Chapter 4

FILES

4.1 Program Files

You can load up to five programs in the PX-4 memory by dividing the user
- area into five.

If there are five programs already existing in memory, or if your new program
is too large to fit in the space allotted to it, you may have to delete one of the
existing programs to make room for the new one. Before doing this however,
you must save on auxiliary storage (such as the RAM disk or microcassette tape.)
any programs you want to use again.

The PX-4 supports auxiliary storage methods such as RAM disk, microcassette
tape, RAM cartridges, floppy disks, and external cassette tape.

As shown below, you can create program F in the area occupied programs A,
B, and C by saving these programs on auxiliary storage then deleting them with.
the NEW command.

Program A
Program B s ’ Program F
Program C \
Program D Program D
Program E Auxiliary storage Program E
Memory (before saving programs A, B, and C} Memory (after saving programs A, B, and C)

4-1

ClibPDFE - www fastio.com

http://www.fastio.com/

(i) LOAD ‘‘[<drive name > :] < filename > [.<file extension>]"’[,R]

The LOAD command loads the program from the auxiliary storage device
specified by <drive name> to the current program area. Specify the file-
name and file extension of the program file to be loaded. Add the R op-
tion if the program is to be executed as soon as it is loaded. All open files
are kept open if this option is specified. Thus, a LOAD command issued
with the R option may be used to chain the execution of programs which
use the same data file. Executing this command without the R option closes
all data files which are currently open.

Example

To reexecute Program A, load it back into memory after saving one of the other
programs.

Programs saved on auxiliary storage are called program files and treated as files
with BASIC. A file is labelled by a file specification consisting of a drive name,
a filename, and a file extension. A program file is also identified by its drive
name, filename, and file extension. BASIC will use the logged-in drive for CP/M
if the drive name is omitted, and automatically appends .BAS if the file exten-
sion is omitted. Here is a review of the commands and statements used for pro-

gram file operations.

(i) SAVE “‘[<drive name > :] < filename > [. < file extension>]*[, A‘ 1 SAVE "A: TEST.BAS",F
P Ok ’
LOAD "A: TEST.BAS"
The SAVE command writes a program existing in the program area to the Ok
auxiliary storage device specified by <drive name>. The specified filename ‘l_; é SE
and file extension must then be assigned to the saved program file. on rror

If the A option is included, the program is saved in the ASCII format; other-
wise it is saved in binary format. . .

@iii) RUN “[<drive name > :] < filename > [.<file extension>]"’[,R]
The ASCII format allows a program to be saved in the same form as it is
displayed on the screen. In the binary format, the program is converted into
an intermediate language and written onto a disk in a compressed form. This
method of program storage uses less memory space; however, any programs
which are to be merged must be saved in the ASCII format.

If the file specification is omitted, the RUN command executes the pro-
gram in the current program area. Using the file specification causes the
named program to be loaded into the current program area and to be ex-
ecuted. This operation deletes the contents of any existing loaded program.
If the R option is included, all open data files are kept open; otherwise

If the P option is specified, the program is saved in a protected form. This they are closed.

means that program file cannot be edited or listed, and once the option is
specified, the protection cannot be cancelled.

4-3
4-2

ClibPDFE - www fastio.com

http://www.fastio.com/

@iv)

ClibPDF -

Example

5 0 RUNZ

19 A%="RUN COMMAND TEST"
26 FRINT#1, A%

e PRINT A%

40 CLOSE

SAVE Az RUNZ2"
Ok
NEW
Ok

5 7 RUNI1
1o OFEN "O",#1,"TEST.DAT"
26 RUN "RUNZ.BAS" . R

RUN
RUN COMMAND TEST
Ok

MERGE *‘[< drive name >] < filename > [. <file extension>]"

The MERGE command merges a program in the current program area with
a program on the auxiliary storage device specified by <drive name>. Once
< drive name > is specified, add the filename and file extension of the pro-
gram file to the file specification. The program files to be merged must
have been saved in the ASCII format.

If the two programs use some of same line numbers, the lines of the pro-
gram in memory (the current program area) are replaced by those from
the program on the auxiliary storage device.

BASIC always returns to the command level after executing the MERGE
command.

Example

5 ° MERGE1

10 DIM E(1&)

20 FOR I=1 TO 1@

30 READ A : PRINT A

46 B(I)=A

50 NEXT : FRINT

69 DATA 72,61,43,1060,86,37,56,55, 65,45

SAVE "A:MERGEL1",A
Ol
4-4

www . fastio.com

NEW

(8134

100 merge2

110 S=0

120 FOR I=1 TO 10
130 S=S+R(I)
140 NEXT

150 PRINT "SUMMING
160 PRINT "AVERAGE
170 END

MERGE "A:MERGE1"
0k

RUN

72 61 43 100 86
SUMMING = 620
AVERAGE = 62
Ok
LIST

S "MERGE1

10 DIM B(1Q)

20 FOR I=1 TO 10

30 READ A : PRINT
40 E(I)=A

SO NEXT : PRINT

60 DATA 72,61,43,100,86,37,56,55,65,45

100 ° mergeZ2

110 8=0

120 FOR I=1 TO 10
130 S=8+HE (1)

140 NEXT

150 PRINT “SUMMING =
160 FRINT "AVERAGE =
170 END

";S
“":18/10
37 S6
Az

4]
]

w

w

http://www.fastio.com/

)

(vi)

ClibPDF -

KILL ‘[<drive name > :] < filename > [. <file extension> | id

The KILL command deletes a file from the auxiliary storage device named
in the file specification. Care must be taken when using this command be-
cause it will delete any file having the specified name regardless of whether
it is a system, program, or data file.

NAME < old file specification> AS <new file specification>

The NAME command changes the name of a file on the auxiliary storage
device. This command, as with the KILL command, can be used for both
program and data files.

Specify the existing filename for < old file specification> and the new file-
name to be assigned for <new file specification>. Both filenames must
designate the same drive.

Example

FILES

STOCKLET.BAS QBCCOUNMT .BAS DEMO .BAS
STGCK — .bal CHART .DAT TEST1 .DAaT
ITEr IDAT SulESi .BAS GRAPH (BAS
gELL “DEMO. BAS"

FILES

STOCKLST.BAS ACCOUNT .BAS STOCK .DAT
CHART ~ .DAT TEST1 .pAT ITEAM LDAT
SHLES1 ‘EAS GRAFPH .BAS

HAME “SALES1.BAS" AS “RESULT.BAS"

o]

FILES ~
STOCELST.BAS ACCOUNT .BAS STOCK .DAT
CHART_ .DaT JESI1 .DAT ITEHM .DAT
RESULT (BAS GRAFH .BAS

“‘FE Error”’ will be displayed if the new filename specified already exists.

4-6
www . fastio.com

4.2 Sequential Date Files

The sequential data file contains data that can only be read in the sequence
that it is written. You cannot update part of a sequential data file once it has
been created. However, sequential files are easy to create, requiring no special
consideration about the length or structure of the data to be entered.

4.2.1 Creating sequential data files

The steps involved in creating a sequential data file are as follows:

(1) Execute an OPEN statement using the ‘O’’ mode. The file number speci-
fied in this statement will be assigned to the output file.

Example: OFEN "0",#1,"A:0UTDT.DAT"
This example creates a data file named ‘“OUTDT.DAT’’ on the RAM disk
and assigns file number 1 to that file.

(2) Write data into the file using the PRINT # or WRITE # statement.

Example: FRINT #1,A%:","iE$;", "iC$
WRITE #1,A%,E$,C$

Both examples write the contents of A$, B$, and C$ into the file.

Contents of A$ Contents of B$ Contents of C$

(3) End the write operation with a CLOSE statement when all the data has been
written.

Example: CLOSE #1

This statement closes file number 1.

4-7

http://www.fastio.com/

4.2.2 Reading sequential data files

The steps for reading a sequential data file are as follows:

(1) Execute an OPEN statement in the ‘‘I”’ mode. The file number specified
in this statement will be assigned as an input file, in a similar manner to
the output file.

Example: OFEN "I" #1,"A:0UTDT.DAT"

This statement declares that BASIC will find the file named “OUTDT.DAT”
and start reading the file.

(2) Read data from the file into variables in memory by executing either an
INPUT # or LINE INPUT # statement.

Example: INFUT #1,A%,E$,C$
LINE INFUT #1,0%

Both examples assign the data items in the file to the variables A$, BS, and
C$ in the same order as they are written.
(3) End the read operation by executing a CLOSE statement after all the data

has been read.

Example: CLOSE #1

This example closes file number 1.

4-8

ClibPDF - www .fastio.com

4.2.3 Sample programs

5 ‘SEQUENTIAL FILE1

10 OPEN “0",#1,"A:ADRSBOOK.DAT"
20 INFUT "“NAME 13 NS

30 IF N#="#" THEN 80

40 INPUT "ADDRESS :";A$

50 INPUT "PHONE :";P$

60 PRINT #1,N$5;",":A%3",":P$
70 FRINT : GOTO 20

80 CLOSE

90 END

NAME tJOHN......
ADDRESS :LONDON. ...
PHONE : 01—-000-0000

NAME :8ALLY.. ...
ADDRESS :NY........
FPHONE : 02-0000-0000

NAME %
Ok

The above program writes the data form the INPUT statement into a sequen-
tial data file named ‘“ADRSBOOK.DAT’’ on the RAM disk. Type in a name,
address, and phone number after ‘“‘Name:?’’, ‘‘Address:?’’, and ‘‘Phone:?”’,
respectively. The data written into the file, as shown in the figure below, each
time the PRINT # statement on line 60 is executed. Typing ‘“*’’ in response
to the ‘““Name:?”’ message closes the data file and terminates the program.

N$ As T$ N$ A$ | Ts .N$ A$ T$

"

Data writ’ten by the Data written by the se- Data writ;en by the
first PRINT # cond PRINT # third PRINT #
statement. statement. statement.

You may use the PRINT #USING or WRITE# statement instead of the
PRINT # statement.

4-9

http://www.fastio.com/

The next program reads the data file ‘““ADRSBOOK.DAT”’ created in the previ-
ous program and displays it on the screen. The program checks for an EOF
(indicating the end of file) at line 20. On detecting an EOF, it jumps to line
90 and closes the file since there is no data left to be read. If no EOF is detect-
ed, the program goes on to line 30 where it reads the data, and displays it on
lines 40 to 60. An ‘‘IE Error’’ message will appear if an attempt is made to
read further data after an EOF has been detected.

The program executes the statements on lines 20 to 50 repeatedly until it en-
counters an EOF.

S SEQUENTIAL FILEZ

10 OPEN "I",#1,"A:ADRSBOOK.DAT"
20 IF EOF (1) THEN 90

30 INPUT #1,N$,0%,PF

40 PRINT “NAME "y N

S0 PRINT "ADDRESS :";A¥€

60 PRINT “"PHONE V3PS

70 INPUT "READ NEXT DATA (Y/N)"3Y#$
80 IF Y#="Y" OR Y#="y" THEN 20
{0 -CLOSE

100 END

NAME tJOHN. .. v
ADDRESS :LONDON....
PHONE : 01 -000~-0000
READ NEXT DATA (Y/N)? Y
NAME tHALLY. waaw
ADDRESS sNYu..wueawe
FPHONE £ 02-0000-0000
READ NEXT DATA (Y/N)? Y
Ok

4-10

ClibPDFE - www fastio.com

4.2.4 Updating sequential data files

After a sequential file has been created, it its not possible to update data in
that file once it has been closed. The contents of a sequential file are destroyed

whenever that file is opened in the ¢“O’’ mode. To overcome this, the following
procedure can be used:

(1) Open the data file to be updated in the ““I’’ mode.

(2) Open a second data file in the *“O”’ mode.

(3) Read in data from the original data file and write it to the new file, making
NECESSATY UPAAteS. ..ovviiieiinininerinieeiienrerereenennns (Updating of data.)

(4) After all the data included in the original data file has been written to the
second data file, delete the original data file with the KILL command.

(5) Write the data to be added to the second data file. .. (Addition of data.)

(6) Close the second data file after all the data to be added has been written.
Using the NAME command, rename the second data file with the name
previously assigned to the original data file.

The result is a new data file which has the same file name as the original
file, and which includes both the original data and the new data.

File to be T T T T T A\
o c
updated | Y I [W VI 0
]] i |
1 1 H 1 i F
\\
Reading-in Till the end of the file to be

updated sequentiall
(Update is made if necessary id d Y

(Addition >

T
]
: ————— \k' ————— Data to be added
i

Writing-in

New data
file

[——
CRpp——

SR ——
(RRPR——
nmom

4-11

http://www.fastio.com/

S ‘SEQUENTIAL FILES

100 OPEN "I",#1,"A: ADRSBOOK.DAT"

105 ‘Opens old file in input mode

110 OPEN "0",#2,"A:WORK.DAT"

115 ‘Opens temporary file in output mode
120 IF EOF (1) THEN 270

130 INPUT #1,N$,A%,F$: 'Reads old data
140 PRINT "NAME t s NE

150 PRINT "ADDRESS :";A$

160 PRINT "PHONE t";P$

170 INPUT " <CORRECT DATA (Y/N)>";Y#
180 IF Y#="N" OR Y#="n" THEN 250

1920 INFUT “NAME : "3 NX$

200 IF NX#="" THEN 210 ELSE N$=NX#$
210 INPUT "ADDRESS :"j;AX$

220 IF AX$="" THEN 230 ELSE A$=AX$
230 INPUT “PHONE "3 PX#

240 IF PX#="" THEN 250 ELSE P$=FX$

250 PRINT #2,N$:;",";A%;",";1F¥
260 PRINT : GOTO 120

270 INPUT " % ADD MORE DATA (Y/N) *%";Y$
280 IF Y$="N" OR Y$="n" THEN 340
290 INPUT "NAME :"3N$

300 INPUT "ADDRESS :";A%$

310 INPUT "PHONE t";P%$

320 PRINT #2,NE3" ,";AF;","1P§

Z3F0 6OTO 270

I40 CLOSE

350 KILL "A: ADRSROOK.DAT": ‘Erases old file

360 NAME "A:WORK.DAT" AS "A: ADRSEOOK.DAT": ‘Changes filename
370 END

(¥ 4]

NAME FIOHM, o oo

PHGﬁESS EE?NggN'éééa
SCORRECT DATA (VANY>? ¥

HAME 7 BEMN.. ...

ADDRESS 2

PHONE &%

NAME $SALLY.

ADDRESS THY. o s s o ue

FPHOHE t oz -&b66 6hae
<CORRECT DATA (V-HY>? N
CCORRECT DETA_CVANI>7? W

RBDFESS 2 EEEE¥HV""

FHOME =~ 1% boc-aoéé "

Ck** ADD MORE DATA (YoH) %7 H
N

4-12

ClibPDFE - www fastio.com

4.3 Random Data File

The random data file allows data to be accessed anywhere on a disk. Although
sequential data files may have different lengths, a fixed length must be set for
a random data files.

Random data files are more useful than sequential data files when there are
large quantities of data which must be frequently updated. They require less
disk space for storage because data is recorded using a packed binary format,
whereas sequential files are written as series of ASCII characters. In sequential
data files, it is possible to read or write only the parts of data that need to be
updated; there is no need to read or write data in sequence as is the case with
sequential files. The unit of data handled in a single random access read-or write
operation is called a record. You can identify records in a random data file
by assigning them record numbers.

4.3.1 Creating réndom data files

The steps required to create a random data file are as follows:
(1) Execute an OPEN statement in the ‘‘R’’ mode (random mode).

The OPEN statement assigns a file number to the file and defines the record
length. If the record length is omitted, records of 128 bytes are assumed.

Exmnpk: OFEN "R",#1,"A:STOCELET.DAT", 50
The record length is set to 50 bytes in the above example.

(2) Specify the variables to be used for reading or writing data (buffer varia-
bles) and allocate space for them in the random file buffer using the FIELD

statement.

Example: FIELD #1,i0 A% ©%,70 A5 ME, 10 45 O

S$ NS C$

10 bytes ' 30 bytes 10 bytes

Note that the total equals the record length declared in the OPEN statement.
4-13

http://www.fastio.com/

(3) Move the data to be written into the buffer variables using the LSET or
RSET statement. Any numeric variables must be converted to chgracter
strings by using the MKIS$, MKS$, or MKDS$ function before executing the

LSET or RSET statement.
Example:

Converts the contents of a integer variable
into a character string and load it into buffer
variable S$, left-justified.

LEET S=MiLE (570D

Loads the contents of a character variable

LEET Ne=A% acter_
into buffer variable N$, left-justified.

Converts the contents of a single-precisiop
variable into a character string anq l.oads it
into buffer variable C$, right-justified.

ET CErMESHE T

(4) Write records into the random data file using the PUT statement.

Example: FUT #1,85% .
The record number indicating the position of a record ip the. file is placed in
variable S%. When S% is specified as 3, the record is written into record posi-

tion 3 of the file.

S% AS$ C!
2 bytes 8 bytes
LSET LSET RSET

Buffer variable S$ N$ Cc$

PUT#1, 3
Random data file /L
7/
Record number 1 2 3 e
4-14
ClibPDF - www fastio.com

by

DM A b

S "RANDOM FILE1

100 OFEN "R",#1,"A: STOCKLST.DAT",40
110 FIELD #1,2 AS S#,30 AS N#,4 AS C*
120 PRINT

130 INFPUT "STOCEKE NO. (O : End) ":8%
140 IF S%=0 THEN 220

150 INPUT "ITEM NAME ";A%

160 INPUT "PRICE vsc!

170 LSET S%=MKI$(8%L)

180 LSET NE=A$

190 CH=MKSH(C!)

200 PUT #1,S%

210 GOTO 120

220 CLOSE

230 END

The above program writes data entered from the keyboard into a random ac-
cess file. Line 110 specifies buffer variables S$, N$, and C$, and their sizes.
Lines 130, 150, and 160 allow data to be entered from the keyboard for storage
in the random access file. In this example, STOCK NO. is also used as the record
number. Lines 170, 180, and 190 load the input data into the buffer variables,
and line 200 writes the record into the file.

NOTE:

Once a buffer variable is specified in a FIELD statement, do not use that varia-
ble on the left-hand side of an INPUT or LET statement. If you do, the specifi-
cation for the variable in the FIELD statement will be canceled; the variable will
be treated as an ordinary variable.

4-15

http://www.fastio.com/

4.3.2 Reading random data files
The following steps are required to retrieve data from a random data file:

@Execute an OPEN statement in the ‘‘R’’ mode (random mode).
Example: OFEN "R, HL, "ASTOCKLST.DAT", 56

@Specify the buffer variables and their sizes using the FIELD statement.
Example: FIELD #1,1¢ AS 9%,30 AS NE, 1€ AS C%

(3)Read records using the GET statement.
Example: GET #1,5%

(@)Since numeric values are converted into binary format character strings when
they are placed in the random data files, they must be converted back into
the original format before reuse by the program. This is done using the CV1,
CVS, or CVD functions.

Example: FRINT CVI(S$),N$,CVS(CS$)

The following sample program reads the random file created in section 5.3.1.
The number of records to be read is entered from the keyboard at line 130.
Line 150 reads the record specified by the record number, and lines 160 to 180
display the contents of the record.

4-16

ClibPDFE - www fastio.com

5 ‘RANDOM FILEZ2

100 OPEN “R",#1,"A: STOCKLST.DAT",40
110 FIELD #1,2 AS S%,30 AS N$,4 AS C$
120 PRINT

130 INPUT “STOCK NO. (O : End) ";S%
140 IF S%=0 THEN 200

150 GET #1,S%

160 PRINT USING "####":CVI (S%)

170 FRINT N%

180 FRINT USING "####.##";CVS (C$)
190 GOTO 120

200 CLOSE

210 END

While a file is open, data can be read or written until the file is closed. The
LOC function is useful to control the flow of program execution according to
the total number of records which have been written to the file. With random
files, the LOC function returns the record number last written to or read from
the file.

The following statement ends program execution if the record number is great-
er than 50:

Example:

IF LOC(1) 56 THEN END

4-17

http://www.fastio.com/

	./brm4_01.tif
	./brm4_02-03.tif
	./brm4_04-05.tif
	./brm4_06-07.tif
	./brm4_08-09.tif
	./brm4_10-11.tif
	./brm4_12-13.tif
	./brm4_14-15.tif
	./brm4_16-17.tif

