8

8.1

8.2

8.2.1

Basic Architecture

The following sections describe the basic VAX architecture, including the
following:

— Address space

— Data types

— Processor status longword (PSL)
~ Permanent exception enables

— Instruction and addressing mode formats

VAX Addressing

The basic addressable unit in VAX MACRO is the 8-bit byte. Virtual
addresses are 32 bits long. Therefore, the virtual address space is

232 (approximately 4.3 billion) bytes. Virtual addresses as seen by the
program are translated into physical memory addresses by the memory
management mechanism.

Data Types

The following sections describe the VAX data types.

Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The
bits are numbered from right to left 0 to 7.

7 0

tA

ZK-1119A-GE

A byte is specified by its address A. When interpreted arithmetically, a
byte is a two’s complement integer with bits of increasing significance
ranging from bit 0 to bit 6, with bit 7 the sign bit. The value of the integer
is in the range —128 to +127. For the purposes of addition, subtraction,
and comparison, VAX instructions also provide direct support for the
interpretation of a byte as an unsigned integer with bits of increasing
significance ranging from bit 0 to bit 7. The value of the unsigned integer
is in the range 0 to 255.

8-1

8.2.2

8.2.3

8.2.4

Basic Architecture

8.2 Data Types

Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The
16 bits are numbered from right to left 0 to 15.

15

0J:A

ZK-1120A-GE

A word is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a word is a two’s
complement integer with bits of increasing significance ranging from

bit 0 to bit 14, with bit 15 the sign bit. The value of the integer is in

the range —32,768 to +32,767. For the purposes of addition, subtraction,
and comparison, VAX instructions also provide direct support for the
interpretation of a word as an unsigned integer with bits of increasing
significance ranging from bit 0 to bit 15. The value of the unsigned integer
is in the range 0 to 65,535.

Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary.
The 32 bits are numbered from right to left 0 to 31.

31 0
I:A

ZK-1121A-GE

A longword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a longword is a two’s
complement integer with bits of increasing significance ranging from bit
0 to bit 30, with bit 31 the sign bit. The value of the integer is in the
range —2,147,483,648 to +2,147,483,647. For the purposes of addition,
subtraction, and comparison, VAX instructions also provide direct support
for the interpretation of a longword as an unsigned integer with bits of
increasing significance ranging from bit 0 to bit 31. The value of the
unsigned integer is in the range 0 to 4,294,967,295.

Quadword

8-2

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary.
The 64 bits are numbered from right to left 0 to 63.

8.2.5

8.2.6

Basic Architecture
8.2 Data Types

31 0
tA
cA+4
63 32
ZK-1122A-GE

A quadword is specified by its address, A, which is the address of the byte
containing bit 0. When interpreted arithmetically, a quadword is a two’s
complement integer with bits of increasing significance ranging from bit 0
to bit 62, with bit 63 the sign bit. The value of the integer is in the range
-2**63 to +2**63—1. The quadword data type is not fully supported by
VAX instructions.

Octaword

An octaword is 16 contiguous bytes starting on an arbitrary byte boundary.
The 128 bits are numbered from right to left 0 to 127.

31 0
)
:A+4
:A+8
A+12
127 96
ZK-1123A-GE

An octaword is specified by its address, A, which is the address of the
byte containing bit 0. When interpreted arithmetically, an octaword is

a two’s complement integer with bits of increasing significance ranging
from bit 0 to bit 126, with bit 127 the sign bit. The value of the integer is
in the range —2**127 to +2**127-1. The octaword data type is not fully
supported by VAX instructions.

F_floating

An F_floating datum is 4 contiguous bytes starting on an arbitrary byte
boundary. The 32 bits are labeled from right to left 0 to 31.

15 14 7 6 0
S exp fraction :A
fraction (A+2
ZK-1124A-GE

8-3

8.2.7

8.2.8

Basic Architecture

8.2 Data Types

An F_floating datum is specified by its address, A, which is the address
of the byte containing bit 0. The form of an F_floating datum is sign
magnitude with bit 15 as the sign bit, bits 14:7 as an excess 128 binary
exponent, and bits 6:0 and 31:16 as a normalized 24-bit fraction with
the redundant most-significant fraction bit not represented. Within the
fraction, bits of increasing significance range from bits 16 to 31 and 0

to 6. The 8-bit exponent field encodes the values 0 to 255. An exponent
value of zero, together with a sign bit of zero, is taken to indicate that
the F_floating datum has a value of zero. Exponent values of 1 to 255
indicate true binary exponents of ~127 to +127. An exponent value of
zero, together with a sign bit of 1, is taken as reserved. Floating-point
instructions processing a reserved operand take a reserved operand fault
(see Appendix E). The value of an F_floating datum is in the approximate
range .29*10%*-38 to 1.7¥10%**38. The precision of an F_floating datum is
approximately one part in 2**23; that is, typically 7 decimal digits.

D_floating

A D_floating datum is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left 0 to 63.

15 14 7 6 0
S exp fraction tA
fraction tA+2
fraction :A+4
fraction :A+6
ZK-1125A-GE

A D_floating datum is specified by its address, A, which is the address

of the byte containing bit 0. The form of a D_floating datum is identical
to an F_floating datum except for additional 32 low-significance fraction
bits. Within the fraction, bits of increasing significance range from bits 48
to 63, 32 to 47, 16 to 31, and 0 to 6. The exponent conventions and the
approximate range of values are the same for D_floating as they are for
F_floating. The precision of a D_floating datum is approximately one part
in 2**55, typically, 16 decimal digits.

G_floating

A G_floating datum is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left 0 to 63.

8.2.9

Basic Architecture
8.2 Data Types

15 14 4 3 0
S exp fract CA
fraction tA+2
fraction tA+4
fraction :A+6
ZK-1126A-GE

A G_floating datum is specified by its address, A, which is the address
of the byte containing bit 0. The form of a G_floating datum is sign
magnitude, with bit 15 as the sign bit, bits 14:4 as an excess 1024 binary
exponent, and bits 3:0 and 63:16 as a normalized 53-bit fraction with
the redundant most-significant fraction bit not represented. Within the
fraction, bits of increasing significance range from bits 48 to 63, 32 to
47, 16 to 31, and 0 to 3. The 11-bit exponent field encodes the values 0
to 2047. An exponent value of zero, together with a sign bit of zero, is
taken to indicate that the G_floating datum has a value of zero. Exponent
values of 1 to 2047 indicate true binary exponents of —1023 to +1023. An
exponent value of zero, together with a sign bit of 1, is taken as reserved.
Floating-point instructions processing a reserved operand take a reserved
operand fault (see Appendix E). The value of a G_floating datum is in
the approximate range .56%10%*-308 to .9*10**308. The precision of a
G_floating datum is approximately one part in 2**52; that is, typically 15
decimal digits.

H_floating

An H_floating datum is 16 contiguous bytes starting on an arbitrary byte
boundary. The 128 bits are labeled from right to left 0 to 127.

15 14 0

S exponent tA
fraction 1A+2
fraction :A+4
fraction :A+6
fraction :A+8
fraction :A+10
fraction tA+12
fraction tA+14

ZK-1127A-GE

8-5

Basic Architecture

8.2 Data Types

An H_floating datum is specified by its address, A, which is the address
of the byte containing bit 0. The form of an H_floating datum is sign
magnitude with bit 15 as the sign bit, bits 14:0 as an excess 16,384
binary exponent, and bits 127:16 as a normalized 113-bit fraction with
the redundant most-significant fraction bit not represented. Within the
fraction, bits of increasing significance range from bits 112 to 127, 96

to 111, 80 to 95, 64 to 79, 48 to 63, 32 to 47, and 16 to 31. The 15-bit
exponent field encodes the values 0 to 32,767. An exponent value of zero,
together with a sign bit of 0, is taken to indicate that the H_floating datum
has a value of zero. Exponent values of 1 to 32,767 indicate true binary
exponents of —16,383 to +16,383. An exponent value of zero, together with
a sign bit of 1, is taken as reserved. Floating-point instructions processing
a reserved operand take a reserved operand fault (see Appendix E). The
value of an H_floating datum is in the approximate range .84*%10%*-4932
to .59*%10%*4932. The precision of an H_floating datum is approximately
one part in 2**112, typically, 33 decimal digits.

8.2.10 Variable-Length Bit Field

8-6

A variable-length bit field is 0 to 32 contiguous bits located arbitrarily
with respect to byte boundaries. A variable-length bit field is specified by
three attributes:

¢ Address A of a byte

* Bit position P, which is the starting location of the field with respect to
bit O of the byte at A

¢ Size S of the field

The specification of a bit field is indicated by the following figure, where
the field is the shaded area.

P+S P+S-1 P P-1 0

ZK-1128A-GE

For bit strings in memory, the position is in the range —2%*31 to
2**31-1 and is conveniently viewed as a signed 29-bit byte offset and a
3-bit, bit-within-byte field.

31 3 2 0

L byte offset I bwb |

ZK-1129A-GE

The sign-extended, 29-bit byte offset is added to the address A; the
resulting address specifies the byte in which the field begins. The 3-bit,
bit-within-byte field encodes the starting position (0 to 7) of the field
within that byte. The VAX field instructions provide direct support

Basic Architecture
8.2 Data Types

for the interpretation of a field as a signed or unsigned integer. When
interpreted as a signed integer, it is two’s complement with bits of
increasing significance ranging from bits 0 to S-2; bit S-1 is the sign bit.
When interpreted as an unsigned integer, bits of increasing significance
range from bits 0 to S-1. A field of size zero has a value identically equal
to zero.

A variable-length bit field may be contained in 1 to 5 bytes. From a
memory management point of view, only the minimum number of aligned
longwords necessary to contain the field may be actually referenced.

For bit fields in registers, the position is in the range 0 to 31. The position
operand specifies the starting position (0 to 31) of the field in the register.

A variable-length bit field may be contained in two registers if the sum of

position and size exceeds 32.

P-1

Rn
R [n+1]
P+S P+S-1
ZK-1130A-GE

For further details on the specification of variable-length bit fields, see the
descriptions of the variable-length bit field instructions in Section 9.2.3.

8.2.11 Character String

A character string is a contiguous sequence of bytes in memory. A
character string is specified by two attributes: the address A of the first
byte of the string, and the length L of the string in bytes. Thus, the format
of a character string is represented as follows:

7 0
A
: A+L-1
7 0
ZK-1131A-GE

8-7

8.2.12

Basic Architecture
8.2 Data Types

The address of a string specifies the first character of a string. Thus “XYZ”
is represented as follows:

nXu : A

"y LA+

'z {As2
ZK-1132A-GE

The length L of a string is in the range 0 to 65,535.

Trailing Numeric String

A trailing numeric string is a contiguous sequence of bytes in memory.
The string is specified by two attributes: the address A of the first byte
(most-significant digit) of the string, and the length L of the string in
bytes.

All bytes of a trailing numeric string, except the least-significant digit
byte, must contain an ASCII decimal digit character (0 to 9).

Basic Architecture
8.2 Data Types

The representation for the high-order digits is as follows:

ASCIi
Digit Decimal Hex Character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The highest-addressed byte of a trailing numeric string represents an
encoding of both the least-significant digit and the sign of the numeric
string. The VAX numeric string instructions support any encoding;
however, Digital software uses three encodings. These are as follows:

* Unsigned numeric encoding, in which there is no sign and the least-
significant digit contains an ASCII decimal digit character

¢ Zoned numeric encoding

* Overpunched numeric encoding

Because compilers of many manufacturers over the years have used

the overpunch format and various card encodings, several variations

in overpunch format have evolved. Typically, these alternate forms are
accepted on input; the normal form is generated as the output for all
operations. The valid representations of the digit and sign in each of the
latter two formats is indicated in Table 8-1 and Table 8-2.

Table 8—1 Representation of Least-Significant Digit and Sign in Zoned
Numeric Format

ASCII
Digit Decimal Hex Character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5

(continued on next page)

8-9

Basic Architecture

8.2 Data Types

8-10

Table 8-1 (Cont.) Representation of Least-Significant Digit and Sign in

Zoned Numeric Format

ASCII

Digit Decimal Hex Character
6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

-0 112 70 p

-1 113 71 q

-2 114 72 r

-3 115 73 s

-4 116 74 t

-5 117 75 u

-6 118 76 v

-7 119 77 w

-8 120 78 X

-9 121 79 y

Table 8-2 Representation of Least-Significant Digit and Sign in
Overpunch Format

ASCIl Character

Digit Decimal Hex Norm Alt.
0 123 7B { o[?
1 65 41 A 1

2 66 42 B 2

3 67 43 Cc 3

4 68 44 D 4

5 69 45 E 5

6 70 46 F 6

7 71 47 G 7

8 72 48 H 8

9 73 49 I 9
-0 125 7D } I
-1 74 4A J

-2 75 4B K

-3 76 4C L

-4 77 4D M

{continued on next page)

Basic Architecture

8.2 Data Types

Table 8-2 (Cont.) Representation of Least-Significant Digit and Sign in

Overpunch Format

ASCII Character

Digit Decimal Hex Norm Alt.
-5 78 4E N
-6 79 4F O
-7 80 50 P
-8 81 51 Q
-9 82 52 R

The length L of a trailing numeric string must be in the range 0 to 31
(0 to 31 digits). The value of a zero-length string is zero.

The address A of the string specifies the byte of the string containing the
most-significant digit. Digits of decreasing significance are assigned to
increasing addresses. Thus “123” is represented as follows:

Zoned Format or Unsigned

7 4 3

0

tA+1

cA+2

Overpunch Format

7

4

3 0
A
T A+1
t A+2
ZK-1133A-GE

The trailing numeric string with a value of “~123” is represented as

follows:

Zoned Format

c A+
A+2

8.2.13 Leading Separate Numeric String

A leading separate numeric string is a contiguous sequence of bytes in
memory. A leading separate numeric string is specified by two attributes:
the address A of the first byte (containing the sign character), and a length

Overpunch Format

7 4 3 0
3 1 tA
2 A+
4 T A+2
ZK-1134A-GE

8-1

Basic Architecture

8.2 Data Types

8-12

L, which is the length of the string in digits and not the length of the
string in bytes. The number of bytes in a leading separate numeric string
is L+ 1.

The sign of a separate leading numeric string is stored in a separate byte.
Valid sign bytes are indicated in the following table:

Sign Decimal Hex ASCII character

43 2B +
+ 32 20 {blank}
- 45 2D -

The preferred representation for “+” is ASCII “+”. All subsequent bytes
contain an ASCII digit character, as indicated in the following table:

Digit Decimal Hex ASCIl character

0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The length L of a leading separate numeric string must be in the range
0 to 31 (0 to 31 digits). The value of a zero-length string is zero.

The address A of the string specifies the byte of the string containing the
sign. Digits of decreasing significance are assigned to bytes of increasing
addresses. Thus “+123” is represented as follows:

7 4 3 0

2 B tA

3 1 T A+1

3 2 A2

3 3 :A+3
ZK-1135A-GE

The leading separate numeric string with a value of “~123” is represented
as follows:

Basic Architecture
8.2 Data Types

2 D CA

3 1 T A+

3 2 cA+2

3 3 tA+3
ZK-1136A-GE

8.2.14 Packed Decimal String

A packed decimal string is a contiguous sequence of bytes in memory. A
packed decimal string is specified by two attributes: the address A of the
first byte of the string and a length L, which is the number of digits in
the string and not the length of the string in bytes. The bytes of a packed
decimal string are divided into two, 4-bit fields (nibbles). Each nibble
except the low nibble (bits 3:0) of the last (highest-addressed) byte must
contain a decimal digit. The low nibble of the highest-addressed byte must
contain a sign. The representation for the digits and sign is indicated as

follows:

Digit or Sign Decimal Hexadecimal
0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10,12,14, or 15 ACE, or F
- 11 0or 13 BorD

The preferred sign representation is 12 for “+” and 13 for “~”. The length
L is the number of digits in the packed decimal string (not counting the
sign); L must be in the range 0 to 31. When the number of digits is odd,
the digits and the sign fit into a string of bytes whose length is defined
by the following equation: L/2 (integer part only) + 1. When the number
of digits is even, it is required that an extra “0” digit appear in the high
nibble (bits 7:4) of the first byte of the string. Again, the length in bytes of
the string is L/2 + 1.

8-13

Basic Architecture

8.2 Data Types

The address A of the string specifies the byte of the string containing the
most-significant digit in its high nibble. Digits of decreasing significance
are assigned to increasing byte addresses and from high nibble to low

nibble within a byte. Thus, “+123” has a length of 3 and is represented as
follows:

1 2 CA
3 12 cA+1
ZK-1137A-GE

The packed decimal number “~12” has a length of 2 and is represented as
follows:

0 1 A
2 13 A+l
ZK-1138A-GE

8.3 Processor Status Longword (PSL)

8-14

The processor status longword (PSL) consists of a set of processor state
variables associated with each process. Bits 31:16 of the PSL have
privileged status. For information on this part of the PSL, refer to the
VAX Architecture Reference Manual. Bits 15:0 of the PSL are referred to
separately as the processor status word (PSW).

The format of the PSL is as follows:

313029282726 2524 2322 2120 1615 876543210
C|T F|I|CUR|PRV M D{Fil
M|P{MBZ|P|S|MOD{MOD|B| IPL MBZ VIU[V]TIN|Z|V|C
D y4
ZK-1139A-GE

The processor status word (PSW), bits 0 to 15 of the processor status
longword, contains:

* The condition codes, which give information on the results produced by
previous instructions.

The exception enables, which control the processor action on certain
exception conditions (see Appendix E).

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

Basic Architecture
8.3 Processor Status Longword (PSL)

The condition codes are UNPREDICTABLE when they are affected

by UNPREDICTABLE results. The VAX procedure call instructions
conditionally set the IV and DV enables, clear the FU enable, and leave
the T enable unchanged at procedure entry.

The C (carry) condition code bit, when set, indicates that the last
instruction that affected C had a carry out of the most-significant bit
of the result, or a borrow into the most-significant bit. When C is clear, no

The V (overflow) condition code bit, when set, indicates that the last
instruction that affected V produced a result whose magnitude was too
large to be properly represented in the operand that received the result,
or that there was a conversion error. When V is clear, no overflow or

The Z (zero) condition code, when set, indicates that the last instruction
that affected Z produced a result that was zero. When Z is clear, the result

The N (negative) condition code bit, when set, indicates that the last
instruction that affected N produced a negative result. When N is clear,
the result was positive (or zero).

The T (trace) bit, when set at the beginning of an instruction, causes the
TP bit in the Processor Status Longword to be set. When TP is set at the
end of an instruction, a trace fault is taken before the execution of the
next instruction. See Appendix E for additional information on the TP bit

C Bit

carry or borrow occurred.
V Bit

conversion error occurred.
Z Bit

was nonzero.
N Bit
T Bit

and the trace fault.
IV Bit

The IV (integer overflow) bit, when set, forces an integer overflow trap
after execution of an instruction that produced an integer result that
overflowed or had a conversion error. When IV is clear, no integer overflow
trap occurs. (However, the condition code V bit is still set.)

8-15

8.3.7

8.3.8

8.4

8.4.1

8.4.2

8.5

8.5.1

Basic Architecture
8.3 Processor Status Longword (PSL)

FU Bit

The FU (floating underflow) bit, when set, forces a floating underflow fault
if the result of a floating-point instruction is too small in magnitude to be
represented in the result operand. When FU is clear, no underflow fault
occurs.

DV Bit

The DV (decimal overflow) bit, when set, forces a decimal overflow trap
after execution of an instruction that produced an overflowed decimal
(numeric string, or packed decimal) result or had a conversion error.
When DV is clear, no trap occurs. (However, the condition code V bit is
still set.)

Permanent Exception Enables

The processor action on certain exception conditions is not controlled
by bits in the PSW. Traps or faults always result from these exception
conditions.

Divide by Zero

A divide-by-zero trap is forced after the execution of an integer or decimal
division instruction that has a zero divisor. A fault occurs on a floating-
point division instruction that has a zero divisor.

Floating Overflow

A floating overflow fault is forced after the execution of a floating-point
instruction that produced a result too large to be represented in the result
operand.

Instruction and Addressing Mode Formats

The following sections describe the formats for instruction opcodes and for
the operand specifiers used with the various addressing modes.

Opcode Formats

8-16

An instruction is specified by the byte address A of its opcode.

7 0
opcode tA

ZK-1140A-GE

Basic Architecture
8.5 Instruction and Addressing Mode Formats

The opcode may extend over 2 bytes; the length depends on the contents of
the byte at address A. If, and only if, the value of the byte is FC (hex) to
FF (hex), the opcode is 2 bytes long.

15 8 7 0

opcode FC -FF CA

ZK-1141A-GE

8.5.2 Operand Specifiers

Each instruction takes a specific sequence of operand specifier types. An
operand specifier type conceptually has two attributes: the access type and
the data type.

The access types include the following:
1 Read—The specified operand is read only.
2 Write—The specified operand is written only.

3 Modify—The specified operand is read, potentially modified, and
written. This operation is not performed under a memory interlock.

4 Address—The address of the specified operand in the form of a
longword is the actual instruction operand. The specified operand
is not accessed directly, although the instruction may subsequently use
the address to access that operand.

5 Variable bit field base address—This access type is a special variant
of the address access type. Variable bit field base address type is the
same as address access type except for register mode. In register
mode, the field is contained in register n, designated by the operand
specifier (or register n+1 concatenated with register n).

6 Branch—No operand is accessed. The operand specifier itself is a
branch displacement.

Access types 1 to 5 are general mode addressing. Type 6 is branch mode
addressing.

The data types include the following:
* Byte
e Word

* Longword and F_floating (equivalent for addressing mode
considerations)

¢ Quadword, D_floating, and G_floating (equivalent for addressing mode
considerations)

¢ Octaword and H_floating (equivalent for addressing mode
considerations)

8-17

Basic Architecture
8.5 Instruction and Addressing Mode Formats

For the address and branch access types, which do not directly reference
operands, the data type indicates:

¢ Address—the operand size to be used in the address calculation in
autoincrement, autodecrement, and index modes

* Branch--the size of the branch displacement

8.6 General Addressing Mode Formats

8-18

Note:

The following sections describe the operand specifier formats for the
general addressing modes. For descriptions and examples of the use of the
general addressing modes, see Chapter 5.

In Section 8.7, Table 8-5 is a summary of general register addressing and
Table 8-6 is a summary of program counter addressing.

Notation for Describing Addressing Modes

The following notation describes the addressing modes:

+ Addition

- Subtraction

* Multiplication

<- Is replaced by

= Is defined as

’ Concatenation

Rn or R[n] The contents of register n

PC or SP The contents of register 15 or 14, respectively
(x) The contents of a location in memory whose address is x
{} Arithmetic parentheses that indicate precedence
SEXT(x) x is sign extended to size of operand needed
ZEXT(x) X is zero extended to size of operand needed
OA Operand address

! Comment delimiter

In the formal descriptions of the addressing modes, the symbol for
a register (for example, Rn or PC) always means the contents of
the register (for example, the contents of register n or the contents
of register 15). However, in text, when there is no ambiguity, the
symbol for a register is often used as the name of a register (for
example, Rn may be used for the name of register n, and PC may
be used for the name of register 15).

Each general mode addressing description includes the definition of the
operand address and the specified operand. For operand specifiers of
address access type, the operand address is the actual instruction operand.
For other access types, the specified operand is the instruction operand.
The branch mode addressing description includes the definition of the
branch address.

Basic Architecture
8.6 General Addressing Mode Formats

8.6.1 Register Mode

The operand specifier format is as follows:

7 4 3 0
5 Rn

ZK-1142A-GE

No specifier extension follows.

In register mode addressing, the operand is the contents of either register
n or (for quadword, D_floating, and certain field operands) register n+1
concatenated with register n.

operand = Rn I If 1 register
or
R[n+1]’ Rn I If two registers
or
R[n+3])’ R[n+2]’ R[n+1]’ Rn I If four registers

The assembler notation for register mode is Rn.

8.6.2 Register Deferred Mode

The operand specifier format is as follows:

7 4 3 0
6 Rn

ZK-1143A-GE

No specifier extension follows.

In register deferred mode addressing, the address of the operand is the
contents of register n.

OA = Rn
operand = (OA)

The assembler notation for register deferred mode is (Rn).

8.6.3 Autoincrement Mode

The operand specifier format is as follows:

8-19

Basic Architecture
8.6 General Addressing Mode Formats

8 Rn

ZK-1144A-GE

No specifier extension follows. If Rn denotes the PC, immediate data
follows, and the mode is termed immediate mode.

In autoincrement mode addressing, the address of the operand is the
contents of register n. After the operand address is determined, the size of
the operand in bytes (1 for byte; 2 for word; 4 for longword and F_floating;
8 for quadword, G_floating, and D_floating; and 16 for octaword and
H_floating) is added to the contents of register n, and the contents of
register n are replaced by the result.

OA = Rn
Rn <- Rn + size
operand = (OA)

The assembler notation for autoincrement mode is (Rn)+. For immediate
mode, the notation is I"#constant, where constant is the immediate data
that follows.

8.6.4 Autoincrement Deferred Mode

8-20

The operand specifier format is as follows:

7 4 3 0
9 Rn

ZK-1145A-GE

No specifier extension follows. If Rn denotes the PC, a longword address
follows and the mode is termed absolute mode.

In autoincrement deferred mode addressing, the address of the operand

is the contents of a longword whose address is the contents of register n.
After the operand address is determined, 4 (the size in bytes of a longword
address) is added to the contents of register n and the contents of register
n are replaced by the result.

OA = (Rn)
Rn <- Rn + 4
operand = (OA)

The assembler notation for autoincrement deferred mode is @ Rn)+. For
absolute mode, the notation is @#address, where address is the longword
that follows.

Basic Architecture
8.6 General Addressing Mode Formats

8.6.5 Autodecrement Mode

The operand specifier format is as follows:

7 4 3 0
7 Rn

ZK-1146A-GE

No specifier extension follows.

In autodecrement mode addressing, the size of the operand in bytes (1 for
byte; 2 for word; 4 for longword and F_floating; 8 for quadword, G_floating,
and D_floating; and 16 for octaword and H_floating) is subtracted from the
contents of register n, and the contents of register n are replaced by the
result. The updated contents of register n are the address of the operand.

Rn <- Rn - size
OA = Rn
operand = (OA)

The assembler notation for autodecrement mode is -(Rn).

8.6.6 Displacement Mode

There are three operand specifier formats.

7 4 3 0
10 Rn

ZK-1147A-GE

The specifier extension is a signed byte displacement that follows the
operand specifier. This is the byte displacement mode.

7 4 3 0
12 Rn

ZK-1148A-GE
The specifier extension is a signed word displacement that follows the
operand specifier. This is the word displacement mode.

7 43 0
14 Rn

ZK-1149A-GE

8-21

Basic Architecture
8.6 General Addressing Mode Formats

The specifier extension is a longword displacement that follows the
operand specifier. This is the longword displacement mode.

In displacement mode addressing, the displacement (after it is sign
extended to 32 bits, if it is byte or word displacement) is added to the
contents of register n, and the result is the operand address.

OA = Rn + SEXT(displ) I If byte or word displacement
or
Rn + displ ! If longword displacement

operand = (OA)

If Rn denotes PC, the updated contents of the PC are used. The address
in the PC (the updated contents) is the address of the first byte beyond the
specifier extension.

The assembler notation for byte, word, and long displacement mode is
BAD(Rn), WAD(Rn), and LAD(Rn), respectively, where D = displacement.

8.6.7 Displacement Deferred Mode

There are three operand specifier formats.

7 4 3 0
11 Rn

ZK-1150A-GE
The specifier extension is a signed byte displacement that follows the
operand specifier. This is the byte displacement deferred mode.

7 4 3 0
13 Rn

ZK-1151A-GE
The specifier extension is a signed word displacement that follows the
operand specifier. This is the word displacement deferred mode.

7 4 3 0
15 Rn

ZK-1152A-GE

The specifier extension is a longword displacement that follows the
operand specifier. This is the longword displacement deferred mode.

8-22

8.6.8

Basic Architecture
8.6 General Addressing Mode Formats

In displacement deferred mode addressing, the displacement (after it is
sign extended to 32 bits, if it is byte or word displacement) is added to the
contents of register n, and the result is the address of a longword whose
contents are the operand address.

OA = (Rn + SEXT(displ)) ! If byte or word displacement
or
(Rn + displ) ! If longword displacement

operand = (OA)

If Rn denotes PC, the updated contents of the PC are used. The address
in the PC (the updated contents) is the address of the first byte beyond the
specifier extension.

The assembler notation for byte, word, and longword displacement
deferred mode is @BAD(Rn), @WAD(Rn), and @LAD(Rn), respectively,
where D = displacement.

Literal Mode

The operand specifier format is as follows:

7 65 0

0 literal

ZK-1153A-GE

No specifier extension follows.

For operands of data type byte, word, longword, quadword, and octaword,
the operand is the zero extension of the 6-bit literal field.

operand = ZEXT(literal)

Thus, for these data types, you may use literal mode for values in the
range 0 to 63.

For operands of data type F_floating, G_floating, D_floating, and
H_floating, the 6-bit literal field is composed of two, 3-bit fields. These
fields are illustrated in the following diagram, where exp is exponent and
fra is fraction:

5 32 0

exp fra

ZK-1154A-GE

8-23

Basic Architecture
8.6 General Addressing Mode Formats

You use the exponent and fraction fields to form an F_floating or
D_floating operand as follows:

15 14 7 6 43 0
0 128 + exp fra 0
0 A+2
0 A+4
0 A+ 6
ZK-1155A-GE

Note that bits 63:32 are not present in an F_floating operand.

You use the exponent and fraction fields to form a G_floating operand as

follows:
15 14 43 1 0
0 1024 + exp fra | O
0 A+ 2
0 A+4
0 A+ 6
ZK-1156A-GE

You use the exponent and fraction fields to form an H_floating operand as
follows:

8-24

Basic Architecture
8.6 General Addressing Mode Formats

15 14 0
0 16,384 + exp
fra 0 A+2
0 A+4
0 A+6
0 A+8
0 A+ 10
0 A+ 12
0 A+ 14
ZK-1157A-GE

The range of values available is given in Table 8-3 and Table 8-4 in both
decimal and rational number notation.

Table 8-3 Floating-Point Literals Expressed as Decimal Numbers

Exponent 0 1 2 3 4 5 6 7

0 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375
1 1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875
2 2.0 2.25 25 2.75 3.0 3.25 3.5 3.75

3 4.0 45 5.0 5.5 6.0 6.5 7.0 7.5

4 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

5 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

6 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

7 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

Table 8-4 Floating-Point Literals Expressed as Rational Numbers

Exponent 0 1 2 3 4 5 6 7

0 12 9/16 5/8 11/16 3/4 13/16 7/8 15/16
1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8
2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4
3 4 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2
4 8 9 10 11 12 13 14 15

(continued on next page)

8-25

8.6.9

Basic Architecture
8.6 General Addressing Mode Formats

Table 8-4 (Cont.) Floating-Point Literals Expressed as Rational Numbers

Exponent 0 1 2 3 4 5 6 7
16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120
The assembler notation for literal mode is SA#literal.
Index Mode

8-26

The operand specifier format is as follows:

15 8 7 4 3 0
4 Rx

ZK-1158A-GE

Bits 15:8 contain a second operand specifier (termed the base operand
specifier) for any of the addressing modes except register, literal, or index.
The specification of register, literal, or index addressing mode results in
an illegal addressing mode fault (see Appendix E). If the base operand
specifier requires it, a specifier extension immediately follows. The base
operand specifier is subject to the same restrictions as would apply if it
were used alone. If the use of some particular specifier is illegal (that is,
causes a fault or UNPREDICTABLE behavior) under some circumstances,
then that specifier is similarly illegal as a base operand specifier in index
mode under the same circumstances.

The operand to be specified by index mode addressing is termed the
primary operand. You normally use the base operand specifier to
determine an operand address. This address is termed the base operand
address (BOA). The address of the primary operand specified is determined
by multiplying the contents of the index register x by the size of the
primary operand in bytes (1 for byte; 2 for word; 4 for longword and
F_floating; 8 for quadword, D_floating, and G_floating; and 16 for octaword
and H_floating), adding BOA, and taking the result.

OA = BOA + {size * (Rx)}
operand = (OA)

If the base operand specifier is for autoincrement or autodecrement
mode, the increment or decrement size is the size in bytes of the primary
operand.

Certain restrictions are placed on the index register x. You cannot use the
PC as an index register. If you use it, a reserved addressing mode fault
occurs (see Appendix E). If the base operand specifier is for an addressing
mode that results in register modification (that is, autoincrement mode,
autodecrement mode, or autoincrement deferred mode), the same register

Basic Architecture
8.6 General Addressing Mode Formats

cannot be the index register. If it is, the primary operand address is
UNPREDICTABLE.

The names of the addressing modes resulting from index mode addressing
are formed by adding the suffix “indexed” to the addressing mode of the
base operand specifier. The following list gives the names and assembler
notation (the index register is designated Rx to distinguish it from the
register Rn in the base operand specifier):

¢ Register deferred indexed— (Rn)[Rx]
¢ Autoincrement indexed— (Rn)+[Rx]
or

Immediate indexed— I”*#constant[Rx] (Immediate indexed is
recognized by the assembler, but is not generally useful. Note that
the operand address is independent of the value of the constant.)

e Autoincrement deferred indexed— @(Rn)+[Rx]
or
Absolute indexed— @#address[Rx]

e Autodecrement indexed— —(Rn)[Rx]

e Byte, word, or longword displacement indexed—
BADRn)[Rx],WAD(Rn)[Rx], or LAD(Rn){Rx]

e Byte, word, or longword displacement deferred indexed—
@B~D(Rn)[Rx],@WAD(Rn)[Rx], or @LAD(Rn)[Rx]

8.7 Summary of General Mode Addressing

This section provides summaries of general register and program counter
(PC) addressing.

Table 8-5 is a summary of general register addressing and Table 86 is a
summary of PC addressing.

8.7.1 General Register Addressing

The general register addressing format is as follows:

7 43 0

mode reg

ZK-1159A-GE

8-27

Basic Architecture
8.7 Summary of General Mode Addressing

Table 8-5 General Register Addressing

AP
Can Be
Hex Dec Name Assembler rmwav PC SP FP Indexed?
0-3 0-3 Literal Shiliteral yffff - - — f
4 4 Indexed i[Rx] YYYYY f y y f
5 5 Register Rn yyyfy u uqg uo f
6 6 Register deferred Rn YYYYY u y y y
7 7 Autodecrement -(Rn) YYYVYY u y y ux
8 8 Autoincrement (Rn)+ YYYYVYY p y y ux
9 9 Autoincrement @(Rn)+ YYYYY p y y ux
deferred
A 10 Byte displacement BAD(Rn) YYYYY p y y
B 11 Byte displacement @B"D(Rn) YYYYY p y y y
deferred
C 12 Word displacement WAD(Rn) YYYYY o] y y y
D 13 Word displacement @WAD(Rn) YYYYY p y y y
deferred
E 14 Longword displacement L"D(Rn) YYYYY p y y y
F 15 Longword displacement @L"D(Rn) YYYVYY p y
deferred
Key:

D—Displacement
i—Any indexable addressing mode

— —Logically impossible

f—Reserved addressing mode fault

p—Program Counter addressing

u—UNPREDICTABLE

ug—UNPREDICTABLE for quadword, octaword, D_floating, H_floating, and G_floating, (and field if position and size greater
than 32)

uo—UNPREDICTABLE for octaword and H_floating

ux—UNPREDICTABLE for index register same as base register

y—VYes, always valid addressing mode

r—Read access

m—Modify access

w—Write access

a—Address access

v—Field access

8.7.2 Program Counter Addressing

The program counter addressing format is as follows:

8-28

Basic Architecture
8.7 Summary of General Mode Addressing

ZK-1326A-GE

Table 8-6 Program Counter Addressing

Hex Dec Name Assembler rmwayvy Can Be Indexed?

8 8 Immediate IMfconstant yuuyy u

9 9 Absolute @#address YYYVYY y

A 10 Byte relative B*address YYYYY y

B 11 Byte relative @B*address YYYVYY y
deferred

o] 12 Word relative Whraddress YYYYY y

D 13 Word relative @W"address YYYYY y
deferred

E 14 Longword L*address YYYVYY y
relative

F 15 Longword @L address YYYYY y

relative deferred

Key:

u—UNPREDICTABLE

y—Yes, always valid addressing mode
r—Read access

m—Modify access

w—Write access

a—Address access

v—Field access

Branch Mode Addressing Formats

There are two operand specifier formats.

7 0

displ

ZK-1160A-GE

The operand specifier is a signed byte displacement.

8-29

Basic Architecture
8.8 Branch Mode Addressing Formats

8-30

15 0

displ

ZK-1161A-GE

The operand specifier is a signed word displacement.

In branch displacement addressing, the byte or word displacement is sign
extended to 32 bits and added to the updated address in the PC. The
updated address in the PC is the location of the first byte beyond the
operand specifier. The result is the branch address A.

A = PC + SEXT(displ)

The assembler notation for byte and word branch displacement addressing
is A, where A is the branch address. Note that you must use the branch
address, and not the displacement.

	ISA_08_0001
	ISA_08_0002
	ISA_08_0003
	ISA_08_0004
	ISA_08_0005
	ISA_08_0006
	ISA_08_0007
	ISA_08_0008
	ISA_08_0009
	ISA_08_0010
	ISA_08_0011
	ISA_08_0012
	ISA_08_0013
	ISA_08_0014
	ISA_08_0015
	ISA_08_0016
	ISA_08_0017
	ISA_08_0018
	ISA_08_0019
	ISA_08_0020
	ISA_08_0021
	ISA_08_0022
	ISA_08_0023
	ISA_08_0024
	ISA_08_0025
	ISA_08_0026
	ISA_08_0027
	ISA_08_0028
	ISA_08_0029
	ISA_08_0030

