6 VAX MACRO Assembler Directives

The general assembler directives provide facilities for performing 11 types
of functions. Table 6-1 lists these types of functions and their directives.

The macro directives provide facilities for performing eight categories of
functions. Table 6-2 lists these categories and their associated directives.
Chapter 4 describes macro arguments and string operators.

The remainder of this chapter describes both the general assembler
directives and the macro directives, showing their formats and giving
examples of their use. For ease of reference, the directives are presented
in alphabetical order. Appendix C contains a summary of all assembler
directives.

Table 6-1 Summary of General Assembler Directives

Category Directives'

Listing control directives .SHOW (.LIST)
.NOSHOW(.NLIST)
.TITLE
SUBTITLE (.SBTTL)
ADENT
.PAGE

Message display directives .PRINT
.WARN
.ERROR

Assembler option directives .ENABLE (.ENABL)
.DISABLE(.DSABL)
.DEFAULT

'The alternate form, if any, is given in parentheses.

(continued on next page)

6-1

VAX MACRO Assembler Directives

Table 6-1 (Cont.) Summary of General Assembler Directives

Category

Directives’

Data storage directives

Location control directives

Program sectioning directives

Symbol control directives

Routine entry point definition
directives

BYTE
.WORD

LONG

.ADDRESS

.QUAD

.OCTA

PACKED

.ASCII

ASCIC

.ASCID

.ASCIZ

.F_FLOATING (.FLOAT)
.D_FLOATING (.DOUBLE)
.G_FLOATING
.H_FLOATING
SIGNED_BYTE
.SIGNED_WORD

.ALIGN
.EVEN
.0bD
.BLKA
.BLKB
.BLKD
.BLKF
.BLKG
.BLKH
.BLKL
.BLKO
.BLKQ
.BLKW
.END

.PSECT
.SAVE_PSECT (.SAVE)
.RESTORE_PSECT (.RESTORE)

.GLOBAL (.GLOBL)
.EXTERNAL (.EXTRN)
.DEBUG

.WEAK

.ENTRY
.TRANSFER
.MASK

'The alternate form, if any, is given in parentheses.

6-2

(continued on next page)

VAX MACRO Assembler Directives

Table 6-1 (Cont.) Summary of General Assembler Directives

Category

Directives’

Conditional and subconditional
assembly block directives

Cross-reference directives

Instruction generation directives

Linker option record directive

IF

ENDC

JIF_FALSE (.IFF)
JF_TRUE (IFT)
IF_TRUE_FALSE (.IFTF)
AIF

.CROSS
.NOCROSS

.OPDEF
.REF1
.REF2
.REF4
.REF8
.REF16

.LINK

'The alternate form, if any, is given in parentheses.

Table 6-2 Summary of Macro Directives

Category directives’
Macro definition directives .MACRO
.ENDM
Macro library directives .LIBRARY
.MCALL
Macro deletion directive .MDELETE
Macro exit directive MEXIT
Argument attribute directives .NARG
.NCHR
.NTYPE
Indefinite repeat block directives IRP
.IRPC
Repeat block directives .REPEAT (.REPT)
End range directive .ENDR

'The alternate form, if any, is given in parentheses.

6-3

Assembler Directives
.ADDRESS

.ADDRESS

Address storage directive

FORMAT .ADDRESS address-list

PARAMETER address-list

A list of symbols or expressions, separated by commas (,), which VAX
MACRO interprets as addresses. Repetition factors are not allowed.

DESCRIPTION -ADDRESS stores successive longwords containing addresses in the object
module. Digital recommends that you use .ADDRESS rather than .LONG
for storing address data to provide additional information to the linker.
In shareable images, addresses that you specify with .ADDRESS produce
position-independent code.

EXAMPLE

TABLE: -ADDRESS LAB_4, LAB_3, ROUTTERM ; Reference table

Assembler Directives
ALIGN

.ALIGN

Location counter alignment directive

FORMAT .ALIGN integer|,expression]
.ALIGN keyword[,expression]

PARAMETERS integer
An integer in the range 0 to 9. The location counter is aligned at an
address that is the value of 2 raised to the power of the integer.
keyword
One of five keywords that specify the alignment boundary. The location
counter is aligned to an address that is the next multiple of the following
values:
Keyword Size (in Bytes)
BYTE 270 = 1
WORD 2M =2
LONG 202 = 4
QUAD 2°3 =8
PAGE 279 = 512
expression
Specifies the fill value to be stored in each byte. The expression must not
contain any undefined symbols and must be an absolute expression (see
Section 3.5).

DESCRIPTION -ALIGN aligns the location counter to the boundary specified by either an

integer or a keyword.

Notes

1 The alignment that you specify in .ALIGN cannot exceed the alignment
of the program section in which the alignment is attempted (see the
description of .PSECT). For example, if you are using the default
program section alignment (BYTE) and you specify .ALIGN with a
word or larger alignment, the assembler displays an error message.
fills the bytes skipped by the location counter (if any) with the value of
that expression. Otherwise, the assembler fills the bytes with zeros.

6-5

Assembler Directives

.ALIGN
2 Although most instructions can use byte alignment of data, execution
speed is improved by the following alignments:
Data Length Alignment
Word Word
Longword Longword
Quadword Quadword
-
.ALIGN BYTE,O ; Byte alignment--£ill with null
.ALIGN WORD ; Word alignment
.ALIGN 3,"A/ / ; Quad alignment--fill with blanks
.ALIGN PAGE ; Page alignment

6-6

Assembler Directives
.ASCIx

.ASClx

ASCII character storage directives

DESCRIPTION

CR=13
LF=10

.ASCII
.ASCIZ
.ASCIC
.ASCII
.ASCII
.ASCII

LASCII

VAX MACRO has the following four ASCII character storage directives:

Directive Function

ASCIC Counted ASCII string storage

ASCID String-descriptor ASCI| string storage
ASCII ASCI! string storage

ASCIZ Zero-terminated ASCIl string storage

Each directive is followed by a string of characters enclosed in a pair of
matching delimiters. The delimiters can be any printable character except
the space or tab character, equal sign (=), semicolon (;), or left angle
bracket (<). The character that you use as the delimiter cannot appear
in the string itself. Although you can use alphanumeric characters as
delimiters, use nonalphanumeric characters to avoid confusion.

Any character except the null, carriage-return, and form-feed characters
can appear within the string. The assembler does not convert lowercase
alphabetic characters to uppercase.

ASCII character storage directives convert the characters to their 8-bit
ASCII value (see Appendix A) and store them one character to a byte.

Any character, including the null, carriage-return, and form-feed
characters, can be represented by an expression enclosed in angle brackets
(<>) outside of the delimiters. You must define the ASCII values of null,
carriage-return, and form-feed with a direct assignment statement. The
ASCII character storage directives store the 8-bit binary value specified by
the expression.

ASCII strings can be continued over several lines. Use the hyphen (-) as
the line continuation character and delimit the string on each line at both
ends. Note that you can use a different pair of delimiters for each line.
For example:

/ABC DEFG/

@Any character can be a delimiter@

? lowercase is not converted to UPPER?

? this is a test!?<CR><KEY>(LF\TEXT) !Isn’t it?!

\ Angle Brackets <are part <of> this> string \

/ This string is continued / -

\ on the next line \

<CR><KEY>(LF\TEXT) ! this string includes an expression! -
<128+CR>? whose value is a 13 plus 1287

6~7

Assembler Directives

.ASCIC

.ASCIC

Counted ASCII string storage directive

FORMAT ASCIC string
PARAMETER string
A delimited ASCII string.
I
DESCRIPTION -ASCIC performs the same function as .ASCII, except that .ASCIC inserts
a count byte before the string data. The count byte contains the length of
the string in bytes. The length given includes any bytes of nonprintable
characters outside the delimited string but excludes the count byte.
.ASCIC is useful in copying text because the count indicates the length of
the text to be copied.
EXAMPLE
CR=13 ; Direct assignment statement
: defines CR
.ASCIC #HELLO#<CR> ; This counted ASCII string
H is equivalent to the
.BYTE 6 ; count followed by
.ASCII #HELLO#<CR> ; the ASCII string

Assembler Directives
ASCID

.ASCID

String-descriptor ASCI| string storage directive

FORMAT .ASCID string

PARAMETER string
A delimited ASCII string.

DESCRIPTION ASCID performs the same function as ASCII, except that .ASCID inserts
a string descriptor before the string data. The string descriptor has the
following format:

31 0

Information Length

Pointer
ZK-0370-GE

Parameters
length
The length of the string (2 bytes).
information
Descriptor information (2 bytes) is always set to 010E.
pointer
Position-independent pointer to the string (4 bytes).
String descriptors are used in calling procedures (see the VMS RTL String
Manipulation (STR$) Manual).

EXAMPLE

DESCR1: .ASCID /ARGUMENT FOR CALL/ ; String descriptor

DESCR2: .ASCID /SECOND ARGUMENT/ ; Another string

; descriptor
PUéHAL DESCR1 ; Put address of descriptors
PUSHAL DESCR2 H on the stack
CALLS #2, STRNG_PROC ; Call procedure

6-9

Assembler Directives
.ASCII

.ASCII

ASCII string storage directive

FORMAT .ASCIl string

PARAMETER string
A delimited ASCII string.

DESCRIPTION -ASCII stores the ASCII value of each character in the ASCII string or the
value of each byte expression in the next available byte.

CR=13 ; Assignment statements
LF=10 ; define CR and LF
JASCII "DATE: 17-NOV-1988" ; Delimiter is "
.ASCII /EOF /<CR><LF> ; Delimiter is /

6~10

Assembler Directives
.ASCIZ

.ASCIZ

Zero-terminated ASCII string storage directive

FORMAT ASCIZ string

PARAMETER string
A delimited ASCII string.

DESCRIPTION -ASCIZ performs the same function as .ASCII, except that .ASCIZ appends
a null byte as the final character of the string. When a list or text string is
created with an .ASCIZ directive, you need only perform a search for the
null character in the last byte to determine the end of the string.

FF=12 ; Define FF
.ASCIZ /ABCDEF/ ; 6 characters in string,
; 7 bytes of data
.ASCIZ /A/<KEY>(FF\TEXT)/B/ ; 3 characters in strings,

; 4 bytes of data

6-11

Assembler Directives
.BLKXx

.BLKx

Block storage allocation directives

FORMAT .BLKA expression
.BLKB expression
.BLKD expression
.BLKF expression
.BLKG expression
.BLKH expression
.BLKL expression
.BLKO expression
.BLKQ expression
.BLKW expression

PARAMETER expression

An expression specifying the amount of storage to be allocated. All the
symbols in the expression must be defined and the expression must be
an absolute expression (see Section 3.5). If the expression is omitted, a
default value of 1 is assumed.

DESCRIPTION VAX MACRO has the following 10 block storage directives.

Directive Function

.BLKA Reserves storage for addresses (longwords).

.BLKB Reserves storage for byte data.

.BLKD Reserves storage for double-precision floating-point data
(quadwords).

.BLKF Reserves storage for single-precision floating-point data (longwords).

.BLKG Reserves storage for G_floating data (quadwords).

.BLKH Reserves storage for H_floating data (octawords).

.BLKL Reserves storage for longword data.

.BLKO Reserves storage for octaword data.

.BLKQ Reserves storage for quadword data.

.BLKW Reserves storage for word data.

Each directive reserves storage for a different data type. The value of the
expression determines the number of data items for which VAX MACRO
reserves storage. For example, .BLKL 4 reserves storage for 4 longwords
of data and .BLKB 2 reserves storage for 2 bytes of data.

6-12

Assembler Directives
.BLKx

The total number of bytes reserved is equal to the length of the data type
times the value of the expression as follows:

Directive Number of Bytes Allocated
.BLKB Value of expression
.BLKW 2 value of expression
.BLKA "
.BLKF 4 value of expression
.BLKL "
.BLKD 8 value of expression
.BLKG "
.BLKQ "
.BLKH 16 value of expression
.BLKO "
EXAMPLE
.BLKB 15 ; Space for 15 bytes
.BLKO 3 ; Space for 3 octawords (48 bytes)
.BLKL 1 ; Space for 1 longword (4 bytes)
.BLKF <3*4> ; Space for 12 single-precision

floating-point values (48 bytes)

6-13

Assembler Directives

.BYTE

.BYTE

Byte storage directive

FORMAT

.BYTE expression-list

PARAMETER

expression-list

One or more expressions separated by commas (,). Each expression is first
evaluated as a longword expression; then the value of the expression is
truncated to 1 byte. The value of each expression should be in the range 0
to 255 for unsigned data or in the range —128 to +127 for signed data.

Optionally, each expression can be followed by a repetition factor delimited
by square brackets ([]1). An expression followed by a repetition factor has
the following format:

expressioni[expression2]

expressiont
An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value will be
repeated. The expression must not contain any undefined symbols and
it must be absolute (see Section 3.5). The square brackets are required.

DESCRIPTION

6-14

.BYTE generates successive bytes of binary data in the object module.

Notes

1 The assembler displays an error message if the high-order 3 bytes of
the longword expression have a value other than 0 or AXFFFFFF.

2 At link time, a relocatable expression can result in a value that
exceeds 1 byte in length. In this case, the linker issues a truncation
diagnostic message for the object module in question. For example:

A: .BYTE A ; Relocatable value A’ will
H cause linker truncation
; diagnostic if the statement
; has a virtual address of 256
; or above

3 The .SIGNED_BYTE directive is the same as .BYTE except that the
assembler displays a diagnostic message if a value in the range 128
to 255 is specified. See the description of .SIGNED_BYTE for more
information.

Assembler Directives
.BYTE

EXAMPLE

BYTE <1024-1000>*2

.BYTE ~XA,FIF,10,65-<21%3>
.BYTE 0

.BYTE X,X+3({5*%4],2

Stores a value of 48
Stores 4 bytes of data
Stores 1 byte of data
Stores 22 bytes of data

6-15

Assembler Directives

.CROSS

.CROSS
.NOCROSS

Cross-reference directives

FORMAT .CROSS [symbol-list]

.NOCROSS [symbol-list]
PARAMETER symbol-list

A list of legal symbol names separated by commas (,).
DESCRIPTION When you specify the /CROSS_REFERENCE qualifier in the MACRO

6-16

command, VAX MACRO produces a cross-reference listing. The .CROSS
and .NOCROSS directives control which symbols are included in the cross-
reference listing. The .CROSS and .NOCROSS directives have an effect
only if /CROSS_REFERENCE was specified in the MACRO command (see
the VMS DCL Dictionary).

By default, the cross-reference listing includes the definition and all the
references to every symbol in the module.

You can disable the cross-reference listing for all symbols or for a specified
list of symbols by using .NOCROSS. Using .NOCROSS without a symbol
list disables the cross-reference listing of all symbols. Any symbol
definition or reference that appears in the code after NOCROSS used
without a symbol list and before the next .CROSS used without a symbol
list is excluded from the cross-reference listing. You reenable the cross-
reference listing by using .CROSS without a symbol list.

.NOCROSS with a symbol list disables the cross-reference listing for the
listed symbols only. .CROSS with a symbol list enables or reenables the
cross-reference listing of the listed symbols.

Notes

1 The .CROSS directive without a symbol list will not reenable the cross-
reference listing of a symbol specified in .NOCROSS with a symbol
list.

2 If the cross-reference listing of all symbols is disabled, .CROSS with
a symbol list will have no effect until the cross-reference listing is
reenabled by .CROSS without a symbol list.

Assembler Directives
.CROSS

.NOCROSS ; Stop cross-reference
LABL: MOVL LOC1, LOC2 ; Copy data
.CROSS ; Reenable cross-reference
In this example, the definition of LAB1 and the references to LOC1 and
LOC2 are not included in the cross-reference listing.
.NOCROSS LOC1 ; Do not cross-reference LOC1l
LAB2: MOVL LOC1, LOC2 ; Copy data
.CROSS LOC1 ; Reenable cross-reference
H of LOC1

In this example, the definition of LAB2 and the reference to LOC2 are
included in the cross-reference, but the reference to LOCI1 is not included
in the cross-reference.

6-17

Assembler Directives
.DEBUG

.DEBUG

Debug symbol attribute directive

FORMAT

.DEBUG symbol-list

PARAMETER

symbol-list
A list of legal symbols separated by commas ().

DESCRIPTION

.DEBUG specifies that the symbols in the list are made known to the VAX
Symbolic Debugger. During an interactive debugging session, you can
use these symbols to refer to memory locations or to examine the values
assigned to the symbols.

Note

The assembler adds the symbols in the symbol list to the symbol table in
the object module. You need not specify global symbols in the .DEBUG
directive because global symbols are automatically put in the object
module’s symbol table. (See the description of .ENABLE for a discussion
of how to make information about local symbols available to the debugger.)

EXAMPLE

.DEBUG

6-18

INPUT, OUTPUT,
LAB_30,LAB_40

- ; Make these symbols known
; to the debugger

Assembler Directives
.DEFAULT

.DEFAULT

Default control directive

FORMAT .DEFAULT DISPLACEMENT, keyword
PARAMETER keyword
One of three keywords—BYTE, WORD, or LONG—indicating the default
displacement length.
DESCRIPTION DEFAULT determines the default displacement length for the relative and
relative deferred addressing modes (see Section 5.2.1 and Section 5.2.2).
Notes
1 The .DEFAULT directive has no effect on the default displacement
for displacement and displacement deferred addressing modes (see
Section 5.1.6
and Section 5.1.7).
2 If there is no .DEFAULT in a source module, the default displacement
length for the relative and relative deferred addressing modes is a
longword.
EXAMPLE

.DEFAULT DISPLACEMENT, WORD ;
; Assembler uses word

MOVL

.DEFAULT DISPLACEMENT, LONG

INCB

LABEL,R1

@COUNTS+4

WORD is default

displacement unless
label has been defined

; LONG is default

Assembler uses longword
displacement unless
COUNTS has been defined

6-19

Assembler Directives
.D_FLOATING

.D_FLOATING
.DOUBLE

Floating-point storage directive

FORMAT .D_FLOATING literal-list
.DOUBLE Iiteral-list

PARAMETER literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus or unary minus.

DESCRIPTION .D_FLOATING evaluates the specified floating-point constants and stores
the results in the object module. .D_FLOATING generates 64-bit, double-
precision, floating-point data (1 bit of sign, 8 bits of exponent, and 55 bits
of fraction). See the description of .F_FLOATING for information on
storing single-precision floating-point numbers and the descriptions of
.G_FLOATING and .H_FLOATING for descriptions of other floating-point
numbers.

Notes

1 Double-precision floating-point numbers are always rounded. They are
not affected by .ENABLE TRUNCATION.

2 The floating-point constants in the literal list must not be preceded by
the floating-point operator (*F).

.D_FLOATING 1000,1.0E3,1.0000000E-9 ; Constant
.DOUBLE 3.1415928, 1.107153423828 ; List

.D_FLOATING 5, 10, 15, 0, 0.5

6-20

Assembler Directives
.DISABLE

Function control directive

FORMAT .DISABLE argument-list

PARAMETER argument-list
One or more of the symbolic arguments listed in Table 6-3 in the
description of .ENABLE. You can use either the long or the short form
of the symbolic arguments. If you specify multiple arguments, separate
them by commas (,), spaces, or tabs.

DESCRIPTION DISABLE disables the specified assembler functions. See the description

of .ENABLE for more information.

Note
The alternate form of .DISABLE is .DSABL.

6—21

Assembler Directives
.ENABLE

.ENABLE

Function control directive

FORMAT .ENABLE argument-list

PARAMETER argument-list

One or more of the symbolic arguments listed in Table 6-3. You can use
either the long form or the short form of the symbolic arguments.

If you specify multiple arguments, separate them with commas (,), spaces,
or tabs.

Table 6-3 .ENABLE and .DISABLE Symbolic Arguments

Default
Long Form Short Form Condition Function
ABSOLUTE AMA Disabled When ABSOLUTE is enabled,

all the PC relative addressing
modes are assembled as
absolute addressing modes.

DEBUG DBG Disabled When DEBUG is enabled, ail
local symbols are included in
the object module’s symbol
table for use by the debugger.

GLOBAL GBL Enabled When GLOBAL is enabled,
all undefined symbols are
considered external symbols.
When GLOBAL is disabled,
any undefined symbol that is
not listed in an .EXTERNAL
directive causes an assembly
error.

LOCAL _ LSB Disabled When LOCAL_BLOCK is

BLOCK enabled, the current local
label block is ended and a
new one is started. When
LOCAL_BLOCK is disabled,
the current local label block is
ended. See Section 3.4 for a
complete description of local
label blocks.

(continued on next page)

6-22

Assembler Directives
.ENABLE

Table 6-3 (Cont.) .ENABLE and .DISABLE Symbolic Arguments

Default

Long Form Short Form Condition Function

SUPPRESSION SUP Disabled When SUPPRESSION is

enabled, all symbols that are
defined but not referred to
are not listed in the symbol
table. When SUPPRESSION
is disabled, all symbols that
are defined are listed in the
symbol table.

TRACEBACK TBK Enabled When TRACEBACK is

enabled, the program
section names and lengths,
module names, and routine
names are included in the
object module for use

by the debugger. When
TRACEBACK is disabled,
VAX MACRO excludes this
information and, in addition,
does not make any local
symbol information available
to the debugger.

TRUNCATION FPT Disabled When TRUNCATION is

enabled, single-precision,
floating-point numbers

are truncated. When
TRUNCATION is disabled,
single-precision floating-
point numbers are rounded.
D_floating, G_floating, and
H_floating numbers are
not affected by .ENABLE
TRUNCATION; they are
always rounded.

VECTOR Disabled When VECTOR is enabled,

the assembler accepts and
correctly handles vector
code. If vector assembly
is not enabled, vector code
produces assembly errors.

DESCRIPTION ENABLE enables the specified assembly function. .ENABLE and its
negative form, .DISABLE, control the following assembler functions:

Creating local label blocks

Making all local symbols available to the debugger and enabling the
traceback feature

Specifying that undefined symbol references are external references
Truncating or rounding single-precision floating-point numbers

6-23

Assembler Directives
.ENABLE

¢ Suppressing the listing of symbols that are defined but not referenced

e Specifying that all the PC references are absolute, not relative

Note
The alternate form of ENABLE is .ENABL.

. _ R
.ENABLE ABSOLUTE, GLOBAL ; Assemble relative address mode
; as absolute address mode, and consider

; undefined references as global

.DISABLE TRUNCATION, TRACEBACK ; Round floating-point numbers, and
; omit debugging information from
; the object module

6-24

Assembler Directives
.END

.END

Assembly termination directive

FORMAT

.END [symbol]

PARAMETER

symbol
The address (called the transfer address) at which program execution is to
begin.

DESCRIPTION

.END terminates the source program. No additional text should occur
beyond this point in the current source file or in any additional source
files specified in the command line for this assembly. If any additional text
does occur, the assembler ignores it. The additional text does not appear
in either the listing file or the object file.

Notes

1 The transfer address must be in a program section that has the EXE
attribute (see the description of .PSECT).

2 When an executable image consisting of several object modules is
linked, only one object module should be terminated by an .END
directive that specifies a transfer address. All other object modules
should be terminated by .END directives that do not specify a transfer
address. If an executable image contains either no transfer address or
more than one transfer address, the linker displays an error message.

3 If the source program contains an unterminated conditional code block
when the .END directive is specified, the assembler displays an error
message.

EXAMPLE

.ENTRY

.END

START, 0

START

; Entry mask
; Main program

; Transfer address

6-25

Assembler Directives

.ENDC
.ENDC

End conditional directive
FORMAT .ENDC

DESCRIPTION .ENDC terminates the conditional range started by the .IF directive. See
the description of .IF for more information and examples.

6-26

Assembler Directives
.ENDM

.ENDM

End definition directive

FORMAT

.ENDM [macro-name]

PARAMETERS

macro-name

The name of the macro whose definition is to be terminated. The macro
name is optional; if specified, it must match the name defined in the
matching .MACRO directive. The macro name should be specified so that
the assembler can detect any improperly nested macro definitions.

DESCRIPTION

.ENDM terminates the macro definition. See the description of . MACRO
for an example of the use of . ENDM.

Note

If . ENDM is encountered outside a macro definition, the assembler
displays an error message.

6-27

Assembler Directives

.ENDR
.ENDR

End range directive
FORMAT .ENDR

DESCRIPTION -ENDR indicates the end of a repeat range. It must be the final statement
of every indefinite repeat block directive (IRP and .IRPC) and every
repeat block directive (REPEAT). See the description of these directives
for examples of the use of ENDR.

6-28

Assembler Directives
.ENTRY

.ENTRY

Entry directive

FORMAT

.ENTRY symbol,expression

PARAMETERS

symbol

The symbolic name for the entry point.

expression

The register save mask for the entry point. The expression must be an
absolute expression and must not contain any undefined symbols.

DESCRIPTION

_ENTRY defines a symbolic name for an entry point and stores a
register save mask (2 bytes) at that location. The symbol is defined as
a global symbol with a value equal to the value of the location counter
at the .ENTRY directive. You can use the entry point as the transfer
address of the program. Use the register save mask to determine which
registers are saved before the procedure is called. These saved registers
are automatically restored when the procedure returns control to the
calling program. See the description of the procedure call instructions in
Chapter 9.

Notes

1 The register mask operator (*M) is convenient to use for setting the
bits in the register save mask (see Section 3.6.2.2).

2 An assembly error occurs if the expression has bits 0, 1, 12, or 13 set.
These bits correspond to the registers RO, R1, AP, and FP and are
reserved for the CALL interface.

3 Digital recommends that you use .ENTRY to define all callable entry
points including the transfer address of the program. Although the
following construct also defines an entry point, Digital discourages its
use:

symbol:: WORD expression

Although your program can call a procedure starting with this
construct, the entry mask is not checked for any illegal registers,
and the symbol cannot be used in a .MASK directive.

4 You should use .ENTRY only for procedures that are called by the
CALLS or CALLG instruction. A routine that is entered by the BSB
or JSB instruction should not use .ENTRY because these instructions
do not expect a register save mask. Begin these routines using the
following format:

symbol:: first instruction

6-29

Assembler Directives
.ENTRY

The first instruction of the routine immediately follows the symbol.

m
EXAMPLE

.ENTRY CALC,*M<R2,R3,R7> ; Procedure starts here.
; Registers R2, R3, and R7
; are preserved by CALL
; and RET instructions

6-30

Assembler Directives
.ERROR

.ERROR

Error directive

FORMAT .ERROR [expression] ,comment
PARAMETERS expression
An expression whose value is displayed when .ERROR is encountered
during assembly.
;comment
A comment that is displayed when .ERROR is encountered during
assembly. The comment must be preceded by a semicolon (;).
DESCRIPTION -ERROR causes the assembler to display an error message on the terminal

or batch log file and in the listing file (if there is one).

Notes

1 _.ERROR, .WARN, and .PRINT are message display directives. Use
them to display information indicating that a macro call contains an
error or an illegal set of conditions.

2 When the assembly is finished, the assembler displays the total
number of errors, warnings, information messages, and the sequence
numbers of the lines causing the errors or warnings.

3 If .ERROR is included in a macro library, end the comment with a
semicolon (;). Otherwise, the librarian will strip the comment from
the directive and it will not be displayed when the macro is called.

4 The line containing the .ERROR directive is not included in the listing
file.

5 If the expression has a value of zero, it is not displayed in the error
message.

6-31

Assembler Directives
.ERROR

EXAMPLE

.IF DEFINED LONG_MESS
.IF GREATER 1000-WORK_AREA
.ERROR 25 ; Need larger WORK_AREA;

.ENDC
.ENDC

In this example, if the symbol LONG_MESS is defined and if the symbol
WORK_AREA has a value of 1000 or less, the following error message is
displayed:

$MACRO-E-GENERR, Generated ERROR: 25 Need larger WORK_AREA

6-32

Assembler Directives
.EVEN

.EVEN

Even location counter alignment directive

FORMAT .EVEN

DESCRIPTION -EVEN ensures that the current value of the location counter is even by
adding 1 if the current value is odd. If the current value is already even,

no action is taken.

6-33

Assembler Directives

.EXTERNAL

.EXTERNAL

External symbol attribute directive

FORMAT

.EXTERNAL symbol-list

PARAMETER

symbol-list
A list of legal symbols, separated by commas ().

DESCRIPTION

.EXTERNAL indicates that the specified symbols are external; that is, the
symbols are defined in another object module and cannot be defined until
link time (see Section 3.3.3 for a discussion of external references).

Notes

1

If the GLOBAL argument is enabled (see Table 6-3), all unresolved
references will be marked as global and external. If GLOBAL is
enabled, you need not specify .EXTERNAL. If GLOBAL is disabled,
you must explicitly specify .EXTERNAL to declare any symbols that
are defined externally but are referred to in the current module.

If GLOBAL is disabled and the assembler finds symbols that are
neither defined in the current module nor listed in a .EXTERNAL
directive, the assembler displays an error message.

Note that if your program does not reference, in a relocatable program
section, symbols that are declared in the absolute program section
(ABS), the unreferenced symbols are filtered out by the assembler and
will not be included in the object file. This filtering out will occur even
if the symbols are declared global or external.

If you want to be sure that a symbol will be included even if it is not
referenced, declare it in a relocatable program section. If you want to
make sure that a symbol you define in an absolute program section is
included, reference it in a relocatable program section.

The alternate form of EXTERNAL is .EXTRN.

EXAMPLE

.EXTERNAL SIN, TAN, COS ; These symbols are defined in
.EXTERNAL SINH,COSH, TANH ; externally assembled modules

6-34

Assembler Directives
.F_FLOATING

.F_FLOATING

.FLOAT

Floating-point storage directive

FORMAT

.F_FLOATING literal-list
.FLOAT literal-list

PARAMETER

literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus and unary minus.

DESCRIPTION

.F_FLOATING evaluates the specified floating-point constants and stores
the results in the object module. .F_FLOATING generates 32-bit, single-
precision, floating-point data (1 bit of sign, 8 bits of exponent, and 23 bits
of fractional significance). See the description of .D_FLOATING for
information on storing double-precision floating-point numbers and the
descriptions of .G_FLOATING and .H_FLOATING for descriptions of other
floating-point numbers.

Notes

1 See the description of .ENABLE for information on specifying floating-
point rounding or truncation.

2 The floating-point constants in the literal list must not be preceded by
the floating-point unary operator (*F).

EXAMPLE

.F_FLOATING 134.5782,74218.34E20 ; Constant list
.F_FLOATING 134.2,0.1342E3,1342E-1 ; These all generate 134.2
.F_FLOATING -0.75,1E38,-1.0E-37 ; Constant list

.FLOAT 0,25,50

6-35

Assembler Directives
.G_FLOATING

.G_FLOATING

G_floating-point storage directive

FORMAT .G_FLOATING literal-list

PARAMETERS literal-list

A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus or unary minus.

DESCRIPTION .G_FLOATING evaluates the specified floating-point constants and stores
the results in the object module. .G_FLOATING generates 64-bit data
(1 bit of sign, 11 bits of exponent, and 52 bits of fraction).

Notes

1 G_floating-point numbers are always rounded. They are not affected
by the .ENABLE TRUNCATION directive.

2 The floating-point constants in the literal list must not be preceded by
the floating-point operator (AF).

EXAMPLE

.G_FLOATING 1000, 1.0E3, 1.0000000E-9 ; Constant list

6-36

Assembler Directives
.GLOBAL

.GLOBAL

Global symbol attribute directive

FORMAT .GLOBAL symbol-list
PARAMETER symbol-list
A list of legal symbol names, separated by commas (,).
DESCRIPTION .GLOBAL indicates that specified symbol names are either globally
defined in the current module or externally defined in another module
(see Section 3.3.3).
Notes
1 .GLOBAL is provided for MACRO-11 compatibility only. Digital
recommends that global definitions be specified by a double colon (::)
or double equal sign (==) (see Section 2.1 and Section 3.8) and that
external references be specified by .EXTERNAL when necessary.
2 The alternate form of .GLOBAL is .GLOBL.
EXAMPLE

.GLOBAL LAB_40,LAB_30

.GLOBAL UKN_ 13

; Make these symbol names
globally known
; to all linked modules

6-37

Assembler Directives
.H_FLOATING

.H_FLOATING

H_floating-point storage directive

FORMAT -H_FLOATING iteral-list

PARAMETER literal-list
A list of floating-point constants (see Section 3.2.2). The constants cannot
contain any unary or binary operators except unary plus or unary minus.

DESCRIPTION -H_FLOATING evaluates the specified floating-point constants and stores
the results in the object module. .H_FLOATING generates 128-bit data
(1 bit of sign, 15 bits of exponent, and 112 bits of fraction).

Notes

1 H_floating-point numbers are always rounded. They are not affected
by the . ENABLE TRUNCATION directive.

2 The floating-point constants in the literal list must not be preceded by
the floating-point operator (*F).

EXAMPLE

.H_FLOATING 36912, 15.0E18, 1.0000000E-9 ; Constant list

6-38

Assembler Directives
ADENT

ADENT

Identification directive

FORMAT

ADENT string

PARAMETER

string

A 1- to 31-character string that identifies the module, such as a string that
specifies a version number. The string must be delimited. The delimiters
can be any paired printing characters other than the left angle bracket (<)
or the semicolon (;), as long as the delimiting character is not contained
within the text string.

DESCRIPTION

IDENT provides a means of identifying the object module. This
identification is in addition to the name assigned to the object module
with .TITLE. A character string can be specified in .IDENT to label the
object module. This string is printed in the header of the listing file and
also appears in the object module.

Notes

1 If a source module contains more than one .IDENT, the last directive
given establishes the character string that forms part of the object
module identification.

2 If the delimiting characters do not match, or if you use an illegal
delimiting character, the assembler displays an error message.

EXAMPLE

. IDENT

/3-47/

; Version and edit numbers

The character string “3-47” is included in the object module.

6-39

Assembler Directives
JF

AF

Conditional assembly block directives

FORMAT AIF condition argumenty(s)

.ENDC

PARAMETERS condition

A specified condition that must be met if the block is to be included in
the assembly. The condition must be separated from the argument by a
comma (,), space, or tab. Table 6—4 lists the conditions that can be tested
by the conditional assembly directives.

argument(s)

One or more symbolic arguments or expressions of the specified conditional
test. If the argument is an expression, it cannot contain any undefined
symbols and must be an absolute expression (see Section 3.5).

range
The block of source code that is conditionally included in the assembly.

Assembler Directives

IF

Table 6-4 Condition Tests for Conditional Assembly Directives

Condition Complement Argument Number of Condition that

Test Condition Test Type Arguments Assembles Block

Short Short

Long Form Form Long Form Form

EQUAL EQ NOT_EQUAL NE Expression 1 Expression is equal
to O/not equal to 0.

GREATER GT LESS_EQUAL LE Expression 1 Expression is
greater than 0/
less than or equal
to 0.

LESS_THAN LT GREATER_EQUAL GE Expression 1 Expression is less
than O/greater than
or equal to 0.

DEFINED DF NOT_DEFINED NDF Symbolic 1 Symbol is defined
/not defined.

BLANK' B NOT_BLANK! NB Macro 1 Argument is blank/
nonblank.

IDENTICAL' IDN DIFFERENT! DIF Macro 2 Arguments are
identical/different.

The BLANK, NOT_BLANK, IDENTICAL, and DIFFERENT conditions are only useful in macro definitions.

DESCRIPTION

A conditional assembly block is a series of source statements that is
assembled only if a certain condition is met. .IF starts the conditional
block and .ENDC ends the conditional block; each .IF must have a
corresponding .ENDC. The .IF directive contains a condition test and
one or two arguments. The condition test specified is applied to the
arguments. If the test is met, all VAX MACRO statements between .IF
and .ENDC are assembled. If the test is not met, the statements are not
assembled. An exception to this rule occurs when you use subconditional
directives (see the description of the .IF_x directive).

Conditional blocks can be nested; that is, a conditional block can be
inside another conditional block. In this case, the statements in the inner
conditional block are assembled only if the condition is met for both the
outer and inner block.

Assembler Directives

AF

Notes

1 If .ENDC occurs outside a conditional assembly block, the assembler
displays an error message.

2 VAX MACRO permits a nesting depth of 31 conditional assembly
levels. If a statement attempts to exceed this nesting level depth, the
assembler displays an error message.

3 Lowercase string arguments are converted to uppercase before
being compared, unless the string is surrounded by delimiters. For
information on string arguments and delimiters, see Chapter 4.

4 The assembler displays an error message if .IF specifies any of the
following: a condition test other than those in Table 6—4, an illegal
argument, or a null argument specified in an .IF directive.

5 The .SHOW and .NOSHOW directives control whether condition blocks
that are not assembled are included in the listing file.

EXAMPLES
1] An example of a conditional assembly directive is:
.IF EQUAL ALPHA+1 ; Assemble block if ALPHA+1=0. Do
. ; not assemble if ALPHA+1 not=0
.ENDC
B Nested conditional directives take the form:
IR condition, argument (s)
JIF condition, argument (s)
.ENDC
.ENDC
B The following conditional directives can govern whether assembly

is to occur:

.IF DEFINED SYM1
.IF DEFINED SYM2

.ENDC
.ENDC

In this example, if the outermost condition is not satisfied, no deeper
level of evaluation of nested conditional statements within the program
occurs. Therefore, both SYM1 and SYM2 must be defined for the code to
be assembled.

Assembler Directives
JF_Xx

Subconditional assembly block directives

FORMAT JIF_FALSE
JIF_TRUE

IF_TRUE_FALSE

DESCRIPTION VAX MACRO has the following three subconditional assembly block

directives:

Directive

Function

JAF_FALSE

JIF_TRUE

IF_TRUE_FALSE

If the condition of the assembly block tests false, the program
includes the source code following the .IF_FALSE directive and
continuing up to the next subconditional directive or to the end
of the conditional assembly block.

If the condition of the assembly block tests true, the program
includes the source code following the .IF_TRUE directive and
continuing up to the next subconditional directive or to the end
of the conditional assembly block.

Regardiess of whether the condition of the assembly block
tests true or false, the source code following the .IF TRUE_
FALSE directive (and continuing up to the next subconditional
directive or to the end of the assembly block) is always
included.

The implied argument of a subconditional directive is the condition test
specified when the conditional assembly block was entered. A conditional
or subconditional directive in a nested conditional assembly block is not
evaluated if the preceding (or outer) condition in the block is not satisfied
(see Examples 3 and 4).

A conditional block with a subconditional directive is different from a
nested conditional block. If the condition in the .IF is not met, the inner
conditional blocks are not assembled, but a subconditional directive can
cause a block to be assembled.

Notes

1 If a subconditional directive appears outside a conditional assembly
block, the assembler displays an error message.

2 The alternate forms of .IF_FALSE, .IF_TRUE, and .IF_TRUE_FALSE
are .IFF, .IFT, and .IFTF.

Assembler Directives
JF_x

EXAMPLES

1] Assume that symbol SYM is defined:

.IF DEFINED SYM ; Tests TRUE since SYM is defined.
H Assembles the following code.

.IF_FALSE ; Tests FALSE since previous
; .IF was TRUE. Does not
; assemble the following code.

.IF_TRUE ; Tests TRUE since SYM is defined.
Assembles the following code.

~.

.IF_TRUE_FALSE Assembles following code

; unconditionally.

~

.IF TRUE ; Tests TRUE since SYM is defined.
. ; Assembles remainder of
; conditional assembly block.
.ENDC

B Assume that symbol X is defined and that symbol Y is not defined:

.IF DEFINED X ; Tests TRUE since X is defined.
.IF DEFINED Y ; Tests FALSE since Y is not defined.
.IF_FALSE ; Tests TRUE since Y is not defined.

; Assembles the following code.

.IF_TRUE ; Tests FALSE since Y is not defined.
; Does not assemble the following
; code.

.ENDC

.ENDC

3] Assume that symbol A is defined and that symbol B is not defined:

.IF DEFINED A ; Tests TRUE since A is defined.
; Assembles the following code.

.IF_FALSE

; Tests FALSE since A is defined.
. ; Does not assemble the following
; code.
.IF NOT_DEFINED B ; Nested conditional directive
. ; is not evaluated.
.ENDC
.ENDC

Assembler Directives

Assume that symbol X is not defined but symbol Y is defined:

.IF DEFINED X
.IF DEFINED Y
.IE:‘__FALSE
.IF_TRUE

.ENDC
.ENDC

’
o
’
Iz

~e

Tests FALSE since X is not defined.
Does not assemble the following
code.

Nested conditional directive

is not evaluated.

Nested subconditional
directive is not evaluated.

Nested subconditional
directive is not evaluated.

JF_x

Assembler Directives

JIF

AIF

immediate conditional assembly block directive

FORMAT

AIF condition [,Jargument(s), statement

PARAMETERS

condition

One of the legal condition tests defined for conditional assembly blocks
in Table 6—4 (see the description of .IF). The condition must be separated
from the arguments by a comma (,), space, or tab. If the first argument
can be a blank, the condition must be separated from the arguments with
a comma.

argument(s)

An expression or symbolic argument (described in Table 6—4) associated
with the immediate conditional assembly block directive. If the argument
is an expression, it cannot contain any undefined symbols and must be an
absolute expression (see Section 3.5). The arguments must be separated
from the statement by a comma.

Statement

The statement to be assembled if the condition is satisfied.

DESCRIPTION

JIF provides a means of writing a one-line conditional assembly block.
The condition to be tested and the conditional assembly block are
expressed completely within the line containing the .IIF directive. No
terminating .ENDC statement is required.

Note

The assembler displays an error message if .IIF specifies a condition
test other than those listed in Table 6—4, an illegal argument, or a null
argument.

EXAMPLE

.IIF DEFINED EXAM,

BEQL ALPHA

This directive generates the following code if the symbol EXAM is defined
within the source program:

BEQL ALPHA

Assembler Directives
IRP

IRP

Indefinite repeat argument directive

FORMAT ARP symbol,<argument list>
range
.ENDR

PARAMETERS symbol
A formal argument that is successively replaced with the specified actual
arguments enclosed in angle brackets (<>). If no formal argument is
specified, the assembler displays an error message.
<argument list>
A list of actual arguments enclosed in angle brackets and used in
expanding the indefinite repeat range. An actual argument can consist
of one or more characters. Multiple arguments must be separated by
a legal separator (comma, space, or tab). If no actual arguments are
specified, no action is taken.
range
The block of source text to be repeated once for each occurrence of an
actual argument in the list. The range can contain macro definitions and
repeat ranges. .MEXIT is legal within the range.

DESCRIPTION IRP replaces a formal argument with successive actual arguments

specified in an argument list. This replacement process occurs during
the expansion of the indefinite repeat block range. The .ENDR directive
specifies the end of the range.

JIRP is analogous to a macro definition with only one formal argument. At
each expansion of the repeat block, this formal argument is replaced with
successive elements from the argument list. The directive and its range
are coded in line within the source program. This type of macro definition
and its range do not require calling the macro by name, as do other macros
described in this section.

Assembler Directives

IRP
JRP can appear either inside or outside another macro definition,
indefinite repeat block, or repeat block (see the description of .REPEAT).
The rules for specifying .IRP arguments are the same as those for
specifying macro arguments.
The macro definition is as follows:

.MACRO CALIL_SUB SUBR, Al,A2,A3,A4,A5,A6,A7,A8,A9,A10

.NARG COUNT

.IRP ARG, <A10,A9,A8,A7,A6,A5,A4,A3,A2,Al>

JIIF NOT_BLANK , ARG, PUSHL ARG

.ENDR

CALLS #<COUNT-1>, SUBR ; Note SUBR is counted

.ENDM CALL_SUB
The macro call and expansion of the macro defined previously is as follows:

CALL_SUB TEST, INRES, INTES, UNLIS, OUTCON, #205

.NARG COUNT

.IRP ARG,<,,,,,#205,0UTCON, UNLIS, INTES, INRES>

LIIF NOT_BLANK , ARG, PUSHL ARG

.ENDR

LIIF NOT_BLANK , , PUSHL

.IIF NOT_BLANK , , PUSHL

.IIF NOT_BLANK , , PUSHL

LIIF NOT BLANK , , PUSHL

.IIF NOT_BLANK |, , PUSHL

.IIF NOT_BLANK , #205, PUSHL #205

.IIF NOT_BLANK , OUTCON, PUSHL OUTCON

.IIF NOT_BLANK , UNLIS, PUSHL UNLIS

LIIF NOT_ BLANK , INTES, PUSHL INTES

LIIF NOT_BLANK , INRES, PUSHL INRES

CALLS #<COUNT-1>, TEST ; Note TEST is counted

This example uses the .NARG directive to count the arguments and the
IF NOT_BLANK directive (see descriptions of .IF and .IIF in this section)
to determine whether the actual argument is blank. If the argument is
blank, no binary code is generated.

Assembler Directives
ARPC

IRPC

indefinite repeat character directive

FORMAT ARPC symbol,<STRING>
range
.ENDR

PARAMETERS symbol
A formal argument that is successively replaced with the specified
characters enclosed in angle brackets (<>). If no formal argument is
specified, the assembler displays an error message.
<STRING>
A sequence of characters enclosed in angle brackets and used in the
expansion of the indefinite repeat range. Although the angle brackets are
required only when the string contains separating characters, their use is
recommended for legibility.
range
The block of source text to be repeated once for each occurrence of a
character in the list. The range can contain macro definitions and repeat
ranges. .MEXIT is legal within the range.

DESCRIPTION IRPC is similar to .IRP except that .IRPC permits single-character

substitution rather than argument substitution. On each iteration of

the indefinite repeat range, the formal argument is replaced with each
successive character in the specified string. The .ENDR directive specifies
the end of the range.

IRPC is analogous to a macro definition with only one formal argument.
At each expansion of the repeat block, this formal argument is replaced
with successive characters from the actual argument string. The directive
and its range are coded in line within the source program and do not
require calling the macro by name.

IRPC can appear either inside or outside another macro definition,
indefinite repeat block, or repeat block (see description of .REPEAT).

Assembler Directives
.IRPC

EXAMPLE

HV

HV

HV
HV
HV
HV
BV

The macro definition is as follows:

.MACRO HASH_SYM SYMBOL
.NCHR HV, <SYMBOL>
.IRPC CHR, <SYMBOL>
= HV+"A?CHR?
.ENDR
.ENDM HASH SYM

The macro call and expansion of the macro defined previously is as follows:

HASH SYM <MOVCS5>
.NCHR HV, <MOVC5>
.IRPC CHR, <MOVC5>

= HV+"A?CHR?
.ENDR

= HV+"A?M?

= HV+"A?07

= HV+"A?V?

= HV+"A?C?

= HV+"A?57?

This example uses the NCHR directive to count the number of characters

in an actual argument.

6-50

Assembler Directives
.LIBRARY

.LIBRARY

Macro library directive

FORMAT

.LIBRARY macro-library-name

PARAMETERS

macro-library-name
A delimited string that is the file specification of a macro library.

DESCRIPTION

.LIBRARY adds a name to the macro library list that is searched
whenever a .MCALL or an undefined opcode is encountered. The libraries
are searched in the reverse order in which they were specified to the
assembler.

If you omit any information from the macro-library-name argument,
default values are assumed. The device defaults to your current default
disk; the directory defaults to your current default directory; the file type
defaults to MLB.

Digital recommends that libraries be specified in the MACRO command
line with the /LIBRARY qualifier rather than with the .LIBRARY directive.
The .LIBRARY directive makes moving files cumbersome.

EXAMPLE

.LIBRARY /DISK: [TEST]USERM/ ; DISK: [TEST]USERM.MLB
.LIBRARY ?DISK:SYSDEF .MLB? ; DISK:SYSDEF.MLB
.LIBRARY \CURRENT .MLB\ ; Uses default disk and directory

6-51

Assembler Directives

.LINK

LINK

Linker option record directive

FORMAT

LINK "file-spec” [/qualifier/=(module-name],...])],...]

PARAMETERS

file-spec],...]

A delimited string that specifies one or more input files. The delimiters
can be any matching pair of printable characters except the space, tab,
equal sign (=), semicolon (;), or left angle bracket (<). The character
that you use as the delimiter cannot appear in the string itself. Although
you can use alphanumeric characters as delimiters, use nonalphanumeric
characters to avoid confusion.

The input files can be object modules to be linked, or shareable images
to be included in the output image. Input files can also be libraries
containing external references or specific modules for inclusion in the
output image. The linker will search the libraries for the external
references. If you specify multiple input files, separate the file
specifications with commas (,).

If you do not specify a file type in an input file specification, the linker
supplies default file types, based on the nature of the file. All object
modules are assumed to have file types of OBJ.

Note that the input file specifications must be correct at link time. Make
your references explicit, so that if the object module created by VAX
MACRO is linked in a directory other than the one in which it was
created, the linker will still be able to find the files referenced in the
.LINK directive.

No wildcard characters are allowed in the file specification.

FILE
QUALIFIERS

6-52

/INCLUDE=(module-name],...])

Indicates that the associated input file is an object library or shareable
image library, and that only the module names specified are to be
unconditionally included as input to the linker.

At least one module name must be specified. If you specify more than one
module name, separate the names with commas (,) and enclose the list in
parentheses.

No wildcard characters are allowed in the module name specifications.
Module names may not be longer than 31 characters, the maximum length
of a VAX MACRO symbol.

/LIBRARY

Indicates that the associated input file is a library to be searched for
modules to resolve any undefined symbols in the input files.

Assembler Directives
.LINK

If the associated input file specification does not include a file type, the
linker assumes the default file type of OLB. You can use both /INCLUDE
and /LIBRARY to qualify a file specification. If you specify both /INCLUDE
and /LIBRARY, the library is subsequently searched for unresolved
references. In this case, the explicit inclusion of modules occurs first;
then the linker searches the library for unresolved references.

/SELECTIVE_SEARCH

Directs the linker to add to its symbol table only those global symbols
that are defined in the specified file and are currently unresolved. If
/SELECTIVE_SEARCH is not specified, the linker includes all symbols
from that file in its global symbol table.

/SHAREABLE

Requests that the linker include a shareable image file. No wildcard
characters are allowed in the file specification.

The following table contains the abbreviations of the qualifiers for the
.LINK directive. Note that to ensure readability, as well as compatibility
with future releases, it is recommended that you use the full names of the

qualifiers.

Abbreviation Qualifier

/l /INCLUDE

/L /LIBRARY

/SE /SELECTIVE_SEARCH
/SH /SHAREABLE

DESCRIPTION The .LINK directive allows you to include linker option records in an
object module produced by VAX MACRO. The qualifiers for the .LINK
directive perform functions similar to the functions performed by the same
qualifiers for the DCL command LINK.

You should use the .LINK directive for references that are not linker
defaults, but that you always want to include in a particular image. Using
the .LINK directive enables you to aveid having to explicitly name these
references in the DCL command LINK.

For detailed information on the qualifiers to the DCL command LINK, see
the VMS DCL Dictionary. For a complete discussion of the operation of
the linker itself, see the VMS Linker Utility Manual.

EXAMPLES

.LINK "SYSSLIBRARY:MYLIB" /INCLUDE=(MOD1l, MOD2, MOD6)

This statement, when included in the file MYPROG.MAR, causes the
assembler to request that MYPROG.OBJ be linked with modules MOD1,
MOD2, and MODS in the library SYS$LIBRARY:MYLIB.OLB (where
SYS$LIBRARY is a logical name for the disk and directory in which
MYLIB.OLB is listed). The library is not searched for other unresolved

6-53

Assembler Directives
.LINK

references. The statement is equivalent to linking the file with the DCL
command:

B $ LINK MYPROG, SYSSLIBRARY:MYLIB /INCLUDE=(MOD1l, MOD2, MOD6)

3] .LINK \SYS$LIBRARY:MYOBJ\ ; Link with object module
; SYSS$SLIBRARY:MYOBJ.OBJ
.LINK ’SYSS$SLIBRARY:YOURLIB’ /LIBRARY ; Search object library
; SYSSLIBRARY:YOURLIB.OLB
; for unresolved references

.LINK *SYS$SLIBRARY:MYSTB.STB* /SELECTIVE_SEARCH ; Search symbol table
; SYSSLIBRARY:MYSTB.STB
;

for unresolved references

.LINK "SYSSLIBRARY:MYSHR.EXE" /SHAREABLE ; Link with shareable image
; SYS$LIBRARY :MYSHR.EXE

To increase efficiency and performance, include several related input files
in a single .LINK directive. The following example shows how the five
options illustrated previously can be included in one statement:

ﬁ .LINK " SYSSLIBRARY:MYOBJ', -
’ SYSSLIBRARY:YOURLIB’ /LIBRARY, -
’ SYSSLIBRARY:MYLIB’ /INCLUDE=(MOD1l, MOD2, MOD6),-
' SYSSLIBRARY:MYSTB.STB’ /SELECTIVE_SEARCH, -
" SYS$SLIBRARY:MYSHR.EXE’ /SHAREABLE

6-54

Assembler Directives
LIST

LIST

Listing directive

FORMAT .LIST [argument-list]

PARAMETER argument-list
One or more of the symbolic arguments defined in Table 6-8. You can
use either the long form or the short form of the arguments. If multiple
arguments are specified, separate them with commas (,), spaces, or tabs.

DESCRIPTION .LIST is equivalent to .SHOW. See the description of .SHOW for more
information.

6-55

Assembler Directives

.LONG

.LONG

Longword storage directive

FORMAT

.LONG expression-list

PARAMETERS

expression-list

One or more expressions separated by commas (,). You have the option
of following each expression with a repetition factor delimited by square
brackets ([1).

An expression followed by a repetition factor has the format:

expressioni[expression2]

expressiont
An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value is repeated.
The expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5). The square brackets are required.

DESCRIPTION

.LONG generates successive longwords (4 bytes) of data in the object
module.

EXAMPLE

LAB_3:

6-56

.LONG
. LONG
. LONG

LAB_3, “X7FFFFFFF, "A’ABCD’ ; 3 longwords of data

; 1 longword of data
; 22 longwords of data

Note

Each expression in the list must have a value that can be represented in
32 bits.

Assembler Directives
.MACRO

.MACRO

Macro definition directive

FORMAT

.MACRO macro-name [formal-argument-list]

.ENDM [macro name]

PARAMETERS

macro-name
The name of the macro to be defined; this name can be any legal symbol
up to 31 characters long.

formal-argument-list
The symbols, separated by commas (,), to be replaced by the actual
arguments in the macro call.

range
The source text to be included in the macro expansion.

DESCRIPTION

.MACRO begins the definition of a macro. It gives the macro name and

a list of formal arguments (see Chapter 4). If the name specified is the
same as the name of a previously defined macro, the previous definition is
deleted and replaced with the new one. The MACRO directive is followed
by the source text to be included in the macro expansion. The .ENDM
directive specifies the end of the range.

Macro names do not conflict with user-defined symbols. Both a macro and
a user-defined symbol can have the same name.

When the assembler encounters a .MACRO directive, it adds the macro
name to its macro name table and stores the source text of the macro (up
to the matching .ENDM directive). No other processing occurs until the
macro is expanded.

The symbols in the formal argument list are associated with the macro
name and are limited to the scope of the definition of that macro. For
this reason, the symbols that appear in the formal argument list can also
appear elsewhere in the program.

6-57

Assembler Directives
.MACRO

Notes

1 If a macro has the same name as a VAX opcode, the macro is used
instead of the instruction. This feature allows you to temporarily
redefine an opcode.

2 If a macro has the same name as a VAX opcode and is in a macro
library, you must use the .MCALL directive to define the macro.
Otherwise, because the symbol is already defined (as the opcode), the
assembler will not search the macro libraries.

3 You can redefine a macro with new source text during assembly by
specifying a second .MACRO directive with the same name. Including
a second .MACRO directive within the original macro definition causes
the first macro call to redefine the macro. This feature is useful
when a macro performs initialization or defines symbols, when an
operation is performed only once. The macro redefinition can eliminate
unneeded source text in a macro or it can delete the entire macro. The
.MDELETE directive provides another way to delete macros.

EXAMPLE

The macro definition is as follows:

.MACRO USERDEF
.PSECT DEFIES, ABS

MYSYM= 5
HIVAL= ~XFFF123
LOWVAL= 0
.PSECT RWDATA,NOEXE, LONG
TABLE: .BLKL 100
LIST: .BLKB 10
.MACRO USERDEF ; Redefine it to null

.ENDM USERDEF
. ENDM USERDEF

The macro calls and expansions of the macro defined previously are as

follows:
USERDEF ; Should expand data
.PSECT DEFIES, ABS
MYSYM= 5
HIVAL= ~XFFF123
LOWVAL= 0
.PSECT RWDATA,NOEXE, LONG
TABLE: .BLKL 100
LIST: .BLKB 10
.MACRO USERDEF ; Redefine it to null

.ENDM USERDEF
USERDEF ; Should expand nothing

In this example, when the macro is called the first time, it defines some
symbols and data storage areas and then redefines itself. When the macro
is called a second time, the macro expansion contains no source text.

6-58

Assembler Directives
.MASK

.MASK

Mask directive

FORMAT .MASK symbol[,expression]
PARAMETERS symbol
A symbol defined in an .ENTRY directive.
expression
A register save mask.
DESCRIPTION MASK reserves a word for a register save mask for a transfer vector. See

the description of .TRANSFER for more information and for an example of
.MASK.

Notes

1 If MASK does not contain an expression, the assembler directs the
linker to copy the register save mask specified in .ENTRY to the word
reserved by .MASK.

2 If MASK contains an expression, the assembler directs the linker
to combine this expression with the register save mask specified in
.ENTRY and store the result in the word reserved by .MASK. The
linker performs an inclusive OR operation to combine the mask in the
entry point and the value of the expression. Consequently, a register
specified in either .ENTRY or .MASK will be included in the combined
mask. See the description of . ENTRY for more information on entry
masks.

6-59

Assembler Directives
.MCALL

.MCALL

Macro call directive

FORMAT

.MCALL macro-name-list

PARAMETERS

macro-name-list
A list of macros to be defined for this assembly. Separate the macro names
with commas (,).

DESCRIPTION

Note:

.MCALL specifies the names of the system and user-defined macros that
are required to assemble the source program but are not defined in the
source file.

If any named macro is not found upon completion of the search (that is,
if the macro is not defined in any of the macro libraries), the assembler
displays an error message.

.MCALL is provided for compatibility with MACRO-11; with

one exception, Digital recommends that you not use it. When
VAX MACRO finds an unknown symbol in the opcode field, it
automatically searches all macro libraries. If it finds the symbol
in a library, it uses the macro definition and expands the macro
reference. If VAX MACRO does not find the symbol in the library,
it displays an error message.

You must use .MCALL when a macro has the same name as an
opcode (see description of .MACRO).

EXAMPLE

.MCALL

6-60

INSQUE

; Substitute macro in
; library for INSQUE
; instruction

Assembler Directives
.MDELETE

.MDELETE

Macro deletion directive

FORMAT .MDELETE macro-name-list

PARAMETERS macro-name-list
A list of macros whose definitions are to be deleted. Separate the names
with commas (,).

DESCRIPTION MDELETE deletes the definitions of specified macros. The number of
macros actually deleted is printed in the assembly listing on the same line
as the MDELETE directive.

.MDELETE completely deletes the macro, freeing memory as necessary.
Macro redefinition with . MACRO merely redefines the macro.

EXAMPLE

.MDELETE USERDEF, $SSDEF, ALTR

Assembler Directives

MEXIT

MEXIT

Macro exit directive

.MEXIT terminates a macro expansion before the end of the macro.

Termination is the same as if ENDM were encountered. You can use the
directive within repeat blocks. .MEXIT is useful in conditional expansion
of macros because it bypasses the complexities of nested conditional
directives and alternate assembly paths.

1 When .MEXIT occurs in a repeat block, the assembler terminates the
current repetition of the range and suppresses further expansion of the
repeat range.

2 When macros or repeat blocks are nested, .MEXIT exits to the next
higher level of expansion.

3 If .MEXIT occurs outside a macro definition or a repeat block, the
assembler displays an error message.

FORMAT MEXIT
DESCRIPTION

Notes
EXAMPLE

.MACRO POLO
.IF EQ N

MEXIT
.ENDC

.ENDM POLO

N,A,B

7

Start conditional assembly block

Terminate macro expansion
End conditional assembly block

Normal end of macro

In this example, if the actual argument for the formal argument N equals
zero, the conditional block is assembled, and the macro expansion is
terminated by .MEXIT.

Assembler Directives
.NARG

.NARG

Number of arguments directive

FORMAT .NARG symbol

PARAMETERS symbol
A symbol that is assigned a value equal to the number of arguments in the
macro call.

DESCRIPTION NARG determines the number of arguments in the current macro call.
.NARG counts all the positional arguments specified in the macro call,
including null arguments (specified by adjacent commas (,)). The value
assigned to the specified symbol does not include either any keyword
arguments or any formal arguments that have default values.

Note

If NARG appears outside a macro, the assembler displays an error
message.

The macro definition is as follows:

.MACRO CNT_ARG Al,A2,A3,A4,A5,A6,A7,A8,A9=DEF9,A10=DEF10

.NARG COUNTER ; COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

.ENDM CNT_ARG
The macro calls and expansions of the macro defined previously are as
follows:

CNT_ ARG TEST,FIND,ANS ; COUNTER will = 3

.NARG COUNTER ; COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

CNT ARG ; COUNTER will = 0

.NARG COUNTER ; COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

CNT_ARG TEST, A2=SYMB2,A3=SY3 ; COUNTER will = 1

.NARG COUNTER ; COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

; Keyword arguments are not counted

CNT_ARG , SYMBL,, ; COUNTER will = 3

.NARG COUNTER ; COUNTER is set to no. of ARGS

.WORD COUNTER ; Store value of COUNTER

; Null arguments are counted

6-63

Assembler Directives

.NCHR

.NCHR

Number of characters directive

FORMAT

.NCHR symbol,<string>

PARAMETERS symbol
A symbol that is assigned a value equal to the number of characters in the
specified character string.

<string>

A sequence of printable characters. Delimit the character string with
angle brackets (<>) (or a character preceded by a circumflex (#)) only if
the specified character string contains a legal separator (comma (,), space,
and/or tab) or a semicolon (;).

DESCRIPTION NCHR determines the number of characters in a specified character
string. It can appear anywhere in a VAX MACRO program and is useful
in calculating the length of macro arguments.

_
The macro definition is as follows:

.MACRO CHAR MESS ; Define MACRO

.NCHR CHRCNT, <MESS> ; Assign value to CHRCNT

.WORD CHRCNT ; Store value

LASCII /MESS/ ; Store characters

.ENDM CHAR ; Finish
The macro calls and expansions of the macro defined previously are as
follows:

CHAR <HELLO> ; CHRCNT will = 5

.NCHR CHRCNT, <HELLO> ; Assign value to CHRCNT

.WORD CHRCNT ; Store value

.ASCII /HELLO/ ; Store characters

CHAR <14, 75.39 4> ; CHRCNT will = 12 (dec)

.NCHR CHRCNT, <14, 75.39 4> ; Assign value to CHRCNT

.WORD CHRCNT ; Store value

.ASCII /14, 75.39 4/ ; Store characters

Assembler Directives
.NLIST

Listing directive
FORMAT .NLIST [argument-list]
PARAMETER argument-list
One or more of the symbolic arguments listed in Table 6-8. Use either
the long form or the short form of the arguments. If you specify multiple
arguments, separate them with commas (,), spaces, or tabs.
DESCRIPTION NLIST is equivalent to .NOSHOW. See the description of .SHOW for more

information.

Assembler Directives

.NOCROSS
.NOCROSS

Cross-reference directive
FORMAT .NOCROSS [symbol-list]

PARAMETER symbol-list

A list of legal symbol names separated by commas (,).

DESCRIPTION VAX MACRO produces a cross-reference listing when the
/CROSS_REFERENCE qualifier is specified in the MACRO command. The
.CROSS and .NOCROSS directives control which symbols are included in
the cross-reference listing. The description of .NOCROSS is included with
the description of .CROSS.

Assembler Directives
.NOSHOW

.NOSHOW

Listing directive

FORMAT .NOSHOW [argument-list]

PARAMETER argument-list
One or more of the symbolic arguments listed in Table 6-8 in the
description of .SHOW. Use either the long form or the short form of
the arguments. If you specify multiple arguments, separate them with
commas (,), spaces, or tabs.

DESCRIPTION NOSHOW specifies listing control options. See the description of .SHOW
for more information.

6-67

Assembler Directives

.NTYPE

.NTYPE

Operand type directive

FORMAT

.NTYPE symbol,operand

PARAMETERS

symbol
Any legal VAX MACRO symbol. This symbol is assigned a value equal to
the 8- or 16-bit addressing mode of the operand argument that follows.

operand

Any legal address expression, as you use it with an opcode. If no argument
is specified, zero is assumed.

DESCRIPTION

6-68

.NTYPE determines the addressing mode of the specified operand.

The value of the symbol is set to the specified addressing mode. In most
cases, an 8-bit (1-byte) value is returned. Bits 0 to 3 specify the register
associated with the mode, and bits 4 to 7 specify the addressing mode.

To provide concise addressing information, the mode bits 4 to 7 are not
exactly the same as the numeric value of the addressing mode described
in Table C—6. Literal mode is indicated by a zero in bits 4 to 7, instead of
the values 0 to 3. Mode 1 indicates an immediate mode operand, mode 2
indicates an absolute mode operand, and mode 3 indicates a general mode
operand.

For indexed addressing mode, a 16-bit (2-byte) value is returned. The
high-order byte contains the addressing mode of the base operand specifier
and the low-order byte contains the addressing mode of the primary
operand (the index register).

See Chapter 5 of this volume for more information on addressing modes.

Assembler Directives
.NTYPE

EXAMPLE

the operand type
address and, if not,
and generates a warning message.

(by using .NTYPE)

.MACRO PUSHADR #ADDR
.NTYPE A,ADDR

~.

A = AR-4&"XF ;
.IF IDENTICAL 0, <ADDR> ;
PUSHL #0 ;
.MEXIT ;
.ENDC

ERR = 0 ;
.IIF LESS_EQUAL A-1, ERR=1 ;
.IIF EQUAL A-5, ERR=1 ;

.IF EQUAL ERR

The following macro is used to push an address on the stack.
to determine if the operand is an
the macro simply pushes the argument on the stack

It checks

Assign operand type to ‘A’
Isolate addressing mode
Is argument exactly 07?
Stack zero

Exit from macro

ERR tells if mode is address

ERR 0 if address, 1 if not

Is mode not literal or immediate?
Is mode not register?

Is mode address?

Yes, stack address

No

Then stack operand & warn

The macro calls and expansions of the macro defined previously are as

PUSHAL ADDR H
.IFF ;
PUSHL ADDR H
. WARN ; ADDR is not an address;
.ENDC

.ENDM PUSHADR

follows:

PUSHADR (RO) ;
PUSHAL (RO) ;
PUSHADR (R1) [(R4] ;
PUSHAL (R1) [R4] ;
PUSHADR 0 ;
PUSHL #0 ;
PUSHADR #1 ;
PUSHL #1 ;

$MACRO-W-GENWRN, Generated WARNING: #1 is
PUSHADR RO
PUSHL RO

$MACRO-W-GENWRN, Generated WARNING: RO is

’
’

Note that to save space,

Valid argument
Yes, stack address

Valid argument
Yes, stack address

Is zero
Stack zero

Not an address
Then stack operand
not an address

& warn

Not an address
Then stack operand
not an address

& warn

this example is listed as it would appear if . SHOW

BINARY, not .SHOW EXPANSIONS, were specified in the source program.

6-69

Assembler Directives

.OCTA

.OCTA

Octaword storage directive

FORMAT .OCTA literal
.OCTA symbol
PARAMETERS literal
Any constant value. This value can be preceded by ~O, AB, X, or AD to
specify the radix as octal, binary, hexadecimal, or decimal, respectively;
or it can be preceded by "A to specify ASCII text. Decimal is the default
radix.
symbol
A symbol defined elsewhere in the program. This symbol results in a
sign-extended, 32-bit value being stored in an octaword.
R
DESCRIPTION .OCTA generates 128 bits (16 bytes) of binary data.
Note
.OCTA is like .QUAD and unlike other data storage directives ((BYTE,
.WORD, and .LONG), in that it does not evaluate expressions and that it
accepts only one value. It does not accept a list.
L
EXAMPLE
.OCTA ~A"FEDCBA987654321" ; Each ASCII character
H is stored in a byte
.OCTA 0 ; OCTA 0
.OCTA ~X01234ABCD5678F9 ; OCTA hex value specified
.OCTA VINTERVAL ; VINTERVAL has 32-bit value,
; sign-extended

6-70

Assembler Directives
.ODD

.ODD

Odd location counter alignment directive

FORMAT

.ODD

DESCRIPTION

.ODD ensures that the current value of the location counter is odd by
adding 1 if the current value is even. If the current value is already odd,
no action is taken.

6-71

Assembler Directives

.OPDEF

.OPDEF

Opcode definition directive

FORMAT

-OPDEF opcode value,operand-descriptor-list

PARAMETERS

opcode

An ASCII string specifying the name of the opcode. The string can be up
to 31 characters long and can contain the letters A to Z, the digits 0 to 9,
and the special characters underscore (_), dollar sign ($), and period (.).
The string should not start with a digit and should not be surrounded by
delimiters.

value

An expression that specifies the value of the opcode. The expression
must be absolute and must not contain any undefined values (see
Section 3.5). The value of the expression must be in the range 0 to

65, 53510 (hexadecimal FFFF), but you cannot use the values 252 to 255
because the architecture specifies these as the start of a 2-byte opcode.
The expression is represented as follows:

If 0 < expression < 251 Expression is a 1-byte opcode.

If expression > 255 Expression bits 7:0 are the first byte of the
opcode and expression bits 15:8 are the second
byte of the opcode.

operand-descriptor-list

A list of operand descriptors that specifies the number of operands and
the type of each. Up to 16 operand descriptors are allowed in the list.
Table 6-5 lists the operand descriptors.

Table 6-5 Operand Descriptors

Access

Type Data Type
Double
Float- Float- G_ H_
Byte Word Long- ing ing Floating Floating Quad- Octa-
word Point Point Point Point word word
Address AB AW AL AF AD AG AH AQ AO
Read- RB RW RL RF RD RG RH RQ RO
only
Modify MB MW ML MF MD MG MH MQ MO
Write- WB Ww WL WF WD WG WH wQ WO
only

6-72

(continued on next page)

Assembler Directives

.OPDEF
Table 6-5 (Cont.) Operand Descriptors
Access
Data Type
Type yP
Double
Float- Float- G_ H_
Byte Word Long- ing ing Floating Floating Quad- Octa-
word Point Point Point Point word word

Field VB VW VL VF VD VG VH vaQ VO

Branch BB BW — — —_ — — — —

DESCRIPTION -OPDEF defines an opcode, which is inserted into a user-defined opcode

table. The assembler searches this table before it searches the permanent
symbol table. This directive can redefine an existing opcode name or
create a new one.

Notes

1 You can also use a macro to redefine an opcode (see the description of
'MACRO in this section). Note that the macro name table is searched
before the user-defined opcode table.

2 .OPDEF is useful in creating “custom” instructions that execute user-
written microcode. This directive is supplied to allow you to execute
your microcode in a MACRO program.

3 The operand descriptors are specified in a format similar to the
operand specifier notation described in Chapter 8. The first character
specifies the operand access type, and the second character specifies
the operand data type.

EXAMPLE

.OPDEF MOVL3

.OPDEF DIVF2
.OPDEF MOVC5

.OPDEF CALL

Defines an instruction
MOVL3, which uses
the reserved opcode FF
Redefines the DIVF2 and
MOVC5 instructions

~XA9FF,RL,ML, WL

~X46,RF,MF
~X2C,RW, AB, AB, RW, AB

Ne e Ne N Ne

~¥X10,BB ; Equivalent to a BSBB

6-73

Assembiler Directives

.PACKED

.PACKED

Packed decimal string storage directive

FORMAT .PACKED decimal-string[,symbol]

PARAMETERS decimal-string
A decimal number from 0 to 31 digits long with an optional sign. Digits
can be in the range 0 to 9 (see Section 8.2.14).
symbol
An optional symbol that is assigned a value equivalent to the number of
decimal digits in the string. The sign is not counted as a digit.

DESCRIPTION PACKED generates packed decimal data, two digits per byte. Packed
decimal data is useful in calculations requiring exact accuracy. Packed
decimal data is operated on by the decimal string instructions. See
Section 8.2.14 for more information on the format of packed decimal
data.

EXAMPLE

.PACKED -12,PACK_SIZE ;7 PACK_SIZE gets value of 2

.PACKED +500
.PACKED 0

.PACKED -0,SUM _SIZE

6-74

; SUM_SIZE gets value of 1

Assembler Directives
.PAGE

.PAGE

Page ejection directive

FORMAT .PAGE

DESCRIPTION -PAGE forces a new page in the listing. The directive itself is not printed
in the listing.

VAX MACRO ignores .PAGE in a macro definition. The paging operation
is performed only during macro expansion.

6-75

Assembler Directives

.PRINT

-PRINT

Assembly message directive

FORMAT .PRINT [expression] ;,comment
PARAMETERS expression

An expression whose value is displayed when .PRINT is encountered

during assembly.

;comment

A comment that is displayed when .PRINT is encountered during

assembly. The comment must be preceded by a semicolon (;).

DESCRIPTION PRINT causes the assembler to display an informational message. The
message consists of the value of the expression and the comment specified
in the .PRINT directive. The message is displayed on the terminal for
interactive jobs and in the log file for batch jobs. The message produced by

PRINT is not considered an error or warning message.

Notes

1 .PRINT, .ERROR, and .WARN are called the message display
directives. You can use these to display information indicating that a
macro call contains an error or an illegal set of conditions.

2 If .PRINT is included in a macro library, end the comment with an
additional semicolon. If you omit the semicolon, the comment will be
stripped from the directive and will not be displayed when the macro
is called.

3 If the expression has a value of zero, it is not displayed with the
message.

EXAMPLE
.PRINT 2 ; The sine routine has been changed

6-76

Assembler Directives
PSECT

PSECT

Program sectioning directive

FORMAT

PSECT [program-section-namef,argument-list]]

PARAMETERS

progr am-section-name

The name of the program section. This name can be up to 31 characters
long and can contain any alphanumeric character and the special
characters underscore (_), dollar sign ($), and period (.). The first
character must not be a digit.

argument-list

A list containing the program section attributes and the program section
alignment. Table 66 lists the attributes and their functions. Table 6-7
lists the default attributes and their opposites. Program sections are
aligned when you specify an integer in the range 0 to 9 or one of the
five keywords listed in the following table. If you specify an integer, the
program section is linked to begin at the next virtual address, which is a
multiple of 2 raised to the power of the integer. If you specify a keyword,
the program section is linked to begin at the next virtual address (a
multiple of the values listed in the following table):

Keyword Size (in Bytes)

BYTE 20 =1
WORD 2M =2
LONG 202 =4
QUAD 2"3=8
PAGE 29 = 512

BYTE is the default.

6-77

Assembler Directives
.PSECT

Table 6-6 Program Section Attributes

Attribute

Function

ABS

CON

EXE

GBL

LCL

LIB
NOEXE

NOPIC

NORD

NOSHR

NOWRT

OVR

Absolute—The linker assigns the program section an absolute
address. The contents of the program section can be only

symbol definitions (usually definitions of symbolic offsets to data
structures that are used by the routines being assembled). No data
allocations can be made. An absolute program section contributes
no binary code to the image, so its byte allocation request to the
linker is zero. The size of the data structure being defined is the
size of the absolute program section printed in the “program section
synopsis” at the end of the listing. Compare this attribute with its
opposite, REL.

Concatenate—Program sections with the same name and attributes
(including CON) are merged into one program section. Their
contents are merged in the order in which the linker acquires them.
The allocated virtual address space is the sum of the individual
requested allocations.

Executable—The program section contains instructions. This
attribute provides the capability of separating instructions from
read-only and read/write data. The linker uses this attribute in
gathering program sections and in verifying that the transfer
address is in an executable program section.

Global—Program sections that have the same name and attributes,
including GBL and OVR, will have the same relocatable address in
memory even when the program sections are in different clusters
(see the VMS Linker Utility Manual for more information on
clusters). This attribute is specified for FORTRAN COMMON
block program sections (see the VAX FORTRAN User’s Guide).
Compare this attribute with its opposite, LCL.

Local—The program section is restricted to its cluster. Compare
this attribute with its opposite, GBL.

Library Segment—Reserved for future use.

Not Executable—The program section contains data only; it does
not contain instructions.

Non-Position-Independent Content—The program section is
assigned to a fixed location in virtual memory (when it is in a
shareable image).

Nonreadable—Reserved for future use.

No Share—The program section is reserved for private use at
execution time by the initiating process.

Nonwriteable—The contents of the program section cannot be
altered (written into) at execution time.

Overlay—Program sections with the same name and attributes,
including OVR, have the same relocatable base address in
memory. The allocated virtual address space is the requested
allocation of the largest overlaying program section. Compare this
attribute with its opposite, CON.

6-78

(continued on next page)

Assembler Directives
.PSECT

Table 6-6 (Cont.) Program Section Attributes

Attribute Function

PIC Position-Independent Content—The program section can be
relocated: that is, it can be assigned to any memory area (when it
is in a shareable image).

RD Readable—Reserved for future use.

REL Relocatable—The linker assigns the program section a relocatable
base address. The contents of the program section can be code or
data. Compare this attribute with its opposite, ABS.

SHR Share—The program section can be shared at execution time by
multiple processes. This attribute is assigned to a program section
that can be linked into a shareable image.

USR User Segment—Reserved for future use.

VEC Vector-Containing—The program section contains a change mode
vector indicating a privileged shareable image. You must use the
SHR attribute with VEC.

WRT Write—The contents of the program section can be altered (written

into) at execution time.

Table 6-7 Default Program Section Attributes

Default Attribute

Opposite Attribute

CON
EXE
LCL
NOPIC
NOSHR
RD
REL
WRT
NOVEC

OVR
NOEXE
GBL
PIC
SHR
NORD
ABS
NOWRT
VEC

DESCRIPTION

.PSECT defines a program section and its attributes and refers to a
program section once it is defined. Use program sections to do the

following:

¢ Develop modular programs.

¢ Separate instructions from data.

e Allow different modules to access the same data.

e Protect read-only data and instructions from being modified.

e Identify sections of the object module to the debugger.

e Control the order in which program sections are stored in virtual

memory.

6-79

Assembler Directives

.PSECT

6-80

The assembler automatically defines two program sections: the absolute
program section and the unnamed (or blank) program section. Any symbol
definitions that appear before any instruction, data, or .PSECT directive
are placed in the absolute program section. Any instructions or data that
appear before the first named program section is defined are placed in the
unnamed program section. Any .PSECT directive that does not include a
program section name specifies the unnamed program section.

A maximum of 254 user-defined, named program sections can be defined.

When the assembler encounters a .PSECT directive that specifies a new
program section name, it creates a new program section and stores the
name, attributes, and alignment of the program section. The assembler
includes all data and instructions that follow the .PSECT directive in
that program section until it encounters another .PSECT directive. The
assembler starts all program sections at a location counter of 0, which is
relocatable.

If the assembler encounters a .PSECT directive that specifies the name of
a previously defined program section, it stores the new data or instructions
after the last entry in the previously defined program section. The
location counter is set to the value of the location counter at the end

of the previously defined program section. You need not list the attributes
when continuing a program section but any attributes that are listed
must be the same as those previously in effect for the program section.

A continuation of a program section cannot contain attributes conflicting
with those specified in the original .PSECT directive.

The attributes listed in the .PSECT directive only describe the contents
of the program section. The assembler does not check to ensure that the
contents of the program section actually include the attributes listed.
However, the assembler and the linker do check that all program sections
with the same name have exactly the same attributes. The assembler and
linker display an error message if the program section attributes are not
consistent.

Program section names are independent of local symbol, global symbol,
and macro names. You can use the same symbolic name for a program
section and for a local symbol, global symbol, or macro name.

Notes

1 The .ALIGN directive cannot specify an alignment greater than that
of the current program section; consequently, .PSECT should specify
the largest alignment needed in the program section. For efficiency of
execution, an alignment of longword or larger is recommended for all
program sections that have longword data.

2 The attributes of the default absolute and the default unnamed
program sections are listed in the following table. Note that the
program section names include the periods (.) and enclosed spaces.

Assembler Directives

.PSECT
Program Section Name Attributes and Alignment
. ABS . NOPIC,USR,CON,ABS,LCL,NOSHR,NOEXE,
NORD,NOWRT,NOVEC,BYTE
. BLANK . NOPIC,USR,CON,REL,LCL,NOSHR,EXE,
RD,WRT,NOVEC,BYTE
EXAMPLE
.PSECT CODE,NOWRT, EXE, LONG ; Program section to contain

; executable code

.PSECT RWDATA,WRT,NOEXE, QUAD
; Program section to contain
; modifiable data

Assembler Directives

.QUAD

.QUAD

Quadword storage directive

FORMAT

.QUAD iteral

.QUAD symbol

PARAMETERS literal

Any constant

— S

value. This value can be preceded by 2O, *B, ~X, or AD to

specify the radix as octal, binary, hexadecimal, or decimal, respectively; or
it can be preceded by ~A to specify the ASCII text operator. Decimal is the

default radix.
symbol

A symbol defined elsewhere in the program. This symbol results in a
sign-extended, 32-bit value being stored in a quadword.

DESCRIPTION QUAD generates 64 bits (8 bytes) of binary data.
Note
.QUAD is like .OCTA and different from other data storage directives
(.BYTE, .WORD, and .LONG) in that it does not evaluate expressions and
that it accepts only one value. It does not accept a list.
EXAMPLE
.QUAD ~A'..ASK?..’ ; Each ASCII character is stored
; in a byte
.QUAD 0 ; QUAD 0
.QUAD ~X0123456789ABCDEF ; QUAD hex value specified
.QUAD ~B1111000111001101 ; QUAD binary value specified
.QUAD LABEL ; LABEL has a 32-bit,

zero-extended value.

Assembler Directives
.REFn

.REFn

Operand generation directives

FORMAT .REF1 operand

.REF2 operand
.REF4 operand
.REF8 operand
.REF16 operand

PARAMETER operand

An operand of byte, word, longword, quadword, or octaword context,
respectively.

DESCRIPTION VAX MACRO has the following five operand generation directives that you

can use in macros to define new opcodes:

Directive Function

.REF1 Generates a byte operand
.REF2 Generates a word operand
.REF4 Generates a longword operand
.REF8 Generates a quadword operand
.REF16 Generates an octaword operand

The .REFn directives are provided for compatibility with VAX MACRO
Version 1.0. Because the .OPDEF directive provides greater functionality
and is easier to use than .REFn, you should use .OPDEF instead of .REFn.

EXAMPLE

.MACRO MOVL3 A,B,C

.BYTE ~XFF, ~“XA9

.REF4 A ; This operand has longword context
.REF4 B ; This operand has longword context
.REF4 C ; This operand has longword context
.ENDM MOVL3

MOVL3 RO, @QLAB~1, (R7)+[R10]

This example uses .REF4 to create a new instruction, MOVL3, which
uses the reserved opcode FF. See the example in .OPDEF for a preferred
method to create a new instruction.

6-83

Assembler Directives

.REPEAT

.REPEAT

Repeat block directive

FORMAT

.REPEAT expression

.ENDR

PARAMETERS

expression

An expression whose value controls the number of times the range is to
be assembled within the program. When the expression is less than or
equal to zero, the repeat block is not assembled. The expression must be
absolute and must not contain any undefined symbols (see Section 3.5).

range

The source text to be repeated the number of times specified by the
value of the expression. The repeat block can contain macro definitions,
indefinite repeat blocks, or other repeat blocks. .MEXIT is legal within the
range.

DESCRIPTION

.REPEAT repeats a block of code a specified number of times, in line with
other source code. The .ENDR directive specifies the end of the range.

Note
The alternate form of .REPEAT is .REPT

Assembler Directives
.REPEAT

EXAMPLE

The macro definition is as follows:

.MACRO COPIES STRING,NUM
.REPEAT NUM

.ASCII /STRING/

.ENDR

.BYTE 0

.ENDM COPIES

The macro calls and expansions of the macro defined previously are as
follows:

COPIES <ABCDEF>,5

.REPEAT 5
.ASCII /ABCDEF/
.ENDR

.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/

.BYTE 0

VARB = 3
COPIES <HOW MANY TIMES>,VARB
.REPEAT 3
.ASCII /HOW MANY TIMES/
.ENDR

.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
_ASCII /HOW MANY TIMES/
.BYTE 0

Assembler Directives
.RESTORE_PSECT

.RESTORE_PSECT

Restore previous program section context directive

-RESTORE_PSECT

.RESTORE_PSECT retrieves the program section from the top of the
program section context stack, an internal stack in the assembler. If

the stack is empty when .RESTORE_PSECT is issued, the assembler
displays an error message. When .RESTORE_PSECT retrieves a program
section, it restores the current location counter to the value it had when
the program section was saved. The local label block is also restored if it
was saved when the program section was saved. See the description of
.SAVE_PSECT for more information.

Note
The alternate form of RESTORE_PSECT is .RESTORE.

FORMAT
DESCRIPTION
EXAMPLE
.MACRO INITD
.SAVE_PSECT
.PSECT SYMBOLS, ABS
HELP_LEV=2
MAXNUM=100
RATE1=16
RATE2=4
TABL: .BLKL 100
TEMP: .BLKB 16

6-86

.PSECT DATA,NOEXE, LONG

-RESTORE_PSECT

.ENDM

.RESTORE_PSECT and .SAVE_PSECT are especially useful in macros
that define program sections. The macro definition in the following
example saves the current program section context and defines new
program sections. Then, it restores the saved program section. If the
macro did not save and restore the program section context each time the
macro was invoked, the program section would change.

; Initialize symbols

; and data areas

; Save the current PSECT
; Define new PSECT
; Define symbol
; Define symbol
; Define symbol
; Define symbol
; Define another PSECT
; 100 longwords in TABL
; More storage

; Restore the PSECT

; in effect when

; MACRO is invoked

Assembler Directives
.SAVE_PSECT

SAVE_PSECT

Save current program section context directive

FORMAT

.SAVE_PSECT [LOCAL_BLOCK]

PARAMETER

LOCAL_BLOCK
An optional keyword that specifies that the current local label is to be
saved with the program section context.

DESCRIPTION

.SAVE_PSECT stores the current program section context on the top of
the program section context stack, an internal assembler stack. It leaves
the current program section context in effect. The program section context
stack can hold 31 entries. Each entry includes the value of the current
location counter and the maximum value assigned to the location counter
in the current program section. If the stack is full when .SAVE_PSECT is
encountered, an error occurs.

.SAVE_PSECT and .RESTORE_PSECT are especially useful in macros
that define program sections. See the description of .RESTORE_PSECT
for another example using .SAVE_PSECT.

Note

The alternate form of .SAVE_PSECT is .SAVE.

EXAMPLE

The macro definition is as follows:

.MACRO ERR_MESSAGE, TEXT ; Set up lists of messages

; and pointers

LITIF NOT_DEFINED MESSAGE INDEX, MESSAGE INDEX=0
.SAVE_PSECT - a

LOCAL _BLOCK ; Keep local labels
.PSECT MESSAGE_TEXT ; List of error messages

MESSAGE: :

.ASCIC /TEXT/

.PSECT MESSAGE_POINTERS
.ADDRESS -

MESSAGE
.RESTORE PSECT
PUSHL #MESSAGE_INDEX
CALLS #1,PRINT_MESS

Addresses of error
messages

Store one pointer

Get back local labels

Ne N Ne Ne Se N

Print message

MESSAGE_INDEX=MESSAGE_INDEX+1
.ENDM ERR MESSAGE

Assembler Directives
.SAVE_PSECT

Macro call:

RESETS: CLRL R4
BLBC RO, 30$%

ERR_MESSAGE <STRING TOO SHORT> ; Add "STRING TOO SHORT"
H to list of error
308: RSB ; messages

By using .SAVE_PSECT LOCAL_BLOCK, the local label 30$ is defined in
the same local label block as the reference to 30$. If a local label is not
defined in the block in which it is referenced, the assembler produces the
following error message:

$MACRO~-E-UNDEFSYM, Undefined Symbol

Assembler Directives
SHOW

.SHOW
.NOSHOW

Listing directives

FORMAT .SHOW [argument-list]

.NOSHOW [argument-list]

PARAMETER argument-list

One or more of the optional symbolic arguments defined in Table 6-8. You
can use either the long form or the short form of the arguments. You can
use each argument alone or in combination with other arguments. If you
specify multiple arguments, you must separate them by commas (,), tabs,
or spaces. If any argument is not specifically included in a listing control
statement, the assembler assumes its default value (SHOW or NOSHOW)
throughout the source program.

Table 6-8 .SHOW and .NOSHOW Symbolic Arguments

Long Form Short Form Default Function

BINARY MEB NOSHOW Lists macro and repeat block
expansions that generate
binary code. BINARY is a
subset of EXPANSIONS.

CALLS MC SHOW Lists macro calls and repeat
block specifiers.

CONDITIONALS CND SHOW Lists unsatisfied conditional
code associated with
the conditional assembly
directives.

DEFINITIONS MD SHOW Lists macro and repeat range
definitions that appear in an
input source file.

EXPANSIONS ME NOSHOW Lists macro and repeat range
expansions.

DESCRIPTION -SHOW and .NOSHOW specify listing control options in the source text

of a program. You can use .SHOW and .NOSHOW with or without an
argument list.

When you use them with an argument list, . SHOW includes and
.NOSHOW excludes the lines specified in Table 6-8. .SHOW and
NOSHOW control the listing of the source lines that are in conditional
assembly blocks (see the description of .IF), macros, and repeat blocks.

Assembler Directives

SHOW

When you use them without arguments, these directives alter the listing
level count. The listing level count is initialized to 0. Each time .SHOW
appears in a program, the listing level count is incremented; each time

.NOSHOW appears in a program, the listing level count is decremented.

When the listing level count is negative, the listing is suppressed (unless
the line contains an error). Conversely, when the listing level count is
positive, the listing is generated. When the count is 0, the line is either
listed or suppressed, depending on the value of the listing control symbolic
arguments.

Notes

1 The listing level count allows macros to be listed selectively; a macro
definition can specify .NOSHOW at the beginning to decrement the
listing count and can specify .SHOW at the end to restore the listing
count to its original value.

2 The alternate forms of .SHOW and .NOSHOW are .LIST and .NLIST.

EXAMPLE

6-90

.MACRO XX

. SHOW ; List next line

.NOSHOW ; Do not list remainder
; of macro expansion

.ENDM

.NOSHOW EXPANSIONS ; Do not list macro
; expansions
XX

Assembler Directives
.SIGNED BYTE

SIGNED_BYTE

Signed byte data directive

FORMAT SIGNED BYTE expression-list

PARAMETERS expression-list
An expression or list of expressions separated by commas (,). You have
the option of following each expression with a repetition factor delimited
by square brackets ([]).

An expression followed by a repetition factor has the format:
expressioni{expression2]

expression1

An expression that specifies the value to be stored. The value must be in
the range —-128 to +127.

[expression2]

An expression that specifies the number of times the value will be
repeated. The expression must not contain any undefined symbols and
must be an absolute expression (see Section 3.5). The square brackets are
required.

DESCRIPTION SIGNED_BYTE is equivalent to .BYTE, except that VAX MACRO
indicates that the data is signed in the object module. The linker uses
this information to test for overflow conditions.

Note

Specifying .SIGNED_BYTE allows the linker to detect overflow conditions
when the value of the expression is in the range of 128 to 255. Values in
this range can be stored as unsigned data but cannot be stored as signed
data in a byte.

EXAMPLE

.SIGNED_BYTE LABEL1-LABEL2 ; Data must fit

.SIGNED BYTE ALPHA[20] ; in byte

6-91

Assembler Directives

.SIGNED_WORD

.SIGNED_WORD

Signed word storage directive

—
FORMAT .SIGNED_WORD expression-list
PARAMETERS expression-list
An expression or list of expressions separated by commas (,). You have
the option of following each expression with a repetition factor delimited
by square brackets ([]).
An expression followed by a repetition factor has the format:
expressioni{expression2]
expressiont
An expression that specifies the value to be stored. The value must be in
the range —32,768 to +32,767.
[expression2]
An expression that specifies the number of times the value will be
repeated. The expression must not contain any undefined symbols and
must be an absolute expression (see Section 3.5). The square brackets ([])
are required.
DESCRIPTION -SIGNED_WORD is equivalent to .WORD except that the assembler

6-92

indicates that the data is signed in the object module. The linker uses
this information to test for overflow conditions. .SIGNED_WORD is useful
after the case instruction to ensure that the displacement fits in a word.

Note

Specifying .SIGNED_WORD allows the linker to detect overflow conditions
when the value of the expression is in the range of 32,768 to 65,535.
Values in this range can be stored as unsigned data but cannot be stored
as signed data in a word.

Assembler Directives
SIGNED_WORD

EXAMPLE

.MACRO CASE,SRC,DISPLIST,TYPE=W,LIMIT=#O,NMODE=SA#,?BASE,?MAX
; MACRO to use CASE instruction,
; SRC is selector, DISPLIST
; is list of displacements, TYPE
; is B (byte) W (word) L (long),

; LIMIT is base value of selector
CASE’ TYPE SRC,LIMIT,NMODE’<<MAX—BASE>/2>-1
; Case instruction
BASE: ; Local label specifying base
.IRP EP,<DISPLIST> ; to set up offset list
.SIGNED_WORD EP-BASE ; Offset list
.ENDR ;
MAX: ; Local label used to count
.ENDM CASE ; args
CASE IVAR <ERR_PROC,SORT,REV_SORT> ; If IVAR=0, error
CASEW IVAR, #0, S"#<<30001$-30000%$>/2>~-1
30000%: ; Local label specifying base
.SIGNED_WORD ERR_PROC—3000O$; Offset list
.SIGNED_WORD SORT-30000$% ; Offset list
.SIGNED_WORD REV_SORT—3000O$; Offset list
30001$: ; Local label used to count args
; =1, forward sort; =2, backward
; sort
CASE TEST <TEST1,TEST2, TEST3>,L, #1
CASEL TEST, #1, S #<<30003-30002>/2>-1
30002$: ; Local label specifying base
.SIGNED_WORD TEST1-30002$; Offset list
.SIGNED_WORD TEST2-30002% ; Offset list
.SIGNED_ WORD TEST3-30002$; Offset list
30003$: ; Local label used to count args

; Value of TEST can be 1, 2, or 3

In this example, the CASE macro uses .SIGNED_WORD to create a
CASEB, CASEW, or CASEL instruction.

6-93

Assembler Directives

.SUBTITLE

SUBTITLE

Subtitle directive

FORMAT

.SUBTITLE comment-string

PARAMETER

comment-string
An ASCII string from 1 to 40 characters long; excess characters are
truncated.

DESCRIPTION

.SUBTITLE causes the assembler to print the line of text, represented by
the comment-string, in the table of contents (which the assembler produces
immediately before the assembly listing). The assembler also prints the
line of text as the subtitle on the second line of each assembly listing page.
This subtitle text is printed on each page until altered by a subsequent
.SUBTITLE directive in the program.

Note
The alternate form of .SUBTITLE is .SBTTL.

EXAMPLES

n .SUBTITLE CONDITIONAL ASSEMBLY

This directive causes the assembler to print the following text as the
subtitle of the assembly listing:

CONDITIONAL ASSEMBLY

It also causes the text to be printed out in the listing’s table of contents,
along with the source page number and the line sequence number of the
source statement where .SUBTITLE was specified. The table of contents
would have the following format:

TABLE OF CONTENTS

6-94

(1) 5000 ASSEMBLER DIRECTIVES
@) 300 MACRO DEFINITIONS

@) 2300 DATA TABLES AND INITIALIZATION
3) 4800 MAIN ROUTINES

(4) 2800 CALCULATIONS

@) 5000 /O ROUTINES

(5) 1300 CONDITIONAL ASSEMBLY

Assembler Directives
.TITLE

.TITLE

Title directive

FORMAT

.TITLE module-name comment-string

PARAMETERS

module-name
An identifier from 1 to 31 characters long.

comment-string
An ASCII string from 1 to 40 characters long; excess characters are
truncated.

DESCRIPTION

.TITLE assigns a name to the object module. This name is the first 31 or
fewer nonblank characters following the directive.

Notes

1

The module name specified with .TITLE bears no relationship to the
file specification of the object module, as specified in the VAX MACRO
command line. The object module name appears in the linker load
map and is also the module name that the debugger and librarian
recognize.

If .TITLE is not specified, VAX MACRO assigns the default name
.MAIN to the object module. If more than one .TITLE directive is
specified in the source program, the last .TITLE directive encountered
establishes the name for the entire object module.

When evaluating the module name, VAX MACRO ignores all spaces,
tabs, or both, up to the first nonspace/nontab character after .TITLE.

EXAMPLE

.TITLE EVAL Evaluates Expressions

6-95

Assembler Directives

.TRANSFER

.TRANSFER

Transfer directive

FORMAT .TRANSFER symbol/
PARAMETER symbol

A global symbol that is an entry point in a procedure or routine.
DESCRIPTION -TRANSFER redefines a global symbol for use in a shareable image. The

6-96

linker redefines the symbol as the value of the location counter at the
.TRANSFER directive after a shareable image is linked.

To make program maintenance easier, programs should not need to be
relinked when the shareable images to which they are linked change.
To avoid relinking entire programs when their linked shareable images
change, keep the entry points in the changed shareable image at their
original addresses. To do this, create an object module that contains

a transfer vector for each entry point. Do not change the order of the
transfer vectors. Link this object module at the beginning of the shareable
image. The addresses of the entry points remain fixed even if the source
code for a routine is changed. After each .TRANSFER directive, create
a register save mask (for procedures only) and a branch to the first
instruction of the routine.

The .TRANSFER directive does not cause any memory to be allocated and
does not generate any binary code. It merely generates instructions to the
linker to redefine the symbol when a shareable image is being created.

Use .TRANSFER with procedures entered by the CALLS or CALLG
instruction. In this case, use .TRANSFER with the .ENTRY and .MASK
directives. The branch to the actual routine must be a branch to the entry
point plus 2 to bypass the 2-byte register save mask.

Figure 61 illustrates the use of transfer vectors.

Assembler Directives

.TRANSFER
Figure 6-1 Using Transfer Vectors
Linked with Shareable image Linked with Object Modules
Program * Program ¢
Calling CALLS ROUTB Calling CALLS ROUTB
Procedure Procedure
. .
~

TRANSFER ROUTA

.MASK ROUTA
Transfer BRW ROUTA+2
Vector JRANSFER ROUTB=
Module .MASK ROUTB

BRW ROUTB+2

Shareable
Image

Other ENTRY ROUTB,0 Object ENTRY ROUTB, 0«
Object ‘START OF ROUTINE= Modules :‘START OF ROUTINE
Modules . .

RET RET

\—

ZK-0535-GE

6-97

Assembler Directives
.TRANSFER

EXAMPLE

.TRANSFER ROUTINE A
.MASK ROUTINE_ A, "M<R4,R5>

BRW ROUTINE_A+2

.ENTRY ROUTINE_ A, “M<R2,R3>

RET

; Copy entry mask

; and add registers
; R4 and RS

; Branch to routine

; (past entry mask)

; ENTRY point, save
; registers R2 and R3

In this example, .MASK copies the entry mask of a routine to the new
entry address specified by .TRANSFER. If the routine is placed in a
shareable image and then called, registers R2, R3, R4, and R5 will be

saved.

6-98

Assembler Directives
WARN

.WARN

Warning directive

FORMAT

.WARN [expression] ,comment

PARAMETERS

expression
An expression whose value is displayed when .WARN is encountered
during assembly.

;comment
A comment that is displayed when .WARN is encountered during assembly.
The comment must be preceded by a semicolon (;).

DESCRIPTION

_WARN causes the assembler to display a warning message on the
terminal or in the batch log file, and in the listing file (if there is one).

Notes

1 .WARN, .ERROR, and .PRINT are called the message display
directives. Use them to display information indicating that a macro
call contains an error or an illegal set of conditions.

2 When the assembly is finished, the assembler displays on the terminal
or in the batch log file, the total number of errors, warnings, and
information messages, and the page numbers and line numbers of the
lines causing the errors or warnings.

3 If .WARN is included in a macro library, end the comment with an
additional semicolon. If you omit the semicolon, the comment will be
stripped from the directive and will not be displayed when the macro
is called.

4 The line containing the .WARN directive is not included in the listing
file.

5 If the expression has a value of zero, it is not displayed in the warning
message.

6-99

Assembler Directives
.WARN

EXAMPLE

.IF DEFINED FULL
. IF DEFINED DOUBLE_PREC
.WARN ; This combination not tested

.ENDC
.ENDC

If the symbols FULL and DOUBLE_PREC are both defined, the following
warning message is displayed:

$MACRO~W-GENWRN, Generated WARNING: This combination not tested

6-100

Assembler Directives
.\WEAK

WEAK

Weak symbol attribute directive

FORMAT

.WEAK symbol-list

PARAMETER

symbol-list
A list of legal symbols separated by commas (,).

DESCRIPTION

.WEAK specifies symbols that are either defined externally in another
module or defined globally in the current module. .WEAK suppresses any
object library search for the symbol.

When .WEAK specifies a symbol that is not defined in the current module,
the symbol is externally defined. If the linker finds the symbol’s definition
in another module, it uses that definition. If the linker does not find an
external definition, the symbol has a value of zero and the linker does not
report an error. The linker does not search a library for the symbol, but if
a module brought in from a library for another reason contains the symbol
definition, the linker uses it.

When .WEAK specifies a symbol that is defined in the current module,
the symbol is considered to be globally defined. However, if this module
is inserted in an object library, this symbol is not inserted in the library’s
symbol table. Consequently, searching the library at link time to resolve
this symbol does not cause the module to be included.

EXAMPLE

.WEAK

IOCAR,LAB 3

6-101

Assembler Directives

.WORD

.WORD

Word storage directive

FORMAT

.WORD expression-list

PARAMETERS

expression-list

One or more expressions separated by commas (,). You have the option
of following each expression by a repetition factor delimited with square
brackets ([]).

An expression followed by a repetition factor has the format:
expressioni{expression2]

expression1
An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value will be
repeated. The expression must not contain any undefined symbols and
must be an absolute expression (see Section 3.5). The square brackets are
required.

DESCRIPTION

.WORD generates successive words (2 bytes) of data in the object module.

Notes

1 The expression is first evaluated as a longword, then truncated to a
word. The value of the expression should be in the range of —32,768
to +32,767 for signed data or 0 to 65,535 for unsigned data. The
assembler displays an error if the high-order 2 bytes of the longword
expression have a value other than zero or AXFFFF.

2 The .SIGNED_WORD directive is the same as .WORD except that the
assembler displays a diagnostic message if a value is in the range from
32,768 to 65,535.

EXAMPLE

.WORD ~X3F,FIVE([3],32

6-102

VAX Data Types and Instruction Set

Part Il describes the VAX data types, addressing mode formats, instruction
formats, and the instructions themselves.

7 Terminology and Conventions

The following sections describe terminology and conventions used in
Part II of this volume.

7.1 Numbering

All numbers, unless otherwise indicated, are decimal. Where there is
ambiguity, numbers other than decimal are indicated with the base in
English following the number in parentheses. For example:

FF (hex)

7.2 UNPREDICTABLE and UNDEFINED

Results specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE. Operations specified as UNDEFINED may vary from
moment to moment, implementation to implementation, and instruction
to instruction within implementations. The operation might vary from
causing no effect to stopping system operation. UNDEFINED operations
must not cause the processor to hang—to reach an unhalted state from
which there is no transition to a normal state in which the machine
executes instructions. Note the distinction between result and operation.
Nonprivileged software cannot invoke UNDEFINED operations.

7.3 Ranges and Extents

Ranges are specified in English and are inclusive (for example, a range of
integers 0 to 4 includes the integers 0, 1, 2, 3, and 4). Extents are specified
by a pair of numbers separated by a colon and are inclusive (that is, bits
7:3 specifies an extent of bits including bits 7, 6, 5, 4, and 3).

7.4 MBZ

Fields specified as MBZ (must be zero) must never be filled by software
with a nonzero value. If the processor encounters a nonzero value in a field
specified as MBZ, a reserved operand fault or abort occurs if that field is
accessible to nonprivileged software. MBZ fields that are accessible only to
privileged software (kernel mode) cannot be checked for nonzero value by
some or all VAX implementations. Nonzero values in MBZ fields accessible
only to privileged software may produce UNDEFINED operation.

7-1

7.5

7.6

7.7

7.8

Terminology and Conventions

7.5 RAZ
RAZ
Fields specified as RAZ (read as zero) return a zero when read.
SBZ
Fields specified as SBZ (should be zero) should be filled by software with
a zero value. Non-zero values in SBZ fields produce UNPREDICTABLE
results and may produce extraneous instruction-issue delays.
Reserved

Unassigned values of fields are reserved for future use. In many cases,
some values are indicated as reserved to CSS and customers. Only these
values should be used for nonstandard applications. The values indicated
as reserved to Digital and all MBZ (must be zero) fields are to be used only
to extend future standard architecture.

Figure Drawing Conventions

Figures that depict registers or memory follow the convention that
increasing addresses extend from right to left and from top to bottom.

7-2

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

