BARBDBEELABESAAEALADEERABARBASABDHSIAREDAREEEDSBMS

CHAPTER 3
SYMBOLIC DEBUGGER

121D SIDIDIMBIDIB BB
BB BIPBDIDIDIB BN

BB ddbhddbdidbbddbdddddibdibpbdpddbddddddddddhd

3.1 OUTLINE OF THE SYMBOLIC DEBUGGER

The symbolic debugger loads and links one or more program units from relccatable files to form an
object program in memory in an immediately executable form and runs the object program for debugg-
ing. It provides the programmer with facilities for taking a memory dump of the object program in the
link area, for setting breakpoints in the program, for displaying and altering the contents of the CPU in-
ternal registers and for starting the execution of the program at a given address with the CPU internal
registers set to specified values (indicative start).

Linki Symbeolic debugger
Relocatable | Xing debugging operations -
file units (RB) Program execution, breakpoint| / Program execution
/' setting, data alteration) .
y
s/

Debugging with the symbolic debugger

The debugger is said to be **symbolic’’ since it permits the programmer to reference addresses (e.g.,
breakpoints) during debugging not only in absolute hexadecimal representation but with global symbols
declared as entry symbols in the source program with the ENT assembler directive. This releases the pro-
grammer from the burden of remembering the relative addresses in relocatable programs and offset
values specified when they are loaded.

When all errors are detected by debugging, the source program is reedit. After debugging of all
source programs is completed, the final object program can be obtained by linking them. The method
of setting the symbol table is explained in 3.3 Symbol table.

Monitor

Symbolic debugger
Y command

Relocatable file #1 g PPANSS—

N Object file

Relocatable file #2 Ai S command

R Symbol table
FEOO Work arca

Symbolic debugger file processing

58

— Symbolic debugger command table —

The symbolic debugger provides the commands listed in the tabl below. Among them, those marked

with a dagger ** 1" permit svmbolic operation.

:

Command Command
type name

b e b S

L

) Link/load N
symbol table
command

. *

] e

; Function
Loads a refocatable file output by the assemibler into the link area. The prograni |
i in the relocatable file is foaded to form an object program through relocation at
the location designated by the assembly bias and link address (relocate Load).
: Appends and links a relocatable tile to the end of the preceding program in the
Ilink area. (Next file).
Displays the current values of the assembly command bias and link address
| (Height).
! Displays the contents of the symbol table. Label symbol names, their absolute
| addresses. and their definition status are indicared.
| Clears the svmbol table and current assembly bias and link address values to
| 0000H (CLEAR bias and table).

Debugging
commands

“m moA pTWMeO OO BHp®
B T T e e —

| Displays. sets or alters breakpoints. (Breakpoint) ;
1 Clears all breakpoints set. (clear breakpoint) i
. Traces the program execution starting at the specified address. (Trace) ‘
} Displays the contents of the specified block in the link ..ca in hexadecimal i
i representation or alters them. (Memory dump) i
| Disassembles the machine language program in the specified block. (Disassem- ‘
| ble) i
Writes hexadecimal data, starting at the specified address in the link area. -
(Write) '
Executes the program at the specified address. (Goto) |
Searches the specified block for the specified data. (search) }
Fills the specified tlock with the specified data. (Fill) :
Displavs the contents of registers A, F, B, C, D, E, H and L in hexadecimal !
representation or alters them. (Accumulator)

Displays the contents of complementary registers A’, F', B’, C’, D", E’, H” and
L’ in hexadecimal representation or alters them. (Complementary)

Displays the contents of registers PC, SP, IX, 1Y and I in hexadecimal represen-
tation or alters them. (Program counter)

Displays the contents of all registers in hexadecimal representation. (Register)
Transfers the specified memory block to the specified address. (TRANSfer)

\ DEFAULT
\ DELETE
\ DIR

File ¢ontrol \ DIR’P
commands \INIT

\LOADALL
‘ \ MODE
\ RENAME

\RUN
\SAVEALL

Sets the specified external storage device as the default device.
Deletes the specified file in the RAM file.

Displays the contents of the directory.

Prints out the contents of the directory on the printer.
Initializes the MZ disk.

Loads all files on the MZ disk into the RAM file.

Specifies the number of characters to be printed on a line by the colour plotter
printer or that displayed on a line on the screen.

Changes the name of the specified file in the RAM file.
Executes machine language programs.

Saves all files in the RAM files on the MZ disk.

S

< <

File 170 com-
mand

Saves the object program in the link area in an output file with the specified
name.(Save)

Reads the object program with the specified filename into memory. (Yank) !
Compares the tile whose filename is specitied with the contents of the link area.
(Verify)

Displays the value at the specified input port. (Inport)

Outputs the specified data to the specified output port. (Outport)

Special com-
mands

B e

| Switches the list mode for listing on the printer.
| Transfers control to the monitor.
i

59

3.2 BREAKPOINTS

A breakpoint is a checkpoint set up in the program at which program execution is stopped and the
contents of the CPU registers are saved into the register buffer. At this point, the programmer can ex-
amine and alter the memory and register contents. He can also restart the program at this point. Thus,
breakpoints facilitate program checking and debugging.

The symbolic debugger allows a maximum of nine breakpoints. When setting a breakpoint, the pro-
grammer must specify not only its address but also its count. The count specifies the number of
allowable passes through the breakpoint in a looping program before a break actually occurs. The max-
imum allowable value of the break count is E in hexadecimal (14 in decimal).

When a breakpoint is set in a program, the debugger saves the operation code at that location (ad-.
dress) in the break table and replaces it with code FF. The debugger creates one break table entry for
each breakpoint as shown below.

Saved operation code Repl {
place
\\ P
Breakpoint address N
(label symbol) e F7
Break count Variable count §

Breaktiable entry
Object program

Hexadecimal code FF is the operation code for RST 7, which initiates a break operation. When the
RST 7 instruction, which is 1-byte CAll instruction, is executed, the contents of program counter are
pushed into the stack and the program counter is loaded with new data 0038H; that is, proram control
jumps to address 0038H in the monitor, from which point control is immeidiately passed to the debug-
ger. The debugger displayes the error message ““RST 72 Thus, the RST 7 instruction is used in the
system and cannot be used by user programs. ’
When the debugger finds the required breakpoint in the table, it checks the correnponding count
and decrements the variable count (this count is initially set to the break count) by one. If the variable
count reaches zero, the symbolic debugger performs break processing; otherwise, it continues the pro-
gram execution.

60

3.3 SYMBOLTABLE

Symbols referred to by the symbolic debugger are label symbols which are declared as global symbols
in a source program; that is, label symbols defined with assembler directive ENT or EQU. They are not
replaced with the assembler location counter values by the assembler and left in ASCII codes in

relocatable files output by the assembler for use during program linkage.

When the symbolic debugger inputs a relocatable file, it stores each label symbols which it en-
counters into a symbol table. The symbol table is located at the end of the link area. The higher order
two digits of the starting address (hexadecimal) of the symbol table must be specified by the user. For ex-
ample, when the user enter:

‘ « TBL EO
the symbol table starting address is set to E000 in hexadecimal.

The photograph below shows the display when the symbolic debugger is started up and the figure at
the right is the memory map for the symbolic debugger.

0000 Mo
Symbolic debugger 52-B11B Vi.@A Moitor

Copyright (C) 1985 by SHARP Corp.

Svmbolic debugger

Link area 8880 - FFee
¢1BL E©
L
Load area
Link arca
E000
Symbol
table area
FF0O

Work area

61

3.4 LINKER BIAS AND ADDRESSES

The user must specify four addresses in addition to the symbol table starting address when using the
symbolic debugger. These addresses are assembly bias and the link address which are used when input-
ting relocatable files, and the execution address and load address which are used when an object tiles are

output.

These addresses determine some of the characteristics of the object program. However, they cannot
be determined arbitrarily; attention must be paid to their interrelationship. These addresses are describ-

ed below.
— Link address —
The link address specifies the starting address of a relocatable file in the link area. .
The figure below shows the memory map set up when a link address of AOOOH is specitied.
0000
Monttor
. Link address
Relocatable file ~ Symbolic debugger
H ‘A
Program unit 1 ——) A000
T Program unit |
Relocatable file v Program unit 2
Link area (when the svinbol table
Programunit 2 | -~ [TTTTTTooToToooomoo starting address is set 10 “*EQ"
Eo00 T
Symbol table
Froof T T T
Work area

62

— Assembly bias —

The assembly bias specifies the address at which the object file generated is executed. It is added to
all relative address of a relocatable file to form absolute address.

Each relocatable file generated by the assembler uses relative address starting at 0000H. To convert
such relocatable file to an object tile which starts at AOOOH, for example, the user must specify assem
bias ACOOH to the symbolic debugger.

When an object program generated is to be debugged, the assembly bias must be set to the same ...
dress as the link address. When debug is not required, the assembly bias can be set arbitrarily.
The function of the assembly bias is illustrated below.

Relocatable file Object file
0000— Relative address A000— Absolute address
S S Assembly bias
X A000
1000 N\ Program unit |
Program unit | \. Symbolic T B000 e ATeomte addrecs]
g] — debugger t————-»| BO000— Absolute address
H Assembly b
0000— Relative address S ssembly bias
/ BOOO
S Program unit 2
2000

Program unit 2

83

— Execution and load addresses —

The execution and load addresses must be specified when an object file is output by the symbolic
debugger. Normally, the load address is set to the same address as the assembly bias.

These addresses arc stored as information data in an object file.

The load address specities the starting address from which an object file is loaded through the
monitor. The execution address specifies the value 10 be set up in the program counter in the CPU after
the object program has been loaded.

The figue below shows how an object program is loaded and given control when a load address of
6000H and an execution address of 6100H are specitied.

0000 I

Load address _ Monttor - .
-~ ™\ Execution address
Object program 6000 ‘/ ’/'
. Object program 6100

Execution address : 6100 . I
Load address : 6000

Loaded by
monitor

FFOO
Work area

When an object program is loaded by the symbolic debugger or with the Y command in the
machine language, or when it is linked to a BASIC program, the execution address is ignored and con-
trol is retained by the system program. To execute the object program in this case, it is necessary to
transfer control to the program by means of the system program execute command.

64

— Relationship between the ORG directive and the four addresses —

The load address can be specified with the ORG assembler directive as well as by the symbolic debug-
ger. This subsection describes the relationship between the ORG directive and the four addresses
(assembly bias, link address, load address and execution address).

Assume two program TESTI and TEST2, whose starting addresses and program size are as follow.
TESTI: ORG 6000H specified, occupies 6000H to 6CO0H
TEST2: ORG 7000H specified, occupies 7000H to 7A00H

When loading TEST! with a L command, it is Monitor
necessary to specify the assembly bias and link ad- e —
dress. In this example, any assembly bias value Linker
specified is ignored and the assembly bias is A000
automatically set to 6000H. The specified link ad- TEST 1
dress remanins valid. ACOOf =~ """ T 400H
When the command 1:100 S B (7000 — 6C00)
*L A000 7400 TEST 2
Filename? TEST 1 BA0O

is executed, TESTI is loaded in the link area from
address AOOOH to ACOOH as shown in the figure at
right.

When a N command is entered to read in TEST2, TEST?2 is loaded in address BOOOH to BAOOH,
resulting in an offset of 400H (7000H — 6CO0H). Note that the assembly bias for TEST2 is set to 7000H
as with TESTI.

Monitor

The object file can be output with an S com-
mand after the two programs have been linked.
Since in this case TEST! and TEST2 have been 6000 TEST 1
assembled with assembly bias of 6000H and 7000H, | ______~________|

) 6C00 J00H

respectively, the load address must be set to 6000H 2000 Fmmm=mmmm e e |
to run the object program properly. TEST 2
The memory map when the object program is ex- TA00
ecuted is shown at right.

65

3.5 SYMBOLIC DEBUGGER COMMANDS

— Link-load commands —

L (relocate Load) command
The L command loads relocatable fil: ~ output by the assembler. Relative addresses in a relocatable

file is converted into absolute addresses by specifving the assembly bias in this command.

* L A000 A000 Loads a relocatable file converting relative addresses to absolute ad-
dresses. The assembly bias and link address are set to A000.

— Key in L while the system is in the command wait state (*).

— Key in assembly bias and link address values as 4-digit hexadecimal numbers. An immediately ex-
ecutable program is generated in the link area using the assembly bias as explained in section 3.4.
Normally, the assembly bias and link address are set to the same address in the link area. When the
source program contains an ORG directive, the assembly bias specified is ignored.

-— The system prompts for the name of the file to be read in with the message *‘Filename?.”

— Enter the file name, then press 'CR . The system searches for the specified file and reads it into the
link area.

— Press [SHIFT| + [BREAK] to terminate program loading.

— The photograph below shows the operation to load relocatable file FORMULA # 1 into the link area
from address A000.

Symbolic debugger 52-811B V1.8A
Copyright (C) 1985 by SHARP Corp.

Link area 8880 - FFé8

¢TBL E8
ABBB RE8O
a;leggme’ FORMULAKL

66

N (Next file) command
The N command link-loads the next relocatable file as specified by the current assembly bias and the
link address values (which can be displayed with the H command).

*N Link-loads the next relocatable file as specified by the current assembly
bias and link address values.

— Key in N while in the command wait state (*).

— The system prompts for the name of the file to be read in with the message ‘‘Filename?.”’

— Enter the file name, then press {CR] . The system searches for the specified file and reads it into the
link area.

— The system uses the assembly bias and link address values immediately before the N command is ex-
ecuted when loading the relocatable file. If the source program contains an ORG directive, the
assembly bias value is ignored.

— The programs are appended and linked during loading.

— Press (SHIFT] + [BREAK] to terminate program loading.

H (Height) command

~

{
| *H Displays the current values of the assembly bias and link address (the
|
|
i

values cannot be changed).

— Key in H while the system is in the command wait state (*).
— The system displays two 4-digit hexadecimal numbers indicating the current assembly bias and link
address. These values cannot be changed.

67

-- Symbol table commands —

= (table dump) command

The table dump (=) command displays the contents of the symbol table. Each symbol table entry

consits of a label symbol name, its absolute address, and its definition status.

Displays the contents of the symbol table.

—XKey in = while the system is in the command wait state (*) and press CR..

— The system displays the label symbol name, absolute address (in hexadecimal), and definition status
for each symbol table entry. Errors in symbol definition can be found by examining the definition

status of each symbol.

— Messages pertaining to the symbol definition status are listed in the table below.

Example of the symbol definition status messages output are given at next page.

Message Definition status
U Undefined (address or data)
M Multi-defined (address or data)
X Cross-defined (address and data)
H Half-defined (data)
D EQU-defined (data)

* (clear bias and table) command

Resets the assembly bias and link address to 0000 and clears the symbol
table.

—XKey in * while the system is in the command wait state (*) and press |[CR].

— The clear bias and table command (*) is executed to reset the assembly bias and link address to 0000
and to clear the symbol table. However, the symbol table address set with the TBL command is not

changed.

68

— Symbol definition status message examples ~—
First program unit loaded (UNIT-#1)

TMDLYH: LD
CIILNT ¢ ENT
DEC
LD
CF
IR
L
CF
JR
CF
JR
RET
FEND: ENT
DEFM
DEFE
COUNT I ERXU
COUNTO: EGU
END

HL,START

HL
Arhk

AN T

NZ COuNT

NZ» COUNT

‘TMOLYH S
OOH
D0OH
SOH

Second program unit loaded (UNIT- #2)

TMOLYL: [
LOopL: LEC
\ LD
CF
JR
RET
FEND: ENT
DEFM
DEFR
START: Ei
COOLNT e =]
ENE

HLSTART
H

ArH
COUNT
NZLOOFY

STMDLYLS
GOH
1O00H
QDM

Third program unit loaded (UNIT- #3)

INFLIT: saLlh
CALL
CALL
Lo
CF
JR
Lo
INEC
JR
END: IF
COUNTZ: EQL
END

OETOH
TMDLYL
QL10H

HL +START
Q0H
Z+END
(HL» A
HL
INFUT
{ GH

69

“START” X

START is not defined as an address in the
first program, but is defined as data in the
second or subsequent program with the
START: EQU directive.

Note: The EQU directive should be placed
at the beginning of the program
unit.

“COUNT2” H

COUNT2 is not defined as data in the first
program, but is defined as data in the third
program with the COUNT2: EQU
directive.

“COUNTI” D
COUNTI is defined as data (D indicates no
error condition).

“COUNT” X

COUNT is defined as an address in the first
program while it is simultaneously defined
as data in the second program.

“PEND" M

PEND is defined as an address in the first
program while it is simultaneously defined
as an address in the second program
(duplicated definition).

“TMDLYL” U

TMDLYL is neither defined as an address
nor declared with the ENT directive in any
other external program unit.

— Debugging commands —

B (Breakpoint) command

The B command sets or changes a breakpoint. Break occurs after instructions immediatelv preceding
the breakpoint have been executed the number of times set in the break counter. Then program execu-
tion is interrupted and control is passed to the debugger. The debugger saves the contents of the CPU

registers into the register buffer and waits 161 a debugger command.

Breakpoints can be specitied with either an absolute hexadecimal address or a global label symbol.

The displacement applied to the label symbol (** + 5L”" in example 3 and ** ~ 9" in example 4 below)

must be a decimal number from 1 to 65535 in line or from =1 to +65535 in byte.

*B @
addr count

1 AS30._.,2

2 SORT3 1

3 SORT3+5L. .1

4 MAINO—9._ .2

5 &

Sets break points.

The breakpoint is address A530 and break count is 2.

The breakpoint is the address represented by the label symbol
SORT3 and the break count is 1.

The breakpoint is the address of the instruction 5 lines away
from the address represented by label symbol SORT3 and the
break count is 1.

The breakpoint is the address of the instruction 9 bytes before
the address represented by label symbol MAINO and the break
count is 2.

(The breakpoint and break count must be separated by at least
one space (denoted by .).)

— Enter a B command while in the command wait state (*).

— The debugger carries out a new line operation and displays ‘‘addr count.”’ It then performs a new line
operation and displays the breakpoint number followed by a space and the cursor to prompt the pro-

grammer to enter a breakpoint address and break count. The programmer may specify a breakpoint

address with a 4-digit hexadecimal number or a global symbol (see the example above). In either case,
type in a break count following the breakpoint address with a space between the breakpoint and
break count. The break count specifies the number of allowable passes through the breakpoint

before a break acutally occurs. The break count can be specified with a hexadecimal value from 1 to

E.

When a break count is specified, the symbolic debugger performs a new line operation and displays

the next breakpoint number to prompt for the next breakpoint address.

— Up to 9 breakpoints can be set. When nine breakpoints are set, the symbolic debugger displays X on

the next line instead of the next breakpoint number. This allows the programmer to clear the break-

points or change the break counts, and not to set a new breakpoint.

If the programmer attempts to set a new breakpoint, the symbolic debugger will not accept it and pro-

mpts for a new command with message “‘Over.”’

—Press 'SHIFT. + BREAK. (o terminate breakpoint setting and return to the command wait state.
Note: 1. Break count 0 means that the breakpoint is cleared.

2. Breakpoints can be set only at the addresses of op-codes. However, breakpoints cannot be set

at the addresses of the CALL and RET instructions when their parameters are specified im-

mediately after them.

70

Example CALL CHKACC — Breakpoint cannot be set at this address.

DEFB 2 * Parameters of CALL CHKACC

DEFM ‘AB’

JR Z,0K.CHR

RST 3 —Breakpoint cannot be set at this address.
DEFB 5 — Parameters of RST 3

& (clear breakpoint) command

I

—Enter the & command while in the command

*& Clears all breakpoints which have been set.

wait state (*).

— The symbolic debugger clears all breakpoints set
and returns to the command wait state.

— The photograph at right shows an example of set-
ting breakpoints. The breakpoints are set with a
4-digit hexadecimal number (absolute address), a
global label symbol and a global label symbol
plus a displacement in lines or bytes.

—The photograph at right shows that breakpoint
COMMON was cleared on the line identified by
X.

OTWDOOWEX:
oOMMOOm.

:
3
3
7
8
9
X
E {

—The photograph at right shows an example of

-

L
o
€
3
4

displaying previously set breakpoints with a B

Ureral)

PRPOONVWY
PN WG

DOOA

command. Breakpoints are displayed with hex-
adecimal absolute addresses shown first, follow-
ed by the break counts and the label symbols.

WX XWOWED

VRNPNSWN-
o DIAO!

. ST DD
DODMes

— The photograph at right shows that a break oc-
curred immediately after the program execution
was started from address A302 with a G com-
mand with a breakpoint at A302 and a break
count of 1. As soon as a break occurred, an R
command was automatically executed to display
the status of the CPU ‘registers.

DVOIOT

gﬁ@ @

N oror
[N

71

T (Trace) command
The T command traces the program execution starting at the specified address. After this command
is executed, breakpoints set are automatically cleared.

*T 1A A0O Traces the program execution by 1A steps starting at address
A000.

*T FO START [CR] Traces the program execution by FO steps starting at the address
identified by global symbol START.

*T 05 Traces the program execution by 5 steps starting at the current
address designated by the PC (Program Counter).

*T Traces the program execution by 1 step starting at the current ad-
dress designated by the PC.

—Key in T while in the command wait state (*).

— The symbolic debugger displays the cursor with a space between the cursor and the letter T, then wait
for the programmer to enter the number of steps to be traced. The number of steps must be specified
with a 2-digit hexadecimal number. When 00 is specified, the symbolic debugger interprets it as 100.
When is pressed without specifying the number of steps, one is assumed.

— Then specify the starting address with a 4-digit hexadeciaml number or a global symbol and press
[CR]; the symbolic debugger starts trace.

—Each time one step is traced, the contents of all registers and the mnemonic code of the instruction
are displayed (or printed). However, at the time when the information is output, that instruction has
not yet been executed.

—To suspend trace, press [SPACE] . To resume trace, press [SPACE] again. To terminate trace, press
[SHIFT] + [BREAK].

—The photograph at right shows the result when
program execution has been traced by stopping it
step by step with breakpoints.

The difference between the value to be set in the
accumulator by the instruction displayed and the

1w
DO
3

-]

@ Mnmm
£y

$.QU»-
ot
SRR
3
25 o
oM
i)
cOma
— T
2 ouay
@ o
o ®
®
® @rar
LS

nmmm
o
QM OXOwMmw
@ \m
DOMO
DO
e @
O=OMUAM D=OMUM D—@Mum
@ B
DIVDTOT DVOINT
DOD Ut DOD
o
® 0

TV N
]
~

10U Dr-a:

]
D=
©
(]
©

G0N DM D~
~ON

contents of the accumulator indicates that the in-
struction has not yet been executed.

—The photograph at right shows the next display
to that shown in the photograph above.
As displayed with a B command, the breakpoints
set were cleared by execution of the T command.
Then, a breakpoint was set at AEOE and the
program was executed again with a G command.
The value in the PC displayed by the last trace is
specified as the starting address in the G com-
mand because the instruction at the address has

®X!
®
® O 0
DIVDIOT
gﬂ@ Ll
o Or-ur
[

CALL 12H

*

T
fa
El
fA
1
S
8
B

DINTIOT

g(‘)@ A

® Orr
@

2
P
7

CALL 12H

or~r
®

‘not yet been executed.)

Note: When parameters are specified immediately
after the CALL and RST instructions as
described in note 2 for the B command, ex-
ecution of these instructions cannot be trac-
ed.

=@M
@

L
DVOTNT

QO®
-]
m

72

M (Memory dump) command

The M command displays the contents of the specified memory block in hexadecimal representa-
tion. The memory block may be specified with either absolute hexadecimal addresses or global symbols.
The M command also permits the programmer to alter data with the cursor.

D . M A800._,A850 Displays the contents of the memory block from A800 to A850.

*M MAIN7__,MAIN9 [CR] Displays the contents of the memory block from the address
identified by “MAIN7”’ to the address identificd by ““MAIN9.”
*M STEP0—9._,STEP3 + 15L
Displays the contents of the memory block from the address 9
bytes before the address identified by global symbol STEPO to
the address of the instruction 15 lines after the address inden-
tified by global symbol STEP3.

—Key in M while in the command wait state (*).

—The symbolic debugger displays the cursor with a space between the cursor and the letter M and waits
for the programmer to enter the starting and ending addresses of the memory block to be dumped.
The programmer may specify the starting and ending addresses of the memory block with either
4-digit hexadecimal numbers or global symbols.

— The starting address must be smaller than or equal to the ending address. Otherwise, the debugger
will display the message *‘7"".

— When a memory block in the link area is specified, the symbolic debugger displays the contents of the
memory block on the screen with 8-byte of data in hexadecimal and their corresponding ASCII
characters on each line.

—If the printer is set in the enable mode, the symbolic debugger prints the memory dump on the printer
with 16 bytes on a line. (See the explanation of the # command.)

— The cursor appears on the screen when the memory block dump is completed. The programmer can
then alter byte data in the memory block by moving the cursor to the desired byte position on the
screen, entering the new byte data in hexadecimal and pressing [CR] . The byte data under the cursor
is overwritten with the new data. The debugger displays the message *‘Error’’ if the data entered does
not match the byte format.

— When "CR_ is pressed with the cursor on a memory dump line, the data on that line is reentered into
memory. The symbolic debugger is returned to the command mode, however, when {CR] is pressed
with the cursor at the beginning of a line containing no data.

—Press [SPACE] to suspend display of the memory dump. To resume display, press [SPACE] again.

—Press SHIFT! + [BREAK]| to force the symbolic debugger to return to the command wait state.

73

D (Disassemble) command

The D command disassembles the machine language program in the specified memory block. The
disassembly list can be output on the screen or printer. The list is also output to the storage device in the
format in which it can be edited with the text editor.

*D A000 A300 Disassembles the machine langnage program in the memory

TBL? C000 C300 block from address A0 to A300.

*D START STOP+4L Displays the machine language program in the memory block

TBL? C000 C800 from the address identified by global symbol START to the
address 4 lines after the address identified by global symbol
STOP.

—XKey in D while in the command wait state (*).

— The symbolic debugger displays the cursor with a space between the cursor and the letter D, and waits
for the programmer to enter the starting and ending addresses of the memory block. The starting and
ending addresses of the memory block can be specified with either 4-digit hexadecimal numbers or
global symbols.

— The starting address must be smaller than or equal to the ending address. Otherwise, the symbolic
debugger will display the message ““?"".

— After a memory block in the link area is specified, the symbolic debugger then displays *‘TBL?’’ and
wait for the starting address of the symbol table to be entered. When a D command is executed at the
first time after the symbolic debugger is started up, the starting address of the symbol table must be
specified with a 4-digit hexadecimal number. At the second time on, the address specified at the first
time is used when _CR] is pressed without specifying the starting address.

— The symbolic debugger waits for the ending address of the symbol table to be entered. If [CR] is
pressed without specifying the ending address when a D command is executed for the first time, a
memory area 4K bytes from the starting address is secured for the symbol table. To secure a memory
area larger or smaller than 4K bytes for the symbol table, the ending address must be specified with a
4-digit hexadecimal number. At the second time on, the ending address specified at the first time is
used if [CR] is pressed without specifying it.

— After the memory area for the symbol table is specified, the symbolic debugger disassembles the
machine language pfogram in the specified memory block and outputs the disassembly list on the
screen or printer.

— Display can be suspended by pressing [SPACE] and it can be resumed by pressing again.
The assembly list can be displayed line by line by pressing after display has been suspended.
— When outy. 't of the assembly list is completed, the symbolic debugger displays ‘‘Filename?’’ and wait

for the file name to be entered to save the text obtained in a storage device.

When the text is not to be saved, press [SHIFT] + {BREAK| to return to the command wait state.
Whenr the file name is specified and [CR] is pressed, the text is saved under the specified name. The
lable symbols, mnemonic codes, operands and comments are included in the text saved. The machine
codes and addresses are not output. Unneeded spaces are also deleted in the text saved. Thus, the text
is saved in the format in which it can be read into the edit buffer and edited with the text editor.

— If the text is saved without errors, the symbolic debugger displays the file size in bytes and returns to
the command wait state.

When a large machine language program is disassembled, attention must be payed to the size of the
text saved. If the size of the text exceeds that of the --dit buffer, the machine laguage program must be
disassembled by dividing it into smaller blocks.

74

Notes:
* When a disassembly list is output on the printer, ASCII characters corresponding to the machine
codes are printed in the comment column of the listing.)

3E06 LD A6 ;>
CDC608 CALL LO08C6 ;[E-
0614 LD B,14H R
3E03 LSEO7: LD A3 L >,

* When a disassembly list is displayed on the screen, ASCII characters corresponding to the operands
of instructions such as PC, LD and so on, are displayed in the comment column of the listing only
when they are alphanumerics.

FE31 cp 31H ;1
3E42 LD A,42H ;B
D651 SUB S1H ; Q

* When data, work areas and so on are placed between the machine language programs to be
disassembled, the programs cannot be disassembled correctly.

314631 LD SP,L3146 ; 1F1
47 LD B,A ; G
314131 LD SP,L3141 ; 1A1
42 LD B,D ; B

312B43 LSE8A: LD SP,L432B ; 1+C

* Undefined instructions are assumed as 1-byte constant (the DEFB directive).
CB DEFB CBH ;B
34 INC (HL) ; 4

* When the value of nn in the instructions such as ‘LD BC, nn’’ is less than 100H, it is disassembled as
data because there is little possibility that it is an address.
011000 LD BC,10H H
* A comment line is inserted to leave space between the preceding and following disassembly listings
after the following 7 instructions, because program execution discontinues at those instructions.
RET, HALT, JR e, JP (HL), JP nn, JP (IX), JP (IY)

20F5 JR NZ,-9 Y |
c9 RET N 4

11000A L5SE60: LD DE,L0AOO

3 eee

75

W (data Write) command
The W command writes hexadecimal data, starting at the specified memory address. The memory
address may be cither an absolute hexadecimal address or a global label symbol.

R - |

r *W A000 [CR] Writes hexadecimal data, starting at address A000.
*W DATA] [CR; Writes hexadecimal data, starting at the address indentified by
! global symbol DATAL.

b o —

—Key in W while in the command wait state (*).

— The symbolic debugger displays the cursor with a space between the cursor and the letter W and waits
for the programmer to enter the starting address of the memory area into which data is to be written.
The starting address of the memory area can be specified with either a 4-digit hexadecimal numbers or
global symbol.

— The memory area must be inside the link area.

--When the programmer press CR after specifying an address, the symbolic debugger carries out a
new line operation, displays the starting address, then waits for the data to be entered. The data must
be entered in two-digit hexadecimal numbers. The symbolic debugger inserts a space each time 2-digit
data is entered, and performs a new line operation and displays a new address each time eight bytes of
data are entered.

—To correct the data just entered, press [-] to

return the cursor back to the byte of data just
entered and correct it.
The photograph at right shows an example. As
the photograph shows, when [is pressed, the
cursor is placed on the next line and the address
of the byte of data to which the cursor has been
moved back is displayed.

—To specify a displacement for a JR, DINZ or

other Z80 relative jump instruction, enter a
period ‘“."’; the symbolic debugger waits for the
programmer to enter an absolute address (no
label is allowed) with a 4-digit hexadecimal number as the destination of the jump. When the pro-
grammer enters a 4-digit hexadecimal address, the symbolic debugger computes the displacement and
stores the 1-byte result in the current byte position. The seventh and eighth lines in the photograp
above show an example of specifying a displacement.

— After the necessary data has been written, press ' CR:; the symbolic debugger returns to the com-

mand wait state.

76

G (Goto) command
The G command transfers program control to the specified address. This command is also used to
restart the program following a break.

f *G B7000 Executes the program at address B7000.

*G START Executes the program at the address identified by global symbol
: START.
L [CR] Restarts the program at the breakpoint with the restart address
| and the CPU register data stored in the register buffer.

—Key in G while in the command wait state (*).
— The symbolic debugger then waits for entry of an execution address. The programmer can specify the
execution address with either a 4-digit hexadecimal number or a global label symbol. When using a
. label symbol, a displacement in lines or bytes can also be used.

* G MAINO Executes the program at address MAINO.

*G MAINO+3L Executes the program at the address 3 lines after the address identified by
MAINO.

*G MAINO-12 Executes the program at the address 12 bytes before the address identified
by MAINO.

— To restart the program at a breakpoint, enter a G command and press {CR] . If this operation is in-
itiated when no breakpoint is taken, the symbohe debugger returns to the command wait state
without executing the program. The contents of the CPU registers restored when the program is
restarted are displayed with the R command. The value in the program counter (PC) is used as the
restart address. Since the PC value can be changed with the P command, it is possible to restart the
program at an address other than the breakpoint.

—To execute the program and returns to the symbolic debugger at a certain address, insert the instruc-

tion below.
JP 5603 (4003)

‘ Address 5603 (4003) is the warm start address for the symbolic debugger; at this address, ‘“*’’ is
displayed to prompt for command entry without the contents of the link area being lost. (If a start is
made from address 5600 (4000), it is a cold start and the link area, symbol table and bias are cleard.)
—The only methods of stopping program execution are to use a jump instruction to return to the sym-
bolic debugger or to set a breakpoint.
—Press SHIFT! + [BREAK] to terminate entry of a G command.

Note: Addresses enclosed with the parentheses must be used in the MZ-700 mode.

77

? (search) command
The ? command searches the specified memory block for the specified data and displayes it. This
command also allows the programmer to alter the data displayed with the cursor.

*? A000__ AFFF Searches the memory block from address A000 to address AFFF I

Data? ;A _;B_;C [CR] for ASCII character data ABC and displays them.

*? START __.STOP Searches the memory block from the address identified by global

Data? C3..00..00 [CR] symbol START to that identified by global symbol STOP for |
hexadecimal data C3,00,00 and displays them. _J

——Key in ? while in the command wait state (*).

— The symbolic debugger displays the cursor with a space between the cursor and the ?, then wait for
the programmer to enter the starting and ending addresses of the memory block to be searched. The
starting and ending addresses of the memory block can be specified with either 4-digit hexadecimal ‘
numbers or global symbols.

The starting address must be smaller than or equal to the ending address.

— When a memory block is specified, the symbolic debugger then displays ‘‘Data?’’ and wait for the

programmer to enter the data to be searched for. The data must be specified with 2-digit hexadecimal
numbers or combinations of ; and a ASCII character.
When the data is specified in combinations of ; and a ASCII character, the ASCII character is con-
verted into the corresponding ASCII code and then searched for. Up to eight 2-digit hexadecimal
numbers or combinations of ; and a ASCII character can be entered. They must be separated with a
space.

— After specifying the data, press [CR ; the specified data is searched for and displayed each time it is
detected in the same formt as by the M command. The data displayed can be modified with the cursor
in the same manner as with the M command.

—The photograph at right shows the state in which
three character strings which contain character
string ABC are detected and now the modifica-
tion is possible. The photograph at the bottom
right shows the screen after the ABC in the third
character string has been altered into 123.

—Press [SHIFT] + [BREAK] to force the sym-
bolic debugger to return to the command wait

state.

F (Fill memory) command
The F command fills the specified memory block with the specified data. Data can be specified wita
up to eight hexacecimal numbers or ASCII characters.

[

{

*F A000__A3FF[CR! Fills the memory block from address A000 to address A3FF

Data? FE_ ;M CR, with the data consisting of a hexadecimal number FE and a
ASCII character M.

*F JUMP__,JUMP + 9L [CR] Fill the memory block from the address identifed by global

Data? C3_.00._00 [CR] symbol JUMP to the address 9 instructions after that with
hexadecimal numbers C3, 00, and 00.

|
|
|
f

—XKey in F while in the command wait state (*).
— The symbolic debugger displays the cursor with a space between the cursor and the letter F, then wait
‘ for the programmer to enter the starting and ending addresses of the memroy block to be filled.
The starting and ending addresses can be specified with either hexadecimal numbers or global sym-
bols.

—The starting address must be smaller than or equal to the ending address and the memory block
specified must be located with the link area.

— After the memory block is specified, the symbolic debugger displays ‘‘Data?.’’ to prompt for the pro-
grammer to enter the data with which the memroy block is to be filled. The data can be specified with
up to eight bytes of 2-digit hexadecimal numbers or ASCII characters (each ASCII character must be
preceded by a semicolon *‘;’’). ASCII charactes are converted into ASCII codes when they are
stored. Hexadecimal numbers or ACII characters must be entered with a space between them.

— In the example shown in the photograph at right,
a 24-byte memory block from the address iden-
tified by global symbol AREA to the address 23
instructions after that is filled with the data con-
sisting of a hexadecimal number FE and ASCII
character, then the contents of the memory block
is displaved with a M command.

79

A (Accumulator) command

The contents of the Z80 CPU registers are saved in the register buffer when a breakpoint is taken;
the contents of the primary general registers saved can be displayed with the A command. The buffer
contents can also be altered using the cursor manipulation.

[
*A Displays the contents of primary register pairs AF,

—AF BCDEHL BC, DE and HL. i
01 23 45 67 89 ABCDEF

L—

—Enter an A command in response to the prompt (*).

-- The debugger displays the contents of accumulator A, flag register F, and generai register pairs BC,
DE and HL with 2-digit hexadecimal numbers. These values represent the contents of the primary
CPU registers set up when a break occurs at a breakpoint. They are saved in the register buffer for use
in subsequent restart operations at the breakpoint (see the G command description).

— If necessary, the programmer can alter the register contents. To change a register value, place the cur-
sor on the desired register value, overwrite it with a new value, and press CR
The register values displayed with the A command are restored to the CPU internal registers on a

restart.

—Press .CR_ ; the symbolic debugger returns to the command wait state.

C (Complementary) command
The C command displays the contents of the complementary general-purpose registers set up on the
last break. The programmer can alter their contents through cursor mainpulation.

*C] Displays the contents of complementary register pairs {
A'F BCDEHIL AF’, BC’, DE’ and HL’.
01 23 45 67 89 ABCDEF

—Enter a C command while in the command wait state (*).

— The debugger displays the contents of accumulator A’, flag register F’ and general-purpose register
pairs BC’, DE’ and HL’ with 2-digit hexadecimal numbers. They are used for restart at a Lreakpoint.

— Press [CR! ; the symbolic dybugger then returns to the command wait state.

80

P (Program counter) command
The P command displays the contents of the special-purpose registers set up on the last break.
The programmer can alter their contents through cursor mainpulation.

’—' *P Displays the contents of special-purpose registers i
SPIX 1Y | PC SP, IX, 1Y, I and PC. |

il EFEA SF70 5F50 00 78AB I

— Enter a P command while in the command wait state (*).

—The symbolic debugger displays the contents of special-purpose registers SP, IX, IY, I and PC
and | with 2-and/or 4-digit hexadecimal numbers. Register values displayed or altered through
cursor mainpulation are restored to the pertinent registers upon restart at a breakpoint. The pro-
gram does not have to restart at the breakpoint; the programmer can specify another restart

. address by altering the PC value.

R (Register) command
The R command displays the contents of all CPU internal registers set up on the last break or
altered with the A,C or P commands. The programmer cannot alter their contents.

*R Displays the contents of all CPU registers.
A F B C D E H L

01 23 45 67 8 AB CD EF

A F B C D E H L

01 23 45 67 8 AB CD EF

Sp X Iy 1 PC

EFEA 5F70 SFS0 00 78AB

~—Enter a R command while in the command wait state (*).

—The symbolic debugger displays the contents of all CPU registers with 2-and/or 4-digit hex-
adecimal numbers. The cursor does not appear and the values dispiayed cannot be altered.
The same data as displayed with a R command is automatically displayed when a break occurs.

— The symbolic debugger enters the command wait state after displaying all the register contents.

81

Using register commands (A, C, P and R)

Values displayed with register commands (A, C, P and R) are the actual contents of the register buf-
fer in the symbolic debugger. The values in the register buffer are the contents of the CPU registers sav-
ed at the last break or those changed through cursor mainpulation with the A, C or P command. These
values are restored to the CPU registers when a restart is made.

The figure below shows the relationship between the CPU registers and the register commands; the
photographs show examples of use of the register commands.

[780 CPOU REGISTER J
BREAKPOINT '
CPU REGISTER BUFFER
MAIN REG SET AF BC DE HL -— A command
COMPLEMENTARY REG SET AF’ BC' DE’ HL’ « = C command
SPECIAL PURPOSE REG SET PC SP IX IY 1 <~ P command

| |
v
R command

i

|

' L]

[Z80 CPU REGISTER [

RESTART FROM B.P.

A command P command

DVOIOXL

DO® I
Qrmr
@M

@
m

C command R command

82

X (data TRANSfer) command

The X command transfers the contents of the specified memory block to the specified memory area.

*X
From?A000 To? A11F Top?Co000 to C11F
[Transfers the Contents of the memory block from address AGX0

] to address A11F to the memory arca starting at address C000.

—Enter an X command while in the command wait state (*).

—The symbolic debugger displays the message ‘‘From?’’ and waits for the programmer to enter the
starting address of the source memory block with a 4-digit hexadecimal number. When the starting
address is entered, the debugger displays the message ‘*To?"’ to prompt for the programmer to enter

. the ending address with a 4-digit hexadecimal number. When the ending address is entered, the sym-
bolic debugger displays the message ‘‘Top?’’ to prompt for the programmer to enter the starting ad-
dress of the destination memory area with a 4-digit hexadecimal number (No global symbol can be us-
ed to specify these addresses.)

— After all addresses are specified, the system computes and displays the ending address of the destina-
tion area and starts transferring data. The system returns to the command wait state after the data
transfer is completed.

—The source and destination memory blocks must be located within the link area.

— Data transfer is accomplished successfully even if the source and destination memory blocks overlap
as shown below. The memory block shown in the figure at left may be transferred to the memory
block shown in the figure at right and vice versa.

Symbolic debugger syn{&)lic debl;g;;r
Memory blck ; -
(Memory area) - \»X‘command
Link area T e Memory area)
ink are — {Memory block) Link area
. Symbol table Symbol table

— The photograph at right shows data transfer from the
memory block from address A500 to address ASUF to
the memory block starting at A508. The data in the

-

DX
>
=3

DI
e

2« "3DUFw
\/faﬂ-l;w

DTNOD
DO
ODOr
OO+
DODN
VEDN

source block before transfer and that in the destina-
to AS517

.+ "3DU
««"3DY
NAalH /v

*=Te
o
3
S v
CROPOD

tion block transferred are displayed with a M com-

mand. The data has been successfully transferred.

X
[
M
A3
AS
AS
AS

— File control commands —
\ DEFAULT command

This command sets the specified storage device as the default device. The I/0 commands write or
read the specified file to/from the default device when a device name is omitted. The default device is
also effective for the DIR command.

* \ DEFAULT QD [CR Sets the MZ disk as the default device. ’
[%\ DEFAULT CMT Sets the cassette tape as the default device. ‘
* \ DEFAULT RAM Sets the RAM file as the default device. J

—Type in \ DEFAULT while in the command wait state (*).

—Type in a device name with a space between the command and device name.

— Press the [CR] key; the symbolic debugger sets the specified device as the default device.

Note: When the editor-assembler is started up, the storage device from which it was read is set as the.
default device.

\ DIR command

This command displays the contents of the directory, that is, a list of the names of files stored in the
media in the specified storage device.

I * \ DIR [CR] Displays the contents of the directory of the current storage

[device.

I =\ DIR QD Displays the contents of the directory of the MZ disk. |
l * \ DIR RAM [CR] Displays the contents of directory of the RAM file. i

—Type in \ DIR while in the command wait state (*).

—Specify a device name with a space between the command and device name. (The device name may be
omitted when the default device is to be specified.)

— Press the [CR] key; the system displays the contents of the directory of the specified device.
Note: This command eannot be used with the cassette 1ape.

\ DIR/P command

This command prints out the contents of the directory on the printer.

* \ DIR/P [CR] Prints out the contents of the directory of the current device on
. the printer.
"+ \ DIR/P QD Prints out the contentes of the directory of MZ disk on the
printer.
* \ DIR/P RAM Prints out the contentes of the directory of the RAM file on the
printer. |

—Type in \ DIR/P while in the command wait siate (*).
— Specify a device name with a space between the command and device name. (The device name may be
omitted when the default device is to be specified.)

—Press the key; the contents of the directory of the specified device are printed out on the
printer.
Note: This command cannot be used with the cassette tape.

84

\ INIT command
This command initializes the MZ disk or RAM file. Refer to the MZ-800 Owner’s manual for the
other functions of this command.

* \ INIT (€K Initializes the MZ disk. :
I & \ INIT QD | CR;j Initializes the MZ disk.

* \ INIT “RAM:SFFFF” [CR] Initializes the RAM file. i
[= \ INIT “LPT:82" [CR] Sets the listing device to a centronics standard printer.

—Type in \ INIT while the symbolic debugger is in the command wait state (*).

—Type in QD or RAM:$FFFF with a space between the command and device name. (When the device
name is omitted, the MZ disk is assumed.)

—Press the 'CR] key; confirmation message *“OK? [Y/N]”’ is displayed on the creen.

— Press Y to execute initialization and N to cancel it in response to the message. When you press N, the
symbolic debugger returns to the command wait state again.

\ MODE command

This command sets the number of characters printed on a line by the color plotter printer in its text
mode or that displayed on the CRT screen. Both the printer and CRT are set in 40-character mode when
the power is turned on.

* \ MODE TN [CR] Sets the line length for printout to 40 characters per line.]
* \ MODE TL [CR] Sets the line length for printout to 26 characters per line. l
* \ MODE TS [CR] Sets the line length for printout to 80 characters per line. i
* \ MODE DL [CR] Sets the line length for display to 40 characters per line. i
* \ MODE DS [CR] Sets the line length for display to 80 characters per line. J

—Key in \ MODE while the text editor is from the command wait state (*).
— Specify TN, TL, TS, DL or DS.

—Press the [CR] key.

Note: \ MODE DS and \ MODE DL cannot be used in the MZ-700 mode.

\ RUN command

This command executes the specified machine language program.

* \ RUN”TRANS”’ Loads machine Janguage program TRANS from the current
) device and executes it.
* \ RUN”TEST”,R Sets the memory in the same state as when IPL (Initial Pro-

gram Loading), loads machine language program TEST, and |
executes it. ’

—Type in \ RUN while the text editor is in the command wait state (*).
— Specify the file name.
When you exccute machine language programs created on the MZ-80K series computers, R must be
specified following the file name. Type in a comma **,”" after the file name when specifying R.
Note: This command cannot be executed with the cassette tape.

— Press the [CR} key.

When R is not specified, the specified program is loaded without changing the current memory state
and executed. When R is specified, the memory is set in the same state as-when IPL and the specified
program is loaded and executed.

Note: When the RUN command is executed, control is transferred to the specified program. In some
cases, contro!l is not returned to the symbolic debugger. If the specified machine language pro-
gram is to be executed in a memory area overlapping the area in which the symbolic debugger is
stored, the program is loaded over the symbolic deubgger and the symbolic debugger will be
destroyed.

\ DELETE command

[_* \ DELETE”RAM:SAMPLE"’ [CR | Deletes file “SAMPLE”’ in the RAM file. }
—Key in \ DELETE while in the command wait state.

— Type in RAM and file name. .
—Press {CR] ; the specified file is deleted.

Note: This command cannot be used in the MZ-700 mode.

\ RENAME command
"« \ RENAME"’RAM:OLDPROG”,”"NEWPROG”’
Changes filename OLDPROG of the file in the RAM file to
NEWPROG.

—Type in \ RENAME while in the command wait state (*).
— Specify the current file name to be changed and a new filename.
—Press [CR] ; the current file name is changed to the new one.
Note: 1. When a file with the same name as the new name specified exists on the RAM file, execution
of this command results in an error.
2. This command cannot be used in the MZ-700 mode.

\ LOADALL command

‘ * \ LOADALL Reads the entire contents of the MZ disk into the RAM file.]

—Type in \ LOADALL while in the command wait state (*).
—Press [CR] ; the entire contents of the MZ disk is read into the RAM file.
Note: This command cannot be used in the MZ-700 mode. .

\ SAVEALL command

I * \ SAVEALL Saves the entire contents of the RAM file on the MZ disk. J

—Key in \ SAVEALL while in the command wait state (*).
—Press "CR, ; the entire contents of the RAM file is saved on the MZ disk.
Note: 1. This command cannot be used in the MZ-700 mode.
2. When two or more files are stored in the RAM file, all files in the RAM file cannot always be
saved on the MZ disk even if the total file size does not exceed the capacity of the MZ disk,
because files are recorded on the MZ disk with blank spaces for separation.

86

— Object file /0 commands —

S (Save) command
The S command saves a specified block of the object program in the symbolic debugger link area in-
to a named output file. The contents of this file can be restored to the link area with the Y command.

*S Saves the object program in the link area starting at address
Filename? SAMPLE A090 and ending at address BBFF in the default device under file
From?A000 To?BBFF name SAMPLE.

Load?A000 Execute?A100

—Enter an S command while in the command wate state (*).
—The system displays the message ‘‘Filename?”’ on the next line and waits for the file name to be

specified.
‘pecify the filename and press (CR] .

— The system displays the message ‘‘From?”’ on the next line and waits for the starting address of the
block to be entered.

— Enter the starting address in a 4-digit hexadecimal number.

-—The system then displays message ‘“To?’’ and waits for the ending address of the block to be enterd.

— Enter the ending address in a 4-digit hexadecimal number.

— The system then displays the message ‘‘L.oad?”’ on the next line and waits for the load address to be
specified.

— Enter the load address in a 4-digit hexadecimal number.

—Finally, the system displays message ‘‘Execute?’’ and waits for the execution address to be specified.

— Enter the execution address in the the same manner.

—After the four addresses have been specified, the specified memory block is output.

— In the figure below, the block starting at A000 and ending at BBFF is output with file name SAM-
PLE, load address A0OO and execution address A100.

Symbolic dubugger
‘ Output file
A0 1 Object program in S command | Object file “SAMPLE"
immediately executable | with symbol table
form Loading address: A000
BBFF Execution address: A100
E000 Symbol table

87

Y (Yank) command

The Y command reads the object file specified with the file name into the link area.

=Y Clears the link area and reads the object file SAMPLE into the
Filename?SAMPLE link area.

—Enter a Y command while in the command wait state (*).

— The system displays the message ‘‘Filename?’’ and waits for the file name to be specified.

—Specify the file name and press [CR]; the system searches for the specified file and displays the star-
ting address, ending address and execution address specified when the file was saved with a S com-
mand. When the file to be read is the first file on the cassette tape, the file name may be omitted.

—The systm then prompts for the loading address with the message “From?”’. When a 4-digit hex-
adecimal number is entered in response to the message, the object file is read into the link area star-
ting at the address specified. The load address specified when the object file was saved is ignore
When [CR] is pressed without specifying the loading address, the object file is read into the link ar

starting at the load address specified when it was saved with a S command.

Object file output
by symbolic debugger

File generated
by the linker

AN

Symbolic debugger

“

AN

Ny

Y command

Object program

88

symbol table

V (Verify) command

This command verifies the contents of the specified block in the link area with the specified object
file. This command is effective only with the cassette tape.

*V [CR! Verifies the contents of the link area with object file SAMPLE.
Filename?SAMPLE |

—Enter a ¥V command while in the command wait state (*).

—The system displays message ‘‘Filename?’’ and prompts for the object file name to be verified.

— Specify the file name and press [CR | ; the system searches for the object file and displays its starting
address, ending address and execution address specified when the object file was saved with an S
command.

After displaying those addresses, the system then displays the message ‘‘From?’’ and waits for the
programmer to specify the address in the link area at which verifcation is to be started.

—Enter the address in a 4-digit hexadecimal number. When - CR! is pressed without entering the ad-
dress, the same address as the starting address specified when the file was saved with the S command
is assumed.

— When the starting address for verification is specified, the symtem starts comparing the contents of
the link area and object file. If the contentes of the link area and object file match, the symbolic
debugger returns to the command wait state.

—To terminate verification, press [SHIFT! + [BREAK] .

—The photograph at right shows the operation

which saved the contents of the link area under E}’Afa;m? SAMPLE
file name SAMPLE with an S command and Found 08 to NGEF execute AB10

then verified the file with the contents of the link \'/gg':p#‘gino "SAMPLE"
area with a V command. After the V command
was executed, the symbolic debugger has return-
ed to the command wait state. This indicates that
the contents of the link area were saved without

€rrors.

Symbolic debugger

Output file

3000) Object program in V. command

immediately executable -—— .

form Object file*'SAMPLE”’
4BFF with symbol table
E000 Symbol table

89

I (Inport) command
The I command displays the value at the specified input port.

*1 80 Displays the value at input port 80. ; o]

—Key in I while in the command wait state (*).

— The system displays the cursor with a space between the letter I and the cursor and waits for the input
port number to be entered.

-—Specify the input port number with a 2-digit hex-
adecimal number; then the value at the specified
input port is displayed on the next line both in a
8-digit binary number and in a 2-digit hex-
adecimal number.

O (Outport) command

Outputs the specified data to the specified output port.

*0 81 Outputs 01001001 to output port 81.
Data?01001001

—Key in O while in the command wait state (*).

—The system displays the cursor with a space between the cursur and the letter O to prompt for the out-
put port number.

—Specify the output port number with a 2-djgit hexadecimal number.

— When the port number is specified, the system
displays message ‘‘Data?’’ on the next line and 39.8%01000108
waits for the data to be entered. The data can be patares
specified with either a 2-digit hexadecimal
number or an 8-digit binary number.

(sharp mark) command

* # [CR Switches the list mode for printout on the printer.

—Enter a # command while in the command wait state (*).

— The symbolic debugger then switches the list mode. When the symbolic bugger is invoked, the printer
list mode is set to the disable mode
The mode alternates between enable and disable each time a command is entered. In the enable
mode, all output is directed to both the screen and the printer {(except with the M command).

! (exclamation mark) command

*! Transfers control to the monitor.

Enter an ! command while in the command wait state (*).
— The system displays the following message:

*“M)onitor B)oot C)ancel?”’
Enter M to transfer control to the monitor.
Enter B to transfer control to the IPL program.
Enter C to cancel the # command and return the symbolic debugger to the command wait state.

— There are three methods of returning from the nomitor to the symbolic debugger:
Jump to address 5600 (4000): The link area is cleared. (cold start)
Jump to address 5603 (4003): The link area is not cleared. (warm start)
Monitor command R: Same as the warm start above.

Note: Addresses in the parentheses must be used in the MZ-700 mode.

91

3.6 ERROR MESSAGES

The monitor and symbolic debugger detect errors and display error messages. The error messages

displayed by the monitor and symbbolic debugger are listed in the table below.

3.6.1 Monitor error messages

Error message

Meaning

System id

The type of the system disk is wrong. !

File not found

The specified file was not found.

Hardware

An error occurred in the device's hardware. .

Already exist

A file with the same name already exists. ;

Already open

The file is already opened.

Not open

An attempt was made to referece a file not yet opened.

Write protect

The file or device is write-protected.

Not ready

The disk drive is not ready.

Too many files

The number of files exceeds 32.

No file space

The disk space is insufficient to store the file.

Unformat

The disk is not formatted (initialized).

Dev. name

The device name is wrong.

Can’t execute

An attempt was made to make the device perform impossible operation.

Ilegal filename

The format of the entered file name is incorrect.

Mlegal filemode

The file mode is wrong.

Ilegal data

The data read is erroneous or comparison with the V command resulted in
mismatch. .

S VUV

LPT: not ready

The printer is not connected.

Check sum

A check sum error occurred. (Casstte tape read error)

92

"

3.6.2 Symbolic debugger error messages

Error message A] Meaning

Relevant commands

Error

|

| Invalid

—_—

S

-

o

]

O

il

O

An attempt was made to access a location outside the | B, W, X, S, V. D
I

link area

An attempt was made to set the symbol table outside the

link arca

An incorrect number of digits was specified or a digit | M. A, C, P
|

other than a hexadecimal digit was entered during execu- |

tion of a register (or memory) change command.

An attempt was made to set a breakpoint at a RST7 in-

struction.

A RST7 instruction cannot be traced.

An attemp was made to set more than 9 breakpoints.
Too many label symbols are defined and all symbols can-

not be stored in the symbol table.

The format of the entered command is incorrect.

F.2,X,S,V,1LO

An invalid symbol (undefined label svmbol or nonlabel
symbol) was specified.

An attempt was made to clear a breakpoint which was
not set.

An attempt was made to set a break count to greater than
4 (E in hexadecimal) times.

The format of the specified address is incorrect (not a
4-digit hexadecimal number).

B,W,D FT,?

M, D,G,F, T,?

. Bad command

© The starting address is not smaller than or equal to the | M, D, W, F, ?
ending address.

o The source and destination block are same. X

(o]

The format of the file control command entered is incor-
rect.

Backslash (\) preceded
command

93

