ChihPD

wvwfastio.com

oy

o

R
A\
A
S

ey
=
24

o~

o~

AN

i

e e e e oy pm—— — — Sy
i H ! i

A\
wy
\22

vy

Y

g
N
VO OOOOUUOUOOLLOVOLOLVLULUOLL

{
)

OB PR OOO OO

T'J" JU- o'—u"ffo Q oﬁt

:

Chapter 1
GENERAL INFORMATION

A program is a series of instructions which control the operations of a com-
puter. Such instructions must be a part of a predefined set which the computer
is designed to understand, and which are combined in accordance with a fixed
set of rules. This set of instructions is referred to as the computer’s language.
The individual instructions (words) used by the language are referred to as com-
mands, statements, or functions, and the rules which govern the manner in which
instructions are combined are referred to as the language’s syntax.

The programming language supplied with the PX-8 is BASIC (Beginner’s All-
purpose Symbolic Instruction Code). BASIC for the EPSON PX-8 is an EPSON-
enhanced version of Microsoft BASIC which has been expanded by EPSON
for use with the PX-8 and which operates under the CP/M operating system
of the PX-8 (see the PX-8 User’s Manual for further information on the CP/M
operating system). BASIC is loaded into the computer’s memory from a ROM
capsule, by executing the “BASIC” program under CP/M.

Among the enhancements which have been made are:

(i) the addition of a powerful screen editor which vastly increases the ease
with which programs are entered, modified and executed

(ii) a variety of graphic statements and functions which take advantage of the
PX-8’s large 480 by 64 dot display

(iii) statements for selecting different modes of screen operation, such as graph-
ics and split screen

(iv) statements and functions which support communication through the PX-8’s
RS-232C serial interface

(v) statements which make it possible to use the PX-8’s built-in microcassette
drive in the same manner as a disk drive

11

http://www.fastio.com/

(vi) and statements which make it possible to control the computer’s power
supply under program instruction.

Other features of this BASIC are as follows.

e BASIC can be made resident in RAM after loading it from ROM capsule,
allowing it to be started up almost instantly whenever the PX-8’s power is

turned on.

¢ The BASIC program area in memory is divided into five parts, allowing up
to five different programs to be held simultaneously. This facilitates develop-
ment of programs and makes it possible to use multiple program applications.

e The LCD screen can be switched between any of four different screen modes,
which are (1) a full screen text mode in which the screen consists of 7 or 8
lines (depending on whether function key definitions are displayed) of 80
columns each; (2) a split screen mode, in which the screen is divided into
two consecutive halves of 39 characters each; (3) a twin screen mode, in which
two separate areas in display memory are displayed simultaneously; and (4)
a graphic mode which is used for drawing figures and diagrams with PX-8
BASIC’s graphic statements.

The microcassette drive built into the PX-8 is supported as a disk device. This
means it can be used in almost exactly the same manner as if it were a disk
drive. This also applies to auxiliary storage devices such as ROM capsules
(which because they are ROMs can only be read from and not written to),
and an area in random access memory which is referred to as RAM disk.
Floppy disk drives connected to the PX-8’s high speed serial port are treated
as normal disk drives. The ability to use the PX-8’s random access memory
in the same manner as if it were a disk drive (RAM disk) is particularly use-
ful because it allows utilization of disk-based functions which ordinarily would
require a disk drive. The microcassette drive has some limitations. The main
differences are the speed of access and the fact that tape access is sequential,
so that random access file handling is not possible.

Procedures for installing and starting up BASIC are described below. Before
following these procedures, you may wish to use the CONFIG command of
CP/M to select the printer output port (high speed serial or RS-232C) and to
specify the default parameters for communication through the RS-232C inter-
face. See the PX-8 User’s Manual for details.

ChihPDF - www.lastio.com

[\

——

A
R
5\\\

s

i

{
—— — —

o~
o/

AR
RN
-
RN
-
N
A
k24
-~
s
\/4
2
A

2

y €

?1
deleialaielaiet :
VO VIV J ULV OVOLVOLVUOOLLOUOUWUOUWOULLVLULYWOLUYVOLOLOLAO

J)

ro

i‘ z i N
__V ¥

1.1 Installing BASIC

BASIC for the PX-8 is distributed in the form of a ROM capsule which must
be installed in the back of the PX-8 before BASIC can be loaded. The location
of this socket and procedures for changing ROM capsules are as described in
the PX-8 User’s Manual. BASIC can be inserted in either ROM socket 1 or ROM
socket 2 and would be loaded from the ROM drive which has been allocated
to that socket as if it were a program on a conventional floppy disk.

If you are using an applications program ROM as regularly as BASIC, and wish
to have the applications ROM as well as BASIC, you may consider using PIP
to transfer some of the CP/M utility programs from the utility ROM into the
RAM disk area or even onto cassette tape. Details of how to use PIP to do this
are given in the User’s Manual.

NOTES:
1. BASIC cannot be started if the RAM disk size is set to 24K with the CONFIG
command.

2. If a ROM capsule is changed for any reason while in BASIC, execute the RESET
command.

http://www.fastio.com/

ClibhPDF -

1.2 Starting BASIC

When you switch on the PX-8, there are a number of possible states in which
the computer can be. If it is in the middle of an applications program (either
because the power has been switched off with [cTRL | held down, or the power
has automatically switched off because there was no input), then it is necessary
to exit from the program before loading BASIC. The other possiblities are that
the CP/M command line is displayed, or the MENU screen has been set.

(a) USING BASIC FROM THE CP/M COMMAND LINE

Entering BASIC from the CP/M command line is achieved by treating the BASIC
ROM as a program on a disk drive. Thus if the system prompt says “A >, you
would need to type “B:BASIC” or “C:BASIC” followed by the key
in each case, depending on which socket the ROM has been placed in, and which
ROM has been allocated to which drive. (Allocation of drive names is carried
out with the CONFIG program which is described in the User’s Manual. If you
wish to find out in which drive BASIC is located, use the DIR command of
CP/M rather than using the CONFIG program). On pressing[RETURN |, BAS-
IC will be loaded into RAM. If you wish to run a BASIC program directly you
can do so by adding the name of the program and its drive location, as for
example running the program ‘“NAME’’ which is located in drive A: when BAS-
IC is in drive C:

A>C:BASIC A:NAME.BAS

In this case there MUST be a space between the word BASIC and the drive
name in which the program sits. The extension ‘‘.BAS’’ showing that ‘“NAME”’
is a BASIC program is not necessary. However, if a BASIC program has been
named with a different extension (e.g. ‘. GPH’’ so that all graphics programs
are identifiable), then this extension MUST be used; otherwise the computer
cannot find the program. Also in this particular case, since the default drive
name is A: it is not necessary to type it in before the name of the BASIC
program.

(b) ENTERING BASIC FROM THE MENU

The PX-8 has a mode which allows easy loading of programs which are set up
on a menu. A description of how to use the MENU is given in the User’s Manual,
and details of setting up the menu for use with BASIC is given in section 1.4.2
(Warm starts) of this manual.

If you have set up the MENU so that BASIC is one of the files to appear on

1-4
wvwfastio.com

-

@ 6O bR R (B (B ()

- — — -
H

VOUVVLLULLULUULUUL

{

Lﬂ?

it there are still a number of possibilities, depending on whether BASIC has
been used previously and on whether you wish to run a BASIC program direct-
ly. The possibilities are as follows:

(i) BASIC.COM is the first file on the MENU.

(ii) BASIC.COM is on the MENU but not the first file.

(iii) BASIC is resident in memory.

(iv) You wish to RUN a stored BASIC program.

(v) You wish to run a BASIC program directly when BASIC is resident.

(i) BASIC.COM s the first file on the MENU

The simplest case is when BASIC has not been used when the PX-8 is switched
on. If the MENU has been set up to show the files on the drives allocated to
the ROM sockets, the appearance of the screen will be as follows if BASIC.COM
is the first file in the main MENU area in the top left hand corner. The com-
mand line will have “BASIC” entered by the computer, together with the drive

name prefix. BASIC.COM with its drive prefix will be flashing in the main menu
area.

B:BASIC

**% MENU screen *%% @1/01/84 (SUN) 190:00:23
B:BASIC

S4.5k CP/M ver 2.2 PAGE 1/1
Com

Simply pr.essing the key will load BASIC into memory from the ROM.
BASIC will take a few seconds to load. Section 1.3 describes what to do next.

WARNING:
In loading BASIC into memory, any other programs already there will be destroyed.

(ii) BASIC.COM is not the first file on the MENU

Depending on how the MENU was set up, BASIC.COM may not be the first
file on the MENU. For example '

S54.5k CP/M ver 2.2 PABE 1/1

A: GRAPH. BAS

*#%% MENU screen *#% ©1/01/84 (SUN) 10:19:37
A: GRAFH BAS B:BASIC oM

http://www.fastio.com/

The MENU screen will automatically put the first program in the top left hand
position onto the command line. If, as in the screen above, the first program
is not BASIC.COM, then you must put BASIC onto the command line using
the cursor keys to select it. The screen display will then change as follows

*%% MENU screen *%% ©1/01/84 (SUN) 10:11:11
B:BASIC -
A: GRAPH BAS B:BASIC com

S54.5%k CP/M ver 2.2 PAGE 1/1]

and BASIC.COM will be flashing in the main MENU area. Now BASIC can
be loaded by pressing the key, as in the previous example.

(iii) BASIC is resident in memory
If BASIC had been used when the PX-8 was switched off, instead of the MENU
screen showing BASIC or indeed another program on the command line, the
following display would come up

*%% MENU screen *¥% 91/01/84 (SUN) 10:12:07 S4.5k CP/M ver 2.2 PAGE 1/1

BASIC (resident) A:GRAPH BAS B:BASIC CoM

and the first program position showing “BASIC (resident)” would be flgsh—
ing. The command line is empty when this occurs.

Simply pressing will enter BASIC without loading it.

(iv) Running a BASIC program directly)

The MENU can also be used to select and RUN a BASIC program directly. If
the program is selected by means of the cursor keys, the screen will appear as
follows.

*%% MENU screen %x%x ©01/01/84 (SUN) 10:26:58 S54.5k CP/M ver 2.2 PAGE 1/1

B:BASIC A: GRAPH. BAS -
BASIC (resident) B:BASIC com At GRAPH BAS A: SAMPL BAS
A SAMP2 BAS

Note the appearance of the command line. This means that BASIC will be loaded
first, and then the program in order to RUN it.

1-6

- ClibPDF - wyww.lastio.com

T

(V)

{

,
7 ¢
1

Y
7 4

- — —

H 1 i

7
1

|

VOOV UOLUUWUULULLOOUUOULVLLLVLULULVUYLLUL

[

“wr
wr

By

wr

A
s

ENN
A4

AN
£ 24

A
s
PSS
L4

slslele

A
A4

SN
s

an
.

AR

. 3 PR
\ E ~E Ny

oo

L

[olpte

N
V]

WARNING:
If a BASIC program is RUN in this way, all the BASIC programs in memory
which lie in the BASIC program areas 1-5 WILL BE DESTROYED.

If the MENU is used to run a BASIC program directly when the program is
put onto the command line, it should appear as in (iv) above. If it does not,
you have made an incorrect entry when setting up the MENU option on the
System Display, and should refer to the User’s Manual to see the correct way
to set up BASIC programs.

(v) Running a BASIC program directly when BASIC is resident

The situation may occur that the program is in memory when BASIC is resi-
dent. Whereas it is possible to go to the BASIC program menu and then run
the program as described in the next section, it may be more convenient to run
a program directly from the MENU screen. This can be achieved using the fol-
lowing commands which are described fully in Chapter 3.

/Pmn
where n is a program area from 1 to 5 (e.g. /P:4 means program area 4), will
enter BASIC and login to this area.

*%% MENU screen **¥ 01/01/84 (SUN) 16:31:33 S4.5k CP/M ver 2.2 PABE 1/1

/Fia_

BASIC (resident) B:BASIC comM A GRAFH BAS A: SAMF1 BAS
f: SAMP2 BAS

/R:n

where n is the program area, will enter BASIC and run the program in the speci-
fied program area.

*#%% MENU screen *%*% ©1/901/84 (SUN) 160:31:59 S54.5k CF/M ver 2.2 PAGE 1/1]
/R:2

BASIC (resident) B:BASIC coM A: BRAFH BAS A: SAMP1 BAS

A BAMP2 BAS

1-7

http://www.fastio.com/

ClibhPDF -

1.3 The BASIC Program Menu

Once BASIC has been started, the BASIC program menu is displayed as shown
below.

EPSON BASIC ver—1.@ (C) 1977-1983 by Microsoft and EPSON
Move cursor, RETURN to run or SPACE to login.

R Pi: @ Bytes
F2: © Bytes
P3: @ Bytes
Pa: @ Bytes
PS: @ Bytes

14749 Bytes Free

This might look slightly different if BASIC was already resident, in which case
a display such as the following could appear.

EPSON BASIC ver—1.0 (C) 1977-1983 by Microsoft and EPSON
Move curser, RETURN to run or SPACE to login.

B P1:6RAPH 27 Bytes
P2: © Bytes
PZ: @ Bytes
Pa: © Bytes
PS: @ Bytes

14722 Bytes Free

Again, if the command line was of the form shown in (iv) of section 1.2 or the
entry from the CP/M command line was to run a BASIC program directly,' the
above menu would only flash up briefly before the program began running.

The BASIC program menu shows the number of bytes of program text con-
tained in each of BASIC’s five program areas (P1 to P5) and the number of
free bytes of memory which are available for use as string area, variables, or
additional program text. (The BASIC interpreter automatically handles alloca-
tion of memory between the three of these as appropriate.)

The following keys can be used while the BASIC program menu is displayed.

Moves the cursor upward.
[+] Moves the cursor downward.
Logs in (selects) the program area indicated by the cursor

and executes the program which is present in that area.

1-8
wavwfastio.com

Y

2
-.1;-‘

v
sivioieieisieisis
VOO

i

)«
H‘—‘

wy

—
QLOLOLLVLLLOLVLUL VL

w

@
T"’!

V)

o

AN

lele!

M
[V XV V)

o,

AN

~r

!!! "

-~
.

_~
-

¥
JUuU

ls

g
213
213
-\ L:
- L

- LO
=2

Logs in the program area indicated by the cursor, but does
not execute the program in that area.

Since the cursor is shown to the left of “P1:” at this point, pressing the space
bar here logs in program area 1. To select another program area, move the cur-
sor up or down with the “up” and “down” arrow keys before pressing the space
bar.

If no program exists in any area (shown by the length of program text being
0 bytes), then[RETURN |simply logs into that area. On logging into such an area
the screen appears thus

EFPSON BASIC ver-1.0 (L) 1977-1983 by Microsoft and EPSON
14749 Bytes Free

Pl: @ Bytes

0k

n

The “Ok” displayed at the end of this message indicates that BASIC is at the
command level; in other words, that it is ready to accept commands. At this
point the BASIC interpreter may be used in either of two modes: direct (im-
mediate) mode or indirect (execution) mode.

Commands and statements entered in the direct mode are not preceded by pro-
gram line numbers. Instead, they are executed immediately when the
key is pressed. Since commands/statements entered in this mode are executed
as they are input, the results of arithmetic and logical operations are displayed
immediately (they can also be assigned to variables for later use). However, the
commands themselves are lost once they have disappeared from the screen. This
mode is useful for debugging and for using BASIC for simple, non-repetitive
arithmetic operations.

The indirect mode is the mode which is used for entering programs. In this mode,
commands, statements, and functions are preceded by line numbers which indi-
cate the order in which they are to be executed. However, commands and state-
ments entered in the indirect mode are stored in memory without being executed;
execution is deferred until the program is RUN. The indirect mode is used when
working with complicated calculations or operations which must be performed
many times or stored to be recalled for use at a later date.

1-9

http://www.fastio.com/

From the point of view of the user, the only difference between the direct mode
and the indirect mode is that commands and statements entered in the indirect
mode must be preceded by line numbers. The com:puter automatically switches
from one mode to the other according to whether commands/statements are
preceded by line numbers.

1-10

- wawwlastio.com

? ¢
i

®
—
\

|
-

clsivisivieiainle
QCLLLVLLUVLOLVLOULULYOL

slelsle

FU 0 U

RiRiniy

m
U

_—
-
- Y
-
-
-
£
~
A
-
S
wor
y
-
-~
k.
k1
e 4
-
W
PN
-
P
o E
it
-
-~
< g
-
v
s
ar
N
e
AW
g
AR
-
.
-
P
8
~
-
-
4
P
L4

S
L3
3
S

1.4 Warm Starts and Cold Starts

There are two methods for starting up BASIC: the cold start and the warm start.

1.4.1 Cold starts

A cold start is made when the BASIC interpreter is loaded into the memory
of the PX-8 from ROM capsule. This type of start is made by executing the BAS-
IC command or by selecting the BASIC.COM file from the menu.

NOTE:

The BASIC program areas are cleared whenever a cold start is made. A cold start
must be made whenever the PX-8’s power switch is turned on unless it is made
resident in the PX-8’s memory (the area in which utility programs such as the

BASIC interpreter are stored while they are being executed). In this case, BASIC
can be started up by making a warm start.

1.4.2 Warm starts

A warm start is the procedure by which BASIC is restarted when it is already
present in memory. BASIC becomes resident in memory when loaded, and re-
mains there when the power is turned off if the MENU screen function has been
turned on. In this situation, the screen appears as shown below when the power

switch is turned back on.
54.5k CP/M ver 2.2 PAGE 1/1 w

Procedures for turning on the MENU screen function are as follows.

BASIC

*%% MENU screen *x* @1/01/84 (SUN) 19:40:41
(resident) B:BASIC comM

(1) Turn on the computer’s power switch and if the system prompt (“A>" or
another drive name) is displayed, proceed as follows:

(2) Press the [CTRL | and [HELP | (SYSTEM) keys together; this causes the Sys-
tem Display to appear as shown below.

1-11

http://www.fastio.com/

*#% SYSTEM DISPLAY *#% 91/61/84 (SUN) 10:41:35
<RAM DISK> @89 kb <AUTO START>
<USER BIOS> @00 256 b <MCT MODE > stop, nonverify <COUNT> &5535
<MENU DRIVE> CBA <MENU FILE> 1 .COM 2. 3 . 4 .
- Select number or ESC to exit. B
i=password 2=alarm/wake 3I=auto start =menu S5=MCT
<</ < /mount /dirinit >» /erase /

(3) Now press thet@ key to select the menu specification mode; this causes the
screen to change as follows.

%% SYSTEM DISPLAY ##x @1/01/84 (SUN) 10:42:04
<RAM DISK> 999 kb <AUTO START>
<{USER BIOS> 000 256 b <MCT MODE > stop, nonverify <COUNT> 65535
<MENU DRIVE>» CBA <MENU FILE> 1 .COM 2 . 3. 4 .
- Select number or ESC to return.lB
ZMENU> i=off 2=on 3=drive 4=extl S=ext2 6&=ext3 7=ext4d

(4) When the screen changes as shown above, press the [2] key; the display will
also show “<MENU>” towards the top right of the screen to show that
the menu option is set.

x%xx SYSTEM DISPLAY #*%% Q1/01/84 (SUN) 10:44:07 <MENU>
<RAM DISK» 009 kb <AUTO START:)
<USER BIOS>» @90 256 b <MCT MODE > stop, nonverify <COUNTX 45535
<MENU DRIVE> CBA <MENU FILE> 1 .COM 2. 3. 4 .
- Select number or ESC to return.|l
“MENU> 1=off 2=on 3=drive 4=extl S=ext2 =exnt3 7=extd

This causes BASIC to become resident in memory the next time it is loaded,
as well as causing the PX-8’s MENU screen to be displayed the next time
BASIC operation is ended. Finish by pressing the key once to return
to the System Display, then once again to redisplay the system prompt
(“A>").

112

ChihPDF - www.lastio.com

Y«
NS 4
QLouLLLLLYLU

) U

~
Q

» O H O H H OO

n »

>
>
>

(5) Pressing +[C] or the key at this point causes the system
to go immediately to the MENU screen, where BASIC can be loaded and
executed simply by pressing the key. (BASIC can also be loaded
and executed at this point by entering “B:BASIC” or “C:BASIC”, depend-
ing on the ROM socket into which BASIC has been inserted as described
in section 1.1 and which drive it has been allocated to as described in section
1.2(a). Log into one of the BASIC program areas by pressing the space bar,
then return to the system by entering SYSTEM and pressing the
key.) The MENU screen will now appear as shown below.

%% MENU screen *#% ©1/01/84 (SUN) 10:43:12

54.5k CP/M ver 2.2 PAGE 1/1
BASIC (resident) B:BASIC coM

The words “BASIC (resident)” at the left side of the screen indicate that BASIC
is resident in memory. At this point, these words should be flashing on and off;

this indicates that BASIC execution will be restarted when the key is
pressed.

BASIC will remain resident in memory until one of the following actions is per-
formed:

(1) One of the system utilities is executed;

(2) A cold start of the system is made (see the PX-8 User’s Manual);

(3) The MENU screen function is turned off from the System Display (see the
PX-8 User’s Manual);

(4) The MENU screen is terminated by pressing the key.

Once BASIC has been made resident, programs in the BASIC program areas
will be retained even if the PX-8’s power switch is turned off and back on again.
Further, the maximum number of files, upper memory limit, and so forth are
maintained from the last time BASIC operation was ended.

WARNING:

If the MENU screen function is switched off via the System Display, BASIC will
not be resident and the programs in the BASIC program areas will be lost. It
is always good practice to save all programs as well as leaving them in memory.

113

http://www.fastio.com/

ClibhPDF -

1.5 Ending BASIC Operation

BASIC operation is ended and control returned to the CP/M operating system

(or the MENU screen) by typing SYSTEM and pressing the [RETURN |key. (This
command can also be executed from within a program.)

Example
10 ...
20 ...
30 ...
SYSTEM
A>
Note:

In the example above, the symbol““[RETURN |” indicates that the operator hits
the key. This also applies to other examples throughout this manual.

BASIC operation is also terminated when the PX-8’s power goes off. This oc-
curs under the following circumstances.

(1) When the PX-8’s power switch is turned off;

(2) When there are no entries typed in from the keyboard for the amount of
time specified with the POWER < duration> command while the PX-8 is
standing by for input (either at the command level or during execution of
an INPUT statement);

(3) When the POWER OFF command is executed.

If the POWER OFF command has been executed, when the PX-8 is turned on
again, the MENU screen will be the resumption point. It is possible to have BAS-
IC operating as it was at the point at which the power was switched off if one
of the following conditions is met:

(1) The power switch is turned off while pressing the key;

(2) The power switch is turned off during execution of a command or program;
or

(3) The power goes off because no entries have been typed in from the keyboard
while the PX-8 is standing by for input.

1-14
wvwfastio.com

3\

vy

vyy

o~

vy

-~
vry

IS 3
24

A

.

A

his

i

1

slelsleslnininia

P r]
VVLOLVLLLVLOLOVUWULVVLOLOULVLLOCLUOUL

yigipls

e
J

JU O

ARIY

1.6 Functions of Special Keys in the BASIC Mode

The keyboard of the PX-8 includes a number of special keys as indicated in the
figure below.

sTop €sc PAUSE _ HELP H PEY I or2 [re) 4 wrs | % :;;s { } SCRN IR
Eoa I I llsm ;ug T s [1 ws || oe
! " # $ % & : { } - = - + || HomE
1 2 3 4 5 6 7 8 9 0 - - 8BS
4 5 6 .
TR [Q w E R T Y V) 1 0 P @ - 3 -
1 2 3 1
em | Al slo| Flle|mw ol o] T %1 serom 8
0
SHIFT z X C \" B N M < > ; SHIFT ::;
CAPS
LOCK CTRL
L

Functions of these special keys during BASIC operation are as follows.
to The Programmable Function Keys

These are the PX-8’s programmable function keys. Each key contains two func-
tions, the second of which is accessed by pressing the shift key as well as the
function key. In this case the keys are numbered to , for instance,
when shifted is known as . Any string of up to 15 characters can
be assigned to each of these keys with the KEY command of BASIC or the CON-
FIG command of CP/M; afterwards, that string of characters can be entered
simply by pressing the applicable programmable function key. This can greatly
reduce the need to type in commands one character at a time from the keyboard.
See the explanation of the KEY command in Chapter 4 and the discussion of
the CONFIG command in the PX-8 User’s Manual.

There is a third function of each key which is accessed by pressing the
key at the same time as the programmable function key. This causes a machine
code subroutine to be executed. In the case of the key this has been set
to dump the screen to a printer. The others can be set by the user. Procedures
for doing this are described in the PX-8 OS Reference Manual.

115

http://www.fastio.com/

sle

A
U

together). The PAUSE condition is then released by pressing any key other than
STOP | or [CTRL | and . Pressing either of these will terminate either the
listing or the program execution.

When BASIC operation is started, the first seven characters of the character string
assigned to each of the programmable function keys is displayed at the bottom
of the screen. Definitions for the unshifted and shifted functions are displayed
together (separated by a slash). Display of these definitions can be turned on
or off as required with the SCREEN command (see Chapter 4) or by using a
control sequence as follows:

M1
VOO

Ble
Y

™
QU

[SCRN DUMP] ([CTRL] + [PF5])

The key outputs the contents of the screen to the printer. The
screen contents are output to the printer as ASCII character codes when screen
modes 0, 1, or 2 (the text modes) are selected, and in bit image format when
the screen mode 3 (the graphic mode) is selected. The same result is obtained
by executing the COPY statement in BASIC. (A detailed explanation of the screen
modes are given in Chapter 2).

Fva

PRINT CHR$(27); CHR$(&HD3); CHR$(1) will turn the display off
PRINT CHR$(27); CHR$(&HD?3); CHR$(0) will turn the display on
again.

alelals
VLU

The default settings of the function keys are as follows:

flilsltto E:E:g:‘j ; lsoai:“ Eg This key interrupts execution of BASIC programs anfl returns the BASIC inter-
edit (shifted [PF3]) system EQ preter to the command mode. gThe same fesult is obtained by pressing the[CTRL]
stat (shifted [PFa]) menu AM a_nd [Clkeys tog.ether). Execution of the mte{ruptec'l program can then be con-

PF5) run AM (shifted) login tinued by entering the CONT command. This key is also used to terminate au-

tomatic program line number generation initiated by the AUTO command.

i

With function keys such as where there is a carriage return in the com-
mand, the command will be executed as soon as the key is pressed. Some (such
as [PF8]) have been defined without a carriage return to ensure that the user
makes the final decision on their execution, since if a mistake were made the
results could destroy a program. Others (such as [PF6é |) must have further input

The STOP KEY command can be used to disable or re-enable the key
(see the section on STOP KEY in Chapter 4).

v

[cTRL | + [sTOP |

or an error message will be generated. There are also commands such as LIST
which can have optional characters added. Thus typing the letter “L” followed
by [PF1], will result in Llist being generated, and a listing will be printed on
an external printer when[RETURN |is pressed. Similarly, pressing and then
the characters “ — 100” will generate LIST-100 and the lines of the program in
the current logged in area will be listed to the screen as far as line 100.

If you are typing many lines of a program using a particular command frequently,
it may be useful to change one of the function keys temporarily using the KEY

Pressing [CTRL] and [STOP | together during write or read access to the microcas-
sette drive forcibly terminates the access operation and generates an error. (This
function cannot be disabled by the STOP KEY command in BASIC).

However, if a search is being performed (if the tape is being wound to a specific

counter reading to prepare for access) + will not stop the drive
until the search is completed.

[CTRL | + [HELP |

Pressing the | CTRL | and [HELP | keys together switches operation back to the
System Display mode. This means that options such as setting the MENU screen,
and setting the alarm and wake independently of BASIC can be carried out just
as at the CP/M command level.

At etel bty

=
J

function of BASIC. However, the value you use will be lost when BASIC is cold
started and reset to the default values.

The key makes it possible to temporarily suspend listing of a BASIC
program with the LIST command, or to temporarily stop execution of a BASIC
program. (The same result is obtained by pressing the and [S] keys

PAARAINAAOOOOOAIOOO OO OONOOOGO DI

» (¢

4

1-16 117

ChihPDF - www.lastio.com

http://www.fastio.com/

Chapter 2

ipisinielsle

H

PROGRAMMING CONCEPTS

o e |
VU U

G

LUy

This chapter discusses a variety of concepts which are applicable to program-
ming in BASIC for the PX-8. These are presented in logical order, with the most
fundamental concepts presented first. Mastery of the information included in
this chapter is essential to realizing the full potential of the capabilities of BASIC.

slale
VRV

(V]

2.1 Program Lines and Statements

All BASIC programs are composed of one or more lines, each of which begins
with a line number, ends with a carriage return (or[RETURN)), and includes one
or more commands, statements, or functions. The line numbers indicate the order
in which the lines are stored in memory and executed. Lines numbers are refer-
enced when the program is edited or when the flow of execution is switched
from one point in a program to another. (See the descriptions of the GOTO
and GOSUB statements in Chapter 4). Line numbers must be within the range
0 to 65529.

-
OL

eyt

Commands and statements are words in the BASIC language which instruct the
computer to perform specific operations. Each line of a program may consist
of a single statement, or several statements which may be included on one line;
in the latter case, each statement must be separated from the one following by
a colon, and the total length of each program line cannot exceed 255 characters.

BOIPIAANINNDOANOOONAOOOOOOO OO DYDY PP

=

ChbPD wvwfastio.com

http://www.fastio.com/

ChihPD

2.2 Multiple Program Areas

In PX-8 BASIC the BASIC program area is divided up into five parts, making
it possible for up to five separate BASIC programs to be present in memory
simultaneously. The program area selected is determined by the /R: or /P: op-
tions when BASIC is started. Once BASIC has been started, program areas can
be switched by executing the LOGIN command (either in the direct mode or
from within a program); this makes it possible to chain execution of programs
between areas.

Further, the TITLE command can be used to assign names to the program areas
displayed in the BASIC program menu; this command includes an optional
parameter which can be specified to prevent the program in the applicable area
from being edited or accidentally erased.

In addition the STAT command makes it possible to determine the status of
the currently selected program area or other program areas.

The BASIC program areas are managed on a dynamic basis; that is, BASIC

allocates memory to each of the areas according to the size of the program that
area contains.

wvwfastio.com

glaltishty

IR IAIRIRIRIEH

SN

,2.3 Screen Editor

The screen editor is a feature of EPSON BASIC which makes it easy to enter
and edit the lines of BASIC programs. This ability is central to programming
the PX-8 in BASIC.

The screen editor uses the concept of logical lines for display of commands and
statements (in the direct mode) or program lines (in the indirect mode). A logi-
cal line is a collection of characters which is handled by the screen editor as
one logical unit, regardless of the number of physical screen lines which it may
occupy. Normally, a logical line is terminated by pressing the [RETURN] key.

During typing, logical lines are automatically continued when the cursor moves
from the right side of the screen to the beginning of the following physical line.
This applies regardless of whether the cursor is moved by typing characters or
spaces, or by the key.

There are several methods of editing lines of BASIC programs which have previ-
ously been stored in memory. The most primitive is simply to retype the entire
line using the same line number. The BASIC interpreter automatically replaces
the old line with the new one when the key is pressed.

However, the screen editor makes it possible to edit a logical line (after display-
ing it, if necessary, with the EDIT or LIST commands; these commands are
explained in detail in Chapter 4) by moving the cursor to that line with the cur-
sor controls, then making changes using the screen editor’s control keys. A vari-
ety of keys are provided for use with the screen editor; these keys are described
below.

4131 [«

At the command level, these keys move the cursor (the. flashing square which
appears on the screen during BASIC operation) in the directions indicated by
the arrows on the key tops. These keys are equipped with a repeat function which
moves the cursor continuously at a steady rate when any of the keys is held down.

TAB

The[TAB]key moves the cursor to the right from its current location to the next
tab position on the screen. The liquid crystal display screen of the PX-8 has
10 tab positions, starting with the column on the far left side of the screen. (A

column consists of one character width in the same position on each line of

2-3

http://www.fastio.com/

the screen). Subsequent tab positions are located in every eighth column. The
same effect is achieved by pressing the and [I] keys together.

The (backspace) key deletes the character located immediately to the left
of the cursor and moves the remainder of that logical line to the left by one
character position. This key does nothing if pressed while the cursor is at the
beginning of a logical line. The same effect is achieved by pressing the
and [H] keys together.

[cTRL] +[A]

Pressing these keys together moves the cursor to the beginning of the logical
line in which it is currently located.

[CTRL] +[B]

Pressing these keys together moves the cursor to the first character of the word
preceding its current position. For the purpose of this function, a word is any
group of letters which is separated from other letters by a space or special charac-
ter. The same result is achieved by pressing the[SHIFT _Jand keys together.

[ctRL] +[F]

Pressing these keys together moves the cursor to the first character of the word
following its current position. The same result is achieved by pressing the
and [+] keys together.

+

Pressing these keys divides the logical line into two parts at the current position
of the cursor. When the cursor is already located at the beginning of a logical
line, it inserts a logical line consisting only of spaces. If the cursor is positioned
to the right of the last character in a logical line, it inserts a logical line consist-
ing entirely of spaces between the current logical line (the line in which the cur-
sor is located) and the following one. ‘

[CTRL] +[X]

Pressing these keys together moves the cursor to the position following the last
character in the current logical line.

[HOME] ([smFT_]+[BS])

Pressing these keys together moves the cursor to the home position without clear-
ing the screen. The same result is achieved by pressing the and [K] keys
together.

2-4

ChihPDF - www.lastio.com

v EQ

&
(V)

)

.y
LUV

«» 4«
NV N

Sty

NN A I I AN

DEL
Pressing the key deletes the character which is located at the position of
the cursor and moves the remainder of the logical line to the left by one charac-
ter position. No characters are deleted if this key is pressed while the cursor is
at the end of a logical line.

[cTRL] +[E]

Pressing these keys together deletes all characters from the cursor position to
the end of that logical line.

[craL] + (2]

Pressing these keys together deletes all characters from the cursor position to
the end of the screen.

[CLR] ([_SHIFT_] +[DEL])
This key clears the entire screen and moves the cursor to the home position (the

upper ieft corner of the screen). The same effect is achieved by pressing
and

[ins]

Pressing this key once places the screen editor in the insert mode; pressing it
again (or pressing any of the cursor control keys or the key) restores
normal operation. In the insert mode, the cursor and characters from the cur-
sor to the end of the logical line are moved to the right by one position when
any character key is pressed; the character typed is then inserted at the cursor’s
former position. The red INS LED built into the keyboard lights when the screen
editor is in the insert mode, and the cursor changes from block form to under-
line form. '

T[hEe screen editor can also be placed in the insert mode by pressing and
together.

Pres.sing this key executes direct commands in the logical line in which the cur-
sor is located or stores program lines in the computer’s program text area. Oper-
ation is the same no matter where the cursor is located in the logical line.
The same effect is achieved by pressing the and [M] keys together.

STOP

The 'principal function of this key is to halt program execution. Pressing this
key in the command mode moves the cursor from the logical line in which it

’ is currently positioned to the beginning of the next logical line. This key is also

2-5

http://www.fastio.com/

used to terminate automatic program line number generation by the AUTO com-
mand. The same result is achieved by pressing the and keys together.

CTRL | +[=]

Pressing these keys together switches the cursor to virtual screen 2. This key
is effective only while BASIC is in the program input mode, and cannot be used
during execution of an INPUT or LINE INPUT statement. (See section 2.13
below for an explanation of the PX-8’s virtual screens.)

[ctRL] +[+]

Pressing these keys together switches the cursor to virtual screen 1. This key is
effective only while BASIC is in the program input mode, and cannot be used
during execution of an INPUT or LINE INPUT statement.

2-6

ChihPDF - www.lastio.com

vy a
- :
vy

e 3

v r
259
- b
A

vy
an
A4
PPN
-
i
.
-~
v’

Q!

2.4 EDIT Mode

In addition to the screen editor, PX-8 BASIC features an edit mode which in-
creases the efficiency of program editing by making it possible to scroll to any
point in a program. The edit mode is entered by executing the EDIT command
in the direct mode (see the explanation of the EDIT command in Chapter 4),
and is terminated by pressing the or keys.

The keys used for scrolling, cursor movement and program editing in the edit
mode are basically the same as with the normal screen editor. However, func-
tions of certain keys differ as follows:

(1) Cursor control keys

In the edit mode, the cursor control keys (, , and)
move the cursor in the same manner as when the screen editor is used in
the normal direct mode. However, when the cursor is moved to the logical
line at the top or bottom of the screen, that line is automatically scrolled
as necessary to bring it completely inside the real screen. (This operation
is performed when part of the program has been moved beyond the outside
of the screen by previous scrolling).

@ (s]+ (7]

When only part of a logical line is displayed at the top of the screen, press-
ing [SHIFT_]and together scrolls the screen so that the entire logical
line is displayed, then moves the cursor so that it is positioned at the begin-
ning of that logical line. Otherwise, the screen window is scrolled as neces-
sary to display the logical line preceding that displayed at the top of the screen.

() CshiFr_] +[3]

When only part of a logical line is displayed at the bottom of the screen,

pressing and together scrolls the screen so that the entire
logical line is displayed, then moves the cursor so that it is positioned at the
beginning of that logical line. Otherwise, the screen window is scrolled as
necessary to display the logical line following that displayed at the bottom
of the screen.

@) +[1]
Pressing and together clears the screen, displays the program’s
first line, and moves the cursor to the beginning of that line.

2-7

http://www.fastio.com/

ChihPD

) +[3] , ,
Pressing and together clears the screen, displays the program’s
last line, and moves the cursor to the beginning of that line.

©)

Pressing this key clears the screen and terminates operation in the edit mode.

)

Pressing the key terminates operation in the edit mode without clear-
ing the screen.

When editing programs, remember that changes made on the screen are not

reflected in the program in memory until the key has been pressed
with the cursor located in that line. This applies both in the edit mode and to
changes made using the screen editor in the normal mode.

Direct mode commands can be executed in the edit mode; however, BASIC
returns to the normal command level after execution is completed (unless the
command executed is the EDIT command).

wvwfastio.com

2.5 Using the Screen Editor and EDIT

The use of the edit and screen editor modes are best seen with the help of an
example:

Use an empty program area or clear the memory in the area currently logged
in by typing NEW and pressing[RETURN |, then type in the following line of a
BASIC program:

10 REM This is a remark statement

When you press[RETURN], but not until you do, the line will be stored as a BASIC
program line. This line can be edited simply by using the screen editor. Use the
cursor keys to move up the screen so that the cursor lies over one of the charac-
ters of the line which has just been typed in.

With the[CTRL Jkey held down, press the [X] key. The cursor now jumps to the
end of the line so that you can add more characters to it.

With the[CTRL Jkey held down, press the[A]'key and see that the cursor returns
to the beginning of the line. Type a “2 so that the line becomes:

20 REM This is a remark statement

Now holding down the[SHIFT__key, press the right cursor key five times. Each
time it is pressed the cursor jumps to the first character of the next word. With
five jumps, it will be on the “r” of “remark”. Use the shifted left cursor key
to move the cursor back in a similar way.

Reposition the cursor at the beginning of “remark” and with the unshifted left
cursor key place the cursor in the space before the““r”. Now press the[INs] key.
The LED next to INS will light to show that the PX-8 is in insert mode, and
the cursor will become a flashing underline character. Type a word such as “new ”

and press the key.

Now if you LIST the program you will find that it consists of the following
two lines:

29

http://www.fastio.com/

ChihPD

10 REM This is a remark statement
20 REM This is a new remark statement

This means of duplicating lines with the same or similar statements but with
different line numbers can be very useful in saving a great deal of typing, espe-
cially when a program has a number of similar subroutines or loops.

Sometimes it is necessary to split one line into two lines. For example add line
30 to the program to read as follows:

30 FOR N = 1TO 20 : NEXT N

Move the cursor onto line 30 again and move the cursor to the colon using the
shifted right cursor key. Pressing the key will remove the colon if the cur-
sor is directly on top of it. If the cursor is to the right of the colon it can be

removed by using either + [H] orthe key. Now press the [INS]
key and add “ 50 ” so that the line appears as follows:

30 FOR N = 1TO 20 50 NEXT N

This is an incorrect BASIC line. Move the cursor to the space before the “5”
and press the key while holding down the key. The characters from
“50” onwards will be moved to the next line but will not be added to the BASIC
program. However, if the[RETURN Jkey is pressed a line 50 will be added to the
program. The program will now have the following lines if listed:

10 REM This is a remark statement

20 REM This is a new remark statement
30 FORN = 1TO 20 : NEXT N

50 NEXT N

Note how line 30 has remained unchanged, because in exiting from it the
key was not used. Since in moving the “NEXT N” to line 50, line 30
has been left with a surplus statement, it has to be removed. Move the cursor
to line 30 and use + to move the cursor to the end of the line,
then the shifted left cursor key to move it back to the “N” of “NEXT”. The
unshifted left cursor key can be used to bring it on to the colon. If the shifted
cursor key is used, the cursor will move back too far.

2-10
wvwfastio.com

Now press [CTRL | + [E] . The line will clear from the cursor onwards and by
pressing[RETURN | the truncated line can be entered, as can be seen by listing
the program again.

If you wish to clear the rest of the virtual screen from the cursor onwards [CTRL |
+ [Z] can be used instead.

Add line 40 to the program as follows:
40 PRINT “This is line 40”

Now move the cursor up to the “4” of line 40 and make it into line 60 by over-
typing the “4” with a “6”. Move along the line using the shifted right cursor
key or the alternative + [F] . Alter the “4” to a “6” here also.

When line 60 has been added to the program by pressing the [RETURN |key, add
a further line 70 in the same way. It may be faster to use + [X] to
move to the end of the line then the shifted left cursor key to move the cursor
back to the number “6” in the string. Just as + [F] can be substitut-
ed for the right cursor key, so [CTRL | + can be used to move back instead
of the left cursor key.

Now add the lines:

80 FORJ =1TO 10
90 PRINTJ * J
100 NEXT J

Until now only the normal screen editor has been used. In most cases this is
all that is required, since a program can be listed and edited by moving around
the screen. The important point to remember is that the line is only altered in
the stored program IF THE [RETURN | KEY IS PRESSED.

The EDIT mode has some advantages if a number of lines are to be edited and
if the editing is to be carried out on a screen with a limited number of lines,

e.g. in screen mode 3.

To illustrate the use of the edit mode, type

SCREEN 3,0,0 : LIST

2-11

http://www.fastio.com/

The screen will clear and show lines of the program from 50 onwards, since the
previous ones have scrolled off the virtual screen; in this screen mode it is limit-
ed to 8 lines, the same as the window. The cursor will be seen as a non-flashing
underline character on the bottom line of the screen. Using LIST would be slow
if it was necessary to edit a number of lines in this screen mode. However, EDIT
makes a considerable difference.

Type EDIT and press the key.

The screen will clear and display line 10. This can be edited normally with the
screen editor. Since the screen displayed is screen mode 3, moving the cursor
to the bottom of the screen with the cursor key will not cause line 10 to scroll
off the top of the screen. However, it is possible to scroll through the program
by using the shifted and cursor keys. The screen editor can be used
as described above when a particular line needs to be altered.

In programming, it is often necessary to know which is the first or last line of
a program, because a new subroutine needs to be added or a constant inserted
at the beginning of the program. If the PX-8 is in EDIT mode, pressing
and the [t] cursor key will place the first line on the top of a blank screen ready
for editing. If the and keys are pressed, the last line of the pro-
gram is displayed instead.

To illustrate the use of these keys, type edit 50, so that line 50 is displayed on
the screen. Now press and the key. The screen will clear and line
10 will be displayed. Press the[SHIFT] and[t] keys. Because there is no lower
line number, the cursor will be placed on a blank line, above line 10. Type in
a line 5 as follows, remembering to press| RETURN |to enter it as a line of the
BASIC program.

5 A$=“THE END”

Now press and the key. You can see that the last line of the pro-
gram is line 100. Whereas the[SHIFT]and keys can be used to move to
a new line, it is better simply to press| RETURN |because the contents of line 100
will still be visible. If the [CTRL] and keys are used the screen will be clear
because line 100 will be scrolled off the top.

2-12

ChihPDF - www.lastio.com

Shis

v
N v
1

4

~

~
— -

4
-
~

{

¥ a
7 S
[
J——

X 0
VLVLLLULU

VOVOLLVLUOLOLOLU

b oq
v N

v E:

E;
:
e
2
L2

Now type in a line 110 to complete the program:

110 PRINT A$

There is one other aspect of using the EDIT mode, which applies to any screen
mode, which makes it preferential to using LIST and the screen editor. This may
be illustrated as follows:

Edit line 10 to read as shown so that it runs over more than one line of the screen:

10 REM This is a remark statement which has now been extended to run over
on to the next line of the screen

List the program to line 60. Note that the screen shows only half of line 10.
Move the cursor up to this line and try altering a character. When you
press ,a“syntax error” message will be shown because you tried to enter
a line which was not logically correct for BASIC. The screen couldn’t “see” the
first part of the line so it rejected the line as nonsense.

Clear the screen and list line 10. With the full line present on the screen move
the cursor to the second part of the line and make an alteration. Pressing
the key will cause the change to be accepted. The EDITmode only al-
lows complete lines to appear on the screen, and so prevents the syntax error
obtained using list.

To illustrate this type EDIT and when line 5 has been displayed use the
and keys to display successive lines of the program until line 80 is reached.
At this point, only the part of line 10 which overruns will be displayed on the
screen. Now move the cursor to the top of the screen. As soon as the cursor
reaches the top line, the whole of line 10 is displayed. This would not happen
in the normal screen editor mode.

http://www.fastio.com/

2.6 Types of Data , - F 3 2.6.2 Control characters
£, r; The ASCII character set includes a number of special codes which can be used
2.6.1 Text data — The ASCII character set in programs to control various devices. These control codes have different func-

tions when used to control the LCD screen or a printer. Also they have further
special functions when used with the screen editor. The following table outlines
the functions of the control characters when acting on just the LCD screen. They
are used in a PRINT statement together with the CHR$ function. For example:

The ASCII character set is a set of characters which are internally represented
in the form of 1-bytet numeric codes and converted to characters for display
by the PX-8’s character generator.

The character generator of the PX-8 includes character sets for the following
nine countries.

PRINT CHRS$ (12)

clears the screen.

1. Denmark 2. England There are also extended control sequences which consist of a group of character
3. France 4. Germany codes following the ESC code (ASCII 27 decimal, 1B hexadecimal). These are
5. Itai).l 6. Norway described in Appendix C.
7. Spain 8. Sweden
9. United States gf‘fé Ic'f)eé‘e» Function

5 05 Deletes characters to the end of the line.

Any of these character sets can be selected with the OPTION COUNTRY

command. 7 07 Sounds the speaker (at about 440 Hz).

8 08 Moves the cursor to the left.
9 09 Moves the cursor to the next tab postion.

The ASCII character code table is shown in Appendix F, together with a list
of differences between the U.S. ASCII character set and those of the other eight
countries.

10 0A Moves the cursor down one line.

11 0B Moves the cursor to the home position.

12 | oC Clears the virtual screen.

13 0D | Moves the cursor to the beginning of the line.

+ The byte is the unit in which data is handled by the PX-8s central processing unit (CPU); 16 10 In mode 0/1/2, moves the screen window upward.

one byte consists of eight bits, or binary digits. In the binary numbering system, which uses
the numerals 0 and 1, it is possible to represent all numbers from 0 to 255 as numbers of up
to 8 digits. This is the range of numbers which is used for representing characters in the
ASCII character code system.

17 11 In mode 0/1/2, moves the screen window downward.
26 1A Deletes all characters to the end of the screen.

27 1B Escape code.

28 1C Moves the cursor to the right.

29 1D Moves the cursor to the left.

30 1E Moves the cursor upward.

31 1F Moves the cursor downward.

2-14 2-15

. CLIbPDFE - vy fastio.com

http://www.fastio.com/

ClhPDE —vwyyw. [aslio.com)
L N R I .

2.6.3 Numeric data

All numeric data is converted to binary form for storage in memory or calcula-
tion by the PX-8’s CPU. However, BASIC allows numeric data to be entered
in any of three number bases. These are decimal (base 10), octal (base 8), and
hexadecimal (base 16).

Decimal notation is the familiar numbering system we use in everyday life, with
numerals which range from 0 to 9. With this system, the number of digits re-
quired to express numbers increases by one each time the magnitude of the num-
ber being expressed increases by a factor of ten (1, 10, 100, and so forth.) Decimal
notation can be used to represent both integers and numbers which include
decimal fractions.

Octal notation (also referred to as base 8 numeration) uses only the digits from
0 to 7. With this system, the number of digits required to express numbers in-
creases by one each time the magnitude of the number being expressed increases
by a factor of eight. Octal numbers are indicated by affixing the characters “&0”
or “&” to the beginning of the number. The decimal equivalents of octal num-
bers can be calculated as shown below.

&0347 = 3x8% + 4x8! + 7x8° = 231
&l1234 = 1x8 + 2x8 + 3x8! + 4x8° = 668

Numbers entered in octal notation may not include a decimal point; therefore,
octal notation can only be used to represent integer values.

Hexadecimal notation (also referred to as base 16 numeration) uses the digits
from 0 to 9 and the characters from A to F to represent the values from 10 to
15. With this system, the number of digits required to express numbers increases
by one each time the magnitude of the number being expressed increases by a
factor of 16. Hexadecimal numbers are indicated by affixing the characters “&H”
to the beginning of the number. The decimal equivalents of hexadecimal num-
bers can be calculated as follows.

&H76 = 7x16' + 6x16° = 118 .
&H32F = 3x16% + 2x16' + 15x16° = 815

As with octal notation, hexadecimal notation can only be used to represent in-
teger values.

2-16

O O O oy G vy

g

)

1

Ordinarily, decimal notation is used for display of the contents of memory or
the results of calculations. However, it is also possible to specify display of in-
teger values in hexadecimal or octal notation.

2-17

http://www.fastio.com/

2.7 Constants — String Constants and Numeric Constants

Constants are fixed values which are writen into a program and used by that
program during its execution. These values may consist of either characters or
numbers; in the former case they are referred to as string constants, and in the
latter case as numeric constants.

2.7.1 String constants

A string constant is any sequence of alphanumeric characters which is enclosed
in quotation marks. Some examples of string constants are shown below.

“EPSON PX-8”

“John Jones”

“$10,000.00”

“The quick brown fox jumped over the lazy yellow dog.”

The length of a string constant cannot exceed the maximum length of a pro-
gram line (255 characters).

2.7.2 Numeric constants

Numeric constants are positive or negative numbers. There are five types of nu-
meric constants, as follows:

(1) Integer constants
Integer constants are whole numbers in the range from — 32768 to +32767.
Such constants can be expressed in either decimal, hexadecimal, or octal form.

(2) Fixed point constants
Fixed point constants are positive or negative numbers which include a
decimal fraction.

(3) Floating point constants

Floating point constants are positive or negative numbers which are represent-
ed in exponential form. A floating point constant consists of an integer or
fixed point constant, followed by the letter E (denoting an implicit base of
10) and an exponent. Either the fixed-point part or the exponent may be
preceded by a minus (“ —) or plus (“+°) sign to indicate that it is positive
or negative; if no sign is present, it is assumed that that portion of the cons-
tant is positive. The exponent must be in the range from —38 to +38.

2-18

ChbPD wvwfastio.com

3o
5

AL LG XL

PP

o

LT

s

235.988E-97 = 235.988x 10”7 = .0000235988
2.359E09 = 2.359x10° = 2359000000

(With double precision floating point constants, the letter “D” is used to indi-
cate the implicit base (10) instead of “E”. See below for a discussion of single
and double precision numeric constants).

2.7.3 Single and double precision numeric constants

PX-8 BASIC allows use of both single and double precision numbers. Single
precision numbers are handled internally as seven significant digits, and are
rounded to 6 digits for display or printout. Double precision numbers are han-
dled internally as 16 significant digits, and are also printed or displayed as 16
digits (with leading zeroes suppressed).

A single precision constant is any numeric constant that fulfills one of the fol-
lowing conditions: ‘

(1) Consists of seven or fewer digits;
(2) Is represented in exponential form with “E”; or
(3) Has a trailing exclamation point (““!”").

A double precision constant is any numeric constant that fulfils one of the fol-
lowing conditions:

(1) Consists of eight or more digits;
(2) Is represented in exponential form with “D”; or
(3) Has a trailing number sign (“ #”).

NOTE:

The “# * character can be assigned different values, depending on the country
in which the computer is being used. Consequently it will correspond to whatever
character is assigned to CHR$(35).

Single Precision Constants Double Precision Constants

46.8 345692811
—7.09E-06 —1.09432D-06

3489.0 3489.0 #

22.5! 7654321.1234

http://www.fastio.com/

NOTE:

When a BASIC program is written, care should be taken to declare the constants
correctly. The BASIC interpreter may list numbers in a different form than that
in which they are typed in. BASIC may also insert the trailing signs in the listing.
For example the following lines:

10 PRINT A # 1234567
20 PRINT B* 123456789

would be listed as:

10 PRINT A=*1.23457E+06
20 PRINT B=* 123456789 #

2-20

ChbPD wvwfastio.com

a

{
3

LSS

/S
-

Y

)

Y

<
sleloloisinininininial

v

N 22

VOUVOLOLLVLLVLLL VUL

§
(O

iplelels

YO0
slale
R

N

AR

© Oy

1l

ahirhls

2.8 Variables

Variables are named locations in memory which are used to hold values during
execution of BASIC programs. Names are assigned to variables by the program-
mer, and the values stored in variables are either assigned by the user during
program execution or assigned as a result of progam execution itself.

The two general types of variables used with BASIC are numeric variables and
string variables. The former are used to store numeric values, and the latter are
used to store character strings. Until a variable is defined it has the value of
zero if it is a numeric variable, and the value of null or empty string if it is a
string variable.

2.8.1 Variable names and type declaration characters

Variable names may consist of up to 40 characters (including all letters, the
decimal point, and all numerals), followed by a type declaration character;
however, the first character of each name must be a letter. Reserved words may
not be used as variable names. (Reserved words are the keywords used in enter-
ing BASIC commands, statements, and functions). Further, the letters “FN”
must not be used at the beginning of any variable name (BASIC interprets words
beginning with the letters “FN” as calls to a user-defined function).

The names of string variables must end with a dollar sign (8$); this is the type
declaration character which indicates that a variable is used to hold string data.

Numeric variable names may end with type declaration characters which indi-
cate the type of numeric data which they contain. The type declaration charac-
ters for numeric variables are as follows:

% Integer variable type declaration character
! Single precision variable type declaration character
Double precision variable type declaration character

A single precision numeric variable is assumed if no type declaration character
is specified.

2-21

http://www.fastio.com/

Examples of variable names are shown below.

Pl # Double precision numeric variable
MINIMUM! Single precision numeric variable
LIMIT% Integer variable

CATEGORY$ String variable

Variables may also be defined in advance as string, integer, single precision, or
double precision with the DEFSTR, DEFINT, DEFSNG, and DEFDBL state-
ments. When variable types are specified in this manner, type declaration charac-
ters are not required. See the explanations of these statements in Chapter 4 for
details.

NOTE:

As with constants, BASIC may add the trailing declaration character when the
program is listed. It is important to be aware that A # is a different variable from
the variable A, unless A has been declared as a double precision variable with
the DEFDBL statement. Also, statements declaring variable types do so for all
variables beginning with a particular character and it is not possible to specify
variable names consisting of more than one character in such statements.

2.8.2 Array variables

An array is a group of variables which is referred to by a common name. Each
variable of an array is identified by one or more subscripts, each of which is
specified as an integer value. The number of subscripts corresponds to the number
of variables in a one-dimensional array (for instance, P(x) where “x” is the in-
teger expression which identifies the individual variable); P(x, y) refers to a specif-
ic variable in a two-dimensional array, and can be thought of as a table containing
a certain number of rows and columns; the number of rows depends on the max-
imum value of x, and the number of columns depends on the maximum value
of y. Theoretically, an array can have any number of dimensions; however, in
practice the number of dimensions and the size of the array are limited by the
amount of memory which is available. The DIM statement is used to define the
number of dimensions of an array and the size of each dimension. See the ex-
planation of the DIM statement in Chapter 4 for details.

ChbPD wvwfastio.com 22

2.9 Type Conversion of Numeric Values

BASIC automatically converts numeric values from one type to another as neces-
sary. This section describes the rules governing numeric type conversion for var-
jous kinds of operations.

(1) Type conversion upon storage of values in variables
If a numeric constant of one type is assigned to a numeric variable of another
type, it is stored after being converted to the type declared for that variable
name. For example, if an integer-type numeric constant is assigned to a sin-
gle precision variable, it is automatically converted to a single precision value
at the time it is stored. Note that a certain amount of error may be introduced
by the process of conversion.

Example 1

16 A%=12.734 s Assigns single precision number
20 7 H %4 to integer variable! A%.
e
4a PRINT A% s TDIGPLAYS CONMTENTS OF VARIABLE A%
Ok
run

12

O

Example 2 §

190 A#=12.734

"Assigns single precision number

15 "12.34 to double precision variable A#.
20
35 B=27. 45H# :*Assigns double precision number
32 12,744 to double precision variable B#.
33 °
42 PRINT A# :"Digplays contents of variable A#.
:u :PExtra digits are result of conversion
58 DTerror.
55 °
&8 PRINT B# :"Displays contents of variable B#.
Ok
run
12. 34000015258739
23.45
Ok

2-23

http://www.fastio.com/

A

UL

(2) Conversion in arithmetic and relational operations

If an arithmetic or relational expression includes numeric operands of differ-
ent types, all operands are converted to the same degree of precision (that
of the operand with the highest degree of precision). Further, the results of
arithmetic expressions are returned to the degree of precision of the most
precise operand. Note that error may be introduced when constants are con-
verted from one precision to another. (Note: Relational operations are
described in section 2.10.2 below.)

g O=LHSTL L P Assigns result of arithmetic
29 rToperation 44/7.1# (double preci
2 to double precision variable &,

4

9 PRINT A# :"Displays contents of variable A#.

Ok
ur
LEAEHT7O4225 552113

Ok

In the example above, arithmetic is performed using double precision numbers
and the result is returned in double precision.

A sR ST L1 ThRssigns result of &#H/7.1 to variable N#.

FJHHOUO TR HOHLTOOECEHOEOMIM

IO OPRIMT O# :"Displays contents of variable A#.
Ok
A
L 84507047338862249 PSS
Ok =

4

Here, the single precision value 7.1 is converted to double precision for arith-
metic and the result is returned as a double precision number. The difference
between the result returned in this example and that returned in the preceding
example is due to conversion error.

2-24

ChbPD wvwfastio.com

aln
i)m()

&

U

i
£

ARIRIRIRIRY

UHU Uﬁu

JJ

rmre
S INV)

ARSI

L) i;’) g

(3) Conversion for logical operations
During logical operations, non-integer operands are converted to integers
and the result is returned as an integer. The operands of logical operations
must be in the range from — 32768 to 32767; otherwise an “Overflow” error
will occur.

16 PRINT 4&.734 OR 15 Converts single precision
*number &6.34 to an integer

value (&), then displays the

8w oz e

*logical sum of & and 13.
Ok
Fur
15
Ok

See section 2.10.3 for an explanation of logical operations.

(4) Type conversion of floating point numbers to integers
When a floating point number is converted to an integer, the decimal frac-
tion is rounded to the nearest whole number.

19 C74=55.88 Converts single precision number 355,88

20 :Tto integer by rounding to D56, then
et tfstores 96 in integer variable CY.
46 7

5o PRINT CX4 " Displays contents of variable CX.
AT

5

Ok

(5) Conversion of single precision numbers to double precision
If a single precision number is assigned to a double precision variable, only
the first seven digits of the converted number are significant. This is because
only six digits of accuracy are provided by single precision numbers.

14

2-25

http://www.fastio.com/

When evaluating a function care must be taken to ensure that the value of the
expression being evaluated is declared to the precision required. In the follow-
ing example, only the first seven characters of C# are correct because the square
root of a single precision number is being converted to a double precision num-
ber. D # gives a more accurate value because the square root of a double preci-
sion number is being assigned to a double precision variable. Lines 80 and 90
show the result of printing a function without and then with double precision
declarations.

Example

19 A=2

2 B#=2

a0 CH=80R(A)

49 DHE=GOR (B#)

5% PRINT "C# ="iCH

HO PRINT "D# ="iD#

76 FRINT "The square root of 2 is"iS0FRC2H#)
86 PRINT SGR(1+1)

G99 PRINT SR (1#+14#)

run

C# = 1.4142175381698461

D# = 1.4142135623T730935

The square root of 2 is 1.41421 35685773
1.41421
1. 41421356207 3095

(e

2-26

ChbPD wvwfastio.com

PN

A

ax

Llalalaisislsininisle}

EH!F% ” ’
iglalale

J.

2.10 Expressions and Operations

An expression is any notation within a program which represents a value. Thus
variables, numeric constants and string constants constitute expressions, either
when they appear alone or when combined by operators with other constants
or variables.

Operators are symbols which indicate mathematical or logical operations which
are to be performed on given values. The types of operations which are per-
formed by BASIC can be divided into four categories as follows:

(1) Arithmetic operations
(2) Relational operations
(3) Logical operations

(4) Functional operations

2.10.1 Arithmetic operations

The arithmetic operations performed by BASIC include exponentiation, nega-
tion, multiplication, division, addition and subtraction. The precedence of these
operations (the order in which they are performed when included in a single
arithmetic expression) is as shown below.

Operat.or Operation Sample
expression
A Exponentiation XAY
- Negation (conversion of the sign of a (-Y)
value)
*,/ Multiplication, division XY, X/Y
MOD Modulus arithmetic XMODY
\ Integer division X\Y
+, - Addition, subtraction X+Y, X~-Y

The concepts of integer division and modulus are explained in (1) and (2) below.

The order in which operations are performed can be changed by including parts
of expressions in parentheses according to the normal rules of algebra. When
this is done, the operations within parentheses are performed first according to
the normal rules of precedence.

http://www.fastio.com/

Sample algebraic expressions and their equivalents in BASIC are shown below.

Algebraic Expression BASIC Expression

X+2Y X+2%Y
X-Y+Z X-Y/Z
XXY+Z X*Y/Z
xXY)? XAY)A2
Xy XA(YA2)
Xx(-Y) X*(-Y)

When two consecutive operators are included in an expression, they should be
separated by enclosure in parentheses as shown in the last example above.

Y

0]

ClibPD

Integer division

With integer division, the operands of an expression are rounded to integers,
then division is performed and the integer portion of the quotient is returned.
The operator for integer division is the backslash (\). This should not be
confused with standard division for which the operator is the slash (/).

NOTE:
Regardless of the International character set used, internal code CHR3$(92)
is used as the operator for integer division.

The following example of integer division compares the same division tak-
ing the integral part of the result after the division:

10 A=33.05:B=4.62
29 ID=A\B

30 NDZ=A/B

49 PRINT ID,ND%
run

6 7
Ok

:"Integer division
: *Normal division

-

When integer division is performed, both operands must be within the range
— 32768 to 32767.

Modulus arithmetic

Modulus arithmetic is the arithmetic operation which returns the remainder
of integer division as an integer. Rounding up can occur as the sécond ex-
ample shows. The operator for modulus arithmetic is MOD. The precedence
of modulus arithmetic is just below that of integer division.

2-28

wavwlastio.com

J

‘
VOULULWY

YO OB VTN ODODOOODELERE OO (

NURNEIE

Y

¢

v

(

|

P P e e

T OHOH OO OO H Y

VU U

lslalala
VUL L

Examples

PRINT 19 MOD 4
-

Ok
PRINT 25.68 MOD &.99
5
Ok

(3) If division by zero is encountered during evaluation of an expression, the

“Division by zero” message is displayed, machine infinity (the value of
greatest magnitude which can be displayed by the computer) is displayed as
the result, then execution continues.

1@ B=7/76 L7

srerates "Division by rero"
g . :
20 o, then i
ts) ranfimity din
4o

5@ PRINT"FROGRAM LLINE Zav Displays "FROGRAM LINE Sov.
FrL

Division by zero

FROGRAM LLINE Z6

Ok

The “Division by zero” message is also displayed and machine infinity
returned when zero is raised to a negative power.

(4) An overflow error 1s tne condition which occurs when the mégnitude of the

result of an operation exceeds the maximum value which can be displayed
by the machine or when one of the operands of an operation such as integer
division exceeds the maximum allowed value. Whether or not execution con-
tinues depends on which situation is encountered.

12 Af=H&6 bbb DT Generates "Overflow"

[P] » :
59 srerror and stores machine
S tfinfinity in variable A#.
40

99 FRINT A# :'Displays contents of O#.

& 7

7@ PRINT “"Frogram line 3Iev P Msplays "Frogram line 3av.
ap ° ’

2-29

http://www.fastio.com/

PO AY=ELLLEL I \ZT

"Generates an "Overflow” error

ClibPD

106 : "hecause dividend (66666) is
11 s Toutside of permitted range
12¢ :"for integer division.

125

1Z8 PRINT A% : "Not executed because

146 rTprogram execution is

159 tTaborted by error in

160 t'line 99,

run

Overflow
1.7014117Z3192645D+7%8

FProgram line e

Overflow in 99

Ok

2.10.2 Relational operations

Operations in which two values are compared are referred to as relational oper-
ations. The result returned by such a comparison is either “true” (— 1) or “false”
(0), and is then used to make a decision regarding subsequent program flow.
(See the discussion of the IF.. THEN...ELSE and IF...GOTO statements in Chapter
4)

The relational operators and their meanings are listed below.

Operator Relation tested Example expression
= Equality X=Y
< >, >< | Inequality X< >Y, X><Y
< Less than X<Y
> Greater than X>Y
=, =< Less than or equal to X< =Y, X=<Y
>=, => Greater than or equal to * | X> =Y, X=>Y
NOTE:

The “=" sign is used both for testing equality in relational expressions and in
LET statements for assigning values to variables. However, its meaning is not
the same in both cases. See the discussion of the LET statement in Chapter 4
for details on assigning values to variables.

2-30
wavwlastio.com

2

U

QGO O

sleinisisisisiele
VOLOLVLUVOVOLULO

alalalaly

Y

F1ETET

J;.Fb

VoS
v

NN AT R RV

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed first. For example, the following expression is
true if the value of X plus Y is less than the value of T—1 divided by Z.

X+Y<(T-1)/Z

Ol

In the example above, line 10 tests for equality between the first and second oper-
ands of the relational expression “1=1", then stores the result (- 1, or true) in
variable A. Line 20 then displays the contents of A. Line 30 tests whether the
first operand of the relational expression “3 >4” is greater than the second, then
stores the result (0, or false) in variable B. The result is then displayed by the
statement on line 40. Line 50 evaluates and displays the result of the relational
expression “3>2” (—1, or true).

2-31

http://www.fastio.com/

'ClihPD

2.10.3 Logical operations

A logical operation uses Boolean arithmetic to define the logical connection
between the results (— 1 or 0) of relational operations. In any given expression,
logical operations are always performed after arithmetic and relational opera-
tions. The results of operators are listed in the table below according to the ord-
er of precedence.

NOT (Negation) XOR (Exclusive — OR)
X NOT X X Y X XOR Y
1] 1 1 [o]
4] 1 1 (o] 1
AND {Logical product) 0 ! !
0 0 o]
X 7 xanov IMP (Inclusion]
1 0 (0] X Y X IMP Y
(o] 1 (4] 1 1 1
]] 0 1 0 o}
OR {Logical sum) 0 ! !
0 0 1
v
)1< T X O1R ' EQV (Equivalence)
1 0 1 X Y X EQV Y
0 1 1 1 1 1
0 o] (o] 1 o] 0
0 1 0
o] [o] 1

Since relational operations can be used to make decisions concerning program
flow, logical operators can be used to connect two or more relational opera-
tions. This allows decisions to be based on multiple conditions. (See the discus-
sion of the IE.THEN...ELSE and IF..GOTO statements in Chapter 4).

Examples

1) IF D<200 AND F<4 THEN 80
This statement causes program execution to branch to line 80 if the contents
of variable D are less than 200 and the contents of variable F are less than 4.
2) IF I<10 OR K< 0 THEN 50
This statement causes program execution to branch to line 50 if the contents
of variable I are less than 10 or the contents of variable K are less than 0.

2-32

wavwlastio.com

gigipiahl

1

U

RRRRRR PR RRERialsiaiaisisieisteleip)

TR OOV OCCOCOO0OOODINDDOOOODODCOCE QOO

RN
R

:

In a logical operation, the operands are converted to signed 16-bit two’s com-
plement integerst in the range from — 32768 to 32767 before their logical con-
nection is checked. (An error will result if any operand is not within this range.)

The specified operation is then performed for each bit of each operand (that
is, for bits which are in the same position in each operand) and the result is
returned as a two’s complement integer which represents the results for all bits.
Some examples of this are shown below.

Example 1

19 FPRINT 67 AND 164
Ok
LN
16
Ol

In binary notation, the two’s complement integer 63 is 111111B and the two’s
complement integer 16 is 010000B. Since 1 AND O yields 0 and 1 AND 1 yields
1, the result is 010000B, or 16.

Example 2

1@ FPRINT 21 XOR 17
O
run
4
Ok

The two’s complement integer 21 is expressed in binary as 10101, while the two’s
complement integer 17 is expressed as 10001; since 1 XOR 1 and 0 XOR 0 yield
0, while 1 XOR 0 yields 1, the result is 00100, or 4.

Example 3

18 PRINT
Ok

[agRini

-1

Ok

-1 OR -2

t The first bit of a two’s complement integer indicates whether the integer is positive or negative.
In binary notation, the two’s complement integers from 0 to 32767 are expressed as
0000000000000000B to 0111111111111111B. The integers from —1 to — 32788 are expressed as
1111111111111111B (— 1) to 1000000000000000B (— 32768). The value 1111111111111111B is obtained
by adding 1 to the complement of 0000000000000001B (i.., 1111111111111110B+ 1B=1111111111111111B).
The binary representations of other negative two’s complement integers can be obtained in the
same manner.

2-33

http://www.fastio.com/

The two’s complement integer — 1 is expressed in binary as 1111111111111111B,
while the two’s complement integer — 2 is expressed as 1111111111111110B. Since
both 1 OR 1 and 1 OR 0 yield 1, the result is 1111111111111111B, or — 1.

Logical operators can be used to test data bytes for a particular bit pattern. For
instance, the AND operator can be used to mask all but one bit of a status byte
to obtain the status of a device 1/0 port; or, the OR operator can be used to
merge two data bytes to obtain a particular value.

Example

1@ FOR I=97 TO 122
260 PRINT CHR$ (D)3
@ NEXT

"Displays characters
!{r.om Nall .t.D o, 9t

56 FRINT TMoves cursor down to

&Hid next line on display.
VA

ga Following lines convert lowercase

Qo 7 character codes to uppercase.

loa FOR I=97 7O 122 T Einary nnnnnnnn

11e PRINT CHRE(I AND 2273)3:7AND 11e11111

138 NEXT Tvields: rn@nnnnn
run

abudefghil jklmnopgrstuvesys
ABCDEFGHIJKLMNOFORSTUVIWXY Z
(15

2-34

ClibPD waww.lastio.com

3

i

-y
A
i
Ty
-
vy
[
5y r;;
[958
o r“:,
a» ;"_3
. I
[
vy F"'

-~ Eﬂ

v
&

alala
TURVRTRT)

IR
JJ

®

-s

400

AARIRNANS

et

2.10.4 String operations

String operations involve manipulation of character strings with operators. For
example, the “+” operator makes it possible to concatenate (link) strings as
shown in the example below.

1@ A%="File'":BE="namea"

2

8@ FRINT "New "+A$+BE

LY
1o
116

N

Bl

FRINT

Filename
Mew Filename

Ok

[RE 235k ERR

r Rssigns string "File” to A$
:Tand string "name" to BEs$.

atenates string
ions A% and BE and
s the result.

Concatenates string
Texpressions "New ", A$,
“and B$ and displays the
Tresult.

Character strings can also be compared using the same relational operators as
are used with numeric values.

10 A="ALPHA": B$="BETA"

260
o
40
]
&HO
7o
86
Qi
106
11
120

P

IF A%<

Ed

FRINT

END

:Assigns string "ALPHA" to A% and
Tstring "BETAY to b$.

Bd THEN 190 ELSE 12¢

:PJdumps to line 1898 if value of A% is less
:"than that of B$i otherwise, jumps to

P line 120,

A% IS LOWER THAN "iBs
:"Stops program execution.

FRINT A%:" IS NOT LONER THAN "iB4$

ALFHA 18 LOWER THAM BETA

Ok

Strings are compared by taking one character at a time from each string and
comparing their ASCII codes. The strings are equal if all codes are the same;
if the codes differ, the character with the lower ASCII code is regarded as lower.

2-35

http://www.fastio.com/

ClibPD

Comparison ends when different characters are encountered in the two strings
or when the end of one of the strings is reached; in the former case, the string
in which the lesser code is encountered is regarded as smaller, and in the latter
case the shorter string is regarded as smaller.

Spaces included in strings are also significant; for example:

“ALPHA” is smaller than “ALPHA ”
“ALPHA” is greater than “ BETA”

Further examples are:

“AA” is less than “AB”

“FILENAME” is equal to “FILENAME”
“X&” is greater than “CL”

“SMYTH?” is less than “SMYTHE”

Thus, string comparisons can be made to test string values and to sort strings

into alphabetical order. All string constants used in relational expressions must.

be enclosed in quotation marks.

2-36

wavwlastio.com

DOAINNOCCTCOCOODONDODOOOCO OO ECE «C OO0 »

piivhls

U

ainls
G

RIRIFINIRY

SULU

reme
UUUUH

JJIJ

mr

STITTTS

400

Y

2.11 Functions

Functions are operations which return a specific value for a single operand. For
example, the function SIN(X) returns the sine of the numeric value stored in
variable X when the value in X is in radians. A variety of functions are built
into PX-8 BASIC; these are referred to as intrinsic functions, and are described
in Chapter 4.

PX-8 BASIC also allows the programmer to define his own functions; for de-
tails, see the explanation of the DEF FN statement in Chapter 4.

2.11.1 Integer functions
The CINT, FIX, and INT functions all return an integer value for an argument

consisting of a numeric expression. These functions are described in detail in
Chapter 4.

(1) CINT
The CINT function rounds the argument to the nearest integer value.
Examples: CINT(1.1) = 1
CINT(0.9) = 1
CINT(-5.4)= -5
CINT(-5.7)= -6
(2) FIX
The FIX function truncates the argument; that is, it discards the decimal
portion.
Examples: FIX(1.1) = 1
FIX©0.9) = 0
FIX(-5.4) = -5
FIX(-5.7) = -5
(3) INT

The INT function returns the largest integer which is less than or equal to
the argument.

2-37

http://www.fastio.com/

“HibPD

INT(.1) = 1
INT(0.9) = 0
INT(-5.4) =
INT(—5.7)

Examples:
-6
=—6

2.11.2 Trigonometric functions
PX-8 BASIC supports the following trigonometric functions.

Function Argument Value returned
ATN Tangent of an angle Angle in radians
COS Angle in radians Cosine of an angle
SIN Angle in radians Sine of an angle
TAN Angle in radians Tangent of an angle

If you want to work with angular measurements in degrees, remember that you
will have to convert the arguments of these functions from degrees into radians
(with the ATN function, you will have to convert the result from radians into
degrees). Since 180 degrees is equal to 7 radians, there are 180/« degrees in a
radian. Thus, you can convert degrees to radians by dividing by 180/x. Con-
versely, radians can be converted to degrees by multiplying by 180/. Single and
double precision values corresponding to 180/x are as follows.

Single precision
180/3.1416=57.2958

Double precision
180/3.141592653589795=57.29577951308228

Other trigonometric functions must be derived from these four built-in func-
tions. For example, the secant of an angle is equal to 1 divided by the angle’s
cosine. See Appendix E for derivation of other trigonometric functions.

2-38
wavwlastio.com

Y

Iglaisisisisininisioisininlal

SO

VDDPPOOOOCOCOOOCE O CE OO

slele
LY

JJ

SJ

COCOCOOOONNOCU OO0

o)

2.12 Files

In general, a file is any set of data records which is output to or input from
an external device (such as a disk drive) under a common identifier. This in-
cludes text files containing the program lines of BASIC programs, machine lan-
guage program files and data files. Files can be stored in the RAM disk,
microcassette tape or on floppy disks; however, they may also be input from
and output to other devices. (See Chapter 5 for information on the types of
file organizations used with BASIC for the PX-8.)

2.12.1 File descriptors

With PX-8 BASIC, files are identified by means of descriptors which consist
of a device name and a file name. Together, these are referred to as the “file
descriptor” and are specified as follows.

< device name> <option> < file name>

(1) Device name -
PX-8 BASIC supports the concept of general device 1/0. This means that
input and output access to all devices can be handled in the same manner,
regardless of whether the device accessed is a floppy disk drive, printer, the
microcassette drive, or the RS-232C interface.

The format of all input and output commands is the same regardless of the
type of 170 device. I/0 devices are distinguished from one another by means
of device names; the devices which can be addressed for 1/0 operations in
this manner are as follows.

Name Device Modes
KYBD: Keyboard Input only
SCRN: LCD screen Output only
LPTO: Printer Output only
COM@: RS-232C interface | Input and output
A: to H: Disk devices Input and output
(Input only for ROM capsule)

Device names may be omitted when specifying file descriptors; however, the cur-
rent CP/M default device is assumed if the device name is omitted.

2-39

http://www.fastio.com/

ClibPD

NOTE:

Device name LPTW: can be assigned 1o either the RS-232C port,or the serial port
with the CONFIG program of CP/M to indicate the printer connected to that
port. Initially, LPTV: is assigned to the RS-232C port.

@

3

Option

<option> is used to set the baud rate and communication format for
the RS-232C interface, the write mode for the microcassette drive, and
so forth. The format of <option> varies according to device.

File name

File names are used to distinguish files within a device from one another.
Specification of file names is mandatory when accessing files in disk
devices; however, file names are meaningless in the case of device files such
as the keyboard and RS-232C interface, and will be ignored if specified.

A <file name> is composed of a primary name of up to 8 alphanu-
meric characters, and an extension consisting of up to 3 alphanumeric
characters. The primary file name is separated from the extension by a
full stop.

SAMP1.BAS

With the LOAD, MERGE, RUN, LIST and SAVE commands, the ex-
tension “BAS” is assumed only if the primary name is specified in the
command’s operand. The FILES, KILL or NAME commands require
extensions to be specified.

2.12.2 File numbers

A file number is a number which is assigned to a device file as an identifier
when that device is opened for input and/or output. The number specified as
the file number must be in the range from] to the maximum specified in the

/F:

option when BASIC operation is started.

With PX-8 BASIC, a logical file number must be assigned to each file which
is read or written by a program (except when a program text file is accessed us-
ing the LOAD, MERGE, RUN, LIST or SAVE commands). This is done with
the OPEN statement, which links a specific logical file number to the physical
file defined in the file descriptor. Unless otherwise specified with the /F: option
when BASIC is started, the maximum number of files which can be open at
one time is 3. See the explanation of the OPEN statement in Chapter 4 for the
procedure for assigning file numbers.

2-40

wavwlastio.com

!(H

'V

lalale
o UL

POOO OO OO E O OO (
e

SMalala
YRV

Vo

YOO OO

L3 208 2% 2% INY W(‘ CARCANC]
SSTIITLL

W

2.13 Display Screen

This section discusses the types of screens used with PX-8 BASIC, describes
the various screen modes and the manner in which they are used, and explains
the systems of coordinates which are used in specifying the locations of charac-
ters and graphics on the screen.

2.13.1 Real screen, virtual screen, and virtual screen window

With PX-8 BASIC, several different screen concepts are used for display. These
include the real screen, virtual screens and the virtual screen window .

(1) Real screen
The PX-8 LCD screen permits display of up to 8 lines of 80 characters each
or 480 by 64 dots of graphics. The LCD device on which characters and graph-
ics are physically displayed is referred to as the real screen.

EPSON 1

SRS N NS

l \ \\\\\‘ N § ~

|

Y o " " & s " e %0 8 |
o 11 PX-8

(2) Virtual screen
Although the LCD screen of the PX-8 allows display of up to 8 lines of 80
characters each, the concept of virtual screens has been introduced to make
it possible to use application programs which require screens with even larg-
er capacities. A virtual screen is not a physical device like the real screen,
but exists in an area in memory which is referred to as VRAM (video ran-
dom access memory) and is displayed through the “window” provided by
the real screen. This VRAM is connected to the PX-8’s 6301 slave CPU, and
cannot be accessed by the PEEK or POKE commands of BASIC. Except
in the graphics screen mode there are two virtual screens. The two virtual
screens are independent of one another and either can be displayed under
program control. In the split screen modes, it is possible to display both vir-
tual screens on the two halves of the real screen.
2-41

http://www.fastio.com/

P\H)PD

(3) Virtual screen window
Since the real screen is limited to seven or eight lines depending on whether
the function key definitions are displayed, it acts as a window on the virtual
screens. However, scrolling can only be performed in the vertical direction,
either by means of the cursor keys or under program control.

Virtual screen window
Real screen

Function key display area (optional)

When function key definitions are not displayed, the number of lines displayed
by the virtual screen window (also referred to as the screen window) is the same
as the number of lines in the real screen (8). When function key definitions are
displayed, the number of lines displayed is reduced by one (the line used to dis-
play function key definitions).

2.13.2 Screen modes

The PX-8’s LCD screen has four modes of operation. These are referred to as
screen modes 0, 1, 2, and 3. Screen modes 0, 1, and 2 are solely text screen modes;
screen mode 3 is the graphic display mode; and allows text to be mixed with
graphics.

When the display is in one of the text modes, the PX-8’s VRAM is divided into
two sections which are used as two independent virtual screens. In the text modes,
character data consisting of one-byte ASCII codes is written into VRAM; these
codes are converted to character images for display by the PX-8’s display con-
troller.

2-42
wavwlastio.com

OO OO HH B

OO O

& O

o lal®
R VEVNY

When display is in the graphic screen mode, all of VRAM is used for storing
the settings (on or off) of all the dots in the LCD screen, rather than codes
representing character data.

(1) Screen mode 0 (the 80-column text screen mode)

In this screen mode, the two virtual screens each have a width of 80 columns
(characters per line). The number of lines in each of the virtual screens can
be set as desired by the user, provided that the total number of lines in the
two screens does not exceed 48 and that each screen contains at least as many
lines as the real screen. The virtual screen window can be switched back and
forth between the two virtual screens, and can be scrolled up or down in
the currently selected virtual screen to display its contents.

Virtual Screen 1 Virtual Screen 2

jat——— 80 columns ———————m= jt—— 80 columng —— g

ntl n2 lines

n1=8
n2=8
n1+n2=<48

Conditions: h=7or 8

(2) Screen mode 1 (the 39-column text screen mode)
In this screen mode, the virtual screen window is split vertically into two
parts, each with a width of 39 columns. The remaining two columns of the
80 making up the real screen are used to display characters which represent
a boundary between the two halves.

Both sides of the virtual screen window are positioned over the same virtual

screen, and the display at the bottom of the left half of the virtual screen
window is continued at the top of the right half.

243

http://www.fastio.com/

ClibPD

In this screen mode, the size of the virtual screen window is 39 characters
x 2h lines (where h is the number of lines in each half of the screen win-

dow).

As with screen mode 0, the virtual screen window can be switched back and
forth between the two virtual screens, both of which have a width of 39
columns. The number of lines in the two virtual screens can be set as desired
by the user within the range from 16 to 48, and both virtual screens must

have the same number of lines.

Boundary

39 columns ~—————————]

|tt-———— 39 columns

Virtual screen window (left side)
{Continued on right side)

h lines

{

(Continued from left side}

Virtual screen window (right side}

|#———— 39 columns ——————=1

e 39 columns ————=

=z
~ Virtual screen window

eft side) Z2

n lines

Virtgal screen window
{right side)

~

Virtual screen 1

n lines

Virtual screen 2

16=<2n<48
h=7 or 8

Conditions:

2-44

wavwlastio.com

m{J

[

MR

(3) Screen mode 2 (the dual screen mode)
In this screen mode, the virtual screen window is vertically divided into two
parts, each of which displays the contents of one of the virtual screens and
which can be scrolled independently of the other. This makes it possible to
display the contents of both virtual screens at the same time.

‘
M

) ;'v

¥

The width of each part of the screen window can be set as desired by the
user as long as the total number of columns in both parts is equal to 79.
The remaining column of the real screen is used to display a boundary charac-
ter between the two screen windows.

alelyieisieiale}

O

In this screen mode, the two virtual screens each have a column width which
is equal to the width of the screen window which displays its contents. The
number of lines in each virtual screen can be set as desired by the user in
the range from 8 to 48; however, both virtual screens must have the same
number of lines.

alslal

~— Eﬂ 80 columns
o By
o (,5 l.—— m1 columns m2 columng ————————————#=1
a (: h lines
- E
AW
Crr KQ Screen window 1 Screen window 2
- EQ |
- o Boundary
w
_ E‘Q [a———m1 columns ——= m2 columng ———————————————==
— E ;
w [
* = h lines

» LQ % _ o

B: Screen window 2 Z
e h lines 7

E : n lines // /¢ n lines =
/;‘ i Screen window 1%
< r
~ " Virtual screen 1 Virtual screen 2
v ET i

Conditions: m1+m2=79
h=7or 8
8=<n=<24
2-45

http://www.fastio.com/

(4) Screen mode 3 (the graphic screen mode)

This is the screen mode which is used for displaying graphics. In this screen
mode, the PX-8’s display controller works on a bit image basis, rather than
using character codes, making it possible to display a full range of graphics.
Although text can be displayed with the graphics, the size of the virtual screen
in this screen mode is the same as the size of the real screen, that is, the
virtual screen size is 80 columns X 8 lines. When the function key assign-
ments are displayed, there are only 7 usable lines.

Although the screen editor can be used in the same manner in this screen
mode as in the text screen modes, the virtual screen (i.., bit image data in
VRAM) is displayed directly to the real screen and there is no screen win-
dow. Because the real and virtual screens are the same, scrolling of the virtu-
al screen cannot occur. Graphic statements such as PSET, PRESET, LINE
and POINT can only be used in this screen mode.

80 columns

8 lines Virtual screen =Real screen

2.13.3 Selection and display of virtual screens

Display screen modes 0 to 2 each include two virtual screens, only one of which
can be selected at any given time. The screen selected is that in which characters
are displayed when keys are pressed or when PRINT and similar statements are
executed. The SCREEN command in BASIC is used to select the virtual screen.

(1) Screen modes 0 and 1
In these screen modes, only one virtual screen can be displayed at a time,
The virtual screen selected is displayed in the screen window, and characters
typed or output are displayed in the selected virtual screen. The scrolling
control keys and scrolling escape sequences move the virtual screen window
through the virtual screen which is currently selected.

(2) Screen mode 2
In this screen mode, both virtual screens are displayed at the same time.
However, the scrolling control keys and scrolling escape sequences only move
the virtual screen window through the virtual screen which is currently selected
for output (the screen in which typed characters are displayed).

2-46
wavwlastio.com

gizishl,

U

|

L4

AR AN R IR I

ol
VRV

slolelelalala
ULUULL

GG

Q

'y

:

2.13.4 Scrolling control

The screen window has two scrolling modes, either of which can be selected by

pressing the [SCRN | key ([_SHIFT]+ [INS |) or by escape sequence. These two
modes are referred to as the tracking mode and the non-tracking mode.

(1) Tracking mode
In this mode, the screen window is scrolled along with the cursor (it “tracks”
the cursor). If the cursor is outside the screen window when this mode is
selected from the non-tracking mode, the screen window immediately moves
to the position of the cursor in the virtual screen.

(2) Non-tracking mode
In this mode, the screen window does not follow the cursor.

The following keys are used for scrolling.

6y +[*] (scroll up)

Pressing these keys together scrolls the screen window upward.

) _sHIFT]+ (scroll down)

Pressing these keys together scrolls the screen window downward.

3 LecrRL] + (top-of-screen)
Pressing these keys together moves the screen window to the top of the select-
ed virtual screen.

(4) CcrRL |+ (end of screen)

Pressing these keys together moves the screen window to the bottom of the
selected virtual screen.

When the screen window is scrolled using the four keys described above, the
cursor does not move from its current position in the virtual screen. This
makes it possible to keep the cursor in one position while the screen is moved,
even if scrolling is done in the tracking mode.

(5)|_SHIFT] +[INS J(change scroll mode)
When the same virtual screen is used both as the write screen and the dis-
play screen, this key switches scrolling back and forth between in the track-
ing mode and the non-tracking mode. The scrolling mode used is switched
each time this key is pressed.

2-47

http://www.fastio.com/

{

1

thl

With graphic coordinates, dots are numbered horizontally from 0 on the left
side to 479 on the right, and vertically from 0 at the top of the screen to |
63 at the bottom.

6) +[inNs](find cursor)

When the cursor is not displayed in the screen window, pressing +
[iNs] moves the screen window to the current position of the cursor.

gigh

"
G

. 0 (479, 0)
. -
2.13.5 Screen coordinates | 3
(1) Character coordinates [
Character coordinates are the coordinates which are used to specify the po- Ia
sition in which characters are displayed on the screen. These coordinates are Iﬂ
used with the LOCATE statement and the SCREEN, POS and CSRLIN func- : Q
tions. K
(0. 63) (479, 63)

When using character coordinates, the column on the left side of the screen
is numbered 1 and that on the right side of the screen is numbered accord-
ing to screen mode or the maximum screen width specified by the user. In
screen modes 0 and 3, the column on the right side of the screen is num-
bered 80 and in screen mode 1 it is numbered 39. In screen mode 2, the num-
ber of the right hand column is the same as the column width specified for
the selected virtual screen by the user.

When the positions of individual dots on the screen are specified directly,
the absolute form (< horizontal position >, < vertical position>) is used,
for example PSET (19, 29) would switch on the twentieth dot across on the
thirtieth row. This type of coordinate specification can be used with all graph-
ic statements and functions.

H&! u"o

uﬁxﬁi ‘

It is also possible to specify the positions of screen dots in relation to previ-
ously specified dots; in this case, the coordinate specification takes the form
STEP (< horizontal position >, < vertical position >). Here, STEP indicates
that the values specified for (< horizontal position >, < vertical position >)
are to be added to the values contained in a pointer called the last reference

In the vertical direction, the top line is numbered 1 and the bottom line is
numbered according to screen mode or the maximum number of screen lines
specified by the user.

™ P
VRV

COOO0RROOLOCOOOL D POO0

Graphic coordinates are used to specify the positions of individual dots on
the screen. The graphic coordinate system is used with statements such as
PSET, PRESET and LINE, and with graphic functions such as POINT.

1,1 {Xmax, 1) 13 pointer or LRP which indicates the absolute coordinates of a previously speci-
fied dot. Relative coordinate specification can be used with the PSET,
< n 3 PRESET and LINE statements, and the last reference pointer (LRP) is up-
- EQ dated by execution of these statements. Thus the following example will plot
~ ‘ a row of ten dots at intervals of ten horizontal positions. Line 20 sets the
Ll position of the first point absolutely and so when line 40 is executed for
X g P the first time the LRP is the position (20, 10).
- KQ 10 SCREEN 3
{1, Ymax) {(Xmax, Ymax) - 20 CLS
- ool el 4 virtual : . Q 39 PSET (20,1a)
Xmax: zumger of :?o umns |r[1 scta t;ct(?rt vn:’tua screen I 40 FOR J=1 TO 9
Ymax: umber ot Hnes In setectea virtual screen : , 50 PSET STEP (1@, Q)
. . o 60 NEXT J
(2) Graphic coordinates s :
2 SO
-

L

2-48 2-49

ClibPD waww.lastio.com

http://www.fastio.com/

ClibPD

2.14 A Practical Guide to the Screen Modes

Whereas the above description summarises the possibilities for the various screen
modes, it is difficult to appreciate the full facilities without seeing them in ac-
tion. This section is thus meant to be followed actually using the PX-8.

The various screen modes are accessed by using the SCREEN command. The
screen size is set by the WIDTH command. This can be attached to the SCREEN
command to give the full format of the screen command as follows:

SCREEN M, VS,FKS,BC WIDTH C,NL1,NL2
Where M is screen mode 0, 1, 2 or 3
VS is the virtual screen to be displayed.

FKS allows the function key assignments at the base of the screen to be switched
on and off to give the full 8 lines of the LCD screen.

BC sets the boundary character for split screen display in screen mode 2.

WIDTH is a separate command which is used to set the number of columns
and lines of the virtual screens. It would normally be used on its own, but since
in many cases use of the SCREEN command will involve setting the size of the
virtual screens, it has been added to the syntax of the SCREEN command. The
addition does not require a comma to separate the WIDTH command from the
boundary character, but it does require a space as separator. In WIDTH, C sets
the number of columns (in screen modes 1 and 2) and NL1 and NL2 the num-
ber of lines of the two virtual screens. The range of these options varies accord-
ing to the modes and thus will be discussed under each mode.

If one of the parameters is to be changed, ether than the mode, the correct num-
ber of commas must be inserted to denote which parameter is being changed.
To illustrate this the function key assignments can be switched off using the
command

SCREEN, ,#§

because the function key switch is the third parameter.

If a screen mode or virtual screen is not specified, the current values are used.

2-50

wavwlastio.com

:‘y l"’g
o |—3

The display on the LCD screen is a window on one or both of the virtual text
screens. In mode 0, 1, or 3 only one of the virtual screens is displayed at a par-
ticular time. In mode 2 they can be displayed side by side.

If the screen mode is changed, the real and virtual screens will be cleared.
However, if only the virtual screen is being changed, the window is changed and
there is no clearing of either virtual screen. In illustrating this and successive
operations, it is necessary to see the effect in each screen mode.

(1) MODE 0

The following sequence of operations shows how switching the display between
the virtual screens leaves the virtual screens intact, and then goes on to illustrate
how to move about the screens.

Type MENU and press| RETURN |, or use the shifted function key [PF4].

From the BASIC menu login to a program area.

You will now be in screen mode 0 and see a portion of the first virtual screen.
Without clearing the screen, type SCREEN 0,1 and press the key;
the screen will clear but for “Ok” and a flashing cursor (this is the second virtu-
al screen).

Now type SCREEN 0,0 and press[RETURN |; the first virtual screen will be
redisplayed as you left it, except that the cursor will have moved down and another
“Ok” will have been written onto the screen.

It is possible to switch screens in the direct mode using the and [¢] or
(=] cursor keys. If you hold down the key and press the [«] cursor key
the display will switch to the first virtual screen. If the first virtual screen is be-
ing displayed, then no change will be apparent. Similarly, pressing the
and cursor key will show the second virtual screen. This can only be used
in the direct mode and not in programs, even in INPUT statements.

The and cursor keys also have a function when pressed together with
the key. They cause the first and last displayable lines respectively of
the current virtual screen to be displayed. Depending on whether the screen is
showing the function key assignments, 7 or 8 lines will be shown.

If the cursor is not on these lines it will not be displayed. Set the screen to the
last lines of the virtual screen and type another key. If the key is not ,

2-51

http://www.fastio.com/

ClibPD

, or[NUM |/[GRAPH] or a key which cannot function (e.g., the[BS]

key if the cursor is at the beginning of a line) the window will be returned to
the part where the cursor is located. The character pressed will be printed be-
side the cursor, or the function of the key carried out. You can also return to
the cursor position by pressing the [CTRL] and [INS] keys together.

The cursor can be moved anywhere on the virtual screen using the cursor keys.
Note how the screen moves with the cursor if you move to a line above or below
the real screen. This is the normal tracking mode. It can be changed to the non-
tracking mode, where the cursor can be moved anywhere on the virtual screen,
leaving the window fixed. Pressing the key (shifted [INS]) will switch
between the two modes. Move the cursor off the real screen with the cursor keys
in the non-tracking mode, and then restore the part of the screen containing
the cursor to the window as before using the [CTRL |and [INS |keys. It is possi-
ble to set the cursor to the first character position of the virtual screen with
the key (shifted [BS]) but this does not display the cursor. In combina-
tion with the| cTRL | and[iNS] keys as a sequence it can be used to set the dis-
play to the top of the virtual screen with the cursor on that position.

It is still possible to scroll the screen even if the cursor is not in the window,
by using the SHIFT and [t] and cursor keys. This only moves the screen
up or down one line at a time.

The boundary character is not used in screen mode 0.

The WIDTH command is used to set the number of columns and number of
lines of each virtual screen. However, in screen mode 0 it is not possible to alter
the number of columns. It is only possible to display an 80 column screen, with
either of the two virtual screens being displayed at any one time. If using screen
mode 0 a value of 80 must be used for the column width or no value used at all.

The number of lines in each virtual screen can be altered provided the sum of
the lines specified is less than or equal to 48, and that neither screen is made
less than 8. If your program uses only one virtual screen, it is beneficial to in-
crease its size to the maximum, (i.e., 40 since the other screen must be 8 and
the total 48). It is also useful to do this if you are writing a BASIC program
since it is possible to scroll back without having to relist the program. Type

SCREEN 60.0.0, WIDTH 86,40,8
or the equally valid
SCREEN #,9,8, WIDTH ,40,8

2-52

wavwlastio.com

N

bR “
it

DO
PR IEH

sisishinioiie]

F*"l
O

Halatals

TR O VDD HODDBY BTN OHOO
A E
)

i

ARPARPRARPFIFINS

e

i

This sets the first virtual screen to 40 lines and the second to 8. It also switches
to the first virtual screen if you were not already displaying it, and turns off
the function key assignments display on the bottom line. Note that there is no
reference to boundary character, because there is no division of the screen in
this screen mode, but the comma as separator must be inserted or an error will
occur. You can see the extent of the first virtual screen by using the cursor keys.
Now press the and |=] keys to display the second virtual screen. Now
if you fill the screen with text, e.g. a listing, you can see that the cursor keys
only allow movement on the real screen (because the virtual screen is the same
size as the real screen).

(2) MODE 1

In changing to screen mode 1, use the SCREEN command to show the first vir-
tual screen and turn the function key assignment display off by typing the fol-
lowing SCREEN command and pressing[RETURN]

SCREEN 1,0,

The screen will clear to give a display with a boundary of two characters width
in the centre of the creen. This boundary marker cannot be changed either in
position or as the character displayed.

Use the cursor keys to move down the screen. You will see that when the cursor
reaches the base of the left-hand side of the screen, instead of disappearing off
the bottom and causing the screen to scroll up, it moves to the top right-hand
part of the screen. Only when the cursor reaches the base of the right-hand side
of the screen does the top line scroll off the left-hand side of the screen. Moreover,
the right-hand side of the screen scrolls up into the left-hand side. This is be-
cause the two halves of the screen are displaying 16 lines of the virtual screen
39 columns wide but in two blocks of 8 lines side by side. This can be seen bet-
ter if the following program is run to fill the screen with numbers on each line.

18 CLS

20 FORJ = 1TO 20
36 PRINT J

40 NEXT

Try the following to see how it differs from screen mode 0.

2-53

http://www.fastio.com/

| ClibPD

(i) Change the window between the virtual screens, using [CTRL | and the
and [«] cursor keys.

(i) Change the tracking mode, using the key.

(iii) Scroll using the shifted [*] and keys.

(iv) Look at the first and last displayable lines using the and and

keys.

Only one parameter can be altered in the WIDTH statement in screen mode
1. The screen is set to display two 39-column halves on each side of the screen.
It is not possible to alter this so the WIDTH statement must specify 39 as the
column width, if any value is used, or an error will occur. The number of lines
in each virtual screen is the same in screen mode 1. The number of lines must
be specified in the range 16 to 48 and setting the number of lines for the first
screen also sets the number for the second. Any attempt to set the size of the
second virtual screen will be ignored and no error generated. Thus to set the
number of lines on each screen to 20, the following are valid commands:

WIDTH 39, 26
WIDTH ,20
WIDTH 39, 264, 8

(3) MODE 2

This is the most versatile screen mode. The width of each half of the screen and
boundary character can be set. The number of lines on each virtual screen is
the same as with screen mode 1. For example type

SCREEN 2, 8, 8, “*” WIDTH 24, 40

This will switch to screen mode 2, placing the cursor on the left-hand side of
the screen and removing the function key assignments from the base of the screen.
1t also sets the width of the left-hand side of the screen to 20 columns. The right-
hand side is thus set as 59 since one of the 80 columns is used for the boundary

characters.

Now use the and [+] keys to change the virtual screen. Note how the
cursor moves to the right half of the screen. This is because the two halves of

the screen correspond to the two virtual screens. Use the cursor keys in combi-
nation with the[SHIFT]and | CTRL] keys to explore this mode as with modes

1 and 2.

2-54

wavwlastio.com

The boundary character can be reset using an ASCII character code with the
CHRS$() function. For example type the following to change the character to
the vertical line graphics character (ASCII code 134):

SCREEN ,,,CHR$(134)
Note how both of the virtual screens are cleared when this command is executed.

(4) MODE 3

This screen mode is the mixed graphics and text mode. The dots are individual-
ly addressable, using the various graphics commands. This means that the video
memory is largely devoted to storing the graphics information. Consequently
text is limited to one virtual screen. This virtual screen is the same size as the
real screen (80 columns and 8 lines) and so the various combinations of
and cursor keys do not function in this screen mode.

Type SCREEN 3 and press - You can see you have entered graphics
mode, because there is no longer a flashing cursor. It has changed to an under-
line character, which is the same as the insert cursor in the other screen modes.
Thus the only indication of the PX-8 being in the insert mode is that the INS
LED above the keyboard is lit.

A§ an example of the use of the graphics screen mode, the following command
will draw a line from the top left-hand corner to the bottom right.

LINE (8, 8)— (480, 64)

2-55

http://www.fastio.com/

ClibPD

2.15 Input/Output Device Support

PX-8 BASIC supports data input and output (I/0) to and from a variety of
peripheral devices. These include random access devices such as external floppy
disk drives and RAM disk (a user-specified area in memory which is used in
the same manner as an external disk drive), and sequential access devices such
as the RS-232C interface, printer and LCD screen.

Devices which have full random access capability allow the records of files to
be read or written in any order. All external storage devices used with the PX-8
have some degree of random access capability.

Sequential access devices are devices in which each item of data in a set is input
from or output to the device in the order in which it occurs in that set. With
PX-8 BASIC, sequential file organization may be used for storage of informa-
tion in external access devices such as floppy disk drives, or for input/output
of information when 1/0 devices such as the keyboard and RS-232C interface
are handled as device files.

2.15.1 Random access devices

Random access devices are devices which can be open in either the random (“R”)
or sequential (“I” or “O”) modes. Random access devices supported by PX-8
BASIC include external floppy disk drives, RAM disk, and the PX-8’s built-in
microcassette drive. Collectively, these are referred to as disk devices.

Disk devices can be classified into three categories (types I, I1, and IIT) as follows.

(I) Type I disk devices are external storage devices which can be both read and
written to on a random access basis. Devices included in this category are
RAM disk and external floppy disk drives. All disk I/O statements and
functions can be used with type I devices.

(II) Type II disk devices are devices which can be read (but not written to) on
arandom access basis. Devices included in this category are ROM capsules
in ROM socket 1 and 2. Only read statements/functions can be used with
this type of device.

(II1) Type III disk devices are devices which can both be read and written, but
for which random access support is limited. At present, the only device
which is included in this category is the PX-8’s built-in microcassette drive.

2-56

wavwlastio.com

o
ala
O

—m

L&
>

QUL ¢

SO

&

O

|

{

AR R p\ el s ol e

AICE 205 2 BN IS

i

With this type of device, the GET and PUT statements cannot be used con-
currently when a file is opened in the random access mode. Further, record
numbers must be used in sequence each time the GET or PUT statement
is executed. (See the explanations of the GET and PUT statements in Chap-
ter 4.)

When the PX-8’s power is first turned on, the device names of the random ac-
cess devices are as shown below. The name assignments can be changed with
the CONFIG command of CP/M; see the PX-8 User’s Manual for procedures
for doing this. These device names are included in the file descriptor with the
file name as described in section 2.12.

RAM disk.......ccccvvvenen.. A: (in main memory or optional
RAM disk unit)

ROM capsule 1.............. B:

ROM capsule 2.............. C:

Floppy disk drives D:, E:, F:, G:

Microcassette drive.......... H:)

2.15.2 Sequential access devices

Sequential access devices are devices which can be open as files for input (the
“I” mode) and/or output (the “O” mode). Sequential access devices supported
by PX-8 BASIC and the modes in which they can be opened are as follows.

KYBD: Keyboard, input only

SCRN: LCD screen, output only,

LPT@: Printer, output only

COM@: RS-232C interface, both input and output

Note that the colon is a part of each of these device names, and must be speci-
fied in the file descriptor whenever one of these devices is prepared for input/out-
put by execution of an OPEN statement. However, no file name is specified
following the device name when one of these devices is opened as a file.

Statements and functions which can be used with sequential access devices are
as shown in section 2.15.7 below.

NOTE:

The format for file specification with the RS-232C interface is slightly different
than that of other sequential access devices. See Chapter 6 for details.

2-57

http://www.fastio.com/

ClibPD

2.15.3 Speaker

PX-8 BASIC also supports output to a speaker (either the built-in speaker or
an external speaker connected to the SP OUT jack on the back of the PX-8).
No device name is assigned to this device; however, output control is possible
using the BEEP and SOUND statements.

The speaker can also be used to check for the presence of recorded signals on
the tape. This is done by executing the WIND ON statement. (See the explana-
tion of the WIND statement in Chapter 4.)

2.15.4 The analog converter

On the rear of the PX-8 is a socket marked A/D IN. This is the analog-to-digital
converter. It takes an analog voltage and converts it into a number. This num-
ber is proportional to the voltage. The analog-to-digital converter is not sup-
ported by BASIC, but it can be used if a short machine code subroutine is added
to a BASIC program. This machine code subroutine is required to make the
necessary BIOS call to return the digital value corresponding to the analog vol-
tage. An example of its use is given in the User’s Manual, where the voltage
across a variable resistor is determined. This is then used as a paddle in a simple
game. The program shows how the machine code routine to read the A/D port
can be used with a BASIC program.

2.15.5 The bar code reader

Many products are marked with a machine readable coded series of bars. This
allows a numerical value to be read simply by moving a bar code wand across
the bars. A socket for insertion of the wand can be found on the rear of the
PX-8 marked BRCD. Further details are included in the User’s Manual.
Examples of the use of a bar code reader include identifying suitably coded
products, then using the information in a program to count the number of differ-
ent items. Special software is required to perform the task of reading the data.
Such software must be written in machine code, but can be linked to BASIC.
Use of the bar code reader requires the purchase of a separate software pack-
age, and details of how to use the software with BASIC are included with the
package. Please consult your dealer for more information.

2-58
wavwlastio.com

AP\

S L AL A

O O O Qo

Ar Agipigle

pr>

2.15.6 Other devices

Communication with a number of other devices can be achieved if they have
an RS-232C serial port. Besides transmitting data of a conventional nature (e.g.
text sent over a modem or acoustic coupler) data can also be sent to control
other equipment. Please consult your dealer for further information.

2-59

http://www.fastio.com/

|

i

-
2.15.7 Commands, statements, and functions usable with 1/0 devices 5 g 2.16 Error Messages
dCox}lmands, ste.lter_nents, 'flnd functions which can be used with the various 1/0 > ﬁ Error messages are displayed when g . .
evices are as indicated in the table below. - s, statements 03; functiorfsrrcl); seare etected gur}ng execution of BASIC
Device |KYBD[SCRN | LPTO [cOMO| DiskeI [Disk-[pisketn] B e e hASIC moons. I errors occur during However, it is poset
CLOSE O O O O O O O _ [3 ble to prevent this by including error processing routines which use the ON
DSKF < X < < o O 2 : (Q nggnﬁ s;z;:;er;tn zrild ERRl and .ERL_ functions in programs; see the next sec-
EOF — ” » 5 5 5 5 = [3 ponding explanations in Chapter 4 for details.
GET X x X X @) @) 13 s Ks A complete list of the BASIC error codes, error messages, and causes of errors
INPUT # o X < o o o o) > (Q is shown in Appendix A.
INPUT$ o | x x | ol o | o]l o > l:’
LINEINPUT# | O | x | x | o | o | o | o z l3
LIST x | o] olo]lo] x| o o (3
LOAD O X % O O O O - [:
LOC — | x [x|oJolo]o Sl
LOF — X X O O O O > (%‘5
OPEN ”1” O X X O O O 13 - %
OPEN 70” X O O O O X 13 = ‘Q
OPEN ”R” X X X X O O 13 - ‘Q
POS x| o |l o|]olo]olo - Ky
PRINT# x| olo | o|o]| x|o iy
PRINT USING# | X O O @) O X O - ‘;
PUT X X X X O X 13 :
SAVE X t1 t1 T1 O X O ;
WIDTH X X O O b X X e
WRITE X O @) O | 0O X O :

Disk-I RAM disk, floppy disk drives

Disk-II ROM capsules

Disk-III Microcassette drive

O: Usable % : Not usable —: Meaningless

11 Output is in ASCII format even if binary save or protect save is specified.
12 Value returned is not trustworthy due to the nature of cassette tape.
13 Use is subject to restrictions.

OO

Annpsisisigle

0

)

2-60 2-61

X

r

ClibPD waww.lastio.com

http://www.fastio.com/

ClibPD

2.17 Error Processing Routines

When it is possible to anticipate that a certain line of a program will result in
an error or that an error of a particular type will occur, programs can be designed
to include routines which are referred to as error traps, or error processing rou-
tines. The purpose of an error processing routine is either to evaluate and cor-
rect an error or to allow the user of the program to input corrective data;
afterwards, the error processing routine either terminates program execution or
causes it to resume at a particular point, depending on what conditions are written
into the routine.

The ON ERROR GOTO <line no.> statement must be executed in order to
define the starting line number of the error processing routine. After execution
of this statement, occurrence of any error at any line in the program will cause
execution to jump immediately to the line number specified following GOTO.
Afterwards, the ERR and ERL functions can be used to evaluate the type of
error and the point at which it occurred in the program, and the RESUME state-
ment can be used to transfer execution out of the routine and back to a specific
point in the main program.

Errors can also be simulated using the ERROR statement.

See the explanations of the ERROR, ON ERROR GOTO, and RESUME state-
ments and the ERR/ERL functions in Chapter 4 for further information.

2-62
wavwlastio.com

A

siininirieioinh

OH OO OO0 OO0 (
ole
VRV

|
U U

PO OO

|
wy
U

{
ol
Q-

VOO

YOO 90

NSRRI

A AAPRRPIstslo\e

@

Chapter 3

ENTERING BASIC WITH
EXTENDED FORMAT
COMMANDS

It is possible to enter BASIC with various commands appended which can set
up the number of files allowed, upper memory limit etc. This chapter summarises
these options.

The full syntax of the BASIC command is as follows:

BASIC [<filename>][/F:<no. of files>][/M:<upper memory limit>]
[/S: < maximum record size >][/P: < program area no. >] [/R: <program area
no.>]

All command operands indicated in brackets ([]) above are optional; the func-
tions of each of the operands are as described below. The brackets are inserted
to show the separation of the options and should not be typed in.

(1) BASIC < filename >

BASIC TEST1

When the name of a BASIC program file is specified following BASIC, that
program is loaded and executed upon completion of the BASIC command in
the same manner as if RUN “ < filename > had been entered immediately af-
ter start-up. If no file name extension is specified, .BAS is assumed. If neither
the /R: nor /P: options are specified, BASIC starts operation using program
area 1. See section 2.12 for details on < filename>. The above example would
enter BASIC and proceed to RUN the program which was named TEST1 on
the currently logged in disk drive. It would be placed in program area 1.

31

http://www.fastio.com/

/)

lIbPD

(2) BASIC /F: <no. of files>

BASIC /F:5

The /F: <no. of files> option sets the number of files which can be open simul-
taneously. In the example the number would be 5. If this operand is omitted,
the maximum number of files which can be open simultaneously is set to 3 (the
system default value). The maximum value which can be specified in <no. of
files > is 15. In this statement “files” refers to data files, either for communica-
tion or saving and loading to a disk drive. For example

OPEN “0”, #3,“FILENAME”’

If a file number is used which is greater than the number specified in the op-
tion, a

Bad file number in <line number >
error will occur.

(3) BASIC /M: <upper memory limit >
BASIC /M:&HC000

The /M: <upper memory limit > option specifies the highest address in RAM
which can be used as program or variable area by the BASIC interpreter. The
value specified for <upper memory limit > must be smaller than the starting
address of the basic disk operating system (BDOS). The memory area starting
at the address from <upper memory limit > to the beginning of BDOS can
then be used for storage of machine language programs. Naturally, this reduces
the amount of memory which can be used for variables or storage of BASIC
programs. However, it must be noted that the BDOS starting address will vary
according to the number of bytes of memory reserved for use as the RAM disk.
The starting address of BDOS can be found by looking in page zero. Locations

5, 6 and 7 contain a jump to BDOS. Therefore locations 6 and 7 contain the

starting address of BDOS, in the order LSB, MSB. To obtain this from BASIC
use:

PEEK(6) + PEEK(7) * 256

In the example above, the upper memory limit is specified as a hexadecimal
number; however, it can also be specified as a decimal number. Full details of
this are described in the section on the CLEAR command in Chapter 4.

3-2
wavwlastio.com

Y (9,

{

EURELK
1
ry

o
Y
QO

U

SRR LR AR

slslels
Y

o

I I O I N T AV R)

ks

RN

L)

JJI

AP ANS

L

>,

(4) BASIC /S: <maximum record length >

BASIC /8:256

The /S: <maximum record length> option sets the maximum record length
which can be used with random access files to the value specified in < > the
maximum record length can be specified in decimal, hexadecimal (&H) or oc-
tal (&O) notation. When an OPEN ‘‘R”’ statement is executed after starting
BASIC, the record size specified in that statement cannot be larger than the
value specified with this option. If this option is not specified when the BASIC
command is executed, the maximum record size is set to 128 bytes.

(5) BASIC /P:<program area no.>

BASIC /P:3

The /P: < program area no. > option specifies the program area which is selected
at the time BASIC is started and automatically logs into that area. The value
of <program area no.> must be specified as a number from 1 to 5.

(6) BASIC /R:<program area no.>

BASIC /R:3

As with the /P: option, the /R: < program area no. > option starts BASIC and
selects and logs in the specified <program area no.>; in addition, this option
immediately executes any BASIC program which is present in the specified pro-
gram area. As with the /P: option, <program area no.> must be specified
as a number from 1 to 5.

If both the /P: and /R: options are omitted, the BASIC program menu described
in section 1.3 is displayed when BASIC is started.

If any errors are made while entering the BASIC command, an error messsge
is displayed and the MENU screen or system prompt is redisplayed (depending
on whether or not the MENU screen function is turned on). This also occurs
if sufficient memory is not available for the BASIC working area (either be-
cause the upper memory limit or the starting address of BDOS is too low).

http://www.fastio.com/

	./brm1_01.tif
	./brm1_02-03.tif
	./brm1_04-05.tif
	./brm1_06-07.tif
	./brm1_08-09.tif
	./brm1_10-11.tif
	./brm1_12-13.tif
	./brm1_14-15.tif
	./brm1_16-17.tif
	./brm2_01.tif
	./brm2_02-03.tif
	./brm2_04-05.tif
	./brm2_06-07.tif
	./brm2_08-09.tif
	./brm2_10-11.tif
	./brm2_12-13.tif
	./brm2_14-15.tif
	./brm2_16-17.tif
	./brm2_18-19.tif
	./brm2_20-21.tif
	./brm2_22-23.tif
	./brm2_24-25.tif
	./brm2_26-27.tif
	./brm2_28-29.tif
	./brm2_30-31.tif
	./brm2_32-33.tif
	./brm2_34-35.tif
	./brm2_36-37.tif
	./brm2_38-39.tif
	./brm2_40-41.tif
	./brm2_42-43.tif
	./brm2_44-45.tif
	./brm2_46-47.tif
	./brm2_48-49.tif
	./brm2_50-51.tif
	./brm2_52-53.tif
	./brm2_54-55.tif
	./brm2_56-57.tif
	./brm2_58-59.tif
	./brm2_60-61.tif
	./brm2_62-3_01.tif
	./brm3_02-03.tif

