CHAPTER 18 1Interfacing with BASIC

18.1 Interfacing with Sequential Access DeviCesS ..eeesceresoensss
18.1.1 DCB (Device Control BLOGKS) wssssssseaososesssacenanscanoss
18.7.2 DCB £Able tevusrunsranseronsvevsessnsnsnenooss
18.7.3 EXror ProceSSINg veseeeesesssrtaserotsostosnsosnsesssoncessns
18.1.4 BREAK key pProcessSing seiveseevseeeiunosssssssissessssnnoans
18.2 Loading from EXpansSion DeVICES s .veeeeeserereaciasnnensonnns
18.3 ABORT ProCeSSiNg eevesssesessssesearssossnosasssssossssnnsnnas
18.4 RAM MAnNAgEeMENL ceeneeseasesaatsssasnensosssannsessssassaneanos
18.4.1 Application files .cieesenssrsnosssnsarssssosssnsnssssscans
T8e4e2 RAM IMAD o oo vaotennasoeasaanasnsensssnsonsessesnsenassnssns
18.4.3 Data configuration eeesecesesssscersoscsosencssacssossssnas
18.4.4 Configuration of BASIC application files teesesersstereans
‘ 18.5 Initializing Extended BASIC ceveerssnoreoasnsen
a5 18.5.1 EXpanSion METhOd eueisoesoensssovecsseensvassonssansnnssas
18.5.2 Expanded ROM format R T T I S
18.5.3 Expansion on RAM DASE sesesesvsrrsasnsnssosssosasacannsnnss
18.5.3.1 Loading extended BASIC s.veusevionrnsarsroseninsenasnnnns
18.5.3.2 Program for reserving extended BASIC Ared seserescccenna
18.5.3.3 Cbnfiguration of extended BASIC object file seieeecvacss
18.5.3.4 Rewriting warm start and initialize hookS .vieieeenceans
18.5.4 Extended BASIC WOLK @SR seevssosnsscocasansesoosannsensnas
18.6 Syétem Variables and Hook Table suviscsreanocrossesenasannss
18.6.1 SYStem VALLADLES vuseeseescesasensssoessanensonennsaseneas
18.6.2 HOOK LADLE caevesnsnersssssnasssnssnsssssessavensoanasnsises
18.6.3 Entry Point Table «.sevesessesssinsasssosonsosasessssannsas

26 0 a0 80 00y

ClibPDF - www .fastio.com

L R A I 2 I IO P I

http://www.fastio.com/

ClihPDF -

18.1 Interfacing with Sequential Access

‘Devices

18.1.1 DCB (Device Control Blocks)

To perform I/0 operations with sequential access devices such as
cassette tapes, etc.; a DCB is necess ary to specify the conditions
for interfacing. DCBs are required for each type of sequential access

device ("CASO:", "COM@:", etc.). The contents of the DCBs are shown
below.
Item | Data No. Description
{Size)
1 O - 3 Device name (ASCII code). The four-character device
(4 bytes) | name specified in the file descrlptor is entered
here.
2 4 . I/0 mode. Specified as one of the following values.
(1 byte) | 10;5: Sequential input
2916: Sequential output _
, 3016: Sequential input/output
3 5 - 86 Entry point for the OPEN routine. The mode of the
(2 bytes) | file (1995: input, 2015: output) is stored in
variable FILMOD (address 068A). The OPEN routine
references the mode data and opens the file for
. input or output. ,
4 7.-8 Entry point for the CLOSE routine. The CLOSE
(2 bytes) | routine also references variable FILMOD and
: performs clase for input or output.
5 9 - 10 -Entry point for the input routine for one byte. The
{2 bytes) | input routine inputs one byte is then stored in
T accumulator ‘A. When the end of the file is detected,
FF is entered in variable EOFFLG (address 00F8)..
6 11 -~ 12 Entry peint for the output routine for one byte.
(2 bytes) This routine outputs the contents of accumulator A.
7 113 - 14 Entry point for EOF routine. This routine scts data
{2 bytes) FF in accumulator B if the EOF is detected during
input. Otherwise, 00 is entered in accumulator B.
8 15 - 186 Entry point for LOF routine. This routine enters
(2 bytes) the number of characters in the buffer or the
: remaining characters in the file in register D
(accumulators A, B). ‘
9 17 - 20 Reserved for data unique to each device.
10 21 Specifies the'column position of the next character
{1 byte) to be output (leftmost column is taken to be column
'0'). This value is returned when the POS function
is called. Normally, this value is initialized to
® and incremented by 1. each time one. byte is
output by the output routine. Reset to 0 by CR
(code ®D). oxr LF (code 0A). When this value exceeds
the range for the length of one line, and the next
character is not CR or LF, the output routine
‘for one byte’ automatically generates CR or LF and
resets the column position to Q.
‘ 18-1
wwvwy fastio.com

http://www.fastio.com/

ClibPDF - www .fastio.com

18-2

Item | Data No. Description
(Size) :
11 22 Maximum value of characters per line. May be
(1 byte) specified in the range 00 to FF. 99 indicates that
the number of characters per line is infinite. As
a result, BASIC does not automatically output
CR/LF. 00 is set by executing WIDTH (device name),
255.
12 23 Specifies the size of the print zone when
(1 byte) items in a PRINT statement are delimited by
"," (comma). The default value is 14,
13 24 Column position of last print zone. This value
: (1 byte) is according to the maximum number of characters
ip the line and the size.cf the print zone.
For example, when the maximum number of
characters in the line is 80 and the size of
7 the print zone is 14, this value will be 56.
o 14 25 If the number of characters per line can be
{1 bytea) changed by the WIDTH statement, 29 is =sntere
as the wvalue of this item. Otherwise, 8044 is
entered.
18.1.2 DCB table
This is a 32-hyts table which stores the addresses of the DCBs for
cach device. Addresses are specified in two bytes and up to 16 DCB
addresses can be stored in this table. In the current version, sever
addresses are stored in the DCB tabhle and space for nine more
addresses is reserved. Device mumbers (0-15,45) are assigned to the
DCBs in sequence. The variable name for the DCB table is DCBTAB
(address 9657).
Device hame Device No.
i KYso 3
ocaTas i DCB addrass {nigh} ; KYRO: 0
i KYBD :
— 1. DC8 addrass {fow) -’
) [5CAN 3
OCB addrass (high) :
- & SCRN: 1
i SCRN i
L DCB adudress {1ow) 4
o P
. : 5 coMa: 2
@ J
w,
: P CASO: 3
i J
|)
; L, CAS®: 3
; J
* 3
! L eaco 5
! ! J
N
| }
! ; LpTo 5
J .
“ ‘(\‘ 15
— 1 (
| ; J
T Fig. 18-1 DCB Table
L

http://www.fastio.com/

18.1.3 Error processing

Wwhen an I/0 error occurs during the execution of a routine or when
the regquired device i3 busy, the corresponding error code is set in
accumulator B and the following procedure is executed.

z

ERROR EQU $8433
LDAB BXX ; SET THE ERROR CODE.
JMP ERROR ; JUMP TO THE ERROR HANDLER.

The following error codes are commonly used.

Error code Message Description
5319 I0 Error in communication with a peripheral
device.
5919 IU Specified device is in use (busy).
694 DU Device is unavailable.
18.1.4 BREAK key processing s

The following two procedures are avallable when BREAK signal

is detected during execution of an I/O operation with a

peripheral device.

(1) Processing BREAK as an error
In this case, processing is identical to that for an I/0 error.
Error code 53 (I/0 error) is set in accumulator B and control is
transferred to the error handler subroutine (label name ERROR).

LDAB #53 ; ERROR CODE FOR 1/ ERROR.

JMP ERROR
This procedure does not effect the other open devices or
variables. When an ON ERROR GOTO statement has not been cxecuted
in the program mode, or when the I/0 error occurs in the direct
mode, the following error message will be displayed.

I1/0 ERROR (IN XXXX)

If an ON ERROR GOTO statement has been executed in the program) ’W,f

mode, control is transferred to the specified error trap routine. ‘
(2) Abort processing

Control jumps to label name ABTDO (address A908,¢). The BASIC)

interpreter clears all variables, closes all files and initializes

all I/0 devices. Then, the following message is displayed.

ABORT (IN XXXX)

.

18-3

ClibPDF - www .fastio.com

http://www.fastio.com/

18.2 Loading from Expansion Devices

The BASIC interpreter inhibits load from any device other than

"CASQ:, "CAS1:", "PACD:" and "COMO"., Loading from any device other
than these will result in an ©C error. However, load from expansion
devices can be enabled by rewriting the hook on the RAM (normally set
to jump to the FC error routine). The RAM hook is 3 bytes long and has
a format: JMP XXX.

Wrxite the entry point address of the program enabling loading from the
expanded device into the address portion of the hook. For load
processing, when control is returned from the OPEN routine, wvariable
ASCFLG {one byte, address 968C) is checked, and if ASCFLG is 90,
binary format load is performed.
o The following two routes are used by the OPEN routine to set the value
T of variable ASCFLG.

{1) PF is set in variable ASCFLG when the A option is specified in the
SAVE statement and 09 is set when the A option is not specified.
This data is written to the file header during program save and
set in variable ASCFLG by the OPEN routine during load processing.

(2) If the A option is specified in the SAVE statement, a value other
than FF is written as the first character of the file. If the A
option is not specified, FF is written as the above character.
Therefore, the value of ASCFLG can be set by reading of the first
character of the file using the OPEN routine.

Hook name
HXLOAD

Parameters
{2): Device number

Processing sequence

HXLOAD EQU SO5E2
FCERR EQU SBCT70
LODCNT " EQU SAGDO
LDD #LCADC
STD HKLOAD+1
LOADCK CMPA XX * check the device number
BEQ LOADOK
JMP FCERR * GIVE ‘FC FError!
LOADOXK JMP LODCNT * CONTINUE LOADING

+

18-4

ClibPDF - www .fastio.com

http://www.fastio.com/

18.3 ABORT Processing

If an I/O operation is aborted by pressing the BREAK key, the BASIC
interpreter initializes all devices and closes all files
(communications channels). When one of the devices in the DCB table
has been expanded, these devices will also have to be initizalized if
I/0 to another device is aborted. This initialization is also
performed using a hook.

Hook name

HXABTD
Address
063C
Note: } T e
Normally, 394¢ (RTS command) is stored at address 963C. Prion
B . s
B
TN

18~5

ClibPDF - www.fastio.com

http://www.fastio.com/

13.4,1 Application files

" Application programs (BASIC interpreter, word processcr, et .) can uase
the RAM to store the data required by their systems as application
files.

Application Files are protected ayainst use and accidental destruction
by other application programs. Required data can be stored in these
files in the same manner as data for BASIC programs can be stored in
RAM files.

(1) Before execution of an application program (F 18-2)
A1l application files are stored in the upper ad&rescw of the RAM.
(2) During execution of an appli

cation program (Fig. 18-3)

The application program reserves a work arsa for itself by moving

— the application files stored at addresses lower than 1ts own to

i’ addresses lower down ian the free area. However, the location of
this work area varies according to the status of the other
application files. Therefore, if a fixzed work area is re&qu 3,
the area immediately following the system area is reserved £«
this purpose. To secure WoOrk areas for execution, each aoolLva ion
program expands its application files into the fixed and variable
work areaas. _

(3) Upon termination of application program axecution
Upon termination of execution of an application program (power
switch is turned OFF, RESET switch is pressed or normal
completion), contrasl returns to the Menu leaving the RAM
allocation as it was during the executicn of the application
program.
Then, when the same or another application program 1is selected
from the Menu, the menu program calls the file reform routine for
the filas of the previously executed application programn.
The file reform routine selects only the reguired data from the
fixed and variable work areas to create an application file and
returns the RAM to the status in {1) above. Control is then

; transferred to the application program selected from the menu.

R For application programs which do not reguire application files,

the free area is used as work area as shown in Fig. 13-2,
In this case, the file reform routine is not called.

P

ClibPDF - www .fastio.com

http://www.fastio.com/

18.4.2 RAM map

System area System area
Fixed work area
Application file 1
Free area
= y ¢
Variable work area -
= &
Application file 1 T
Application file 2
High-order
Application file 3 Application file 3
el ~ A -~ R
~ . ¥ ~
S
Application file n Appilication file n
When application file 2 is used
Fig. 18-2 RAM map (1) Fig. 18-3 RAM map (2)
SN

18-~7

ClibPDF - www .fastio.com

http://www.fastio.com/

18.4.3 Lata configuration

BASTAB

Indicates the beginning of the application file. When the system is
initialized, the address set here is the same as that indicatad by
RMLTAD.

RMLTAD
Indicates the last address in the RAM +1. The wvalue of RMLTAD is set
when the RAM is checked during system initialization.

CNDADR

Indicates the entry roint of the file reform routine. The address of
the file reform routine for the application program is set in this
variable when the application program is executed and the application
files are expanded.

e INITAB

’ INITAB bit 6 is set {logic '1') to indicate that the files must be
reformed befcre the next application program can be executed. This
flag is set when the valus of CNDADR is sat.
When this flag is set, the Menu program calis the subroutine whose
address is stored in CNDADR (file reform routine for the previously
exacuted application program) before transferring control to the
application program selected from the menu. This flag is reset within
the subroutine after the application files are reformed. When
application files are not used, this flag must not be set,

0000
- System area
Free area
{ - !
o : . | BASTAB
i
|
Application file 1
] CNDADR
Application fiie 2
7 3 INITAB
Application file n
| !
* RMLTAD

Fig. 18-4 Pointers Used for Application Files
18-8

ClibPDF - www .fastio.com

http://www.fastio.com/

ClibPDF -

Fig. 18~5 shows an example of when two application files exist

simultaneously. The beginning of application file 1 is indicated by

BASTAB while the end of application file 2 is indicated by RMLTAD.

(1) File size
The file size is shown by the first two bytes of the file in
higher- and lower-order byte sequence. The starting address of the
next application file can be obtained by adding the file size to
the beginning address of the current file.

(2) Application ID ‘
Application programs are assigned unique one-byte values which are
used as IDs. These application IDs are used by application
programs when searching for their files.

(3) Data ‘
The data length °is the file size =3 bytes. Data format is optional.
Unique formats may be used for individual application programs.

-~
BASTAB
! . '
o . — — File size W
—————— Application ID
> File 1
~ L — —— Data
7
D « . - — File size 1 -
—————— Application 1D
L o > File 2
AMLTAD JR R — Last address of RAM +1 ' <

Fig. 18-5 Use of Pointers for Two Application Files

18-9
wyvw . fastio.com--

http://www.fastio.com/

18.4.4 Configuration of BASIC application files
BASIC application files must be stored at the end of the application
file area.
{1) Application ID
BASIC : 80,4
(2) Warm start hook
The one- to three-byte machine language command stored in this
hook 1is executed to execute BASIC warm start. 3915 (RTS command)
is set here when the system is initialized.
When the expanded BASIC code is stored in the RAM, a JMP command

(C3XXXX) is set in this hook to transfer control to the initialize
routine for expanded BASIC.
{3) Lowest address used by BASIC

The address specified in the MEMSET statement is set.

s
!]
Mo et e e Eil@ iz
80 . et i e i e e Bppiication 1D
¢
; \ ~— Hot Warm start AooK
TTTT T BASIC text area size (nd)
: e e e RAM fiig area size {n2)
— e L owest address in 8ASIC
; i Programmavie function kay
= ~ P T TT T tanle (16 bytes x 10 keys = 160 bytes}
- J
14
; N
i i
i :
j | ,
A - e e e BASIC program text {n1 bytes)
~ ke
|
i
i
ot -~ P m— e RAM file {n2 byres)
} i
i !
i |
H J
]
i
j w
. Fig. 18-6 Application File
i ”‘"«1
A b
R W
18-10

ClihPDF - www fastio.com

http://www.fastio.com/

18.5 Initializing Extended BASIC

18.5.1 Expansion method
When executing warm start, the BASIC interpreter copies the DCBs and
the DCB tables from the ROM and initialize the hooks and pointers. To
expand BASIC, these hooks and DCBs must be changed after warm start
nhas been executed. Three methods of expanding BASIC (ROM base, RAM
base and Disk base) are available.
After initialization has been completed, the BASIC interpreter
executes BASIC expansion in the following sequence. The DCBs and
hooks are rewritten by the initialize routines in ROM or RAM or by the
DISK boot program.
(1) Check executed for whether the expansion ROM has been set in the
memory bank in which the BASIC interpreter is currently located.
Control is transferred to (3) below, if the expansion ROM is not
stored in this memory bank. B
(2) The initialize routine for the expansion ROM is executed. ™
(3) Check executed for whether the floppy disk unit is available for e
serial communications. If the disk unit is not connected, control
is transferred to (5) below.
(4) The boot program is loaded from the floppy disk unit and then
executed.
(5) Warm start hook is executed. (If RAM-base expansion is to be
executed, a IJMP command to transfer control to the initialize
routine is set in this hook.)

18.5.2 Expanded ROM format
Format for expanding BASIC on a ROM base is shown below.

0000 — e - — Header - {1}

.o l e r e Header - (2)
- O ; —~
: e i i —’ Pointer to next header : = \)
s i e e Addiress of initiaiize routine
.
i i 1
L~—-—1 ;
i | z
i i
',_._..-—_--; % e e ExPaNSiON code
’i‘ - -. - :L - - e J’ o -~
g v .
T. | ’i
Fig. 18-7 Expanded ROM Format
Notes:
(1) The expanded ROM for extended BASIC must be located in address
60004 4. —
(2) Other application programs may be stored in the same ROM with
extended BASIC. However, the header of extended BASIC must be 5f#f7
located at the starting address of the ROM. e

18-11

ClibPDF - www.fastio.com

http://www.fastio.com/

s

ClibPDF -

i8.5.3 Expansion on RAM base

18.5.3.1 Loading extended BASIC

The memory area for extended BASIC is reserved by creating a special

application file at the end of the cother application files. The

procedure for loading extended BASIC is described below.

(1) The BASIC interpreter is executed after initialization {(CTRL/R).

{2) Load extended BASIC and the program to reserve the necessary

' memory area into the machine language arsa (LOADM command).

(3) Execute the program for resetving the memory ar=a.
This program renews BASTAB and RMLTAD and reserves a RAM area
gufficient to store extended BASIC., It then moves extended BASIC
from the machine language area to these files. Also, the warm
start hooks, etc., in the BASIC application file are rewritten and
the initialize routine for extended BASIC is attached at the end
of the initialize routine chain which starts from the warm start
hook.

{4) Transfer control to the BASIC interpreter warm start routine.

The above sequence makes extended BASIC resident in the RAM. Thereafter,

when warm start is executed, the initialize routine in extended BASIC

rewrites the DCBs and hooks to sxpand BASIC.

As the area reserved for extended BASIC is at the end of the

application files area, it remains unaffected even if the application

files are used by other application programs. :

The extended BASIC codes must be assembled to enable their use at the

destination addresses. However, these addresses of course vary with

the current RAM capacity. In order to enable use of the codes

irrespective of the RAM capacity, extended BASIC must be relocated

after it is moved to the RAM.)

18.5.3.2 Program for reserving extended BASIC area

The procedure for reserving the necessary memery area for extended

BASIC is described below.

{1) When control is transferred to the program for reserving memory
area, the BASIC interpreter is already running and the BASIC
application files are already extended. The file reform routine is
therefore called to store only the necessary data in the
application files. {Fig. 18-8)

LDX CNDADR
JSR ; X
. AIM #SBF, INITAB

{2) Next, the BASIC application files are moved forward (BASTAB
> RMLTAD-~1) to reserve the area for extended BASIC. (BASTAB is
also updated).
Simultanecusly, (RMLTAD) is also updatad and set at the head of
the extsnded BASIC area to protect exteanded BASIC. {(Fig. 18-9)
{3) Extended BASIC, loaded simultanecusly with the memory reserve
program, is then moved to the newly reserved application files.

18=12

wyvw . fastio.com

http://www.fastio.com/

ClibPDF -

(4) A jump command to transfer control to the initialize routine
for extended BASIC is set in the warm start hook in the BASIC
application file (currently, RTS command) or in the initialize
hook for extended BASIC already existing in the RAM.

(5) Control jumps to the BASIC interpreter warm start entry point.

LDX $8004
Jmp 0, X
System area System area
N Ao A /:
(BASTAB)
Application file -1
BASIC data
{BASTAB)
(RNLTAD)
Application file -1
BASIC data Application file 1
Expanded BASIC
object file
(RNLTAD)

’ Fig. 18-8 Status before Reserving Memory Area Fig. 18-9 Status after Reserving Memory Area

18-13
wyvw . fastio.com

http://www.fastio.com/

e~

18.5.3.3 Configuration of extended BASIC object file
The configuration of the extended BASIC object file is shown beslow.

Initiatize hook

Initialize routine

Program text
{Processing section) foa

4

(1) Initialize hooks

-~ The initialize hook consists of the 3 bytes shcwn below. When
P mzltiple extended BASICs reside in the RAM, this hook is used to
link the different initialize routines.

The initial value of the hook is RTS (3944)

[oV]
«Ww
(O
<O
<
o

(2) Initialize routine

The initialize routine starts from the next address following the
initialize hook. Each time BASIC is warm started, this routine
rewrites the hooks, adds DCBs, etc.
When the initialize routine is entered, the pointer to the sign-on
message is stored in register (¥X). This is either the current
BASIC sign-on message or else the sign-—-on message set by the
previous initialize routine for extended BASIC. The pointer to the
sign-cn message muist be set in register (X) when the initialize
routine is existed. To display a sign-on message for extended

o BASIC, set the pointer for the sign-on message in register (X) on

" exit from the initialize routine for extended BASIC. The sign-on
message will then be output when control is returned to the BASIC
interpreter or when control is transferred to the next initialize
routine for extended BASIC, If the set message is to be output
when the initialize routine is entered, STROUT shculd be called on
entry.
If above sign-on message is not to be output, the value of
registar (X) should be retained so that this register can be
raturned to its initial value on exit from the initialize routine,
In this case, the normal message or the message set by the
previous initialize routine will be output.

(3) Chaining initialize routines

When multiple extended BASICs are to be expanded on the RAM, the
initialize routines for all of these BASICs must be executed at
warm start. Firs*®, as the warm start hook has been rewritten to
transfer control to the first BASIC initialize routine, this

— routine is executad.

18~14

ClibPDF - www fastio.com

http://www.fastio.com/

ClibPDF -

Upon completion of execution of the initialize routine, control
jumps to the initialize hook. At this stage, if the initialize
hook is still set to its initial value, the RTS command will be
executed and control returned to the BASIC interpreter. If the
initialize hook has been rewritten to jump to another BASIC
initialize routine, that routine will be executed next. Initialize
routines can in this way be chained and executed in succession
until the RTS command is encountered. .

18.5.3.4 Rewriting warm start and initialize hooks

The procedure for adding the initialize routine for an extended BASIC,

newly loaded in the RAM, to the end of the execution chain startlng

from the warm start hook is described below.

(1) The warm start hook in the BASIC application file is checked. If
the value of the warm start hook has not been rewritten (that is,
if it is still RTS), it is rewritten to jump to the initialize
routine for extended BASIC. \

If the warm start hook has already been rewritten (if a jump
command has been set), operation proceeds to (2) below.

(2) The extended BASIC initialize hook at the jump destination of the
warm start hook is checked. If it has not been rewritten, it is
rewritten to jump to the initialize routine for the newly loaded
extended BASIC.

If the initialize hook has already been rewritten {if a jump
command has been set}, control is returned to (2). This operation
is repeated until an initialize hook in which RTS has not been
rewritten.is encountered.

18«15

wywy.fastio.com

o’

http://www.fastio.com/

18.5.4 Extended BASIC work area

The following RAM area is used as the work area for exte
irraspective of whether BASIC has been expanded on the ROM or oo
RAM.,

®A38 -- QA3D 5 bytes

For RAM base expansion, if the work area i1s iasufficient, a work arca
in the applicaticon f£iles is reserved along with the area raguired for
loading extended BASIC. For ROM base expansion, a RAM area i3 reserved
with the application files as in RAM base. This area is then used as
the work area. (Subroutines are set in the ROM and executed manually
(EXEC command) after system initialize.)

The same procedure is followed to retain data in extanded BASIC.

e

ClibPDF - www fastio.com

18-16

http://www.fastio.com/

18.6 System Variables and Hook Table

18.6.1 System variables

(1) INITAB (address 20784, 1 byte)

Bits @ to 5 and bit 7 are initialize request flags. One bit is
assigned for each application. The flag is set {logic "1") to
indicate that initialization has been executed. It is reset at
system initialize.

+ The bit of this variable corresponding to the application program
to be executed is checked prior to execution if the program
requires initializaiton for its files, etc. If the flag is reset
(logic "0"), initialize processing is performed to reserve the
necessary work areas, etc., for the files and execution of the
program is performed only after the INITAB flag becomes "1", If
the flag is set (logic “1"), this means that the application
program has already been initialized. It can therefore be executed
immediately. INITAB flags are not assigned to application programs
which do not require initialization.

Bits currently used are as follows.

Bit B -==== Menu program
Bit 7 —===- BASIC interpreter

Bit 6 is a file reform request flag. For application programs
which require their files be expanded, the pointer to the file
reform routine must be set in variable CNDADR and bit 6 of INITAB
must also be set after file expansion has completed.
The file reform routine is called by the menu program and resets
bit & of INITAB after reforming the files.

(2) RML TAD (address 012C167 2 bytes) .
This is the pointer for the last address in the RAM +1. This
variable is set at system initialize. Also functions as the
pointer for the last address of the application files +1.

(3) BASTAB (address 213444, 2 bytes)
Pointer to the starting address of the application files. Set to
the same address as RMLTAD at system initialize. S

(4) CNDADR (address 0136,¢, 2 bytes) i
Pointer to the file reform routine. Set by the application
program. Valid only if INITAB bit 6 is also set.

(5) DCTAB (address 0657,4)
DCB table

(6) DEVNUM (address 063E,q)
Enables LOAD from expansion devices.’

(7) ASCFLG (address 068C, 2 bytes)
Specifies mode (ASCII or binary) for load. Set by the device OPEN
routine. -

18-17

ClibPDF - www .fastio.com

http://www.fastio.com/

®

The BASIC interpreter interprets the flag status as follows:
FF: ASCII lecad
9: Binary load

{8) OPTBUF (address 068F)
The character string in the file descriptor used to gpecify
options is set in this buffer. The option routine uses this data.
The file descriptor option statement is set in this buffer in its
original form. It is not placed in brackets. (20) is used as the
and mark. If (00) is entered as the first character, option is
assumed not to have been specified.

18.6.2 Hook table
(1) HKLOAD (address 05E24g4)
Enables LOAD from expansion devices.
(2) HKABTD (address @63C16)
Used to initialize expansion devices in case of ABORT.

",/ #\;
- 18.6.3 Entry Point Table
Label name Address
(1) ERROR 8433
(2) ABTDO A9DS
{(3) FCERR 8C70
(4) LODCNT A6DQ

18~18

ClihPDF - www fastio.com

http://www.fastio.com/

	./tm18-00.tif
	./tm18-01.tif
	./tm18-02.tif
	./tm18-03.tif
	./tm18-04.tif
	./tm18-05.tif
	./tm18-06.tif
	./tm18-07.tif
	./tm18-08.tif
	./tm18-09.tif
	./tm18-10.tif
	./tm18-11.tif
	./tm18-12.tif
	./tm18-13.tif
	./tm18-14.tif
	./tm18-15.tif
	./tm18-16.tif
	./tm18-17.tif
	./tm18-18.tif

