, a file name with too many characters).

52 Bad file number

A statement or command references a file that has not been opened, or the file
number specified in an OPEN statement is outside of the range of file numbers
that was specified when BASIC was started.

Al

http://www.fastio.com/

(i) Transmission via the RS-232C interface was not enabled within a certain

period of time after an OPEN”QO” statement was executed with the DSR

send check set to ON by option “c” of the communications format specifi-

cation. |
(i) The STOP key was pressed while output to the RS-232C interface was be- |

ing deferred for some reason. |
(iii) The DSR or DCD line did not become high within a certain period of time

after an OPEN“]” statement was executed with the DSR receive check or

DCD check set to ON by option “c” of the communications format specifi-

cation.
(iv) The printer was not ready when output to the printer was attempted.

63 Bad record number

The record number specified in a PUT or GET statement was either zero or
greater than the maximum allowed.

i

d

17 Can’t continue

g

An attempt was made to resume execution of a program when continuation was
not possible.

t

Possible causes:

(i) Program execution was terminated due to an error.

(i) The program was modified while execution was suspended.

(iii) The STOP key was pressed during execution of an INPUT statement.
(iv) The program had not yet been executed.

l

68 Device unavailable

An attempt was made to access a drive which did not contain a floppy disk or

28 Communication buffer overflow the RS-232C interface was not available.

The receive buffer overflowed during receipt of data via the RS-232C interface.
This error is likely to occur when the speed with which receive processing is per-
formed is lower than that at which data is being received, but is unlikely if the
communication rate is set to 1200 bps or less.

66 Direct statement in file

datzle

RV

A program line without a line number was encountered during execution of a
LOAD or MERGE command, or an attempt was made to LOAD a data file
or machine language program.

OH e

25 Device fault
61 Disk full

The level of the signal on the DSR or DCD line became low during input from .
Either the disk directory or the disk itself has no space left.

the RS-232C interface after the DSR receive check or DCD check had been set
to ON (by option “c” of the communications format specification in the
OPEN“I” statement executed to open the interface).

ldala
U du

Apizielolslelole

76 Disk read error

An error occurred while data was being read from a disk device.
57 Device 1/0 error

An error occurred involving input or output to a peripheral device. 71 Disk write error

Possible causes: An error occurred while data was being written to a disk device.

(i) An I/0 error occurred during access to a*disk device. This is a fatal error;
that is, one from which the operating system cannot recover.

(ii) A parity error, overrun error or framing error occurred during input from
the RS-232C interface. In this case, the error condition will be reset if input
is continued, but there is no assurance that data received will be correct.

(iii) The printer power was off or a fault occurred when data was output to the
printer. :

69 Disk write protect

Possible causes:

(i) An attempt was made to write data to a disk which is protected by a write
protect tab.

(ii) An attempt was made to write data to a disk drive without executing the
RESET command after replacing the disk in that drive.

(iii) An attempt was made to write data to a ROM capsule.

‘r

24 Device time out

e

Possible causes:

DOOFTOAOOINNACOONDIARNANODOONNO @

A2 A3

ClibPD waww.lastio.com

http://www.fastio.com/

ClibPD

11 Division by zero
An operation was encountered which included division by zero.

Possible causes:

() Zero was used as a divisor possibly because a variable or expression was
zero at that point in the program.

(ii) Division was attempted using an undefined variable as a divisor.

16 Duplicate Definition

A variable array was defined more than once.

Possible causes:

(i) A second DIM statement was executed for an array without erasing that
array with an ERASE statement.

(ii) An undeclared array was used, then an attempt was made to re-dimension
that array with a DIM statement.

(iii) The OPTION BASE statement was executed more than once, or was ex-
ecuted after an array had already been dimensioned, either by a DIM state-
ment or implicitly by assignment of a value to a variable with a subscripted
name.

56 FIELD overflow

A FIELD statement attempted to allocate more bytes in a random file buffer
than were specified for that buffer when the file was opened.

58 File already exists

The new file name specified in a NAME statement is already being used with
another file on the disk.

55 File already open

An OPEN “O” statement was executed for*a file which was already open, or
a KILL command was executed for a file that was open.

53 File not found

The file name specified in a LOAD, KILL, NAME or OPEN statement does

not exist on the disk in the accessed drive.

26 FOR without NEXT

- A FOR statement was encountered without a corresponding NEXT.

A-4
wavwlastio.com

galisishisizipisisly

'y Uﬁ

Sl alay
(VY

STSTS

TOOAOHAARRNLCOOIAAETTTRHOCAOOH OO
™
RV

e

Y6 O

Ate

p.

12 Tllegal direct

A statement that is illegal in the direct mode (such as DEF FN) was entered
as a direct mode command.

5 IHegal function call
A statement or function was incorrectly specified.

Possible causes:

(i) Specification of a negative number or a number which is too large as an
array variable subscript.

(ii) Specification of zero or a negative number as the argument in the LOG
function.

(iii) Specification of a negative number as the argument of the SQR function.

(iv) Specification of a non-integer exponent with a negative mantissa.

(v) A call to a USR function for which the starting address has not yet been
defined.

(vi) An incorrectly specified argument in any of the following functions or
statements:
ALARM, ALARMS, ASC, CSRLIN, INP, INSTR, LEFTS$, LOCATE,
MIDS$, ON...GOSUB, ON...GOTO, OUT, PEEK, POKE, POWER,
PRESET, PSET, RIGHTS, SCREEN, SPACES, SPC, STRINGS, TAB,
VARPTR, WAIT, WIND.

(vii) Specification of a non-existent line number in a DELETE statement.

(viii) Attempting to erase a non-existent variable array with an ERASE statement.

(ix) Specification of a number other than 1 to 5 as the parameter of a LOGIN,
PCOPY or STAT statement.

(x) Execution of a RENUM command with parameters which do not conform
to the rules for specifying such commands.

(xi) Specification of an undefined array variable or a variable whose value has
not yet been defined in a SWAP statement.

(xii) Execution of the EDIT command when the virtual screen window was less
than 38 columns wide.

(xiii)Specification of a number other than 1 to 10 as the parameter of a KEY
command.

62 Input past end

Possible causes:

(i) An INPUT statement was executed for a file which was empty or one from
which all data had been read. To avoid this error, use the EOF function
to detect the end of the file.

A5

http://www.fastio.com/

| ClibPD

(ii) The STOP key was pressed while input from the RS-232C interface was
pending with INPUT #, INPUTS or a similar command.

51 Internal error

An internal malfunction occured in BASIC.,

23 Line buffer overflow

An attempt was made to input a line that contains too many characters.

22 Missing operand

Possible causes:

(i) An expression contains an operator without a following operand.

(ii) A required parameter is missing from the AUTO START or LOCATE
commands.

1 NEXT without FOR

A NEXT statement was encountered without a corresponding FOR statement.

Possible causes:

(i) Improperly nested FOR/NEXT loops or variables specified in the wrong
order in a common NEXT statement for loops that end at the same point.

(ii) The variable in a NEXT statement does not correspond to any previously
executed FOR statement variable.

(iii) More than one NEXT statement was specified for one FOR statement.

(iv) Execution branched to a point within a FOR/NEXT loop from elsewhere
in the program.

19 No RESUME

No RESUME statement was included in an error processing routine. All error
processing routines must conclude with an END or RESUME statement.

-

4 Out of DATA

A READ statement was executed when there was no unread data remaining in
the program’s DATA statements.

Possible causes:

(i) Insufficient number of data items in DATA statement(s).
(i}) Incorrect specification of a RESTORE statement.

(iii) Incorrect delimiting punctuation used in a DATA statement.

A-6

wavwlastio.com

gitilsl

grishial

P
v

JOGY

TYYOOOHOCIDH O

O
alainls
YY)

N4

YOO e
STTTT

O ¢
RELE
QLU

J

r
o

H OO H OO O

7 Out of memory
Memory available is insufficient for processing required.

Possible causes:

(i) Program is too long.

(ii) The program uses too many variables.

(iii) The subscript range specified in a DIM statement is too large.

(iv) An expression has too many levels of parentheses.

(v) FOR..NEXT loops or GOSUB...RETURN sequences are nested to too many
levels.

(vi) The stack area size or machine language area specified in a CLEAR state-
ment is too large.

(vii) Insufficient memory was available to allow a program to be copied with
the PCOPY statement.

14 Out of string space

Insufficient memory space is available for storage of characters in string variables.

6 Overflow

A numeric value was encountered whose magnitude exceeds the limits prescribed
by PX-8 BASIC. If underflow occurs, zero is assumed and execution continues
without error.

Possible causes:

(i) The result of an integer ca‘lculation was outside the range from -32768 to
32767.

(ii) The result of a single or double precision number calculation was outside
the range from 1.70141E38 to — 1.70141E38.

(iii) One of the operands of a logical operation was not in the range from — 32768
to 32767.

(iv) The argument specified for the CINT function or POINT statement was
outside the range from — 32768 to 32767.

(v) The argument specified for the HEX$ or OCT$ function was outside the
range from — 32768 to 65535.

(vi) The number specified as one of the parameters of the LOCATE or WIND
statements was outside the prescribed range.

26 RESUME without error

A RESUME statement was encountered outside an error processing routine.

A-7

http://www.fastio.com/

ClibPD

Possible causes:

(i) Transfer of execution to an error processing routine by a GOTO or GOSUB
statement.

(i) Lack of an END statement at the end of the main routine to keep execu-
tion from moving into an error processing routine.

3 RETURN without GOSUB

A RETURN statement was encountered which did not correspond to a previ-
ously executed GOSUB statement.

Possible causes:

(i) Execution was transferred to a subroutine by a GOTO statement.

(ii) The line number specified in a RUN command was a line in a subroutine.

(iii) No END statement was included following a main routine to keep execu-
tion from moving into a subroutine.

16 String formula too complex

The complexity of a string operation is too great.

15 String too long

An attempt was made to create a string whose length exceeds 255 characters.

9 Subscript out of range

The subscript specified in a statement referencing an array element is out51de
the range permitted for that array.

Possible causes: _

(i) Subscript specified was greater than the maximum specified in the DIM
statement defining that array.

(i) Wrong number of subscripts specified in a statement referencing an array
variable. .

(iii) A subscript greater than 10 was used without executing a DIM statement
to define that array.

(iv) Zero was used as a subscript after executing OPTION BASE 1.

2 Syntax error

A statement does not conform to the syntax rules of PX-8 BASIC.

Possible causes:
(i) A space was not left between a command and a parameter, e.g. LISTI10.
(ii) Incorrectly typed keywords.

A-8

wavwlastio.com

Nl
g &
i o
2
il o
g o
i
a0

" [a
~[q
e

g
-
J

PO OO OO O
SITTI:

AHRRS

€ ¢

€

(iii) Unmatched parentheses.

(iv) Wrong delimiting punctuation (commas, full stops, colons or semicolons)
used between statements, expressions or arguments.

(v) Variable name beginning with a character other than a letter.

(vi) Keyword used as the first letters of a variable name.

(vii) Wrong number or type of arguments specified in a function or statement.

(viii)Type of value included in a DATA statement did not match the correspond-
ing variable in the list of variables specified in a READ statement.

72 Tape access error

Possible causes:

(i) An attempt was made to access an access-inhibited microcassette file,

(ii) An attempt was made to mount a tape without executing the REMOVE
command to unmount the previous tape.

(iii) The REMOVE command was executed while the tape in the microcassette
drive was in the unmounted condition.

(iv) An attempt was made to change the setting of the tape counter while the
tape in the microcassette drive was in the mounted condition.

67 Too many files

An attempt was made to create a new disk file after all directory entries were full.

13 Type mismatch
A string expression was used where a numeric expression is required, or vice versa.

Possible causes:

(i) An attempt was made to assign a numeric value to a string variable.
(ii) An attempt was made to assign a string to a numeric variable.

(iii) The wrong type of value was specified as the argument of a function.
8 Undefined line number

A non-existent line number was specified in one of the following commands
or statements — EDIT, GOTO, GOSUB, RESTORE, RUN, RENUM — or when
attempting to delete a non-existent line by typing a number and pressing the
RETURN key.

18 Undefined user function

A call was made to an undefined user function.

Possible causes:

A-9

http://www.fastio.com/

lC\mPD

(i) The letters FN were used at the beginning of a variable name.

(ii) The function name was specified incorrectly in the DEF FN statement or
when the function was called.

(iii) The user function was called before the corresponding DEF FN statement
was executed.

21 Unprintable error

No error message has been assigned to the error condition which exists. This
message is also issued for error codes 27, 31-49, 56, 59, 60, 65 and 73-255, usually
due to execution of an ERROR statement specifying one of these codes.

30 WEND without WHILE

WEND statement was encountered without a corresponding WHILE.

29 WHILE without WEND
A WHILE statement was encountered without a corresponding WEND.

TABLE OF ERROR CODES AND ERROR MESSAGES

1 NEXT without FOR

2 Syntax error

3 RETURN without GOSUB
4 Out of DATA

5 Illegal function call

6 Overflow

7 Out of memory

8 Undefined line number

9 Subscript out of range *
10 Duplicate Definition
11 Division by zero
12 Illegal direct

13 Type mismatch

14 Out of string space

15 String too long

16 String formula too complex

A-10

wavwlastio.com

;

il

Ll

OB ARERAAOOOANH PP

e
‘5
-

17

Can’t continue

18

Undefined user function

19

No RESUME

i

20 RESUME without error
21 Unprintable error

22 Missing operand

23 Line buffer overflow

24 Device time out

25 Device fault

26 FOR without NEXT

28 Communication buffer overflow
29 WHILE without WEND
30 WEND without WHILE
50 FIELD overflow

51 Internal error

52 Bad file number

53 File not found

54 Bad file mode

55 File already open

57 Device 1/0 error

58 File already exists

61 Disk full

62 Input past end

63 Bad record number

64 Bad file descriptor

6 Direct statement in file
67 Too many files

68 Device unavailable

69 Disk write protect

70 Disk read error

71 Disk write error

72 Tape access error

Al

http://www.fastio.com/

hJC\mPD

Appendix B TABLE OF RESERVED
WORDS

ABS ERASE MENU RUN
ALARM ERL MERGE SAVE
ALARMS ERR MID$ SCREEN
AND ERROR MKD$ SGN
ASC EXP MKI$ SIN
ATN FIELD MKS$ SOUND
AUTO FILES MOD SPACE$
BEEP FIX MOUNT SPC
CALL FN NAME SQR
CDBL FOR NEW STAT
CHAIN FRE NEXT STEP
CHRS$ GET NOT STOP
CINT GO OCT$ STR$
CLEAR GOSUB OFF STRING$
CLOSE GOTO ON SUB
CLS HEX$ OPEN SWAP
COMMON IF OPTION SYSTEM
CONT IMP OR TAB °
COPY INKEY$ ouT TAN
COS INP PCOPY TAPCNT
CSNG INPUT PEEK THEN
CSRLIN INPUT # POINT TIME
CVD INPUT$ POKE TIME$
CVI INSTR POS TITLE
CVS INT POWER TO
DATA KEY PRESET TROFF
DATE KILL PRINT TRON
DATES$ LEFT$ PRINT # USING
DAY LEN PSET USR
DEF LET PUT VAL
DEFDBL LINE RANDOMIZE VARPTR
DEFINT LIST READ WAIT
DEFSNG LLIST REM WEND
DEFSTR LOAD REMOVE WHILE
DELETE LOC RENUM WIDTH
DIM LOCATE RESET WIND
DSKF LOF RESTORE WRITE
EDIT LOG RESUME WRITE #
ELSE LOGIN RETURN XOR
END LPOS RIGHTS
EOF LPRINT RND
EQV LSET RSET

B-1

wavwlastio.com

R

LUNE G NG AN O PR LR LRI |

‘{«

3,
3

pislpiaipipipiaiyisl

lals
Rig\s

ala
AN

1Y

!

Jlale

' O @

U u

e

i

3%%%%%;

Appendix C PX-8 BASIC CONSOLE

ESCAPE SEQUENCES

Whereas BASIC as a high level language has a large number of commands and
functions, it is also possible to print sequences of characters which will allow
further or additional commands which affect output to the screen. This appen-
dix deals with the use of these commands. Some of them are not additonal to
BASIC but duplicate BASIC commands in a way which can make programming
easier for advanced programmers in some circumstances.

The sequences involve the printing of the ESCAPE character, ASCII code 27
decimal (1B in hexadecimal), followed by one or more characters, the values of
which determine the command to be carried out. In the remainder of this ap-
pendix the ESCAPE character is denoted by the letters “ESC”. The User’s Manu-
al contains further information on using the sequences under CP/M or in
machine code programs. Not all the commands are supported in BASIC, for
example because they interact with the screen editor.

The following table lists the character sequences for the commands alphabeti-
cally to make them easy to find. Notes on the use of the commands and
parameters are given in numerical order following the table. The numerical values
are given in decimal notation in the table and headings.

Control Code| Function Control Code| Function
ESC ““%” | Access CGROM directly ESC 213 End locate
ESC 243 Arrow key code ESC 215 Find cursor
ESC 246 Buffer clear key ESC 177 Function key code returned
ESC ¢“C” | Character table ESC 176 Function key string returned
ESC 246 Clear keyboard buffer ESC 211 Function key display select
ESC ““*** | Clear screen ESC ““C” | International Character Sets
ESC 245 CTRL key code ESC 161 INS LED off
ESC 215 Cursor find ESC 160 INS LED on
ESC 243 Cursor key code ESC 242 Key repeat interval time
ESC “="" | Cursor position set ESC 240 Key repeat on/off
ESC 214 Cursor type select ESC 241 Key repeat start time
ESC “P” | Dump screen ESC 244 Key code scroll
ESC “T”’ | Erase to end of line ESC 247 Key shift set
ESC ““Y”” | Erase to end of screen ESC ““T”’ | Line erase
ESC 210 Display characters on real screen ESC 198 Line dot draw
ESC 208 Display mode set ESC 213 Locate end of screen
ESC 198 Dot line write ESC 212 Locate top of screen
C1

http://www.fastio.com/

ClibPD

Control Code] Function Control Code] Function
ESC 125 Non secret ESC 148 Scroll step
ESC 165 NUM LED off ESC 149 Scroll mode
ESC 164 NUM LED on ESC 144 Scroll up
ESC 199 PSET/PRESET ESC 151 Screen down n lines
ESC 242 Repeat interval time for keys ESC 150 Scroll up n lines
ESC 240 Repeat on/off for keys ESC 123 Secret mode
ESC 241 Repeat start time for keys ESC 125 Secret mode cancel
JESC “*” | Screen clear ESC 214 Select cursor type
ESC 209 Screen display select ESC 209 Select virtual screen
ESC ““P”” [Screen dump ESC 211 Select function key display
ESC 213 Screen window end ESC 247 Shift key set
ESC ““Y”’ | Screen erase ESC 163 CAPS LED off
ESC 212 Screen window top ESC 162 CAPS LED on
ESC 145 Scroll down ESC 212 Top locate
ESC 244 ‘Scroll key code ESC 224 User defined character

Use of the ESCAPE Code control sequences

wavwlastio.com

C2

ESC “070”

Reads the character corresponding to the specified code from the character gener-
ator ROM and displays it at the present cursor position in the currently selected
screen (in the virtual screen for modes 0, 1, and 2, and in the real screen for

mode 3). The sequence is as follows:
PRINT CHRS$(27); “%” ; CHR$(n)

The value of n is the ASCII code corresponding to the character to be displayed.

ESC [sk ”

Clears the currently selected screen and moves the cursor to the home position.

ESC “__

Moves the cursor to the specified position in the screen being written. In the
tracking mode, the screen window is moved so that the cursor is positioned at
screen centre if the position specified is outside the screen window. The track-
ing mode is turned on and off by pressing the SHIFT and SCRN keys together.

The sequence for moving the cursor is as follows:

PRINT CHR$(Q27); “ = ” ; CHR$(m +31); CHRS(n +31);

Here, m specifies the vertical cursor position and n specifies the horizontal po-
sition. The value of n should be greater than 1 and less than the screen width
in the particular screen mode being used. The value of m should be greater than

1 and less than the number of lines in the virtual screen.

The ESC “=" sequence duplicates the LOCATE command with its first two

parameters.

ESC “C” <character>

Used to select one of the nine international character sets as follows:

The <character > is a letter which corresponds to the character sets of one of
the following countries. It must be an uppercase character.

US ASCII
France
Germany
England
Denmark

PRINT CHR$(27); “CU”
PRINT CHR$(27); “CF”
PRINT CHRS(27); “CG”
PRINT CHR$(27); “CE”
PRINT CHR$(27); “CD”

C-3

http://www.fastio.com/

ClibPD

Sweden PRINT CHR$(27); “CW”
Italy PRINT CHR$(27); “CI”
Spain PRINT CHRS$(27); “CS”
Norway PRINT CHR$(27); “CN”

This code sequence is equivalent to the BASIC OPTION COUNTRY command.

ESC (‘P”

In modes 0, 1, and 2 this escape sequence outputs the contents of the screen
window currently being displayed to a printer in ASCII format. In mode 3 it
outputs the contents of the entire physical screen in bit image format. It dupli-
cates the COPY or screen dump function obtained by pressing the CTRL and

PF5 key.

ESC “T”

Clears the line currently containing the cursor from its present position to the
end of that logical line.

ESC “Y”

Clears the screen from the current position of the cursor to the end of the screen.

ESC CHR$(123)

Causes all characters to be displayed on the screen as blanks (the secret mode).
The secret mode is not active in the System Display.

WARNING:
You should make sure that a program returns the user to normal non-secret mode,

for example with an error handling routine. If the user is placed in immediate
mode and the secret mode is still active, it is impossible to know what is happen-
ing. Also the reset button on the left of the PX-8 must be pressed in order to
see any printed output except for the clock on the MENU screen and the System

Display.

ESC CHR$(125)

Terminates the secret mode.

ESC CHR$(144)

Scrolls (n— 1) lines up, starting at line (n+1) so that line (n+m — 1) becomes

C+4

wavwlastio.com

TN

PENEEN :
T —— -
QUL OLOUOU

RN I
it laleleiebslsbs
N BV EVEVIFTRTRY

<

el sl ctet

VOUOLY

'}

blank. This is done as follows:
PRINT CHRS$(27); CHR$(144) ; CHR$(n - 1) ; CHR$(m) ;
Numbers specified for n and m must satisfy all of the following conditions.

f=@m-1 =R~
1=mz=R
m-1+m-1) = R

Here, R is the number of virtual screen lines in mode 0, 1, or 2 and is the num-
ber of screen window lines in mode 3.
ESC CHR$(145)

Scrolls (n— 1) lines down starting at line n so that line n becomes blank. This
is done as follows:

PRINT CHR$(27);CHR$(145); CHR$(n-1); CHR$(m);
Numbers specified for n and m must satisfy all of the following conditions:
f<=m-1)=R-1

1=m=<R
m-1+m-1) < R

Here, R is the number of virtual screen lines in mode 0, 1, or 2 and is the num-
ber of screen window lines in mode 3.

ESC CHR$(148)

In modes 0, 1, and 2 this escape sequence sets the number of lines n which are
moved by one scrolling operation. The actual scrolling is carried out by printing
an ESC 150 sequence. The number of lines are set up using the following se-
quence:

PRINT CHR$(27); CHR$(148) ; CHRS$(n);

The number specified for n must be greater than 1 and less than the number
of lines in the screen window.

This escape sequence does nothing in mode 3.

ESC CHR$(149)

In modes 0, 1, and 2 this escape sequence determines whether scrolling is per-
formed automatically. The automatic scrolling mode is referred to as the track-

C-5

http://www.fastio.com/

e,
-
il o
ing mode, and the mode in which automatic scrolling is not performed is referred ~ ESC CHRS$(164)
to as the non-tracking mode. The tracking mode is used unless otherwise speci- "’ . . .
fied. The escape sequence for determining the tracking mode is as follows: s .-3 Lights the NUM LED, but does not select the numeric keypad.
PRINT CHRS$(27); CHR$(149) ; CHRS(< mode >); v ."J ESC CHRS$(165)
In this sequence, <mode> is specified as either 0 or 1. The tracking mode is " r; Turns off the NUM LED.
selec.te?d when 0 is specified, and the non-tracking mode is selected when 1 is i '—Q ESC CHRS$(176)
specified. - o)
*: r This ESC code is used to disable the string printed by a programmable function
ESC CHR$(150) - r3 key. Howevc?r, with input from the command line or from an INPUT statement
In modes 0, 1, and 2 this escape sequence displays the contents of the virtual T I) :xlllzbflz(i:fnvcvtli%:iéezui?ed to 'fh; no:lmal string printing mode of the program-
screen containing the cursor after moving the screen window up n lines where 2 2 tion keys have be er}; 're yo:; wis ltlo Eetermlne if any of the Program.mal?le fune-
n is the value specified by ESC CHR$(148), or 1 if ESC CHR$(148) has not = [Q INPUTS or with IIEK]SES;$, fe the S? CHR$.(1?6) mode in combination with
been executed. If scrolling the screen up n lines would move the screen window wrs r - An example of this is shown below.
beygnd the home posmon., thfa v'1rtual. screen is .d}spla:yed star.tmg at the home - [3 16 PRINT CHRS (S4H1E) 5 CHRS (SHE@) 5
positon. The cursor remains in its original position in the virtual screen. o~ B 20 PRINT HEX$(ASC(INFUTS(1)))3" »;
-) 0 GOTO 20 '
ESC CHRS$(151) o E‘b .
In modes 0, 1, and 2 this escape sequence displays the contents of the virtual 2 [j E® E1 EZ EZ E4 ES E6 E7 £8 E9
screen containing the cursor after moving the screen window down n lines, where <) bt } } } } } ‘ } f }
n is the value specified by ESC CHR$(148), or 1 if ESC CHR$(148) has not . [5 [Pr] (PE7(FFe) [Fra) (o)
been executed. If scrolling the screen down n lines would move the screen win- w I ESC CH
. . . . R
dow beyond the end of the virtual screen, the screen window is positioned so o kg $a77)
that the virtual screen’§ last I'ine is.d.isplayed.i'n th.e last lir}e of the screen win- -) Tl}is ESC code re-enables the programmable function keys so that a string is
dow. The cursor remains in its original position in the virtual screen. printed when they are pressed.
v
ESC CHRS$(169) o E - ESC CHR$(198)
Lights the INS LED. It does not put the user in the insert mode. - E‘ < In mode 3, this escape sequence draws a line on the graphic screen using the
- [Q dot pattern specified by the user. No operation is performed when this sequence
ESC CHR$(161) id EQ 1s executed in modes 0, 1, or 2. The elements of the sequence are as follows:
Turns off the INS LED.) i E: Byte I: CHRS$(27)
v Y Byte 2: CHR$(198)
ESC CHR$(162) o LQ Byte 3: High byte of horizontal starting position
. .. , Byte 4: Low byte of horizontal i iti
Lights the CAPS LED. It does not set the [{Atx| key to the on position. - L‘: X Zontal starting position
& LocK 4 P 'ILQ Byte 5: High byte of vertical starting position
ESC CHRS$(163) - Byte 6: qu byte of vertif:al starting position
- Byte 7: High byte of horizontal ending position
Turns off the CAPS LED. v % Byte 8: Low byte of horizontal ending position
l: Byte 9: High byte of vertical ending position
-
v C-6 \ Cc1
hPD WL lastio.com

http://www.fastio.com/

M

lIbPD

Byte 10: Low byte of vertical ending position
Byte 11: First byte of mask pattern

Byte 12: Second byte of mask pattern

Byte 13: Function

The starting and ending positions are specified as two-byte hexadecimal num-
bers which indicate coordinates in the graphic screen. For example, starting co-
ordinates of 400,20 (&H0190,&HO0014) would be specified as follows:

Byte 3: 1 (&HO1)
Byte 4: 144 (&H90)
Byte 5: 0 (&H00)
Byte 6: 20 (&H14)

The mask pattern used for drawing the line is specified in bit image format as
described in the explanation of the LINE statement in Chapter 4. Calculations
for diagonal lines are performed automatically. Function is specified as a num-
ber from 1 to 3 with the following meanings:

1: OFF
2: ON
3: Complement

Dot positions corresponding to “1” bits in the mask pattern are reset (turned
off) when 1 is specified for the function and are set (turned on) when 2 is speci-
fied. When 3 is specified, the complements of dots corresponding to “I” bits
are displayed (ON dots corresponding to “1” bits are turned off, and OFF dots
are turned on).

An example of specification of this sequence as follows draws a line from point
(400,18) of the screen to point (18,18):

PRINT CHRS$(27);CHR$(198); CHR$(1); CHR$(144); CHR$(9);
CHRS$(18); CHR$(#); CHR$(18); CHRS$(8); CHR$(18);
CHR$(&HAA); CHRS(&HA A);CHR$(2);

This command duplicates the LINE command of BASIC, but also allows the
dots to be inverted (i.e. switch them on if they are off and vice versa), which
LINE does not.

ESC CHR$(199)

This escape sequence sets or resets the specified points of the graphic screen.
No operation is performed if this sequence is executed in modes 0, 1, or 2. The
sequence consists of six bytes as follows:

C-8

wavwlastio.com

o4
L
=

|
VCLLULUVJ UL OUUU

IS

wr
a

s

vy

AN
v

A

-

AN

A

sloiuinlalelnlaiebebebelely

:
%wo&

stotel

ST

RS

s

N Y I I A A L L KA Y

Y.

gh!

L

Byte 1;
Byte 2:
Byte 3:
Byte 4:
Byte §:
Byte 6:

CHRS$(27)
CHR$(199)

Function code (1:PSET, 0: PRESET)

Vertical dot position — nl

High byte of horizontal dot position
Low byte of horizontal dot position

§=<nl=<630=<n2=<479

ESC CHR$(268)

Switches the display mode. Mode specification is as follows:

Mode 0

Byte 1:
Byte 2:
Byte 3:
Byte 4:
Byte 5:

Mode 2

Byte 1:
Byte 2:
Byte 3:
Byte 4:
Byte 5:
Byte 6:

nl
n2
m

p

CHRS$(27)
CHR$(208)
CHRS$(0)
CHRS$(nl)
CHR$(n2)

CHRS$(27)
CHR$(208)
CHRS$(Q2)
CHRS$(nl)
CHR$(n2)
CHRS$(p)

Mode 1

Byte 1:
Byte 2:
Byte 3:
Byte 4:

Mode 3
Byte 1:
Byte 2:
Byte 3:

The meanings of nl, n2, m, and p are as follows:

Numbers specified for nl and n2 must be in the following ranges:

CHR$(27)
CHR$(208)
CHRS$(1)
CHR$(n1)

CHRS$(27)
CHRS$(208)
CHR$(3)

Number of lines in virtual screen 1

Number of lines in virtual screen 2

Number of columns in virtual screen 1

ASCII code corresponding to desired boundary

character

http://www.fastio.com/

The following sequence selects screen mode 2, sets the number of lines in virtu-
al screen 1 to 10, the number of columns to 20 and “#” as the boundary
character.

PRINT CHRS$(27); CHR$(208) ; CHR$(2) ; CHR$(10) ; CHR$(28); “ # 7;

ESC CHR$(269)

In modes 0, 1, or 2 this escape sequence specifies which of the two virtual screens
is to be displayed. The operation is performed if this sequence is executed in
mode 3. This is done as follows:

PRINT CHR$(27) ; CHR$(209) ; CHRS$(n) ;

The first virtual screen is selected when 0 is specified for n, and the second vir-
tual screen is selected when 1 is specified for n. If the third byte is not specified
the default is 1.

ESC CHR$(219)

Displays the specified character in the specified position on the real screen. This
is done as follows:

PRINT CHR$(27); CHR$(219) ; CHR$(x) ; CHR$(y) ; CHR$(p)

The meanings of x, y and p are as follows:

x Vertical position (1 to 8)
y Horizontal position (1 to 80)
p ASCII character code

This sequence makes it possible to output characters to any location in the real
screen, regardless of the position of the cursor or number of lines in the screen

window.

C-10

wavwlastio.com

kb

0

1

74
= e e
LOVIOIVUULLUU

vy oa
3

Vg % (
sloiuisiaieie
[VEVRVEVRVEV

ginighalgstelely

TS EINE

Ll

r&-

ESC CHR$(211)
Turns on or off display of function key definitions. This is done as follows:

PRINT CHR$(27); CHR$(211) ; CHR$(n)

Function key definitions are displayed when 0 is specified for n, and are not
displayed when 1 is specified. The default value is 1.

ESC CHR$(212)

In modes 0, 13 and 2 this escape sequence moves the screen window to the top
of the virtual screen containing the cursor. No operation is performed if this
sequence is executed in mode 3. The position of the cursor remains unchanged.

ESC CHR$(213)

In modes 0, 1, and 2 this escape sequence moves the screen window to the end
of the virtual screen containing the cursor. No operation is performed if this
sequence is executed in mode 3. The position of the cursor remains unchanged.

ESC CHR$(214)

In modes 0, 1, and 2 this escape sequence selects the type of cursor to be dis-
played. This sequence does nothing if executed in mode 3. The sequence con-
sists of three bytes as follows:

Byte 1: CHR$(27)
Byte 2: CHR$(214)
Byte 3: CHR$(n)

Here, n specifies the type of cursor displayed as follows:

0 Block cursor, flashing

1 Block cursor, non-flashing

2 Underline cursor, flashing

3 Underline cursor, non-flashing

The cursor will be set to the normal flashing block cursor if the return key or
one of the cursor keys is pressed.

C-11

http://www.fastio.com/

:C\H)PD

ESC CHRS$(215)

In modes 0, 1, and 2 this escape sequence moves the screen window to the posi-
tion occupied by the cursor. This sequence does nothing if executed in mode
3. The screen window is positioned so that the cursor is located near its centre.

ESC CHRS$(224)

This escape sequence defines those characters corresponding to ASCII codes
224 (&HEO) to 254 (&XHFE). This sequence consists of eleven bytes as follows:

Byte 1: CHR$(27)

Byte 2: CHRS$(224)

Byte 3: Character code

Byte 4: Pattern for dot row 1
Byte 5: Pattern for dot row 2
Byte 6: Pattern for dot row 3
Byte 7: Pattern for dot row 4
Byte 8: Pattern for dot row 5
Byte 9: Pattern for dot row 6

Byte 10: Pattern for dot row 7
Byte 11: Pattern for dot row 8

The pattern making up each dot row is specified as the ASCII code equivalent
of the binary number whose “1” bits correspond to dots which are turned on,
and whose “0” bits correspond to dots which are turned off. For example, specify-
ing CHR$(63) (where 63 is the decimal equivalent of 1111111B) for byte 1 causes
all dots in dot row one to be turned on when the character code specified in
byte 3 is displayed; conversely, specifying CHR$(0) (i.e.,00000000B) causes all
dots in the applicable row to be turned off.

C-12

wavwlastio.com

)

)

aih!

VUIJUUOLLUYUUU

90T OO0

Y

{
N7

Y

o

TRY

e

SRR
parmm
JOIUJUu

A~

{

N

{

la

N

OO0 00 G

\aspsisidalls

Lld

~

':;

r

Note:

User character definitions for codes 224 to 239 can be displayed by pressing the
graph key together with certain other keys on the keyboard. Keys pressed for each
code are as shown in the figure below.

H [] i]_2_324-
[I I | I i I I 1 (236)[(

238)
1 2 3 4 5 6 7 8 9 0 - A
(225) |1(226))(227)|(228)1(229)|/(230} (23 1)[|(232){| (233)||(224)| (234} 235)

Q |W (E R T Y u I o (P @

A |IS D |F G |H J K L

(237)

* Press together with key.

A sample definition for character code 230 is shown below:

PRINT CHRS$(27); CHR$(224) ; CHR$(238); CHR$(12);
CHRS$(12) ;CHR$(38) ; CHR$(63) ; CHR$(12) ; CHR$(18);
CHRS$(9) ;CHR$(9);

After executing this sequence, the character corresponding to code 230 can be
displayed by pressing and the key marked “230” in the figure above.

ESC CHR$(249)
Controls the key repeat function. This sequence consists of three bytes as follows:

Byte 1: CHRS$(27)
Byte 2: CHR$(240)
Byte 3: CHR$(n)

If 0 is specified for n, the repeat function is turned off. If 1 is specified, it is
turned on.

ESC CHR$(241)

Sets the starting time for the key repeat function. The sequence consists of three
bytes as follows:

C-13

http://www.fastio.com/

ClibPD

Byte 1: CHR$(27)
Byte 2. CHRS$(241)
Byte 3: CHRS$(n)

The keyboard repeat function starting time is equal to n/64 seconds where n
is a number from 1 to 127.

ESC CHR$(242)

Sets the duration of the key repeat interval. This sequence consists of three bytes
as follows:

Byte I: CHRS$(27)
Byte 2: CHR$(242)
Byte 3: CHRS$(n)

The key repeat interval is equal to n/256 seconds, where n is a number from
1 to 127.

ESC CHR$(243)

Sets the arrow key codes. This sequence consists of six bytes as follows:

Byte 1: CHRS$(27)
Byte 2: CHR$(243)
Byte 3: Code for
Byte 4: Code for
Byte 5: Code for
Byte 6: Code for

This sequence only changes the arrow key codes during program execution. Nor-
mal code assignments are restored automatically when BASIC returns to the
command mode.

ESC CHR$(244)

Sets the scroll key codes. This sequence consists of six bytes as follows:

>

Byte 1: CHRS$(27)
Byte 2: CHRS$(244)
Byte 3: Code for [SHIFT] +
Byte 4: Code for +
Byte 5: Code for [SHiFT] + [1]
Byte 6: Code for [SHiFT] +

C-14

wavwlastio.com

"!M"

=

OO uoodJdou

'L OO0 0

g

aiulalalalale L DL LT

LN

B0 OO

JIJJIJu oo

@O ¢

¥ 6

L

LI

o

A L)

<

©

©

)

{dnnpslsledelaldls

!‘S; |

ESC CHR$(245)
Sets the + arrow key codes. This sequence consists of six bytes as follows:

Byte I: CHRS$(27)

Byte 2: CHR$(245)

Byte 3: Code for +
Byte 4. Code for +
Byte 5: Code for +
Byte 6: Code for [CTRL] +

ESC CHR$(246)

Clears the keyboard buffer of all unprocessed input characters.

ESC CHR$(247)

The ESC 247 code allows the programmer to switch the various shift keys on
and off. Thus the numeric key pad can be set on, or the shift key ‘held down’.
The key state is set to normal by the user pressing the appropriate key, so it
is advisable to program with the possiblity in mind that the key may be reset
outside program control.

The sequence of characters is as follows:

Byte 1: CHRS$(27)
Byte 2: CHR$(247)
Byte 3: CHR$(n)

Numbers which may be specified for n and their meanings are as follows:

n (Decimal) Shift state
0 Normal
2 SHIFT
4 CAPS LOCK
6 CAPS LOCK SHIFT
16 NUM
18 Numeric SHIFT
32 GRPH
34 GRPH SHIFT
64 CTRL
66 CTRL SHIFT

This sequence does nothing if numbers other than those above are specified for n.

C-15

http://www.fastio.com/

ClibPD

Appendix D MACHINE LANGUAGE
SUBROUTINES

The CALL and USR statements of BASIC make it possible to execute machine
language subroutines from programs written in BASIC. Such subroutines must
be written into memory in machine language with the POKE statement before
they can be called. It is also possible to use an assembler such as the MACRO-80
assembler and LINK-80 linker/loader to assemble and load routines written in
assembly language; however these programs are not included in the transient
program ROM capsule provided with the PX-8, and must be loaded from a flex-
ible disk which is compatible with CP/M and the PX-8. See any of the various
handbooks available on the Z80 microcomputer or the Z80 assembly language
for the Z80 instruction code set.

When preparing machine language subroutines, remember that the presence of
even a single error in the machine code is likely to result in destruction of all
data included in the PX-8’s memory (including BASIC itself). Therefore, be sure
to back up all data and programs in memory on a disk before attempting to
test or debug such routines.

1. Memory Allocation

Memory space must be reserved for storage of the instruction codes of
machine language subroutines before they can be written into memory with
the POKE statement. This is done using the CLEAR statement of BASIC
or the /M: option of the BASIC command. When using the /M: option, the
starting address of the machine language area is the address specified, and
the ending address is that immediately preceding the starting address of BDOS.
Locations 6 and 7 in page zero hold the current BDOS starting address. This
will change depending on the USER BIOS and RAM disk sizes.

When a machine language subroutine is galled, the stack pointer is set up
for 8 levels (16 bytes) of stack storage. If more stack space is required, BAS-
IC’s stack can be saved and a new stack set up for use by the machine lan-
guage subroutine. BASIC’s stack must be restored, however, before returning
from the subroutine.

2. USR Function Calls
With BASIC, the format used for calling USR functions is as follows.

USRI < digit > J(argument)

D-1

wavwlastio.com

{
ole

3
3

vy l v
| v
o | v
-)
i I
S
v}nl v
»" :
bl ¢
w’l ’
< >
- 5 3
o l;‘3
= L s
A‘j [;
< L
o L’3
@ [2
-~ _—
L7

- L";
A

- L;
- -
S
L
-

g
L’ 4

~

{iels

0

Here, <digit> is a number from 0 to 9 and the argument specified is any
numeric or string expression. <digit> specifies which of the USR routines
is being called, and corresponds to the digit specified in the DEF USR state-
ment for that routine. If <digit> is omitted USRO is assumed. The address
specified in the DEF USR statement determines the starting address of the
subroutine.

Whe.n.a USR function call is made a value is placed in CPU register A which
specifies the type of argument specified. The value placed in register A may
be any of the following.

Value Type of argument
2 Two-byte integer (two’s complement)
3 String
4 Single precision floating point number
8 Double precision floating point number

If the argument is an integer

FAC+0 contains the lower 8 bits of the argument
FAC+1 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number

FAC+0 contains the lowest 8§ bits of the mantissa

FAC+1 contains the middle 8 bits of the mantissa

FAC+2 contains the highest 7 bits of the mantissa (with leading 1
suppressed). Bit 7 is the sign of the number (0 for positive
and 1 for negative)

FAC+3 is the exponent minus 128. The binary point is the bit to
the left of the most significant bit of the mantissa.

If the argument is a double precision floating point number, FAC-4 to FAC-1
contain four more bytes of the mantissa with the lowest 8 bits in FAC-4.

If the argument is a string, the DE register pair points to three bytes called
the “string descriptor’” Byte 0 of the string descriptor contains the length of
the string (0 to 255); and bytes 1 and 2 are the lower and upper 8 bits of
the starting address of the string in string space.

CAUTION:

If the argument is a string literal in the program, the string descriptor will point
fo program text. Be careful not to alter or destroy Your program in this way.
1o avoid unpredictable results, add +* ” to the string literal in the program.

D-2

http://www.fastio.com/

L

E Y
- -
s
v
Example A$="STRING CHARS” + “”» - r) 4. Interrupts
L. L . . - 7 Machine language subroutines can be written to handle interrupts. All inter-
;l‘hlst .w111 (;opy the string éltefal into ;trmg. spacf:uand prevent al- y [S rupt handling routines should save the stack, registers A to L and the PSW.
eration of program text during a subroutine call. P l 2 Since an interrupt received automatically disables all further interrupts, they
_ : should always be re-enabled before returning from the subroutine.
3. CALL Statement] T v g utine
BASIC user function calls may also be made with the CALL statement. A R
CALL statement with no arguments generates a simple “CALL” instruction. N
The corresponding subroutine should return to the BASIC program via a sim- ” R
ple “RET” instruction (“CALL” and “RET” are Z80 opcodes; see a Z80 refer- - o)
ence manual for details.) - S
oy :
A subroutine CALL with arguments results in a somewhat more. complex ~ s
calling sequence. For each argument in the CALL argument list, a parameter)
is passed to the subroutine. That parameter is the address of the low byte y 3
of the argument. Therefore, parameters always occupy two bytes each, regard-)
less of type. RO
The method of passing parameters depends on the number of parameters ‘; e
to be passed as follows: - -
A
(1) If the number of parameters is less than or equal to 3, they are passed g >
in the registers. Parameter 1 will be in HL, 2 (if present) in DE, and 3 - ?
(if present) in BC. a0
(2) If the number of parameters is greater than 3, they are passed as follows: : B ~
(a) Parameter 1 in HL. S0
(b) Parameter 2 in DE. o o)
(c) Parameters 3 through n in a contiguous data block. Register - =y
pair BC will point to the low byte of this data block (i.., to v)
the low byte of parameter 3). o =3
Note that with this scheme the subroutine must know how many parameters e =
to expect in order to find them. Conversely, the calling program is responsi- o
ble for passing the correct number of parameters. There are no checks for :‘ -
correct number or type of parameters. * v,
When accessing parameters in a subroutine, don’t forget that they are pointers < 9
to the actual arguments passed. o 7
NOTE: s
1t is entirely up to the programmer to ensure that arguments in the calling pro- -
gram match those expected by the subroutine in number, type and length. This "A _
applies to BASIC subroutines as well as those written in machine language. - fﬂ;
,e-:-—h
w ¢

z ;
D-3 . D-4
ClibPDF - wivw.laslio.com e

http://www.fastio.com/

a

- r
- -~
. I
Appendix E DERIVED FUNCTIONS - > Appendix F ASCII CHARACTER
Functions that are not intrinsic to PX-8 BASIC may be calculated as follows. - ' 3 CO D E S
Fanction BASIC Equivalent 7 I v
SECANT SEC(X)=1/COS(X) o l Y
ECANT CSC(X)=1/SIN(X) - = o -
COS X) r l v Nelo | 123 als 6| 7|8 alal|lslcl|ole ﬂ
COTANGENT COT(X)=1/TAN(X) -~ b} o Bia™| 0000 | 0001 | 0010 | 0011 {0100 | 0101 0110 | 0111 | 1000 | 1007 a1 |
INVERSE SINE ARCSIN(X) = ATN(X/SQR(— X * X +1)) S G P e S o e i e s o B
INVERSE COSINE ARCCOS(X)= — ATN(X/SQR(1 — X * X)) < "B o Tl [XA e Bl 2 M o A e[
+1.570796326794897 -~ = 100]] N E N N e e M e B - o B
>w " & 3 = Ex [
INVERSE SECANT » ARCSEC(X)=ATN(SQR(X * X — 1)) ~ | [2 |900] (5] [l [s] [o0] Jﬁhm o9 frul |][] (el [o] G [
+(SGN(X) — 1) * 1.570796326794897 S | v Ot e e e o e e s s i]
INVERSE COSECANT ARCCSC(X)=ATN(I/SQR(X * X — 1)) -yg 7 LI e M e M i A R e
+(SGN(X) — 1) * 1.570796326794897 - | 5 o | ol s e U; ; e 2 e o e o Ol
INVERSE COTANGENT ARCCOT(X) = — ATN(X) +1.570796326794897 i | X o o] o I FPF F.—;u R E R R ra B B R e
m :] 22 38 54 70 86 102 18 134 150 166 182 198 214 230 246
HYPERBOLIC SINE SINH(X)=(EXP(X) — EXP(-X))/2 g | o] S s s e e e e e e o ; L] [l e
HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(~ X))/2 - [o) R I I e s e rjﬂ 11 ;_v '_Sj ios| _[ovs| _Bowi] [rar]
. 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248
HYPERBOLIC TANGENT TANH(X)=(EXP(X) — EXP(— X))/ (EXP(X) o BB s | 1001 S N B S 1 N O L B e
+EXP(—X)) ; l 3 [o] E*WIFTF_“E;A105_’12|J1371;]'15_3 [es| [es] [por] [z17] [e37] [oas)
Le " A 1010 1 21 i 42) 58 i 74 B 90 N 106 B 122 1 -
HYPERBOLIC SECANT SECH(X)=2/(EXP(X) +EXP(-X)) e —— Lol [L[] [od S o B e B e e M
HYPERBOLIC COSECANT | CSCH(X)=2/(EXP(X)— EXP(—X)) £ L’ B o e e P P T e oL L) e M
HYPERBOLIC COTANGENT | COTH(X)=(EXP(X)+EXP(-X))/(EXP(X) o0 - fe Ll [} [eo e i e T S B 0 B o 2 S o M M
- EXP(=X)) - L? 1O Tl [Coof et Do, [mlboal_fosl_feil il [sl Gl il o]
P R e P -
INVERSE HYPERBOLIC SINE! ARCSINH(X)=LOG(X+SQR(X*X+1)) - L E "0] (] [w] [e] . [18] [os] [vo] [fms] [iwz| [ies| [17a] [w0] [ros] [520] [oss| [mex
- . el] - = & ™ +
INVERSE HYPERBOLIC ARCCOSH(X)=IDG(X+SQR(X*X_ 1) v L ’ - L 15 [?' 47 63 P? I—Q; IT'T 127 143 159 175 191 207 223 239 255
COSINE c oy
INVERSE HYPERBOLIC ARCTANH(X)=LOG((1+X)/(1 - X))/2 P L)Q ASCII
TANGENT g
- b
INVERSE HYPERBOLIC ARCSECH(X)=LOG((SQR(1 - X*X)+1)/X) - L: NOTES:
SECANT - G 1. (O)p through (31)p are control characters.
INVERSE HYPERBOLIC ARCCSCH(X) =LOG((1 +SGN(X) * z [“; 2. (32)p through (127)p are ASCII characters.
COSECANT SQR(1+X*X))/X _ L,; 3. Characters displayed for codes E0 to FF can be defined by the user.
INVERSE HYPERBOLIC ARCCOTH(X)=LOG((X+1)/(X-1))/2 - For further details see section 2.6.2, ““Control Characters,” and the
COTANGENT < L P User’s Manual.
Any of these functions can easily be used in a program by defining it with a - L,;
DEF FN statement. This is illustrated in the example below. - L‘;
-

Example Z_L
Function definition: DEF FN SINH(X) — (EXP(X) — (EXP(X))/2 y/ Jj
Function call: A=FNSINH(Y) -

E-1 F-1

.

ClibPD waww.lastio.com

http://www.fastio.com/

< -
- B oa
W)
: y "3 °
Differences between the USASCII character set and the character sets of other o rQ A ppendlx G MEM OR Y MP
countries are as shown below. vy rQ 64KB RAM
! 0000H
v
. ~ . Q System Area j
QOuntry | y5ited France Germany|England[Denmark Sweden | Italy | Spain |Norway) l 100H
Dec. Codd States ;’ 9
35 # # £ # # # fi # N l 3
36 t | % | £ | £ | % | = | % | % | = g | N
~ % @ £ . ’ BASIC
64 B 2y 3 @ =4 B = - - - l) interpreter
91 [. i | C LS I ! "‘ 1 o) |
> 92 Ped (] o & ¥ 2 v’ l Q |
93] £ O 1 & & & - - v’ I ‘ 7D00H
. S . £l o -] ‘s 9 BASIC work area
54 _ - y - . ax I 2 BASIC
9 « = " L & =] = = - I 5 variablepar?egaram
123 t |e [& | ¢ | = | & | & * g - oy
. - ' " & k) i * ar B
124 i w = ; * - - " i [5 String area
s, o2 3 k= = £ -+ = :‘
125 * - w .-_-, : i - o ‘: l 3 . Stack area
126 B K - - - A4 [wyy Machine ilanguage
B area
v s L zzzzH
- P BDOS
v
‘) L 9 BIOS entries
< l P RAM disk
o LQ[User BIOS area
s ; ' v System area (SKB)
- Lx; FFFFH
- vy TS
- L»; yyyyH Can be found at memory addresses 7D38H and 7D39H. Address
v/’ LA 7D38H contains the lower byte of yyyyH and address 7D39 con-
v 7 tains the higher byte.
g zzzzH......... Varies according to the size of RAM disk.
\7 zzzzH can be found in locations 6 and 7 in page zero. From
gl 2 BASIC, :
_ PEEK(6)+PEEK(7) * 256
vy 77 i
"/ __»; will return the present value of zzzzH.

G-1

-Ilj
[¥}

<
Hd

p\mPD WAy lastio.com

http://www.fastio.com/

Appendix H SOME EXAMPLE
PROGRAMS

This manual is not meant to be a tutorial manual to teach BASIC — there are
many books which teach the use of MICROSOFT BASIC. However, some aspects
of programming are specific to the PX-8. This appendix is meant to illustrate
some of these specific points and provide examples of how the computer can
be programmed in ways which exploit the features of the machine.

1. Use of the User-Defined Characters

Appendix F shows the character set of the PX-8. It is normally only possible
to program the characters which have an ASCII code of 22 and above. It is
possible with a machine code routine to alter the VRAM and reconfigure it to
allow the characters from ASCII code 160 to 254 to be programmed. This is
beyond the scope of this manual. The downloading of a character from soft-
ware is outlined in Appendix C, under the escape sequence ESC CHR$(224).
The following programs and descriptions extend this information by showing

practical examples.

(i) A simple program to illustrate the definition of a character and printing
it to the screen. ‘

A character is defined by sending the sequence:

BYTE 1: CHRS$(27) The ESC character

BYTE 2: CHR$(224) The code to download

BYTE 3: CHRS$(n) The code for the character to be changed
BYTE 4: CHRS$(rl) The pattern for the top row
BYTE 5: CHR$(r2) The pattern for row 2

BYTE 6: CHR$(r3) The pattern for row 3

BYTE 7: CHRS$(r4) The pattern for row 4

BYTE 8: - CHRS$(1r5) The pattern for row 5

BYTE 9: CHR$(r6) The pattern for row 6

BYTE 10: CHRS$(r7) The pattern for row 7

BYTE 11: CHR$(r8) The pattern for the bottom row

ClibPD waww.lastio.com

The pattern which makes up each row is specified by the bit settings of th

number, sent as an ASCII code. It is easiest to design the charagcte ;
squared paper and translate it into numbers, Dots in the pattern whi 1;18 e
turned on correspond to a “1” in the binary number and dots whicch are
turned off correspond to a “0”, The design which gives the pattern st
be converted from binary into a decimal or hexadecimal number. For t?ll::et

not familiar with convertin i
I g the binary numbers to deci
is best explained with an example. vimal the procedure

128 64 32 16 8

L[T+ %] |i|:j

The .pattern in the diagram shows which dots of the line will be set. This
particular pattern would correspond to the binary number “OOIOIOli” To
tcl?;\;eg Eihet rtlurlr)lber to decimal, add the numbers above the boxes wl.lere
ot to be set. Thus 32+8+2+1 gives a total of 43
. For a whol
character a patte.rn would be produced as follows. The numbers at the righft:
are the ones which would define the row in a program.

128 64 32 16 8 4 2 1

* * =12

% %* % * = 30

* * = 33
* * =33
* * = 18

% % = 12

sl N N L D I = 63
=0

Charac%ers are six dots wide by eight high. The two left-hand positions are
always ignored. The numbers used to define the rows will thus be in the
range. 0to 63 (0to 3F hexadecimal). Any attempt to use the left-hand tw

positions of the full eight bits of the byte will be ignored. °

If the bottom row of the character is filled in there will be no space b
tween the character printed and the character on the next row of thle) screes-
If you want the two characters to be contiguous, dots on this row’ h lti
be set; otherwise the row should be left blank. ’ o

H-2

http://www.fastio.com/

lclibPD

The first program defines the character shown in the diagram and prints
it on the screen. It is downloaded into the user-defined character area as
the character with ASCII code 231 (or E7 in hexadecimal notation).

1@ CLS
20 PRINT CHR$ (27) 3CHR®$ (224) ; CHR$ (231) §
76 FOR Y=1 TO 8

40 READ A

S0 PRINT CHR$(A);

6% NEXT

7@ PRINT

89 PRINT CHR$(231)

99 PRINT

100 DATA 12,730, 33,35, 18, 12,63, @

S

b3

(14

In line 20 it it very important that the semi-colon is placed at the end of
the line. Without this the first two bytes of the row will be interpreted as
the carriage return and line feed, which would normally cause the cursor
to move to the beginning of the next line. Carriage return is ASCII code
13 and line feed is ASCII code 10 in decimal notation. Try leaving the semi-
colon out and note the change in the character. Because these two extra
characters are inserted the bottom two rows defined are lost, with the two
extra rows being inserted at the top to correspond to the line feed and carri-

age return.

The data for the character is read in from the series of DATA statements.
If a series of characters are being defined, they are best arranged in sets
of eight DATA statements on different lines. This makes it easier to find
out which data byte corresponds to which row of which character when
you wish to change the character or are debugging a program.

(i) The next program shows how blocks of graphics characters can be used to

make larger characters. The example shows a set of ARABIC characters
where each character is made up of a block of four user-defined characters.

16 “User defined graphics

20 FOR X=LHE® TO HFE

20 PRINT CHR$(27) ; CHR$ (XHE®) s CHR$ (X) §
40 FOR Y=1 TO 8

%9 READ A

&0 PRINT CHR$(A)J

79 NEXT Y

8¢ NEXT X

85 CLS
90 FOR X=¥HE® TO LHFEB STEF 4

H-3

wavwLlastio.com

<€) 4 €
~

W

5“

Slalalsishlaiohlal

o

OO

€
N

lala

24
o~
\24
o
\7 4

£
\74

Vel
\7 4

~—

wr

!

AR AR

il

05‘

e
Judu

F1

fsiaissisisis\ el

100 FRINT CHR$(X) i CHRS (X+1)
119 NEXT:PRINT

126 FOR X=%HE2 TO %HFB STEF 4

130 PRINT CHR$ (X){CHRS (X+1) 3

146 NEXT:PRINT'

1606 DATA LHOZ, LHOZ, %HOZ, LHAZ , LHOZ , LHAT, LHOF , LHo?
1010 DATA LHOO,SHIO, UHOD, LH1B, LH24, HHOS, LHIE . LHO0
1620 DATA LHOO, LHOO, ZHOO , XHOO , LHOB, LHOG . YHOG . LHO@
1630 pATA LHOO, LHOO, §HOG, UHOO , LHOO, LKHBD, LHO . LHOO
2000 DATA LHOO, LHOTZ, YHOO, LHO7, LHOA, LHOZ, WHO1 | 4HOZ
2010 DATA LHOD, LHOO, LHOO, TH3G, TH10, &H2G, LHIC ., LHOO
2020 DATA LHO4, LHOB, YHOB, LHOB, LHO7, LHOA , LHOG ., LHAG
2030 DATA &HOO, LHOG, LHOO, LHOS, LHIO, KHEO, YXHOH . LHOO
T060 DATA &HOO, LHOG, XHOG, LHOY, LHO 1, LHAE, LHOE, LHOS
T016 DATA LHOBG, LHOO, LHOO, LHOG, LHZO, ¥HAS . LHEG LHG4
3020 DATA EHO4, LHOS, XHOO, LHOO, LHOD, LHOO , LHOG . LHOG
J0Z6 DATA LHOB, WHIO, LHOO, 2HOO, LHOG, XHO , LHEG . LHE
4000 DATA LHOG, LHOO , LHOG, XHOB , LHOS, LHOT . &HO 1 . LHOO
4010 DATA LHOO, %HOG, LHOG, KH1C, KH24, LHOA , LHIC . LHO4
4026 DATA LHOG, LHOG, LHOG , 1HOT , LHOO, LHOG ., LHOG . LHaG
49230 DATA LHOB, %H10, LH20, 4HOO, LHOO, LHED , LHOG . LHOG
500 DATA LHOG, LHAO, LHOO, XHOR, LHOA, 2HOE . YHOF . LHaG
5010 DATA LHOG, LHOO, LHOO, LHOD, WH24, SH2A . SHIC . LHeo
5020 DATA &HBO, LHOO, LHOG, LHOO , LHOO, LHOG . LHED . L HEo
SO36 DATA LHOD, YHOG, YHOO, XHEG, LHOO, LHOD , LHOG . LHOD
600 DATA LHOO, LHOO LHOO, LHOG , LHOO | LHOG . LHOF | LHOo
6010 DATA LHOG, LHOO, LHOG, LHOO , ¥HOA, LHOA , LHIC . LHo®
5026 DATA LHOG, LHOG , LHOA, YHBD, LHOD , YHOD . LHOS . LHGEE
£@3I0 DATA LHOB, WHOB, LHOB, LHOO, LHOO, LHOO . LHOG . LHOG
7000 DATA LHOL,4HOL, LHOL, SHO1, 4HO1 . LHE1 . LHOL | SHa1
7010 DATA LHOD, LHOO, LHO , LHOO, LHOG ., LHOD . LHOO. LHOG
7020 DATA SHO®, LHO®, LHOG , LHOO, LHAG , LHO . 4HOD . WHod
7030 DATA SHOO, LHOO, LHOD, LHOG, KHOO, LHOO . HHEO . LHOG

Lines.IOOO onwards contain the data for successive characters, Each line
contains the data for successive rows of each character. All characters and
data have b.een entered in hexadecimal notation. See HEXS$ in Chapter 4
fc?r.conversmn between decimal and hexadecimal numbers. The four in-
dividual characters making up each large character are defined in the order
top left, top right, bottom left, and bottom right.

Lines 20 tc? 80 read this data from the DATA statements and download each
character in the same manner as the previous program;

Lines 90 to 140 print the top halves and then the bottom halves of the charac-
ters. Since four user-defined characters are used together to make one large
screen character, the STEP to find the next character in the loops is four.

pser-defined c}.xaracters can only be printed from screen mode 3 — by bit
Image mode printing of a screen dump — unless they have also been down-

http://www.fastio.com/

ClibPD

leaded into a suitable printer which is capable of receiving characters in
a downloadable form. Such a screen dump of the output of the screen ap-
pears as follows when the program has been run:

S d
&
Ok

oo s g |

NOTE:

When using these characters in the following programs you should LOGIN
to another program area before typing them in. If the screen is changed by
either the SCREEN command or WIDTH command, or by going via the
menu, the first two user-defined characters, and possibly more will be al-
tered. Simply using LOGIN will not reset them.

(iii) When combinations of characters are used in this way, it is often more con-
venient if the characters are grouped as a variable, so that simply saying
PRINT AS$ for example prints the block as a whole. This can be achieved
using string concatenation. The following program shows how the ARAB-
IC characters of the previous program can be defined as variables, and how
they can be printed as one character by typing a key. The characters have
been designed so that the cursor moves from right to left to illustrate ways
of using control codes.

16 STOF KEY OFF

20 SCREEN Z,9,9 : CLS

IO XP = 13 YP = 1

49 FOR N = @ TO &

6 J = 4 ¥ N

69 CHEN) = CHR$ (LHEO+J) + CHR$ (LHEO+J+1) +CHR$ (8) +CHRS (8) +CHR$
(1) +CHR$ (LHEO+T+2) +CHR$ (LHEO+J+32) +CHRE (LHIE) +STRINGS (4, 8)

79 NEXT N

8¢ CSRe = CHR$ (1733) +CHR$ (1323) +8TRINGH (2, 8)

90 8P% = " " + STRING%(4,8)

100 LOCATE XF+&68,YP*2,0

110 FRINT CSR$;

12¢ A% = INKEY$ @ IF A% = "" THEN 12¢

1720 IF A% = CHR$(27) THEN CLS : STOP,KEY ON : END
143 IF A = " " THEN PRINT SP$;: GOTO 180

150 IF A% < "A" OR A% > "G" THEN 120

160 ¥V = 71 - ASC{AS)

170 PRINT C$(V); N

180 XP = XF + 1 ¢ IF XP > 34 THEN XF = 1 1 YP = YF + 1: IF Y
> 4 THEN CLS : YP = | ¢ GOTO 109 ELSE GOTO 109

196 GOTOD 110 -

P 2ol g 2l gl lmw a0 sl Jb&.;.._jgw—-g'
- ST o E Ak

[
Lt

wavwlastio.com

lalals
FRVRY

JTITH

QOO TIAHHIPNNOELLHITIT IO

gl

N

SR

i

sahiziphizh}

V)

The program disables the key, then initialises variables XP and
YP which are used to position the first character.

The loop forming lines 40 to 70 defines the characters which will be print-
ed if the keys ““A”’ to *‘G”’ are pressed. They are stored in the array C$().
The characters are built up as follows: the first two characters are the top
pair of the block of user defined characters. Next, two backspace charac-
ters are added (the ASCII code for a backspace is 8) because the position
of the cursor is one to the right of the characters when they have been print-
ed. This leaves the cursor in the position of the first character of the pair.
By adding a linefeed character (ASCII code 10) the cursor is moved down
one line to the bottom left of the block of four. The bottom row of the
block is now added as the next two characters. If the block is printed at
this stage the cursor will be placed to the right of the bottom of the block
of four user-defined characters. The next group of characters must be print-
ed two places to the left on the top of the first group. This is achieved by
adding a ‘curso: up’ character (ASCII code 30, or 1E in hexadecimal), and
then four backspace characters. This gives a total string length of twelve
characters. When this string is printed, the sequence appearing on the screen
will be as follows: the top two of the block will appear; the cursor will
then move back two positions and down one, print the bottom two charac-
ters, then move up, back four, and be ready to print again.

The program as a whole prints a cursor which is defined as two horizontal
lines using the predefined graphics character whose ASCII code is 133. This
together with the backspaces to move to the left is defined as the variable
CSRS in line 80. To allow a space to be printed, line 90 defines SP$ as

two normal spaces with backspaces added to allow printing from left to
right.

Lines 100 to 190 form the main part of the program. The cursor is placed
on the second line of the screen at the extreme right. It cannot be placed
directly on the edge. When one of the groups of characters from the array
C$() is printed the LOCATE command tests to see if the string length
added to the horizontal position of the LOCATE command is greater than
81. If it is, the complete string will be printed on the next line of the screen.
The strings of the array are twelve characters long — it does not matter
that some are cursor movement control codes. The maximum position the
strings of C$() can be printed from is thus 69. The cursor is printed on
the second line so that when the screen scrolls up on reaching the bottom
line the top half of the character groups are not lost.

H-6

http://www.fastio.com/

ClibPD

(iv)

Line 110 prints the cursor and line 120 waits for a key to be pressed. Lines
130 to 150 test which key has been pressed. The [Esc] key (ASCII code
27) allows the user to exit from the program. Line 140 prints a space and
line 150 eliminates all characters other than those in the range ““A”’ to ““G”’.

When a key in the permitted range is pressed, the ASCII code is subtract-
ed from the constant 71 to index the array C$(), and the corresponding
character is printed. The counter XP is then incremented so that a check
can be made on the number of characters per line. When this is exceeded
the line counter YP is incremented and the cursor moved to the right hand
position on the next line. When the screen is full it is cleared.

The program loops back to line 110 to print the cursor and wait for another
character, until the user exits by pressing the [ESc] key.

The restrictions of the LOCATE command in the previous program can
be overcome if the position of the characters is calculated instead of being
printed as a block having previously been defined in a string. This allows
the characters to go up the edge of the screen, but does requires some
sophisticated numerical computation. :

10 STOP KEY OFF

20 SCREEN 3,,0:CLS

30 XP=1:YP=1

49 LOCATE 81-XP*Z,YF*2+1:PRINT CHR$ (133) ;CHRS (133) ;
50 AS=INKEY$: IF A$="" THEN S6

69 IF A$=CHR$ (27) THEN CLS:STOF KEY ON:END

7% IF A%$=" " THEN LOCATE B1-XP%2,YP*2+1,0:PRINT"
80 IF A$<"A" OR A$>"G" THEN 50

90 LOCATE B1-XP*Z,YP*2,0

100 V=71-ASC (A%)

110 C=&HE@+V*4

126 PRINT CHR$(C) i CHRS (C+1) 3

1360 LOCATE 81-XP*2,YF#*2+1,0

149 PRINT CHR$(C+2) i CHRS (C+3) 3

150 XP=XP+1:IF XP40 THEN XP=1:YP=YP+1l:IF YF3>4 THEN CLS:YF=1
160 GOTO 40

"§:6OTO 1%50

-

I.__.u.._:»;._-/.&b ﬂ:-é_..,_j_f;lw—,-|

This program is a modification of the previous one.

After initialising the variables in lines 10 to 30, the main body of the pro-
gram begins at line 40 by printing the cursor, using the same characters as
in the previous program. The position is calculated by means of the coun-
ter XP which is used later in the program to determine how many blocks

H-7

wavwlastio.com

o

do“oﬂo_LPLrL%

v

OO OO0 L OO O

A ZE 2R B B TS N

ARSI Lo\ ol o\ o\ ol ol piminialal

Al

T"‘L’"!

mrmmmm
VOOUOU

B i

o

of characters are on the line.

Lines 50 to 80 check for input from the keyboard and exclude unwanted
characters. If the space bar is pressed line 70 calculates the position in which
to place two spaces so that the cursor is erased.

Line 90 calculates the position for the first character of the block to be print-
ed whenever a key in the range “A” to “G” is pressed.

Lines 100 and 110 determine which of the the blocks of characters to print
from the ASCII code of the key pressed. The corresponding user-defined
characters are printed in positions calculated according to the number of
blocks already on the line. Line 120 prints the upper pair of the block, and
line 140 the lower pair.

Line 150 then updates the counter for the number of blocks of characters
printed. As with the previous program, when the line is full the cursor is
moved to the next line.

This program is best understood by working through what will actually hap-
pen when the program runs. You can do this by calculating the values of
XP and YP, or having the PX-8 print them to a file or to an external printer.
It is rather difficult to write a program such as this because if the program
has to be altered the recalculation may not be easy. The previous program
is easier to re-program and understand.

http://www.fastio.com/

‘TMHIW)

2. A Clock Program

ehfor 1d Time Clocko
oooonogo-po::u:\oom

81 -83-24

10 STOP KEY OFF
260 DEF FNT(F1%,F2%)=VAL (MID$ (F1%$, INSTR ("HMS",P2$) #3-2))

70 DEF FND(P1%$,P2%)=VAL (MID$ (P1%, INSTR("MDY",P2$) ¥3-2))

4@ DEF FNN(F1,P2) = (P137)%(((P1 MOD 2)=0)*31+((FP1 MOD 2)=1)
3IG) + (P1<B) (((P1 MOD 2)=0) %30+ ((P1 MOD 2)=1) %31+ (P1=2)#((
(F2 MOD 4)=@) + ((F2 MOD 4)<:>®)%2))

S50 DEF FNS$(P1,P2,P3,P4%)=RIGHT$("0"+MID$ (STR$ (P1),2),2) +P4s
+RIGHTS (""" +MID$ (STR$ (P2) , 2) , 2) +P4$+RIGHTS ("G"+MID$ (STR$ (PX)
,2),2)

60 DEF FNF (F1)=—MN*(P1=1)-DY* (P1=2) ~YR* (P1=3)

70 DH=FNT(TIMES,"H"):T=0:55=0

86 READ MAX

9@ DIM XP (MAX),YP(MAX) ,ASS$ (MAX) , HR (MAX) , ME (MAX) , SD (MAX) ,L (3,
MAX)
100
11@
120
130
140
150
160
170
180
190

FOR X=1 TO MAX

READ XP(X) ,YP(X) ,ASE(X) NTH,L(1,X),L(2,X),L(3,X)

HR (X)) =FNT (NT%, "H")

ME (X)=FNT (NT$, "M")

SD(X)=FNT (NT%, "S")

NEXT

SCREEN 0,0,0:CLS

LOCATE 29, 1:PRINT CHR$(143);"World Time Clock";CHR$ (143)

LOCATE 30,2:PRINT STRING$(16,143)

PRINT" London (GMT)

New York"

PRINT:zPRINT"
Bonn*

PRINT:PRINT" Singapore City

Brazilia"

A=FRE (@) : A=FRE (A%) -

H=FNT(TIME%, "H") : M=FNT(TIME$, "M") : S=FNT(TIME%, "S")

TD=FND (DATES$, "D") : TM=FND (DATES$, "M") : TY=FND (DATES, "Y")

T=1~TsIF T=@ THEN §5=1-§5S

FOR X=1 TO MAX

DY=TD:MN=TM: YR=TY

280 IN$=INKEY$: IF IN$=CHR$(3) THEN 420

290 LOCATE 19,1:PRINT TIMES:LOCATE 56, 1:PRINT FNS$%(FNP(2),FN

P(1),FNP(3),"/")

300 IF OH<XH THEN SOUND 1200,5:0H=H

310 H=FNT(TIMES$, "H") :M=FNT(TIMES$, "M") : S=FNT(TIMES$, "S")

J20 IF T=0 AND X=1 THEN ZX=29:ZY¥=1:60T0Q 350

Paris

200 Tokyo Canberra

210 Moscow
220
230
240
250
260
27@

H-9

wavwlastio.com

¥

@

Sl

c
&
e
e
&
~
-
p—-
b4
as
S
A4
Q‘h
N
g?
e
v
e
oz
-~
<
-
s

Lalaalsih

hh).

glpish

P
V) Uﬁ

L

by
lg@i'
&
g
s
ks
-~
-

330 IF T=1 AND X=9 THEN ZX=46:ZY=1:G0T0 350

340 IX=T#9+X+28; ZY=2

350 LOCATE ZX,1Y,Q:IF SS=0 THEN PRINT CHR$(143); ELSE PRINT

CHR$(144) ;

360 LOCATE XF(X),YP(X),®

370 H1=HR(X):M1=ME (X):S1=8D(X)

380 IF AS$(X)="-" THEN GOSUB 2000 ELSE GOSUB 1000

390 PRINT USING "% "jFNS$ (HRS,MIN,SEC, "1 ") ; FNS$ (FNP (L (1, X))

SFNP (L (2,X)) ,FNP(L(3,X)),"/");

400 NEXT

410 GOTO 22@ ;

420 STOP KEY ON:CLS:END

1000 SEC=5+51

1210 MIN=M+M1+SEC\&0: SEC=SEC MOD &0

1020 HRS=H+H1+MIN\6G: MIN=MIN MOD 60

1030 IF HRS<24 THEN 1080

1040 DY=DY+HRS\24:HRS=HRS MOD 24

1050 ND=FNN (MN, YR)

1060 MN=MN+DY\ND:DY=DY MOD ND

1070 IF MN>12 THEN YR=YR+1:MN=MN-12

1080 RETURN ,

2000 SEC=S-S1:IF SEC<® THEN SEC=SEC+&G:M1=Mi+1

2019 MIN=M~M1:IF MINC® THEN MIN=MIN+&®:H1=H1+1

2020 HRS=H-H1:IF HRS>=0 THEN 2060

2030 DY=DY~-1+HRS\24: HRS=HRS+ (HRS\ 24+1) %24

2040 ND=FNN(MN-1,YR): IF DY<1 THEN MN=MN—1:DY=DY+ND

2050 IF MN<1 THEN YR=YR—~1:MN=MN+12:DY=FNN (MN. YR)

2066 RETURN . ’

000 DATA 9

3@1@ DATA 05,04,"+", "00:00:00",2,1,3

3020 DATA 30,04,"+","01:00:00",2,1,3

3030 DATA 55,04,"-", "05:00:00",1,2.3
DATA 65,06, "+", "09:00:00",3, 1, 2

DATA 30,86, "+","10:00:00",2,1,3

DATA 55,06,"+","01:00:00",2,1,3

DATA 05,08, "+","07:30:00",3, 1

DATA 30,08, "+", "03:00: 00", 2, 1

DATA 55,08, "~", "04:00: 00", 1, 2

e

3040
Ia50
3060
3070
Zoso
Jo9e

H-10

http://www.fastio.com/

ClibPD

This program, while being useful, is meant to illustrate the use of string han-
dling and other commands in BASIC in a practical program. It also contains
subroutines which handle the time and date. These will be of use in program-
ming the PX-8 in combination with the ALARM command. When combined
with the type of program given as an example in the ALARM section of Chap-
ter 4 these subroutines allow a wide range of time based applications for the PX-8.

The program shows the time at various places arotind the world relative to GMT.

Line 10 switches off the [siop lkey while the program is running, allowing lines
280 and 420 to end the program in an orderly manner by re-enabling the key
only when the user wishes to cease program execution.

Lines 20 to 60 define a number of functions which allow values to be deter-
mined related to the date and time.

Line 20 defines a function which returns the hours, minutes or seconds from
the TIMES string. Line 30 performs the same function on the DATES$ string.
They are used in lines 230 and 240 and elsewhere in the program. As an example
of their operation, consider the problem of returning the minutes from the time
in the second statement in line 310:

M=FNT(TIMES$,“M”)

The two strings TIMES$ and “M” are substituted for the values of P1$ and P2$
respectively in function FNT. The INSTR function is then used to return a value
of 1, 2 or 3 depending on whether string P23 is “H”,“M” or “S” since P2$
is being searched for in the string “HMS?”. In this example it is “M”, so INSTR
returns a value of 2. The characters corresponding to the value of the hour be-
gin at position 1 in the TIMES$ string, the minutes at position 4 and the seconds
at position 7. By multiplying the value returned by the INSTR function by 3
and subtracting two, the value returned will correspond to the correct position.
The function MIDS$ is then used to extract the string beginning with this posi-
tion, and the numerical value of the minutés is found using the VAL function.
This value is then stored in the variable M.

Line 40 defines a function which returns the value of the number of days in
the month. It is used in the two subroutines which add or subtract the time differ-
ence, for example in line 1050. In this example, MN is a variable which contains
the number of the month and YR is a variable containing the last two digits
of the year. These values are passed to the variables P1 and P2 in the function
FNN. The function uses an algorithm involving logical operations to return the

H-11

wavwlastio.com

Z

4 01)1)1.'

1

ale.

UL G L

O 0”§$§ u”u

-
J

TV F TG GO OOG OO IEd OO

r)

ST,

rr
J o

P HH LB

|

AN

H O &

number of the days in the month and year required. In evaluating the function
P1 will correspond to the number of the month and P2 to the number of the
year. The algorithm is as follows:

If the number of the month is greater than 7 and is even then the number of
days is equal to 31, and if it is odd then the number of days is 30. This is achieved
with the part of the logical statement which reads as follows:

P1>7) *((P1 MOD 2)=0) * 31+ ((P1 MOD 2)=1) *30)

If the month has an even number the expression ((P1 MOD 2)=0) is true and
a value of —1 will be returned; when multiplied by 31 this will give a value of
—31. The expression ((P1 MOD 2)=1) will be false and so return a value of
0. If the number of the month is greater than 7 the expression (P1> 7) will be
true and hence return a value of — 1. Thus the total value returned will be 31.
This is easier to see if the values are placed under the expressions as follows :

(P1>7) *((P1 MOD 2)=0) *31+((P1 MOD 2)=1) % 30)
-1 * ((-1)*31+4(g)*38)=31

If the month has a value greater than 7 and is an odd month the expression
((P1 MOD 2)=1) will evaluate as true and the expression ((P1 MOD 2)=0) will
be false. Thus the total value for the complete expression above will be 30.

If the month is less than 7 the expression (P1>7) will be false and by returning
a value of 0 for false makes the whole expression have a value of 0.

A second expression evaluates the part of the algorithm which deals with the

remaining months. This reads as follows:

(P1<8)*((P1 MOD 2)=0) * 36+ ((P1 MOD 2)=1)*31
+(P1=2)*((P2 MOD 4)=#)+((P2 MOD 4)< >@)*2))

This is built up from a similar expression to that for the months from August
onwards. However, it also has to take account of the month of February and
the fact that it has a different number of days in a leap year. Apart from Febru-
ary, note that even months have 30 days and odd months have 31 days in con-
trast to the other part of the year. The part involved with February is

P1=2) * (P2 MOD 4)=60)+((P2 MOD 4)< >#)*2)

If P1 corresponds to February, the expression (P1=2) will be true and thus return
a value of — 1. The rest of the expression involves deciding on whether the year
is a leap year or not. A leap year occurs if the year is divisible by 4. If this is
the case (P2 MOD 4)=0) will be true, otherwise (P2 MOD 4)< >0) will be

H-12

r

http://www.fastio.com/

true. This means that the expression will return a total value of 1 if the year
is a leap year and 2 if it is not. The way this is built up is again easier to see
if the values are placed under the expressions:

(P1=2)* (P2 MOD 4)=0)+((P2 MOD 4) < >8)*2)
leap -1 *((-1)+(g)*2)=1
non-leap —1 * (([})+(-1)%2)=2

If the month is not February the expression (P1=2) is false and therefore returns
0 and so the whole expression evaluates to 0.

If the rest of the expression is broken down so that the part concerned with
February is marked FEB, the decision as to the days of the months becomes:

(P1<8)*(((P1 MOD 2)=#) *36+((P1 MOD 2)=1)*31+FEB)

Apart from allowing for February the logic is the same as in the other months
of the year except that even months have 30 days and odd months 31.

Suppose that the month is February. A value of — 30 will be returned by the
expression ((P1 MOD 2)=0) * 30 since February is an even month, and also FEB
will return a value of 1 for a leap year, and 2 for a non leap year: The total
expression thus gives 28 days for February in a normal year and 29 in a leap
year, as follows:

(P1< 8) * (P1 MOD 2)=0) * 30 +((P1 MOD 2)=1)*31+FEB)

)#30+(g)#31+ 1)=29

leap -1 *((-1
)% 30 +(])*31+ 1)=30

non leap —1 *((-1

Although this might seem complicated to begin with, it is extremely compact,
and therefore the program runs faster. Try writing the same algorithm as a ser-
ies of IF..THEN statements and see how many lines it involves.

Line 50 defines a function to cope with the case where the number returned
for any part of the date or time is not a two digit number. It adds the leading
“0” if required. It is used in line 390 to print the time and date. For example
FNS$(HRS,MIN,SEC, ““: ") passes the values for the hour, the minutes, the se-
conds and the separator “:” to the variables P1,P2,P3 and P4$ of the function.
Each numerical value is then converted to a string, using the string expression:

RIGHTS (“9”+MIDS$S(STR$(P),2),2)

A number is always printed with a leading and trailing space, so that an expres-
sion such as PRINT “PROFIT”;PR; “percent” does not print “PROFIT 20 per-
cent” but a legible “PROFIT 20 percent”. When a number or a numerical

H-13

wavwlastio.com

ST
o o9
VY 772

~s

variable is converted to a string the leading space is added to the string. Thus
STR$(15) would give a string of length 3, the string “ 15”. The function
MIDS$(STR$(P),2) returns the string starting with the second character. Thus
if P has the value 5, STR$(P) has the value “ 5” and the value returned by
MID$(STR$(P),2) would be “5”, whereas if it were 15 it would be “15”, The
leading zero is added in each case to give “05” and “015” respectively. By tak-
ing the two characters at the right of this string, the zero is lost if the number
had two digits before being converted to a string, but is retained if there was
only one. The string returned by the function is of the form “HH:MM:SS”
in the example described.

Line 60 is a function which is used for manipulating the order of the day, month
and year in the date to cope with the fact that different countries display the
order of these.values in their own way. The order is determined by three items
in the DATA statement associated with that particular country. This makes it
easy to add more countries or change the ones already displayed.

Each DATA statement (lines 3000 — 3090) ends with the three numbers 1,2 and
3. These are in a different order depending on the country. By using this num-
ber with the function defined in line 60, the month, date or year can be found
as follows. The number is passed to the function as the variable P1 will be either
1, 2 or 3, and the value determines which of the statements (P1=1), (P1=2) or
(P1=3) is true. Suppose P1 has the value 1. The statement (P1=1) will be TRUE
and thus return a value of — 1, whereas all the other logical statements will be
false and so return a value of zero. The value returned by the function will be
the value of the variable MN when the signs have been taken into account.

Line 70 initializes the variables used temporarily at various stages in the pro-
gram. The variable OH is used to see if the hour has changed in line 300 and
if it has, a sound is made. Variables T and SS are used to change the display
around the heading as the time changes.

Line 80 reads the number of countries from the first DATA statement in line
3000. This makes it easy to alter the number of countries without having to alter
the program. On the basis of the number read, the following arrays are dimen-
sioned in line 90:

The arrays XP and YP hold the position to print the time and date for each
country;

H-14

http://www.fastio.com/

2

gieh!

™
U

The array ASS$ is used to hold the variable which denotes whether the time is
ahead of or behind the local time;

Inline :270 the fiay, month and year which were determined in line 240 are trans-
fzr(;?c'l into Earlables DY, MN and YR which are used for the subtraction and
' addition subroutines in lines 1000 to 10 i

The three arrays HR, ME and SD hold the values by which the time is different, 0 1080 and 2000 to 2060 respectively.
and L the order in which the date is displayed for each country as used in the
function FNP in line 60.

Line 290 prints the current time and the current date on either side of the main
heading. The date is printed in the format used in Great Britain since the pro-
gram as it stands has the values set for GMT (Greenwich Mean Time). The ord-
er is found by using the function FNP of line 60, with the values set to 2, then
1 aqd then 3 to give day, month and then year. The leading zeros and sepa’lrator
are inserted using the function FNS$ of line 50.

inioiply

The loop 100 to 150 reads the values into the arrays from the data statements,
using the function FNT to convert the time difference from a string into the
appropriate numerical value.

Lines 160 to 210 set up the screen. The graphics character of ASCII code 143 Line 300 sounds the hour.
is printed around the title, and is used later to give a visual indication of the
seconds ticking by. Line 310 determines the current time, using the function FNT of line 20 to split

the string returned by TIMES into hours, minutes and seconds.

VRV

Line 220 is an important line in helping the program run without delays. A large
number of variables are used and they are constantly changing. Initially BASIC-
stores them until it begins to run out of space, then it has to clear out the un-
wanted old values to make space to work. This is known as “garbage collec-
tion” and when it occurs with a large number of variables, it can cause the
program to appear to have stopped working for a time. By executing the func-
tions A=FRE(0) and A=FRE(AS$), both the areas used for numerical and for
string variables are cleaned up. Although the program will actually stop whilst
this process is carried out, many small stops are invisible to the user because
they are forced to happen. This line is the start of the main program loop and
so happens before the screen is changed each time.

}I:in:;g 320 to 350 form a routine to change the graphics characters around the
eading.

Line 360 takes the location of the position to print the time and date from the
arrays XP and YP using the value of X from the loop as index.

ialsielelely

rrome
LU VACUACS IRV

Line 370 determines the time offset for the particular country by indexing the
arrays where they were stored when read from the DATA statements.

DAY B YOO OO0 OO O (
H
'y

Line 389 checks to see if the time offset is positive or negative, and goes to the
appropriate subroutine to determine the time in that country.

-
-

SIS

Lines 230 and 240 use the functions FNT and FND to determine the current
hour and day, date and year from the internal clock in the PX-8. The hour is
used in line 300 to sound the hour if there has been a change. If the hour is
not set in line 230, the hour will be sounded when the program starts because
H will have the value zero and will be seen as not equal to the variable OH in

line 300.

Line 390 formats the printout using the function FNS$ of line 80. The order
of printing the date is determined from the array L.

«
\]

When all the countries have been updated line 410 redirects éxecution to line
220 to repeat the process.

N

«
Y

Line 250 sets the variables T and SS which are used in lines 320 to 350 to define
the position of the changing graphics character around the heading.

The loop in lines 260 to 400 prints out each time and date. The particular coun-
try is indexed by the loop counter X. Line 280 checks whether the key
or + [€] has been pressed. If it has an orderly exit is made in line 420.

H-15

wavwlastio.com

AR

LENE ENE NG

8
N

3

N

The addition and subtraction of time is carried out in the subroutines which
precede the DATA statements.

Lines 1000 to 1080 form the addition subroutine. These routines are straightfor-
ward arithmetic additions. The seconds are converted to minutes and seconds,
and th.e process is repeated for hours and minutes. The minutes offset is added
as variable M1, and the hours offset as HI. When the hours have been deter-

H-16

http://www.fastio.com/

ClibPD

mined a correction is made for the day and if necessary the year. The function
FNN of line 40 is used in line 2040 to determine the number of days in the month.

Lines 2000 to 2060 form a similar subroutine to subtract the time.

H-17

wavwlastio.com

&
-
ey,

v
-
» L

’ OO ¢
gle @5 UHUHOHO

alaln
JJd

DEOEOOADORIBTRBHO

ialely

kY

s

NQRBAOAHODO
Attt

N

L@ OO O ¢

Index

A

Abbreviation for PRINT, 4-157
ABS, 4-5
Absolute value of a number, 4-5
Address
absolute, 4-31
for storage, 4-29
in memory, 4-215
redefine starting, 4-51
return, 4-29
starting, 4-20, D-1
the highest used by BASIC, 4-29, 4-51
ALARM, 4-6
in WAKE mode, 4-8
program to switch PX-8 on and off, 4-10
setting from BASIC, 4-6
using wildcards with, 4-6
ALARMS to obtain ALARM settings, 4-12
AND, 2-32
Algebraic and BASIC expressions, 2-28
Antilogarithms, 4-63, 4-118
Arithmetic operations, 2-27
Array
cancelling definitions, 4-59
dimensioning, 4-53
erasing, 4-59
subscripts, 4-53, 4-142
variables, 4-53, 4-142
subscripts base of, 4-142
subscripts minimum value of, 4-142
ASC, 4-13
ASCII
character set, 2-14, F-1
code, 2-14, 4-25, 4-145, 4-202, Appendix F, H-1
code table, 4-145, Appendix F
control code in, 2-15
format, 4-108, 4-109, 5-2
option for saving BASIC programs, 5-1
string, 4-129, 4-131)
value of the first character of a string, 4-13
ATN, 2-38, 4-14
AUTO, 4-16
Auto line numbering, 4-16

Index-1

http://www.fastio.com/

	./brmA_01.tif
	./brmA_02-03.tif
	./brmA_04-05.tif
	./brmA_06-07.tif
	./brmA_08-09.tif
	./brmA_10-11.tif
	./brmB_01-C_01.tif
	./brmC_02-03.tif
	./brmC_04-05.tif
	./brmC_06-07.tif
	./brmC_08-09.tif
	./brmC_10-11.tif
	./brmC_12-13.tif
	./brmC_14-15.tif
	./brmD_01-02.tif
	./brmD_03-04.tif
	./brmE_01-F_01.tif
	./brmF_02-G_01.tif
	./brmH_01-02.tif
	./brmH_03-04.tif
	./brmH_05-06.tif
	./brmH_07-08.tif
	./brmH_09-10.tif
	./brmH_11-12.tif
	./brmH_13-14.tif
	./brmH_15-16.tif
	./brmH_17-I_01.tif

