MINC-11

Book 3:
MINC Programming Reference

November 1978

This book provides a reference for all of the MINC BASIC
statements and commands, giving a complete description of
each. Book 2: MINC Pragramming Fundamentals can be used in
conjunction with this book for a more fundamental explanation
of each command or statement.

Order Number AA-D800A-TC
MINC-11

VERSION 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

INTRODUCTION

Forms

form. The table shows, for example, the valid
values for arguments and the default condi-
tions assumed when you omit optional argu-
ments. Below is a sample table.

ABS(expression)

Component

ABS
expression

Component Type

function name/real
numeric expression

Default Condition

required component
required component

Component Value

0to1.7x 1038
any value

Instructions

Restrictions

Errors

This table is the table presented with the
ABS (absolute value) function. The compo-
nents of the forms are presented left to right
in the form and top to bottom in the table.
ABS is the first component.

The component type is usually “string” or
“numeric”. Sometimes, as in the case of ABS,
the component type is more. ABS is a func-
tion name; thus, the component type is “func-
tion name”. However, the ABS function
name also takes on a value that is equal to
the absolute value of the argument. Thus, the
component type is also a “real value”. There-
fore, the component type is “function name/
real”, which shows that ABS is a function
name that takes on a real value.

The component value shows the possible
values of the component. In the case of ABS,
the values are real numbers in the range 0 to
1.7X10%. In other cases a component value
might be SYO0: or SY1..

The default condition tells whether the com-
ponent is required and, if not, what happens
if the component is omitted.

The instructions explain the arguments and
default conditions in more detail.

The restrictions include discussions of when
not to use the command, particular problem
situations, and possible solutions to some
common problems.

The error messages that can appear in using
the command or statement are listed. When-
ever possible, the section explains the condi-
tion causing the message.

CONTENTS

INTRODUCTION 1

HOW TO USE THE MANUAL 1
REFERENCES 5
INDEX 225

FIGURES

Figure 1. Chained Segments. 27
2. How COMMON Is Stored in the Workspace. 43
8. Overlays and the Workspace. 148

iii

Book 3: MINC Programming Reference describes the MINC sys-
tem commands, program statements and functions, and the
MINC keypad editor.

The prerequisite reading for this book is Book 2: MINC Pro-
gramming Fundamentals. Book 2 is a tutorial presentation of
the material covered in this book. If you are a novice program-
mer, use Book 2 to learn the fundamentals of MINC program-
ming and terminology. Use this book when you want informa-
tion organized for reference use or further technical informa-
tion not present in Book 2.

All material in this book appears in alphabetical order. The
topics presented range from commands and statement key-
words to conceptual topics. All sections use the same organiza-
tional structure for the information.

Purpose The statement of purpose explains how a
command or statement operates or why a
conceptual topic is important.

Forms The form shows the complete syntactic form
for commands and statements. The compo-
nents of the form that are required for MINC
to complete the operation are printed in
black. The components that are optional and
can be omitted are printed in blue. Follow-
ing the form statement is a table summariz-
ing the meanings of the components of the

INTRODUCTION

HOW TO USE THE
MANUAL

INTRODUCTION

Forms

form. The table shows, for example, the valid
values for arguments and the default condi-
tions assumed when you omit optional argu-
ments. Below is a sample table.

ABS(expression)

Component

Component Type Component Value Default Condition

ABS function name/real 0to 1.7 x 1038
expression numeric expression any value

required component
required component

Instructions

Restrictions

Errors

This table is the table presented with the
ABS (absolute value) function. The compo-
nents of the forms are presented left to right
in the form and top to bottom in the table.
ABS is the first component.

The component type is usually “string” or
“numeric”. Sometimes, as in the case of ABS,
the component type is more. ABS is a func-
tion name; thus, the component type is “func-
tion name”. However, the ABS function
name also takes on a value that is equal to
the absolute value of the argument. Thus, the
component type is also a “real value”. There-
fore, the component type is “function name/
real”, which shows that ABS is a function
name that takes on a real value.

The component value shows the possible
values of the component. In the case of ABS,
the values are real numbers in the range 0 to
1.7X10%. In other cases a component value
might be SYO0: or SY1:.

The default condition tells whether the com-
ponent is required and, if not, what happens
if the component is omitted.

The instructions explain the arguments and
default conditions in more detail.

The restrictions include discussions of when
not to use the command, particular problem
situations, and possible solutions to some
common problems.

The error messages that can appear in using
the command or statement are listed. When-
ever possible, the section explains the condi-
tion causing the message.

Related

References

Examples

Note that the following error message rarely
appears under Errors.

"MINC-F-Syntax error; cannot translate the
statement

This message has not been included because
it always occurs if you mistype a command.
The errors listed under each section do not
include typographical errors.

Subjects related to the topic of the section are
listed. Whenever possible, this section dis-
cusses the nature of the relation between the
topics.

This section lists references to other books in
the MINC document set and, where rele-
vant, to other published sources.

The examples for each topic range from
single-line examples showing the behavior
of statements and functions to short pro-
gram fragments. In some cases, the example
refers to a major program example for the
topic in Book 2.

INTRODUCTION

REFERENCES

The ABORT system function results in halting program execu-
tion. ABORT has two different effects, depending on the value of
its argument. In one case, ABORT has an effect similar to a
STOP statement. In the other case, ABORT has an effect similar
to a STOP statement followed by a SCR command.

variable=ABORT(code)

Component Component Type Component Value Default Condition

variable numeric variable unknown required component
= none none required component
ABORT function name/none none required component
code numeric expression 0,1 required component

Use ABORT to stop program execution.

If the value of the code argument is 0, ABORT has the same ef-
fect as STOP but does not print a message as STOP does. If the
value of the code argument is 1, ABORT has the same effect as
STOP (without the stop message) followed by a SCR command.

The value of the variable is unknown after the function has been
executed. You do not need to use the variable, it is only part of the
syntactic form of the function.

None.
No error messages apply to this system function.

SCR The SCR command erases the workspace and names it
NONAME.

STOP The STOP statement stops program execution, prints a
message showing the statement number of the STOP statement,
and preserves the workspace.

None.

None.

ABORT

Purpose

Forms

Instructions

Restrictions
Errors

Related

References

Examples

ABS

Purpose

Forms

Instructions
Restrictions
Errors

Related

References

Examples

The ABS function takes on the absolute value of its argument.

ABS(expression)

Component Component Type Component Value Default Condition
ABS function name/real 0to 1.7 x 1038 required component
expression numeric expression any value required component

Use ABS to obtain the unsigned magnitude of any expression.
None
No error messages apply to this function.
SGN takes on a value corresponding to the sign of its argu-
ment. The following identity expresses the relationship between
SGN and ABS:

expression = SGN(expression)* ABS(expression)

Book 2, Chapter 8. -

Example PRINT ABS(-3)
Result 3

Example A=ABS(29)
Result A takes the value 29.

The APPEND command combines a program stored on a disk-
ette file with the program already in the workspace. By using
APPEND, you can combine separate programs into a single
program in the workspace. '

When the stored program is merged with the workspace pro-
gram, the statement numbers determine the position of the
merged statements. For duplicate statement numbers,
APPEND erases the workspace version of the statement and in-
serts the statement from the stored file. All other statements are
inserted directly according to the statement number.

APPEND filespec

Component Component Type Component Value Default Condition
APPEND command none required component
filespec characters dev:name.typ prompts for filespec

Use the APPEND command whenever MINC displays
READY. When you complete one of the two forms, MINC
merges the file you specify and the program currently in your
workspace, statement number by statement number. When the
new file has a statement number that is the same as one in mem-
ory, MINC erases the current statement and replaces it with the
new one. If you want to save the result of appending files, use
SAVE or REPLACE commands.

If you do not have a program in your workspace when you use
APPEND, MINC simply gets the file you specify.

When you default the filespec argument, MINC uses the follow-
ing prompt to ask for the name of the file.

OLD FILE NAME—

When you are designing separate programs to be merged,
choose the ranges of statement numbers carefully. For example,
you might use the same statement numbers for all COMMON
and DATA statements so that APPEND replaces all but the
most recently merged descriptions.

APPEND

Purpose

Forms

Instructions

APPEND

Restrictions

Errors

Related

References

Examples

10

If you are designing a set of small programs to merge as a single
program for execution, assign a block of statement numbers to
each program. Then the merged program will be correct re-
gardless of the order in which you execute the APPEND com-
mands.

None.

?MINC-F-Invalid file name

You mistyped the input file name.

?MINC-F-Specified or default volume does not have file named

The file specified in the APPEND command is not on the vol-
ume.

?MINC-F-Program too large; workspace overfills
The workspace is too full for the input file.

?MINC-F-Syntax error; cannot translate the statement

The input file specified by the APPEND command is not a
BASIC program.

You mistyped the APPEND command.

OVERLAY -
CHAIN

Book 2, Chapter 14.

See Book 2, Chapter 14.

MINC provides all the standard arithmetic capabilities re-
quired. You can raise a value to a power, multiply, divide, add,
and subtract by typing appropriate expressions in either imme-
diate statements or program statements. In addition to those 5
standard operations, MINC has 18 built-in arithmetic functions
that perform more complex arithmetic calculations. Calculat-
ing sines, finding pseudo-random numbers, using logarithms,
and converting strings to numerical values are some of the
available arithmetic functions.

A numeric expression is an expression which yields a single nu-
meric value when evaluated. Numeric literals, numeric varia-
bles, functions, and any of these combined with arithmetic oper-
ators are all numeric expressions. All of the following are nu-
meric expressions:

2

T%

PI

(A"5*(B+5.6)/C))

The following table shows the arithmetic operators and the or-
der in which they are applied (their priority in an operator ex-
pression).

Operation Priority

0 highest

" (exponentiation)

*or / (multiplication and division)

+ or - lowest (addition and subtraction)

Remember the operator priority MINC follows in evaluating
numeric expressions and, if necessary, use pairs of parentheses
to override the order.

MINC processes the deepest level of parentheses in an expres-
sion first; within each set of parentheses, MINC does all ex-
ponentiation first, then each multiplication and division from
left to right, and finally each addition and subtraection from left
to right.

Arithmetic

Purpose

Forms

Instructions

11

Arithmetic

Restrictions

Errors

Related

References

Examples

12

Using parentheses to change the order of evaluation of elements
in an expression results inslower evaluation of the expression. If
computation speed is important, avoid unnecessary parenthe-
ses.

Repeating the same complicated expression slows execution and
uses more memory than necessary. When a program uses there-
sult of a complicated expression in more than one statement,
calculate the result first, storeitina variable, and use the varia-
ble in later statements.

?MINC-F-Syntax error; cannot translate the statement
Mismatched parentheses or a typographical error.
2MINC-W-Value of integer expression not in range -32,768 to+32,767
?MINC-W-Value of real expression is too small

?MINC-W-Value of real expression is too large

A numeric expression produced a result that MINC cannot
store, such as an integer with a value greater than +32,767. No-
tice that these messages are all warnings (-W-) and not fatal er-
rors. MINC uses the value 0 for each expression that produces
one of these messages. Thus, your results are probably wrong
whenever you get one of these warning messages, even though
your program did not stop running.

?MINC-W-Dividing by zero

An expression resulted in a division by zero. The expression is
assigned the value O (instead of the mathematically correct
value, infinity, which cannot be represented).

Numeric Precision

Routines
See also mixed mode arithmetic in Book 2, Chapter 8.

Book 2, Chapters 2 and 8.

Book 2, Chapters 2 and 8.

An array is a collection of data stored in the workspace that
shares a general name. By using arrays, you can keep track of
large amounts of data more easily than by using a large number
of separate variables. For example, in MINC areal array resem-
bles a table of real values such as a column of test scores or a
multicolumn page of mantissas.

You can use arrays with one dimension or two in your MINC sys-
tem. An array with one dimension resembles a single column of
data; you refer to the different data items by their row numbers.
An array with two dimensions resembles a multicolumn table;
you refer to the different data items by their row and column in-
dexes.

A virtual array file is like an array, but MINC stores it on a stor-
age volume. A virtual array file can be much larger than the
largest workspace array a program can process because MINC
keeps only a small part of a virtual array file in the workspace at
one time. A virtual array file can be as large as the capacity of
the volume. However, MINC processes virtual array files more
slowly than workspace arrays.

Almost all arrays require description in a DIM statement.
Small arrays with up to 11 rows or 11 columns normally do not
require a DIM statement. However, if different programs in a
chain are to share a small array, it must be described in a
COMMON statement.

array-name(index)

array-name(row-index,column-index)

Component Component Type Component Value Default Condition

array-name string or numeric variable name required component

row-index numeric literal 1 to size required component
of workspace

column-index numeric literal 1 to size required component

of workspace

The rules for naming arrays and variables are the same. The
name consists of a single letter followed if necessary by a data
type designator, % or $ for integer and string arrays respec-
tively. The subscripts for an array are not part of its name but

Arrays

Purpose

Forms

Instructions

13

Arrays

Restrictions

14

designate how much workspace is allocated to the array. There-
fore, you cannot have a one-dimensional array and a two-
dimensional array with the same name.

Arrays and variables are separated in the workspace. There-
fore, you can have a variable and an array (either one- or two-
dimensional) with the same name. For example, X% and X%(50)
are distinct. X% names an integer variable; X%(50) refers to an
element in the array named X%. The presence of parentheses
(and array indexes) distinguishes variable names from array
names.

The following statement describes an array of integers named
A.

DIM A(12,8)

The array A has two dimensions, and the DIM statement de-
scribes it as having 13 rows (numbered 0 - 12) and 9 columns
(numbered 0 - 8). Thus, array A contains 117 separate elements.
Each element contains a single value (in the case of array A, a
real value). For example, A(6,6) is one of the elements in array
A.

If you refer to an array element without describing the array in
a DIM statement, MINC reserves workspace for an array with
11 rows (numbered 0- 10) and 11 columns (also numbered 0 - 10).
MINC does not reserve workspace for any array until it executes
a DIM statement or another statement that uses an element of
the array. Therefore, when you suspect that your workspace
may be too small for both your program and the arrays you re-
quire, describe the arrays explicitly in DIM statements first, use
the RUN command to force MINC to reserve space for them,
and then continue entering your program statements.

You cannot refer to an element of a virtual array file without
describing the file in DIM # and OPEN statements.

For most MINC operations, you refer to array elements rather
than to whole arrays. That is, there are no matrix operations in
MINC. Some of the MINC data transfer and graphic routines do
use whole arrays as arguments.

If an overly large array exceeds the workspace capacity, you can
use the CLEAR command to erase all the workspace allocations.

Arrays

Then modify the DIM statement for the array, use the RUN com-
mand to reallocate the workspace and the LENGTH command
to check the results of the change.

The lowest-numbered array index is 0. Some people who have
programmed in languages where the lowest index is 1 have dif-
ficulty remembering to use element 0. You can ignore row 0 and
column 0, even though space for them is allocated in the work-
space. It is possible to use row 0 and column 0 to store summary
information (such as counts or means) about the associated rows
and columns. However, using row 0 and column 0 for this pur-
pose increases the chance of undetected errors in index calcula-
tions.

?MINC-F-Array subscript is negative or too large at line XX Errors

A subscript in an array reference has exceeded the bounds of the
array. This can happen if you have reversed the order of the sub-
scripts, the subscript is negative, or the subseript has been in-
correctly calculated in a loop.

?MINC-F-Array overfills workspace at line XX

The dimension of an array is too large for the array to be held in
the workspace.

CLOSE Related
DIM

INPUT

LINPUT

EXTRA_SPACE

NORMAL_SPACE

OPEN
Book 2, Chapter 7. References
None included. Examples

15

ASC

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

16

The ASC function takes on the value of the numeric ASCII code
corresponding to its single-character argument.

ASC(character)

Component Component Type Component Value Default Condition
ASC function name/numeric 0 to 127 required component
character string expression any character required component

Use ASC to determine the ASCII numeric code for any charac-

ter. The character argument for ASC can be one of the ASCII
control characters.

The string expression must be exactly one character long.

?MINC-F-Arguments in definition do not match function called

You gave a non-string expression for the argument, or the string
contained more than one character.

CHR$ CHRS$ converts anumeric ASCII code to its correspond-
ing character value. ASC and CHR$ reverse each other’s effects.
The following identity expresses the relationship:

code = ASC(CHR$(code))

VAL The VAL and STR$ functions are not related to ASC. VAL
converts a character string to the numeric value corresponding
to the string. STR$ converts a numeric value to its correspond-
ing character string representation.

Book 2, Chapter 8.
Book 2 appendix, ASCII Character Set.

Book 2, lower-to-upper-case conversion example (Chapter 8).
Example PRINT ASC(‘W’)

Result 87
Example Enter the CTRL/G combination:
PRINT ASC(‘*®’)

Result 7

Assignment Statement

An assignment statement is one of several methods of assigning
a value to a variable. With an assignment statement, the pres-
ence of an equals sign (=) transfers the value of the expression on
the right of the equals sign to the variable on the left of the equals
sign.

LET variable = expression

Component Component Type Component Value Default Condition

LET statement none assigns value

variable string or numeric any valid name required component
variable name

= none none required component

value string or numeric same type as variable required component
expression

Use an assignment statement when you want to change the
value of a variable from within a program.

The variable component of the assignment statement is under-
stood to be either a simple variable name (like F) or an array ele-
ment name (like F(1,10)).

The data type of the variable and the expression must be com-
patible. It is impossible to assign astring valuetoa numeric var-
iable (and vice versa). It is possible to assign the results of inte-
ger expressions to real variables (and vice versa). The conven-
tions for these assignments appear in Book 2.

?MINC-F-Invalid operation; mixing numbers and strings

You assigned a string value to a numeric variable or a numeric
value to a string variable.

?2MINC-W-Value of integer expression not in range -32768 to +32767
?MINC-W-Value of real expression is too small

?MINC-W-Value of real expression is too large

You assigned values to numeric variables that exceed the limits
of the variables.

Purpose

Forms

Instructions

Restrictions

Errors

17

Assignment Statement

?MINC-F-String is longer than 255 characters

You assigned a string value that has more than 255 characters to
a string variable.

Related With an INPUT or LINPUT statement, the person at the key-
board provides the value for a variable. If you use an INPUT #or
LINPUT # statement, the variable assumes a value from a file.
If you use a READ statement, the variable takes on a value pro-
vided in a DATA statement.

INPUT, INPUT #
LINPUT, LINPUT #

LET
READ and DATA

References Book 2, Chapters 2 and 3.
Examples 10 A=-7

20 B=ABS(A)

30 PRINT A,B

RUNNH

-7 7

READY

18

The ATN function takes on the value of the arc tangent of its
argument.

ATN(expression)

Component Component Type Component Value Default Condition
ATN function name/real -7/2 to /2 radians required component
expression numeric expression real range required component

Use ATN to determine the angle whose tangent is the argument.
The value of ATN is an angle, expressed in radians, in the range
-m/2 to 7/2.

None included.
?MINC-W-Value of real expression is too small at line XX
?MINC-F-Arguments in definition do not match function called at line XX

ATN is one of three trigonometric functions available with
MINC. The other trigonometric functions are SIN and COS.

Book 2, Chapter 2.
Book 3, Numeric Precision.

Example PRINT ATN(32.345)
Result 1.53989

ATN

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

19

BIN

Purpose

Forms

Instructions

Restrictions

Errors

Related
References

Examples

20

The BIN function has the numeric value of a string of 1’s and 0’s
representing a binary value.

BIN(string)
Component Component Type Component Value Default Condition
BIN function name/integer -32,768 to +32,767 required component
string string expression up to 16 I'sand 0’s required component

The only argument to the BIN function is a string of 1’s, 0’s, and
optional spaces that represents a binary number. The BIN func-
tion ignores the spaces, allowing convenient spacing of the dig-
its. The binary number is treated as a 16-bit signed 2’s comple-
ment integer, with decimal values in the range -32,768 to
+32,7617.

Use BIN in the lab module routines to specify digital input and
output masks and digital output values. (See Book 6, “Data
Types and Number Systems.”)

None.

\

?MINC-F-Arguments in definition do not match function called

The argument is not a valid binary number.
OCT
Book 6.

Example PRINT BIN(‘100101001’)
Result 297

Example PRINT BIN(‘1111 11111111 1111’)
Result -1

Example PRINT BIN(1111 1111’

Result 255

Example A=BIN(‘11111111’+1111 11171’
PRINT A

Result -1

MINC processes program statements in order by statement
number. When you have more than one statement on a line,
MINC executes the statements from left to right. MINC also
provides two techniques to override strictly sequential process-
ing of statements, branching, and loops.

Branches can be either unconditional or conditional. Uncondi-
tional branches always cause MINC to transfer control to the
statement number you specify in the statement. For example,
the following statement transfers control to statement 240:

GO TO 240

Conditional branches result in transfer of control only if some
logical condition you define is true. For example, the following
statement transfers control to statement 240 if and only if the
value of X is greater than 3.3 when the statement executes.

IF X > 3.3 THEN GO TO 240

Multiway branches cause MINC to jump to one of several state-
ment numbers in a list. For example, the following statement
transfers control to one of the statements (2000, 3000, 4000, or
5000) depending on the value of P. If the value of P were 3, then
control would transfer to statement 4000.

ON P THEN GO TO 2000,3000,4000,5000

Unconditional branching

The following statements result in unconditional transfer of con-
trol: :

CHAIN filespec LINE stmt#
GO TO stmt#

GOSUB stmt#

NEXT control variable

RETURN

Branching

Purpose

Forms

21

Branching

Instructions

Restrictions

Errors

Related

22

Conditional branching

IF logical-expression THEN statement

IF logical-expression GO TO stmt#

Multiway branching

ON numeric-expression GO TO ordered-stmt#-list

ON numeric-expression GOSUB ordered-stmt#-list

Specific instructions for using the unconditional, conditional,
and multiway branching statements appear in the relevant sec-
tions of this book.

The following general instructions are offered as guidelines for
good programming practices using branching.

e Duplicate short sets of statements where your pro-
gram requires them rather than using GO TO
branches.

e When your program repeats a complicated calcula-
tion, consider defining a function to replace the calcu-
lation (see DEF).

e When your program repeats a set of statements, con-
sider treating them as a subroutine.

® Include aninformative REM statementto describe the
purpose of any program branching and the conditions
under which it occurs. This investment makes a pro-
gram readable and is repaid during debugging and
modification.

Restrictions about each of the branching statements appear in
the separate sections for them.

The section for each branching statement includes a list of the
most common errors occurring with that statement.

FOR
NEXT
CALL
CHAIN

GO TO
ON

IF
GOSUB
RETURN

Book 2, Chapters 5, 6, and 7.

Kernighan, B. W. and Plauger, P. J., The Elements of Program-
ming Style. New York: McGraw-Hill, 1974.

See each of the individual sections for examples that apply.

Branching

References

Examples

23

BYE

Purpose

Forms

Instructions

Restrictions

Errors

Related

24

You should use the BYE command immediately after you
change the diskette in SY1:. MINC has methods that save time
whenever you are performing an operation that uses a diskette.
However, if you change the diskette in SY1: without typing the
BYE command, these optimizing methods might destroy the
files on the newly inserted diskette. Your files will not be de-
stroyed if you type BYE.

The BYE command scratches the workspace just as an SCR
command does. The BYE command takes longer than the SCR
command, however.

BYE
Component Component Type Component Value Default Condition
BYE command none required component

Always use the BYE command immediately after changing the
diskette in SY1:. Note that the BYE command erases the work-
space.

/

Note that whenever you change the system diskette in SYO0:, you
must execute the RESTART command. See RESTART.

Note that you should not use the SCR command when you
change the diskette in SY1:.. Although the BYE command
scratches the workspace, the SCR command does not do every-
thing that the BYE command does.

There are no error messages associated with this command.

RESTART
Start Procedures
SCR

BYE

None. References

Example BYE Examples

Result MINC pauses for a little while and then
displays the following message:

MINC V1.0

Please enter

Today’s date:

25

Calendar Operations

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

26

You set the MINC system clock and calendar with the TIME and
DATE commands. As part of the system start procedure, MINC
prompts you to enter the date and time.

DATE dd-mmm-yy
TIME hh:mm:ss
PRINT DAT$

PRINT CLK$
string-variable=DAT$
string-variable=CLK$

Use the DATE and TIME commands to set the date and time.
Use the DAT$ and CLKS$ functions in immediate or program
statements to check the date and time. The sections DATE,
TIME, DATS$, and CLK$ have detailed instructions.

For advanced applications, you might be able to use the
SCHEDULE, START_TIME, or GET_TIME lab module rou-
tines. For example, the GET_TIME routine is more accurate
than the CLK$ fu@tion for measuring time intervals.

None included.

See each of the individual calendar commands and functions for
the errors.

DATE command
TIME command
DATS$
TIM$

Book 2, Chapter 8.
Book 6.

READY
DATE 24-Aug-78

PRINT DAT$
24-AUG-78

READY

The CHAIN statement automatically connects a series of sepa-
rate programs or program parts, forming a program chain. In
each element of the chain, the CHAIN statement is the last state-
ment executed.

The CHAIN statement closes all open files and replaces the pro-
gram in the workspace with a program from a stored program
file. It clears and reallocates the workspace, except for variables
and arrays protected by COMMON statements. Finally, it be-
gins executing the element of the chain now in the workspace,
starting with either the first statement or the statement speci-
fied in the CHAIN statement.

Chaining is the simplest way to prepare separate programs for
parts of a complex task and run them without exhausting
MINC’s workspace.

BEFORE AFTER
SEGMENTATION SEGMENTATION
T
SEGMENT SEGMENT
1 1
SEGMENT SEG"gENT WORKSPACE
- — — 2 REQUIRED
CHAIN TR
WORKSPACE SEGMENTATION
SEGMENT REQUIRED | ynuseo | | unuse |
2 BEFORE CHAIN
SEGMENTATION L e — (IR |
I
SEGMENT
3
X

MR-1700

Figure 1. Chained Segments

CHAIN filespec LINE stmt#

Component Component Type Component Value Default Condition
CHAIN statement none required component
filespec characters dev:name.typ dev: SYO:
name NONAME
typ .BAS
LINE none none starts at first
statement
stmt# numeric expression 1 to 32,767 paired with LINE

CHAIN

Purpose

Forms

27

CHAIN

Instructions

Restrictions

Errors

Related

28

Identify the intermediate values you want each program in the
chain to share, and assign variables and arrays for them in
COMMON statements to ensure their values are carried from
one chained program to the next.

MINC closes all open files when it executes a CHAIN statement.
Be sure that each chain element using a sequential or virtual ar-
ray file contains the necessary OPEN statements for those files.

If you resequence a chain segment, remember to check the
LINE argument of the corresponding CHAIN statement.

The CHAIN statement is the last statement executed in each
chain element. Although physically there might be statements
following the CHAIN statement, none of those statements would
ever execute (unless control reached them via abranching state-
ment). Use a REM statement to describe each CHAIN state-
ment to make your program easier to understand.

Save each program in the chain under a different name, and
don’t forget to save the first program in the chain.

Compiled program files (BAC files) chain faster than BASIC
source programs (.BAS files).

?MINC-F-Specified or default volume does not have file named
?MINC-F-Program does not have a statement number specified

The line number that you specify in the CHAIN statement does
not exist in the program.

?MINC-F-COMMON variables not in the same order as in last program at line XX

Variables or arrays are not specified in the same order in
COMMON as in the previous segment.

?MINC-F-Program too large; workspace overfills

The workspace is not large enough to hold the program segment
specified by the CHAIN statement.

COMMON The COMMON statements in each element of the
program chain protect variables and arrays from being cleared.

OVERLAY The OVERLAY statement merges a segment in a
stored program file with the program in the workspace.

CHAIN

APPEND The APPEND command merges a stored program
file with the program in the workspace.

Book 2, Chapter 14. References
See the file maintenance example in Book 2, Chapter 14. These Examples
programs are also included on the Demonstration diskette in

files called FILEMT.BAS, FILEM1.BAS, FILEM2.BAS,
FILEM3.BAS, FILEM4.BAS, and FILEM5.BAS.

29

CHRS$

Purpose

Forms

Instructions

Restrictions

30

CHRS takes on the character value corresponding to the nu-
meric ASCII code of its argument.

CHR$(code)

Component Component Type Component Value Default Condition
CHRS$ function name/string any ASCII character required component
code numeric expression -32,768 to +32,767 required component

Use CHRS to convert a numeric ASCII code to its corresponding
character value. CHRS$ is useful for producing the results de-
fined by some of the invisible characters. For example, the line-
feed character is invisible and cannot appear in a normal
PRINT statement. However, you can produce line feeds with a
PRINT statement by specifying the numeric ASCII code for a
line feed character (10) as the argument to CHRS.

Several characters are useful for controlling the appearance of
screen displays:

Code Result

7 Sounds the terminal’s warning tone.

9 Moves to the next horizontal tab stop on the
screen (not related to the TAB statement).

10 Moves cursor down one line to produce a blank
line equivalent to a single PRINT statement.

13 Returns cursor to start of current line.

The character obtained with CHR$ does not always perform the
result defined for that character by the ASCII standard. For ex-
ample, the codes for CTRL/C (3), vertical tab (11), and form feed
(12) have no effect as CHR$ arguments in a PRINT statement.

The numeric ASCII codes shown in the ASCII character table
have values ranging from 0 to 127. For any code value outside

that range, CHR$ effectively subtracts (or, in the case of a nega-
tive code, adds) 128 from the code value until the value is within
the range of ASCII codes.

?MINC-F-Arguments in function do not match function called
The code argument exceeds the valid range, -32,768 to 32,767.

ASC ASC converts a character to its corresponding numeric
ASCII code. ASC and CHR$ reverse each other’s effects. The fol-
lowing identity expresses the relationship:

character = CHR$(ASC(character))

STR$ The STR$ and VAL functions are not related to CHRS.
STR$ converts a numeric value to its corresponding character
string representation. VAL converts a character string to the
numeric value corresponding to the string.

Book 2, Chapter 8.
ASCII character code chart, Book 2.

Lower case to upper case conversion, Book 2.

Example A=CHR$(101)
PRINT A

Result e

Example PRINT CHR$(56)
Result 8

Example PRINT CHR$(7)

Result (terminal warning tone sounds)

Example PRINT CHR$(9);'column heading’

Result ‘ column heading

CHRsS

Errors

Related

References

Examples

31

CLEAR

Purpose The CLEAR command performs a subset of the operations per-
formed by the RUN command.

The CLEAR command has the following effects:
1. Assigns the value 0 to all numeric variables.
2. Assigns the null string to all string variables.

3. Erases all workspace arrays. Any array with a dimen-
sion greater than 10 no longer exists.

4. Abnormally closes all open sequential and virtual ar-
ray file channels.

The CLEAR command does not erase any program statements
stored in the workspace.

Forms CLEAR /
Component Component Type Component Value Default Condition
CLEAR command none required component
Instructions When MINC displays READY, type CLEAR.
Errors There are no error messages for this command.
Restrictions None.
Related OLD
NEW

RUN The RUN command performs the same action as a
CLEAR command before it runs your program.
SCR

References Book 2, Chapter 2.

32

CLEAR

READY Examples

10 DIM A(100)

20 FOR I=1 TO 100
30 A(H=I

40 NEXT |

50 PRINT 'Finished’
RUNNH

Finished

READY

PRINT A(99);A(100)
99 100

READY
CLEAR

READY
PRINT A(99);A(100)

?MINC-F-Array subscript is negative or too large

READY

33

CLKs

Purpose The CLK$ function takes on the value of the current system
time.

Forms CLK$
Component Component Type Component Value Default Condition
CLK$ function name/string hours:minutes:seconds required component

Instructions Use CLKS$ to determine the current system time. The current

system time is maintained in 24-hour format so that 5:00 is five
o’clock in the morning and 17:00 is five o’clock in the evening.
The following table shows the contents of the time string, which
takes the form hh:mm:ss.

Position Contents

hh Hour of the current time; values 0 to 23.
Colon B

mm Minute of the current time; values 0 to 59.
Colon

SS Seconds of the current time; values 0 to 59.

You can use the SEG$ and VAL functions to convert CLK$
values to numeric values for calculating elapsed times over long
time intervals.

Restrictions The CLK$ value is inaccurate because the CLK$ function re-
quires time to execute. The expected inaccuracy is about 15 sec-
onds.

Errors There are no errors associated with this function.

Related GET_TIME The lab module routine GET_TIME is more pre-

cise for measuring elapsed time but requires a clock module.

TIME The TIME command sets the current system time. The
CLKS$ value corresponds to actual time of day only if the proper
34 time of day was set previously.

Book 2, Chapter 8.

Book 6, GET_TIME.

READY
TIME 13:30

READY
PRINT CLK$
13:30:35

READY

CLKs$

References

Examples

35

CLOSE

Purpose

Forms

Instructions

Restrictions

36

MINC provides a total of 12 channels for data input and data
output. MINC assigns them to files on a volume according to
OPEN statements in your program. The CLOSE statement
saves files associated with channels safely (particularly output
files created by your program) and frees the channels for use by
other files.

CLOSE charnei-list

Component Component Type Component Value Default Condition
CLOSE statement none required component
channel-list list of elements see form all open channels
Form of list element:

number-sign character #

channel-number numeric expression 1to 12

Complete the CLOSE statement with one or more channel
numbers to close specific channels. For example, if the value of
A is 15 and the value of B% is 3, the following statements close
channel number 3:

CLOSE #3
CLOSE (A/5)
CLOSE B%

Separate elements in the channel list with commas. MINC ac-
cepts real expressions in a CLOSE statement, but when a chan-
nel number expression has a fractional value, MINC truncates
the fraction. If a channel number expression has a fractional
value, MINC truncates the value. For example, each of the fol-
lowing statements closes channel number 6:

CLOSE #6
CLOSE 20/3
CLOSE 6.1

If a program terminates (either with a STOP statement or ab-
normally) before its CLOSE statement executes, any open files
remain open. The exact state of these open files is unpredictable.
In some cases, the complete file is already stored on the diskette.
In other cases, portions of the output destined for the file are still
in the workspace. If all the file processing is finished when the

program terminates abnormally, you can use a CLOSE state-
ment in the immediate mode to preserve the file.

?MINC-F-Arguments in definition do not match function called at line XX

The channel expression in the CLOSE statement is invalid.

?MINC-F-Need OPEN statement for file channel at line XX

The channel expression specifies a channel not yet opened.

?MINC-F-File channel is not in the range 1 - 12 at line XX

OPEN
RESET
RESTORE
INPUT
LINPUT
PRINT

Book 2, Chapter 11.

Example CLOSE #6,# C

Result Close channel 6 and the channel specified by
variable C.

Example CLOSE

Result Close all channels previously opened with an
OPEN statement.

CLOSE

Errors

Related

References

Examples

37

COLLECT

Purpose

Forms

Instructions

38

When you erase a file from a volume, the space it filled becomes
available for other files or for expansion of the file immediately
preceding the space. However, MINC reuses the free space only
if it is large enough for a complete file operation. After many file
operations, the space on a volume becomes fragmented. That is,
a large percentage of its capacity is free but each piece of free
space is too small to use.

The COLLECT command puts all files on a volume into consecu-
tive blocks and collects all of the volume’s free space. The only
exceptions to this process occur if there are bad blocks on a vol-
ume. The INITIALIZE command marks the physical locations
of bad blocks by creating a file with file type .BAD. These files
cannot be relocated by COLLECT. Therefore, small amounts of
free space can remain unusable between the .BAD files and the
files that precede them.

COLLECT device

Component Component Type Component Value Default Condition
COLLECT command none required component
device specification SYO: or SY1: required component

The best procedure is to use the VERIFY command to check the
volume you want to process before collecting its free space. If the
volume has been heavily used or handled roughly, a file on it
might have developed a bad block. If so, the VERIFY command
reports which files now contain bad blocks. If a file contains an
unmarked bad block, COLLECT cannot operate properly.

If the volume that you want to collect has unmarked bad blocks
in files (other than FILE.BAD), do not collect the volume. See
the procedure for recovering these files in the section Error Re-
covery.

Install the volume you want to process in any available drive and
complete the COLLECT command with the drive’s device ab-
breviation. MINC checks the volume owner; if the owner is

DIGITAL, MINC refuses to process any files on the volume and
displays a message. Otherwise, MINC processes the volume and
signals READY when it finishes.

If the volume has bad blocks that are not marked in the
FILE.BAD file, MINC does not display an error message.
MINC does collect a volume with unmarked bad blocks, but
when you try to use the volume later, you find that the directory
does not match the files. Be sure to use the VERIFY command
before collecting files.

PUTILITY-F-lllegal device

The device specified is invalid.
PUTILITY-F-Read error

The device specified is nonexistent.

?UTILITY-F-Error reading directory

There are bad blocks in the directory of the volume being
collected.

2UTILITY-F-Uninitialized volume

The volume being collected has never been initialized.

DUPLICATE
VERIFY
INITIALIZE
Error Recovery

Book 2, Chapter 4.

In the following example, 1 bad block was marked in the
FILE.BAD file during the initialization. The other bad block is
in the user’s program file named SINES.BAS.

READY

VERIFY

Bad Blocks Type Filename Rel Blk
414 Hard FILE.BAD 0

417 Hard SINES.BAS 0

COLLECT

Restrictions

Errors

Related

References

Examples

39

COLLECT

To recover the diskette, the user must perform the following
steps.

1. Duplicate the diskette using the DUP command.

2. Fix the new copy of SINES.BAS using the keypad edi-
tor. (See the Error Recovery section.)

3. Initialize the bad diskette with the INI command to
mark the bad block in the FILE.BAD file. Then the
user can use the bad diskette again (it is no longer bad).

40

MINC program statements are easy to read, but the purpose of
individual statements and groups of statements in a program
can be hard to understand. You are most likely to notice this
problem when you try to modify a program written some time
ago or by someone else.

You can reduce the problem significantly by taking the time to
include explanatory comments in your programs when you
write them. Use REM statements for this purpose. The follow-
ing classes of comments can be useful:

A banner comment as the first statement in each
subroutine, explaining what the subroutine expects
from your main program, what the subroutine does,
and what it produces for your main program.

A comment for each function you define in a DEF
statement, particularly if the expression that defines
the function value is complex.

A comment for each GOSUB statement, explaining
what your main program is providing to the
subroutine and what it expects the subroutine to
produce.

A summary comment for each major section of your
program.

A general comment as the first statement in each pro-
gram, explaining the program’s purpose, algorithm,
required data and file formats, blocks of statement
numbers you have used for different sections, and the
procedures people who use the program should follow.

An explanation of each modification you make to a pro-
gram after you have debugged it completely.

An explanation of each variable used in the program.

REM text

Comments

Purpose

Forms

41

Comments

Instructions

Restrictions
Errors
Related
References

Examples

42

The section on the REM statement includes detailed
instructions.

REM statements can require a full line, or can fit on the
same line as a program statement, separated by a backslash
character.

Comments do use workspace. An alternative approach is to de-
velop a separate documentation file for each program and re-
move most of the general comments that are in REM statements
from the program itself. For example, PROTON.BAC and

PROTON.DOC, the compiled program and the file of documen-
tation about it, can be complementary.

Do not use a left parenthesis in a remark.

There are no error messages associated with this statement.
REM N\

Book 2, Chapter 3.

See Book 2.

COMMON statements preserve current values of variables and
arrays in the workspace for the next element in a program
chain. The different programs in a chain share the variable
values and arrays that you specify in COMMON statements. The
values of all other variables and arrays are strictly local to the
specific program in which you use them. MINC erases the work-
space when it starts to execute a new chain element, except for
the parts of the workspace protected by COMMON statements.

With program chains, putting variables and arrays in
COMMON is both faster and simpler than storing intermediate
results in a file.

COMMON I COMMON I COMMON

SEGMENT

2
SEGMENT

1

CHAIN

MR-1701

Figure 2. How COMMON Is Stored in the Workspace

COMMON common-list

Component Component Type Component Value Default Condition
COMMON statement none required component
common-list list see form below required component
Form of list element:

item variable name or any valid name

array description

You can use any number of COMMON statements. MINC ac-
cepts as many as 255 different variables and arrays in
COMMON.

However, whether you use one or several, the variables and ar-
rays you list must be in exactly the same order in the COMMON
statements of each of the programs you are chaining together.
Separate the variables and arrays you list with commas.

COMMON

Purpose

Forms

Instructions

43

COMMON

You cannot describe an array in both a DIM statement and a
COMMON statement. Remove DIM statements that describe
arrays in COMMON. You cannot specify a virtual array fileina
COMMON statement because it is a file, not part of the work-
space. Use separate OPEN statements in each chaining pro-
gram that uses a virtual array file.

If a program containing COMMON statements chains to a pro-
gram that has no COMMON statement, MINC erases all varia-
bles and arrays, including those listed in previous COMMON
statements. Therefore, it is necessary to include the COMMON
statements if you want to use these variables in later chain
segments.

It is possible to extend COMMON by placing additional varia-
bles and arrays after the previously existing ones; however, you
cannot make COMMON smaller.
e

You can easily make sure that the COMMON statements match
for all the segments in a chain by placing the COMMON state-
ments in a separate file and overlaying or appending the
COMMON statements to the current segment.

Restrictions If a program segment containing COMMON statements chains
to another program segment containing COMMON, all the vari-
ables and arrays in the original COMMON statements should
appear in the new statements. But, if the new COMMON state-
ments contain some of the variables and arrays (in the correct
order) but not all of them, MINC does not produce an error mes-
sage. Instead, MINC preserves all the variables specified in the
original COMMON statements. Even though no error message
is produced, this situation should be avoided because variables
are preserved that do not appear in the segment’s COMMON
statements.

Errors ?MINC-F-COMMON variables not in the same order as in last program

The variables in COMMON are not in the same order in the new
segment as in the previous segment.

?MINC-F-Array has invalid description at line XX

An array is dimensioned explicitly with a DIM statement as
well as implicitly in a COMMON statement.

44 ?MINC-F-Total number of arrays and variables in COMMON exceeds 255 at line XX

There are more than 255 variables and arrays
COMMON statements.

?MINC-F-Program too large; workspace overfills

The new segment is too large for the workspace.

Arrays
APPEND
CHAIN
CLOSE
DIM
OPEN
OVERLAY

Book 2, Chapter 14.

See Book 2, Chapter 14.

listed in

COMMON

Related

References

Examples

45

COMPILE

Purpose

Forms

Instructions

Restrictions

46

When you type a program statement, MINC holds it in the work-
space in a special form that requires less space than the charac-
ters you type. When you list the current program or use the
SAVE command to store it, MINC translates each line back to
the form you typed. When an OLD command specifies a file you
created with the SAVE command, MINC again translates each
line back to the special form that conserves space in the work-
space.

The COMPILE command stores MINC’s special shortened form
of the current program. MINC reads compiled programs into
the workspace more quickly than uncompiled programs be-
cause compiled programs require no translation.

COMPILE filessec

Component Component Type Component Value Default Condition
COMPILE command none required component
filespec characters dev:name.typ dev: SYO:

name workspace
name
.typ .BAC

Use the COMPILE command whenever MINC - displays
READY. When the filespec argument is present, COMPILE
stores the workspace program under the name you specify.
When the filespec argument is omitted, COMPILE stores the
workspace program with the current name of the workspace.

Use the COMPILE command whenever MINC’s added speed in
reading a compiled program is important to you. Note, however,
that a compiled program is less convenient than one you have
stored with SAVE or REPLACE in the following cases:

1. An OVERLAY statement cannot refer to a compiled pro-
gram (a CHAIN statement can do so);

2. The COPY command cannot copy a compiled program to a
line printer or to your display (you can copy a compiled pro-
gram to a storage volume);

3. You cannot use MINC’s keypad editor — the EDIT and
INSPECT commands — to look at or modify a compiled
program;

4. You can use the TYPE command to display a compiled pro-
gram; however, the characters that appear on the screen are
not in a form that you can read.

It is possible to unintentionally destroy a file when you use the
filespec argument in the COMPILE command. The argument of
the COMPILE command specifies the destination for the com-
piled version of the workspace, not the program to be compiled.
MINC compiles the program currently in the workspace. If you
specify an existing (uncompiled) program file in the filespec
argument, MINC replaces it with the compiled workspace pro-
gram. For example, if you use the following sequence of com-
mands, MINC destroys the program in PROG.BAS.

READY
SCR

READY
COMPILE PROG.BAS

READY

In this sequence, MINC would not compile PROG.BAS. Instead,
it would compile the program in the workspace (nothing) and
put that in the file named PROG.BAS, destroying any previous
contents of PROG.BAS. MINC cannot guess your intentions and
produces no error message in this case. Itisa good idea never to
compile a program into a.BAS file or any other file with the type
other than .BAC.

?MINC-F-File space allocated on volume is too small
There is not enough room on the volume to put in another file.

CHAIN
OLD
RUN

Book 2, Chapter 4.

See Book 2.

COMPILE

Errors

Related

References
Examples

47

COPY

Purpose

Forms

Instructions

Restrictions

48

Use the COPY command to copy a file onto another volume, to
list the file on a line printer, or to copy a file to a new location on
its current volume. The command is a convenient way to make a
backup copy of a single file.

COPY existing-file new-file

COPY filespec LP:
Component Component Type Component Value Default Condition
COPY command none required component
existing-file characters dev:name.typ dev: SYO:
name required
.typ .BAS
new-file characters dev:name.typ dev:SYO0:

name existing-file
typ existing-file

Use COPY to make a copy of a file with a new name, to copy the
file to another volume, or to print the file on your line printer.

MINC checks the owner of the output volume you are using. If
the owner is DIGITAL, MINC displays a message and does not
complete the command. MINC also checks the file types of both
the input file and the output file. If either file is a protected type
(.SYS, .COM, .BAD, or .SAV), MINC displays a message and
does not complete the command.

When the amount of free space on a volume is critical, you might
be able to use the COPY command to gain more contiguous
space on a volume after you have used the COLLECT command.
Check for free space preceding a .BAD file that is large enough
for a file that is listed later in the directory. COPY the file from
the current volume to the same volume. MINC will move the file
forward in the volume’s directory to the free space that
COLLECT could not use. Finally, process the volume again with
COLLECT. '

Note that the COPY command cannot copy a file that has bad
blocks. Thus, to recover a file that contains bad blocks, you must
duplicate the entire volume with the DUP command and then
edit the new copy with the keypad editor. (See the Error Recov-
ery section of this manual.)

COPY

2UTILITY-F-File not found Errors

The file that you are copying from does not exist.

?MINC-F-Output file name is already in use;
do you want to erase its current contents (Y or N)?

If you want to destroy the old file, type Y; otherwise type N.
?MINC-F-COP requires two filenames

You forgot to type one of the two file specifications required by
the COPY command.

?2UTILITY-F-Read Error

The file you are copying from has bad blocks.

2UTILITY-F-Write Error |

The file you are copying to has bad blocks.

2UTILITY-F-Not enough usable space on volume

There is no available space on the volume for a copy of the file.’
2UTILITY-F-Volume owner may not be ‘DIGITAL’

DIGITAL is the owner of the destination volume. (You made a
mistake and placed a Master diskette in SY1:.)

?MON-F-Directory 1/O error

There are bad blocks in the directory of the volume being
copied to.

DUPLICATE Related
COLLECT '
TYPE

LIST

PRINT

Book 2, Chapter 4. References

See Book 2. Examples

49

COS

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

50

The COS function takes on the cosine of its argument.

COS(expression)
Component Component Type Component Value Default Condition
COS function name/real -1to+1 required component
expression numeric expression any value, radians required component

Use COS to determine the cosine of any angle.

None included.

?MINC-F-Arguments in definition do not match function called at line XX

COS is one of three trigonometric functions provided by MINC.
The other trigonometric functions are SIN and ATN.

Book 2, Chapters 2 and 8.

Example F=COS(PI)
PRINT F

Result -1

Example PRINT COS(P1/2)
Result 0

Example PRINT COS(10+PI)
Result 1

The CREATE command invokes the keypad editor so that you
can create a file. With the keypad editor, you can create a se-
quential ASCII file that contains a BASIC program, text, or any
other characters you want.

CREATE filespec

Component Component Type Component Value Default Condition
CREATE command none required component
filespec characters dev:name.typ dev: SYO0:

name required

.typ .BAS

Use the CREATE command to invoke the keypad editor so that
you can create a file.

The filespec represents the name of the file that you are
creating.

After you execute the CREATE command, the keypad editor
erases the screen, leaving only the cursor in the left-hand
upper corner. To put characters into this file, simply type the
characters.

It is possible to create a program file using the editor that the
OLD command cannot load into the workspace. Programs must
not contain completely blank lines or statement numbers with
no statement following them. If you have problems bringing a
program into the workspace, use EDIT to find the cause of the
problem and fix it.

?EDITOR-W-Limited space for insertions (only O blocks)
?EDITOR-W-Continue (Y or N)?
?EDITOR-F-Output volume has maximum number of files or no free blocks

EDIT The EDIT command invokes the keypad editor. You can
modify an existing file or create a new file which is a modified
version of an existing file.

Book 2, Chapter 15.

None included.

CREATE

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples
51

CTRLC

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

52

The CTRLC system function reenables the normal control oper-
ation of the CTRL/C combination (disabled by RCTRLC). After
the CTRLC function executes, you can terminate program ex-
ecution by entering the CTRL/C combination.

variable=CTRLC

Component Component Type Component Value Default Condition

variable numeric unknown required component
= none none required component
CTRLC function name none required component

Use CTRLC to reenable the operation of CTRL/C after it has
been disabled by RCTRLC. The value of the variable is unknown
after the function has executed. You do not need to use the varia-
ble; it is part of the syntactic form of the function only.

It might sometimes be wise to disable CTRL/C during crucial
program runs. However, if CTRL/C is disabled, it is impossible
to stop the program and preserve the workspace if problems

develop.

The CTRLC function applies to programs only. The utility that
produces the READY message enables CTRL/C. Therefore,
either normal or abnormal program termination reenables

CTRL/C.
There are no error messages associated with this function.

RCTRLC The RCTRLC function disables normal CTRL/C
operation.

Book 6, PAUSE.

None included.

Computer industry standards have established 33 ASCII char-
acter codes for special technical applications. Most of these
stand for characters you type by holding down the CTRL key
and pressing another key.

Some of these control characters have special meanings to
MINC. They are listed below. The other control characters are
not useful to MINC.

CTRL/key

CTRL/C MINC immediately stops whatever process it is per-
forming and displays READY. If the program is waiting for
keyboard input, one CTRL/C is sufficient. Otherwise, enter two
CTRL/C characters to stop the program.

CTRL/O Any text output to the screen is suspended. The
output continues internally to MINC but does not show on the
screen. Another CTRL/O reenables the screen display, and
output continues at the current character (not at the character
where it originally halted). CTRL/O affects the terminal screen
only.

CTRL/S., CTRL/Q These characters suspend and reenable
screen displays. Their operation is the same as that provided by
the NO SCROLL key. CTRL/S suspends screen display. CTRL/Q
reenables screen display and output continues with the charac-
ter following the last one appearing on the screen.

CTRL operations

Purpose

Forms

Instructions

CTRL/U This character deletes all characters entered since

the most recent RETURN key. In the keypad editor, CTRL/U
deletes the characters from just left of the current cursor posi-
tion to the beginning of the line.

CTRL/W The CTRL/W character causes the keypad editor to
redisplay the current screen. Normally, you would use this char-
acter if you used SETUP to change the screen width while you
were using the keypad editor. The CTRL/W character causes
MINC to redisplay the screen using the new width.

53

CTRL Operations

Restrictions
Errors

Related

References

Examples

54

None included.

These keys cause no error messages to appear.
SYS system function

7-bit ASCII code

CTRLC, RCTRLC, and RCTRLO system functions
Book 2, Chapter 1.

None included.

DATS

The DATS$ function takes on the value of the current system date. Purpose
DAT$ Forms
Component Component Type Component Value Default Condition
DATS$ function name/string day-month-year required component

Use DATS$ to obtain the current system date. Some experiments Instructions

require keeping date records as part of the data.

The DATS value is a nine-character string. The following char-
acters comprise the string, which takes the form dd-mmm-yy.

Position Contents

dd Day of the month, 1 through 31
- Hyphen
mmm Abbreviation for the English name of the

month (JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC) '

- Hyphen
vy Last two digits of the current year
If MINC has been running overnight at the end of a month, the Restrictions

system’s current date is not necessarily correct. Set the date once
a day if the correct date is necessary for your application. The
startup procedure always prompts you to enter the current date.
It is useful to enter the correct date since the date is stored with
files that are created or modified.

No error messages are associated with this function. Errors

DATE is the command that sets the current system date. You Related
can also use DATE to display the current date on the screen.

55

DATS

References

Examples

56

Book 2, Chapter 8.

READY
DATE 8-Aug-79

READY
PRINT DAT$
08-AUG-79

READY

A DATA statement provides values to read with a READ
statement.

The best use of DATA statements with READ statements is to
use them to assign values to variables that do not change within
one run of a program but might change from run to run. In this
way, all pertinent values are in one place and can be changed
easily between runs. See Chapter 12 of Book 2 for a good exam-
ple of this.

DATA data-list

Component Component Type Component Value Default Condition

DATA statement none required component

data-list list see form below required component

Form of list element:)

value string or type corresponds required component
numeric to READ variables

Use DATA statements to provide values for READ statements.

Note that MINC reads values in DATA statements in statement
number order, from left to right within each DATA statement.
RESTORE (and RESET) cause MINC to read the next value
from the first DATA statement in the program.

Separate the values in DATA statements with commas. If string
values must contain commas, enclose these strings in quotes.
Values must be in the order expected by the READ statements.
The data type of each value (numeric or string) must match the
data type of the corresponding READ variable.

The DATA statement must be the last statement in a line be-
cause MINC processes everything between the word DATA and
the next RETURN key as data values.

If a string variable in a READ statement corresponds to a nu-
meric value in a DATA statement, MINC assigns the ASCII
character representation of the number to the string variable,
not the numeric value.

A DATA statement cannot have any statements following it on
the line.

DATA

Purpose

Forms

Instructions

Restrictions

57

DATA

Errors

Related

References

Examples

58

?MINC-F-DATA value or value from file does not match variable at line XX

The READ statement is expecting a numeric variable, but the
corresponding value in the DATA statement is a string.

The DATA statement is not the last statement in a multiple
statement line (which causes MINC to interpret the last value as
a string value).

?MINC-F-Too few values for INPUT or READ variables at line XX

The DATA statement does not have enough values to correspond
to the number of variables in the READ statement.

The DATA statement is missing.

Assignment You can assign values to variables directly in an
assignment statement, as in the following example.

A=5

INPUT # You can use separate files of data you have stored un-
der unique names. Open a file with an OPEN statement, and
then read the values with INPUT # or LINPUT # statements, as

in the following short example. (The example assumes that the
file SYO:VALUES.DAT has integers as the first three values.)

OPEN values FOR INPUT AS FILE 6
INPUT 6, A%, B%, C%

INPUT You can type each value interactively as the program
needs it as in the following general example.

PRINT ‘Enter an order number —’
INPUT 19%

READ
RESTORE/RESET
Book 2, Chapter 12.

Book 2, Chapter 12.

DATE

Errors

Related

References

Examples

60

The lab module routines SCHEDULE and PAUSE provide a
mechanism for scheduling events to occur at specific times of
day.

?7KMON-W-lllegal date

The date you entered is in an incorrect format.

TIME

DATS$

CLK$

LIST

RUN

Calendar functions
DIRECTORY
SCHEDULE
PAUSE

Book 2, Chapter 8.

READY
DATE 3-JAN-79

MINC includes 31 functions that provide common but some-
what complex calculations that you can use by referring to them
by name. For example, the LOG10 function takes as its value the
base-10 logarithm of a numeric value, and the LEN function.
takes as its value the number of characters currently in a string
variable.

You can define similar funections in DEF statements. For exam-
ple, if you use tangent values often, defining your own tangent
function once may both save programming time and shorten
your programs.

Other statements can use that tangent function without writing
out the calculation fully.

DEF FNx-symbol(dummy-argument-list)=expression

The following forms correspond to the different values for the
symbol argument.

DEF FNx(dummy-argument-list)}=numeric-expression
DEF FNx%(dummy-argument-list)=numeric-expression

DEF FNx$(dummy-argument-list)=string-expression

Component Component Type Component Value Default Condition

DEF statement none required component
FN function name none required component
X function name/letter A to Z required component
symbol character null,%,$ required component
dummy-argument- list list variable name(s) required component
expression real,integer,or type matches required component

string symbol

Functions you define must have names that begin with FN.
Choose any letter as the third letter of the function name. Add a
percent sign (%) if you want the function to take on an integer
value. Add a dollar sign ($) if the function takes on a string value.
No data type symbol is required as part of the name if the func-
tion takes on a real value.

DEF

Purpose

Forms

Instructions

61

DEF

Restrictions

Errors

Related
References

Examples

62

Complete the DEF statement with a list of dummy argument
variables and a defining expression. The defining expression
uses any literals and other functions that are appropriate and
can (but need not) use the dummy variables. The defining ex-
pression can include another user-defined function but cannot
reference itself.

Each function you define must be complete on one line.

The DEF function operates in programs only. When you try to
use DEF in immediate mode, it fails but no message appears.

Any functions defined in a program remain valid definitions af-
ter the program finishes executing. Therefore, you can use a
user-defined function in immediate mode if it was defined in a
previous program (and the workspace has not been erased).

Note that a function remains defined after an overlay as long as
the DEF statement exists in the workspace.

?MINC-F-No DEF statement for fhe function named

You are referring to a function that you tried to define in imme-
diate mode.

?7MINC-F-An earlier statement already defined the function at line XX
?MINC-F-Invalid operation; mixing numbers and strings at line XX

The type of the expression (string or numeric) does not match
the type of the function.

Naming
Book 2, Chapter 8.

See Book 2.

Frequently you need to remove selected statements from pro-
grams. The DEL command erases statements in the current
program according to the individual statement numbers and
statement number groups you specify.

DEL firstline - iastline, firstline - lastline, ...

Component Component Type Component Value Default Condition

DEL command none required component

firstline numeric literal 1 to 32,767 first program
statement

- character - deletes one
statement

lastline numeric literal 1 to 32,767 last program
statement

Enter the command when MINC displays READY. The nu-
meric order of items in the list is not important. Separate indi-
vidual statement numbers and groups with commas. When you
specify a group of statement numbers, the first-line argument
must be less than or equal to the last-line argument. For exam-
ple, 150-200 is a correct group and 200-150 is an incorrect group.

Remember that when you want to erase a single statement, you
can simply type its number followed by a RETURN.

Neither of the statement numbers has to exist in the program.
However, if you specify an invalid DEL command, MINC does
nothing, but it gives you no message.

Once you have deleted a statement, it is irretrievably gone. For
large deletions, it might be useful to use the keypad editor so you
can see which lines are being deleted.

The DEL command does not generate any error messages. How-
ever, the following erroneous conditions do not cause unexpected
deletions.

If none of the statement numbers in a given range exist, nothing
happens.

If the statement numbers in the list form an invalid argument,

DEL

Purpose

Forms

Instructions

Restrictions

Errors

63

DEL

Related

References

Examples

64

MINC does not delete those statements. For example, the follow-
ing statement is incorrect, and DEL does not delete any state-
ments or display an error message.

DEL 50-20

Retyping a statement
Multiple statement lines

Erasing

Book 2, Chapter 4.

Example
Result

Example
Result

Example
Result

Example
Result

Example
Result

Example

Result

DEL 10

Deletes statement 10

DEL 10-20

Deletes statements 10 through 20, starting with
the first statement number that is 10 or more
and ending with the last number that is 20 or
less.

DEL 100-150,15,200,50-65

Deletes statement 15, the group from 50

through 65, the group from 100 through 150,
and statement 200.

DEL 2640-2640
Deletes statement 2640

DEL 100-

Deletes all statements numbered 100 or higher.

DEL -250
DEL 0-250

Both commands delete all statements from the
beginning of the program to statement 250
(inclusive).

MINC automatically provides workspace for arrays with no
more than 11 rows or columns. This space is not allocated, how-
ever, unless you make reference tosuch an array. Use DIM state-
ments to describe larger arrays and virtual array files and
larger arrays. Arrays are described only once. (When you de-
scribe an array in a COMMON statement, you must not also
describe it in a DIM statement.)

DIM # channel, arrayname(high-row-index,high-zolumn-
index)=length

Component Component Type Component Value Default Condition
DIM statement none required component
character # paired with
: channel
channel numeric literal 1to 12 virtual array file
array name characters valid array name required component
high-row-index numeric literal 1 to workspace required component
size
high-column- numeric literal 1 to workspace single dimension
index size array
= statement component none paired with length
length numeric literal 1 to 255 16

If the #channel argument is present, then the DIM statement de-
fines a virtual array file. The channel number remains asso-
ciated with the virtual array file until the file is closed.

The length argument defines the number of characters in each
element of astring virtual array file. All elements in a string vir-
tual array file have the same length. To conserve space on a vol-
ume, keep the length argument as small as possible.

You can describe more than one array in a single DIM state-
ment. However, you cannot describe more than one virtual array
filein a DIM #statement. Choose an array name according to the
same rules as for variables. Describe the size of the array in
terms of its highest row number (and highest column number, if
it has two-dimensions). For example, DIM A9$(25,25) describes
the string array A9$ as a two-dimensional array with rows 0
through 25 and columns 0 through 25.

MINC requires a channel number as part of each virtual array

DIM

Purpose

Forms

Instructions

65

DIM

Restrictions -

pIM S[’ot,iﬁ"hﬁ’}\k

<
>

}
; . SR
Ades et 2 ey ku\& [SCR I EN

¢ i NN ;
YooY oL :\—C'\\L\u L = S R E

Y

TN

e Lf\\i/vf\ L 4 Lg - Y e,
Q O

e !
1 > P
Vi @ S § D el

1 i i
T o I TR ST T e ey
I i LR S AT

woey Ty ,
(8]

Errors

66

Vot v Ya) N P

file description. For example, DIM #9, B9$(25,25) is a virtual
string array accessible on channel number 9. B9$ also has rows 0
through 25 and columns 0 through 25.

MINC accepts DIM statements anywhere in a program. It is of-
ten easier to modify programs if all the DIM statements are col-
lected in one area of the program.

The DIM statement applies only to program mode. You cannot
describe an array in immediate mode. You can try it, but it fails
without a message.

Large arrays require large amounts of workspace. If adding ar-
rays makes one of your programs too large for the workspace,
consider the following alternatives.

e Use virtual array files instead of large arrays. Pro-
grams using virtual array files execute more slowly,
but the virtual array file requires workspace equiva-
lent to a 256-element integer array.

® Use temporary sequential data files instead of large
arrays.

® Segment your program intosmaller independent units
that can execute sequentially. Use COMMON and
CHAIN statements to define the order for executing
the units and save each one as a separate file. The
CHAIN statement clears the workspace between
chain units, deleting arrays that are no longer
necessary.

¢ Use OVERLAY statements to merge a main program
with different subroutines at different times. In this
way, different segments of the program share the same
arrays but the program itself does not consume much
workspace.

® You cannot conditionally dimension an array. For ex-
ample, the following statement does not work.

10 IF A<0 THEN DIM B(100)

?MINC-F-Syntax error; cannot translate the statement at line XX

Besides looking for a typographical error, you can get this mes-
sage if you have dimensioned an array with more than two sub-
scripts.

-

DIM

?MINC-F-Array overfills workspace at line XX

The dimension statement tries to create an array that is larger
than the workspace can hold.

?MINC-F-Array has invalid description at line XX

The DIM statement is syntactically correct, but invalid. For ex-
ample, the dimension is a negative number or a variable.

An array is deseribed in both a DIM statement and a COMMON

statement.
Arrays Related
COMMON
CHAIN
OVERLAY
Book 2, Chapters 7 and 11. References
Example DIM #1, F$(250,6)=20 Examples
Result Describes a string virtual array file where each
element in the string array is 20 characters
long.

67

DIRECTORY

Purpose

Forms

Instructions

68

MINC users frequently need to determine which files are stored
on the volume they are using and how much unused space re-
mains. The DIRECTORY command causes MINC to display a
list of the files on a volume. The list includes each unused area on
the volume, the volume’s identifier and owner, the creation date
for each file, and the size of each file.

DIREC 'ORY filespec cutputspec

Component Component Type Component Value Default Condition
DIRECTORY command none required component
filespec characters dev:name.typ dev: SYO:

name all files

.typ all files
outputspec characters dev:name.typ or LP: dev: SYO:

name required

.typ .DIR

By defaulting components of the command, you can specify how
much information about a diskette you want MINC to report.
The four types of reports you can request are as follows:

1. A directory of all files on a diskette (DIR dev:).

2. A directory of all file names on a diskette that have the
specific file type you request (DIR dev:.typ).

3. A directory of all file types on a diskette that have the
specific file name you request (DIR dev:name).

4. The directory entry for the single file you specify on a
diskette (DIR dev:name.typ).

If you specify an outputspec argument, MINC routes the
directory report to that file. If your MINC system has a line
printer, you can specify LP: as the output device and MINC
prints the directory report on it.

Use any form of the command when MINC displays READY.
Unless you specify an output file, MINC displays the directory
you request on your terminal.

Directory listings for system volumes and for volumes that do
not contain a system show one important difference: the amount
of space available. A system volume contains the MINC system
files. Although these do not appear in the directory listing, they
do use space on the volume. Nonsystem volumes contain only the
programs and data files you have created. Thus on a nonsystem
volume, the sum of the file sizes plus the total free space is 960
blocks.

For a system volume, the sum of the block sizes and free blocks
in the directory listing is not equal to the total capacity of the
volume.

If you ask for a directory listing of a volume owned by DIGITAL,
MINC displays the volume identifier and owner, and it will list a
small number of files (depending on which DIGITAL diskette
you are using). Note that you cannot write any data to a volume
DIGITAL owns.

None included.

?MINC-F-Invalid file name(s)
?DIR-F-Error reading directory

There are bad blocks in the directory.

?7DIR-F-lllegal directory

The diskette is uninitialized.

OLD

LIST
LISTNH
Protected file types
UNSAVE
KILL
NAME
RENAME
REPLACE
INITIALIZE
Line Printer

DIRECTORY

Restrictions

Errors

Related

69

DIRECTORY

References

Examples

70

Book 2, Chapter 4.

Example
Result

Example

Result

Example
Result

Example
Result

Example
Result

Example
Result

Example
Result

Example
Result

DIR
Gives a directory of SYO:

DIR SY1:
Gives a directory of SY1:

DIR .BAS

Gives a directory of all the files with type .BAS
on SYO:.

DIR SY1:BAS

Gives a directory of all the files with type .BAS
on SY1..

DIR NAME

Gives a directory of all the files with filename
NAME.

DIR SYI:NAME

Gives a directory of all the files with name
NAME on SY1..

DIR NAME.DAT
Shows the file NAME.DAT if it ison SYO..

DIR SYO0: LIST

This example creates a file on SYO0: called
LIST.DIR and sends the directory listing to the
file instead of to the terminal screen.

The DUPLICATE command is the most convenient way to copy
the entire contents of a diskette to a new diskette. MINC also ac-
cepts the abbreviation DUP. The command copies all files from
the diskette in device SYO: to the diskette in device SY1:. For a
system volume, DUPLICATE copies the system utility files as
well as your files.

The DUPLICATE command can duplicate a file with bad
blocks. Thus, if one of your diskettes develops a bad block in one
of your programs, you can partially rescue the file. However, you
have to fix the file on the new diskette with the keypad editor (see
Keypad Editor). Note that the COPY command will not copy a
file with bad blocks. '

If the bad blocks are in the MINC system programs, you can
duplicate the diskette to save your own files, but do not use the
diskette as a system diskette. The new diskette has no physical
bad blocks, but the problems with the system files are not fixed.
You cannot use the editor to fix the system programs. To create a
new valid system diskette, you must duplicate a working system
diskette.

DUPLICATE
Component Component Type Component Value Default Condition
DUPLICATE command none required component

Use INITIALIZE to prepare a new diskette before typing
DUPLICATE. Use DUPLICATE to create backup copies of im-
portant system, program, or data diskettes. When you enter the
DUPLICATE command, MINC prompts you to insert an initial-
ized (and empty) diskette in your SY 1: drive and the diskette you
want to copy in SYO0:. Note that you do not have to put a system
diskette in SYO: at this time. When you have inserted both disk-
ettes correctly, press the RETURN key. When MINC finishes
the DUPLICATE processing, it asks you to insert your system
diskette in SYO: and press the RETURN key.

The following systematic procedures are recommended for
creating volume duplicates.

® Usethe VERIFY command to check for bad blocks on

DUPLICATE

Purpose

Forms

Instructions

71

DUPLICATE

Restrictions

Errors

72

the diskette you want to duplicate. If a file has devel-
oped bad blocks, you must remember to fix it after you
have duplicawed it to a new diskette. Remember, if
there is a bad block in one of the system files, you
cannot use the new copy as a system diskette.

e Write up a new paper label for the duplicate diskette
you want to make. Try to avoid writing on the label af-
ter you paste it on the diskette.

e Finally, use the DUPLICATE command to make the
duplicate copy. When MINC completes it, you can also
list and attach the copy’s current directory, if your sys-
tem has a printer.

DUPLICATE can encounter problems if the diskette receiving
the duplicate has bad blocks. That is, if you insert a diskette with
bad blocks in SY1:, the duplication procedure might not work,
depending on where the bad blocks actually occur on the disk-
ette. If the procedure does not work, MINC displays the follow-
ing error message.

?UTILITY-F-Device full

In this case, you cannot use this diskette as a system diskette. You
can, however, use this diskette to store programs or data. Be-
cause the diskette has been initialized, all of the bad blocks are

marked in the file called FILE.BAD and thus do not affect the
storage of programs or data.

?2UTILITY-F-Target volume must be newly initialized
The volume in SY1: is not initialized.

The volume in SY1: is not empty; that is, it contains valid files.
You must initialize it before you duplicate.

2UTILITY-W-No volume id

Volume in SYO0: is not initialized.
?2UTILITY-F-lllegal directory

Volume in SYO0: is not initialized.
2UTILITY-F-Device full

This message might appear if you have a bad block in the

directory or if a bad block occurs in such a place as to prohibit a
system file from fitting into the available space.

COPY
INITIALIZE
COLLECT
Error Recovery

Book 2, Chapter 4.

The following example shows the entire procedure for duplicat-
ing a diskette.

INI SY1:
Install volume to be initialized in SY1, and press RETURN

Current volume id:eeeeeeceeeecee
Current owner: eeeceeeeeeeee
Proceed with initialization (Y or N)?Y
Type new Volume id:MINC system
Type new owner name:Student 003

Initialization is complete; found 000 bad blocks
READY

verify syt:

There were no bad blocks found

READY

DUP

Install volume to be duplicated in SYO;

install initialized, empty volume in SY1, are you ready (Y or N)?Y

SY1 volume id is: MINC system
SY1 owner is: Student 003

Do you want to duplicate another volume (Y or N)?N
Re-install system volume in SY0, and then press RETURN
MINC V1.0

10-MAY-78
04:33:40

READY

DUPLICATE

Related

References

Examples

73

EDIT

Purpose

Forms

Instructions

74

The keypad editor allows you to add to, delete from, and change
ASCII files. You can edit BASIC programs with the editor as
well as with BASIC. However, the editor is the only way to edit
sequential ASCII files that are not programs.

The EDIT command invokes the keypad editor. EDI is the valid
abbreviation.

EDIT input-filespec suinut-iiiespec

Component Component Type Component Value Default Condition
EDIT command none required component
input-filespec characters dev:name.typ dev: SYO:
name required
.typ .BAS
output-filespec characters dev:name.typ dev: same as input
name same as input
.typ .BAS

Use the EDIT command to begin editing an existing ASCII file.
To create a new file, use the CREATE command. To look at a file
without changing it, use the INSPECT command.

When you specify the EDIT command with only an input file
specification, the editor creates a temporary file that holds the
input file unchanged. When you store the file by pressing the
STORE FILE key, the editor renames the original file
dev:filename.BAK and creates a new file with your input file
specification. With repeated editing of the same file, EDIT
replaces the previous version of dev:filename.BAK each time.

When you specify the EDIT command with two different file
names, the editor stores the file with your edits in the second file
specified when you press the STORE FILE key. In this case, the
editor does not alter the input file specified. This provides a
method for creating a new file which is a modified version of an
existing file while avoiding typing the whole file again.

If you specify the EDIT command with the same file name
twice, when you press the STORE FILE key, the changed file is
in the file name specified and the previous version of the file is
erased.

The default conditions for EDIT filespec arguments are rela-
tively complex.

1. If you specify the volume for the output file, you must also
specify the file name.

2. If you specify any part of the output file specification, the
editor defaults the extension to .BAS unless you specify the
extension.

Adding text to a file increases file size quickly. (One file block
can contain at most 512 text characters.) The EDIT command
protects you in the following ways against adding too many
characters and not being able to store the file when you are fin-
ished.

1. When you enter the EDIT command, the volume must have
a free space at least as large as the current size of the file. If
there is not a large enough free space, EDIT does not permit
you to edit the file.

2. The maximum size of a file that you can create with the edi-
tor is 480 blocks. The editor does not insert any characters
into a file once the file size reaches the maximum.

3. When a file has reached its maximum size, the terminal
warning tone sounds every time you try to input a character.
No error message appears, and the characters do not appear
on the sereen.

You can modify programs with EDIT in such a way that the
OLD command cannot bring them into the workspace. Remem-
ber that programs cannot contain empty lines and statement
numbers followed by a blank line. The keypad editor does not
monitor program syntax.

You should never edit ASCII virtual array files or any non-
ASCII files such as numeric virtual array files or .BAC files.
These file types should be manipulated only by BASIC.

Use the DISPLAY_CLEAR graphic routine to erase graphics
that appear on the screen before using the EDIT command.

Some of the control characters have different meanings to the
editor than they do to MINC. These control characters are as
follows.

EDIT

Restrictions

75

EDIT

Errors

Related

References
Examples

76

CTRL/0 The CTRL/O character stops all output and input to
the terminal. A second CTRL/O character resets the terminal.

Note that when you press the CTRL/O character the first time,
you might get a spurious character on the screen. However, this
character goes away when you reset CTRL/O.

When you reset CTRL/O, the cursor is not always in the same
place on the screen as MINC thinks it is internally. CTRL/W re-
freshes the screen so that the cursor is in the same place on the
screen as it is internally.

CTRL/S, CTRL/Q These characters work the same in the edi-
tor as in BASIC.

CTRL/U The CTRL/U character deletes from the current
cursor position to the beginning of the line. Note that this opera-
tion is different than the CTRL/U operation in BASIC.

?7EDITOR-W-Limited space for insertions (only 0 blocks)
?7EDITOR-W-Continue (Y or N)?

?EDITOR-F-Output volume has maximum number of files or no free blocks
?EDITOR-F-No output space large enough to EDI input file

?EDITOR-F-Unable to size screen

This message occurs when you type ahead after terminating an
EDIT session by pressing the STORE FILE key.

CREATE Use the CREATE command to create a new file by
entering text from the keyboard.

INSPECT Use the INSPECT command to display the contents
of a file without changing it.

File Allocation

Keypad Editor This section discusses the MINC keypad editor
in general.
Book 2, Chapter 15.

See Book 2, Chapter 15.

Always include an END statement as the highest numbered
statement in your programs. END causes MINC to terminate
all program processing, close all files that are open, and display
the READY signal.

END
Component Component Type Component Value Default Condition
END statement none required component

A program can have only one END statement, and its statement
number must be the highest statement number in the program.
MINC does not give an explicit message when it executes an
END statement; it simply displays READY.

It is a good idea always to give the END statement the number
32767 (the largest statement number).

None
?MINC-F-END statement does not have highest number in program at line XX
The END statement is not on the last line of the program.

The END statement is not the last statement on a multiple state-
ment line.

STOP The STOP statement can be placed anywhere in the pro-
gram.

Book 2, Chapter 3.
See Book 2.

END

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

77

Erasing

Purpose

Forms

Instructions

78

Erasing files, lines, characters, volumes, and parts of memory is
a fundamental operation in using MINC. Each of the different
MINC commands and statements that erase something has a
different purpose and a particular set of operating rules. For de-
tailed information read the appropriate section.

APPEND filespec
CHAIN filespec LINE stmt#

CLEAR
CTRL/U

DEL first-line -

DELETE key

last-line

INITIALIZE SY1:

KILL ‘filespec’
NEW filespec
OLD filespec

OVERLAY f‘filespec’ LINE stmt#
REPLACE filespec

SCR

SUB stmt# [current-form [changed-form [occurrences
UNSAVE filespec

Commands
APPEND

CLEAR

CTRL/U

DEL

Erases each line in the current program that
has the same statement number as an incoming
statement. Use APPEND when MINC displays
READY to accomplish the same effect as an
OVERLAY program statement.

Erases the contents of all variables and arrays
in the current program. The command does not
erase any program statements. By erasing the
current arrays and variables, the command re-
duces the size of the program in the workspace
until you run the program again.

Internally erases all characters on the line you
are typing. The line still appears on your ter-
minal screen, however.

Erases statements you specify from the current
program.

DELETE key

INITIALIZE

NEW

OLD

REPLACE

SCR

SUB

UNSAVE

Statements

CHAIN

KILL

OVERLAY

The DELETE key erases the character just to
the left of the cursor. It applies only to the cur-
rent line (except in the keypad editor).

Erases all files from the volume in the device
you specify.

Erases the current program from memory (but
the command does not affect any copy of the
program on a volume).

Erases the current program from memory and
loads the workspace with the file you specify.

Erases the current contents of the file you spec-
ify and replaces them with the program cur-
rently in the workspace.

Erases the current program and changes the
current workspace name to NONAME.

Erases astring in a current program statement
and substitutes a string you specify in its place.

Erases the specific file you name from the de-
vice you specify.

Erases all variables and arrays except the ones
that are listed in both the current program’s
COMMON statement and the incoming
program’s COMMON statement. COMMON
preserves variables and arrays in chains.

Erases the specific file you name from the de-
vice you specify. A KILL statement in a pro-
gram has the same effect as an UNSAVE state-
ment when MINC displays READY.

Erases each statement in the current program
that has the same statement number as an in-
coming program statement. The incoming
statement replaces the current statement.

See each of the individual sections for the restrictions that apply.

See each of the individual sections for the errors that apply.

Erasing

Restrictions

Errors

79

Erasing

Related

References

Examples

80

The section on the keypad editor describes each of the editor’s
erasing functions.

The RENAME command and the NAME statement change the
name of a file in a volume’s directory, but they do not change the
file itself in any way.

Book 2.

See the individual sections.

This section describes how to recover from the following error
conditions.

e Bad blocks that develop in one of your files.
e Bad blocks that develop in the MINC system files.

® The @ character that occurs when you are typing or
when you accidentally press the BREAK key.

Not applicable.

Bad blocks occur in your files

The procedure for recovering a file with bad blocks is as follows.

1.

Use the VERIFY command on the diskette with the prob-
lem file(s) to determine which files are bad.

Use the INI command to initialize a new diskette.

Use the DUP command to duplicate from the bad diskette to
the new one. Note that on the new diskette, these files show
no bad blocks because physically the diskette is good. How-
ever, the files are not correct because they were damaged
when the old diskette was damaged.

Use the keypad editor to fix those files that had bad blocks.
When you edit the files that previously had bad blocks, you
might see erroneous characters that you can fix with the
editor.

You can use the bad diskette again after using the INI com-
mand to reinitialize it and mark its bad blocks with
FILE.BAD

Note that you cannot fix virtual array files or compiled pro-
grams (.BAC extension).

Bad blocks occur in the system files

The procedure for recovering your files from a diskette with bad
blocks in the system files is as follows.

Error Recovery

Purpose

Forms

Instructions

81

Error Recovery

Restrictions
Errors

Related

References

Examples

82

Place a working system diskette in SYO:.

Type the DUP command. When the DUP command
prompts you, place the bad system diskette in SYO0: and a
new, initialized diskette in SY1: and proceed with the
duplicate procedure.

When the DUP command prompts you to put a system disk-
ette in SYO0:, be sure to put a working system diskette in
SYO:. Neither your bad diskette nor the copy you made of it
are working system diskettes.

Use the keypad editor to restore any of your own files that
had bad blocks. Be sure not to use the copy as a system disk-
ette because you cannot use the editor to recover the ruined
system files.

@ occurs when you are typing

The @ occurs when you have pressed the BREAK key.

1.

Type P (note, the P must be a capital P) followed by a
RETURN. This command should cause MINC to resume
processing where you left off. When you use P after an @ oc-
curred, MINC assumes you typed a RETURN at the end of
the line you last typed.

If P does not work, type 173000G (capital G). This command
restarts MINC. Thus, your workspace is scratched.

None included.

None included.

DUPLICATE
VERIFY
RESTART

None included.

None included.

The EXP function takes on the value of the number e raised to
the power specified by its argument.

EXP(power)

Component Component Type Component Value Default Condition
EXP function name/real >0 required component
power numeric expression approx -88 to +88 required component

Use EXP in any expression requiring an exponential value.
None included.

?MINC-W-Value of real expression is too small

The power argument is a large negative number and the result-
ing EXP value is too small to be represented in a real number.
MINC assigns the value 0 to EXP and continues.

?MINC-W-Value of real expression is too large

The power argument is too large and the resulting EXP value is
too large to be represented in a real number. MINC assigns the
value 0 to EXP and continues.

LOG The LOG function takes the value of the natural log-
arithm of its argument. The following identity expresses the re-
lationship between EXP and LOG.

power = LOG(EXP(power))
Numeric Precision
Book 2, Chapter 2.

Example W=EXP(SQR(2+3))
PRINT W

Result 9.35647

Example PRINT EXP(-86)
Result 4.47377E-38

EXP

Purpose

Forms

Instructions
Restrictions

Errors

Related

References

Examples

83

EXTRA_SPACE

Purpose

Forms

Instructions

Restrictions

Errors

Related
References

84

The EXTRA_SPACE statement allows you to increase the space
available for your MINC BASIC program. When you execute
this statement, MINC adds 2048 words to the workspace.

EXTRA_SPACE

Component Component Type Component Value Default Condition
EXTRA_SPACE statement none required component

EXTRA_SPACE should be used only when READY is
displayed. If the program currently in the workspace is to pre-
served, you should use the SAVE or REPLACE commands be-
fore executing EXTRA_SPACE, because a successful operation
of this statement causes the workspace to be scratched. Execu-
tion of the statement causes some informative text to be
displayed, and you are asked if the workspace can be erased. You
must respond by typing Y or N. If you enter Y, MINC performs
the operation and displays the READY message after a short
time. If you enter N, MINC displays a message and then displays
the READY message immediately. In this case, the workspace is
left intact.

Since EXTRA_SPACE is a statement, it can be executed from a
BASIC program. However, MINC never returns to the next pro-
gram statement. Control will always pass to READY. The pen-
alty you pay for the increased space is that file accessing (OPEN
operation) will take slightly longer.

?MINC-F-Workspace contents remain unchanged
This message is not truly an error message. This message ap-
pears when you answer N (no) to the query “Are you ready to

have the workspace erased?’ See the example below.

NORMAL_SPACE returns the 2048 extra words to BASIC for
its use in quick file access.

None.

EXTRA_SPACE

The following example shows using the EXTRA_SPACE state- Examples
ment.

READY

EXTRA_SPACE

Changing the size of the workspace requires erasing
the workspace. You must already have used either the
SAVE or REPLACE command to store the program if

you want to preserve it. Are you ready to have the workspace erased? (Y or N):
Y

READY

85

File Allocation

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

86

This section discusses how MINC allocates space for a file on a
diskette.

Not applicable.

When you close a data file with the CLOSE statement, save a
program with a SAVE or REPLACE command, or end an edit-
ing session by pressing the STORE FILE key, you are com-
manding MINC to store a file on a diskette. MINC stores the file
on the diskette in the first available area that is large enough to
hold the file or in one-half of the largest available area.

If there is not an area large enough to hold the file, MINC does
nothing to the diskette and terminates the process with an error
message.

If you have a sequential file that is 20 blocks long and there are
30 available blocks on the diskette, you cannot store the file be-
cause the largest area available for storage is 15 blocks — one-
half of the largest area.

Note that MINC will store a 20-block virtual array file in this
case. The one-half restriction applies to sequential files only.

Not applicable.

OPEN You can use the FILESIZE option of the OPEN state-
ment to command MINC to create a sequential file that is larger
than one-half of the available space.

None.

None.

File Specifications

The argument filespec appears for many commands and state-
ments in MINC. This section explains the components of a file
specification, their meanings, and possible values.

device:filename.filetype

usually abbreviated as dev:name.typ.

Component Component Type Component Value Default Condition
device 3 characters and : SY0.,SY1.,LP: usually SYO0:

(depends on
command)

filename 6 characters any name usually required

(depends on
command)

filetype .and 3 characters any type usually .BAS

(depends on
command)

The following terms, symbols and abbreviations appear in this
summary of MINC’s default file specifications.

TERM

MEANING

Current name MINC uses your current program’s name

Device

Explicit

Input file

File name

NONAME

unless you specify a different name.

An abbreviation for “device abbreviation”;
in each case, MINC processes the volume
you have installed in the indicated diskette
drive, or the line printer.

If you provide an explicit device abbrevia-
tion, file name or file type, MINC uses the
defaults that appear on the rest of the line.

The existing file that MINC processes.

The middle part of a complete file specifi-
cation, a string at least one character long
and no longer than six characters, each
character being a letter or a digit.

MINC processes the filenamed NONAME
unless you specify a different file name.

Purpose

Forms

87

File Specifications

88

Output file
Required

SYO0:

Type

COMMAND/
STATEMENT

APPEND
DUPLICATE
CHAIN
COMPILE
COMPILE
COLLECT
COPY

COPY
CREATE
DIRECTORY
EDIT
INITIALIZE
KILL

NAME

OLD

OPEN
OVERLAY
REPLACE
REPLACE
RUN /RUNNH
SAVE

SAVE

TYPE
UNSAVE
VERIFY

MINC does not accept or use the indicated
parts of a file specification.

The new file that MINC produces.

MINC uses no default for the indicated
part of the file specification; you must pro-
vide the indicated device abbreviation, file
name, or file type.

The device abbreviation for system de-
vice 0.

The last part of a complete file specifica-
tion, a string that begins with a period (.),
and has from zero to three characters. Note
that the null file type is valid. For example,
REPORT. is a file named REPORT with a
null file type.

The following table shows the default file specifications for all of
the BASIC commands and statements.

INPUT FILE
DEVICE NAME TYPE
SYo: NONAME .BAS
SYo: — _
SYO: NONAME .BAS
SYO: — —
SYO: Required .BAS
SYO0: Required .BAS
SYo: Required .BAS
SYo: All All
SYo: Required .BAS
SYO0: Required .DAT
SYo: NONAME .BAC (Notel)
SYo: Required .DAT
SYo: NONAME .BAS
(Note 2)
SYo: Required .BAS
SYO0: Required .BAS

SYo: — —

OUTPUT FILE
COMMAND/
STATEMENT DEVICE NAME TYPE
APPEND — — —
DUPLICATE Required — —
CHAIN — — —
COMPILE SYO: Current .BAC
COMPILE SYO: Explicit .BAC
COLLECT Input’s — —
COPY SYo: Input’s Input’s
COPY SYO0: Explicit .BAS (Note 3)
CREATE — — —
DIRECTORY — — — (Note 4)
EDIT SYO: Input’s Input’s (Note 5)
INITIALIZE SYO0: — —
KILL SYo: Required .DAT
NAME SYO: Input’s .DAT
OLD — — —
OPEN SY0: Required .DAT
OVERLAY — — —
REPLACE SYO: Current .BAS
REPLACE SYo: Explicit .BAS
RUN /RUNNH
SAVE SYO0: Current .BAS
SAVE SYO0: Explicit .BAS
TYPE — — —
UNSAVE — — —
VERIFY — — —

Note 1: MINC searches for the file type .BAC first; if there is
none, MINC then searches for the file type .BAS.

Note 2: When you RUN a stored program directly, MINC uses
SYO0: as the default input device, the name of the file is required
and MINC uses the default input file type .BAS.

Note 3: When you specify the output file name without an output
file type, MINC uses .BAS for the output file type. When you
omit both the output file name and output file type, MINC gives
the input file name and type to the output file.

Note 4: Normally, MINC lists a volume directory on your ter-
minal. You can also list the directory on a printer or create an
ASCII file of a directory listing. When you print the listing, the
output file name and type are not applicable. When you create
an ASCII file of a directory, an output file name is required and
MINC uses the output file type .DIR unless you specify a differ-
ent file type.

Note 5: When you omit the output file name and file type in an
EDIT command, MINC renames your original input file with

File Specifications

89

File Specifications

Instructions

Restrictions
Errors
Related
References

Examples

920

the .BAK file type and gives the original name and type to your
edited copy of the file. If you provide either an explicit output file
name or an explicit file type, you must provide both explicitly.

The default file types for BASIC are as follows.

.BAS BASIC program.

.DAT Data file — either a sequential or virtual array file.
.BAC A compiled BASIC program.

.BAK A backup file produced by the EDIT command.

For each command and statement, read an entire line for full in-
formation. Several commands have more than one set of de-
faults. For example, the default output file type MINC uses in
the COPY command depends on whether you include an explicit
output file name or not. The two possibilities for the COPY com-
mand are shown on separate lines.

See the individual sections for each command or statement.
See the individual sections for each command or statement.
Protected file types.

Book 2.

See the individual sections for each command or statement.

The FOR statement and the NEXT statement enclose a set of
other statements in your program. The set of statements begin-
ning with FOR and ending with NEXT is called a loop, and the
FOR statement defines the conditions that must exist before
statements within the loop are executed.

FOR control-variable=start-value TO end-value STE} incre-

nent

Component Component Type Component Value Default Condition
FOR statement none required component
control-variable numeric variable name any whole number required component
= none none required component
start-value numeric expression any whole number required component
TO statement component none required component
end-value numeric expression any whole number required component
STEP statement component none paired with

increment

increment numeric expression any whole number 1

Each FOR statement defines four features for its loop:
® a counter, called the control variable;
e astarting value for the control variable;
e an end value for the control variable;

® a positive or negative step value that MINC uses in
counting from the starting value to the end value.

The FOR and NEXT statements determine the boundaries of
the loop. The start-value and end-value arguments define the
control variable bounds. Before the loop executes once, MINC
tests to see if the control variable is within the bounds of the loop.
If the control variable is not within the bounds of the loop, con-
trol passes immediately to the statement after the NEXT state-
ment. If the control variable is within the bounds, then the loop is
executed.

Every time program control reaches the NEXT statement, the
control variable is incremented by the step value and then tested
to see if it is greater than the end value. If the control variable is

FOR

Purpose

Forms

Instructions

91

FOR

Restrictions

Errors

Related

References

Examples

92

greater than the end value, the step value is subtracted and con-
trol passes to the statement after the NEXT statement.

Although MINC accepts numeric expressions for the start-
value, end-value, or step arguments, it is better programming
practice to use numeric literals or variables. Each time MINC
executes a FOR statement, it calculates the values of expres-
sions in the FOR statement first. Therefore, your programs
might run noticeably faster if you calculate the required values
before the FOR statement.

Be careful when you use a real variable with large values for the
control variable that the step specified actually has an effect
when it is added to the control variable. Because of limited preci-
sion, 1.00000 E+08 does not change when 1 is added to it.

?MINC-F-No NEXT statement terminates FOR loop at line XX
You forgot to put in a NEXT statement.

Nested loops are improperly nested. See examples.
?MINC-F-Outer FOR loop is using control variable at line XX

More than one loop in nested loops are trying to use the same con-
trol variable.

?MINC-F-No corresponding FOR statement for NEXT at line XX

NEXT

Nesting

Loops

Branching
Numeric Precision

Book 2, Chapter 6.

In the following loop, MINC subtracts the step value from J be-
fore it exits the loop when J is incremented past 8 (the end-
value).

10 FOR =1 TO 8 STEP 2

20 PRINT |

30 NEXT J

40 REM — Print the value of] outside the loop
50 PRINT ‘The value of } after the loop is’;)

60 END

RUNNH

FOR

g w -

7 .
The value of) after the loop is 7

READY

The following example shows a pair of improperly nested loops
and what happens when you try to execute them.

READY

LISTNH

10 FOR I=1 TO 10
20 FOR J=1 TO 5
30 NEXT |

40 NEXT J

READY
RUNNH

?MINC-F-No corresponding FOR statement for NEXT at line 30

READY

93

GOSUB

Purpose

Forms

Instructions

Restrictions

Errors

94

Use a GOSUB statement to execute the statements in a
subroutine you have written. When MINC executes the GOSUB
statement, it transfers control to a subroutine. When MINC ex-
ecutes a RETURN statement within the subroutine, it transfers
control back to the statement following the GOSUB instruection.

GOSUB stmt#

Component Component Type Component Value Default Condition
GOSUB statement none required component
stmt# numeric literal 1 to 32,767 required component

Complete the GOSUB statement with a valid statement
number.

MINC accepts GOSUB statements that are within subroutines.
Therefore, you can nest subroutines by transferring control
from one subroutine into another. MINC’s limit is 20 levels of
nesting. If 20 subroutines are already active when MINC exe-
cutes another GOSUB statement, MINC signals an error.

MINC signals an error if the statement number you specify does
not exist in your program. GOSUB statements can transfer con-
trol to the first statement in a multistatement line but not to sub-
sequent ones.

You cannot use a variable or operator expression as the state-
ment number. MINC does not permit any default for the state-
ment number. MINC does update all GOSUB target statement
numbers whenever you use the RESEQ command to renumber
statements in a program.

Do not let the main program execute subroutine statements as if
they were part of the main program. If this happens, the pro-
gram halts with an error when it encounters the RETURN
statement for the subroutine. See Chapter 9 of Book 2.

?MINC-F-Reached RETURN without executing a GOSUB statement at line XX

?MINC-F-GOSUB fails; 20 subroutines already active at line XX

GOSUB

You have tried to nest subroutines more than 20 levels deep.

You used a GOTO from a subroutine rather than a RETURN,
and the subroutine got called more than 20 times.

?MINC-F-Program does not have a statement number specified at line XX

The statement number specified by the GOSUB statement does
not exist in the program.

Branching Related
ON

IF

RETURN

Book 2, Chapter 9. References

Book 6, Service Subroutines.

See Book 2. Examples

95

GO TO

Purpose

Forms

Instructions

Restrictions

96

The GO TO statement is one of MINC’s branching statements.
When MINC executes a GO TO statement, it transfers control
immediately to another statement in your program. Therefore,
GO TO is the simplest way to transfer control forward or back-
ward in your program. :

GO TO stmt#

Component Component Type Component Value Default Condition
GO TO statement none required component
stmt# numeric literal 1 to 32,767 required component

Complete the GO TO statement with the line number of the
statement you want MINC to execute next.

MINC signals an error if the statement number you specify does
not exist in your program. GO TO statements can transfer con-
trol to the first statement in a multistatement line but not to sub-
sequent ones.

You cannot use a variable or operator expression as the state-
ment number. MINC does not permit any default for the state-
ment number. MINC does update all GO TO target statement
numbers whenever you use the RESEQ command to renumber
statements in a program.

GO TO statements are simple and attractive, but if you use them
heavily in a complicated program, they can make your program
difficult to understand and modify. Subroutines, FOR-NEXT
loops, CHAIN techniques, and OVERLAY techniques are all
easier to follow, if you use them properly.

However, the immediate mode GO TO is extremely convenient
while you are debugging a program. For example, after you
have corrected a program statement (by retyping it or by using a
SUB command), you can use an immediate mode GO TO state-
ment to make MINC continue running your program from the
corrected statement or any other statement you choose.

MINC does transfer control to a statement number within a
subroutine, but subsequently produces an error when it
executes the subroutine’s RETURN statement.

GO TO

?MINC-F-Program does not have a statement number specified at line XX Errors

The statement number specified by the GO TO statement does
not exist in the program.

Branching Related
IF statements

ON statements

Book 2, Chapter 5. References
See Book 2. Examples

97

HELP

Purpose

Forms

Instructions

Restrictions

Errors

Related

98

The HELP command displays summary information about the
system feature you specify.

HELP subject
Component Component Type Component Value Default Condition
HELP command none required component
subject characters see list of subjects list of all
when you use default available subjects
condition

Use HELP when you want a short display of information about
some aspect of MINC.

The information is stored in the HELP.TXT file. HELP.TXT is
a text file and can be edited using the keypad editor. You can
create your own HELP.TXT file following the structural format
of the HELP.TXT file supplied with MINC or you can edit the
supplied HELP.TXT file to reflect your needs and experience.

The HELP command expects to find HELP.TXT on the volume
in SYO.. It ignores a HELP.TXT file on the volume in SY1:.

As the HELP.TXT file grows, the HELP command requires
more time to locate information in the file. For speedy assis-
tance, keep edits to the HELP.TXT file concise.

?HELP-F-Help not available for XXXXXXXXXXX

The HELP command cannot find any information in
HELP.TXT using the model you supplied.

?HELP-F-File not found HELP.TXT

The system volume in SYO: is missing the file needed for HELP.
The file needed is called HELP.TXT.

Book 8: MINC System Index.

HELP

Book 1, Chapter 4. References

Example HELP BASIC Examples

Result A list of all the BASIC commands and state-
ments appears on the screen.

99

IF statements

Purpose

Forms

Instructions

100

IF statements provide the mechanism for conditional branching
in a program. Branching is nonsequential transfer of control
(see Branching). When the condition you describe in an IF state-
ment is true, MINC executes the branching instruction you have
specified.

An IF statement is also a convenient way to execute a non-
branching statement under limited conditions.

IF true-condition THEN statement

Component Component Type Component Value Default Condition

IF statement none required component
true-condition logical expression true or false required component
THEN statement component none required component
statement program statement any valid statement required component

IF true-condition THEN stmt#

GO TO

GOSUB
Component Component Type Component Value Default Condition
IF statement none required component
true-condition logical expression true or false required component
transfer statement component THEN, GOTO, GOSUB required component
stmt# numeric literal 1to 32,767 - required component

IF END #channel THEN statement

Component Component Type Component Value Default Condition

IF END statement none required component
character # required component
channel numeric expression 1to 12 required component
THEN statement component none required component
statement program statement any valid statement required component

The general logic of an IF statement is as follows:

If a relational expression is true, then execute a statement; oth-
erwise ignore that statement and execute the statement that fol-
lows it.

You can specify any valid MINC statement in an IF statement.
The following operators are valid in a relational expression.

= aretwo values equal?

< > are two values not equal?

> is the first value greater than the second?

< is the first value less than the second?

>=is the first value greater than or equal to the second?

<= is the first value less than or equal to the second?

A special and very useful form of the IF statement tests for the
end of sequential input files. For example, the following state-
ment executes the subroutine beginning at statement 1000 if
there are no more records in the input file associated with chan-
nel #3.

IF END #3 THEN GOSUB 1000

You should be very careful when testing for equality between
two real numbers that are not whole numbers. Because of round-
ing, two values which may be close enough for your purposes
might be unequal to the IF statement.

If you use the IF statement as the first statement on a multiple-
statement line, the results can be very confusing. The IF state-
ment in conjunction with the backslash follows the rules listed
below.

IF logical-expression THEN stmtl \ stmt2 \ stmt3

With this form of the IF statement, the statements following the
backslash are executed if the logical expression is true. That is,
if the logical expression is true, then MINC executes statements
1, 2, and 3. If the logical expression is false, then MINC does not
execute any of the three statements but rather proceeds to the
statement following the IF statement.

IF logical-expression GO TO stmt# \ stmtl \ stmt2
IF logical-expression THEN stmt# \ stmtl \ stmt2

IFstatements

Restrictions

101

IFstatements

With this form of the IF statement, the statements following the
backslash are executed if the logical expression is false. That is,

e If the logical expression is true, then MINC jumps to
the statement number specified in the GO TO phrase,
and statements 1 and 2 are not executed.

e If the logical expression is false, then MINC does not
jump to the statement number specified in the GO TO
phrase; instead it executes statements 1 and 2 and then
proceeds to the statement following the IF statement.

Errors There are no error messages associated with IF statements.
Related Branching
ON statements
Program structures
References Book 2, Chapter 5.
Examples , See Book 2.

102

Use the INITIALIZE command to prepare a new volume for use
on MINC and to erase all files on a used volume. You must
initialize a volume before using it with the DUPLICATE com-
mand.

INTTIALIZE SYL:

Component Component Type Component Value Default Condition
INITIALIZE command none required component.
SY1: characters none required component

When you complete the command, MINC reports the current
volume identifier and owner. You cannot initialize a volume
whose “owner” is DIGITAL. MINC prompts:

Proceed with initialization (Y or N)?

Type NO to cancel the command; type YES to confirm that
MINC should destroy all files on the volume you have loaded and
proceed with the initialization.

MINC'’s first step in processing the command is to ask for a new
volume identifier and owner name. The identifier and name can
use any characters on your main keyboard except control com-
binations, and they can be from 0 to 12 characters long.

When you have entered the new volume identifier and owner
name, MINC erases the entire directory of the volume you are
initializing. MINC then checks each block on the volume, marks
each bad block so that you cannot use the block accidentally and
counts the number of bad blocks. If MINC finds more than 20
bad blocks, it displays a message that the volume is unusable.
For 20 bad blocks, or less, MINC displays the following mes-
sage:

Volume initialized. nnn bad blocks found.

Choose volume identifiers that are informative as well as
unique. For example, a volume identifier that indicates the gen-
eral purpose of most files to be stored on the volume helps to dis-
tinguish it from other volumes you are using. For a system disk-
ette, choose a volume identifier which reflects the fact that the

INITIALIZE

Purpose

Forms

Instructions

Restrictions

103

INITIALIZE

Errors

Related

References

Examples

104

volume is a system diskette because system files do not appear in
a directory listing.

Assign the owner equally carefully. If you are using several dif-
ferent volumes in your work, you might find it useful to assign
different owner names depending on the purpose for the volume.

2UTILITY-F-Unable to initialize volume with owner name ‘DIGITAL’

You mistakenly put a Master diskette in SY1: instead of a new
diskette.

4

PUTILITY-F-Error writing directory

The diskette in SY 1: has bad blocks in the directory. Use another
diskette.

?UTILITY-F-Read error

There is no diskette in SY1: or the diskette is inserted
incorrectly.

?2UTILITY-F-Device SY may not be initialized.

You cannot initialize SYO:. The only form of the command is INI
SY1..

DUPLICATE
VERIFY

Book 2, Chapter 4.

The following example shows the procedure for initializing a
volume.

READY
INI SY1:
Install volume to be initialized in SY1, and press RETURN

Current volume id:eeeeeeeeeeee
Current owner: eeeeeeeeeeee
Proceed with initialization (Y or N)?Y
Type new Volume id Lab 3 system
Type new owner name:Jane Doe

Initialization is complete; found 000 bad blocks

Now you can use this new volume to store programs or a system
or data.

Use an INPUT statement whenever you want your program to
get another data value or set of values from a sequential data file
or from your keyboard. When the INPUT statement specifies a
channel number, MINC reads the next values from the file asso-
ciated with the channel. When the INPUT statement does not
specify a channel number, MINC displays a question mark (?) on
your screen and processes the values you type in response.

INPUT # channel, variable-list

Component Component Type Component Value Default Condition

INPUT statement none required component
character # paired with channel
channel numeric expression 0to 12 input from keyboard
variable-list real, integer, or string variable name required component

The variable list can include array elements as well as real, inte-
ger, and string variables. The channel number must have a nu-
meric value in the range 0 through 12. When the channel
number is equal to zero, MINC takes values that you type on
your keyboard, but it does not display the question mark (?)
prompt for input, in this case. When the channel number is omit-
ted, MINC displays the question mark prompt and takes values
that you type on your keyboard.

Complete the INPUT statement with a list of variables sepa-

rated by commas. When MINC executes the statement, it as-.

signs the data values to the variables in the same order. There-
fore, real, integer, and string values must be in the proper order
to match corresponding real, integer, and string variables or ar-
ray elements.

MINC accepts data values for INPUT statements when there is
one value on each data line and when there are several values on
a data line. When you have one value on each data line, MINC
processes one line for each INPUT statement variable or array
element. When you have several values on a single line, MINC
processes the line from left to right, collecting the characters for
each value until a comma is encountered. When you have too
many values on a data line for the number of variables and array
elements in an INPUT statement, MINC ignores the extra
values and displays a warning.

INPUT

Purpose

Forms

Instructions

105

INPUT

Restrictions

Errors

Related

106

You need not place string input values in matching quotes.
MINC accepts matching quotes and you need them if the string
contains a comma. When you mix string values and numeric
values on a data line, check that a comma follows the closing
quote for each string.

When you want to use an INPUT statement to receive values
from the keyboard, include an explanatory PRINT statement
immediately before the INPUT statement. The PRINT state-
ment can describe how many values to type and their order.

For inputting string information, use the LINPUT statement.

An INPUT statement uses a complete line of input from either a
file or the terminal. Thus, if there are more values on the line
than variables in the INPUT statement, the subsequent values
are lost.

?MINC-W-Extra values from keyboard or file ignored at line XX

You entered more values on a line (separated by commas) than
INPUT variables.

There were more values on a line of a sequential file than
INPUT variables.

?MINC-W-Enter new value. Old value did not match INPUT variable at line XX

The input value is a string and the INPUT variable is numeric,
or the input value is a number and the INPUT variable is a
string variable. Note that MINC then waits for you to enter an
appropriate value; however, it does not prompt you to enter a
value.

?MINC-F-Too few values for INPUT or READ variables at line XX

There were not enough values in a sequential file for the number
of INPUT variables.

?MINC-F-Need OPEN statement for file channel at line XX

You put an INPUT # statement in your program without open-
ing the channel associated with the file.

LINPUT
RESET
RESTORE
PRINT

INPUT

READ The READ statement requires that the corresponding
data values be in your workspace with your current program.
READ statements take data values only from DATA state-
ments. INPUT statements take only data values that are not in
your workspace.

DATA

OPEN

CLOSE

IF END #

Book 2, Chapters 3 and 11. References

See Book 2. Examples

107

INSPECT

Purpose

Forms

Instructions

Restrictions

Errors

Related

108

The INSPECT command enables you to inspect a file of charac-
ters using the keypad editor. You can use any of the keys which
move the cursor but none of the keys which would change the
contents of the file.

INSPECT filespec
Component Component Type Component Value Default Condition
INSPECT command none required component
filespec characters dev:name.typ dev: SYO:

name required

.typ .BAS

Use the INSPECT command when you want to determine the
contents of a file without changing them in any way.

Press the STORE FILE key when you have finished inspecting
the file. Because the file is unchanged, MINC does not store a
new version of the file or create a backup file (type .BAK).

You should not inspect virtual array files, .BAC files, or any
other non-ASCII files.

If you press any keys other than the cursor movement keys or
CTRL/C, the terminal sounds its warning tone to remind you
that you cannot change the file.

CREATE The CREATE command invokes the editor. You can
create a new file by typing it on the keyboard.

EDIT The EDIT command invokes the keypad editor. You can
modify an existing file or create a new file which is a modified
version of an existing file.

LIST The LIST command lists the contents of the workspace.
You control which program statements appear with the state-
ment number arguments to LIST.

INSPECT

TYPE The TYPE command displays a file on the screen start-
ing at the beginning of the file and continuing to the end. The NO

SCROLL key suspends and restarts this display. The editor
cursor commands have no effect.

Book 2, Chapter 15. References

See Book 2. Examples

109

INT

Purpose The INT function takes the value of the largest whole number
(integer) less than or equal to the value of its argument.

Forms INT(number)
Component Component Type Component Value Default Condition
INT function name/numeric any whole number required component
number numeric expression any value required component
Instructions For a positive argument, INT truncates any fraction and takes

the value of the whole number part of the argument. For a nega-
tive argument, INT again takes the whole number value smaller
than the argument.

Restrictions None included.
Errors ?MINC-F-Arguments in definition do not match function called at line XX
Related None.
References Book 2, Chapter 8.
Book 2, Mixed Mode Arithmetic.

Examples Example PRINT INT(10.3)

Result 10

Example A=INT(-7.2)

PRINT A
Result -8

Example PRINT INT(-23)
Result -23

110

The MINC keypad editor allows you to edit programs and
ASCII files quickly and easily. Although you can edit BASIC
programs by using BASIC commands, there is no easy way to
edit a file that contains text, such as a letter, memo, or mailing
list, easily with BASIC. The keypad editor enables you to create,
inspect, and edit text files. You can also use the editor to fix
BASIC programs that were damaged when your volume devel-
oped bad blocks.

CREATE filespec
EDIT inputfilespec outputfilespec
INSPECT filespec

Refer to the sections for the individual commands.

Use the CREATE command to create a new file by entering text
at the keyboard.

Use the EDIT command to modify an existing file or to create a
new file which is a modified version of an existing file.

Use the INSPECT command to display an existing file on the
screen without permitting modifications.

You can use the keypad editor to edit BASIC programs. How-
ever, the editor accepts any text as input and you can modify a
program so that BASIC cannot translate it. BASIC cannot load
or run a program with missing statement numbers or with
spurious or invisible characters. When you try to run an invalid
program, BASIC stops loading the program into the workspace
when it detects a statement it cannot recognize and then reports
a syntax error. Thus, if you have an error in the first line of the
program, BASIC does not load any of the program into the
workspace. In this case, you must use the editor to determine the
problem and fix it.

Do not edit virtual array files or any non-ASCII files such as
.BAC files.

Some of the control characters have different meanings to the
editor than they do to MINC. These control characters are as fol-
lows.

Keypad Editor

Purpose

Forms

Instructions

Restrictions

111

Keypad Editor

Errors

Related

References

Examples

112

CTRL/0 The CTRL/O character stops all output and input to
the terminal. A second CTRL/O character resets the terminal.

Note that when you press the CTRL/O character the first time,
you might get a spurious character on the screen. However, this
character goes away when you reset CTRL/O.

When you reset CTRL/O, the cursor is not always in the same
place on the screen as MINC thinks it is internally. CTRL/W re-
freshes the screen so that the cursor is in the same place on the
screen as it is internally.

CTRL/S, CTRL/Q These characters work the same in the edi-
tor as in BASIC.

CTRL/U The CTRL/U character deletes from the current
cursor position to the beginning of the line. Note that this opera-
tion is different than the CTRL/U operation in BASIC.

See the individual commands for the errors that apply to them.

SUB
DEL

Book 2, Chapter 15.

See Book 2.

Use the KILL statement within a program to erase a file on a
volume you are currently using. The KILL statement is the pro-
gram statement that is equivalent to the UNSAVE command.
Although KILL erases any valid file, the best uses for KILL
statements are to erase large data files that are no longer impor-
tant and temporary files you have finished using.

After MINC executes a KILL statement, there is no way for you
to recover the file you have erased.

KILL “filespec”

Component Component Type Component Value Default Condition
KILL statement none required component
filespec string expression dev:name.typ dev: SYO:

name required

typ .DAT

Complete the KILL statement with the name of the file you want
to erase. Enclose the file name in matching quotation marks.

Note that the KILL statement defaults to SY0: and the .DAT ex-
tension, whereas the UNSAVE command defaults to SY0; and
the .BAS extension. However, you can delete any kind of file
with either command.

?MINC-F-specified or default volume does not have file named

UNSAVE
NAME
File specifications

Book 2, Chapter 11.

See Book 2.

KILL

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

113

LEN

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

114

The LEN function takes on a value corresponding to the number
of characters in its string argument.

LEN(string)

Component Component Type Component Value Default Condition
LEN function name/numeric 0 to 255 required component
string string expression any valid string required component

Use LEN to determine how many characters are in a string.

LEN is useful for string processing, for example, screening
input to check that the required number of characters is present
or centering string displays on the screen.

None included.
?MINC-F-Arguments in definition do not match function called
You did not use a string expression as the argument.

POS, SEG$ The POS and SEG$ functions perform related
string processing operations. The POS function determines the
location of a search string within another string. The SEG$
function extracts a substring from within another string.

Book 2, Chapter 8.

Example PRINT LEN(‘abedefghijklmnopqrstuvwxyz’)
Result 26

Example A=LEN(‘MINC’)
PRINT A

Result /B/ Y

Example PRINT LEN(”)
Result 0

Normally, MINC provides approximately 5000 words in the
workspace. A large program or a series of program files com-
bined by APPEND commands can exhaust your workspace and
cause MINC to display messages such as

?MINC-F-Array overfills workspace at line 10

The LENGTH command reports how many words are used and
how many words are still available in the workspace. The
LENGTH command subtracts the length of the current pro-
gram and the arrays and variables allocated for it from the full
size of the workspace.

LENGTH
Component Component Type Component Value Default Condition
LENGTH command none required component

Whenever MINC is READY, use the LENGTH command to
check the workspace in use by your current program and togeta
report of the amount of workspace that is not being used. Type
LENGTH whenever MINC displays READY.

To determine the total size of the workspace, enter the LENGTH
command after performing an SCR command.

There are no error messages associated with this command.

EXTRA_SPACE
NORMAL_SPACE

Book 2, Chapter 4.

See Book 2.

LENGTH

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

1156

LET

Purpose

Forms

Instructions

Restrictions

Errors
Related

References

Examples

116

MINC accepts the verb LET to distinguish assignment state-
ments from other statements, but there is no important benefit
from using LET. For example, the two statements LET A%=5
and A%=5 mean and do the same thing: “store the value 5 in the
integer variable named A%.” Some MINC users prefer to use
LET in every statement that assigns a value to a variable or ar-
ray element, but most MINC users choose to save workspace by
leaving LET out.

LET variable = value

Component Component Type Component Value Default Condition

LET statement : none assigns value

variable string or numeric any valid name required component
variable name

= none none required component

value string or numeric same type as variable required component
expression

Use LET in any assignment statement — any statement that as-
signs a value to a variable or array element — if you like.

None.

There are no error messages associated with this statement.
Assignment statements

Book 2, Chapters 2 and 3.

See Book 2.

Use a LINPUT statement to get an entire data line from a se-
quential data file or from your keyboard. LINPUT treats each
entire line as a character string. MINC takes a line of data for
each variable or array element in the LINPUT statement.

Techniques for using LINPUT statements are often more com-
plex than equivalent techniques for INPUT statements.
LINPUT statements are somewhat more convenient than
INPUT statements for string values that are on separate lines.
The principal advantages in this case are that you do not have to
enclose a string value in string delimiters and you do not need
special techniques to process the apostrophe and quotation mark
characters. However, to input numeric values, you have to use
special conversion functions, such as VAL, to evaluate the nu-
meric equivalents of the strings of digits LINPUT takes from a
file.

LINPUT # channel, variable-list

Component Component Type Component Value Default Condition

LINPUT statement none required component
statement component # paired with channel
channel numeric expression 0to12 read from keyboard

variable-list string variable name any string variable required component

The value of the channel number must be in the range 0 through
12. When the channel number is equal to zero, MINC receives
values from the keyboard.

Complete a LINPUT statement with a list of string variables
separated by commas. When MINC executes a LINPUT state-
ment, it gets an entire line from a file or from your terminal for
each variable or array element in the LINPUT statement.
Every character in each line is significant. MINC takes all com-
mas, apostrophes, and quotation marks as literal characters.
From the keyboard, the RETURN key terminates the line.
When LINPUT encounters the end of the line, it assigns the con-
tents of the line as the value of the current string variable and
then either finishes executing or reads the next line if there are
more variables to be filled.

When you do not specify a channel number in a LINPUT state-
ment, MINC displays a question mark prompt on your screen.

LINPUT

Purpose

Forms

Instructions

117

LINPUT

Restrictions

Errors

Related
References

Examples

118

Each line you type in response is assigned to the corresponding
variable or array element in the LINPUT statement.

When you specify channel number zeroin a LINPUT statement,

MINC also reads the characters entered on the keyboard but, in
this case, does not display the prompt.

None included.

?MINC-F-Too few values for INPUT or READ variables at line XX

There were not enough values in asequential file for the number
of variables in a LINPUT statement.

?MINC-F-Syntax error; cannot translate the statement at line XX
A LINPUT variable is not a string variable.
?MINC-F-Need OPEN statement for file channel at line XX

You used a LINPUT # statement without using an OPEN state-
ment to open the associated file.

INPUT
Book 2, Chapter 3.

See Book 2.

The line printer is an optional MINC device that allows you to
obtain information from MINC on paper. The line printer has
the device name LP:. Several commands and statements permit
LP: as a file specification.

OPEN LP? FOR OUTPUT AS FILE x
PRINT #x ...

DIR filespec LP:
SAVE LP:
COPY filespec LP:

Using the forms of the commands listed above directs the output
to the line printer instead of to the terminal or a file.

The line printer is only an output device.
See the individual commands for the appropriate errors.

DIR
COPY
OPEN
SAVE

Book 2.
The following example prints “This is a test of the line printer”
on the line printer.

10 OPEN ‘LP:" FOR OUTPUT AS FILE 1

20 PRINT #1_'This is a test of the line printer’
30 CLOSE

40 END

Line Printer

Purpose

Forms

Instructions

Restrictions
Errors

Related

References

Examples

119

LIST/LISTNH

Purpose

Forms

Instructions

120

When MINC displays READY, use the LIST command (or
LISTNH) todisplay all or parts of your current program on your
screen. MINC shows each statement in the system’s internal
form. BASIC verbs and other program keywords appear in cap-
ital letters, and all letters in variable and array names are also
capitalized. String literals, the text in REM statements, and
MINC routine names appear as you entered them, in upper or
lower case. Strings of spaces and tabs are collapsed to a single
space except within string literals or remarks. MINC always
lists your program in statement number order.

LISTX H linespec, linespec, ...

Component Component Type Component Value Default Condition

LISTNH command none required component

linespec none see form of linespec entire program

Form of linespec:

firstline numeric literal 1 to 32,767 first program
statement

- statement component - paired with lastline

lastline numeric literal 1 to 32,767 last program
statement

MINC always reports program errors with the statement
number of the error (or of a closely related statement). You can
use the LIST command (or LISTNH) to display the single state-
ment or a small group of statements in order to determine the
error.

The only difference between LIST and LISTNH is that
LISTNH does not display a heading before the first statement of
your program. With slow speed terminals, there was a speed ad-
vantage to using LISTNH. However, with the fast MINC ter-
minals, LIST has the advantage of showing identifying material
for the program.

If you do not specify statement numbers with LIST (or
LISTNH), MINC displays the entire program. (The section en-
titled “CTRL Operations” describes how to interrupt a long list-

ing.)

If you want to display parts of the current program, add state-
ment numbers to the LIST command (or LISTNH). You can list

a single statement, a series of nonconsecutive statements, a
group of consecutive statements, several groups, or any com-
bination.

Note that if you try to list a line or lines that are not in your pro-
gram, MINC does not give you an error message. MINC prints
the header line and then a blank line.

You may find it useful to limit the listings you ask for to about 15
statements. Your screen will then have enough room for you to
enter, retype, or correct a few statements before any statements
you have displayed scroll off the top of your screen.

You can review the statements in the main program surround-
ing a GOSUB statement as well as relevant lines from a
subroutine at the same time by specifying two statement ranges
in a LIST command.

The LIST command is the only way to examine the program cur-
rently in your workspace. The TYPE command works for disk-
ette files only.

There are no error messages associated with this command.

CTRL operations
COPY
SAVE
TYPE

Book 2, Chapter 4.

Example LIST 10
Result Lists line 10 only.

Example LIST 150-350
Result Lists all lines between 150 and 350.

Example LIST 200-
Result Lists all lines from 200 to the end.

Example LIST

Result Lists the entire program.

LIST/LISTNH

Restrictions

Errors

Related

References

Examples

121

LOG

Purpose

Forms

Instructions

Restrictions
Errors

Related

References

122

The LOG function takes the value of the natural logarithm of its
argument.

LOG(number)

Component Component Type Component Value Default Condition
LOG function name/real -87 to 88 required component
number numeric expression any positive required component

real number

Use LOG to determine the natural logarithm of an expression.
The LOG function is equivalent to the following mathematical
expression:

log.(number)

The base of the natural logarithms, e, has the value approxi-
mately 2.71828 in MINC.

None included.
?MINC-W-LOG or LOG10 expression less than or equal to 0 at line XX

The LOG function is the inverse of the EXP function. The follow-
ing identity expresses the relationship between LOG and EXP:

number = LOG(EXP(number))

The LOG function can be used to generate a logarithm for any
required base, as shown in the following identity:

log, (number) = log.(number)/log.(x)

Book 2, Chapter 2.
Book 3, Numeric Precision.

Example
Result

Example

Result
Example

Result

PRINT LOG(2.718281)
1

A=L0G(2.71829)
PRINT A

1
PRINT LOG(2.71828)

999999

LOG

Examples

123

LOG10

Purpose

Forms

Instructions

Restrictions
Errors

Related

References

Examples

124

The LOG10 function takes on the value of the base-10 logarithm
of its argument.

LOG10(number)

Component Component Type Component Value Default Condition
LOG10 function name/real -38 to 38 required component
number numeric expression any positive required component

real number

Use LOG10 to determine the base-10 logarithm of any numeric
expression.

None included.
?MINC-W-LOG or LOG10 expression less than or equal to 0 at line XX
LOG The LOG function provides the natural logarithm of any
numeric expression. The LOG10 and LOG functions are related
by the following identity:

LOG10(number) = LOG(number)/LOG(10)
Book 2, Chapter 2.

Example PRINT LOG10(10)

Result 1

Example A=L0OG10(1000)
PRINT A

Result 3

Example PRINT LOG10(1E-6)
Result -6

MINC is a system with many related components. Although
each of the components has been both carefully designed and
thoroughly tested, some mistakes and faults are inevitable. A
diskette might be damaged but still seem to be in working order
— until you try to use it. A connection could be loose or un-
plugged, or an electrical component could fail. At a different
level, you might make a typing mistake or a logical error. You
might fill a diskette to capacity and then try to store a file that
cannot fit on it.

For each of those conditions (and many more), MINC displays a
brief message that describes what has happened. There are hun-
dreds of messages, many of which you might never see and
others you are likely to see often.

Book 8: MINC System Index lists and explains all of the mes-
sages your MINC system can send you. Read the beginning of
Book 8 carefully for full details about how to use it. For your con-
venience, this section summarizes the most important message
features.

?environment-severity-text

Component Component Type Component Value Default Condition
environment characters MINC, EDITOR, DIR, always present
UTILITY, KMON, MON,
BOOT
- character hyphen always present
severity character F,Worl always present
- character hyphen always present
text characters explanation always present

The forms of prompt sequences and reports depend on the com-
mands and processes they pertain to.

F stands for fatal message. MINC stops your program when you
get a fatal error message.

W stands for warning message. MINC does not halt your pro-
gram in this case, although you should fix the cause of the warn-
ing and run the program again.

Messages

Purpose

Forms

Instructions

125

Messages

126

I stands for information. These messages give you information
about the environment but do not halt the program.

When you see an unfamiliar error message, look it up either in
Book 8 or in the book that seems to be relevant. The discussion of
the message in Book 8 directs you to the relevant book for more
information.

In Book 8, all messages are alphabetized in the same form as
they appear on the screen. The order for any special characters
appears in the ASCII collating sequence in Appendix A of Book
2.

The most frequent errors occur in program statements. The
messages relevant to these errors have the environment de-
signator MINC. Less common errors involve the system utility
programs, the directory, and the keypad editor. These messages
have environment designators UTILITY, DIR, and EDITOR,

respectively.

The least frequent errors occur through some of the MINC sys-
tem files. These messages have environment designators
KMON, MON, and BOOT. The BOOT messages appear only if
you try to start MINC with a diskette that is not a system disk-
ette or a diskette with bad system files.

The description for every message in the manual includes sug-
gestions for you to follow when the message appears. Some mes-
sages also have highly technical descriptions and instructions
that involve MINC’s design and the ways MINC works. Those
messages are unlikely to appear, however, and if any of them
does appear, it probably signals a problem that requires techni-
cal service.

After most messages, MINC returns to the READY message,
and you can try your procedure again. Occasionally, however,
you may have to restart your system.

Whenever you see a message that is not covered in the message
manual, your system has developed a serious problem. If this
should happen, notify the MINC Product Service Center at the
following telephone numbers.

Massachusetts customers: 1-800-762-9700

Customers in rest of
continental United States: 1-800-225-9366

Messages

Customers in Alaska,

Hawaii, and Canada: 1-617-493-9473

None included. Restrictions
Not applicable. Errors
None included. Related
Book 2. References
Book 8.

None included. Examples

127

NAME

Purpose

Forms

Instructions

Restrictions

128

By using a NAME statement in a program, you can change the
name of any file that is not currently open.

NAME “old-filespec” TO “new-filespec”

Component Component Type Component Value Default Condition
NAME statement none required component
old-filespec string expression dev:name.typ dev: SYO:

name required

.typ .DAT
TO statement component none required component
new-filespec string expression dev:name.typ dev: SYO:

name old-filespec
name
.typ .DAT

Complete the NAME statement with the existing file name and
the new name you are giving to the file. If you use an explicit de-
vice abbreviation for either file name, you must also use it for the
other one.

The NAME statement requires careful labeling and use of disk-
ettes as well as thorough testing of the programs that use it. In
particular, be careful to install the correct volume in the proper
device before you run a program that has a NAME statement. If
the output volume already has another file with the new name
you are assigning, that file will be erased. MINC does not give
any warning when this happens, and there is no way torecover a
file that you accidentally erase with a NAME statement. For ex-
ample, if your SY1: volume already contains a file named
ROSTER.C41, the following statement erases it:

NAME “SY1:LIST.TXT" TO “SY1:ROSTER.C41"

After MINC executes the statement, the contents of LIST.TXT
have the name ROSTER.C41.

If the device does not match in both file specifications, the wrong
file can get named. For example,

NAME 'PROG.BAS’ TO 'SY1:NEW.BAS’

This NAME statement renames SY0:PROG.BAS to
SYO:NEW.BAS. The volume in SY1: is not affected.

?MINC-F-Specified or default volume does not have file named
?MINC-F-1/O error; unable to check volume owner
The diskette in SY1: is inserted incorrectly or is missing.

RENAME The RENAME command changes the name of the
program in the workspace.

Book 2.

Example NAME ‘PROG.BAS’' TO ‘PROG.OLD’

Result The program in file SY0:PROG.BAS has been
renamed to SY0:PROG.OLD.

NAME

Errors

Related

References

Examples

129

NEW

Purpose

Forms

Instructions

Restrictions

130

When MINC displays READY, use the NEW command to erase
your workspace and provide the name of a new program you
want to type in. When MINC executes a NEW command, it
deletes all program lines in the workspace and cancels all of the
current variables, arrays, and functions you have defined in
DEF statements.

NEW filename

Component Component Type Component Value Default Condition
NEW command none required component
filename characters SYO0:name.BAS prompts for name

If you want to store your current program, use the SAVE com-
mand or the REPLACE command before typing NEW. After
MINC executes a NEW command, you cannot recover any pro-
gram lines that MINC erased.

If you specify a program name with the NEW command, MINC
uses the name. If you do not specify a new name, MINC requests
one with the following message.

NEW FILE NAME —

If you respond with a name, MINC uses it. If you respond by
pressing only the RETURN key, MINC uses the name
NONAME.

The NEW command always assumes device SYO: and file type
.BAS, regardless of what you enter for device and file type.
Thus, with the NEW command, all you can provide is the name,
not the device or the file type.

If the name argument has more than six characters, NEW trun-
cates to six with no warning.

If you entered a file name and a file type, NEW stops reading
when it finds the dot (.) and ignores whatever file type you tried
to enter. For example, the following sequence of commands
name the workspace ABCDEF.BAS.

NEW

READY
NEW ABCDEFGH.EX1

READY
LIST

ABCDEF 10:20:15 17-JUL-78
READY
?MINC-F-Invalid file name Errors

There are invalid characters in the file name. In this case, MINC
defaults the name to NONAME.

SCR Related

CLEAR

SAVE

REPLACE

Book 2, Chapter 3. References
Example NEW SINES Examples

Result The workspace is now named SINES.BAS.

131

NEXT

Purpose

Forms

Instructions

Restrictions

Errors

132

Every FOR statement you use must have a corresponding
NEXT statement that follows it somewhere in the program. The
paired FOR statement and NEXT statement define a loop. The
FOR statement controls how many times MINC executes the set
of statements in the loop. Each time the NEXT statement for a
loop executes, the program transfers control back to the FOR
statement, increments the loop control variable, tests the new
value of the control variable, and repeats the loop’s statements if
the control variable is still in the proper range of values.

NEXT control-variable

Component Component Type Component Value Default Condition

NEXT statement none required component
control-variable numeric variable =~ NEXT assigns value required component
name

Complete the NEXT statement with the control variable that
the corresponding FOR statement uses. A NEXT statement
cannot precede its FOR statement. MINC does accept NEXT
statements that are in multistatement lines.

In certain cases it is useful to use a GO TO statement within a
loop to transfer control to the NEXT statement at the end of the

loop. With that technique, you can execute some statements in
the loop without executing them all.

Be careful when you put a NEXT statement in a THEN clause.
The following example loops only once.

10 FOR I=1 TO 10000
20 IF >50 THEN NEXT |

?MINC-F-NO NEXT statement terminates FOR loop at line XX
You forgot to put in a NEXT statement.
Nested loops are improperly nested.

?MINC-F-Outer FOR LOORP is using control variable at line xx

NEXT

More than one loop in nested loops are trying to use the same con-
trol variable.

?MINC-F-No corresponding FOR statement for NEXT at line XX

FOR Related
Loops

Branching

Book 2, Chapter 6. References
See FOR. Examples

133

NORMAL_SPACE

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

134

The NORMAL_SPACE statement is the opposite of the
EXTRA_SPACE statement. When you execute this statement,
MINC removes 2048 words from the workspace to allow faster
file access.

NORMAL_SPACE

Component Component Type Component Value Default Condition
NORMAL_SPACE statement none required component

NORMAL_SPACE should be used only when READY is
displayed. If the program currently in the workspace is to be
preserved, you should use the SAVE or REPLACE commands
before executing NORMAL_SPACE, because a successful oper-
ation of this statement causes the workspace to be scratched. Ex-
ecution of the statement causes some informative text to be
displayed, and you are asked if the workspace can be erased. You
must respond by typing Y or N. If you enter Y, MINC performs
the operation and displays the READY message after a short
time. If you enter N, MINC displays a message and then displays
the READY message immediately. In this case, the workspace is
left intact.

Since NORMAL_SPACE is a statement, it can be executed from
a BASIC program. However, MINC never returns to the next
program statement. Control will always pass to READY.

?MINC-F-Workspace contents remain unchanged

This message is not truly an error message. This message ap-
pears when you answer N (no) to the query “Are you ready to
have the workspace erased?” See the example below.

EXTRA_SPACE adds the 2048 extra words to the workspace.

None.

NORMAL_SPACE

The following example shows the use of the NORMAL_SPACE Examples
statement.

READY
NORMAL_SPACE

Changing the size of the workspace requires erasing
the workspace. You must already have used either the
SAVE or REPLACE command to store the program if

you want to preserve it. Are you ready to have the workspace erased? (Y or N):
Y

READY

135

Numeric Precision

Purpose

Forms

Instructions

Restrictions
Errors
Related

References

Examples

136

The purpose of this section is to help you understand why MINC
does not always display results that are accurate to as many
decimal places as you would like.

Not applicable.

MINC calculates numbers to only about 1 in 10’ parts. For this
reason, numbers that cannot be represented exactly with this
precision can only be imprecisely represented.

No irrational number (such as 7) can be exactly represented nu-
merically by any computer, including MINC.

Note that sin(x) is approximately equal to x for all x’s very close
to 0, 7, 2, and so forth. Therefore, if 7 is incorrect by 1 in 10/,
then sin(r) is approximately equal to 1/10’.

Similar reasoning applies to many other problems. For exam-
ple, in a computer,

/5y #5
because /5 cannot be represented exactly. By the same token,
3*(1/6) # .5
because 1/6 cannot be represented exactly.
Note that the rounding process cannot help, because when a
number cannot be represented accurately, neither you nor the
computer can guess how to round it.
None included.
None included.

None included.

Knuth, D. E., The Art of Computer Programming. Volume 2, sec-
tion 4.2. Reading, Mass.: Addison-Wesley, 1969.

None included.

The OCT function takes on a numeric value equivalent to an oc-
tal value specified as a string of digits whose values range from 0
to 7. The OCT function provides a method for converting a string
representing an octal value to its numeric equivalent. There is
no reverse operation for converting a numeric value to an octal
string.

OCT(octal-string)

Component Cohponent Type Component Value Default Condition
OCT function name/integer -32,768 to 32,767 required component
octal-string string expression ‘0 to ‘177 71T required component

Use OCT when you need to manipulate the numeric equivalent
of an octal value.

The only characters permitted in the octal-string argument are
0 through 7 and space.

?MINC-F-Arguments in definition do not match function called at line XX

If converted, the octal-string argument would result in a value
for OCT exceeding the integer range.

Invalid characters are in the string.

BIN performs asimilar conversion for a string of 1’s and 0’s re-
presenting a binary value.

None.

Example PRINT OCT(‘177 777’)

Result -1

Example A=0CT(‘1000)
PRINT A

Result 512

OCT

Purpose

Forms

Instructions
Restrictions

Errors

Related

References

Examples

137

OCT

138

Example PRINT OCT(“77 777’)
Result 32,767

Example PRINT OCT(‘100 000’)
Result -32,768

Example PRINT OCT(")

Result 0

Use the OLD command to bring a program from a volume you
are using into your workspace. When MINC executes an OLD
command, it erases your workspace entirely, clears all varia-
bles, arrays, and functions you have defined, and then gets the
program from the file you have specified.

OLD filespec

Component Component Type Component Value Default Condition
OLD command none required component
filespec characters dev:name.typ dev: SYO:

name prompts for
name

.typ .BAC first,
then .BAS

OLD searches for the file type .BAC first. If the input volume
does not have a file with the specified name and type .BAC, OLD
searches for the file type .BAS.

If you want to store your current program, use the SAVE com-
mand or REPLACE command before you type OLD. After
MINC executes an OLD command, you cannot restore any state-
ments that MINC erases.

If you specify a file name in an OLD command, MINC brings the
program in the file into your workspace directly. If you do not
specify a file name, MINC requests a file name with the follow-
ing message.

OLD FILE NAME—

MINC brings the program you specify into your workspace.
None included.

?MINC-F-Specified or default volume does not have file named

The file is not on the volume.

The volume has bad blocks in the directory.

There is no volume in the drive.

oLD

Purpose

Forms

Instructions

Restrictions

Errors

139

oLD

Related

References

Examples

140

?MON-F-Trap to X XXXXX

The specified volume is uninitialized.
?MINC-F-Invalid file name

There are invalid characters in the file named.
?MINC-F-Syntax error; cannot translate the statement

Editing with keypad editor left a blank line in the file or a line
number with a blank statement. Both are fatal to OLD.

APPEND
CHAIN
Keypad Editor
OVERLAY
SAVE
REPLACE

Book 2, Chapter 4.

See Book 2.

Use an ON statement in a program when you want the result
of an expression to define and control a multiple branch. The
GO TO statement and GOSUB statement by themselves permit
only an unconditional branch to a single statement number. ON
statements combine with GO TO and GOSUB statements to pro-
vide unconditional branching to one of a set of statement
numbers. The particular statement number branched to is se-
lected by the value of a control expression.

ON control-value GO TO stmt#-list

GOSUB
Component Component Type Component Value Default Condition
ON statement none required component
control-value numeric variable 1 to list length required component
or expression
GO TO GOSUB statement component none required component
stmt#-list list 1 to 32,767 required component

Use the ON statement to control multiple conditional branching
based on a numeric value.

Separate the target statement numbers with commas. The or-
der of the statement numbers controls the branching behavior of
the program.

If the control value is negative, equal to 0, or has a larger value
than the number of target statements, MINC prints the follow-
ing message.

?MINC-F-Value of control expression is out of range at line 10

Therefore, you should test the control value immediately before
any ON statement and include other statements that handle im-
proper control values.

When you call a subroutine with an ON GOSUB staten.cnt, the
RETURN statement always returns control to the statement
following the ON GOSUB statement.

ON statements

Purpose

Forms

Instructions

141

ON statements

Restrictions

Errors

Related

References

Examples

142

None.
?MINC-F-Value of control expression is out of range at line XX

The value of the control expression is less than 1 or greater than
the number of statement numbers in the list.

?MINC-F-Program does not have a statement number specified at line XX

The statement number specified by the ON GOSUB or on
GO TO statement does not exist in the program.

?MINC-F-GOSUB fails; 20 subroutines already active at line XX

You have tried to nest subroutines more than 20 levels deep.

?MINC-F-Reached RETURN without executing a GOSUB statement at line XX

GO TO
GOSUB
Branching
Nesting

Book 2, Chapters 5 and 9.

The following ON/GO TO statement means “if the value of the
expression is n, transfer control to the nth statement number in
the list.”

ON X1 GO TO 32767, 200, 300, 100
If the control variable X1 had the value 3, MINC would transfer

control to statement number 300 because 300 is the third state-
ment number in the statement number list.

OPEN

Use an OPEN statement in your program to assign a channel Purpose
number to an input file or output file that is stored on a diskette.
You can open a channel in order to use an existing sequential
data file or virtual array file or to create new sequential or vir-

tual array files.

MINC provides 12 file channels for your use, numbered 1
through 12. All 12 file channels can be in use at the same time.
Channel 0 is always reserved for the terminal. The OPEN state-
ment assigns a file channel to a file. You can open a file at any
point in your program, but you must open a file before MINC
can execute any statement that requires the channel number.
The following statements require channel numbers.

INPUT # channel, variable-list

LINPUT # channel, variable-list

PRINT # channel, USING description, print-list
IF END # channel THEN statement

Any reference to a virtual array file element (other than in the
DIM statement which describes the virtual array file).

OPEN filespec FOR INPUT AS FILE # channel Forms

DOUBLEBUF, FILESIZE value

FOR OUTPUT
Component Component Type Component Value Default Condition
OPEN statement none required component
filespec string expression dev:name.typ dev: SYO:
name required
.typ .DAT
FOR INPUT statement component none input and output
FOR OUTPUT (virtual array
files only)
AS FILE statement component none required component
statement component none optional
channel numeric expression 1to12 required component
DOUBLE BUF statement component none normal file
transfer
FILESIZE statement component none normal space
allocation
value numeric expression 0 to available paired with
blocks on volume FILESIZE

143

OPEN

Instructions

144

The statement components DOUBLE BUF and FILESIZE
value specify advanced capabilities of the OPEN statement. You
can use either singly, or both. If you use both phrases, separate
them with a comma, as shown in the following example.

OPEN “REP" FOR INPUT AS FILE #6 DOUBLE BUF, FILESIZE 30

The phrase DOUBLE BUF must precede the FILESIZE
phrase. There is no comma before DOUBLE BUF if it is in
the OPEN statement, but there is always a comma between
DOUBLE BUF and FILESIZE. If you omit DOUBLE BUF,
you do not need a comma before FILESIZE.

NOTE

When you open a file, MINC uses 256 words of the
workspace for each file you open. Thus, if you open
three files at the same time, you reserve 3%X256=768
words of the workspace. MINC uses 512 words of the
workspace for each file opened with the DOUBLE
BUF option.

An OPEN statement has five components explained in the fol-
lowing paragraphs.

filespec The filespec argument is the specification for the ex-
isting file to read data from input transfers. For output
transfers, OPEN creates a file with the name specified when
none exists. If the file specified for output exists, MINC super-
sedes a sequential file and updates a virtual array file. The line
printer device, LP;, is a valid filespee argument.

FOR INPUT/FOR OUTPUT When you open a sequential file,
the phrase FOR INPUT opens the file for input only. The phrase
FOR OUTPUT opens the file for output only. If you specify nei-
ther, MINC opens the file for input if the file already exists, or
opens the file for output if the file does not currently exist. You
cannot open a sequential file for both input and output.

When you open a virtual array file, you can open it for input, for
output, or for both. For both types of transfers, omit the FOR
INPUT and FOR OUTPUT components.

When you want to use the line printer, remember that it is an
output-only device. Include the FOR OUTPUT component in
the OPEN statement.

channel MINC has thirteen file channels numbered 0
through 12. OPEN can assign one file at a time to each channel.
You can assign file channels in any order.

File channel 0 is the channel permanently assigned to the MINC
terminal. You cannot use channel 0 to read data from a diskette
file or send data to a diskette file, and you cannot reference chan-
nel 0 in an OPEN statement.

If you want to change the direction of transfer or use a different
file on a channel that is open, use a CLOSE statement to close the
file and the channel. Use another OPEN statement to open the
channel for your new work.

DOUBLE BUF Buffering is the technical term for describing
how MINC manages the transfer between the file and the work-
space. Using the DOUBLE BUF component in an OPEN state-
ment can result in faster file processing. However, with
DOUBLE BUF, MINC assigns twice as much workspace to the
file and the program might exceed the workspace when it runs.
It is appropriate to use DOUBLE BUF with virtual array files
only when access to the elements is sequential or very clustered.

FILESIZE value The FILESIZE component allows you to spec-
ify the size (in blocks) of the output file. This capability can be
useful when you are creating files on a relatively full volume.

The OPEN statement uses the normal method used by the sys-
tem utilities for selecting file locations on a volume. It first lo-
cates the largest and second largest unused areas. Then it re-
serves either half of the largest area or all of the second largest
area, whichever is greater.

Using the FILESIZE component, you can select one of three
procedures for selecting the file location. The following table
shows the meanings of different FILESIZE arguments.

Value Procedure
-1 Reserve the largest unused area.
0 Use the normal procedure.
>0 Reserve the number of blocks specified by the

value. Check the volume’s directory to ensure
that it contains unused areas at least as large as
required.

OPEN

145

OPEN

Restrictions

Errors

146

MINC permanently stores output files on the volume only when
a CLOSE statement executes. One safe procedure is to close each
open file as you finish using it. This avoids losing output files if
the program halts unexpectedly.

When MINC executes a STOP statement or when it stops be-
cause of a programming error, it does not close any files that are
open. However, MINC does close all files when it executes an
END statement. If MINC displays an error message or the mes-
sage “STOPPING AT LINE stmt#”, you can use an immediate
mode CLOSE statement to protect files you have opened for
output. When MINC displays READY after you have run a pro-
gram, it has executed an END statement.

MINC uses 256 words of the workspace for each file that is open.
If your program needs many variables and arrays, have as few
files as possible open simultaneously. MINC uses 512 words of
the workspace for each file whose OPEN statement contained
the DOUBLE BUF component. Operations involving files are
significantly slower than operations involving only the work-
space.

?MINC-F-OPEN statement for file channel prohibits transfer at line XX

You tried to input from a file opened for output, or to print to a
file open for input.

?MON-F-Trap to X XXXXX
The volume is not initialized.

The device does not exist; for example SY2: as a typographical
error.

In both of these cases, the workspace is scratched.
?MINC-F-OPEN fails; no suitable free space on volume for file at line XX

The file that is being opened for output is larger than the avail-
able space on the volume.

?MINC-F-Specified or default volume does not have file named

The file that you are opening for input does not exist on the
volume.

?MINC-F-OPEN fails; workspace too full for another channel at line XX

OPEN

You have tried to open more channels than there is room in the
workspace. Remember that each channel requires 256 words of
the workspace (512 for DOUBLE BUF).

?MINC-F-Need OPEN statement for file channel at line XX

You forgot an OPEN statement but used the channel number in
some statement such as LINPUT #.

?MINC-F-OPEN fails; file channel already open at line XX

You tried to open the same channel more than once without clos-
ing it in between.

?MINC-F-Value of FILESIZE expression too large or less than -1 at line XX
?MINC-F-File space allocated on volume is too small at line XX
The amount of space allocated by FILESIZE is inadequate.

The volume does not have enough available space. If you have
been using the default file allocation, use the FILESIZE option
to increase the space your program can use.

CLOSE Related
COLLECT

File Allocation

IF END #

INPUT #

LINPUT #

PRINT #

STOP

END

Book 2, Chapter 11. References

The following short program prints out “This is a test of the line Examples
printer” on the line printer.

10 OPEN ‘LP:' FOR QUTPUT AS FILE 1

20 PRINT #1, 'This is a test of the line printer’
30 CLOSE

40 END

147

OVERLAY

Purpose When you have divided a program into segments that can be
overlaid, use the OVERLAY statement to merge a segment with
the statements that are currently in your workspace.

BEFORE AFTER
SEGMENTATION SEGMENTATION
T T
MAIN MAIN MAIN MAIN
PROGRAM PROGRAM PROGRAM PROGRAM
OVERLAY
! OVEF:LAY OVEF;LAY, WORKSPACE
| ' || workspace OVERLAY REQUIRED
REQUIRED | — — — 2 AFTER
OVERLAY BEFORE OVERLAY MAIN SEGMENTATION
2 SEGMENTATION |STATEMENT| | PROGRAM
|] MAIN OVERLAY
OVERLAY PROGRAM STATEMENT
3 MAIN UNUSED
- T UNUSED PROGRAM
MAIN IRRSRSR B B y
PROGRAM
X

MR.1702

Figure 3. Overlays and the Workspace

"Forms OVERLAY f‘filespec’ LINE stmt#

Component Component Type Component Value Default Condition
OVERLAY statement none required component
filespec string expression deviname.typ dev: SYO:

name required

typ .BAS
LINE statement component none next statement
stmt# numeric expression 1 to 32,767 paired with LINE

The LINE stmt# argument is optional. If LINE and the state-
ment number are present, they represent the statement number
at which MINC starts execution after the overlay. If you omit
LINE and the number, MINC starts execution at the next se-
quential statement number after the OVERLAY statement.

Instructions When MINC reads a line of the program segment from the file,
it merges the statement into the current program. If a line with
the same statement number already exists, MINC deletes the
existing statement and replaces it with the statement from the

148 new program segment. During this process, all variables and

arrays retain their current values, and all open files remain
open. When all lines of the program segment in the file are read
into the workspace and merged with the original program lines,
MINC continues execution of the merged program at either the
statement after the OVERLAY statement or the statement spe-
cified by the LINE stmt# component.

To segment a program with the OVERLAY statement, break
the program into one main program and several overlay seg-
ments.

The total workspace required by a program segmented with the
OVERLAY statement is the size of the main program plus the
size of the largest overlay.

You must ensure that all line numbers in an overlay segment are
repeated in each subsequent segment. Otherwise, parts of the
previous segment remain in the workspace.

Unless its DEF statement is replaced by the overlay segment,
user-defined functidus are not affected by the overlay.

Note that if you enter the OVERLAY statement on a multistate-
ment line, MINC ignores the rest of the line.

You cannot specify a compiled file with the OVERLAY
statement.

?MINC-F-Specified or default volume does not have file named

The program file specified in the OVERLAY statement does not
exist on the volume.

?MINC-F-Program too large; workspace overfills at line XX

The overlay segment creates a program that is too large for the
workspace.

You tried to overlay a compiled program.
?MINC-F-Program does not have a statement number specified at line XX

The statement number specified in the LINE phrase does not
exist in the overlay segment.

?MINC-F-END statement does not have highest number in program at line XX

OVERLAY

Restrictions

Errors

149

OVERLAY

The overlay caused the END statement not to be the last in the

program.
Related APPEND

CHAIN
References Book 2, Chapter 14.
Examples None included.

150

The PI function takes on the value .

PI
Component Component Type Component Value Default Condition
PI function name/real 3.14159 required component

Use PI in any expression where the value of the mathematical
constant 7 is required.

Numeric precision — r is an irrational number that cannot be
represented exactly.

None applicable.
Numeric precision.

Book 2, Chapter 2.
Book 3, Numeric Precision.

Example PRINT PI
Result 3.14159

Example A=COS(PI)
PRINT A
Result -1

Pl

Purpose

Forms

Instructions

Restrictions

Errors
Related

References

Examples

151

POS

Purpose

Forms

Instructions

162

The POS function scans a string for the occurrence of a search
model. If the string contains the search model, POS takes on the
value of the location in the string of the first character of the
model.

POS(string,search-model,start-position)

Component Component Type Component Value Default Condition

POS function name/numeric 0 to LEN(string) required component
string string expression any valid string required component
search-model string expression any valid string required component
start-position numeric expression 1 to LEN(string) required component

Use POS to determine whether or not a string contains a search
model and to locate the position in the string of the first charac-
ter in the search model. The first character in a string is at posi-
tion 1, not position 0.

The search begins at the character position specified by the
start-position argument. If the string contains the search model,
POS takes on the character position of the first character of the
search model. If the string does not contain the search model,
POS takes on the value 0.

The following list defines the operation of POS under certain
limiting conditions.

1. If the search model is null and the string contains charac-
ters, then POS takes on either the value of the start-position
argument or the value LEN(string) + 1 (whichever is less).

2. Ifthestring argument is null, then POS takes on the value0.

3. If start-position argument has a value less than 1, then POS
starts the search at the first character in the string. That is,
POS operates as if the start-position argument had been 1.

4. If the start-position argument is greater than LEN(string)
and the search model contains characters, then POS takes
on the value 0.

5. The search fails and POS takes on the value 0 when the
search-model is longer than the string to be searched.

The case of the characters in the strings does matter. The case of
the characters in the search model must match exactly the case
of the characters in the string for the search to succeed.

?MINC-F-Arguments in definition do not match function called at line XX

One of the arguments is of the wrong data type.

The LEN and SEGS$ functions are related string processing
functions. The LEN function determines the number of charac-
ters in a string. The SEG$ function extracts a segment string
from a string.

Book 2, Chapter 8.

Example PRINT POS(‘calculator’,‘a’,1)

Result 2
Example A=POS(‘calculator’,‘A’,1)
PRINT A
Result 0
\
Example PRINT POS(‘calculator’,‘a’,2)
Result 2

Example PRINT POS(‘calculator’,‘a’,3)
Result 7

Example PRINT POS(‘calculator’,'w’,1)
Result 0

POS

Restrictions

Errors

Related

References

Examples

153

PRINT

Purpose

Forms

Instructions

154

Use a PRINT statement to display text and values, to send data
to a diskette file, and to print data directly from a program to
line printer. By composing PRINT statements in different ways
and using different programming techniques, you can use your
MINC system to produce a wide variety of line, screen, and file
designs. The most common specific uses for PRINT statements
are as follows.

® (Create blank lines

e Prompt program users for file names and initial
values :

e Print messages about how a program is running
e Transfer string or numeric values to a diskette file

e Create tables and charts for screen display
NOTE

The PRINT USING statement is another form of the
PRINT statement. Because the details of the PRINT

USING form are so numerous, they have been moved
to the section entitled PRINT USING.

PRINT #channel, USING description,print-list

Component Component Type Component Value Default Condition
PRINT statement none required component
statement component none paired with channel
channel numeric expression 0to 12 terminal screen (0)
USING statement component none paired with description
description string expression #,.*¢"- normal print
"LRCE format

print-list list see list element form blank print line
Form of list element:
item string or numeric any valid value

expression

A PRINT statement has the three components described in the
following paragraphs.

#channel You can direct program output to any file channel
open for output except a virtual array file. Use the channel you

PRINT

assigned to the file in the OPEN statement. Whenever you spec-
ify a channel number in a PRINT statement, put a number sign
(#) before the channel number and a comma after the number.

If you do not specify a channel number in a PRINT statement,
MINC uses the default #0 and directs the PRINT statement’s
output to your terminal.

USING description See the section entitled PRINT USING.

print-list The print-list argument can be null or any valid list
of valid expressions separated by commas or semicolons. A null
print list displays a blank line or concludes a display line started
by a hanging PRINT statement (one ending with a comma or
semicolon).

MINC requires separators between items in the print list. With
a PRINT USING format, it does not matter whether the separa-
tors are commas or semicolons because the spacing is controlled
by the format description, not by the normal conventions for
PRINT.

MINC considers the terminal screen to have five 14-column
zones. If you have your terminal set at 132 columns, you must
execute the TTYSET system function to set the number of col-
umns to 132 for a PRINT statement.

MINC considers the line printer to have nine 14-column zones
and 132 available columns.

None included. Restrictions
?MINC-F-Need OPEN statement for file channel at line XX Errors
You forgot the OPEN statement.

?MINC-F-File space allocated on volume is too small at line XX

You are trying to put more information into the file than there is

room. You can increase the default file size by using the

FILESIZE option of the OPEN statement.

?MINC-F-Invalid PRINT USING format or syntax at line XX

TAB function Related
PRINT USING
OPEN 155

PRINT

References Book 2.
Examples Example PRINT 2+3
Result 5

Example PRINT ‘2+3’
Result 2+3

156

The purpose of the PRINT USING form of the PRINT state-
ment is to allow you to describe exactly what you want your
output line of the PRINT statement to look like. Using the
PRINT USING form of the PRINT statement, you can format
your output lines.

PRINT #channel, USING description, print-list

Component Component Type Component Value Default Condition

PRINT statement none required component
statement component none paired with channel
channel numeric expression 0to 12 terminal screen (0)
USING statement component none paired with description
description string expression #,.*$"- normal print
"LRCE format

print-list list see list element form blank print line
Form of list element:
item string or numeric any valid value

expression

You can specify the format of the PRINT statement output pre-
cisely by including the USING component in the statement. The
USING component has two parts, the keyword USING and a
format description that PRINT uses when it executes the state-
ment. (See the USING section and the section on PRINT USING
in Book 2.) Enclose the format description in matching quotes
and follow it with a comma. The following table summarizes the
valid format description symbols and their principal meanings.

Symbol Meaning

Reserve a space for a digit
Position of a decimal point

, Separate thousands and hundreds with a

comma
*x Fill with asterisks before first digit
$$ Print a dollar sign before first digit

AAAA

Print real number in E format

- Follow negative number with minus sign

PRINT USING

Purpose

Forms

Instructions

167

PRINT USING

-

Start a string field

L Left-justify string in field
R Right-justify string in field
C Center string in field

E Expand string field if necessary

For the rest of the instructions for the PRINT USING form of
the PRINT statement, see the PRINT statement.

Restrictions To print more than one value on a line with PRINT USING for-
mat control, ensure that there is a format description for each
item in the list. That is, the format description describes a line.
Each time PRINT USING starts at the beginning of a format
description, it starts a new line.

Fatal Error Conditions

The “?MINC-F-Invalid PRINT USING format or syntax” error
message is produced if:

1. The format description is not a valid string expression.
2. There are no valid fields in the format description.

3. A string is printed in a numerie field.

4. A number is printed in a string field.

5. A negative number is printed in a floating dollar sign
or asterisk field that does not specify a trailing minus.

6. The items in the list are separated by characters other
than a comma or semicolon.

Nonfatal Error Conditions

Nonfatal error conditions, that is, error conditions that do not
terminate the program, occur if:

1. A number does not fit in the field.
2. A string does not fit in the field.

158 3. A field contains an invalid combination of characters.

4. Text to be printed forms a valid field.

If a number is larger than the field allows, MINC prints a per-
cent sign followed by the number in the standard PRINT for-
mat.

If a string is larger than any field other than an extended field,
MINC truncates the string and does not print the excess charac-
ters.

If a field contains an invalid combination of characters, the first
invalid character and all characters to its right are not recog-
nized as part of the field. These characters may form another
valid field or they may be considered text. If the invalid charac-

ters form a new valid field, this unintended field may cause a fa-
tal error condition.

?MINC-F-Need OPEN statement for file channel at line XX

You forgot the OPEN statement.

?MINC-F-File space allocated on volume is too small at line XX

You are trying to put more information into the file than there is
room. You can increase the default file size by using the
FILESIZE option of the OPEN statement.

2MINC-F-invalid PRINT USING format or syntax at line XX

PRINT
OPEN

Book 2, Chapter 13.

The following examples show invalid combinations of charac-
ters in numeric fields.

Invalid Combinations. In the following example, two dollar
signs are combined with two asterisks. $§ is a complete field and
s+g4 ## forms a second valid field. $5 is printed by $$ and
**16.30 is printed by **##.##.

10 PRINT USING “$$**## ##" 5.41, 16.30
RUNNH

$5**16.30

PRINT USING

Errors

Related

References

Examples

169

PRINT USING

160

READY

The same invalid combination appears in the following exam-
ple, but the next list item is a string. MINC produces the fatal
error message after trying to print the string “ABC” in the unin-
tended numeric field **##.4##.

10 PRINT USING “$$**H## ## 'LLL" 5.41, "ABC"

RUNNH

$5
?MINC-F-Invalid PRINT USING format or syntax at line 10

READY

In the next example, the numerie field has only three, not four,
carets.

The number does not fit in the field ##.#; a percent sign and the
number are printed followed by three carets.

AAA,,

10 PRINT USING “##.# .5.43000E+09
RUNNH

% 5.43000E+09

READY

e
In the following example, two letters cannot be combined in one
field. The string constant EEE is printed.

10 PRINT USING *“'LLEEE","VWXYZ"
RUNNH
VWXEEE

READY

Attempting to print characters as text produces error when the
characters form a valid field. For example:

10 PRINT USING “THERE ARE ### # H## PENNY NAILS",123,4,16,6

is an attempt to print

THERE ARE 123 # 4 PENNY NAILS
THERE ARE 16 # 6 PENNY NAILS

but instead produces
RUNNH

THERE ARE 123 4 16 PENNY NAILS
THERE ARE 6

READY

To correctly print characters that would form a valid format de-
scription field, you must use a string field in the format descrip-
tion and place the characters as a string constant in the list. For
example:

10 B$="THERE ARE ### '## PENNY NAIL"
20 PRINT USING B$,123,'#'4,16,"#".6

RUNNH

THERE ARE 123 # 4 PENNY NAILS
THERE ARE 16 # 6 PENNY NAILS

READY

Note that the ‘## in line 10 represents two fields — a one-place
string field (‘) and a two-place numeric field(##).

o . .
This method is also the only way to print a single or double
quotation mark character with the PRINT USING statement.
For example:

LISTNH
10 PRINT USING “HE SAID, I'M GOING * ", “ =", """, "

READY
RUNNH

HE SAID, “I'M GOING.”

READY

PRINT USING

161

Protected File Types

Purpose

Forms

Instructions

Restrictions

Errors
Related
References

Examples

162

MINC system utilities and routines are actually stored in files on
the system diskettes. To spare you the inconvenience of having
all the system file names in your directory and to safeguard the
system files against accidental deletion, the MINC system files
are protected. That is, the file types for system files are invalid in
all MINC commands and statements requiring a file specifica-
tion as an argument.

The protected file types are shown in the following list.

.BAD
.COM
.SAV
SYS
Do not attempt to use protected file types in file specifications

for your own files. MINC does not let you perform any operations
on protected files.

You do see the protected file types in several situations. If a vol-
ume develops a bad block in a system file, the name of that file
appears in the report from the VERIFY command. If you obtain

a directory of the Master diskette, several files with protected
types appear in the report.

?MINC-F-Use another file type; SYS, SAVE, COM and BAD are protected
File Specifications
File Specifications

None included.

Normally, MINC produces the same sequence of pseudo-random
numbers each time you run or chain to a program that uses the
RND function. (The section on RND covers the function in de-
tail.) If your program has a RANDOMIZE statement, MINC
produces a different sequence of pseudo-random numbers each
time the program runs.

The RND function simulates a random number generator by
choosing a number from a fixed sequence of pseudo-random
numbers. Without a RANDOMIZE statement, RND always
chooses values from the sequence starting from the same point
in the sequence. After MINC executes a RANDOMIZE state-
ment, RND selects its next value from a different point in the
pseudo-random sequence than it would have otherwise.

When MINC has not executed a RANDOMIZE statement, the
value of a pseudo-random number depends on the last pseudo-
random number used, a fixed calculation that takes no other ex-
ternal factors into consideration. That is, the complete sequence
is fixed (hence, pseudo-random). When MINC executes a
RANDOMIZE statement, the next value of RND depends on a
complicated calculation which uses unpredictable parameters
(the system clock value, the number of characters you have
typed, the number of characters MINC has displayed on your
terminal).

RANDOMIZE
Component Component Type Component Value Default Condition
RANDOMIZE statement none required component

Develop and thoroughly test your program without a
RANDOMIZE statement first. When you are satisfied that your
program handles the standard set of pseudo-random values
properly, add the RANDOMIZE statement.

Each time you run a program that has a RANDOMIZE state-
ment, the set of pseudo-random numbers from the RND func-
tion is the same for statements that precede the RANDOMIZE
statement. After MINC executes the RANDOMIZE statement,

RANDOMIZE

Purpose

Forms

Instructions

163

RANDOMIZE

the sets of pseudo-random numbers the RND function produces
are different each time you run the program.

For example, when your RANDOMIZE statement is in an
overlay or subroutine and your main program uses the RND
function both before and after MINC executes the subroutine or
overlay,

® the set of RND values in the main program is always
the same before MINC executes the subroutine or
overlay statements;

o the set of RND values in the main program is always
different after MINC executes the subroutine or
overlay statements.

When you chain programs that use the RND function, each pro-
gram must include a RANDOMIZE statement if you want un-
predictable RND values throughout the chain.

The only way to cancel the effect of a RANDOMIZE statement is
to erase the workspace with a CHAIN statement or an OLD,
NEW, SCR, or RUN command.

Restrictions None included.
Errors There are no error messages associated with this function.
Related RND function
Erasing (OLD, NEW, SCR, RUN, CHAIN)
OVERLAY
References Book 2, Chapter 8.
Examples Book 1, Permutation Demonstration.

164

The RCTRLC system function disables normal CTRL/C opera-
tion. If you need to terminate a program externally while
CTRL/C is disabled, you must restart the system manually.

variable=RCTRLC

Component Component Type Component Value Default Condition

variable numeric variable unknown required component
= none none required component
RCTRLC system function none required component

Use RCTRLC to disable normal CTRL/C operation.

The variable has some unknown value after you use the
RCTRLC system function. You can use RCTRLC to protect a
critical program against keyboard intervention. However, after
using RCTRLC you can halt the program only with manual
methods like turning off the power or using the BREAK key to
restart. With either of these manual methods, you lose the con-
tents of the workspace (which is normally preserved during a
CTRL/C operation).

The RCTRLC function does not work in immediate mode. The

system utility which displays READY reenables CTRL/C
operation.

None included.

CTRLC reenables normal operation of CTRL/C.

SYS(6) records whether CTRL/C has been pressed while
CTRL/C is disabled. Therefore, when you reenable CTRL/C op-
eration (with the CTRLC function), you can determine whether
anyone attempted to halt the program while CTRL/C was
disabled.

None.

None included.

RCTRLC

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

165

RCTRLO

Purpose

Forms

Instructions

Restrictions
Errors
Related
References

Examples

166

The RCTRLO system function ensures that output to the screen
is displayed. That is, RCTRLO cancels the effect of the most re-
cent CTRL/O combination which inhibited screen output.

Variable=RCTRLO

Component Component Type Component Value Default Condition

variable numeric variable unknown required component
= none none required component
RCTRLO none none required component

Use RCTRLO to cancel any previous CTRL/O combination. The
RCTRLO function does not require that CTRL/O be pressed
previously. That is, it operates properly whether or not it was
preceded by CTRL/O.

None included.

None included.

There is no related CTRLO function.
Book 3, CTRL Operations.

None included.

Use a READ statement whenever you want toread a valueor set
of values from a DATA statement. Usually a READ statementis
used to assign a value to a variable that remains constant
throughout an entire run of a program but might change from
run to run.

READ data-list
Component Component Type Component Value Default Condition
READ statement none required component
data-list list see list element form required component
Form for list elements:
item string or numeric READ assigns value

variable name

Complete each READ statement with a list of string and nu-
meric variables that arein the same order as string and numeric
values in the corresponding DATA statements.

Each time MINC executes a READ statement, READ assigns
the next DATA statement value to the next variable in the data-
list. You can use a RESET (RESTORE) statement to return
MINC to the first DATA statement value in your current pro-
gram.

You cannot use a READ statement to acquire data values from a
file.

?MINC-F-Too few values for INPUT or READ variables at line XX

There were not enough values in a DATA statement for the
number of READ variables.

?MINC-F-DATA value or value from file does not match variable at line XX

The READ statement is expecting a numeric variable, but the
corresponding value in the DATA statement is a string.

The DATA statement is not the last statement in a multiple
statement line (which causes MINC to interpret the last value as
a string value).

READ

Purpose

Forms

Instructions

Restrictions

Errors

167

READ

Related

References

Examples

168

DATA

INPUT

RESET

Assignment statement

Book 2, Chapter 12.

See Book 2.

Use REM statements to include comments about individual
statements and groups of statements in your program.

REM

Component Component Type Component Value Default Condition
REM statement none required component
text up to 70 characters all except \ null remark

MINC accepts any ASCII character in a remark. A remark is
terminated by the \ (backslash) character or by the RETURN
key.

MINC does not execute REM statements. When it identifies the
keyword REM at the beginning of a statement, it ignores all
other characters until it encounters a terminator.

Informative remarks are useful both to a program’s author and
to other people who have to read a program. Remarks that ex-
plain the roles of different variables, the purposes of subroutines
and functions, and the program algorithm can be particularly
useful.

The left parenthesis character, (, deletes all spaces following it in
the remark. The left bracket character, [, does not have this ef-
fect and can be used instead of the left parenthesis.

Although MINC does not execute REM statements, they do oc-
cupy workspace. A program that fits in your workspace may
nevertheless be too large when a RUN command allocates space
tovariables and arrays. One solution to the problem is to remove
REM statements. However, you can also divide your program
into parts and use CHAIN and OVERLAY statements to ex-
ecute the parts separately. Using overlays and chaining tech-
niques might sometimes be the best solution, particularly when
your REM statements clarify a large, complex program.

REM statements can have a special use in overlaid programs.
One way to ensure that a small overlay completely replaces a
larger group of statements is to use the same set of statement
numbers in each overlay and complete the superfluous state-

REM

Purpose

Forms

Instructions

Restrictions

169

REM

Errors
Related
References

Examples

170

ments with the keyword REM. The dummy REM statements
use much less of your workspace than most of the program state-
ments they replace when MINC executes an OVERLAY state-
ment. Since MINC does not execute them, they are probably
more efficient than branching around superfluous statements.

There are no errors.
Comments
Book 2, Chapter 3.

Example 10 REM Try out (parentheses) in a remark.
20 REM Try out [brackets] in a remark.

30 REM Method for using (..parentheses) in a
remark.

Result 10 REM Try out (parentheses) in a remark.
20 REM Try out [brackets] in a remark.

30 REM Method for using (..parentheses) in a
remark.

Use the RENAME command to change the name of the work-
space whenever MINC displays READY.

The RENAME command does not change your program in any
way, but it does assign the new name you specify to the work-
space.

You cannot use the RENAME command to change thenameof a
file on a diskette. That is done by the NAME statement.

RENAME filename

Component Component Type Component Value Default Condition
RENAME command none required component
filename characters name NONAME

When MINC is READY, complete the command with a new file
name.

If your workspace is empty, the RENAME is equivalent to a
NEW command. However, if the workspace is not empty, the
NEW command erases the contents whereas the RENAME
command does not.

The RENAME command lets you choose the name only; it does
not recognize a device or an extension. Although you can enter a
complete file specification, RENAME ignores all but the name
portion of the specification. If you later execute SAVE or
REPLACE, your program is saved on device SY0: with the
.BAS extension.

?MINC-F-Invalid file name

There are invalid characters in the file name. In this case, MINC
defaults the name to NONAME.

NEW

RENAME

Purpose

Forms

Instructions

Restrictions

Errors

Related

171

RENAME

References None.

Examples Example RENAME SINES

Result The workspace name is now SINES.BAS. The
contents of the workspace are unchanged.

172

The REPLACE command erases a specified file from a volume
and stores the workspace program on the same volume under
the same name as the erased file.

REPLACE filespec

Component Component Type Component Value Default Condition
REPLACE command none required component
filespec characters dev:name.typ dev: SYO:

name workspace
name .typ .BAS

If you complete the command with a file name, MINC executes
it directly.

If you do not specify a file name in the REPLACE command,
MINC replaces the file with the same name as the current work-
space name.

After MINC has replaced a file with a copy of your current pro-
gram, you cannot recover the original file.

Two common mistakes with the REPLACE command are to
mistype the file name or specify the wrong diskette volume in
the file name. In either case, you can check the name you typed
by using a LIST command which displays the current program
name. Then use the DIR command to list the names of files on the
diskettes you are using, if necessary. Use another REPLACE
command or a SAVE command to store your program when you
have decided about the proper name and volume. If you want to
change the current program name back to the original name,
use a RENAME command.

None included.

?MINC-F-Specified or default volume does not have file named

The file does not exist on the specified volume. Use the SAVE
command instead of REPLACE.

?MINC-F-Invalid file name

REPLACE

Purpose

Forms

Instructions

Restrictions

Errors

173

REPLACE

Related

References

Examples

174

The file name that you typed for the REPLACE command has
characters that are invalid for a file name.

?MINC-F-OPEN fails; no suitable free space on volume for file
There is not enough room on the volume to replace the program.

SAVE The SAVE and REPLACE commands both store your
current program on a diskette. However, the SAVE command
cannot erase any existing file. MINC prevents you from inadver-
tently erasing a file in this case and displays the message:

?MINC-F-File name in use; REPLACE or change name or volume
Book 2, Chapter 4.

See Book 2.

When MINC displays READY, use the RESEQ command to
change the statement numbers in your current program. You
can change all statement numbers, certain groups of numbers,
or just one number. In all cases, MINC identifies and changes
every occurrence of each statement number you specify except
for statement numbers that are within the comment portion of
REM statements. For example, when you use a RESEQ com-
mand to change a statement number you have used ina GOSUB
statement, MINC makes the change in the GOSUB statement as
well as in the target statement.

The RESEQ command changes statement numbers only in your
current program. When you change the statement numbers in
one of the programs in a chain or in one part of a program you
have divided into overlays, check the other files carefully. For
example, the general technique of getting a file with OLD,
changing its statement numbers with RESEQ, and storing its
new form with REPLACE is a systematic way to revise all pro-
grams in a chain and all overlays.

RESEQ newstart, oldstart - oldfinish, increment

Component Component Type Component Value Default Condition

RESEQ command none required component

newstart numeric literal 0 to 32,767 the increment value

, statement component none paired with
following arguments

oldstart numeric literal 0 to 32,767 first program
statement

- statement component none paired with oldstart
and oldfinish

oldfinish numeric literal 1 to 32,767 last program
statement

, statement component none paired with
increment

increment numeric literal 1 to 32,767 10

The full form of a RESEQ command has three components. You
can specify the range of current statement numbers MINC is to
change. You can specify the interval between new statement
numbers MINC assigns. You can specify the first value MINC is
to use for the new statement numbers it assigns. Specific in-
structions for each component follow.

RESEQ

Purpose

Forms

Instructions

175

RESEQ

176

Your program is always in statement number order in your
workspace. If your RESEQ command would change the order of
program statements at all, MINC displays the following mes-
sage and does not execute the command.

?MINC-F-RESEQ has an invalid statement number or interval

MINC requires commas between the different components of a
RESEQ command. When you study the examples that follow,
note carefully how commas are used when you omit the start
value or range.

newstart If you specify a starting value for the new statement
numbers MINC is to assign, oldstart (the first statement
number changed) becomes newstart.

If you omit the starting value, MINC uses the increment argu-
ment to calculate the first statement number in the changed set.

oldstart - oldfinish If you specify a range of current statement
numbers, MINC changes only the current statement numbers
that are in that range. Use a hyphen to separate the first and last
statement numbers in the range.

If you omit the first statement number in the range, MINC as-
sumes that oldstart is the first statement in the program. If you
omit the last statement number in the range, MINC assumes
that oldfinish is the last statement number in the program. If
you omit either end of the range, you must include the hyphen.
However, if you omit the range entirely (thus resequencing the
whole program), you can omit the hyphen too.

increment If you specify an interval, MINC adds the incre-
ment to the preceding statement number to obtain each new
statement number. The increment must be a whole number.

If you omit the increment, MINC uses a default increment of 10.

When you renumber the statements in a large program, you
might inadvertently be asking MINC to try to create statement
numbers larger than 32,767. In this case, MINC prints out the
following error message.

?MINC-F-RESEQ has an invalid statement number or interval

After using APPEND to add another part of a program to your
current program, you can use a RESEQ command to consoli-
date all of the statement numbers into one continuous group.

If you issue a RESEQ command that is invalid, MINC does not
display an error message; instead, it just does not do anything.

Several lab module routines have a subroutine statement
number as an argument. The RESEQ command does not adjust
these arguments to reflect resequenced statement numbers. See
Book 6.

?MINC-F-RESEQ has an invalid statement number or interval

The RESEQ command tries to create a line number that was
larger than 32,767.

None.

Book 2, Chapters 4, 5, and 9.
Book 6, Service Subroutines.

Example RESEQ 100

Result Renumbers all program statements using 10 as
the increment. The first statement number in
the renumbered program is 100.

Example RESEQ 100, 105-205

Result Renumbers statements 105 through 205 (inclu-
sive) with an increment of 10, starting by
changing statement 105 to statement 100.

Example RESEQ, -500

Result Renumbers all statements from the beginning
of the program through statement 500 in incre-
ments of 10, starting the new sequence with 10.

Example RESEQ, 105-205

Result R/enumbers statements 105 through 205 (inclu-
sive) with an increment of 10. If we assume that
the statement immediately preceding 105 is
100, then it starts by changing statement 105 to
110 (that is, 100 + 10).

RESEQ

Restrictions

Errors

Related

References

Examples

177

RESEQ

178

Example
Result

Example
Result

Example
Result

Example
Result

RESEQ, 500-

Renumbers all statements from statement 500
to the end of the program. If we assume that the
statement immediately preceding 500 is 200,
then it starts by changing statement 500 to
statement 210 (200 + 10).

RESEQ 250, 0-500, 5

Renumbers all statements through statement
500 using an increment of 5. The first new state-
ment number is 250.

RESEQ 250, , 20

Renumbers all statements in the workspace us-
ing an increment of 20. The first new statement
number is 250.

RESEQ ,,20

Renumbers all statements in the workspace us-
ing an increment of 20. The first new statement
number is 20.

RESTORE/RESET

Use the RESTORE statement to return MINC to the first data
value in a sequential data file or to the beginning of the first
DATA statement in your program. For historical reasons,
MINC also includes the RESET statement, but RESTORE and
RESET are exactly equivalent.

Each RESTORE statement affects one set of data, either the set
in your DATA statements or a set in a sequential data file. After
MINC executes a RESET statement that specifies a sequential
data file, later INPUT and LINPUT statements that use that
file read values from the beginning of the file. After MINC ex-
ecutes a RESET statement that has no file number, later READ
statements read values from the beginning of the values in
DATA statements.

RESTORE # channel
RESET # channel

Component Component Type Component Value Default Condition
RESTORE/RESET statement none required component
statement component none paired with channel
channel numeric expression 1to 12 refers to DATA

Complete the RESTORE statement with a file number if you
want to process the file’s data again from the beginning. Use the
file number that you used in the corresponding OPEN, INPUT,
or LINPUT statements.

Omit the file number if you want to process DATA statement
values again from the beginning.

To reset a file channel, the corresponding file must be open or
MINC will display the following message.

?MINC-F-Need OPEN statement for file channel at line 10
None included.

?MINC-F-Need OPEN statement for file channel at line XX

You used a RESTORE #statement without opening a file on that
channel.

Purpose

Forms

Instructions

Restrictions

Errors

179

RESTORE/RESET

?MINC-F-OPEN statement for file channel prohibits transfer at line XX

You tried to restore a file that is open for output.

Related OPEN
INPUT
LINPUT
READ
DATA

References Book 2, Chapters 11, 12.

Examples See Book 2.

180

The RESTART command initiates the same sequence of events
as turning on the power. Use the RESTART command when-
ever you change the system volume in SYO0: The RESTART
command ensures that MINC recognizes the differences be-
tween the previous volume in SY0: and the new volume in SYO..

RESTART
Component Component Type Component Value Default Condition
RESTART command none required component

Always type the RESTART command whenever you changethe
system volume in SYO:.

The RESTART statement initiates the system start procedure.
You lose all workspace contents.

None included.

Start Procedures
BYE

Book 2.

Example RESTART

Result The terminal screen flashes, MINC pauses, and
then requests that you enter the date and time.

RESTART

Purpose

Forms

Instructions
Restrictions

Errors

Related

References

Examples

181

RETURN

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

182

Use RETURN statements within a subroutine at the point you
want MINC to transfer back to the part of your program that
called the subroutine. When MINC executes a RETURN state-
ment, it terminates the subroutine processing. The statement
that MINC executes after RETURN is the statement that fol-
lows the last GOSUB it executed.

A subroutine can contain more than one RETURN statement,
and RETURN is a valid statement within an IF statement. For
example, you can use one RETURN statement to transfer con-
trol when a value is outside a valid range and a different
RETURN statement after statements that process a value in-
side the valid range.

RETURN
Component Component Type Component Value Default Condition
RETURN statement none required component

The RETURN statement is only valid within a subroutine.
Every subroutine must have at least one RETURN statement.

None included.
?MINC-F-Reached RETURN without executing a GOSUB statement at line XX
?MINC-F-GOSUB fails; 20 subroutines already active at line XX

You used a GO TO from a subroutine rather than a RETURN,
and the program executed more than 20 GOSUB statements for
that subroutine.

You have tried to nest subroutines more than 20 levels deep.

GOSUB

Book 2, Chapter 8.

See Book 2.

The RND function takes on the value of a pseudo-random
number “in the range” 0 to 1.

RND
Component Component Type Component Value Default Condition
RND function name/real Oto1l required component

Use RND to generate a pseudo-random number in therange 0 to
1 with a normal distribution.

In most cases, the application requires a number in a range
other than 0 to 1. Perform a linear transformation on the RND
value to obtain a value in the required range. For example, if you
require a whole number in the range 1to 10, the following state-
ment produces the number:

X=INT(RND*10+1)

In general, for an integer result, calculate the transformation
using the width of the range required (W) and the offset from 0
of the lower end of the range (L).

number = INT(RND*W+L)

Check the calculation very carefully to be sure that you obtain
numbers with the distribution you are expecting.

Develop and thoroughly test your program without a
RANDOMIZE statement first. When you are satisfied that your
program handles the standard set of pseudo-random values pro-
perly, add the RANDOMIZE statement.

The numbers are called pseudo-random because they are based
on a mathematical calculation which always produces the same
sequence of numbers. The important feature of the pseudo-
random sequence is that it has a very long period. That is, the
sequence itself repeats only after a large number of values.
Thus, for all practical purposes, you can treat the RND result as
if it were a value sampled with replacement from a uniform fre-
quency distribution.

RND

Purpose

Forms

Instructions

Restrictions

183

RND

Errors

Related

References

Examples

184

None.

The RND function does not produce an error message when you
try to specify an argument; it ignores any argument except
RND itself.

The RANDOMIZE statement changes the point in the pseudo-
random sequence from which RND draws its next value.

Book 2, Chapter 8.
Knuth, D. E., The Art of Computer Programming. Vol. 2.

Seminumerical Algorithms. Reading, Mass: Addison-Wesley,
1969.

See Book 2.

Your MINC system includes special routines that create graphic
displays and manage data transfers to and from laboratory in-
struments. The routine names function as statement keywords
in program statements. The arguments in a routine statement
specify values needed by the routine and identify variables that
will contain the results generated by the routine.

CALL routine-name(arguments)

Each routine has a name that functions as a keyword in a pro-
gram statement. The actual operation of the routine depends on
the values of the arguments you specify in the statement. Refer
to the appropriate book for instructions on valid routine state-
ments. You can use many routines in immediate mode, as well as
in program mode.

None included.
?MINC-F-CALL fails; workspace too full for parameters

None included.

Book 2, Chapter 10.
Book 4.
Book 5.
Book 6.

None.

Routines

Purpose

Forms

Instructions

Restrictions
Errors

Related

References

Examples

185

RUN/RUNNH

Purpose When MINC displays READY, use the RUN command (or
RUNNH) to execute a program. Each time you run a program,
MINC performs the following operations.

® Scans each program statement

® Reserves part of your workspace for each array

® Notes each function you have defined in a DEF state-
ment

e Sets each numeric variable and array element equal to
Zero

® Sets each string variable and array element equal to
the null string (a null string is a string of length 0; it
has no ASCII characters)

e Executes the program

Normally, the RUN command (or RUNNH) executes your cur-
rent program. However, you can also execute a program you
have stored in a diskette file directly by including the file name
in the RUN command (or RUNNH). When you use a RUN com-
mand (or RUNNH) with a file name, MINC does the following
processes before the steps in the list above.

o Krases the workspace
® (Changes the workspace name to the new name

® (Gets the new program from the file you specified

Therefore, if your current program is important, use the SAVE
command or REPLACE command to store your current pro-
gram before you use RUN to execute a stored program directly.

The only difference between RUN and RUNNH is that
RUNNH does not display a heading.

186

RUNNH filespec

Component Component Type Component Value Default Condition
RUNNH command none required component
filespec characters dev:name.typ dev: SYO:

name workspace

program
.typ .BAC, then .BAS

When you use the form of the RUN (or RUNNH) command that
executes a program directly from a file, MINC first looks for the
file with the .BAC extension (the compiled version). If there is no
compiled version, then MINC executes the .BAS version.

If your program has stopped because of an error or because
MINC executed a STOP statement, you can execute it from the
beginning with the RUN command or have MINC continue
from the statement number you specify in an immediate GO TO
statement. The principal difference is that RUN and RUNNH
cause MINC to set all program variables and array elements to
the initial values of zeroes and null strings. An immediate GO
TO statement causes MINC to continue executing your program
with whatever values your program established by the time it
stopped.

If you run a program directly from a file, MINC does not print
the header line in either case (RUN or RUNNH).

The following form of the RUN command executes a stored pro-
gram.

RUN name

MINC runs the program with the file specification
SY0:name.BAC or SYO:name.BAS (depending on whether
there is a compiled version).

If you type the entire file specification, then MINC runs the pro-
gram in that file.

If you use the RUN filespec form of the RUN command, MINC
displays no header. If you have a file named NHTEST and you
enter RUN NHTEST, MINC tries to do a RUNNH command
for the file TEST.

RUN/RUNNH

Forms

Instructions

Restrictions

187

RUN/RUNNH

Errors

Related

References

Examples

188

?MINC-F-Specified or default volume does not have file named

The file named in the RUN command does not exist on the vol-
ume.

?MINC-F-Syntax error; cannot translate the statement
There is a syntax error in the RUN command.

The first line of the file specified in the RUN command is unex-
ecutable. This can happen if you edited the file with the keypad
editor and made a mistake.

SAVE
REPLACE

Book 2, Chapter 4.

Example RUN

Result MINC runs the current program in the work-
space.

Example RUN SINES

Result MINC brings the SINES.BAS file into the
workspace from SYO0: and then runs it.

Whenever MINC is READY, use the SAVE command to store
your current program in a diskette file. When MINC executes
the SAVE command, it always creates a new file unless a file on
the same diskette has the same name you want to use. When
MINC finds a conflicting name, it displays the following mes-
sage. ‘

?MINC-F-File name in use; REPLACE or change name or volume

SAVE filespec

Component Component Type Component Value Default Condition
SAVE command none required component
filespec characters dev:name.typ. dev: SYO:

name workspace
name
typ .BAS

Complete the SAVE command with a valid file name when you
want to store a program under a name that is different from
your current program’s name. If you are unsure whether the vol-
ume you want to use already has a file with the same name, use
the DIR command to check the volume’s directory.

None included.

?MINC-F-File name in use; REPLACE or change name or volume
?MON-F-Trap to X XXXXX

The volume specified in the SAVE command is uninitialized.
?MINC-F-Invalid file name

There are invalid characters in the file name specified in the
SAVE command.

?MINC-F-1/0O error; unable to check volume owner

You specified a device that does not exist in your file specifica-
tion.

~

There is no diskette in the drive you specified.

SAVE

Purpose

Forms

Instructions

Restrictions

Errors

189

SAVE

Related

References

Examples

190

?MINC-F-Use another file type; SYS, SAV, COM and BAD are protected

REPLACE
OLD
NEW

Book 2, Chapter 4.

Example SAVE

Result

Example
Result

MINC saves the current contents of the work-
space in a file on SYO0: with the current work-
space name.

SAVE SINES

MINC saves the current contents of the work-

space in a file on SYO0: with the name
SINES.BAS.

Whenever MINC displays READY, use the SCR command to
erase your current program entirely, to change your current
program name to NONAME, to recover all of your workspace
MINC assigned for the arrays you were using, and to cancel all
variables and functions. After MINC executes the SCR com-
mand, you cannot recover the program that was in your work-
space unless you stored it in a diskette file.

SCR
Component Component Type Component Value Default Condition
SCR command none required component

If you want to use your current program again, use the SAVE
command or the REPLACE command to store it on a diskette
before you type SCR.

SCR abnormally terminates all open files — that is, if you have a
file open when you use the SCR command, you will lose changes
you made to the file.

None included.

There are no error messages associated with this command.
CLEAR

NEW

OLD

Book 2, Chapters 2 and 3.

Example SCR

Result The workspace is now empty.

SCR

Purpose

Forms

Instructions

Restrictions
Errors

Related

References

Examples

191

SEGS

Purpose

Forms

Instructions

Restrictions
Errors

Related

192

The SEGS function takes on the value of a substring (segment)
extracted from a string. The extracted substring is specified by
its start and end character positions in the original string. The
original string is unchanged.

SEG$(string,start-position,end-position)

Component Component Type Component Value Default Condition

SEGS$ function name/string specified substring required component
string string expression any valid string required component
start-position numeric expression any numeric value required component
end-position numeric expression any numeric value required component

The following list defines the operation of SEG$ in certain limit-
ing conditions.

1. Ifthestart-position argument is less than 1, SEG$ starts ex-
cerpting at character position 1. That is, SEG$ operates as if
the start-position argument had been 1.

2. Ifstart-position is greater than end-position or greater than
LEN(string), SEG$ takes on the value of the null string.

3. If end-position is greater than LEN(string), SEG$ takes on
the value of a segment string starting with the character at
start-position and continuing to the end of the string. That is,
SEGS$ operates as if the end-position argument had been
LEN(string).

4. Ifstart-position equals end-position, then SEG$ takes on the
value of the single character at that position.

None included.

?MINC-F-Arguments in definition do not match function called at line XX

LEN, POS The LEN and POS functions are related string pro-
cessing functions. The LEN function determines the number of
charactersinastring. The POS function determines the location
of a search model in a string.

Book 2, Chapter 8.

Example A$=SEG$(CLKS$,3,3)
PRINT A$
Result

Example PRINT SEG$(DATS$,8,9)
Result 78

References

Examples

193

SGN

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

194

The SGN function takes on a value corresponding to the sign of
its argument.

SGN(number)

Component Component Type Component Value Default Condition
SGN numeric -1,0,0r1 required component
number numeric expression any valid value required component

Use SGN to determine the sign of the value of a numeric expres-
sion. The correspondence between SGN values and the sign of
the expression is shown in the following table:

SGN value Argument value

-1 The number argument is negative
0 The value of the number argument is 0
The number argument is positive
None included.
?MINC-F-Arguments in definition do not match function called at line XX
ABS The ABS function takes on the unsigned magnitude of its
argument. The ABS and SGN functions are related by the fol-

lowing identity:

number = SGN(number)* ABS(number)

Book 2, Chapter 8.

Example A=SGN(-3)
PRINT A

Result -1

Example PRINT SGN(COS(PI/2))
Result 0

The SIN function takes on the sine of its argument.

SIN(angle)

Component Component Type Component Value Default Condition
SIN real -1to+1 required component
angle numeric expression any angle, radians required component

Use SIN to determine the sine of an angle. The angle must be
expressed in radians. The following formula converts an angle
in degrees to an angle in radians:

radians = degrees*PI1/180

The sine of PI and multiples of PI obtained with the SIN funec-
tion are not the same as their mathematical definitions. The ex-
pression SIN(PI) has the value -1.87253E-07, which is effec-
tively 0 for many purposes. However, the expression SIN(N*PI)
often has the same value as the expression N*SIN(PI). As N in-
creases, the absolute magnitude of the error increases and could
quickly accumulate to affect the outcome of calculations with
critical precision requirements due to the fact that = is an irra-
tional number and cannot be exactly represented in a computer

and the nature of the approximation function used to calculate
the value of SIN.

?MINC-F-Arguments in definition do not match function called at line XX

The COS and ATN functions provide the other trigonometric ca-
pabilities of MINC.

Book 2, Chapter 2.
Book 3, Numeric Precision.

See Book 2.

SIN

Purpose

Forms

Instructions

Restrictions

Errors

Related
References

Examples

195

Special Keys

Purpose

Forms

Instructions

Restrictions

Errors
Related
References

Examples

196

Several keyboard keys not found on a typewriter keyboard have
special functions in MINC.

None included.

Not applicable.

The keys 1, |, —, —, operate only in the editor and in some of the
graphic routines. When you are not using the editor, they are
simply keys on the keyboard. You can use their character forms
in programs.

DELETE Normally, the DELETE key works as if you pressed
the sequence backspace, space, backspace. It deletes only one
character internally regardless of the appearance of the charac-
ter on the screen. That is, pressing the DELETE key once
deletes the internal form of characters with more than one char-
acter in their screen form (control combinations and the TAB
key).

NO SCROLL The NO SCROLL key that alternately stops the
terminal screen from displaying information and starts the
display. The NO SCROLL key has the same functions as the
CTRL/S and CTRL/Q control characters.

TAB The TAB key sends up to eight spaces to the screen to sim-
ulate the action of typewriter tabulation. This key has no rela-
tion to the tab stops that you can set in SETUP mode.

None.

CTRL operations

Book 2, Chapter 1.

None included.

The SQR function takes on the value of the square root of its
argument.

SQR(number)

Component Component Type Component Value Default Condition
SQR real >=0 required component
number numeric expression >=0 required component

Use SQR to determine the square root of a numeric value.
None included.

?MINC-W-Attempt to find square root of negative value
?MINC-F-Arguments in definition do not match function called at line XX
None.

Book 2, Chapter 2.

Example A=SQR(2)
PRINT A
Result 1.41421

Example PRINT SQR(SQR(16))
Result 2

SQR

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

197

Start procedures

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

198

The purpose of the start procedures is to make sure that your
system starts up properly and that you do not inadvertently de-
stroy one of your volumes.

Not applicable.

To start your system when it is turned off, install a system vol-
ume in SY0: and turn the power on. MINC prompts you for the
time and date.

To change system diskettes, remove the old system diskette, in-
stall the new system diskette, and type the RESTART com-
mand.

To change the volume in SY1:, remove the old volume, install the
new volume in SY1:, and type the BYE command.

None included.

@

Diskette in SYO0: is an uninitialized diskette.

?BOOT-F-No boot on volume

Diskette in SYO: is not a system diskette. It has been initialized.
?MON-F-System read failure halt

Diskette in SYO0: probably has bad blocks in one or more of the
system files. For a discussion of error recovery procedures, see
“Error Recovery”.

RESTART

BYE

Error Recovery

None included.

None included.

Each time MINC executes a STOP statement, it stops the pro-
gram, reports the last statement number executed, and displays
READY. At this point, MINC preserves both the program itself
and the values of the variables and arrays the program was us-
ing. You can print them without changing them by using an im-
mediate mode PRINT statement.

When you want MINC to continue executing your program, type
a GO TO or GOSUB statement with the number of the statement
MINC should start with.

STOP
Component Component Type Component Value Default Condition
STOP statement none required component

The STOP statement does not close any sequential files or vir-
tual array files that are open. Remember to use a CLOSE state-
ment if you want to preserve any sequential files or virtual array
files your program produced before stopping.

MINC accepts the STOP statement as part of a multistatement
line, in an IF statement, and within FOR statement loops and
subroutines. A program can contain as many STOP statements
as you want.

The STOP statement is particularly useful while you are debug-
ging a program. For example, by making MINC stop at appro-
priate points in your program, you can check intermediate
values of variables, data your program has gotten with READ,
INPUT, or LINPUT statements and the current values PRINT
statements have put into sequential files and virtual array files
that are open for output. When you are satisfied with the way a
section of your program is working, you can use a DEL com-
mand to remove a STOP statement that you no longer need or a
SUB command to change a STOP statement into a remark.

None included.

STOP

Purpose

Forms

Instructions

Restrictions

199

STOP

Errors There are no error messages associated with this statement.
Related END

References Book 2, Chapter 3.

Examples See Book 2.

200

The STR$ function converts a numeric value to the correspond-
ing string value. The STR$ function takes on the ASCII code for
the number as its value.

STR$(number)

Component Component Type Component Value Default Condition

STR$ string string representation required component
of number

number numeric expression any valid value required component

Use STR$ toobtain the string representation of a numeric value.

Unlike the PRINT statement result, the string result of STR$
does not include an initial blank or a trailing blank. Therefore,
you can use STR$ to print the value of a numeric expression
without surrounding spaces.

The STR$ function converts numeric literals to the same form as
the PRINT statement uses.

?MINC-F-Arguments in definition do not match function called at line XX

VAL The VAL function converts a string expression to its nu-
meric equivalent. The VAL function and the STR$ function
reverse each other’s effects, as shown by the following identity:

number = VAL(STR$(number))

ASC, CHR$ The ASC and CHRS$ conversion functions are not
related to STR$. ASC converts a single character to its numeric
ASCII code. CHR$ converts a numeric ASCII code to a single
character string.

Book 2, Chapter 8.

STRS

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

201

STRS

Examples

202

Example

Result

Example
Result

Example
Result

Example
Result

A$=STR$(25.3)
PRINT A$
25.3

PRINT STR$(12345678)
1.23457E+07

PRINT STR$(6el)
60

PRINT VAL(STR$(6el))
60

Whenever MINC displays READY, use the SUB command to
change a single string of characters in one of your current
program’s statements. For example, the following command
substitutes PRINT for the first occurrence of PIRNT in state-
ment 200.

SUB 200 [PIRNT [PRINT [
The command is most useful when you need to make a short
change to a long statement that you do not want to retype en-

tirely.

You can also use the SUB command to move statements around
in your program as shown in the last example below.

SUB stmt# [current-form [changed-form [which-occurrence
The left bracket ([) stands for any separator character that does

not occur in either the current form or the changed form you de-
scribe.

Component Component Type Component Value Default Condition

SUB command none required component

stmt# numeric literal 1 to 32,767 required component

current-form characters any program fragment required component

changed-form characters any valid program required component
fragment

which-occurrence numeric literal 1 to no. in statement 1

The SUB command has three components. The following para-
graphs describe the components in more detail.

MINC requires a valid statement number in each SUB com-
mand. The change you specify in a SUB command affects only
the single statement you specify.

MINC requires a description of the current part of the state-
ment you want to change and the final form you want that part to
have. The current-form string must be entered exactly as it ap-
pears in the listed form of the statement (which is not necessarily
the same as the form you typed; see LIST and COMPILE). If the

SUB

Purpose

Forms

Instructions

203

SuB

204

statement you are trying to change is not a valid program state-
ment, then the differences between the internal form of the
statement and what you think it is can cause problems for the
SUB command. Use the LIST command to list the statement be-
fore you try to change it with SUB.

Choose a separator character that does not appear in the current
or changed forms, and use that character both to separate and to
enclose your description. In the example above, the separator is
a left bracket ([). Theleft bracket ([) is a good character to use as
a separator because it does not normally occur in BASIC state-
ments, and it is not a shift character on the terminal keyboard.

You can use the SUB command to erase astring that is in a state-
ment by specifying nothing as the final form. For example, the
following command removes the first occurrence of (A+B) from
statement number 500.

SUB 500 [(A+B)[[

Sometimes the string you want to change occurs more than once
in a statement. You can specify which occurrence of the string to
change using the occurrences argument. For example, the fol-
lowing command changes the third occurrence of B* to B/ in
statement number 70. The first two occurrences of B* are not af-
fected.

sus 70 [B*[B/[3

When you do not specify which occurrence to change, SUB
changes the first occurrence.

When you use the SUB command, MINC always lists the cur-
rent form of the statement (with changes if the SUB command
was valid and without changes if the SUB command was in-
valid). If you describe a string that does not occur in the state-
ment you specify, MINC does not make any changes, and when
MINC lists the statement you can see that it is unchanged.

Immediately after you use the SUB command to change the
number of a statement, MINC creates a new statement and in-
serts it in numerical order in your current program. However,
note that your original statement also remains in your program.
In many cases, that will cause either a logic error and faulty re-
sults or a more serious program error that prevents MINC from
executing your program. Remember to use a DEL command to
remove the original statement, if you have used SUB to renum-
ber a statement.

The most common way to renumber a statement in your pro-
gram is to retype the statement with the appropriate statement
number and use a DEL command to remove the original state-
ment. Although you can also use the SUB command, the danger
of forgetting to remove the original statement you changed is
somewhat greater than if you simply retype it.

The SUB command does not check the occurrences argument
for feasibility. If not enough occurrences exist in the line to make
the change requested, then SUB does not change the line.

MINC depends on parentheses for several processes. When you
use a SUB command to change the text of a REM statement that
includes parentheses, MINC sometimes removes all spaces that
occur after the left parenthesis. If this should happen, simply
change the contents of the REM statement.

You cannot use the SUB command to make an immediate mode
statement from a program statement.

?MINC-F-SUB creates an invalid statement or has a syntax error
The syntax of the changed statement is incorrect.

You tried to use the SUB command to remove the statement
number.

DEL
Book 2, Chapter 4.
Enter 20 fo to 50

LIST 20 foto50

Change SUB 20 [foto[goto
Result 20 goto50

Inspect LIST 20
Result 20 GO TO 50

Example 55 PRINT ‘hello’
Enter SUB 55[565[70
Result 70 PRINT ‘hello’

suB

Restrictions

Errors

Related

References

Examples

205

suB

206

Note that the statement number has been
changed from 55 to 70. However, now both
statements 55 and 70 exist in the program. If
you do not want two copies of the statement, you
must delete statement number 55.

The SYS(1) function reads a single character from the keyboard
and takes on the numeric ASCII code value of the character.

variable=SYS(1)

Component Component Type Component Value Default Condition

variable numeric variable name required component
= none none required component
SYS(1) function name/integer 0to 127 required component

Use SYS(1) to read characters as ASCII codes, one character at
a time, from the keyboard. Each time the program executes
SYS(1), SYS(1) is assigned the value of the next character in the
most recent line of input from the keyboard. SYS(1) accepts its
first character only after you have pressed the RETURN key. It
does not accept any characters without the RETURN key.

The RETURN key itself actually generates two characters, car-
riage return (code 13) and linefeed (code 10). When you provide
input to the SYS function by pressing only the RETURN key
(with no preceding character) the first occurrence of SYS
receives the value 13 and the next one receives the value 10.

In immediate mode, SYS(1) waits for the next input line from
the keyboard.

The operation of CTRL/C is inhibited by SYS(1). When the pro-
gram is awaiting input for SYS(1), it does not respond to
CTRL/C from the keyboard. However, as soon as you press the
RETURN key, the program responds to the CTRL/C by stop-
ping and printing the messages STOP and READY.

None included.

Use the INPUT statement and the ASC function for similar pur-
poses.

None.

Example 10 PRINT ‘enter a character, press RETURN’
20 A=SYS(1)

SYS(1)

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

207

SYS(1)

208

Result

Example
Input
Result

Example
Input
Result

30 B=SYS(1)

40 C=SYS(1)

50 PRINT A,B,C

60 STOP

enter a character, press RETURN
m

109 13 10

w=sys(1)\x=sys(1)\y=sys(1)\z=sys(1)
abed
PRINT w;x;y;z

97 98 99 100

w=sys(1)\x=sys(1)\y=sys(1)\z=sys(1)
abe
PRINT w;x;y;z

97 98 99 13

The SYS(6) function records whether or not two or more
CTRL/Cs were entered on the keyboard while CTRL/C opera-
tion was disabled.

variable=SY S(6)

Component Component Type Component Value Default Condition

variable numeric variable variable name required component
= none none required component
SYS(6) integer Oorl required component

Use SYS(6) to determine whether someone pressed CTRL/C
while CTRL/C operation was disabled with the RCTRLC func-
tion. The SYS(6) values have the meanings shown in the follow-
ing table.

Value Meaning

0 No CTRL/C combinations were entered while
CTRL/C was disabled.

1 At least two CTRL/C characters were entered

while CTRL/C was disabled.

The SYS(6) function can take on the value 1 only when CTRL/C
is disabled. The CTRLC function sets the value of SYS(6) to 0,
possibly losing information. Thus, SYS(6) is only meaningful
when RCTRLC is in effect.

The SYS(6) function has no effect in immediate mode.

None included.

The RCTRLC function disables CTRL/C operation.

The CTRLC function and the end of the program both reenable
CTRL/C operation.

None.

None included.

SYS(6)

Purpose

Forms

Instructions

Restrictions

Errors

Related

References
Examples

209

SYS(7,0)

Purpose

Forms

Instructions
Restrictions
Errors

Related

References

Examples

210

The SYS(7,0) function specifies that MINC accepts characters
entered from the keyboard in either upper or lower case. This is
in fact how MINC normally operates. The SYS(7,0) function ex-
ists to reinstate this literal case input if it has been altered with
the SYS(7,1) function.

variable=SYS(7,0)

Component Component Type Component Value Default Condition

variable numeric unknown required component
= none none required component
SYS(7.0) none none required component

Use SYS(7,0) to reinstate MINC’s normal method of accepting
characters from the keyboard. The value of the variable is un-
known after the function has executed. You do not need to use
this variable; it is only part of the syntactic form of the function.

The system program that displays READY automatically rein-
states mixed case input from the keyboard.

None included.

The SYS(7,1) function results in conversion of all lowercase
characters from the keyboard into the corresponding uppercase
characters. (This is equivalent to leaving the CAPS LOCK key
pressed in.)

None.

None included.

The SYS(7,1) function converts all characters input from the
keyboard into their uppercase equivalents.

variable=SYS(7,1)

Component Component Type Component Value Default Condition

variable numeric variable name required component
= none none required component
SYS(7.1) none none required component

Use the SYS(7,1) function to convert all keyboard input to upper
case. This is equivalent to leaving the CAPS LOCK key on the
keyboard locked in. Characters appear as uppercase on the
screen regardless of which case was entered on the keyboard.

The value of the variable is unknown after the function has exe-
cuted. You do not need to use this variable; it is only part of the
syntactic form of the function.

Using SYS(7,1) can simplify program dialogs by eliminating
the need for case conversion of string input.

The SYS(7,1) function operates only in program mode because
the system program which displays READY also executes
SYS(7,0).

None included.

The SYS(7,0) function restores the normal mixed case keyboard
input for MINC.

None.

None.

SYS(7.1)

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

211

TAB

Purpose

Forms

Instructions

Restrictions

212

The TAB function operates as an argument for a PRINT state-
ment. It generates the number of spaces necessary to move the
cursor from its current position to the screen column specified in
the TAB argument. The PRINT statement begins printing in
the next column.

TAB(number)

Component Component Type Component Value Default Condition
TAB none none required component
number numeric expression 0 to 32,767 required component

Use TAB to control the appearance of screen displays produced
with PRINT statements.

The TAB function is an argument in a PRINT statement. The
TAB function causes the cursor to move to the column specified
in its argument. Printing resumes with the following column.

If the column number specified is smaller than the current
cursor position, the cursor does not move. If the column number
is greater than 80, TAB performs repeated subtractions of 80
from the column number until the number is less than or equal
to 80. The cursor leaves one blank line for each 80 columns speci-
fied.

Follow the TAB function with a semicolon (or leave out the sepa-
rators) to prevent the PRINT statement from reverting to the
normal print zones.

As far as TAB is concerned, there are 80 tab stops in each line,
positioned on columns 1 through 80.

The TAB function actually depends on the value of the terminal
line length established with the TTYSET system function. If
you have set the line width to 132 columns using the TTYSET
system function, then the TAB function uses 132 tab stops on
each line, positioned in columns 1 through 132. Note that you can
set the line width to any width that you choose with the TTYSET
system function.

If you use the SETUP mode to change the screen width to 132
columns, the TAB function still thinks there are only 80 columns
unless you also use the TTYSET system function to set the width
to 132.

?MINC-F-Arguments in definition do not match function called

The CHR$ function provides some capabilities for formatting
screen displays.

The graphic routines provide flexible and powerful methods for
formatting screen displays.

The TTYSET system function is the only means in BASIC to set
the line width.

Book 2, Chapter 3.

Example PRINT ‘I'TAB(5)'¢’
Result 1 6

Example PRINT ‘123456789, TAB(4);'0’
Result 1234567890

Example PRINT TAB(0);1
Result 1

Example PRINT TAB(0)1

Result 1
Example X=5\Y=20

PRINT TAB(X+Y)X+Y
Result 25

TAB

Errors

Related

References

Examples

213

TIME

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

214

When you begin each working session with MINC, MINC
prompts you to type in the time of day. You can also use the TIME
command whenever MINC displays READY to set the system’s
clock to the time of day. TIME also causes MINC to display the
current system time, but the CLK$ function offers a faster way
to check the time.

TIME hours:mir.utes:seconds

Component Component Type Component Value Default Condition

TIME command none required component

hours 2 digits 0to 23 displays current
time

minutes 2 digits 0to 59 0

seconds 2 digits 0 to 59 0

MINC’s system clock maintains elapsed time extremely accu-
rately. However, because of the amount of time MINC uses to
process the TIME command, MINC’s internal time of day may
differ from the actual time of day by plus or minus 10 seconds.
The Examples section describes a specific procedure for reduc-
ing this discrepancy as much as possible.

Lab module data transfers in fast mode stop the system clock
only during the transfer.

?7KMON-W-Illegal time

The argument values exceed the valid ranges. The current time
does not change.

START_TIME
GET_TIME
DATE

DAT$

CLK$

Calendar functions

Book 2, Chapter 8.

The following procedure will set MINC’s internal clock to the ac-
tual time of day with an accuracy of approximately plus or
minus 2 seconds.

Type TIME xzx:xx:07 but don’t type RETURN. For “xx:xx”
choose a time that is one or two minutes in the future.

When your watch or clock reads xx:xx:00, type RETURN.
Since MINC takes about 7 seconds to process the TIME com-

mand, the time it establishes on its internal clock will be very
close to the actual time of day.

TIME

Examples

215

TRMsS

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

216

The TRMS$ function trims trailing blanks from its string argu-
ment and takes on the value of the trimmed string. The original
string does not change.

TRM$§(string)

Component Component Type Component Value Default Condition
TRM$ string same as argument required component
string string expression any valid value required component

Use TRMS$ to remove blanks from the end of any string. This ca-
pability is useful when you are concatenating strings to form
words or messages without extra embedded blanks.

None included.

?MINC-F-Arguments in definition do not match function called at line XX

The functions LEN, SEGS$, and POS perform related string pro-
cessing operations.

Book 2, Chapter 8.

Example A=LEN(TRMS$(‘abed ’)+‘efgh’)
PRINT A

Result 8

The TTYSET system function specifies the width of a line in
BASIC. The TTYSET system function applies to the terminal
only.

variable=TTYSET(255,margin)

Component Component Type Component Value Default Condition

variable numeric variable required component
= none none required component
TTYSET funetion name/numeric unknown required component
255 numeric literal 255 required component
margin numeric expression 0 to 255 required component

Use TTYSET to define the right margin for BASIC. Normally,
BASIC uses an 80 column line for listing programs and display-
ing output from PRINT statements, even if you have used the
SETUP mode to lengthen the lines to 132 columns. If you use the
TTYSET system function, BASIC uses the value of the margin
argument as the right margin.

The column specified as the margin is not itself part of the line.
That is, a line with right margin 81 can contain at most 80 char-
acters.

If the margin argument is 0, then the margin does not change
from its previous setting.

The standard margin setting for MINC is currently 80.
None included.
?MINC-F-Arguments in definition do not match function called

The margin argument in greater than 255.

The TAB function uses the value set by the TTYSET system
function.

None.

None included.

TTYSET

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples
217

TYPE

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

Examples

218

To display any file you have typed or any ASCII files your pro-
grams have created, use the TYPE command when MINC
displays READY.

TYPE filespec

No spaces can appear after the file specification.

Component Component Type Component Value Default Condition
TYPE command none required component
filespec characters dev:name.typ dev: SYO:

name required

.typ .BAS

Complete the command with a single file specification. MINC
displays the file line by line. You cannot display any part of the
file again after MINC scrolls it off the top of your sereen, but you
can interrupt scrolling by pressing the NO SCROLL key. MINC
waits until you press the NO SCROLL key again to continue the
display.

MINC does not stop you from using the TYPE command to
display non-ASCII files, such as compiled files (BAC) and vir-
tual array files. However, the information is not in a form that
you can read. It looks very confusing on the screen.
2UTILITY-F-File not found

The file named in the TYPE command does not exist on the vol-
ume.

COPY
LIST

Book 2, Chapter 4.

None included.

Whenever MINC displays READY, usethe UNSAVE command
to erase a file from a diskette. The equivalent statement is the
KILL statement. When MINC executes an UNSAVE command,
it erases the directory entry for the file you have specified. The
space on your diskette that actually holds the file is immediately
available for another file with the same name or a different
name.

Note that the KILL statement defaults to .DAT files where the
UNSAVE command defaults to .BAS files. Thus, the KILL
statement is primarily used within programs to delete tempo-
rary data files where the UNSAVE command is primarily used
to delete BASIC programs.

UNSAVE filespec
Component Component Type Component Value Default Condition
UNSAVE command none required component
filespec characters dev:name.typ dev: SYO:

name required

.typ .BAS

Complete the UNSAVE command with a file name. The file
types .SYS, .SAV, .COM, and .BAD are protected, and MINC
displays the following message if you try to erase a file with one
of those file types.

?MINC-F-Use another file type; SYS, SAV, COM and BAD are protected

After MINC completes an UNSAVE command, you cannot re-
cover the file you have erased.

Be careful specifying the file name because the .typ defaults to
.BAS. You might actually delete your BASIC program when
trying to delete the compiled version.

?MINC-F-Specified or default volume does not have file named

The file that you tried to UNSAVE does not exist on the volume.

UNSAVE

Purpose

Forms

Instructions

Restrictions

Errors

219

UNSAVE

Related KILL

COLLECT

DIR
References Book 2, Chapter 4.
Examples See Book 2.

220

The VAL function converts a string representation of a number
to its numeric equivalent. The VAL function takes on the con-
verted numeric value.

VAL(string)

Component Component Type Component Value Default Condition
VAL numeric any valid value required component
string string expression string representation required component

of a number

Use VAL to convert a character string to the numeric value it
represents. This is useful when you need to input both letters and
digits to string variables but want to convert the digits to their
numeric values.

The character string can contain the digits 0 through 9, a minus
or plus sign, a decimal point, and the power of 10 indicator, E.

None included.

?MINC-F-Arguments in definition do not match function called

The string argument contains a character or format that would
produce an invalid numeric value.

STRS$ The STRS$ function converts a numeric value to the cor-
responding string representation. STR$ and VAL reverse each
other’s effects, as shown in the following identity:

string = STR$(VAL(string))

ASC, CHRS$ The ASC and CHRS conversion functions are not
related to VAL. ASC converts a single character to its numeric
ASCII code. CHR$ converts a numeric ASCII code to a single

character string.

Book 2, Chapter 8.

VAL

Purpose

Forms

Instructions

Restrictions

Errors

Related

References

221

VAL

Examples

222

Example

Result

Example
Result

Example
Result

Example
Result

Example
Result

A=VAL('12345’)
PRINT A

12345

PRINT VAL(‘1234567’)
1.23457E+06

PRINT VAL(‘12e6’)
1.20000E+07

PRINT VAL(‘10EY’)
100

PRINT VAL(‘10.0 E+01’)
100

Mass storage volumes are durable, but not indestructible. Use
the VERIFY command to obtain a report of the number of bad
blocks on a volume and the names of any files, if any, that are
stored across bad blocks.

You may never find any bad blocks if you are reasonably careful
about storing and handling your storage volumes. If MINC en-
counters a bad block in any file while executing a DUPLICATE
command you can use the VERIFY command to find out which
block is bad. In some cases, you might be able to use the editor to
reconstruct the data in the bad block after you have copied the
file to a new location. See Error Recovery.

VERIFY dev:

Component Component Type Component Value Default Condition
VERIFY command none required component
dev: characters SYO0: SY1: SYO:

Complete the command with a device abbreviation. The default
device is SYO..

If a bad block develops in one of the MINC system files, the
VERIFY report lists the file name. You can tell that this fileisa
MINC system file because MINC system files have one of the
protected file types: .BAD, .SAV, .SYS, or .COM.

To recover from a bad block in a system file, see the section en-
titled Error Recovery.

The VERIFY report does not tell you which device was verified.

If there were no bad blocks, the VERIFY command produces
the following report:

There were no bad blocks found
?2UTILITY-F-lllegal command

You tried to verify an invalid device, such as SY2:, or a nonexis-
tent device, such as LP:.

VERIFY

Purpose

Forms

Instructions

Restrictions

Errors

223

VERIFY

Related

References

Examples

224

?PUTILITY-F-Error reading directory

You forgot to close the door to the device.

There are bad blocks in the directory of the volume.
?MINC-F-Specify only one file name

You can only verify one volume at a time.

?MINC-F-Specify device only; no file name or file type is allowed

DUPLICATE
INITIALIZE
Error Recovery

Book 2, Chapter 4.
In the following example, one bad block was marked in the

FILE.BAD file during the initialization. The other bad block is
in the user’s program file named SINES.BAS.

READY

VERIFY

Bad Blocks Type Filename Rel Blk
414 Hard FILE.BAD 0

417 Hard SINES.BAS 0

To recover the diskette, the user must perform the following
steps.

1. Duplicate the diskette using the DUP command.

2. Fix the new copy of SINES.BAS using the keypad editor.
(See the Error Recovery section.)

3. Initialize the bad diskette with the INI command to mark
the bad block in the FILE.BAD file. Then the user can use
the bad diskette again (it is no longer bad).

@ character, 81
ABORT system function, 7
ABS function, 8
related to SGN, 194
Absolute value, 8
Addition, 11
APPEND command, 9
related to
CHAIN, 29
erasing, 78
OVERLAY, 150
Arithmetie, 11
operators, 11
sign, 194
Arrays, 13
description, 65
element, 65
in chained files, 43
index, 65

names and variable names, 13

subscript, 65
ASC function, 16
ASCII

characters, 16

code input, 207

files, 74

function, related to CHR$, 31

Assigning value, 167

Assignment statement, 17, 116

related to DATA, 58
ATN function, 19

Bad blocks and COLLECT, 39

Bad blocks, 223

marking, 103

recovering from, 81
.BAD file type, 39, 162
BASIC right margin, 217
BIN funection, 20

related to OCT, 137
Binary string conversion, 20
Blocks, bad, 223

Branching, 21, 94, 96, 100, 132

multiple, 141
BREAK key, 81
BYE command, 24

Calendar, 59

Calendar functions, 55
operations, 26
related to DATE, 60

CALL statement, 185

Capacity of a minc diskette, 13
CHAIN and compiled files, 46

CHAIN statement, 27

related to
APPEND, 10
COMMON, 45
COMPILE, 46
DIM, 67
erasing, 79
OVERLAY, 150

INDEX

Chaining files, COMMON statement, 43

Channels, file, 143, 154
Character, @, 81

Character case conversion, 210, 211

Character conversion, 30

Character count in strings, 114

225

INDEX

226

CHRS$ function, 30
related to ASC, 16
CLEAR command, 32

related to erasing, 78
CLKS$ function, 34
discussion, 26
related to,
DATE, 60
TIME, 214
CLOSE statement, 36
related to,
arrays, 15
OPEN, 147
Closing files, 28, 36
COLLECT command, 38
related to COPY, 49
Collections of data, 13
.COM, 162
Combining programs, 9, 148
Commands
APPEND, 9
BYE, 24
CLEAR, 32
COLLECT, 38
COMPILE, 46
COPY, 48
CREATE, 51
DATE, 59
DUP, 73
DUPLICATE, 71
EDIT, 74
HELP, 98
INI, 73
INITIALIZE, 103
INSPECT, 108
LENGTH, 115
LIST, 120
LISTNH, 120
NEW, 130
OLD, 139
RENAME, 171
REPLACE, 173
RESEQ, 175
RESTART, 181
RUN, 186
RUNNH, 186
SAVE, 189
SCR, 191
SUB, 203
TIME, 214
TYPE, 218
UNSAVE, 219
VERIFY, 223
Comments, 41, 169
COMMON statement, 43

related to
CHAIN, 28
DIM, 67
COMPILE command, 46
Conditional branches, 21
Conditional transfer, 100, 141
Contents of diskettes, 68

Control characters, 52, 53, 165, 166

related to,
EDIT, 76
keypad editor, 112

Controlling appearance of displays, 212

Conversion
ASCII code, 16
binary, 20
character, 30
character to ASCII code, 207
keyboard case, 210, 211
numeric to string, 201
octal, 137
string to numeric, 221

COPY command, 48
related to

line printer, 119
REPLACE, 173

COS function, 50

CREATE command, 51
related to

INSPECT, 108
keypad editor, 111

Creating
new files, 51
program files, 189

CTRL operations, 53

CTRL/C, 53, 165
detecting, 209
system function, 52

CTRL/O, 53, 166

CTRL/Q, 53

CTRL/S, 53

CTRL/U, 53
related to erasing, 78

CTRL/W, 53

DATS$ function, 55
discussion, 26
related to DATE, 60

Data collections, 13

DATA statement, 57
related to

READ, 167
RESTORE, 179

Data types, 136

Date, 55

DATE command, 59

discussion, 26

related to DATS, 55

setting the system, 59
DEF statement, 61
Defaults, COMPILE, 46
Defining functions, 61
DEL statement, 63

related to erasing, 78
DELETE key, 196

related to erasing, 78
Deleting statements, 61

Describing arrays explicitly, 13

Device abbreviation, 87
DIM statement, 65

related to arrays, 15
Dimension of arrays, 13
Dimension, array, 65
DIRECTORY command, 68

related to

DATE, 60
line printer, 119

Directory entries, 219
Disabling CTRL/C, 52
Diskette problems, 223
Diskettes

contents of, 68

duplicating, 71
Displaying files, 218
Displaying programs, 218
Displays, controlling, 212
Division, 11
Documenting programs, 41
DUP command, 71, 73

DUPLICATE command, 88, 90

related to
COLLECT, 39
COPY, 49
Duplicating diskettes, 71, 73

EDIT command, 74
related to
CREATE, 51
INSPECT, 108
keypad editor, 111
Editing, 74
Editing statements, 203
Editor command keys, 196
Editor, keypad, 111
END statement, 76
related to STOP, 199

Erasing, 78, 103, 113, 130, 139, 186

Erasing files, 38, 173, 219
Erasing workspace, 24, 191
Error messages, 125

Error recovery, 81, 223

related to COLLECT, 39
Errors, 2-3
Examples, 3
Executing programs, 186
Execution,

halting, 7

terminating, 77
EXP function, 83

related to LOG, 122
Exponentiation, 11, 83

EXTRA_SPACE statement, 84

related to
arrays, 15
LENGTH, 115
NORMAL_SPACE, 134

File allocation, 86, 219
related to OPEN, 145

File channels, 143, 154
closing, 36

File name, 87

File specification, 87

File types, 87, 162

protected, 162
Files

directories stored in, 68

displaying, 218

editing, 74, 111

erasing, 38, 113, 173, 219

inspecting, 108

opening, 143

related to RESTORE, 179

renaming, 128

restoring, 179
Filespec, 87
FOR statement, 91

related to NEXT, 132
Format description, 157
Forms, 1-2, 98
Fragmented free space, 39
Functions

ABS, 8

ASC, 16

ATN, 19

BIN, 20

CHRS, 30

CLKS, 34

COS, 50

DATS, 55

EXP, 83

INT, 110

LEN, 114

LOG, 122

LOG10, 124

OCT, 137

INDEX

227

INDEX

228

PI, 151

POS, 152
RCTRLC, 165
RCTRLO, 166
RND, 183
SEGS$, 192
SGN, 194
SIN, 195
SQR, 197
STR$, 201
TAB, 212
TRMS, 216
VAL, 221

GET_TIME routine
related to CLK$, 34

GO TO statement, 96

GOSUB statement, 94
related to RETURN, 182

Graphic routines, 185

Halting execution, 7
Halting programs, 165
HELP command, 98

IEEE bus routines, 185
IF statement, 100
Improving program speed with
memory arrays, 13
Index, array, 65
Indexes of values in arrays, 13
INI command, 73
related to erasing, 79
INITIALIZE command, 78, 103
related to COLLECT, 39
Input ASCII code, 207
Input from sequential files, 105
INPUT statement, 105
related to
arrays, 15
assignment, 18
CLOSE, 37
DATA, 58
LINPUT, 117
Input, string, 117
INSPECT command, 108
related to keypad editor,. 111
Inspecting ASCII files, 108
Instructions, 2
INT funetion, 110
Integer function, 110

Keyboard input, 105
Keypad editor, 51, 74, 108, 111

Keys
DELETE, 196
editor command, 196
NO SCROLL, 196
RETURN, 196
TAB, 196
KILL statement, 113
related to
erasing, 79
UNSAVE, 219

Lab module routines, 185
LEN function, 114
related to,
POS, 153
SEGS, 192
TRMS$, 216
LENGTH command, 115
LET statement, 17, 116
Line printer, 119
related to OPEN, 147
LINPUT statement, 117
related to
arrays, 15
assignment, 18
CLOSE, 37
LIST eommand, 120
related to
COPY, 49
DATE, 60
INSPECT, 108
Listing, workspace programs, 120
LISTNH command, 120
LOG function, 122
related to
EXP, 83
LOG10, 124
LOG10 function, 124
Logarithm, base 10, 124
Logarithm function, natural, 122
Loops, 91, 132
LP:, 119

Margin, BASIC right, 217
Merging program files, 9
Merging programs, 148
Messages, 125

Multiple branching, 141
Multiple statement lines, 64
Multiplieation, 11
Multiway branches, 21

NAME statement, 128
Natural logarithm function, 122
NEW command, 130

related to
CLEAR, 32
erasing, 79
RENAME, 171
NEXT statement, 132
related to FOR, 91
NONAME, 191
NORMAL_SPACE statement, 134
related to
arrays, 15
EXTRA_SPACE, 84
NO SCROLL key, 196
Numeric precision, 136

OCT function, 137
related to BIN, 20
Octal conversion, 137
OLD command, 139
related to
CLEAR, 32
COMPILE, 46
erasing, 79
ON statement, 141
ON/GO TO statement, 141
ON/GOSUB statement, 141
OPEN statement, 143
related to
arrays, 15
CLOSE, 37
file allocation, 86
line printer, 119
PRINT, 155
Opening files, 143
Operators,
arithmetic, 11
priority of, 11
Output from programs, 154
OVERLAY and compiled files, 46
OVERLAY statement, 148
related to
APPEND, 10
CHAIN, 28
DIM, 67
erasing, 79

PAUSE routine,
related to DATE, 60
PI funection, 151
POS function, 152
related to SEG$, 192
Precision, numeric, 136
Print format, 212
PRINT margins, 217
PRINT statement, 154

related to
CLOSE, 37
COPY, 49
TAB, 212
USING, form of, 157
Printing copies on paper, 119
Priority of operators, 11
Program files,
creating, 189
merging, 9
Program segments, 148
Programs,
combining, 9, 148
displaying, 166, 218
documenting, 41, 169
editing, 203
erasing, 113, 130
executing, 186
halting, 165, 199
listing, 120
loading, 139
naming, 130
renumbering, 175
storing, 189
Prompts, duplicate, 72
Protected file types, 162
Pseudo-random number sequence,
163, 183
Purpose, 1

RANDOMIZE statement, 163
related to RND, 183
RCTRLC system function, 165
related to
CTRLC, 52
SYS(6), 209
RCTRLO system function, 166
READ statement, 167
related to
assignment, 18
DATA, 58
INPUT, 107
RESTORE, 179
Recovering from bad blocks, 81
References, 3
Related, 3
REM statement, 41, 169
Remarks, 169
RENAME command, 171
Renaming files, 128
Renumbering programs, 175
REPLACE command, 173
related to
erasing, 79
SAVE, 189

INDEX

229

INDEX

230

Replacing files, 173
RESEQ command, 175
RESET statement, 179
RESTART command, 181
related to BYE, 24
Restarting the system, 181
RESTORE statement, 179
related to,
CLOSE, 37
RESTORE, 58
Restored files, 179
Restrictions, 2
RETURN key, 196
RETURN statement, 182
related to GOSUB, 94
Right margin, BASIC, 217
RND function, 183
related to RANDOMIZE, 163
Routines, 185
RUN command, 186
related to
CLEAR, 32
COMPILE, 46
DATE, 60
RUNNH command, 186

.SAV, 162
SAVE command, 189
related to
line printer, 119
REPLACE, 173
Scan, bad blocks, 223
SCHEDULE routine,
related to DATE, 60
SCR command, 191
related to
ABORT, 7
BYE, 24
CLEAR, 32
erasing, 79
Screen width, 217
Search model, 152
SEGS$ function, 192
related to POS, 152
Segmenting strings, 192

Sequential files, input from, 105

SGN function, 194
related to ABS, 8

Sign, arithmetic, 194

SIN function, 195

Sine of an angle, 195

Space in workspace, 115

SQR function, 197

Square root function, 197

Start procedures, 198

related to BYE, 24
Starting the system, 181, 198
Statements

CALL, 185

CHAIN, 27

CLOSE, 36

COMMON, 43

DATA, 57

DEF, 61

DEL, 63

deleting, 63

DIM, 65

editing, 203

END, 77

EXTRA_SPACE, 84

FOR, 91

GO TO, 96

GOSUB, 94

IF, 100

INPUT, 105

KILL, 113

LET, 17, 116

LINPUT, 117

NAME, 128

NEXT, 132

NORMAL_SPACE, 134

ON, 141

ON/GO TO, 141

ON/GOSUB, 141

OPEN, 143

OVERLAY, 148

PRINT, 154

PRINT USING, 157

RANDOMIZE, 163

READ, 167

REM, 41, 169

renumbering, 175

RESET, 179

RESTORE, 179

RETURN, 182

STOP, 199
STOP statement, 199

related to, 7
Storing a directory in a file, 68
Storing programs, 189
STR$ function, 201

related to

CHRS, 31
VAL, 221
String input, 117
String length, 114
String processing functions, 152,
192, 216
String segments, 192
Strings, searching, 152

SUB command, 203

related to erasing, 79
Subroutines, 94, 182
Subscripts, 13-14
Subtraction, 11
Summaries, displaying, 98
.SYS, 162
SYS(1) system function, 207
SYS(6) system function, 209
SYS(7,0) system function, 210
SYS(7,1) system function, 211
System date, setting, 59
System functions,

ABORT, 7

CTRLC, 52

SYS(@1), 207

SYS(6), 209

SYS(7,0), 210

SYS(7,1), 211

TTYSET, 217
System time, 214
System, starting the, 198

TAB function, 212
related to
PRINT, 155
TTYSET, 217
TAB key, 196
Terminal screen, 217
Terminating execution, 77
TIME command, 214
discussion, 26
related to
CLK, 34
DATE, 60

Time, system, 34, 214

Transfer of control, 94, 100
unconditional, 96

Transfers, conditional, 141

Trigonometric functions, 19, 50, 195

TRM$ function, 216
TTYSET system function, 217
TYPE command, 218
related to,
COPY, 49
INSPECT, 109

Unconditional branches, 21
Unconditional transfer, 96
UNSAVE command, 219
related to erasing, 79
User-defined functions, 61

USING form of PRINT statement, 157

VAL funection, 221
related to
ASC, 16
STRS$, 201
VERIFY command, 223
related to COLLECT, 39
Virtual array files, 13
Volume damage, 223
Volumes, unused space on, 38

Workspace
arrays, 13
erasing, 130, 139, 186, 191
renaming, 171
size, 115

INDEX

231

MINC Programming
Reference

AA-DS800A-TC
READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
OO0 Higher-level language programmer
O Occasional programmer (experienced)
0O User with little programming experience
0O Student programmer
O Other (please specify)
Name Date
Organization
Street Telephone
City State Zip Code

or
Country

dilgliltla] {l

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	B3MPR_00_0001
	B3MPR_00_0002
	B3MPR_00_0003
	B3MPR_00_0004
	B3MPR_01_0001
	B3MPR_01_0002
	B3MPR_01_0003
	B3MPR_01_0004
	B3MPR_01_0005
	B3MPR_01_0006
	B3MPR_01_0007
	B3MPR_01_0008
	B3MPR_01_0009
	B3MPR_01_0010
	B3MPR_01_0011
	B3MPR_01_0012
	B3MPR_01_0013
	B3MPR_01_0014
	B3MPR_01_0015
	B3MPR_01_0016
	B3MPR_01_0017
	B3MPR_01_0018
	B3MPR_01_0019
	B3MPR_01_0020
	B3MPR_01_0021
	B3MPR_01_0022
	B3MPR_01_0023
	B3MPR_01_0024
	B3MPR_01_0025
	B3MPR_01_0026
	B3MPR_01_0027
	B3MPR_01_0028
	B3MPR_01_0029
	B3MPR_01_0030
	B3MPR_01_0031
	B3MPR_01_0032
	B3MPR_01_0033
	B3MPR_01_0034
	B3MPR_01_0035
	B3MPR_01_0036
	B3MPR_01_0037
	B3MPR_01_0038
	B3MPR_01_0039
	B3MPR_01_0040
	B3MPR_01_0041
	B3MPR_01_0042
	B3MPR_01_0043
	B3MPR_01_0044
	B3MPR_01_0045
	B3MPR_01_0046
	B3MPR_01_0047
	B3MPR_01_0048
	B3MPR_01_0049
	B3MPR_01_0050
	B3MPR_01_0051
	B3MPR_01_0052
	B3MPR_01_0053
	B3MPR_01_0054
	B3MPR_01_0055
	B3MPR_01_0056
	B3MPR_01_0057
	B3MPR_01_0058
	B3MPR_01_0060
	B3MPR_01_0061
	B3MPR_01_0062
	B3MPR_01_0063
	B3MPR_01_0064
	B3MPR_01_0065
	B3MPR_01_0066
	B3MPR_01_0067
	B3MPR_01_0068
	B3MPR_01_0069
	B3MPR_01_0070
	B3MPR_01_0071
	B3MPR_01_0072
	B3MPR_01_0073
	B3MPR_01_0074
	B3MPR_01_0075
	B3MPR_01_0076
	B3MPR_01_0077
	B3MPR_01_0078
	B3MPR_01_0079
	B3MPR_01_0080
	B3MPR_01_0081
	B3MPR_01_0082
	B3MPR_01_0083
	B3MPR_01_0084
	B3MPR_01_0085
	B3MPR_01_0086
	B3MPR_01_0087
	B3MPR_01_0088
	B3MPR_01_0089
	B3MPR_01_0090
	B3MPR_01_0091
	B3MPR_01_0092
	B3MPR_01_0093
	B3MPR_01_0094
	B3MPR_01_0095
	B3MPR_01_0096
	B3MPR_01_0097
	B3MPR_01_0098
	B3MPR_01_0099
	B3MPR_01_0100
	B3MPR_01_0101
	B3MPR_01_0102
	B3MPR_01_0103
	B3MPR_01_0104
	B3MPR_01_0105
	B3MPR_01_0106
	B3MPR_01_0107
	B3MPR_01_0108
	B3MPR_01_0109
	B3MPR_01_0110
	B3MPR_01_0111
	B3MPR_01_0112
	B3MPR_01_0113
	B3MPR_01_0114
	B3MPR_01_0115
	B3MPR_01_0116
	B3MPR_01_0117
	B3MPR_01_0118
	B3MPR_01_0119
	B3MPR_01_0120
	B3MPR_01_0121
	B3MPR_01_0122
	B3MPR_01_0123
	B3MPR_01_0124
	B3MPR_01_0125
	B3MPR_01_0126
	B3MPR_01_0127
	B3MPR_01_0128
	B3MPR_01_0129
	B3MPR_01_0130
	B3MPR_01_0131
	B3MPR_01_0132
	B3MPR_01_0133
	B3MPR_01_0134
	B3MPR_01_0135
	B3MPR_01_0136
	B3MPR_01_0137
	B3MPR_01_0138
	B3MPR_01_0139
	B3MPR_01_0140
	B3MPR_01_0141
	B3MPR_01_0142
	B3MPR_01_0143
	B3MPR_01_0144
	B3MPR_01_0145
	B3MPR_01_0146
	B3MPR_01_0147
	B3MPR_01_0148
	B3MPR_01_0149
	B3MPR_01_0150
	B3MPR_01_0151
	B3MPR_01_0152
	B3MPR_01_0153
	B3MPR_01_0154
	B3MPR_01_0155
	B3MPR_01_0156
	B3MPR_01_0157
	B3MPR_01_0158
	B3MPR_01_0159
	B3MPR_01_0160
	B3MPR_01_0161
	B3MPR_01_0162
	B3MPR_01_0163
	B3MPR_01_0164
	B3MPR_01_0165
	B3MPR_01_0166
	B3MPR_01_0167
	B3MPR_01_0168
	B3MPR_01_0169
	B3MPR_01_0170
	B3MPR_01_0171
	B3MPR_01_0172
	B3MPR_01_0173
	B3MPR_01_0174
	B3MPR_01_0175
	B3MPR_01_0176
	B3MPR_01_0177
	B3MPR_01_0178
	B3MPR_01_0179
	B3MPR_01_0180
	B3MPR_01_0181
	B3MPR_01_0182
	B3MPR_01_0183
	B3MPR_01_0184
	B3MPR_01_0185
	B3MPR_01_0186
	B3MPR_01_0187
	B3MPR_01_0188
	B3MPR_01_0189
	B3MPR_01_0190
	B3MPR_01_0191
	B3MPR_01_0192
	B3MPR_01_0193
	B3MPR_01_0194
	B3MPR_01_0195
	B3MPR_01_0196
	B3MPR_01_0197
	B3MPR_01_0198
	B3MPR_01_0199
	B3MPR_01_0200
	B3MPR_01_0201
	B3MPR_01_0202
	B3MPR_01_0203
	B3MPR_01_0204
	B3MPR_01_0205
	B3MPR_01_0206
	B3MPR_01_0207
	B3MPR_01_0208
	B3MPR_01_0209
	B3MPR_01_0210
	B3MPR_01_0211
	B3MPR_01_0212
	B3MPR_01_0213
	B3MPR_01_0214
	B3MPR_01_0215
	B3MPR_01_0216
	B3MPR_01_0217
	B3MPR_01_0218
	B3MPR_01_0219
	B3MPR_01_0220
	B3MPR_01_0221
	B3MPR_01_0222
	B3MPR_01_0223
	B3MPR_01_0224
	B3MPR_99_0225
	B3MPR_99_0226
	B3MPR_99_0227
	B3MPR_99_0228
	B3MPR_99_0229
	B3MPR_99_0230
	B3MPR_99_0231
	B3MPR_99_0232
	B3MPR_99_0233
	B3MPR_99_0234

