Personal Computer

SYSTEM PR.GRAM
MANUAL

| (EDITOR/ASSEMBLER) b SR
SYMBOLIC DEBUGGER | .

- © SHARP CORPORATION mr@f

Py

nal Computer

Ill/-&é}@@

SYSTEM PROGRAM
MANUAL

EDITOR/ASSEMBLER)
SYMBOLIC DEBUGGER

NOTICE

This manual is based on the system program (MZ-5Z011 and MZ-1Z018) for the
MZ-800/700 personal computers. It descirbes the MZ-800’s editor-assembler
(5Z-011A, 1Z-018A) and symbolic debugger (5Z-011B, 1Z-018B) and the MZ-700’s
editor-assembler (5Z-011C, 1Z-018C) and symbolic debugger (5Z-011D, 1Z-018D).

(1) The system program for the MZ-800/700 is provided and distributed in files in
software packs (cassete tapes or disks).
The system program and the contents of this manual are subject to revision
without prior notice. Therefore, you are requested to pay special attention to the
file version numbers.

(2) This manual has been carefully prepared and checked for completeness, accuracy
and clarity. However, in the event that you should encounter any errors or am-
biguities, please feel free to contact your local SHARP representative for clarifica-
tion.

(3) The system program for the MZ-800/700 is original product of the SHARP Cor-
poration and all right are reserved. No part of the program and this manual shall
be reproduced without permission of the SHARP Corporation.

PREFACE

This manual describes the system program which assists in preparation of assembly
language programs for the MZ-800/700 personal computer. Computer programming
languages can be classified hierarchically from the lowest level of machine languages to higher
levels according to the degree at which they are associated with the hardware of a CPU (Cen-
tral Processing Unit). For example, the BASIC, assembly language and machine language
which can be used to write programs for MZ-800/700 are ranked as illustrated in the figure
below.

assembly language

language

BASIC, a high level language, allows you to write programs in a notation with which you
are far more familiar than assembly and machine languages. Further, you can execute BASIC
programs without translating them into machine language programs because the BASIC in-
terpreter translates the BASIC statements of programs into machine codes one by one and ex-
ecutes them immediately. However, you cannot control the CPU operation directly with
BASIC as with the machine language and processing speed of BASIC programs is com-
paratively siow.

On the other hand, the machine language allows you to control the CPU operation direct-
ly. Processing speed of machine language programs is fast. However, it is very cumbersome to
write programs in the machine language (binary machine codes).

The assembly language described in this manual provides a improyed method of writing
machine language programs. This manual assumes that the readers are ‘familiar with the con-
tents of the manual provided with the computer. Please refer to it as necessary.

CONTENTS

CHAPTER 1 OUTLINEOF SYSTEMPROGRAM.............coooiieeeeeeeeean, 1
1.1 SYSTEM PROGRAM CONFIGURATIONccoiniiiiiiiiiiiiiiiiiciee e aeaeens 2
1.1.1 Functions Of the teXt €ditOrciuiniiii e er e e enennsn

1.1.2 Functions of the assembler.........c.coiiiiiiiiiiiiii e
1.1.3 Functions of the symbolic debugger
1.1.4 Object program development procedure using system program
1.2 NOTES ON USE OF THE SYSTEMPROGRAM...............cooeniiinnnn
1.2.1 File name and function assignment to function keys
1.2.2 Utilities and monitors
1.2.3 Other NOLES .. ceiiiiiiiit ittt ettt e e e een e en et e eten s e snetasesarnrnanenenennes

T

2.2.2 Character pointer and delimMiter..........cevuiriiniiiieiieiii et eeteeararaenrrenenearaennens 13
2.2.3 TexXt editOr COMMANAS ... eueuirnineninetiieeiarerteeaanenraeenenererneneaeenensserernsnrnenenenssesasnenns 15
\ DEFAULT COMMANGioiiuiinienieniuetneieeniiarieetaeneruerarneeasnraeenasnasensneennes 15
\ DIR command...............
\ DIR/P command
N\ INIT COMMANA ..o.euiiiiiiiiiiii i ettt et e e e re e e ern s eaeaeaiaeensas
\ MODE cOmMMANdccuivniiiiiiiiiiiiiiiiiiiiiiiiirerieeaasenerneenennensenenaenennains ‘
\ RUN COMMANG ..eeniniiiiiiienieieiieiireiiieeteeieeietaetneesesnsieensasssesneressnsnesnsennres
\ DELETE cOMMANdccceiuiiuiireiirneinerireneierierasannnnennns
\ RENAME commandccceeeuiimieiiiimiienieieteeeneernraneenenns
\ LOADALL command
\ SAVEALL command
R (Read file) commandccoouuiiiiiniiiiiiiriiininieenrenrerrensroreseerensnesessasennens 1
A (Append file) commandcooiiiiiiiiiiiieriiieie et s e anaes lb
W (Write) command
V (Verify) command
T (Type) cOmMMANdcoiiniiiiiiiiiiiiiiiiii e e enaenanas
B (Begin) command
Z COMIMNANG ...euiniiiiiniieerearrieteanetaettetensaeaienseenanaenananeensasesmarsrntastosossraninne
J (Jump) command
L (Line) commAand......cccoiininiieiiiiieriieeiintnrcienriencessessncnsessensossasesesnsasssssasnres
M (Move) command
C (Change) command...
Q (Queue) comMMANAivuiiniiiiiiiie et cacttetieras e rereinreeassa et s ebaerees

I (Insert) commandcccooemiiniiiiiiiiiiis oo .26
K (Kill) command

X (TRANSfer) command
(sharp mark) command
! (exclamation mark) command

2.3 ASSEMBLERooooiiiiiiiiiiiii e

ENT(ENTrIy) oo,
EQU (EQUate)
ORG (ORiGin)

DEFM’S’, DEFM”’S"’ (DEFine Message)
DEFSnn’ (DEFINE StOTage)covuveiurieieeieieieeeoeeeeeoe e
LIST, UNLIST ettt

2.4 ERRORMESSAGEScooiiiiiiiiiiiiietiti et 54

2.4.1 MORILOT €TOT MESSAES.cueenrreereeueeeseeiaeeeseneseeeeeee e e eeees oo 54

2.4.2 Text editor EITOT MESSAZESc.vevuererriiutieeieeeeeeeeeeeeeneeeeeee e e s 54

’ 2.4.3 Assembler €ITOr MESSARESveuerveeerenietreteereeeeeeeeeeeeseeeeseees oo 55
CHAPTER 3 SYMBOLICDEBUGGERcccooooovvmmi 57

3.1 OUTLINE OF THE SYMBOLIC DEBUGGERc.ocovvoemiomeennase o S8

3.2 BREAKPOINTS ..ottt e 60

3.3 SYMBOL TABLEoooiii it 61

3.4 LINKERBIAS AND ADDRESSESc.oooiiiiiiiioieisieeeeeeeeeooeooo 62

3.5 SYMBOLICDEBUGGER COMMANDSccooiimmimiinmeaeeeeaeeeesoeeooooo 66

L (relocatable Load) command
N (Next file) COmMmAanA.cocceeirvmmuiiiiieieee e .67
H (Height) command............coccovuiememrieiiniiceiieeee oo 67

= (table dump) commandc.ocieiiiiiiiiiiinieieire e iaaas .
* (clear bias and table) cOMMANdcoiiiiiviiiieiiie e aas 68
B (Breakpoint) COMMANdccuviniiiiiiiiiiiiiiiiiireenereiee e eeeeenestesne e enenenns
& (clear breakpoint) COMMAN......ciuuiiniiniiiiiiinireieeceeee e eeeieieee e eer e ennaens
T (Trace) COMMANGoueniniiiiiiiiiiii it ce i ea et et e en et e rae s ereseeneaeens

M (Memory dump) command
D (Disassemble) COMMAandoooiiiiiniiiiii e :
W (data Write) COMMANAoiiitiiieeitit ettt e n e eneeneaenan 76
G (Goto) command.........

7 (search) command
F (Fill memory) commandcoouiiiiiiiiiiiiie e e et eaeaeeeraennes
A (Accumulator) COMMANG........ivuiniiriiriiieie e ee e eae e eneeeneannnens
C (Complementary) COMMANGvuvvirininereeninernererernirerererereetererenereeneneieananss
P (Program counter) command....
R (RegiSter) COMMANAiuiuiniiiiieieeiee ettt eieeetee e s eeseaeaeneneneannen
X (data TRANSSer) Commandc.ouvniuinirinini e r e eeaenenenaan
\ DEFAULT command
\ DIR COMMANA....coiiiiitiiiiiiiiiit it s et e e e i e e et et er et rarteenennranas
N\ DIR/P COMMANuriiniiniiieieiei et e e ee e e e e e eanas
N\ INIT COMMANG ... etiitiiiiiii et e e et e e e et e e et e e e enacnesaeanns
\ MODE COMMANMetiinniiniiieiiieei et ee et e et e ea e e ataaneanas
\ RUN command

\ DELETE COMMANAuiuitiitiiit ettt ete e e eee et ree e ae e vt eaeaerenanaas
\ RENAME COMMANd.....cooimiiiiniiiiiiii et e v e et e aans
\ LOADALL command
N\ SAVEALL cOMMandc.ooouuiiiiiiiiiiiii e
S (S5aVe) COMMANGcuinninitiiit ettt e e e e e et raaneneanens

Y (Yank) COMMANG ...ouinininiitit ittt te e e e et et e te e e e e saeraan
V (Verify) cOMMANAooiniiiiii et et e e e e e e e e
I (INPOrt) COMMANA ..ottt et e et ettt e eee e eea e ren e eareneennees
O (OULPOTL) COMMEANG 1 1autitieeetertee et eaeieteter et et ereietesenensetereeneesraesesesenennnenn
(sharp mark) Commandcooiiiiiiiriiii i eaenas
! (exclamation mark) command

3.6 ERRORMESSAGES ...

3.6.1 Monitor error messages
3.6.2 Symbolic debUgger eITOr MESSAES «.vvverenreninitenieeen e ieenrari e eeneereneeaneenen peerereeas 93

vi

... 96
4.2 DISPLAYING BINARY DATA IN HEXADECIMAL REPRESENTATION ..eovvvveenenn.. 99
4.3 ENTERING HEXADECIMAL DATA ...t ean s 101
4.4 DISPLAYINGAMEMORYBLOCK ... e 104
4.5 WRITINGDATAINTOAMEMORY AREA ... 107
APPENAICES ..., 111
1. MONITOR SUBROUTINES ...ttt e e et
MZ-800 monitor subroutines
MZ-800 MOMItOT CAlleuuiii it e
Examples of use of monitor calls............oiiiiiiiiiiii e 123
2. MAKING BACKUP COPY OF THE MZ-800 SYSTEM PROGRAM..............oooviiinini. 12
COPYING MZ-700 SYSTEM PROGRAMoooiiiiiiiiiiii e 128
3. CODE TABLES ... o e 130

vii

CHAPTER 1

OUTLINE OF SYSTEM
PROGRAM

»mm»w»w»»ww»»»&

&
&
&
&
]
2
&
&
&
S
&
&
&
.3
&
,.:':.

%
|
|

1.1 SYSTEM PROGRAM CONFIGURATION

This system program consists of an editor-assembler and a symbolic debugger. The editor-assembler
and symbolic debugger execute a job at each stage of the assembly process, respectively.

Editor-assembler

" Text editor (for 1 T e T 7
- Assembler ' Relocatable
! editing source :' : (for assembly) | fie
L_programs) ___ R A AN
AN
~ E
AN e A
| Symbolic debugger |+ | Object .
(for debugging) program

Fig. 1-1 OQutline of the assembly process

Figure 1-1 shows the assembly process, which consists of creating source programs, assembling them,
relocating and linking the assembly output, and debugging them.

One cycle of the phases in the above figure makes up a program creation stage. The programmer
prepares a source program with the text editor and creates a source file, then inputs it to the assembler.
The assembler analyzes and interprets the syntax of the source program according to the assembly
language rules, and assembles the source program into relocatable binary code. When the assembler
detects errors, it issues error messages. The programmer then corrects the errors in the source program
with the text editor.

After all assembly errors are corrected, the programmer inputs the relocatable program (the
relocatable binary file) output by the assembler to the symbolic debugger. The symbolic debugger reads
the object program into the link area in an executable form and runs the program. During the debugg-
ing phase, the programmer can set breakpoints in the program to start, interrupt and resume program
execution, and to display and alter register and memory contents for debugging purposes. If program
logic errors and execution inefficiency are detected during the debugging phases, the programme,
reedits the source program using the text editor. .

After creating a complete source program and assembling it by the procedure above, an object pro-
gram can be obtained by loading the program in relocatable form output by the editor-assembler using
the symbolic debugger. When a program is to be made up of two or more program units, those program
units must be loaded by being relocated and then linked each other. An object program can also be ob-
tained directly with the editor-assembler by specifying the assembly option.

1.1.1 Functions of the text editor

The primary functions of the text editor include those used for making insertion, deletion and
change in source programs. The text editor displays the source program on the CRT screen and allows
you to edit it interactively. This makes it possible to perform these tasks with a minimum of effort.

The command format employed for this text editor is compatible with that of the editor program of
the NOVA minicomputer manufactured by the Data General Corporation and perfected over a period
of many years by many users. The figure below shows the general flow of the process to edit a source
program with the text editor.

@ A source program is loaded from a disk or other storage device into the memory.

@ The source program is displayed on the CRT screen and modified by making insertions, deletions
and changes.
@ After all modifications have been made, the source program is written onto a disk or other

storage device again, or assembled by the assembier.

Momitor

Text editor -

source file L]

N CRT screen
Source program

Fig. 1-2 General flow of procedure to edit a Soruce program using text editor

1.1.2 Functions of the assembler

The assembler converts programs written in assembly language into machine language. In other
words, source programs composed of ASCII code which are prepared using the text editor are read and
used to prepare relocatable programs composed of arrays of binary numbers. This process can be broad-
ly divided into four steps, as follows.

(1) Identifying label symbols and storing them in a symbol table.

(2) Identifying mnemonics and generating their object codes.

(3) Preparing assembly lists.

. (4) Preparing relocatable files.

Assembler
. (2) :
START : LtDA, B4—— | ____ N b—— 01111000
P (
[T START Symbol table
Source program Relocatable program

(or object program)

Fig. 1-3 Functions of the assembler

1.1.3 Functions of the symbolic debugger

The symbolic debugger loads a machine language program in relocatable form output by the
assembler into the link area of the memory, converts it into the format in which it can be executed, then

outputs it (object program).

The symbolic debugger links two or more relocatable program units to produce a single object pro-
gram. That is, machine language programs output by the assembler are organized so that they can be
loaded in any memory areas and converted into the form immediately executable in the memory areas in
which they are loaded. When two or more relocatable program units are to be linked, they are loaded in
memory areas which do not overlap each other and reorganized so that they can be executed in those

memory area. This is the relocate function of the symbolic debugger.

In many cases, some of those programs to be linked reference symbols defined in other programs.
When the symbolic debugger links them, it ensures that the external references are made properly. This
is the link function of the symbolic debugger. Fig.1-4 below shows linkage of two programs with the

symbolic debugger.

0A00
R

0000

03F0

SUB : ENT

elocatable program uni

t 1

CALL SUB

Relocatable program unit 2

.
>

12A0

3000

3A00

Monitor

Linker

SUB : ENT Q:

CALL SUBC

|

Main memory

Fig. 1-4 Functions of the linker

The symbolic debugger allows to debug an object program in executable form in the link area by actually ex-

ecuting it.

Debugging is performed using break points. That is, program execution stops at each break point set in the

program to allow the status of the system to be checked. The symbolic debugger also provides the function to set

breakpoints in the prog

ram.

1.1.4 Object program development procedure using system program

Source file
<+———-1 Conversion |«+—— System program for MZ-80K
A
\
Text editor Assembler .
_w|Assembly list
Creation 4
— Assemble -
. Modificationj<— Printer
Editor-assembler - ,// N
W/ Assembly
list
/
o
Relocatable file . // CRT screen
» /
/
/
' Symbotic /
’ Y debugger
L Debug /
/
r/’
/

v /
Object file /
/
14

1.2.1 File name and function assignment to function keys

When you store programs and data on external storage media (disk, cassette tape and so on), you
must assign a file name to them. Files stored on external storage media can be read from the external
storage media and loaded in the memory of the computer using the file names assinged to them when
they were stored.

This system program allows to assign any name made up of up to 16 characters (letters and symbols).
However, if you intend to use other system programs too, use of names made up of only alphabetic and
numeric characters is recommended, because those system programs may not be able to read file names
including symbols.

It is not possible to store two or more files on a single disk under the same name even if their file .
types are different. To assign the same name to two or more different types of files and to store those
files on a single disk, add an extension which indicates the file type after each file name.

Example @ SAMPLE.ASC Source file (ASCII file)
SAMPLE.RB Relocatable file (relocatable binary file)
SAMPLE.OBJ Object file (executable binary file)

Extension indicating file type
A name and extension make up an entere file name.

The functions assigned to the function keys by the editor-assembler and the symbolic debugger are as follows.
The functions assigned to the function keys cannot be changed by the user.

Editor-assembler Symbolic debugger
“\ RUN_” “RUN”
“\DEFAULT_" “DEFAULT_"
“. ASC™ “.ASC™
“ RB” “ RB”
« B8+ (used as delimitor) “DIRL”
[sHiFT] 4 [Fi}|<“FD1:” “FDI1:” ‘
[SHIFT] + [F2]{“FD2: " “FD2:"
[SHIFT] 4 [F3]|“QD:" “QD:”
[SHIFT] + [Fa) [“CMT:” “CMT:”
SHIFT] + [FS]|“ \ DIR” “\DIR/P_"

1.2.2 Utilities and monitors

The following utility programs are included among the programs provided together with the MZ disk
BASIC which support MZ disks.

* DELETE utility
Deletes unneeded files on MZ disks to allow effective use of MZ diks.

¢ QDCOPY utility
Copies an entire contents of a MZ-disk onto another one.

* TRANS utility
Converts the format of files created with the MZ-80K system programs into that in which this system
program can write and read those files to/from MZ disks correctly, and writes them on MZ disks.

(Refer to the manual of the MZ disk BASIC for detailed explanations of the above utility programs.)

The above utility programs can be loaded and executed by the editor assembler or symbolic debugger
too. For example, the TRANS utility program can be started by the following operation.
*\ RUN ”"TRANS”’ [CR] (RUN "TRANS” [CRj for BASIC)
The DELETE and QDCOPY utility programs can also be loaded and executed by the same opera-

tion. After these utility programs are started, operate following the messages displayed on the screen by
the program.

Monitor programs used with the BASIC and this system program are as follows.

Monitor A

!—'MZJOO BASIC 1Z-013A
— Moinitor B

MZ-700 MZ DISK BASIC 5Z-008

MZ-700 DISK BASIC 27-009

MZ-700 Editor-assembler 1Z-018C, s5Z-011C

MZ-700 Symbolic debugger 1Z-018D, 5Z-011D
—— Mounitor C

MZ-800 BASIC 1Z-016

MZ-800 MZ DISK BASIC 5Z-009

MZ-800 DISK BASIC 2Z-046

MZ-800 Editor-assembler 1Z-018A, 5Z-011A

MZ-800 Symbolic debugger 1Z-018B, 5Z-011B
M. tor D

MZ-80K BASIC

MZ-80K Double precision

MZ-80K FDOS

MZ-80K System program

1.2.3 Other notes

* Lowercase letters cannot be typed in while the system program (editor-assembler and symbolic debug-
ger) is in the command wait state and while an assembly language program is entered under the editor-
assembler.

* \LOADALL, \SAVEALL, \ DELETE, and \ RENAME commands among the file control
commands of this system program cannot be used if the optional RAM file (MZ-1R18) is not install-
ed.

* In the MZ-700 mode, RAM file related commands of both the editor-assembler and the symbolic
debugger cannot be used.

