Step 1: Execute a DI instruction.
Disables interrupts during bank switching.

Step 2: Set current bank variable CURBNK to new bank.
Update the current bank information in CURBNK (@F534H)
with new bank information.

Step 3: Prepare data for BANKR.,
Load system memory area RZBANKR (@F53DH) for BANKR
(P@5H) .

] RZBANKR and BANKR contain the same data.

4 Step 4: Write data to BANKR.
Qutput new bank data into BANKR (PU5H). The bank data
must be identical to that set up in step 3.

Step 5: Execute an EI instruction.
Enables the CPU for interrupts.

4.4.4 Work Areas Associated with Bank Switching

OLDBNK (@FS52CH) 1 byte

Save area loaded with bank information on entry to BIOS.
@FFH: System bank

d0H: Bank @ (RAM)

g1H: Bank 1

g2H: Bank 2

onunu

DISBNK (@FS52EH) 1 byte

Parameter area for JUMP or CALL bank switching routine.
gFFH: System bank

ggH: Bank @ (RAM)

@1H: Bank 1

g2H: Bank 2

W oWonon

BNKRGS (@F530H) 1 byte
System bank area. Set to 00OH.

BNKRG1 (@F531H) 1 byte
Bank @ area. Set to 40H.

RZBANKR (@F53DH) 1 byte
System area for holding output data to RANKR (P@5H).
Has the same format as BANKR.

BNKRG2 (@F532H) 1 byte
Bank 1 area

76543210
K OUJ 9000
L RoM size

= 00H : 8K-byte ROM
= 014 : 16K-byte ROM
= 10H : 32K-byte ROM

11-456

Cht v fastio.com

http://www.fastio.com/

ChbPDF -1

8K-byte ROM is assumed when no ROM is installed.

BNRRG3 (OF533H) 1 byte
Bank 2 area

76543210

EERNCECE

t———————-mm size

= 00H : 8K-byte ROM
01H : 16K-byte ROM
10H : 32K-byte ROM

1t

8K-byte ROM is assumed when no ROM is installed.

CVRBNK (@F534H) 1 byte

Contains the bank number of the current bank.
JFFH: System bank

d0H: Bank @ (RAM)

@1H: Bank 1

@2H: Bank 2

Wonouu

4.5 Resident Processing

4.5.1 General

When resident processing is specified by an application program,
the current program in RAM is preserved and when a power-on
condition is generated in the restart mode (by the wake function
or other factor), control is transferred immediately to address
130H on bank 4. :

This function allows the PINE to warm-start an application
program at a power-on time without passing through the menu
processing or CCP, making it a turn-key system.,

When this function is activated, the auto start or wake string is
passed to the application program through the keyboard buffer.
The application program can treat the string as if it were
entered from the keyboard at warm-start time.

4.5.2 How to Specify and Cancel Resident
4,5.2.1 Specifying resident

Resident must be specified within the application program. The
method of specifying resident processing differs between ROM-
based and load-and-go programs.

Resident can be specified by setting the resident flag RESEXQ
(FEF28H) in the system area in one of the following ways:

1. Calling the BIOS RESIDENT function (WBOOT + 84H).

2. Writing @1H directly into RESEXQ (OEF28H).

11-457

v fastio.com

http://www.fastio.com/

(1) Actions required of a load-and-go program for resident processing
A load-and-go program, when started, is loaded into RAM (bank @)
at address 10@H, after which control is transferred to address
100H. To specify resident processing, the load-and-go program
must take the following steps:
1. Set the resident flag.
2. If necessary, rewrite the instruction at address 100H to a
jump to the point of warm start.

Subsequently, when power-on, reset, or WBOOT processing is
initiated, the system transfers control directly to address 100H
in RAM. . .

(2) Actions required of a ROM-based program for resident processing
When a ROM-based program is started, the first sector of the
program is loaded into RAM (bank 8) at address 10084, after which
control is transferred to the specified program start address.

The ROM-based program which is to specify resident processing

must load necessary data in advance into the first 9¢ bytes of

the ROM program in the specified format (see Section 4.61,
"Executing a ROM Program" for the format of the 90-byte data).

The ROM-based program need only set the resident flag.

Subsequently, when power-on, reset, or WBOOT processing is
initiated, the system transfers control directly to address 100H
in RAM. The 90 bytes from address 100H contains the data that
was read when the ROM-based program was started for the first
time. The data consists of routines for checking for a program
for which resident is specified, for transferring control to the
given address, and for handling errors.

4.5.2.2 Canceling resident processing

Resident processing must be canceled by the. application program.
Resident can be canceled by:

1. Calling the BIOS RESIDENT function (WBOOT + 84H) .

2, Writing 00H directly into RESEXQ (@EF28H).

The resident flag RESEXQ is not affected by resets; it is cleared
to zero only by System Initialize. This means that control

cannot exit the application program if the resident flag remains
set.

i1-458

wvvwfastio.com

http://www.fastio.com/

4,5.3 Processing Flows

The flowcharts below show the flows of proce551ng of the system
and application programs for whlch resident is specified.
(1) Load-and-go program

Reset
Power OFF — ON

1
|
:
looerator action
|
{
i

i , Transfer control |
! Load program into directly to 100 !
! .
i RAM an? tragiggg it resident is =System action
! control to specified ;
|

Set resident Warm start
specification processing

|

1 |
| |
| |
| |
| |
I |
| |
| |
| i
| |
' |
E If necessary, reset |
! contents of 0100H !
; and later bytes to ;
! |warm start entry !
b laddress I
| |
| t
|]
| |
| |
| i
| |
|]
| |
| |
{]
| |
i |
| |
| |
| |
| |
| |
| |

B

Program processing

J Application program
processing

Reset resident
specification

11-459

ChibPDF - www.fastio.com

http://www.fastio.com/

(2) ROM-based program

ROM-based programs to be executed with resident specified must
begin with a 90~byte data area in the specified format. See
Section 4.6, "Executing a ROM Program" for the 9@-byte data
format.

Operator action

1

|

Reset E
Power OFF — ON !
|

Transfer control
directiy to 1004

load first sector
of program into

I
{
:
;3ystem action
%
|
|

|
|
{
%
, | it resident i
] I | RAM, check for a if r?:fgg"t s
| L' | RoM-based program, ‘“_sp_e_c e |
§ 5 and transfers { _______ l:_ ________
] | [control tocold |1 T — 1
‘ ! start address D nsure' at |
| | || specified progarm| |
e =4 11 is resident and | Processing at
e —— -1 i | transfer control | 0100H
| Cold start | E to warm start i
; processing ! ; address !
| R i ________ j
| i, s -
E Set resident Warm start E
! specification processing !
| |
{ J ¢ | | Application
! , iprogram
E Program processing {processing (ROM)
| |
| |
= |
! Reset resident |
E specification |
| f
|, %r ___________________________]
WBOOT

1-460

wvvwfastio.com

Clib =]

http://www.fastio.com/

ChhPDF -

4.5.4 Miscellaneous Considerations
4.5.4.1 Programming notes

(1) Before terminating (calling WBOOT) a program for which
resident is specified, cancel the resident specification.
Otherwise, the program can be terminated by no means but system
initialize.

(2) When specifying resident processing for a ROM-based program,
be sure to define predetermined data in the first 98-byte are of
the program in advance. Otherwise, warm start processing will
fail.

4.5.4.2 Related Work Area

RESEXQ (0JEF28H) 1 byte
Resident flag.
= ¢0H: Resident not specified.
= Nonzero: Resident specified.
The initial value is @@H. This area is initialized only by
system initialize.

4.6 Executing a ROM-based Program
4,.6.1 General

Although the PINE can load application programs from ROM capsules
into RAM memory at address 10@H for execution as under standard
CP/M, it can also execute the programs as stored in the ROM to
increase memory efficiency and to save electric power. This
section explains the principle of ROM-based program execution,
method of establishing the execution environment, and programming
notes.

4.6.2 Establishing the Execution Environment

ROM-based programs, which are executed immediately in a ROM
capsule, must be given an identification at their beginning to
distinguish themselves from ROM programs, called load-and-go ROM
programs, which are loaded into RAM memory for execution.

4.6.2.1 When resident is not specified

A ROM-based program without resident specification must begin
with a 5-byte ID data as shown in the figure below. The system
identifies a ROM-based program by examining this field.

Beginning — DDH
of program v [D

DEH) 5-byte area
00H

OOH

O0OH

Program
area

\/\

1-461

wvvwfastio.com

http://www.fastio.com/

4.6.2.2 When resident is specified

A ROM-based program with resident specified must begin with 9¢
bytes of information in the format shown below.

Biginning — DDH
of progran |t | eeeee ID
DEH
v
C3H
OBH
O1H
N
3 bytes || - J P "Cold Start Entry”
S
N
S w—
3 bytes J| JP "HWarm Start Entry”
OEJ1A11{3ALFO|CDJO5]00
< 2115C 100111150 /00]01]23
Q0 [AF |77 [ED{BO|21[59]01
g%dbgg‘t’g = (11167 |00 | O | 0B [€D |88 [(D
99 {FF{OE {0911 [3E[01/CD
05100 |AF |32 |28 EF{QE {00
8 bytes CD!O5100(52:4F14D120(41
File name 43743149 44 (4514015420
201121107 | 24
3 bytes
File type

i-462

- www fastio.com

http://www.fastio.com/

ChhPDF -

4]
Offset 3 Name Description
D
m
G0H~F1H ? 1D ROM-based program identifier
Jump . . .
: . Jump instruction for resident
02H~04H 3 ;gitiggféggtprocessing (NOP when resident
processing 'is not specified)
B5H~07H 3 Cold Start |Program cold start address
Entry (Jump to ROM cold start
address)
Program hot start address
08H-0AH 3 gsig Start (Jump to ROM hot start
4 address)
Resident Instructions for resident
@BH~4EH 68 processing |Processing.
Resident processing
‘cons'ists of:)
1. Setting up DMA and FCB.
2. Executing RSROMEXQ.
3. Abnormal termination
processing.
4FH-~ File name |ROM-Dbased programrnapewgmust
FH~56H 8 € be the same as that in the
ROM directory)
57H~59H 3 FILE TYPE |ROM~-based program type
(must be the same as that in
the ROM directory)

wvvwfastio.com

11-463

http://www.fastio.com/

4,.6.3 Processing Flow

Figure 4.6.1 shows the flow of processing up to the point where
a ROM-based program receives control,

Start core-image
file processing

Read first 1 sector
of file into RAM 100H

<Check ID (ODH, DEH)N. _ Load and go

for ROM-based prograe//’

Normal CP/M processing
Execute on ROM

Calculate program ——— Beginning of ROM program
execution address (file) + 0005H

Transfer control to
application program

Fig. 4.6.1 Starting a ROM-based Program

11-464

- Vv fasTio.com

http://www.fastio.com/

ChhPDF -

4.6.4 Use and Programming Notes

This subsection describes the use and programming notes to be
taken when programming ROM-based programs.

4.6.4.1 Program starting address

Load-and-go ROM programs are loaded into RAM memory at location
1908 for execution. Such programs must be allocated RAM memory
starting at address 10fH. ROM-based programs can execute directly
in a ROM capsule. The starting address of such programs must be
determined by taking into account the header and directory areas.

The program starting address differs depending on the size of the
ROM-based program and the type of the PROM (27256, 27128, or
2764) in which it is to be stored.

A ROM-capsule must contain header and directory areas. Since the
size of the directory area of a program file varies with the
number and size of the programs that the file contains (though
its header area is fixed at 32 bytes), it is necessary to
calculate the size of the directory area to be reserved before
actually loading the programs,

Figure 4.6.2 shows the relationship between the ROMs and PINE
addresses.

Note that the physical addresses of 27128 and 27256 ROMs do not
match the PINE logical addresses.

When programming a ROM program, use the optional PROM WRITEr
cartridge or PROMFORM utility program.

1-465

wvvwfastio.com

http://www.fastio.com/

2764 27128 27256

FFFF FFFF FFFF
£E000 £000 £000
DFFF DFFF DFFF
Data area
Directory area Data area
cooo | Header area

Directory area Data area

oo | Hoater area

Directory area
gono | Header area

0000 0000 0000

Fig. 4.6.2 Relationship between Logical and ROM Addresses
(ROM area is enclosed in double boxes)

11-466

- www fastio.com

http://www.fastio.com/

(1) when implementing a single ROM-based program in a ROM
The program starting address of a ROM-based program consisting of
a single program is listed below.

ROM | 2764 27128 27256
Starting address gCo8gH BAQ80H 6080H

A ROM-based program of this type must begin with a 32-byte header
and a 32 bytes x 3 directory area. Accordingly, the program
starting address must be 80H bytes away from the beginning of the
ROM. See Section 7.3, "Guide for Programming ROMs" for the
structure of the header and directory areas.

(2) when implementing more than one ROM-based program in a ROM
When implementing more than one ROM-based program in a ROM, it is
necessary to calculate in advance the size of the directory area
to be reserved since the size of a portion of the directory area
varies with the number of programs and ROM capacity.

One directory entry can handle a file of up to 16K bytes. Two or
more entries are used to handle files larger than 16K bytes. Forx
example, two directory entries are required for a ROM-based
program larger than 16K bytes and one directory entry for one
which is smaller than 16K bytes.

Since the directory area (including the header area) is reserved

in 128-byte increments, the size of space necessary for the

header and directory areas is obtained from the formula:
[{((nl/16384 + {L + (n2/16384 + 1) + ...) /4} x 4 + 1] x 32 byt

Number of directory entries
\ _
Total number of directory entries

For 128-byte boundary alignment

(16K = 16,384)
where nl, n2, ... denote program sizes.

The program starting address is obtained by adding the above
result to the starting address of the ROM.

To find the starting address of the second and subsequent
programs, follow the steps given below.

Since CP/M manages files in lK-Byte units, the starting address
of the second or subsequent program is obtained by adding the
starting address of the preceding program plus

{({(n -1)/10624} + 1] x 1924 (bytes)
where n is the size of the preceding program,

Figure 4.6.3 shows the memory map for the following ROM programs
implemented in a 27256 ROM:

File name | Records | File size | Directory entries | Starting address
FILEl.COM 30 4K bytes 1 6100H
FILE2.COM 159 19K bytes 2 7100H
FILE3.COM 50 7K bytes 1 BD@OH

11-467

ChibPDF - www.fastio.com

http://www.fastio.com/

£000
DFFF

BD0O

7100

6100

6000

T N

Free

FILE3. COM
(7K bytes)

FILE2. COM
(19K bytes)

FILE1. COM
(4K bytes)

Directory area

Header area

TN

6080
6060

= 6040
\w

[Invalid directory area |

FILE3. COM directory

FILE2. COM directory

FILE2. COM directory

FILE1. COM directory

Header area (32 bytes)

Fig. 4.6.3 Sample ROM Memory Map (for PINE)

- wwwyfastio.com

-468

http://www.fastio.com/

ChhPDF -

(2) ROM-based Program Work Areas

ROM-based programs need a work area which is different from that
used by load-and-go programs. Whereas load-and-go programs can
use the area following their program area as a work area, ROM-
based programs must use an area higher than 190H (15AH or higher
when Resident is specified). The upper limit of the work area
for ROM-based programs is obtained as follows:

min{ (ROM Starting Address), (RBDOS1 Starting Address)}
The ROM starting address is:
600¢0H for 27256
0a@00H for 27128
@CRIBGH for 2764

The RBDOS1 staring address is stored in addresses @0@6H and
gOG7H.

a) When 27256 ROM is used

26K RAM Disk 35.5K RAM Disk
FFFF FFFF FFFF
£000 System Systen
Area Area
CCo0 €Co0
ROM Capsuie
(ROM-based RAM Disk :
program) ‘ (26 Kbytes) RAM Disk
6400 | (35.5 Kbytes)
oo o200 | ST O
/’// 3E00
/ 3C00 | RBIOS1 ~RBDOS1
0100 % 0100 /
6000
Maximum work area Minimum work area
(RAM disk 26 Kbytes (RAM disk 35.5 Kbytes)
or less)

The hatched area is available as the work area without bank
switching., The area starting at 600¢H is made available through
bank switching. :

11-469

wvvwfastio.com

http://www.fastio.com/

b) When 27128 ROM is used

10K RAM Disk 35.5K RAM Disk
FFFF FFFF FFFF
E000 System System
Area Area
CCo0 CCo0
ROM Capsule '
(16 Kbytes) RAM Disk ‘
(10 Kbytes) RAM Disk
A400 (35.5 Kbytes)
A200 '
A000 RBI0S1,RBDOS1

3E00
3C00 | RBIOS1 ~RBDOST

:.»v | 100 % 100 %

A0
Maximum work area Hinimum work area
(RAM disk 10 Kbytes (RAM disk 35.5 Kbytes)
or less)

The hatched area is available as the work area without bank

switching. The area starting at address @AQGQPH is made available
through bank switching.

1-470

Chiidmft

- wwwyfastio.com

http://www.fastio.com/

c) When 2764 ROM is used

2K RAM Disk 35.5K RAM Disk
FFFF FFFF FFFF
£000 System System
Area Area
CCO0 CCo0
ROM Capsule
{8 Kbytes) RAM Disk
(2 Kbytes) RAM Disk
C400 (35.5 Kbytes)
0000 €200 RBIOS1/RBDO§1_

7//
100 \ // 100 %

3E00
3000 | RBIOS1 ~RBDOST

€000
Maximum work area Minimum work area
(RAM disk 2 Kbytes (RAM disk 35.5 Kbytes)
or less)

The hatched area is available as the work area without bank_
switching., The area starting at address @C@@0H is made available
through bank switching.

1-471

ChibPDF - www.fastio.com

http://www.fastio.com/

(3) BDOS/BIOS Calls from ROM-based Programs

Load-and-~go programs call address @@@5H through 06¢7H when making
a BDOS call and address @@@0H through 6902H when making a BIOS
call. For ROM-based programs, however, the addresses of BDOS and
BIOS may be located in the background memory of the ROM capsule
(because their location varies with the capacity of the installed
RAM disk). When calling BDOS and BIOS, therefore, ROM-based

programs must call BDOS and BIOS entry points (RBDOS2 and RBIOS2)
in the resident area.

RBDOS2 entry address: GFF90H (JP RBDOS2)
RBIOS2 BOOT address: JEBOOH
RBIOS2 WBOOT address: JEBO3H
RBIOS2 CONST address: GEBA6H

RBIOS2 CONTINUE address: @EBSAH

(4) ROM-based program ROMs

. ‘ The PINE supports two formats, P- and M-formats, for ROM
capsules. ROM-based programs must be programmed in the P-format.
Load-and~-go ROM programs may be programmed either in the P~ or M-
format. See Section 7.3, "Guide for Programming ROMs" for
instructions for programming ROMs.

4.7 Interrupts
4.7.1 General

PINE supports five types of interrupts. When an interrupt
occurs, it takes in and sets up the corresponding interrupt
vector and transfers control to the interrupt processing routine.

The interrupts that the PINE supports include:
1. 7508 (4-bit CPU)

2. ART (RXxRDY)

3. Alarm time

4, ICF (Input Capture)

5. OVF (FRC Overflow)

6. EXT (External)

The sources of 7508 interrupts are:
1. Keyboard

2. Power switch

3. Alarm time

4, Power fail

5. l-second interrupt

4,7.2 Interrupt Vector

The PINE handles five types of interrupts. Their interrupt
vector table is located in the area between OFFF@H and @FFFFH.

Interrupts are given priorities; the PINE accepts interrupts of
the highest priority first.

Table 7.4.1 Interrupt Vector Table

Priority Interrupt source Vector |[RAM address

1 (highest) | 75¢8 (4~bit CPU) @F@9H |GFFFUH and GFFF1H
2 ART (RxRDY) gF2H |@FFF2H and @FFF3H
3 ICF {Input Capture) @GF4H [OFFF4H and (QFFFSH
4 QVF (FRC Overflow) gF6H |@FFF6H and @FFF7H
5 EXT (External interrupt) @F8H |9FFF8H and @FFF9H

1-472

Cht wvvwfastio.com

http://www.fastio.com/

The interrupt sources and their reset conditions are listed in
Table 4.7.2.

Table 4.7.2 Interrupt Sources and Reset Conditions

Interrupt Interrupt source Reset conditions
7598 * Keyboard input Returns a reply to the 7598.
* Lapse of 1 second
* Alarm time
* Power switch on or off
* Power fail voltage
ART * ART RxRDY set. Reads the receive data
(RXRDY) register ARTDIR (P1l4H).
ICF * Change in state of Reads the input capture

the input signal from |register (P@3H).
barcode reader or
cassette drive

OVF * FRC (Free Running Issues a Reset OVF command
Counter) overflows. (sets CMDR (P@2H) bit 2 to 1).
FRC is a 1l6-bit coun-
ter running at a
period of 106.7 ms.

EXT * Interrupt signal from |Returns a reply to the
external device (via external device (via system
system bus) bus).

4,7.3 Interrupt Control
The PINE takes various actions to control interrupts.

4.7.3.1 Setting up the interrupt mode and vector data

When an address @000H start occurs (started by a system
initialize, reset, or power-on), the PINE specifies the

mode 2 interrupt and loads the I register with FFH (the higher
order 2 digits of the interrupt vector table address),

4.7.3.2 Loading the interrupt vector table

The PINE loads interrupt data from 0S ROM into addresses @FFF@H
through @FFFFH when a reset or system initialize occurs.

-473

ChibPDF - www.fastio.com

http://www.fastio.com/

4.7.3.3 Interrupt control (disabling and enabling)

(1) Interrupt control by the system

The PINE system disables and enables interrupts as follows:

Table 4.7.3 Interrupt Control

Interruptg 7508 AjO|I1IE
0 RIV|C|X | Remarks
Processing 8 key 1sec [Atarm [T |F|FI|T
System Initializd ©O| O O X X 1O X | X [This
Reset Ol O O — | X|O|X|X state
Restart Pw ON ol - - = | X 1O | X |X kontinues,
Continue PWON |~ — — - ===
Enabling
the CPU
7508 interrupt for
processing | x| — | — | — ||| [iaterrupt
during
alarm
sc_:reen
ART interrupt — T display 1
processing X X[XXX
OVF interrupt _ _ _ Continues
processing X XX XX rocess-
ICF interrupt _ _ _ ing in
processing X XX XX DI state
EXT interrupt _ _ _
processing X XXX X
MCT processing X | — - - |=|X|=|-
Continues
. _ _ _ process-
FDD processing X X |X|X|X ing in DI
tate.
BEEP processing | —| Ax | — S [[PV P

* indicates that the interrupt disable/enable state can

be changed during processing.

O--+ Enabled X-+-+ Disabled —-++ N0 change
A-- Disables all interrupts except STOP key interrupts.

1-474

L vy fastio.com

http://www.fastio.com/

(2) Disabling or enabling interrupts

The PINE CPU can be disabled or enabled for interrupts by:

1. Using the BIOS MASKI function.

2. Rewriting the Interrupt Enable Register (IER) (P@4H)
directly.

See Section 3.4, "BIOS Details™ for the use of the BIOS MASKI
function.

The figure below shows the steps for rewriting the IER directly.

@

(:) RZIER(OFS3EH)

: . — Interrupt state

Rewrite RZIER (disable/enable)area.
Example : Enabling the CPU

(::) for external

interrupts.
Write to IER DI
LD A, (RZIER)

oR 100
| LD (RZIER), A

E 1 ouT (IER), A
3

Fig. 4.7.4 Rewriting IER

Related work area:
RZIER (OF53EH) 1 byte
Contains the interrupt d&lisable/enable status.

16543210
I/IA/I/HIH

\
l 4§—~ 7508 interrupt
ART interrupt

ICF interrupt
L OVF interrupt
EXT interrupt

1 refers to enabling and a @ to disabling interrupts.,
The format of the RZIER is identical to that of the IER.

11-475

ChibPDF - www.fastio.com

http://www.fastio.com/

4.7.3.4 Interrupt processing time

Table 4.7.5 lists the times required for the PINE to process

interrupts.
Table 4.7.5 Interrupt Processing Times
Number of \
Interrupt Lachine states Time Remarks

7508 (key in) 13789 3747us

7508 (1 sec) 14141 3842us
Processing time when

7508 (Alarm) 14087 3828us |alarm display process-
ing is disabled

7508 (Pw swon) 13837 3760us
Processing time when

7508 (Pwswoff) | 175852 | 477861 | power-of f processing
is disabled
Processing time when

7508 (Power fail)) 13891 37751 | power-off processing
is disabled

ART 1623 441us
Number in parentheses

OVF 1122 305usS |is the processing time

(4504) | (1224 u3) during reverse video

Cursor_processing

ICF 686 186usS

EXT 698 190us

Note: The reason that the interrupt processing times during

power-off processing are longer than usual is that the PINE

waits for approximately 40 ms after issuing a keyboard
clear command to the 7588.

= - wvvyfastio.com

H-476

http://www.fastio.com/

4.7.3.5 Interrupt processing

(1) Location where interrupt processing is performed

It is unpredictable on which bank the PINE is running when an
interrupt occurs. To keep track of the location of PINE
execution when an interrupt occurred, the PINE places the entry
portion of the interrupt processing in the resident area (GE@QQH
through @FFFFH). When an interrupt occurs, the banks are
switched in the entry portion and the actual interrupt processing
is carried out in the main interrupt processing routine on the 08§

ROM.
r BRI s o '
| | vector ‘>Interru'pt;
I | occurred ! [
(< SEs ag ST | |
r ! switched
i |
' !
{ | Application
: ! ROM
! 5
i I
7FFFH RAM
0S ROM
] |
Main interrupt { |
processing g ;
| |
| i
| |
0000H 0000H P i
System bank Bank 0 Bank 1 or 2

Fig. 4.7.6 Interrupt Processing When an Interrupt Occurred

-477

ChibPDF - www.fastio.com

http://www.fastio.com/

(2) Relationship between Interrupt processing and BIOS

There are some types of interrupts which, when generated during
BIOS processing, prevent the PINE from continuing program
execution on return from interrupt processing or from performing
successful power-off processing in the continue mode if it
processes the interrupt immediately.

To solve this problem, the PINE sets the BIOS in-process flag

on entry to BIOS (PREBIOS) and, if an interrupt occurs when this
flag is on, causes the interrupt processing routine only to set
the interrupt flag to memorize the occurrence of an interrupt.

At the end of BIOS processing after the return from the interrupt
processing, the PINE tests the interrupt flag and, if it is found
to be set, performs the actual interrupt processing at the exit
of BIOS (PSTBIOS).

BIOS functions which contain loops (e.g., CONIN, RSIN, and RSOUT)
also test the interrupt flag as PSTBIOS does and invoke necessary
interrupt processing accordingly.

See also Section 3.3, "BIOS Operations™ for details on PREBIOS
and PSTBIOS.

(3) Inhibiting interrupts

The PINE can inhibit the system from performing interrupt
processing under program control., Interrupt processing that can
be inhibited in this way includes:

1. Power-off processing and power fail processing

2. Alarm/wake processing

"Disabling interrupts under program control" means that the PINE
accepts interrupt requests but inhibits the execution of the
corresponding interrupt processing.

This facility is used by PREBIOS and PSTBIOS. Application
programs can use this facility to temporarily inhibit power-off
or alarm processing while they are taking specific actions.

a) How to inhibit interrupt processing

PINE OS uses the YPOFDS (@EFEFH) and YALMDS (@EFF1H) flag areas
for inhibiting power-off and alarm/wake processing. The format
of these areas are shown below.

76543210
YPOFDS [[T TI1I1T111 (Power-of f disable flag)
ST T T

L—— Application inhibit bit
—————— MT0S inhibit bit
Scheduler inhibit bit
BASIC inhibit bit
System display inhibit bit
Alarm/wake inhibit bit
Reserved
BIOS inhibit bit

11-478

wvvwfastio.com

http://www.fastio.com/

ChhPDF -

16543210
YALMDS [TTTI1T111]1 (Alarm screen display
FTTTT1TT disable flag)
Application inhibit bit
—————— MT0S inhibit bit
Scheduler inhibit bit
BASIC inhibit bit
System display inhibit bit
Alarm/wake inhibit bit
Reserved
BIOS inhibit bit

Setting the corresponding bit to 1 inhibits power-off or alarm
screen display processing.

During interrupt processing, the system copies the values of
YPOFDS and YALMDS into YPOFST (QOEFF@H) and YALMST (9EFF2H). 1If
YPOFST or YALMST contains @@H, the system performs power-off or
alarm screen display processing; if both YPOFST and YALMST
contains nonzero values, the system does nothing and terminates
the interrupt processing.

b) Procedures for inhibiting interrupt processing

Figures 4.7.7 and 4.7.8 show the procedures for inhibiting
interrupt processing. Application programs can manipulate only
bit § of YPOFDS and YALMDS and must not use the other bits.

«

1-479

wvvwfastio.com

http://www.fastio.com/

Set YPOFDS bit on

Processinb in
power-off disable
state

Set YPOFDS bit off

L

<=M ypoFST >@
#00

This check must be
inserted wherever
necessary if processing
in power-off disable
state takes a long time.

e

$

Set YPOFST bit off

®

=00

~
<= ypoFST >@

Check for power-off
condition

@

\

Call BIOS POWEROFF

®

YPOFDS (OEFEFH)

. Power-off disable flag
YPOFST (OEFFOH)

. Power-of f state flag
BTRYFG (OEFEEH)

. Power fail flag
POWSWOFFG (OF4DDH)

. Power switch off flag

Fig. 4.7.7 Procedure for Inhibiting Power-off Processing

= - wvwvLfastio.com

1-480

http://www.fastio.com/

ChhPDF

Step

Step

Step

Step

Step

Step

Step

Step

l: Set YPOFDS bit on.

Set the specified YPOFDS (GEFEFH) bit to 1. The application
program must use bit 4.

2: Processing in power-off disable state.

Perform the processing to be executed in the power-off
disabled state.

A power-off check routine must be inserted wherever
necessary if the processing in power-off disable state takes
a long time.

3: Set YPOFDS bit off.

Set the YPOFDS bit that is set to 1 in step 1 to 4.

4: Check YPOFST.

Tests the value of YPOFST (OEFF@H).

A nonzero value in YPOFST indicates that a power-off
interrupt occurred while power-off processing was inhibited.
5: Set YPOFST bit off.

Set the YPOFST bit that is set to 1 in step 1 to 4.

6: Check YPOFST.

Test the value of YPOFST (UEFF@H).

A nonzero value in YPOFST indicates that power-off
processing is inhibited by another module.

7: Check for power-off condition.

Check the power-off conditions.

A nonzero in. BTRYFG (OEFEEH) indicates a continue mode
power-off condition, If BTRYFG contains @@H, the system
examines PWSWOFFG (0F4DDH). A @2H in PWSWOFFG. indicates the
restart condition and the other values indicate the
continue~-mode power-off condition,

8: Call BIOS POWEROFF. #

Call BIOS POWEROFF specifying the power-off condition found
in step 7 specified.

11-481

- wwwyfastio.com

http://www.fastio.com/

This check must be
inserted wherever
necessary if processing
in alarm/wake inhibit
state takes a long time.

Set YALMDS bit on

Processinb in +00H
alarn/wake inhibit < YALMST >—
state — 00H

! 3

Set YALMDS bit off Set YALMDS bit off

|
|
|
|
|
|
|
|
|
|
i
{
|
{
|
!
! i
i
|
|
|
|
|
I
{
|
4

#00

Set YALMST bit off

=00

2 CvPorsT >© YALMDS (OEFF1H)

. Alarm disable flag

=00 YALMST (OEFF2H)
’ D : Alarn state flag
Fet YALMST bit 7 on
®
Call RESTBIOS
\

Fig. 4.7.8 Procedure for Inhibiting Alarm Screen Display Processing

1-482

Clihi®}- - wyvw fastio.com

http://www.fastio.com/

ChhPDF

Step

Step

Step

Step

Step

Step

Step

Step

1l: Set YALMDS bit on.

Set the specified YALMDS (@EFF1lH) bit to 1. The application
program must use bit g.

2: Processing in alarm/wake inhibit state.

Perform the processing to be executed in the alarm/wake
screen display inhibit state.

A alarm/wake check routine must be inserted wherever
necessary if the processing in alarm/wake inhibit state takes
a long time.

3: Set YALMDS bit off.

Set the YALMDS bit that is set to 1 in step 1 to 4.

4: Check YALMST.

Tests the value of YALMST (QEFF2H).

A nonzero value in YALMST indicates that an alarm 1nterrupt
occurred while alarm/wake processing was inhibited.

5: Set YALMST bit off.

Set the YALMST bit that is set to 1 in step 1 to 4.

6: Check YALMST.

Test the value of YALMST (@EFF2H).

A nonzero value in YALMST indicates that alarm/wake screen
display processing is inhibited by another module.

7: Set YALMST bit 7 on.

Set bit 7 of YALMST (0EFF2H) to 1. This enables alarm/wake
screen to be displayed by PSTBIOS.

8: Call RSPSTBIOS.

Call RSPSTBIOS (PFF96H) to display the alarm/wake screen.

¢c) Programming notes

1.

While the system is waltlng for keyboard data with BIOS
CONIN, it unconditionally executes power switch off, power
fail, and alarm/wake processing even if they are inhibited.
This also applies to BI0OS which is waiting for send or
receive data or for a printer ready signal (except during
hardcopy processing).

Checks must be made for power-off or alarm/wake conditions
if processing in the power-off or alarm/wake processing
disabled state is to take a long time.

11-483

- wwvy fastio.com

http://www.fastio.com/

3 EBO3
3 EBO6
EBO9
EBOC
EB7E

EFEF
EFFO
EFF1
EFF2
1 EFEE
EFFO

FF96

0003
000A
000D

0100
0100

]] 0103

0106
0106
0108
010A

010D
010E
0111

0113
0114
0117

0118

011B
011B
011E

0121
0121
0124
0126

0128
012C
012E
0131

ClihF

31
cD

3A
c2
76
28

- F§

F1
¢

Cb
C3

1000
0121

0237
011B

0144
F3

0185
019F

0132
EBO3

EFEF
01
EFEF
EFF1
01
EFF1

& /vy fastio.com

POWER OFF & ALARM CONTROL PROGRAM

NOTE

.280

. PHASE

This sample program shows how to control
power off & alarm interrupt,

<> assemble condition <>

<> loading address <>

100H

<> constant values <>

BIOS entry
WBOOT EQU OEBO3H ; Warm Boot entry
CONST EQU WBOOT +03H y Console status entry
CONIN EQU WBOOT +06H ; Console in entry
CONOUT EQU WBOOT +09H ; Console out entry
POWEROFF EQU WBOOT +7BH ; Power off entry
*
H System area
%POFDS EQU OEFEFH ; Power off disable flag,
YPOFST EQU OEFFOH ; Power off status.
YALMDS EQU OEFF1H ; Alarm disable flag.
YALMST EQU OEFF2H ; Alarm status,
BTRYFG EQU OEFEEH y Power fail status.
PWSWOFFG EQU OEFFOH ; Power sw, off status.
; RAN jump table
ﬁSPSTBIOS EQU OFF96H } Post BIOS execute,
sTOP EQU 03H ; STOP code
LF EQU OAR ; Line feed
CR EQU 0DH ; Carriage return
; *
; MAIN PROGRAM
;
:
; NOTE : .
H This program is setting power off & alarm
' alarm disable, and if key inputed, do power
H off or alarm,
ﬁAIN:
LD S§P,1000H ; Set stack pointer,
! CALL DISABLE ; Interrupt disable,
MAIN1O:
Lb A,(PEND) ; Stop key check.
OR A ; Stop key pressed?
Jp NZ,MAIN20 ; Yes.
! HALT ; Wait until interrupt happened,
CALL CHKINT ; Check interrupt status.
JR Z,MAIN1O ; Neither power off nor alarm
’ PUSH AF ; Save interrupt information,
CALL KEYIN } Message display and key in.
POP AF { Restore interrupt information.
! CALL OKINT ; Interrupt execute,
MAINZ0;
CALL ENABLE ; Interrupt enable,
JP WBOOT ; End.
)
H
: -
H DISABLE POWER OFF & ALARN
H >4 *
v
H NOTE : . .
; Disable the following system function.
H 1. Power off execute.
; 2. Alarm screen display.
; <> entry parameter <>
: NON
H <> return parameter <>
; NON
H <> preserved registers <>
N NON
; CAUTION :
BIsABLE:
LD A, (YPOFDS) i Set pover off disable.
OR 01H ; Bit 0 is application bit,
LD (YPOFDS) ,A :
’ LD A, (YALMDS) ; Set alarm disable,
OR O1H ; Bit 0 is application bit.
LD (YALMDS) ,A :
RET ;
H
I1-484

http://www.fastio.com/

ENABLE POWER OFF & ALARM INTERRUPT

NOTE :

<> entry parameter <>
NON

<> return parameter <>
ON

H <> preserved registers <>

H NON

; CAUTION :
0132 ENABLE ;
0132 21 EFEF LD HL,YPOFDS ; Reset my disable bit.
0135 CB 88 RES 0, (HL) i
0137 21 EFF} ' LD HL, YALMDS ; Reset my disable bit.
013A CB 86 RES 0,{(HL) H
013C CD 0144 ' CALL CHKINT ; Check interrupt happened.
013F Ccs8 RET z ; No interrupt.
0140 CD 019F CALL OKINT ; Interrupt execute.
0143 C9 ' RET ;
CHECK POWER OFF & ALARM INTERRUPT
NOTE :

Check power off & alarwm interrupt occurred.
If occurred, set the information to return
code .

<> entry parameter <>
NON

<> return parameter <>

Z-flag : Return information.
=0 -- Both interrupt not occurred.
=] -~ Interrupr occurred

A : Interrupt type s

bit 0 : Alarm interrupt.
bit 1 : Power off interrupt.
{ l=occurr, 0O=not occurr)

<> preserved registers <>
NON

CAUTION :

If STOP key is pressed, then sets

PEND flag.
0144 HKINT:
0144 CD EBO6 CALL CONST ; Key in check.
0147 3C INC A ; No inputed key?
0148 20 0A . JR NZ ,CHK10 ; Yes.
014A CD EBO9 CALL CONIN ; Get key code.
014D FE 03 cpP STOP . STOP key?
014F 2003 JR NZ,CHKIO . No.
0151 32 0237 ' LD (PEND) ,A ; Set program end flag.
0154 CHE10
0154 0E 00 Lo C,00H ; Clear return information.
0156 3 EFF0 ’ LD A, (YPOFST) . Check power off status.
0159 B7 i OR A . Power off occurred?
015A 28 10 JR Z,CHK20 ; No.
015C 21 EFEF ' Lb HL,YPOFDS ; Reset my disable bit.
015F CB 86 RES 0,(HL) H
0161 E6 FE ! AND 111111108 ; Reset my status bit,
0163 32 EFFO LD {YPOFST) ,A 3
0166 20 04 JR NZ,CHK20 . Disable by other.
0168 79) LD A,C ; Set Power-off- go bit.
0169 F6 02 OR 028 H
016B 4F LD C.,A B
016C CHK20
016C 3A EFF2 LD A, (YALMST) ; Check alarm status.
016F B? OR A ; Alarm occurred?
0170 28 10 JR Z,CHK40 ; No.
0172 21 EFF1 ’ Lp HL,YALMDS . Reset my disable bit.
0175 CB 86 RES 0, (HL) 3
0177 E6 FE ’ AND 111111108 ; Reset ay status bit.
0179 32 EFF2 LD (YALNST) .A 5
017C 20 04 JR NZ,CHK40 : Disable by other.
017E 79 ! LD A.C ; Set alarm-go bit.
017F F6 01 OR 01H H
0181 4F LD C.A B
0182 CBE40
0182 79 LD AC ; Set return information.
0183 B7 OR A H
0}84 c9 RET :

1-485

ChibPDF - www.fastio.com

http://www.fastio.com/

0185
0185
0186
0187
018A
018D
018E
018F
0192

0195
0198

0198
019E

019F
018F
01A0
01A2

01A4
01A6
01A9
01AA

01AC
O1AF
01B}

01B3

01B4
01B4

01B7
01B7
01B8
01BA

01BB
01BE
01C0o
01C3

01C6

01C?
01C7
01cs
01C9
0ICA

01CB

OF
21
F1
21
21
cD

o1}
(o]

01D3
01C7

O1EF
01C7

0214
01CT

EBO9

4F
13

00
EFEE

08
EFFO
01

EBTE

47

EFF2

EFF2
FF96

wvvwfastio.com

Pllee wtmrme s veemtme et va e s as e wemnm

EYIN;

e tm ettt v an as ms et us e was

KINT:

e e et e s s eras we

Dspusc:

FXRKKKKKRERRRRRBRRR KRR KERE

STATUS DISPLAY & KEY IN
x ¥ EEERKERKE

NOTE :
If power off or alarm occurred, then
display message & wait until key inputed.

<> entry parameter <>
A . Interrupt type,
bit 0 : alarm
bit 1 : power off
<> return parameter <>
NON

<> preserved registers <>
NON

CAUTION
RRCA ; Alarm bit --> CY

PUSH AF 5 Save interrupt status.

LD HL ,MSGO1 3 Alarm happen message.

CALL C,DSPMSG ; Display if alarm occurred.
POP AF ; Restore interrupt status.

RRCA ; Power off bit --> CY

LD HL,MSGO02 ; Power off happen message.

CALL C,DSPMSG Display if power off occurred,

LD HL ,MSGO3
CALL DSPMSG

Key in message

CALL CONIN Input any key.

RET
ARRRKKREERRERRERRREEXREAS
POWER OFF OR ALARM EXECUTE
AKX EXKEREERERRKERERRKRERAR
NOTE ;

Power off or alarm execute in
this routine.

<> entry parameter <>
A : Interrupt type.
bit 0 : alarm
bit 1 ; power off
<> return parameter <>
NON
<> preserved registers <>
NON

CAUTION :

PUSH AF , Save interrupt information.
BIT 1,A ; Power off?

JR Z,0K20 t No,

LD) C,00H 1 Set conténue power off mode.
LD A, (BTRYFG) ; Power fail check.

OR A ; Power fail?

JR NZ ,0K10 ; Yes.

LD A, { PWNSWOFFG) ; Power off check,

cp 024 ;3 Continue power off?

JR Z,0K10 T Yes,

INC [{ Set restart power off,

CALL POWEROFF Go power off,

POP AF ; Restore interrupt information.
BIT 0,A ; Alarm?
RET A ; No.
Lp A, (YALMST) ; Set BIOS bit
OR 10000000B ;
LD (YALMST) ,A ;
CALL RSPSTBIOS ; Go alarm.
RET ;
FERERNRKEREXEREDRR
DISPLAY MESSAGE UNTIL FIND 0OH
EEXXXSEEERXRERERRKRERAKN AR R R
NOTE :

<> entry parameter <>

HL : Message top address,
<> return parameter <>

NON
<> preserved registers <>

NON

CAUTION

LD C, (HL) ; Get message data,

INC c :

DEC c ; End of message?

RET z ; Yes, °

PUSH HL ; Save pointer.
1-486

http://www.fastio.com/

o1cc CD
01CF El
01D0 23
01D1 18
01D3

01D3 41
01D7 6D
01DB 74
01DF 75
01E3 6F
01E7 72
01EB 2E
01EC oD
01EF

01EF 50
01F3 72
01F7 69
01FB 20
O1FF 20
0203 50
0207 72
020B 69
020F 63
0213 72
0217 oD
021A

021A 50
021E 73
0222 78
0226 78
0224 20
022E 74
0232 65
0234 oD
0237

0237 00

ChibPDF - www.fastio.com

EBOC

F4

SGO1

i
MSGO2:

NSGO3;

;
BEND;

CALL CONOUT 7 Message display,
POP HL ; Restore pointer.
INC HL 3 Poiner update,
JR DSPNSG y Loop

Message and work area

DB

DB

bB

DB

bB

DB

DB
END

*Alarm interrupt occurred.’

CR,LF,00H

'Power switch off or Power fail occurred.®

CR,LF,008

'Press any key to continue.’

CR,LF,00H

00H 3 Program end flag.
11-487

U o

-t

N) b=t e I3

http://www.fastio.com/

Chibf

4.7.3.6 Extending interrupt processing

Interrupt pzocessing can be extended by:
1. Using interrupt hooks.

2. Rewriting the interrupt vector.

3. Checking the interrupt state.

(1) Extending interrupt processing using interrupt hooks.
The interrupt hooks that the PINE supports include ICFHOOK,
OVFHOOK, EXTHOOK, and HK8251 (0S kana V2.4 (in Japan) only). See

Section 4.3, "Hooks" for the location and the user of these
hooks.

(2) Extending interrupt processing by rewriting the interrupt vector
User-supplied interrupt processing can be executed by rewriting
the interrupt jump vector (#FFFOH through @FFFFH). The user must
exercise care with the following when rewriting the interrupt
jump vector:

1. Rewrite the jump vector after disabling the CPU for
interrupts (DI state).

2, Place the new interrupt processing routine in the resident
area between (GE@O0OH through @FFFFH, that is, the new vector
entry must point to somewhere between GE@UOH and GFFFFH.

3. The interrupt processing routine must reserve its own stack
area.

4, The interrupt processing routine must not use BDOS or BIOS.

5. On exit, restore the registers into the original state
established when it is entered (in other words, all
registers must be preserved).

(3) Checking the interrupt state

With this method, the interrupt processing routine does not
perform interrupt processing immediately but checks for
interrupts frequently. The occurrence of interrupts can be
tested by examining the following:

1. Interrupt flag INTTYPE (@EFD3H)

2. Interrupt Status Register (ISR) (P@4H)

See Part I, "Firmware" for ISR.

INTTYPE (@EFD3H) 1 byte
Interrupt flags

76543210
(T

—— EXT interrupt
———— OVF interrupt
————— ICF interrupt
——————— ART interrupt
7508 interrupt

When an interrupt occurs, the corresponding bit position is set
to 1.

1i-488

|- vy fastio.com

http://www.fastio.com/

ChhPDF -

4.7.4 7508 Interrupts
4.7.4.1 Outline

When an interrupt is generated by the 7508, the interrupt
processing routine reads the 7588 status through the serial
communication interface, and transfers control to the
corresponding routine that services the interrupt. The routines
that service 7508 interrupts include:

Key interrupt

l-second interrupt

Power fail interrupt

Alarm interrupt

Power switch interrupt

7508 interrupt processing allows multiple 75¢8 interrupts so that
the PINE can accept key inputs while displaying the alarm screen.

4.7.4.2 Multiple interrupt processing

Provisions are made in 7508 interrupt processing so that multiple
7508 interrupts can be honored.

Multiple interrupt processing is accomplished using the interrupt

level work area INTLEVEL (@EFD2H) and stacks. The stacks used
for multiple interrupt processing are illustrated below.

1-489

wvvwfastio.com

http://www.fastio.com/

Stack when an iterrupt 7508 interrupt stack

occuired
B - - AF reg. 4 INTLEVEL(OEFDZH)
: Indicates the
- level of nesting
; , —_— of 7508
1 - ggsgggs - BC reg. A interrupts.
1 «0ld stack
] pointer
1 (INTLEVEL
] =0FfH) ~ DE reg. +
1 - HL reg. A
- 0ld stack =
pointer
- 0ld bank -
New stack —» | information
pointer
(INTLEVEL

The stack status in the above figure shows the one when a 7508
interrupt occurred, If another 7508 interrupt occurs in this
condition, the interrupt processing routine does not switch the
stacks, but saves the contents of 7508 interrupt stack, from AF
register to old bank information, and increments INTLEVEL by 1.

Fig. 4.7.9 Multiple 7508 Interrupt Processing

11-490

wvvwfastio.com

http://www.fastio.com/

ChhPDF -

4.7.4.3 Types of 7508 interrupts

There are five types of 7508 interrupts which can be identified
by reading the 7508 status.

When an interrupt is generated by the 7508, the system issues a
Status Read command (@2H) to the 7508 to read the 7508 status. A
status value @BFH or smaller indicates a hard code generated by a
key interrupt and a status value GCOH or greater indicates a power
switch, l-second, alarm, or power fail interrupt. The system
stores this status in STS7508 (OF4D6H).

Power switch interrupts are further divided into power switch on
and off interrupts. After loading the status of the interrupt
(power switch on/off, l-second, alarm, or power fail interrupt),
the system transfers control to the corresponding interrupt
servicing routine. The interrupt servicing routine to be started
is determined from the status information in INTFG (9F4DSH) and
the table TBL7588 at OEFDEH.

The status of l-second and alarm interrupt processing is stored
in FG7508 at @F4D7H.

The work areas related to 7508 interrupt processing are given
below. :

INTFG (@F4D5H) 1 byte

Indicates the type of 7508 interrupt processing performed by the
system. INTFG is set to @0H when key interrupt processing is
performed.

76543210

K

L 1-second interrupt

L— Alarm interrupt

Power switch on interrupt
Power fail interrupt
Power switch off interrupt

A 1 in a bit position indicates that the corresponding interrupt
occurred.

STS7508 (QF4D6H) 1 byte

Contains the status read by the system from the 7508 when a 7508
interrupt occurred. Values greater than or equal to @0H and
smaller than or equal to @BFH identify key interrupts and
represent keys' hard codes.

when STS7508 contains a value greater than or equal to @C@H:

76
L L]

T1

]

L Power switch status
(0 : OFF:1 : ON)
— Alarm interrupt
—— Power fail interrupt
1-second interrput

543210
l l
]

11-491

wvvwfastio.com

http://www.fastio.com/

Al in a bit position indicates that the corresponding interrupt
occurred.

FG7508 (GF4D7H) 1 byte '
Is the 7508 interrupt processing flag,

76543210
A A4

N

—— First alarm interrupt
1-second interrupt

Al in a bit position indicates that the corresponding interrupt
occurred.,

TBL75d8 (QEFDEH) 16 bytes

Is the table used to determine the 7508 interrupt processing to
be serviced. Each byte has the following format:

16543210

1 ™17
L (1-second interrupt processing)
y —— Alarm interrupt processing
——— Power switch on interrupt
processing
Power fail interrupt processing
Power switch off interrupt
processing

A1l in a bit position indicates that the corresponding interrupt
occurred,

The meaning of the table entries are listed below.

1-492

wvvwfastio.com

http://www.fastio.com/

ChhPDF

PW switch | initial
Address | 7508 status status | value
EFDEH COH or EOH OFf 00H
DF ON 10H
E0 C1H or EH OFF 04H
E1 ON 00H
E2 C2H or E2H OFF 024
£3 ON 124
£4 C3H or E3H OFF 04H
ES ON T02H
6 C4H or E4H OFF 08H
E7 ON 1100
8 C5H or ESH OFF 08H
£9 ON 08H
EA C6H or E6H OFF 08H
B ON 104
EC C7H or ETH OFF 08H
ED ON 08H

The presence or absence of the l-second interrupt
processing routine can be determined by software after
rewriting the table.

4,7.4.4 Key interrupt processing

When an interrupt is generated by the 7508, the system issues a
Status Read command (@2H) to the 7508 to read the 7508 status. A
status value @BFH or smaller indicates that a key interrupt
occurred and it is processed as such.

When a key interrupt is generated by the 7588, the system
interprets the status data as a hard code which indicates the
position of the key on the keyboard matrix. The key interrupt
processing routine places the key's hard code into the key buffer
(KBUF). If the key buffer is full, the key code is discarded.

If the hard code received from the 7508 is the one for the STOP
key (1@H for the standard keyboard and #B6H for the item
keyboard), the system performs special processing different from
that for ordinary keys.

See Section 3.5, "Keyboard" for the key buffer and hard codes.

(1) STOP key special processing

Interrupt processing proceeds as follows when the system receives

a hard code for the STOP key from the 7508:

a) Sends a Keyboard Clear command to the 7588 to clear the 7-
byte buffer of the 7508, and waits for approximately 48 ms
(key scan time)., If an item keyboard is installed or the
STOP and CTRL/STOP keys are disabled (specified in ISYSREG
(dFQGLEH)), the system does no special processing but carries
out normal key interrupt processing.

b) Reads the 7588 buffer to check whether the current key is
pressed with the SHIFT key.

c) Loads @FFH into the BRKFLG (#F@19H) flag that 1nd1cates that
the STOP key has been pressed.

11-493

- wwvy fastio.com

http://www.fastio.com/

Cht

d) If the CTRL key is also pressed, the system loads @1lH into
CSTOPFLG (@F@lAH), which is a flag indicating that the CTRL
and STOP keys have been pressed simultaneously, CSTOPMCT
(BF@1BH), and CSTOPPRN (UF3¢9H). The system bypasses this
step if an item keyboard is installed or the CTRL and STOP
keys are disabled.

e) Checks the state of the switch key that is currently being
pressed to determine the keyboard state.

f) Clears the key buffer (KBUF) and loads the hard code (10H)
for the STOP key into the key buffer. The system places 10H
into the key buffer also when an item keyboard is installed.

The work areas related to key interrupt processing are described
below.

ISYSREG (@F@LlEH) 1 byte
Is the system function flag.

76543210
N\I\N\N?I |

ST0P control bit

(0 : Disabled, 1 : Enabled)
CTRL/STOP control bit

(0 : Disabled, 1 : Enabled)

BRKFLG (9FQ19H) 1 byte

Indicates whether the STOP key has been pressed.
@dH: The STOP key has not been pressed.
gFFH: The STOP key has been pressed.

CSTOPFLG (OF@1lAH) 1 byte

Indicates whether the CTRL/STOP keys have been pressed.
= @OH: The CTRL/STOP keys have not been pressed.

= @1lH: The CTRL/STOP keys have been pressed.

CSTOPMCT (OFOG1BH) 1 byte

Flag for terminating microcassette processing.
= @QgH: The CTRL/STOP keys have not been pressed.
= @LlH: The CTRL/STOP keys have been pressed.

CSTOPPRN (OF309H) 1 byte

Flag for terminating cartridge printer.

@@H: The CTRL/STOP keys have not been pressed.

PlH: The CTRL/STOP keys have been pressed.

Note: BRKFLG and CSTOPFLG are reset to 00H when BI0S CONIN or
CONST is called and CSTOPMCT and CSTOPPRN are reset by
PSTBIOS.

11-494

wvvwfastio.com

http://www.fastio.com/

ChhPDF

4.7.4.5 l-second interrupt processing

l-second interrupt processing proceeds as follows:

a) Increments 1l6-bit timer TIMER@ (GEFSFH) by 1.

b) Decrements 1l6-bit timer TIMER1l (@EF91H) by 1.

c) Processes timer function TMFUNC (@F313H).
When TMFUNC (@F313H) contains a nonzero value, the interrupt
processing routine decrements TMSEC (@F4DAH) by 1. If the
TMSEC reaches @@H as the result of the decrement, the
interrupt processing routine sets TMFUNS to @@H and TMGLAG
(F314H) to OFFH.

d) Counts down the ROM cartridge power-off time.

e) Counts down the alarm repeat time.

The areas referred to in steps a), b), and c¢) are l-second
counters available for application programs and those
referred to in steps d) and e) are counters available for
system control. TIMER® is also used by the system to
monitor the auto power-off time.

(1) Uses of TIMER# and TIMERL

TIMER@ and TIMERL are 16-bit l-second counters and incremented or
decremented by 1 every time a l-second interrupt occurs. These
counters can be used as reference-only counters (not overwritten)
to measure processing time.

(2) Use of TMFUNC

TMFUNC is a flag area available for the user to specify the
execution of the timer function for checking for the lapse of a
specified time. Figure 4.7.16 shows how to use this flag.

Load TMSEC with time

2

Clears the flag indicating
OOH—TMFLAG} he termination of the

timer function.

3

Specifies the execution of
OTH—TMFUNC | ‘the"tiner function.

LM TMFLAG=FFH?) Tests the valte of THGLAG
to determine whether the
lves specified time has elapsed

Specified time has elapsed

Fig. 4.7.10 Using TMFUNC

11-495

- wwwyfastio.com

http://www.fastio.com/

The work areas related to l-second interrupt processing are
described below.

TIMER@ (OEF8FH) 2 bytes
16-bit timer incremented by 1 every time a l-second interrupt
occurs,

TIMER1 (QEF91H) 2 bytes .
16-bit timer decremented by 1 every time a l-second interrupt
occurs.

TMFUNC (@F3L3H) 1 byte
Timer function flag.

= @PgH: The timer function is not specified.
= Nonzero: The timer function is specified.

TMFLAG (@F314H) 1 byte

Timer flag.

When TMFUNC contains a nonzero value, TMSEC is decremented by 1
every l-second interrupt and TMFLAG is set to OFFH when TMSEC
reaches @J00H.

TMSEC (@F4DAH) 2 bytes

Timer counter.

When TMFUNC contains a zero value, TMSEC is decremented by 1
every l-second interrupt and when TMSEC reaches $000H, TMFLAG is
set to @FFH and TMFUNC to @@H.

4,7.4.6 Alarm interrupt processing

An alarm interrupt occurs when the time specified by BIOS TIMDAT
with a Set Alarm/Wake is reached. Aalarm interrupts are
distinguished from wake interrupts by software; on hardware, only
alarm interrupts can occur.

Although the alarm time can be specified to the precision of
month, day, day of the week, hour, minute, and second, the
minimum unit is 10 seconds. This is because the 7508 recognizes
the arrival of an alarm time by a coincidence between the counter
value and the specified time in the precision up to 10 seconds.
Accordingly, once the set alarm time is reached, a maximum of 19
alarm interrupts can occur. PINE 0S takes one of the 10
interrupts as a true alarm interrupt.

PINE 0S places hooks in the alarm interrupt processing routine so
that the application programs can extend the capability of the
alarm interrupt processing routine. See Section 4.3, "Hooks" for
details on alarm hooks.

The display of the alarm screen can be disabled by software
during alarm processing using ALRMDS (@EFF1H).

4.7.4.7 Power switch on interrupt processing

A power switch on interrupt occurs when the power switch is
switched from the OFF to ON position. The power switch on
processing routine only sets the power switch on flag PWSWONFG
(JF4DCH). See Section 2.4, "Power-on" for power-on processing
started when the main power is of £,

11-496

wvvwfastio.com

http://www.fastio.com/

The work area related to power switch on interrupt processing is
described below.

PWSWONFG (@F4DCH) 1 byte
Power switch on flag.
@0H: No power switch on interrupt.has occurred.

OFFH: A power switch on interrupt has occurred.

Reset to O0H when power switch on processing is started with the
main power switch in the OFF position.

4,7.4.8 Power fail interrupt processing

A power fail interrupt occurs when the main battery voltage falls
below a certain level. The threshold level is 4.8 volts for Nicd
batteries and 4.0 volts for Mn dry batteries.

When a power fail interrupt occurs, the corresponding interrupt
processing routine sets the power fail flag BTRYFG (@EFEEH) to
alert that the battery voltage has been fallen. See Section 2.6,
"Power Fail" for details on the power fail screen.

Once a power fail interrupt occurs, the same interrupt occurs
every one second. If main power is not shut down within 590
seconds after the first power fail interrupt, the 7508 forces
main power to be shut down.

The work area related to power fail interrupt processing is
described below.

BTRYFG (@EFEEH) 1 byte
Power fail interrupt flag,
= @@gH: No power fail interrupt has occurred.
= @FFH: A power fail interrupt has occurred.
Reset to @0H by a power-on start sequence.

4,7.4.9 Power switch off interrupt processing

A power switch off interrupt occurs when the power switch is
switched from the ON to OFF position. The power switch off
processing routine tests the current key shift state to determine
whether the CTRL key has been pressed, places the result into
power switch off flag PWSWOFFG (§F4DDH), then turns off power.

The key shift state that determines the continue or restart

mode power-off can be altered. A continue mode power-off

occurs when the value of CNTNKEY (@EF2AH) match the key shift
state when the power switch off interrupt occurred. See Section
2.5, "power-off" for details on power off processing.

The work areas related to power switch off interrupt processing
are described below.

PWSWOFFG (@F4DDH) 1 byte
Power switch off flag.

= J0H: No power switch off interrupt has occurred.

= @1H: A restart mode power switch off interrupt
occurred.

= @2H: A continue mode power switch off interrupt has

occurred.

CNTNKEY (@EF2AH) 1 byte
Continue key shift state flag.

-497

ChibPDF - www.fastio.com

e ba

m o O N

<G UM s

O ns

http://www.fastio.com/

76543210

L CTRL
SHIFT (left)
—— CAPS LOCK
—— GRPH
——— SHIFT (right)
NUM

A 1l in a bit position indicates that the corresponding shift key
is pressed.

Only bit @ (CTRL) is valid when an item keyboard is installed.
Only continue mode power switch off interrupts are enabled when
CNTNKEY contains @0H, irrespective of the key shift state.

This area is initialized to @1H,

4.7.5 ART Interrupts

An ART interrupt occurs when the RXRDY pin in the ART block is
set. ART interrupt processing proceeds as follows (see also
Section 3.4, "BIOS Details" since ART interrupt processing is
closely related to BIOS RSIOX processing):

a) Does nothing if the RSIOX OPEN function has not been
performed.
b) Checks for errors (framing, receive overrun, parity, and

receive buffer overflow errors).

c) Reads the received data into the receive buffer,

d) If XON/XOFF control is specified, checks the number of the
received bytes in the receive buffer and sends an XOFF code if it
exceeds the 3/4 of the buffer size.

4,7.6 OVF Interrupts

An OVF interrupt occurs when an FRC (Free Running Counter)
overflow occurs. The FRC is a 1l6-bit counter running on the
616.6 kHz clock, so an OVF interrupt occurs every 106.7 msec or
so.

PINE OS uses OVF interrupts for controlling cursor blinking. THe
cursor turns on and off every 508 msec or so. The blinking
interval can be changed by rewriting BLNKTIME ($EFBAH).

BLNKTIME (@EFBAH) 1 byte
Specifies the cursor blink time in 100¢ ms units. This area is
initialized to @4H.

4,7.7 ICF/EXT Interrupts

ICF interrupts occur as the state of the input to the barcode
reader or external cassette drive changes whereas EXT interrupts
are generated by the interrupt signal from external devices (sent
via the system bus).

When an ICF or EXT interrupt occurs, the PINE does nothing but
sets interrupt flag INTTYPE at @GEFD3H. Hooks are provided for
extension of ICF/EXT interrupt processing. See Section 4.3,
"Hooks" for details.

11-498

nvw L fastio.com

http://www.fastio.com/

	./osrm2_456.tif
	./osrm2_457.tif
	./osrm2_458.tif
	./osrm2_459.tif
	./osrm2_460.tif
	./osrm2_461.tif
	./osrm2_462.tif
	./osrm2_463.tif
	./osrm2_464.tif
	./osrm2_465.tif
	./osrm2_466.tif
	./osrm2_467.tif
	./osrm2_468.tif
	./osrm2_469.tif
	./osrm2_470.tif
	./osrm2_471.tif
	./osrm2_472.tif
	./osrm2_473.tif
	./osrm2_474.tif
	./osrm2_475.tif
	./osrm2_476.tif
	./osrm2_477.tif
	./osrm2_478.tif
	./osrm2_479.tif
	./osrm2_480.tif
	./osrm2_481.tif
	./osrm2_482.tif
	./osrm2_483.tif
	./osrm2_484.tif
	./osrm2_485.tif
	./osrm2_486.tif
	./osrm2_487.tif
	./osrm2_488.tif
	./osrm2_489.tif
	./osrm2_490.tif
	./osrm2_491.tif
	./osrm2_492.tif
	./osrm2_493.tif
	./osrm2_494.tif
	./osrm2_495.tif
	./osrm2_496.tif
	./osrm2_497.tif
	./osrm2_498.tif

