ChhPDF -

wvvwfastio.com

Chapter 3

COMMANDS AND STATEMENTS

This Chapter describes the commands, statements, and functions used with PX-4
BASIC.

Commands and statements are words in the BASIC language which control oper-
ation of the computer or which set up parameters which are manipulated dur-
ing computer operation. The distinction between commands and statements is
as follows. ‘

Commands — Generally executed in the direct mode, and used in manipulat-
ing BASIC program files. The LOAD command, which is used to bring a pro-
gram into memory from external storage, is an example of a command.

Statements — Instructions which are included in a program to control opera-
tion of a computer or establish parameters which are manipulated during pro-
gram operation. For example, execution of the GOTO statement causes
execution to branch from one part of a program to another.

In practice, most commands and statements can be executed in either the direct
mode or the indirect (program execute) mode, so the distinction between them
is more traditional than qualitative,

Functions are procedures built into the BASIC language which return specific
results for given data. Functions differ from commands and statements in that
the former controls operation of the computer, while the latter produces a result
and passes it to the program. An example is the SIN function, which returns
the sine of a specified value. Functions may be used at any time, either from
within a program or in the direct mode; there is no need for definition on the
part of the user.

31

http://www.fastio.com/

ChhPDF -

The following format is used in describing commands, statements, and func-
tions in this Chapter.

IHustrates the general format for specification of the statement
or function concerned. Meanings of the symbols used in the for-
mat descriptions are described in ‘‘Format Notations’’ below.

Purpose
Remarks

Explains the purpose of the statement or function.
Gives detailed instructions for using the statement or function.
Refers the reader to descriptions of other statements or functions

whose operation is related in some way to that of the statement
or function being described.

See also

NOTE:
Outlines precautions which should be observed when using the statement/func-
tion, or presents other related information.

Gives examples of use of the statement or function in programs.

Format Notations

The following rules apply to specification of commands, statements, and
functions.

(1) Items shown in capital letters are BASIC reserved words, and must be in-
put letter for letter exactly as shown. Any combination of upper- or lower-
case letters can be used to enter reserved words; BASIC automatically con-
verts lowercase letters to uppercase except when they are included between
quotation marks or in a remark statement.

e.g. CLS PRINT STEP
PRINT
STEP
(2) Angle brackets ‘< >’ indicate items which must be specified by the user.

(3) Items in square brackets ‘[]’ are optional.

32

wvvwfastio.com

In either case the brackets themselves have no meaning except as format nota-
tion, and should NOT be included when the statement/function is entered. If
angle brackets are included inside square brackets, this means optional items
to be specified by the user.

e.g. PSET [STEP] (X,Y), < function code >

might be typed to appear with various values as follows. These are particular
cases, to show what is actually typed.

PSET (16,10)
is the minimum format for plotting a point at position (10,10) on the screen.

PSET (16,19), 1
plots the same point, but with < function code> having a value of 1.

PSET STEP (16,160)
plots a point relative to the last plotted point.

PSET STEP (16,19),7
plots the point relative to the last plotted point, with < function code > set to 7.

ALARM [<date>,<time>,<string> [,W]]
means that it is optional to input the <date>, <time> and a <string>;

- however, if it is required to use one or other of these three options, the others

must be typed in as well. It is optional to use the ‘““W”’ extension, but this op-
tion cannot be used without the other three options. Examples of the three valid
types of statement are

ALARM
ALARM ““% % /% % /% % % %:13:00”’,“ LUNCH TIME”
ALARM,““ # % / % % /% % % % :09:30°’,“ APPOINTMENT”’,W

(4) All punctuation marks (commas, parentheses, semicolons, hyphens, equal

signs, and so forth) must be entered exactly as shown.
When round brackets () are included they MUST be typed in as shown.

33

http://www.fastio.com/

(5) Where a set of full stops *“...” is included, the items may be repeated any
number of times, provided the length of the logical line is not exceeded.

e.g. CLOSE [[# < filenumber > I[, # < filenumber >]....]
means that any number of files can be closed. Valid examples are

CLOSE
CLOSE #4
CLOSE #1, #3, #4

(6) Items included between vertical bars are mutually exclusive; and only one
of the items shown can be included when the statement is executed.

e.g. STOP KEY |ON
OFF

The following abbreviations are used in explaining the arguments or parameters
of commands, statements, and functions.

XoryY....... Represent any numeric expressions.
JorK...... Represent integer expressions.
X$or Y$..... Represent string expressions.

With functions, any floating point value specified as an argument will be auto-
matically rounded to the nearest integer value if the function in question only
works with integer values.

S CHhPDFE - www . fastio.com

ABS

ABS (X)
Returns the absolute value of expression X.

Any numeric expression may be specified for X.

14 CLS

20 A = 25

e = -25

40 C = 2.545
S D = -2.545

68 PRINT "VARIABLE", "VALUE", "ABSOLUTE VALUE"
76 PRINT "A",A,ARES(A)
86 PRINT "B",B,ABS(E)
26 PRINT "C",C,AES((C)
199 PRINT "D",D,AES(D)

VARIAEBLE VALUE ABSOLUTE VALUE
A 25 25
2] -25 25
C 2.545 2.545
D -2.545 2.54%
Ok
35

http://www.fastio.com/

ALARM

Remarks

ALARM [<date>, < time>, < message>[,W]]

Specifies the alarm or wake time. Only one of these can be set
at a time.

Executing the ALARM statement without the W option sets the
alarm time, and executing it with the W option sets the wake time.
An alarm or wake time set with the ALARM statement is the same
as one specified from the System Display; execution of an
ALARM statement will cancel any alarm or wake time setting
made from the System Display, and vice versa. It is not possible
to set both an alarm and wake time simultaneously.

The alarm or wake date is specified in <date> in the same for-
mat as with DATES (a system variable), and the alarm/wake time
is specified in <time> in the same format as with TIMES.

Asterisks can be specified as wildcard characters for any of the
digits in <date> or <time>>. When asterisks are specified, those
positions in <date> and/or <time> will be regarded as always
matching the corresponding digit in the DATES or TIMES$ sys-
tem variable. For example, executing the following statement will
result in alarm operation every day at ten minute intervals from
8:00 AM to 8:50 AM.

ALARM ““# ® /% % /% %7 “@8: % §:0% "’ A$

Note that the two year digits are always handled as if they were
specified as asterisks, and that the lower second digit is always
handled as if it were specified as “‘0’’.

< message> must be specified as a string expression whose result
is no more than 32 characters; this message is displayed on the
System Display when the alarm time is reached, or is assumed
as the auto start string when the wake time is reached.

The alarm or wake time setting can be cleared by executing the
ALARM statement without specifying any parameters.

3-6

ChibPDF - www.fastio.com

See also

MO error (Missing operand) — A required operand was not speci-
fied in the statement.

FC error (Illegal function call) — The <date> or <time>
parameters were incorrectly specified.

ALARMS, AUTO START, POWER

3-7

http://www.fastio.com/

ALARMS

Format

See also

ALARMS (< function>)
Used to check the information set by the ALARM statement.

< function> is specified as a numeric expression whose result is
a value from 0 to 2. The value returned by the ALARMS func-
tion varies according to <function> as follows.

0: Returns the status of the setting made by the ALARM state-
ment as a 1-character string. Characters returned and their
meanings are as follows.

““N’> — No alarm setting has been made.

“B’’ — An alarm sefting has been made, but the specified
time has not yet been reached.

“P’’ —— An alarm setting has been made and the specified
time has been reached.

1: Returns the date set by the ALARM statement in the same
format as the date returned by the DATES function.

2: Returns the time set by the ALARM statement in the same
format as the time returned by the TIMES function.

3: Returns the message set by the ALARM statement as a
character string.

Note that, once ‘‘P”* has been returned by executing ALARMS$(0),
“B” is returned when ALARMS$(0) is subsequently executed.

FC error (Illegal function call) — The value specified for
< function> was outside the prescribed range.

ALARM, AUTO START, POWER

ChibPDF - www.fastio.com

ASC

Purpose

ASC(X$)

Returns the numeric value which is the ASCII code for the first
character of string X$. (See Appendix F for the ASCII codes.)

X$ must be a string expression. An FC error (Illegal function call)
will occur if X$ is a null string (a string variable which contains
no data, or a pair of quotation marks without any intervening
characters or spaces).

CHRS$

16 CLS

20 A$ = "A"

3o B$ = "BOO"
49 C$ = "1234"
50 D$ = "

&9 PRINT "STRING", "ASCII value of first letter”
79 PRINT A%, ASC(AS)
80 FPRINT B$, ASC(BS$)
90 PRINT C$, ASC(CS)
199 PRINT D$, ASC(D$)

STRING ASCII value of first letter
A &S
BOO b6
1234 49

FC Error in 1068
Ok

http://www.fastio.com/

ATN
ATN(X)

Returns the arc tangent in radians of X.

This function returns an angle in radians for expression X as a
value from — 7/2 to =/2. The angle will be returned as a double
precision number if X is a double precision number, and as a sin-
gle precision number if X is a single precision number or an in-
teger. ATN(X) can also be used to derive a value for the constant
PI. From elementary trigonometry PI=4% ATN(1).

As PI times radius equals 180 degrees, conversion of radians to
degrees, is a matter of simple proportion. Lines 100 and 110 in
Example 1 show how to obtain angles in degrees.

Example 1

16 CLS

2a INPUT "Type in the tangent of an angle" 3 T

TO Y = ATN(T)

4o PRINT "The angle whose tangent is";T "ig”"iYs "RADIANS"
1660 PI = 4 * ATN(1)

110 Z = Y*180/PI

120 PRINT “The angle whose tangent is"3T "ig";Z; "DEGREES"

Type in the tangent of an angle? 0.70671
The angle whose tangent is .7071 is . 615475 RADIANS
The angle whose tangent is .7071 is 35.2641 DEGREES

Ok

3-10

ChibPDF - www.fastio.com

Example 2

19
20
30
40

S50

*BGraphic representation of angles whose tangents
‘range from —-99 to 1906. Range of angles is from
’-1.5607 radians to +1.5608 radians.

WIDTH 40,8:CLS

LINE (100,0)-(100,62)

6@ LINE (9,32)-(200,32)
76 LOCATE 1,6:PRINT"ANGLE"
86 LOCATE 13,1:PRINT"TAN"
90 I=—-100
100 X=I+100
1190 Y=63-(ATN(I)+1.5708) #20.3718
1206 PSET(X,Y)
130 FOR I=-99 TO 100 STEP 1
140 X=I+100 ,
150 Y=63-(ATN(I) +1.5708) %20
160 LINE -(X,Y)
179 NEXT

LG P
ANGLE ‘

iy

311

http://www.fastio.com/

AUTO

Example 1

Example 2

AUTO [<line number >][,[<increment > 1]

Entered in the direct mode to initiate automatic program line num-
ber generation during program entry.

Executing this command causes program line numbers to be gener-
ated each time the key is pressed to complete the input
of a program line. Numbering starts at <line number >, and
subsequent line numbers differ by the value specified for
<increment>. If either <line number> or <increment> is
omitted, 10 is assumed as the default value; however, if a com-
ma is specified following < line number > but no <increment >
is specified, the increment specified for the last previous AUTO
command is assumed.

If the currently selected program area already contains a line
whose line number is the same as one generated by AUTO num-
bering, an asterisk (*) is displayed immediately following the
number to warn the user that that line contains statements. If the

key is pressed without entering any characters, the line

is skipped without affecting its current contents; if any charac-
ters are entered before the key is pressed, the former
contents of the line are replaced with the characters entered.

AUTO line number generation is terminated and BASIC returned
to the command level by pressing and [c] or the key;
the contents of the last line number displayed at this time are not
stored in the program area.

AUTO 106,50
Generates line numbers in increments of 50, starting with line
number 100. (100, 150, 200 ...)

AUTO

Generates line numbers in increments of 10, starting with line
number 10. (10, 20, 30...)

3-12

ChibPDF - www.fastio.com

AUTO START

Remarks

AUTO START < auto start string >

The AUTO START statement is used to specify parameters which
are passed to BASIC when a hot start is made.

The < auto start string> is specified as a string expression whose
result is no more than 32 characters. When the power switch is
turned on and BASIC is started by a hot start, this string is passed
to BASIC in the same manner as if it were input from the key-
board. If a null string is specified for <auto start string>, the
auto start function is cancelled.

3-13

http://www.fastio.com/

P

Purpose
Remarks

ChhPDF -

BEEP [< duration>]
Causes the speaker to beep.

The BEEP statement causes the speaker built into the keyboard
to make a beeping sound. The numeric value specified in
< duration > determines the length of the sound; numbers speci-
fied must be in the range from 0 to 255. The length of the sound
generated is equal to <duration> X 10 msec, with the result
rounded off to the nearest millisecond.

If <duration> is omitted, ‘‘10’’ is assumed.

3-14

wvvwfastio.com

'BLOAD

Format
Purpose
Remarks

BLOAD <file descriptor> ,[,[<load address>1{,R]]
Loads machine language programs or data.

This statement is used to load the machine language program or
data file specified in < file descriptor> into memory. Ordinari-
ly, the load address is the same as that specified when the file was
saved with the BSAVE statement; however, the file can be load-
ed into a different area by specifying the starting address of that
area in <load address> . Therefore, a machine language program
which is loaded into an area other than that specified when it was
saved must be fully relocatable (it must be capable of being ex-
ecuted properly in a different area in memory).

When the R option is specified, program execution begins immedi-
ately after loading has been completed. Any files which are open
at the time remain open. If <load address> is not specified, ex-
ecution begins at the starting address which was specified when
the program was saved; otherwise, execution begins at the address
specified in <load address>.

This statement will only load programs or data into the area from
the address following that specified in the CLEAR statement to
that immediately preceding the beginning of BDOS (or to the be-
ginning of the user BIOS area, if any).

This statement can also be used to load user-defined character
font files.

FC error (Illegal function call) — An attempt was made to load
a file into an inhibited area.

3-15

http://www.fastio.com/

BSAVE

Format
Purpose
Remarks

BSAVE <file descriptor >, <starting address>, < length >

Saves machine language programs or data to files.

This statement saves the contents of the machine l.a.ngu.?\ge pro-
grams or data files from memory to the file specified in < file
descriptor > . The number of bytes specified ip <length > is saved,
starting at the address specified in <starting address>.

If the machine language program is written so that execution can
begin at the address specified in < starting addrFss >, the pro-
gram can be executed immediately upon loading with the BLOAD

statement.

This statement can also be used to save user-defined character
fonts.

If CASO: is specified as the device in <file descriptor >, the save
can be verified by executing the LOAD? statement.

3-16

ChibPDF - www.fastio.com

CALL

Format
Remarks

See also
Example

CALL <variable name > [(< argument list >)]
Calls a machine language subroutine.

The CALL statement is one method of transferring BASIC pro-
gram execution to a machine language subroutine. (See also the
discussion of the USR function.) <variable name> is the name
of a variable which indicates the machine language subroutine’s
starting address in memory. The starting address must be speci-
fied as a variable (not as a numeric expression), and the variable
name specified must not be an element of an array. <argument
list> is the list of parameters which is passed to the machine lan-
guage subroutine by the calling program. See Appendix D for fur-
ther details on use of the CALL statement.

USR, Appendix D

The following program is an example of the use of the CALL
function. It simply increments by one the number in location
&HCO009, and then displays the new value found by the PEEK
function in line 140.

Co2® =A B9 C@ LD A, (COO9 tload register A with contents of
location %HCOOY which has been
POKEd in by a BASIC program.

Coa3 Cq 01 ADD A, O1H iAdd 1 to it.

Coes =2 @9 CO@ LD (CRO9), A iMove the contents of register A
back to location %HCOO7.

coeos C9 RET $RETURN to BASIC.

cCooy o0 NOP i The value obtained by the RBASIC
program and the location used for it.

10 CLS

20 CLEAR ,%HEFFF

I9 ADRS = LHCOOO

40 FOR J = & TO 9

S0 READ A

63 FOKE ADRS+J,A

70 NEXT J

7¢ DATA ¥h3a, %¥h@9, %hc®, hcé, Lhel, Lh32, YhO9, Yhcd, Yhc9

s Yhoo

11a INFUT “Type in a number in the range 1 to 254"k
126 FOKE %HCOO9,B
130 CALL ADRS

140 C

150 PRINT B

FEEK (&HCOOF)

"t o=vg o

Type in a number in the range i1 to 2547 99
99 + 1 = 100

O

3-17

http://www.fastio.com/

CDBL

Format
Purpose
Remarks

CDBL(X)

Converts numeric expression X to a double precision number.

This function converts the values of integer or single precision
numeric expressions to double precision numbers. Significant
decimal places added to converted numbers will contain random

numbers.

12 CLS

20 INPUT "TYPE IN TWO NUMBERS "3iX,Y

30 PRINT “THE VALUE OF X multiplied by Y is "jX#*Y

46 PRINT “CONVERTED TO DOUBLE PRECISION IT IS “"j; CDBL (X*Y)

run

TYFE IN TWO NUMBERS 7 3.45,3.141597
THE VALUE OF X multiplied by Y is
CONVERTED TO DOUBLE PRECISION IT IS
Ok

10.8385
10.83850935963135

3-18

ClibPDF - www . fastio.com

CHAIN

Purpose

Remarks

CHAIN [MERGE] < filename > [,[<line number exp >][,ALL]
[,DELETE <range >]}

Calls the BASIC program designated by < filename > and pass-
es variables to it from the program currently being executed.

The CHAIN statement makes it possible for one BASIC program
to call (load and execute) another one. < filename > is the name
of the program being called by this statement. The program called
may be stored on floppy disk, in RAM disk, or on microcassette
tape. However, the program called must be one which is not con-
tained in program memory (in another program area).

If the MERGE option is not specified, the program called replaces
the calling program in the program area from which the call is
made. If the MERGE option is specified, the program called is
brought into program memory as an overlay; statements in pro-
gram lines of the calling program are replaced by similarly num-
bered lines in the program called. In this case, the program called
must be an ASCII file (see the explanation of the SAVE com-
mand). Since it is usually desirable to ensure that the range of
program line numbers in the two programs are mutually exclu-
sive, the DELETE option may be used to delete unneeded lines
in the calling program.

<line number exp> is a variable or constant indicating the line
number at which execution of the called program is to begin. If
omitted, execution begins with the first line of the program called.

If the ALL option is specified, all variables being used by the call-
ing program are passed to the program called. If the ALL option
is omitted, the calling program must contain a COMMON state-
ment to list variables that are to be passed. (See the explanation
of the COMMON statement.)

Note that user defined functions and variable type definitions
made with the DEFINT, DEFSNG, DEFDBL, or DEFSTR state-
ments are not preserved if the MERGE option is omitted. There-
fore, these statements must be restated in the program called that
program is to use the corresponding variables or functions.

3-19

http://www.fastio.com/

ChbhPDF - www . fastio.com

See also

The first example shows how the chained program can replace
the calling program but still preserve the variables.

COMMON, MERGE, SAVE

1560 ‘prog 2
*

160 X = X X
176 PRINT "The values of X,Y, and 72 from the chained program
are - "

186 PRINT X,Y,Z

Save the above lines to the RAM disk using SAVE ““A:
PROG2’’,A. Delete them then type in and execute the following.

s5¢ The first program to be run

146 READ Y , Z

116 X =Y + 2Z

126 PRINT "The value of X,Y and Z from the first program
are:—"

136 PRINT X,Y,.Z

140 DATA 2, O

150 CHAIN "prog22",.ALL

run

The value of X,Y and Z from the first program are:-—
7 2 S

The values of X,Y, and Z from the chained program are :—
49 2 S

(8133

3-20

The second example shows how lines can be merged and lines of

the original calling progam deleted. The line number from which
the chained program is executed is also included in this example.

86 FRINT "This line
90 RETURN

109 PRINT "#x* Thig
119 GOSUER 8¢

is printed after line iGa"

is the chained program **x"

Save the above lines to the RAM disk using SAVE*“A: SUB”, A
Delete them then type in and execute the following. ’

200 PRINT "#%% This is the first program #*xx »

210 CHAIN MERGE “SUB", 100,DELETE 200-210 P PRINT

Ok
run
#% This is the first program ##%

**% This is the chained program #*#x

g?is line is printed after line 100

321

http://www.fastio.com/

CHRS$

“H
|

‘ Remarks

46 NEXT

|
|
|
|

Ok

‘ 1@ FRINT CHR$(12)
2¢ FOR J
‘ 0 PRINT CHR$(J)3

100 PRINT CHR$(7)

CHR$()

Returns the character whose ASCII code equals the value of in-
teger expression J. (See Appendix J for the ASCII codes.)

The CHRS function is frequently used to send special characters
to terminal equipment such as the console or printer. For exam-
ple, executing PRINT CHRS$(12) clears the entire virtual screen
and returns the cursor to the home position; executing PRINT
CHR$(7) causes the speaker to beep; and executing PRINT
CHR$(11) moves the cursor to the home position (the upper left
corner of the virtual screen) without clearing the screen. See the
description of the ASC function for conversion of ASCII charac-
ters to numeric values.

It is also easier to program using numbers, so that often manipu-

lations with ASCII codes are used in programs instead of using
the actual alphabetic characters.

Tclear screen

: Tsound buzzer

‘ 56 PRINT

‘ &®» FOR J = 97 TO 122 "Display characters a-z2
7¢ PRINT CHR$(J)3

‘ 80 NEXT J

“ Qe *

ABCDEFGH I JELMNOFGRSTUVWXYZ
H abcdefghi jklmnopgrstuvuxys

322

ChibPDF - www.fastio.com

:"Display characters A--Z

Format

Remarks

CINT
[Formatl

CINT(X)

Rounds the decimal portion of numeric expression (X) to the
nearest whole number and returns the equivalent integer value.

X must be a numeric expression which, when rounded, is within
the range from -32768 to + 32767; otherwise, an ‘‘Overflow’’ er-
ror will occur.

See the descriptions of the FIX and INT functions for other
methods of converting numbers to integers.

See the descriptions of the CDBL and CSNG functions for con-

version of numeric expressions to double and single precision
numbers.

NOTE:

Differences between the CINT, FIX, and INT functions are as
Sollows.

CINT(X) Rounds X to the nearest integer value.

FIX(X) Truncates the decimal fraction of X.
INT(X) Returns the integer value which is less than or equal
to X.
Number Result of Function
CINT | FIX | INT
-1.6 -2 -1 -2
—-1.2 -1 -1 -2
1.2 1 1 1
1.6 2 1 1

Although numbers are printed to the screen as you would expect,
they are not always stored as such in the computer. This can lead

to erroneous results with INT(X) and FIX(X) as the following
program shows:

3-23

http://www.fastio.com/

w 19 CLS

\ 20 K1 = 2.6 3 K2 = .2

W Zo PRINT »X", X%, "INT (X" "FIX(X) ", "CINT (X) "
1l 40 N = 2 : GOSUB 100

| S6 N = 12: GOSUB 100

*W o PRINT :FRINT "The value of X — INT(X) is "§ X — INT €O
m 86 END

m 95 *subroutine to print values

H 166 X = K1 * N — K2

‘H 119 X% = K1 * N — K2

126 PRINT X,XZ,INT(X),FIX(X),CINT(X)
‘ 130 RETURN

X X% INT (X) FIX(X) CINT (X)

‘H 5 5 5 s 5
}w 31 31 30 z60 3

’ The value of X - INT(X) is .999998

‘ The values of INT(X) and FIX(X) are apparently wrong since sim-
H H ple mental arithmetic will show that 12 X 2.6 — 0.2 = 31.
However, the output from line 60 shows that X is stored in the
‘ computer as 30.999998 and so the functions INT (X) and FIX

(X) are returning logically correct values. The error is due to the
\ fact that numbers are converted to and handled as binary num-

bers by the computer. Such rounding errors are overcome by ad-
‘ ding a small number to the answer before executing INT (X) or
FIX (X) — eg: if line 120 is altered to:

M 120 PRINT X, X%, INT (X +0.0005), FIX (X + 0.0005),
‘H CINT (X)

all values would be correct.

ChibPDF - www.fastio.com

16 CLS
20 K1 = 2.6 ¢+ K2 = .2
=G PRINT "XU, "XZ","INTA(X) ", "FIX(X) " "CINT(X
46 N = 2 ¢ GOSUEB 100
56 N = 12: GOSUE 160
60 PRINT :FRINT "The value of X — INT(X) is
8a END
9@
95 *subroutine to print values
166 X = K1 # N - K2
119 X4 = K1 * N — K2
1260 PRINT X, XZJ INT(X + .0003),FIX(X + 0005
136 RETURN
X= X% INT (X) FIX(X)
S S S]
It 1 &) a1
The wvalue of X — INT(X) i1s .999998
Ol

3-25

y»

i X = INT «(x)

) JCINT (X)

CINT (X)

S

31

http://www.fastio.com/

z

ChhPDF -

CLEAR

Remarks

CLEAR [i<dummy >][,[upper memory limit>][, <stack
size > 1]]

Clears numeric variables to 0, sets null strings to all string varia-
bles, specifies the upper limit of the BASIC memory area, and
sets the size of the stack area.

This statement clears all numeric variables to 0 and sets all null
strings in all string variables; at the same time, it cancels all vari-
able type definitions made with the DEFINT, DEFSNG,
DEFDBL, and DEFSTR statements and closes all files which are
currently open.

< upper memory limit > specifies the highest address in memory
which can be used by BASIC. The maximum value which can be
specified is &H6000. This is the value which is effective when
BASIC is started (unless a different address has been specified
with the /M: option). The area from <upper memory limit> to
the beginning of BDOS can be used for storage of machine lan-
guage programs, user-defined character sets, or other data. The
upper memory limit is not changed by execution of the CLEAR
statement if this parameter is omitted.

The <stack size> parameter specifies the size of the stack area
which is used by BASIC. The initial size is 256 bytes. If this
parameter is omitted, the stack area size is not affected by execu-
tion of the CLEAR statement.

3-26

wvvwfastio.com

CLOSE

Format
Purpose

See also

CLOSE]|[#] < file number > [,[#] < file number>...]1]
Executing this statement terminates access to device files.

This statement terminates access to files opened previously un-
der specified file numbers. If no file numbers are specified, this
statement closes all files which are currently open.

Once opened, a file must be closed before it can be reopened un-
der a different file number or in a different mode, or before the
file number under which that file was opened can be used to open
a different file. An FE error (File already open) will occur if an
attempt is made to open a file which is already open, or if an at-
tempt is made to open a different file using the file number as-
signed to a file which is already open; a BF error (Bad file mode)
will occur if an attempt is made to use a different file number
to open a file which is already open.

Executing this statement to close a random file or a sequential
file which has been opened in the output mode causes the con-
tents of the output buffer to be written to the file’s end. There-
fore, be sure to close any disk or microcassette files which are
open for output before removing the medium from the drive;
otherwise, data stored in the file will not be usable, and there is
a possibility that the contents of other files may be destroyed when
a CLOSE statement is executed if another disk or magnetic tape
is inserted in that drive.

All files are closed automatically upon execution of an END,
CLEAR, or NEW statement.

END, OPEN, Chapter 4

3-27

http://www.fastio.com/

CLS

16 OPEN “O",#1, "A:TEST.DAT" :* Opens the file "TEST" CLS

20 for ocutput on drive A:

30 FOR J = &5 TO 94

40 FRINT #1, CHR$(J) ; :" Writes letters A to I : Clears the screen.

50 NEXT J :" to the file

60

76 CLOSE #1 :* Closes file "A:TEST.DAT" The CLS statement clears the virtual screen. This is the same as

95 OPEN "I" ,#1, "A:TEST.DAT" :' Opens file for input executing PRINT CHR$(12);.
1960 IF EOF (1) THEN 160 :? Checks whether End of File

118 7 marker of file 1| has been

120 ° reached, and if so goes to 16¢.

170 A = INPUT$(2,1) :® Inputs two characters from file #1

140 PRINT A¢ : GOTO 100 i’ Prints the characters input

156 7 from the file and returns for more.

160 END :* Ends program, Closing file

3-28 3-29

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

COMMON

Remarks

See also
Example

16 PRINT "Main program”

20 A% = "Tom"

% B$ = "Dick"

46 C$ = "Harry"

56 COMMON A$,B$,C$

60 CHAIN "A: COMMON2"

10 PRINT "The COMMON statement passes 3 variables to this pr
ogram”

26 FPRINT "The first is "iA$
30 PRINT "The second is "iB$
4¢3 PRINT "The third is "iC$
S50 END

COMMON <list of variables >

Passes variables to a program executed with the CHAIN
statement.

The COMMON statement is one method of passing variables from
one program to another when execution of programs is chained
with the CHAIN statement, the other being to specify the ALL
option in the CHAIN statement of the calling program. The
COMMON statement may be included anywhere in the calling
program, but is usually placed near its beginning. More than one
COMMON statement may be specified in a program, but the same
variables cannot be specified in more than one COMMON state-
ment. Array variables are specified by appending ‘(')’ to the ar-
ray name.

CHAIN

Main program

COMMON statement passes 3 variables to this program
first is Tom

second is Dick

third is Harry

The
The
The
The
Ok

3-30

wvvwfastio.com

COM(n) ON/OFF/STOP

Iﬂiﬂaﬂﬁ!

COM() | ON
OFF
STOP

Enables, disables, or defers interrupts from the communication
line.

This statement enables, disables, or defers external interrupts from
the communication line. The n in COM(n) indicates the commu-
nication port, and is specified as a number from 0 to 3. COM(n)
ON enables interrupts. After this statement has been executed,
the specified communication port is checked each time a state-
ment is executed and, if any signal has been received, an inter-
rupt is generated and processing branches to the communication
trap routine designated by the ON COM(n) GOSUB statement.

COM(n) OFF disables communication interrupts. After this state-
ment has been executed, processing does not branch to the com-
munication trap even if an external signal is received.

COM(n) STOP defers generation of communication interrupts.
If an external signal is received following execution of this state-
ment, the event is noted but processing does not branch to the
communication trap routine. However, processing does branch
to the communication trap routine the next time interrupts are
enabled by executing the COM(n) ON statement.

3-31

http://www.fastio.com/

CONT
CONT

Resumes execution of a program which has been interrupted by
a STOP or END statement, or by pressing + [c] or the

key.

This command causes program execution to resume at the point
at which it was interrupted. If execution was interrupted while
a prompt (“‘?”’ or a user-defined prompt string) was being dis-
played by an INPUT statement, the prompt is displayed again
when program execution resumes.

The CONT command is often used together with the STOP com-
mand or the key during programming debugging. When
execution is interrupted by the STOP statement or the key,
statements can be executed in the direct mode to examine or
change intermediate values, then execution can be resumed by ex-
ecuting CONT (or by executing a GOTO statement in the direct
mode to resume execution at a different line number). The CONT
statement can also be used to resume execution of a program
which has been interrupted by an error; however, program exe-
cution cannot be resumed if any changes are made in the pro-
gram while execution is stopped.

f 3-32
- C

HhPDF - wyww . fastio.com

COPY

Format

Purpose

Remarks

COS

COPY
Copies the contents of the LCD screen to the printer.

The CQPY statement outputs the contents of the LCD screen to
the printer. This is the same as pressing + .

Purpose
Remarks

Example

NOTE:

COS(X)
Returns the cosine of angle X, where X is in radians.

The cosine of angle X is calculated to the precision of the type
of numeric expression specified for X.

PRINT COS (1.5)
H787371

The value returned by this function will not be correct if (1) X is a single preci-

* Sion value which is greater than or equal to 2.7E7, or (2) if X is a double preci-

sion value which is greater than or equal to 1.2D17.

3-33

http://www.fastio.com/

ChhPDF -

CSNG

Remarks

CSNG(X)

Returns the single precision number obtained by conversion of
the value of numeric expression X.

See the descriptions of the CDBL and CINT functions for con-
version of numeric values to double precision or integer type
numbers.

PRINT CSNG(5.123456789 #)
5.12346

3-34

wvvwfastio.com

CSRLIN

Purpose

Remarks

CSRLIN

The CSRLIN function returns the current vertical coordinate of
the cursor.

The valuc? returned by the CSRLIN function indicates the cur-
rent location of the cursor in the virtual screen. The meaning and

range of values returned is the same as for the LOCATE
statement. »

3-35

http://www.fastio.com/

- ClibPDF -

CVI/CVS/CVD

Purpose

Remarks

CVI (< 2-byte string >)
CVS (< 4-byte string>)
CVD (< 8-byte string>)

These functions are used to convert string values into numeric
values.

Numeric values must be converted to string values for storage in
random access files. This is done using the MKI$, MKSS$, or
MKDS$ functions depending on whether the numeric value being
converted is an integer, single precision number, or double preci-
sion number. When such strings are then read back in from the
file, they must be converted back into numeric values for display
or use as operands in numeric operations. This is done using the
CVI, CVS and CVD functions.

CVI returns an integer for a 2-byte string, CVS returns a single
precision number for a 4-byte string, and CVD returns a double
precision number for an 8-byte string.

MKI$/MKS$/MKDS$, Chapter 4

as=mki$ (12849)
Ok
?a%
12
Ok
?cvi (as$)
12849
Ok

3-36

wvvwfastio.com

DATA

|

Remarks

See also

DATA <list of constants>

Lists numeric and/or string constants which are substituted into
variables by the READ statement. (See the explanation of the
READ statement.)

DATA statements are non-executable, and may be located any-
where in the program. Constants included in the list must be sepa-
rated from each other by commas, and are substituted into
variables upon execution of READ statements in the order in
which they appear in the list. A program may include any num-
ber of DATA statements.

When more than one DATA statement is included in a program,
they are accessed by READ statements in the order in which they
appear (in program line number order); therefore, the lists of cons-
tants specified in DATA statements can be thought of as con-
stituting one continuous list, regardless of the number of constants
on each individual line or where the lines appear in the program.

Constants of any type (numeric or string) may be included in <list
of constants > ; however, the types of the constants must be the
same as the types of variables into which they are to be substitut-
ed by the READ statements.

Numeric DATA statements can contain negative numbers but no
operators. String constants must be enclosed in quotation marks
if they include commas, colons or significant leading or trailing
spaces; otherwise, quotation marks are not required.

Once the <list of constants> of a DATA statement has been
read, it cannot be read again until a RESTORE statement has

been executed.

READ, RESTORE

337

http://www.fastio.com/

I3
i CHhPDF - wvw fastio.com
i

Example

10
20
30
40
S0
&0
70

CLS
FOR J = 1 TO 5
READ A%,B
PRINT A$,E
NEXT

END

DATA "ANGELA: ANGIE" ,12," BRIAN",-20,CHARLIE,Z9,DIANA,

—~16,ERIC, T4

ANGELA: ANGIE 12

BRIAN -20
CHARLIE 39
DIANA =16
ERIC 34

Ok

3-38

DATES

Format
Purpose
Remarks

DATES
Reads the date of the PX-4’s built-in clock.

The DATES function returns the date of the built-in clock as a
character string in the following format.

“MM/DD/YY”

Here, MM indicates the month as a value from ““01’* to ‘12",
DD indicates the day of the month as a value from 01"’ to “31”’,
and YY indicates the last two digits of the year as a value from
“00” tO “99”.

DATES is a system variable, and can be set by executing
DATE$ = “MM/DD/YY"”’.

3-39

http://www.fastio.com/

DAY

As a statement
DAY=<W>

As a variable
X% =DAY

DAY is a system variable which maintains the day of the week
of the PX-4’s built-in calendar clock.

As a variable, DAY returns the day of the week of the PX-4’s
calendar clock as a number from 0 to 6. Sunday is represented
by 0, 6 is used to represent Saturday, and so forth.

The day can be set independently of the value assigned as the
calendar date (by the DATES$ statement); therefore, as a state-
ment DAY can be used to assign any number from 0 to 6 to the
current day of the week. However, if the current day of the week
is altered from the above representation, the System Display and
other software will print out the day incorrectly. For example if
you choose to assign the first day of January 1985 as 6, the Sys-
tem Display will show Saturday when it should in fact be a
Sunday.

1&@ PRINT "Day is "3iDAY

20 DAY=Z

Z0 PRINT "Day is now"iDAY
40 END

run
Day is S
Day is now 3
Ok

iC\mPlT - wwwyfastio.com

DEF FN

Purpose
Remarks

DEF FN < name > (< parameter list >) = < function definition >
Used to define and name user-written functions.

A'user defined function is a numeric or string expression which
can be executed by BASIC programs in the same manner as in-
trinsic functions (e.g., TAN or SIN). When such a function is
called, the variables specified as its arguments (either in the func-
tion definition or in the parameter list of the calling statement)
are substituted into the expression and the equivalent value is
returned as the result of the function.

< parameter list > comprises those variables in the function defi-
nition that are to be replaced when the function is called. The
items in the list are separated by commas.

If a <parameter list > is included in the < function definition>,
then a list with a corresponding number of parameters must be
specified in the statement calling the function; the values of vari-
ables specified in the calling statement’s parameter list are then
substituted into the < parameter list> of the function definition
on a one-to-one basis.

< function definition> is an expression that performs the oper-
ation of the function. It is limited to one program line. Variable
names that appear in this expression serve only to define the func-
tion; they do not affect program variables that have the same
name.

A variable name used in a function definition may or may not
appear in the parameter list. If it does, the value of the parameter
is supplied when the function is called. Otherwise, the current
value of the variable is used.

If a type is specified in the function name, the value of the ex-
pression is forced to that type before it is returned to the calling
statement. If a type is specified in the function name and the ar-
gument type does not match, a TM error (Type mismatch) occurs.

3-41

http://www.fastio.com/

10
22
0

DEF FN

FRINT FN SQ(?)

ChbPDF - www.fastio.com

The DEF FN statement must be executed before the corresponding
user function can be called: otherwise, a UF error (Undefined user
function) will occur.

DEF FN statements cannot be executed in the direct mode.

Examples showing extensive use of the DEF FN command are
shown in the example programs in the appendixes. The follow-
ing programs outline simpler applications.

define the function S to give
the square of a number
print the sguare of 9

SR((X) = X * X :

40 X = 12 : ' set the variable X equal to 12
5@ PRINT FN S@((X) :° and print the square of X
& Y = 10
70 FPRINT FN SQ(Y) :° use the value of the variable Y
8a - as a substitute for X
0
100 FRINT:PRINT
11@ DEF FN NM(X,Y) = X * X + Y: define a function NM to give
120 a function of two numbers
130 FPRINT FN NM(10,20) :’ print the value using 10 and 20
14 X = 5 :+ Y = &
150 FRINT FN NM(X,Y) :° Print the value of the function
160 using the variables X and Y
170 FRINT FN NM((Y,X) :° The values of the variables are
180 -~ used according to position and
192 NOT VARIABLE NAME
run

81

144

166

120

31

41
Ok

3-42

Example

1@ DEF FN ARCSIN((X) =

20

0

S0

6B CLS
70 INPUT
80 R =
the angle
90 PRINT

4@ DEF FN DEG (X) =

The only inverse trigonometric function available is ARC TAN.
DEF FN is useful to provide functions for ARC COS etc.,and
the formulae for obtaining such functions are listed in Appendix
L.

The following program illustrates the use with ARC SIN, and also
in converting from radians to degrees. (See ATN for this compu-
tation.)

ATN (X / SOR (1-X * X)) :’ Defines a
function to give the angle from its SINE
X ¥ 45 /7 ATN(1L) :° function

radians

to convert
to degrees

"Type in EINE of angle "3 X
FN ARCSIN (X) : D =

FN. DEG (R) :’ Find the values of

"The angle whose SINE is "; X 3 " is " 3 R j
"Radians or "; D 3

"Degrees”

Type in SINE of angle ? .5

The angle whose SINE is .5 is

Ok

= Tes

. 523599 Radians or 36 Degrees

343

http://www.fastio.com/

ClihPDF -

DEFINT/SNG/DBL/STR

Remarks

NOTE:

DEFINT <range(s) of letters>
DEFSNG <range(s) of letters>
DEFDBL <range(s) of letters>
DEFSTR <range(s) of letters >

Declares the type of variables specified in <range(s) of letters>.

DEFINT as an INTEGER variable

DEFSNG as a SINGLE PRECISION variable
DEFDBL as a DOUBLE PRECISION variable, and
DEF STR as a STRING variable

This statement defines the type of the specified variable or ranges
of variables, making it unnecessary to indicate their type by ap-
pending the type definition characters (%, !, #, and $). Type
declarations made using this statement apply to all variable names
which begin with the letters included in <range(s) of letters>.
For example, execution of DEFSTR A-C declares all variables
whose names begin with the letters A, B, and C as string varia-
bles even though the declaration character $ is not appended to
their names. Variable types specified in DEF statements do not
become effective until those DEF statements have been execut-
ed; therefore, the BASIC interpreter assumes that all variables
without type declaration characters are single precision variables
until a type definition statement is encountered. When a DEF
statement is encountered, variables without type definition charac-
ters are cleared if the first letter of their names is specified in that
statement.

Note that trying to assign a numerical value to R when it has been declared as
a string variable results in a TM error (Type mismatch error).

3-44

wvvw fastio.com

DEF USR

|

Remarks

NOTE:

DEF USR[< digit>]= <integer expression>

Specifies the starting address in memory of a user-written machine
language program.

Machine language programs whose starting addresses are defined
with the DEF USR statement can be used as functions in BASIC
programs. This is done using the USR function; see the explana-
tion of the USR function and Appendix D for more information.
< digit> is a number from 0 to 9 by which the machine language
program is identified when called with the USR function. If
<digit> is not specified, 0 is assumed.

<integer expression> is the starting address of the machine lan-
guage program. Up to 10 starting addresses (USRO to USR9) may
be concurrently defined; if more addresses are required, additional
DEF USR statements may be executed to redefine starting ad-
dresses for any of USRO to USRSY.

Machine language programs used as subroutines by BASIC pro-
grams must be written into memory before they can be called;
further, the starting address of the area into which machine lan-
guage programs are written must be specified with the CLEAR
statement.

USR, CALL

Appendix G describes how to use DEF USR.

3-45

http://www.fastio.com/

hPDF -

DELETE

Purpose

Remarks

Examples

DELETE [<line number 1>][-<line number 2>]

Deletes specified lines of the program in the currently logged in
BASIC program area.

If both <line number 1> and <line number 2> are present,
all the lines from <line number 1> to <line number 2> inclu-
sive will be deleted. If the second parameter is omitted, only the
line specified in <line number 1> is deleted. If the first parameter
is omitted, all lines from the beginning of the program to <line
number 2> will be omitted.

An FC error (Illegal function call) will result if a specified line
number does not exist or if a hyphen is specified without specify-
ing the second line number.

Although DELETE can be used in a BASIC program, control
always returns to the command level after execution.

If you wish to delete the last lines of a program, you cannot specify
a line number greater than that of the last line of the program,
otherwise an FC error (Illegal function call) will be printed and
no action will be taken. Thus, if the last line number in a pro-
gram is 190 and you wish to delete lines greater than 100, DE-
LETE 101-194 is correct but DELETE 141-200 will generate an
error. However, line 101 does not have to exist.

DELETE 16 will remove line 10.
DELETE 10 — 98 will remove lines 10 to 90.
DELETE -—90 will remove lines up to line 90.

wvvwfastio.com

DIM

Format
Purpose

See also
Example 1

Example 2

Example 3

DIM <list of subscripted variables >

Specifies the maximum range of array subscripts and allocates
space for storage of array variables.

The DIM statement defines the extent of each dimension of vari-
able arrays by specifying the maximum value which can be used
as a subscript for each dimension; it also clears all variables in
the specified array(s). For example, DIM A(25,50) defines a two-
dimensional array whose individual variables are designated as
A(N1,N2), where the maximum value of N1 is 25 and the maxi-
mum value of N2 is 50. Since the minimum value of a subscript
is O (unless otherwise specified with the OPTION BASE state-
ment), this array includes 26 x 51 = 1346 individual variables.
Any attempt to access an array element with subscripts greater
than those specified in the DIM statement for that array will result
in a BS error (Subscript out of range); if no DIM statement is
specified, the maximum value which can be used for subscripts
is 10. Once an array has been dimensioned with the DIM state-
ment it cannot be redimensioned until it has been erased by a
CLEAR or ERASE statement.

ERASE, OPTION BASE, CLEAR

10 DIM A(20, 15)

Defines two-dimensional array A and specifies 20 and 15 as its
maximum subscript values. Unless otherwise specified by a DEF
<type> statement, BASIC will handle this as a single precision
numeric array.

10 DIM AS(30)
Defines one-dimensional string array A$ and specifies 30 as its
maximum subscript value.

10 DIM G%(25), F%(25)

Defines one-dimensional arrays G and F and specifies 25 as the
maximum values of their subscripts.

347

http://www.fastio.com/

DSKF EDIT

DSKF (< disk device name>) ‘ EDIT [<line no.>]
Returns the amount of free space on a disk. Places BASIC in the edit mode
The DSKF function returns the amount of free space on the disk : This command makes it possible to edit program lines on-scr

, -screen

specified in (< disk device name>) in kilobyte (1024-byte) units.
The device specified in <disk device name> must be that of a
disk device which is supported by PX-4 BASIC.

FC error (Illegal function call) — The <disk device name> ar-
gument was incorrectly specified.

b.y displaying the program line specified in <line no.> and posi-
tioning the cursor at the beginning of that line. Following occur-
rence of an error, ““EDIT.”’ can be executed to display the line
in which the error occurred. The error line is displayed only if
the command is executed immediately following occurrence of
the error; in this case, the cursor is positioned at the point at which

. . .] the error occurred.

DU error (Device unavailable) — The specified device was not ,

available. ‘ ‘ FJL err9r (Undefined line number) — The program line specified

) . is not included in the program.

PRINT DSKF(‘‘A:’’) will return the amount of space available
for drive A:.

3-48 3-49

HPDF - www . fastio.com

http://www.fastio.com/

lihPDF -

END

END

Stops program execution, closes all files and returns BASIC to
the command level.

END statements may be included anywhere in a program to stop
execution. However, it is not necessary to place an END state-
ment in the last line of the program if the last program line is
always the last line executed.

Remarks

The END statement is often used together with the IF ... THEN
... ELSE statement to terminate program execution under specific
conditions.

As with the STOP statement, program execution terminated by
the END statement can be resumed by executing a CONT com-
mand. However, the END statement does not result in display
of a BREAK message.

It often happens that subroutines are placed at the end of a pro-
gram. An END command is often placed before the first such
subroutine so that the program does not continue into the subrou-
tine when the main part of the program has been completed. The
following example illustrates this.

STOP

See also
Example

10 GOSUE S0
20 FRINT "Having executed the subroutine at line 50"

Z@ PRINT "this program halts at the END statement on line 42"
49 END

5@ FRINT "The program is now executing the subroutine at line
=1

6@ PRINT

7@ RETURN

run

The program is now executing the subroutine at line S0

Having executed the subroutine at line 3¢
this program halts at the END statement on line 4
0

3-50

wvvwfastio.com

EOF

Purpose

EOF (< file number>)

Returns a value indicating whether the end of a sequential file
has been reached during sequential input.

Remarks

During input from a sequential file, an ‘‘Input past end”’ error
will occur if INPUT # statements are executed against that file
after the end of the file has been reached. This can be prevented
by testing whether the end of file has been reached with the EOF
function.

< file number > is the number under which the file was opened.
The function will return ““false’’ (0) if the end of file has not been
reached, and ‘‘true’’ (—1) if the end of file has been reached.

19 OFEN "O",#1,"TEST"

20 FOR J = 1 TO S

30 PRINT #1,J

40 NEXT

5o CLOSE #1

&G OFEN "1”,#1,"TEST"

79 IF EOF(1) THEN 116

8o INFUT #1,J

99 FRINT J,

106 6070 76

116 PRINT "The e i "
126 ooy w1 nd of the file has been reached

run
1 2 z 4 =]
The end of the file has been reached J

Ot

3-51

http://www.fastio.com/

HPDF -

ERASE

Format

See also

ERASE <list of variables>
Cancels array definitions made with the DIM statement.

The ERASE statement erases the specified variable arrays from
memory, allowing them to be redimensioned and freeing the

memory they occupied for other purposes.

An ““Illegal function call error’’ will result if an attempt is made
to erase a non-existent array.

It is not possible to redimension an array without destroying it
completely using ERASE.

DIM

3-52

wvvwfastio.com

ERL

Purpose

Remarks

See also

‘ Example

ERL
Used in an error processing routine to return the line number of
the program line at which an error occurred during command or

statement execution.

The ERL function returns the line number of the command/state-
ment causing an error during program execution.

If an error occurs during execution of a command or statement
in the direct mode, this function returns the number 65535 as the
line number.

The ERL function is normally used with IF ... THEN statements
in an error processing routine to control the flow of program ex-
ecution when an error occurs.

ERROR, ON ERROR GOTO, RESUME, ERR

See under ERROR.

3-53

http://www.fastio.com/

	./brm3_001.tif
	./brm3_002-003.tif
	./brm3_004-005.tif
	./brm3_006-007.tif
	./brm3_008-009.tif
	./brm3_010-011.tif
	./brm3_012-013.tif
	./brm3_014-015.tif
	./brm3_016-017.tif
	./brm3_018-019.tif
	./brm3_020-021.tif
	./brm3_022-023.tif
	./brm3_024-025.tif
	./brm3_026-027.tif
	./brm3_028-029.tif
	./brm3_030-031.tif
	./brm3_032-033.tif
	./brm3_034-035.tif
	./brm3_036-037.tif
	./brm3_038-039.tif
	./brm3_040-041.tif
	./brm3_042-043.tif
	./brm3_044-045.tif
	./brm3_046-047.tif
	./brm3_048-049.tif
	./brm3_050-051.tif
	./brm3_052-053.tif

