Error Messages Displayed
Miscellaneous Errors

Error Messages

This chapter lists the error messages that emanate from standard CP/M and its
utility programs. It does not include any error messages from the BIOS; these
messages, if any, are the individualized product of the programmers who wrote
the various versions of the BIOS.

The error messages are shown in alphabetical order, followed (in parentheses)
by the name of the program or CP/M component outputting the message. Mes-
sages are shown in uppercase even if the actual message you will see contains
lowercase letters. Additional characters that are displayed to “pretty up” the
message have been omitted. For example, the message “#* ABORTED **” will be
listed as “ABORTED”.

Following each message is an explanation and, where possible, some informa-
tion to help you deal with the error.

The last section of the chapter deals with known errors or peculiarities in
CP/M and its utilities. Read this section so that you will recognize these problems
when they occur.

449

450 The CP/M Programmer’s Handbook

Error Messages Displayed

?(CCP)

?(DDT)

7?7=(DDT)

The CCP displays a question mark if you enter a command name and there is
no corresponding “command.COM” file on the disk.

It is also displayed if you omit the number of pages required as a parameter in
the SAVE command.

DDT outputs a question mark under several circumstances. You must use
context (and some guesswork) to determine what has gone wrong. Here are some
specific causes of problems:

. DDT cannot find the file that you have asked it to load into memory. Exit
from DDT and investigate using DIR or STAT (the file may be set to System
status and therefore invisible with DIR).

- There is a problem with the data in the HEX file that you have asked DDT to
load. The problem could be a bad check-sum on a given line or an invalid
field somewhere in the record. Try typing the HEX file out on a console, or
use an editor to examine it. It is rare to have only one or two bad bits or bytes
in a HEX file; large amounts of the file are more likely to have been
corrupted. Therefore, you may be able to spot the trouble fairly readily. If
you have the source code for the program, reassemble it to produce another
copy of the HEX file. If you do not have the source code, there is no reliable
way around this problem unless you are prepared to hand-create the HEX
file—a difficult and tedious task.

- DDT does not recognize the instruction you have entered when using the “A”
(assemble) command to convert a source code instruction into hexadecimal.
Check the line that you entered. DDT does not like tabs in the line (although
it appears to accept them) or hexadecimal numbers followed by “H”. Check
that the mnemonic and operands are valid, too.

This cryptic notation is used by DDT when you are using the “L” (list
disassembled) command to display some part of memory in DDT’s primitive
assembly language form. DDT cannot translate all of the 256 possible values of a
byte. Some of them are not used in the 8080 instruction set. When DDT encoun-
ters an untranslatable value, it displays this message as the instruction code,
followed by the actual value of the byte in hexadecimal.

You will see this if you try to disassemble code written for the Z80 CPU, which

Chapter 12: Error Messages 451

uses unassigned 8080 instructions. You will also see it if you try to disassemble
bytes that contain ASCII text strings rather than 8080 instructions.

ABORTED (STAT)

If you enter any keyboard character while STAT is working its way down the
file directory setting files to $DIR (Directory), $SYS (System), $R/W (Read/
Write), or R/ O (Read-Only) status, then it will display this message, stop what it
is doing, and execute a warm boot.

By contrast, if you enter the command

A>stat =.x<cr>

to display all of the files on a disk, there is no way that the process can be aborted.

ABORTED (PIP)

This message is displayed if you press any keyboard character while PIP is
copying a file to the list device.

BAD DELIMITER (STAT)

If your BIOS uses the normal IOBY TE method of assigning physical devices to
logical devices, you use STAT to perform the assignment. The command has this
format:

STAT RDR:=PTR:

STAT displays this message if it cannot find the “="in the correct place.

BAD LOAD (CCP)

This is probably the most obscure error message that emanates from CP/M.
You will get this message if you attempt to load a COM file that is larger than the
transient program area. Your only recourse is to build a CP/M system that has a
larger TPA.

BAD PARAMETER (PIP)

PIP accepts certain parameters in square brackets at the end of the command
line. This message is displayed if you enter an invalid parameter or an illegal
numeric value following a parameter letter.

BDOS ERROR ON d: BAD SECTOR (BDOS)

The BDOS displays this message if the READ and WRITE functions in your
BIOS ever return indicating an error. The only safe response to this message is to
type CONTROL-C. CP/M will then execute a warm boot. If you type CARRIAGE
RETURN, the error will be ignored—with unpredictable results.

452 The CP/M Programmer’s Handbook

A well-implemented BIOS should include disk error recovery and control so
that the error will never be communicated to the BDOS. If the BIOS gives you the
option of ignoring an error, do so only when you are reasonably sure of the
outcome or have adequate backup copies so that you can recreate your files.

BDOS ERROR ON d: FILE R/O (BDOS)

You will see this message if you attempt to erase (ERA) a file that has been set
to Read-Only status. Typing any character on the keyboard causes the BDOS to
perform a warm boot operation. Note that the BDOS does not tell you which file is
creating the problem. This can be a problem when you use ambiguous file names in
the ERA command. Use the STAT command to display all the files on the disk; it
will tell you which files are Read-Only.

This message is also displayed if a program tries to delete a Read-Only file.
Again, it can be difficult to determine which file is causing the problem. Your only
recourse is to use STAT to try to infer which of the Read-Only files might be
causing the problems.

BDOS ERROR ON d: R/O (BDOS)

This looks similar to the previous message, but it refers to an entire logical disk
instead of a Read-Only file. However, it is rarely output because you have declared
a disk to be Read-Only. Usually, it occurs because you changed diskettes without
typing a CONTROL-C; CP/M will detect the new diskette and, without any external
indication, will set the disk to Read-Only status.

If you or a program attempts to write any data to the disk, the attempt will be
trapped by the BDOS and this message displayed. Typing any character on the
keyboard causes a warm boot—then you can proceed.

BDOS ERROR ON d: SELECT (BDOS)

The BDOS displays this message if you or a program attempts to select a
logical disk for which the BIOS lacks the necessary tables. The BDOS uses the
value returned by SELDSK to determine whether a logical disk “exists” or not.

If you were trying to change the default disk to a nonexistent one, you will have
to press the RESET button on your computer. There is no way out of this error.

However, if you were trying to execute a command that accessed the nonexis-
tent disk, then you can type a CONTROL-C and CP/M will perform a warm boot.

BREAK x ATy (ED)

This is another cryptic message whose meaning you cannot guess. The list that
follows explains the possible values of “x.” The value “y” refers to the command
ED was executing when the error occurred.

Chapter 12: Error Messages 453

Meaning
Search failure. ED did not find the string you asked it to search for.
Unrecognized command.
File not found.
ED’s internal buffer is full.
Command aborted.
Disk or directory full. You will have to determine which is causing the problem.

mm VSO R e

CANNOT CLOSE, READ/ONLY? (SUBMIT)

SUBMIT displays this message if the disk on which it is trying to write its
output file, “$$$.SUB”, is physically write protected. Do not confuse this with the
disk being logically write protected.

The standard version of SUBMIT writes the output file onto the current
default disk, so if your current default disk is other than drive A:, you may be able
to avoid this problem if you switch the default to A: and then enter a command of
the form

A>submit b:subfile<cyr>

CANNOT CLOSE DESTINATION FILE (PIP)

PIP displays this message if the destination disk is physically write protected.
Check the destination disk. If it is write protected, remove the protection and
repeat the operation.

If the disk is not protected, you have a hardware problem. The directory data
written to the disk is being written to the wrong place, even the wrong disk, or is
not being recorded on the medium.

CANNOT CLOSE FILES (ASM)

ASM displays this message if it cannot close its output files because the disk is
physically write protected, or if there is a hardware problem that prevents data
being written to the disk. See the paragraph above.

CANNOT READ (PIP)

PIP displays this message if you attempt to read information from a logical
device that can only output. For example:

A>pip diskfile=LST:<cry

PIP also will display this message if you confuse it sufficiently, as with the
following instruction:

Avpip filel=fileZ;file3<{cry

454 The CP/M Programmer’s Handbook

CANNOT WRITE (PIP)

PIP displays this message if you attempt to output (write) information to a
logical device that can only be used for input, such as the RDR: (reader, the
anachronistic name for the auxiliary input device).

CHECKSUM ERROR (LOAD)

LOAD displays this message if it encounters a line in the input HEX file that
does not have the correct check sum for the data on the line.

LOAD also displays information helpful in pinpointing the problem:
CHECKSUM ERROR
LOAD ADDRESS 0110 <~ First address on line in file
ERROR ADDRESS 0112 <- Address of next byte to be loaded
BYTES READ:
0110z
0110: 00 33 22 2B 02 21 27 02 <- Bytes preceding error

Note that LOAD does not display the check-sum value itself. Use TYPE oran
editor to inspect the HEX file in order to see exactly what has gone wrong.

CHECKSUM ERROR (PIP)

If you ask PIP to copy a file of type HEX, it will check each line in the file,
making sure that the line’s check sum is valid. If it is not, PIP will display this
message. Unfortunately, PIP does not tell you which line is in error—you must
determine this by inspection or recreate the HEX file and try again.

COMMAND BUFFER OVERFLOW (SUBMIT)

SUBMIT displays this message if the SUB file you specified is too large to be
processed. SUBMIT’s internal buffer is only 2048 bytes. You must reduce the size
of the SUB file; remove any comment lines, or split it into two files with the last line
of the first file submitting the second to give a nested SUBMIT file.

COMMAND TOO LONG (SUBMIT)

The longest command line that SUBMIT can process is 125 characters. There
is no way around this error other than reducing the length of the offending line.
You will have to find this line by inspection—SUBMIT does not identify the line.

One way that you can remove a few characters from a command line is to
rename the COM file you are invoking to a shorter name, or use abbreviated
names for parameters if the program will accept these.

CORRECT ERROR, TYPE RETURN OR CTL-Z (PIP)

This message is a carryover from the days when PIP used to read hexadecimal
data from a high-speed paper tape reader. If PIP detected the end of a physical roll

Chapter 12: Error Messages 455

of paper tape, it would display this message. The user could then check to see if the
paper tape had torn or had really reached its end. If there was more tape to be read,
the user could enter a CARRIAGE RETURN to resume reading tape or enter a
CONTROL-Z to serve as the end-of-file character.

Needless to say, it is unlikely that you will see this message if you do not have a
paper tape reader.

DESTINATION IS R/O, DELETE (Y/N)? (PIP)

PIP displays this message if you try to overwrite a disk file that has been set to
Read-Only status. If you type “Y” or “y”, PIP will overwrite the destination file. It
leaves the destination file in Read/ Write status with its Directory/ System status
unchanged. Typing any character other than “Y” or “y” makes PIP abandon the
copy and display the message

#% NOT DELETED#®=

You can avoid this message altogether if you specify the “w” option on PIP’s
command line. For example:

A>pip destfile=srcfilelwl<cr>

PIP will then overwrite Read-Only files without question.

DIRECTORY FULL (SUBMIT)

This message is displayed if the BDOS returns an error when SUBMIT tries to
create its output file, “§$$.SUB™. As a rough and ready approximation, use “STAT
*.%” to see how many files and extents you have on the disk. Erase any unwanted
ones. Then use “STAT DSK:” to find out the maximum number of directory
entries possible for the disk.

You may also see this message if the file directory has become corrupted or if
the disk formatting routine leaves the disk with the file directory full of some
pattern other than ESH.

You can assess whether the directory has been corrupted by using “STAT
USR:”. STAT then displays which user numbers contain files. If the directory is
corrupt, you will normally see user numbers greater than 15.

Itis not easy to repair a corrupted directory. “ERA *.%”erases only the files for
the current user number, so you will have to enter the command 16 times, once for
each user number from 0 to 15. Alternatively, you can reformat the disk.

DISK OR DIRECTORY FULL (ED)

Self-explanatory.

456 The CP/M Programmer’s Handbook

DISK READ ERROR (PIP)
DISK WRITE ERROR (SUBMIT)
DISK WRITE ERROR (PIP)

These messages will normally be preceded by a BIOS error message. They will
only be displayed if the BIOS returns indicating an error. As was described earlier,
this is unlikely if the BIOS has any kind of error recovery logic.

END OF FILE, CTL-2? (PIP)

ERROR :

ERROR :

ERROR :
ERROR:

ERROR:

ERROR :

PIP displays this message if, while copying a HEX file, it encounters a
CONTROL-Z (end of file). Again, the underlying idea is based on the concept of
physical paper tape. When you saw this message, you could look at the tape in the
reader, and if it really was at the end of the roll, enter a CONTROL-Z on the keyboard
to terminate the file. Given any other character, PIP would read the next piece of
tape.

CANNOT CLOSE FILES (LOAD)
LOAD displays this message if you have physically write protected the disk on
which it is trying to write the output COM file.
CANNOT OPEN SOURCE (LOAD)
LOAD displays this message if it cannot open the HEX file that you specified

in the command tail.

DISK READ (LOAD)
DISK WRITE (LOAD)

These two messages would normally be preceded by a BIOS error message. If
your BIOS includes disk error recovery, you would not normally see these mes-
sages; the error would have been handled by the BIOS.

INVERTED LOAD ADDRESS (LOAD)

LOAD displays this message if it detects a load address less than 0100H in the
input HEX file. It also displays the actual address input from the file, so you can
examine the HEX file looking for this address to determine the likely cause of the
problem.

Note that DDT, when asked to load the same HEX file, will do so without any
error—and will probably damage the contents of the base page in so doing.

NO MORE DIRECTORY SPACE (LOAD)

Self-explanatory.

Chapter 12: Error Messages 457

ERROR ON LINE N (SUBMIT)

SUBMIT displays this message if it encounters a line in the SUB file that it does
not know how to process. Most likely you have a file that has type .SUB but does
not contain ASCII text.

The first line of the SUB file is number 001.

FILE EXISTS (CCP)

The CCP displays this message if you attempt to use the REN command to
rename an existing file to a name already given to another file.

Use “STAT *.x”to display all of the files on the disk. DIR will show only those
files that have Directory status, and you may not be able to see the file causing the
problem.

FILE IS READ/ONLY (ED)

ED displays this message if you attempt to edit a file that has been set to
Read-Only status.

FILE NOT FOUND (STAT)
FILENAME NOT FOUND (PIP)

STAT and PIP display their respective messages if you specify a nonexistent
file. This applies to both specific and ambiguous file names.

INVALID ASSIGNMENT (STAT)

STAT can be used to assign physical devices to logical devices using the
IOBYTE system described earlier. It will display this message if you enter an il-
logical assignment. Use the “STAT VAL:” command to display the valid assignments.

INVALID CONTROL CHARACTER (SUBMIT)

SUBMIT is supposed to be able to handle a control character in the SUB
file—the notation being “*x”, where “x” is the control letter. In fact, the standard
release version of SUBMIT cannot handle this notation. A patch is available from
Digital Research to correct this problem.

Given that this patch has been installed, SUBMIT will display this message if a
character other than “A” to “Z” is specified after the circumflex character.

INVALID DIGIT (PIP)

PIP displays this message if it encounters non-numeric data where it expects a
numeric value.

458 The CP/M Programmer’s Handbook

INVALID DISK ASSIGNMENT (STAT)

STAT displays this message if you try to set a logical disk to Read-Only status
and you specify a parameter other than “R/0.” Note that there is no leading “$”in
this case (as there is when you want to set a file to Read-Only).

INVALID DRIVE NAME (USE A, B, C, OR D) (SYSGEN)

SYSGEN displays this message if you attempt to load the CP/M system from,
or write the system to, a disk drive other than A, B, C, or D.

INVALID FILE INDICATOR (STAT)

STAT outputs this message if you specify an erroneous file attribute. File
attributes can only be one of the following:

$DIR Directory
$SYS System
$R/O Read-Only
SR/W Read/Write
INVALID FORMAT (PIP)
PIP displays this message if you enter a badly formatted command; for
example, a “+” character instead of an “="(on some terminals these are on the

same key).

INVALID HEX DIGIT (LOAD)

LOAD displays this message if it encounters a nonhexadecimal digit in the
input HEX file, where only a hex digit can appear. LOAD then displays additional
information to tell you where in the file the problem occurred:

INVALID HEX DIGIT

LOAD ADDRESS 0110 <- First address on line in file
ERROR ADDRESS 0112 <~ Address of byte containing non-hex
BYTES READ:

0110:

0110: 00 33 {- Bytes preceding error

INVALID MEMORY SIZE (MOVCPM)

MOVCPM displays this message if you enter an invalid memory size for the
CP/M system size you want to construct.

INVALID SEPARATOR (PIP)

PIP displays this message if you try to concatenate files using something other
than a comma between file names.

Chapter 12: Error Messages 459

INVALID USER NUMBER (PIP)

PIP displays this message if you enter a user number outside the range 0 to 15
with the “[gn]” option (where “n” is the user number).

NO ‘SUB’ FILE PRESENT (SUBMIT)

SUBMIT displays this message if it cannot find a file with the file name that
you specified and with a type of .SUB.

NO DIRECTORY SPACE (ASM)
NO DIRECTORY SPACE (PIP)

Self-explanatory.

NO FILE (CCP)

The CCP displays this message if you use the REN (rename) command and it
cannot find the file you wish to rename.

NO FILE (PIP)

PIP displays this message if it cannot find the file that you specified.

NO MEMORY (ED)

ED displays this message if it runs out of memory to use for storing the text
that you are editing.

NO SOURCE FILE ON DISK (SYSGEN)

This error message is misleading. SYSGEN does not read source code files.
The message should read “INPUT FILE NOT FOUND”.

NO SOURCE FILE PRESENT (ASM)

In this case, ASM really does mean that the source code file cannot be found.
Remember that ASM uses a strange form of specifying its parameters. ASM uses
the file name that you enter and then searches for a file of that name, but with file
type .ASM. The three characters of the file type that you specify are used to repre-
sent the logical disks on which the source, hex, and list files, respectively, are to be

. placed.

NO SPACE (CCP)

The CCP displays this message if you use the SAVE command and there is
insufficient room on the disk to accommodate the file.

460 The CP/M Programmer’s Handbook

NOT A CHARACTER SOURCE (PIP)

PIP displays this message if you attempt to copy characters from a character
output device, such as the auxiliary output device (known to PIP as PUN:).

OUTPUT FILE WRITE ERROR (ASM)

ASM will display this message if the BDOS returns an error from a disk write
operation. If your BIOS has disk error recovery logic, you should never see this
message.

PARAMETER ERROR (SUBMIT)

SUBMIT uses the “$” to mark points where parameter values are to be
substituted. If you have a single “$” followed by an alphabetic character, SUBMIT
will display this message. Use “$$” to represent a real “$”.

PERMANENT ERROR, TYPE RETURN TO IGNORE (SYSGEN)

SYSGEN displays this message if the BIOS returns an error froma disk read or
write operation. If your BIOS has disk error recovery logic, you should never see
this message.

QUIT NOT FOUND (PIP)

PIP displays this message when it cannot find the string specified in the
“[Qcharacter string" Z]” option, meaning “Quit copying when you encounter this
string.”

READ ERROR (CCP)

The CCP displays this message if the BIOS returns an error froma disk read or
write operation. If your BIOS includes disk error recovery logic, you should not
see this error message.

RECORD TOO LONG (PIP)

PIP displays this message if it encounters a line longer than 80 characters while
copyinga HEX file. Inspect the HEX file using the TYPE command or an editor.

REQUIRES CP/M 2.0 OR NEWER FOR OPERATION (PIP)
REQUIRES CP/M VERSION 2.0 OR LATER (XSUB)

Self-explanatory.

Chapter 12: Error Messages 461

SOURCE FILE INCOMPLETE (SYSGEN)

SYSGEN displays this message if the file that you have asked it to read is too
short. Use STAT to check the length of the file.

SOURCE FILE NAME ERROR (ASM)

ASM displays this message if you specify an ambiguous file name: that is, one
that contains either “*” or “?”.

SOURCE FILE READ ERROR (ASM)

ASM displays this message if it encounters problems reading the input source
code file. Check the input file using the TYPE command or an editor.

START NOT FOUND (PIP)

PIP displays this message when it cannot find the string specified in the
“[Scharacter string"Z]” option, meaning “Start copying when you encounter this
string.”

SYMBOL TABLE OVERFLOW (ASM)

ASM displays this message when you have too many symbols in the source
code file. Your only recourse is to split the source file into several pieces and
arrange for ORG (origin) statements to position the generated object code so that
the pieces fit together.

SYNCRONIZATION ERROR (MOVCPM)

Apart from the spelling error, this message is designed to be cryptic. MOVCPM
displays it when the Digital Research serial number embedded in MOVCPM does
not match the serial number in the version of CP/M that you are currently running.

SYSTEM FILE NOT ACCESSIBLE (ED)

ED displays this message if you attempt to edit a file that has been set to System
status. Use STAT to set the file to Directory status.

TOO MANY FILES (STAT)

STAT displays this message if there is insufficient memory available to sort and
display all of the files on the specified disk. Try limiting the number of files it has to
sort by judicious use of ambiguous file names.

UNRECOGNIZED DESTINATION (PIP)

PIP displays this message if you specify an “illegal” destination device.

462 The CP/M Programmer’s Handbook

VERIFY ERROR (PIP)

If you use the “[v]” (verify) option of PIP when copyingtoa disk file, PIP will
write a sector to the disk, read it back, and compare the data. PIP displays this
message if the data does not match.

If there is a problem with your disk system, you should have seen some form of
disk error message preceding this one. If there is no preceding message, then you
have a problem with the main memory on your system.

Wrong CP/M Version (Requires 2.0) (STAT)

Self-explanatory.

(XSUB ACTIVE) (XSUB)

This is not really an error message, but you may mistake it for one. XSUB is the
eXtended SUBMIT program. Without it, SUBMIT can only feed command lines
to the Console Command Processor. XSUB allows character-by-character input
into any program that uses the BDOS to read console input.

XSUB is initiated by being the first command in a SUB file. Once initiated it
stays in memory until the end of the SUB file has been reached. Until that happens,
XSUB will output this message every time a warm boot occursas a reminder that it
is still in memory.

XSUB Already Present (XSUB)

XSUB will display this message if it is already active and you attempt to load it
again.

Miscellaneous Errors

This section deals with errors that are not accompanied by any error message.
It is included here to help you recognize a problem after it has already occurred.
The errors are shown grouped by product.

ASM: Fails to Detect Unterminated IF Clause

If you use the IF pseudo-operation, it must be followed by a matching ENDIF.
ASM fails to detect the case that the end of the source file is encountered before the
ENDIF.

If the condition specified on the IF line is false, you could have a situation in
which ASM would ignore the majority of the source file without comment.

Chapter 12: Error Messages 463

ASM: Creates HEX File That Cannot Be Loaded

If you omit the ORG statement at the front of a source file, ASM will assemble
the code origined at location 0000H. This file will crash the system if you try to load
it with DDT. The message “ERROR: INVERTED ADDRESS” will be shown from
LOAD.

CP/M: Signs On and Then Dies Without A> Prompt

After the BIOS has signed on, it transfers control to the Console Command
Processor. The CCP then attempts to log in the system disk, reading the file
directory and building the allocation vector. If your file directory has been badly
corrupted, it can cause the system to crash. Use another system disk and try to
display the directory on the bad disk.

DDT: Loads HEX File and Then Crashes the System

DDT does not check the addresses specified in a HEX file. If you have
forgotten to put an ORG statement at the front of the source file, or more subtly, if
your source program has “wrapped around” by having addresses up at OFFFFH
and “above,” the assembler will start assembling at 0000H again.

DIR: Shows Odd-Looking File Names

If you have odd-looking file names, or the vertical lines of “:” that DIR uses to
separate the file names are misaligned, then the file directory has been corrupted.
One strategy is to format a new disk, copy all of the valid files to it, and discard the
corrupted disk.

DIR: Shows More than One Entry with the Same Name

This can happen if you use a program that creates a new file without asking the
BDOS to delete any existing files of the same name. It can also happen if you use
the custom MOVE utility carelessly.

To remedy the situation proceed as follows:

* Use PIP to copy the specific file to another disk. Do not use an ambiguous
file name; specify the duplicated file name exactly. PIP will copy the first
instance of the file it encounters in the directory.

* Use the ERA command to erase the duplicated file. This will erase both
copies of the file.

* Use PIP to copy back the first instance of the file.

464 The CP/M Programmer’s Handbook

STAT: User Numbers > 415

If you use the “STAT USR:” command to display which user numbers contain
active files, and user numbers greater than 15 are displayed, then the file directory
on the disk has been corrupted.

Use PIP to copy the valid files from legitimate user numbers, and then discard
the corrupted disk.

SUBMIT: Fails to Start Submit Procedure

There are several reasons why SUBMIT will not initiate a SUB file:

- You are using the standard release version of SUBMIT and your current
default disk is other than drive A:. SUBMIT builds its “$$$.SUB” file on the
default disk, but the CCP only looks on drive A: for “$$$.SUB”. Use the
following procedure to modify SUBMIT to build its “3.SUB” file on drive
A:

DOT VERS 2.2

NEXT FPC

0400 0100

-sSbb <- Change Sbb

QSBR 01 Q0<er> <- from 00 (default drive)
05BC 24 .<cr> to 01 (drive A:)

A0

A>SAVE § SUBMIT.COM<cr>

A>

- If you forgot to terminate the last line of the SUB file with a CARRIAGE
RETURN.

- If your SUB file contains a line with nothing but a CARRIAGE RETURN on it
(that is, a blank line). :

ASCII Character Set

The American Standard Code for Information Interchange (ASCII) consists
of a set of 96 displayable characters and 32 nondisplayed characters. Most CP/M
systems use at least a subset of the ASCII character set. When CP/M stores
characters on a diskette as text, the ASCII definitions are used.

Several of the CP/M utility programs use the ASCII Character Code. Text
created using ED is stored as ASCII characters on diskette. DDT, when displaying
a “dump” of the contents of memory, displays both the hexadecimal and ASCII
representations of memory’s contents.

ASCII does not use an entire byte of information to represent a character.
ASCIl is a seven-bit code, and the eighth bit is often used for parity. Parity is an
error-checking method which assures that the character received is the one trans-
mitted. Many microcomputers and microcomputer devices ignore the parity bit,
while others require one of the following two forms of parity:

Even Parity

The number of binary 1’s in a byte is always an even number. If there is an
odd number of 1’s in the character, the parity bit will be a 1; if there is an
even number of 1’s in the character, the parity bit is made a 0.

Odd Parity

The number of binary 1’ in a byte is always an odd number. If there is an

465

466 The CP/M Programmer’s Handbook

even number of 1’s in the character, the parity bit will be a 1; if there is an
odd number of 1’s in the character, the parity bit is made a 0.

Alternative ways of coding the information stored by the computer include the
8-bit EBCDIC (Extended Binary Coded Decimal Interchange Code), used by
IBM, and a number of packed binary schemes, primarily used to represent
numerical information.

Table A1. ASCII Character Codes

b7T—| O 0 0 0 1 1 1 1
b6 —| 0 0 1 1 0 0 1 1
bS—=| 0 1 0 1 0 1 0 1
ba | b3 | b2 | b1 |Row~l| 0 | 1 3 |afs]e |7
0 0 0 0 0 NUL|DLE| SP | © @ P ' p
0 0 0 1 1 SOH|DCI1| ! 1 A Q a q
0 0 1 0 2 STX | DC2| ”~ 2 B R b r
0 0 1 1 3 ETX|DC3| # 3 C S c s
0 1 0 0 4 EOT|DC4| § 4 D T d t
0 1 0 1 5 ENQ| NAK| % 5 E U e u
0 1 1 0 6 ACK|SYN| & 6 F \% f v
0 1 1 1 7 BEL | ETB| 7 G w g w
1 0 0 0 8 BS | CAN| (8 H X h X
1 0 0 1 9 HT |EM) 9 1 Y i y
1 0 1 0 10 LF |SUB| * : J z j z
1 0 1 1 11 VT [ESC| + ; K [k {
1 1 0 0 12 FF |FS ’ < L \ 1 |
1 1 0 1 13 CR |GS - = M] m }
1 1 1 0 14 SO |RS > N A n ~
1 1 1 1 15 SI | US / ? (0} - o |DEL
NUL Null DC! Device control 1
SOH Start of heading DC2 Device control 2
STX Start of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledge
ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End of transmission block
BEL Bell or alarm CAN Cancel
BS Backspace EM End of medium
HT Horizontal tabulation SUB Substitute
LF Line feed ESC Escape
VT Vertical tabulation FS File separator
FF Form feed GS Group separator
CR Carriage return RS Record separator
SO Shift out us Unit separator
SI Shift in SP Space
DLE Data link escape DEL Delete

Appendix A: ASCII Character Set

Table A-2. ASCII Character Codes in Ascending Order

467

Hexadecimal Binary ASCII | Hexadecimal Binary ASCII
00 000 0000 NUL 30 0110000 0
01 000 0001 SOH 31 011 0001 1
02 000 0010 STX 32 0110010 2
03 000 0011 ETX 33 0110011 3
04 000 0100 EOT 34 0110100 4
05 000 0101 ENQ 35 0110101 5
06 0000110 ACK 36 0110110 6
07 0000111 BEL 37 0110111 7
08 000 1000 BS 38 011 1000 8
09 000 1001 HT 39 011 1001 9
0A 000 1010 LF 3A 0111010 :
0B 000 1011 VT 3B 011 1011 ;
0C 000 1100 FF 3C 011 1100 <
0D 000 1101 CR 3D 0111101 =
0E 000 1110 SO 3E 0111110 >
OF 000 1111 SI 3F 011 1111 ?
10 001 0000 DLE 40 100 0000
11 001 0001 DCI1 41 100 0001 A
12 0010010 DC2 42 1000010 B
13 001 0011 DC3 43 100 0011 C
14 0010100 DC4 44 100 0100 D
15 0010101 NAK 45 100 0101 E
16 0010110 SYN 46 100 0110 F
17 0010111 ETB 47 1000111 G
18 001 1000 CAN 48 100 1000 H
19 001 1001 EM 49 100 1001 I
1A 001 1010 SUB 4A 100 1010 J
1B 001 1011 ESC 4B 100 1011 K
IC 001 1100 FS 4C 100 1100 L
1D 001 1101 GS 4D 100 1101 M
1E 0011110 RS 4E 100 1110 N
IF 0011111 Us 4F 100 1111 o
20 010 0000 SP 50 101 0000 P
21 010 0001 ! 51 101 0001 Q
22 0100010 ” 52 101 0010 R
23 0100011 # 53 101 0011 S
24 0100100 $ 54 101 6100 T
25 0100101 % 55 101 0101 U
26 0100110 & 56 101 0110 \
27 0100111 ’ 57 1010111 W
28 010 1000 (58 101 1000 X
29 010 1001) 59 101 1001 Y
2A 010 1010 * SA 101 1010 Z
2B 010 1011 + 5B 101 1011 [
2C 010 1100 , 5C 101 1100 \
2D 010 1101 - 5D 101 1101]
2E 0101110 . SE 101 1110 "
2F 010 1111 / SF 101 1111 -

468 The CP/M Programmer’s Handbook

Table A-2. ASCII Character Codes in Ascending Order (Continued)

Hexadecimal Binary ASCII Hexadecimal Binary ASCII
60 110 0000 70 111 0000 p
61 110 0001 a 71 111 0001 q
62 110 0010 b 72 111 0010 r
63 1100011 [¢ 73 1110011 S
64 110 0100 d 74 1110100 t
65 110 0101 e 75 1110101 u
66 1100110 f 76 1110110 \%
67 1100111 g 77 1110111 w
68 110 1000 h 78 111 1000 X
69 110 1001 1 79 111 1001 y
6A 110 1010) TA 111 1010 z
6B 110 1011 k 7B 111 1011 {
6C 110 1100 1 7C 111 1100 |
6D 110 1101 m 7D 1111101 }
6E 110 1110 n 7E 1111110 ~
6F 110 1111 [§) 7F 1111111 DEL

CP/M Command
Summary

This appendix summarizes the command line format and the function of
each CP/M built-in and transient command. The commands are listed in
alphabetical order.

ASM Command Lines

ASM filename<cr> Assembles the file filename. ASM: uses the currently logged disk for
all files.

ASM filename.opt<cr> Assembles the file filename.ASM on drive o (A:,B:,...,Py).
Writes HEX file on drive p: (A:,B:,...,P:), or skips if p: is Z:.
Writes PRN file on drive t: (A:,B:,...,P:), sends to console if p:is X:, or
skips if p: is Z:.

469

470 The CP/M Programmer’s Handbook

DDT Command Lines
DDI<cr> Loads DDT and waits for DDT commands.
DDT xfilenametyp<cr> Loads DDT into memory and also loads filename.typ from

drive x: into memory for examination, modification, or execution.

DDT Command Summary

Assss Enters assembly language statements beginning at hexadecimal address ssss.
D Displays the contents of the next 192 bytes of memory.
Dssss ffff Displays the contents of memory starting at hexadecimal address ssss and

finishing at hexadecimal address ffff.

Fssssffff.cc Fills memory with the 8-bit hexadecimal constant cc starting at hexadecimal
address ssss and finishing with hexadecimal address ffff.

G Begins execution at the address contained in the program counter.

G,bbbb Sets a breakpoint at hexadecimal address bbbb, then begins execution at the
address contained in the program counter.

Gbbbb,cccc Sets breakpoints at hexadecimal addresses bbbb and ccc, then begins
execution at the address contained in the program counter.

Gssss Begins execution at hexadecimal address ssss.

Gssss,bbbb Sets a breakpoint at hexadecimal address bbbb, then begins execution at
hexadecimal address ssss.

Hx,y Hexadecimal sum and difference of x and y.

ifilenamelyp Sets up the default file control block using the name filename.typ.

L Lists the next eleven lines of assembly language program disassembled from
memory.
Lssss Lists eleven lines of assembly language program disassembled from memory

starting at hexadecimal address ssss.

Lssss ffff Lists the assembly language program disassembled from memory starting at
hexadecimal address ssss and finishing at hexadecimal address ffff.

Appendix B: CP/M Command Summary 471

Mssss fiffdddd Moves the contents of the memory block starting at hexadecimal address
ssss and ending at hexadecimal address ffff to the block of memory starting at
hexadecimal address dddd.

R Reads a file from disk into memory (use “I” command first).

Rnnnn Reads a file from disk into memory beginning at the hexadecimal address
nnnn higher than normal (use “I” command first).

Sssss Displays the contents of memory at hexadecimal address ssss and optionally
changes the contents.

Tnnnn Traces the execution of (hexadecimal) nnnn program instructions.

Unnnn Executes (hexadecimal) nnnn program instructions, then stops and displays
the CPU register’s contents.

X Displays the CPU register’s contents.

Xr Displays the contents of CPU or Flag r and optionally changes them.

DIR Command Lines

DIR x:<cr> Displays directory of all files on drive x:. Drive x: is optional; if omitted, the
currently logged drive is used.

DIR xfilenametyp<cr> Displaysdirectory of all files on drive x: whose names match the
ambiguous or unambiguous filename.typ. Drive x: is optional; if omitted, the
currently logged drive is used.

DUMP Command Line

DUMP xfilename.typ <cr> Displays the hexadecimal representations of each byte stored
in the file filename.typ on drive x:. If filename.typ is ambiguous, displays the
first file which matches the ambiguous file name.

ED Command Line

ED xfilename.typ <cr> Invokes the editor, which then searches for filename.typ on drive
x: and creates a temporary file x:filename.$3$$ to store the edited text. The
filename.typ is unambiguous. Drive x: is optional; if omitted, the currently
logged drive is assumed.

ED Command Summary
NOTE: Non-alphabetic commands follow the “Z” command.

472 The CP/M Programmer’s Handbook

nA Append lines. Moves “n” lines from original file to edit buffer. 0A moves lines
until edit buffer is at least half full.

+/—B Begin/Bottom. Moves CP.

+B moves CP to beginning of edit buffer
—B moves CP to end of edit buffer.

%9

+/—nC Move by characters. Moves CP by “n” character positions.

+ moves forward
— moves backward.

+/—nD Delete characters. Deletes “n” characters before or after the CP in the edit
buffer.

+ deletes before the CP
— deletes after the CP.

E End. Ends edit, closes files, and returns to CP/M; normal end.

nFstring”Z Find string. Finds the “n”th occurrence of string, beginning the search after
the CP.

H Move to head of edited file. Ends edit, renames files, and then edits former
temporary file.

I<cr> Enter insert mode. Text from keyboard goes into edit buffer after the CP; exit
with CONTROL-Z.
Istring”Z Insert string. Inserts string in edit buffer after the CP.

Istring<cr> Insert line. Inserts string and CRLF in the edit buffer after the CP.

nJtindstring”Zinsertstring~Zendstring"Z Juxtaposition. Beginning after the CP, finds
findstring, inserts insertstring after it, then deletes all following characters up

% 9

to but not including endstring; repeats until performed “n” times.

+/—nK Kill lines. Deletes “n” lines.
+ deletes after the CP
— deletes before the CP.
+/—nL Move by lines. Moves the CP to the beginning of the line it is in, then moves

the CP “n” lines forward or backward.

+ moves forward
— moves backward.

nMcommandstring’Z Macro command. Repeats execution of the ED commands in

nNstring”Z

o

+/—nP

Q

R<cr>

Appendix B: CP/M Command Summary 473
commandstring “n” times. “n”= 0, “n”= 1, or “n” absent repeats execution
until error occurs.

Find string with autoscan. Finds the “n”th occurrence of string, automatically
appending from original file and writing to temporary file as necessary.

Return to original file. Empties edit buffer, empties temporary file, returns to
beginning of original file, ignores previous ED commands.

Move CP and print pages. Moves the CP forward or backward one page, then
displays the page following the CP. “nP” displays “n” pages, pausing after
each.

Quit edit. Erases temporary file and block move file, if any, and returns to
CP/M; original file is not changed.

Read block move file. Copies the entire block move file X$$$$$$$.LIB from
disk and inserts it in the edit buffer after the CP.

Rfilename<cr> Read library file. Copies the entire file filename with extension LIB from

the disk and inserts it in the edit buffer after the CP.

nSfindstring*Zreplacestring”Z Substitute string. Starting at the CP, repeats “n” times:

+/—nT

+/-U

ov

+/=V

finds findstring and replaces it with replacestring.

Type lines. Displays “n” lines.
+ displays the “n” lines after the CP
— displays the “n” lines before the CP.

If the CP is not at the beginning of a line
0T displays from the beginning of the line to the CP
T displays from the CP to the end of the line
OTT displays the entire line without moving the CP.

Uppercase translation. After +U command, alphabetic input to the edit
buffer is translated from lowercase to uppercase; after —U, no translation
occurs.

Edit buffer free space/size. Displays the decimal number of free (empty) bytes
in the edit buffer and the total size of the edit buffer.

Verify line numbers. After +V, a line number is displayed with each line
displayed; ED’s prompt is then preceded by the number of the line containing
the CP. After —V, line numbers are not displayed, and ED’s prompt is “x”.

474 The CP/M Programmer’s Handbook .

nw Write lines. Writes first “n” lines from the edit buffer to the temporary file;
deletes these lines from the edit buffer.

nX Block transfer (Xfer). Copies the “n” lines following the CP from the edit
buffer to the temporary block move file X$$$$$$$.LIB; adds to previous
contents of that file.

“ 9

nZ Sleep. Delays execution of the command which follows it. Larger “n” gives
longer delay, smaller “n” gives shorter delay.

n: Move CP to line number “n.” Moves the CP to the beginning of the line
number “n” (see “+/—V™).

'm Continue through line number “m.” A command prefix which gives the
ending point for the command which follows it. The beginning point is the
location of the CP (see “+/—V”).

+/—n Move and display one line. Abbreviated form of +/—nLT.

ERA Command Lines

ERA xfilename.typ<cr> Erasesthe file filename.typ on the disk in drive x:. The filename
and/ or typ can be ambiguous. Drive x: is optional; if omitted, the currently
logged drive is used.

ERA x:**<cr> Frases all files on the disk in drive x:. Drive x: is optional; if omitted,
the currently logged drive is used.

Line Editing Commands

CONTROL-C Restarts CP/M if it is the first character in command line. Called warm start.

CONTROL-E Moves to the beginning of next line. Used for typing long commands.

CONTROL-H or BACKSPACE Deletes one character and erases it from the screen (CP/M
version 2.0 and newer).

CONTROL-J or LINEFEED Same as CARRIAGE RETURN (CP/M version 2.0 and newer).
CONTROL-M Same as CARRIAGE RETURN (<cr>).

CONTROL-P Turns on the list device (usually your printer). Type it again to turn off the list
device.

Appendix B: CP/M Command Summary 475

CONTROL-R Repeats current command line (useful with version 1.4); it verifies the line is
corrected after you delete several characters (CP/M version 1.4 and newer).

CONTROL-S Temporarily stops display of data on the console. Press any key to continue.
CONTROL-Uor CONTROL-X Cancels current command line (CP/M version 1.4 and newer).
RUBOUT (RUB) or DELETE (DEL) Decletes one character and echoes (repeats) it.

Load Command Line

LOAD xfilename<cr> Reads the file filename. HEX on drive x: and creates the execut-
able program file filename.COM on drive x:.

MOVCPM Command Lines

MOVCPM<cr> Prepares a new copy of CP/M which uses all of memory; gives control to
the new CP/M, but does not save it on disk.

MOVCPM nn<cr> Prepares a new copy of CP/M which uses “nn” K bytes of memory;
gives control to the new CP/M, but does not save it on disk.

MOVCPM + * <cr> Prepares a new copy of CP/M that uses all of memory, to be saved
with SYSGEN or SAVE.

MOVCPM nn* <cr> Preparesa new copy of CP/M that uses “nn” K bytes of memory, to
be saved with SYSGEN or SAVE.
The “nn” is an integer decimal number. It can be 16 through 64 for CP/M

1.3 or 1.4. For CP/M 2.0 and newer “nn” can be 20 through 64.

PIP Command Lines

PIP<cr> Loads PIP into memory. PIP prompts for commands, executes them, then
prompts again.

PIP pipcommandline<cr> Loads PIP into memory. PIP executes the command pip-

commandline, then exits to CP/M.

PIP Command Summary

x:new.typ=y:old.typ[p]<cr> Copies the file old.typ on drive y: to the file new.typ on
drive x:, using parameters p.

x:new.typ=y:.old1.typ[p],zold2typ[q]<cr> Creates a file new.typ on drive x: that

476 The CP/M Programmer’s Handbook

consists of the contents of file old 1.typ on drive y: using parameters p followed
by the contents of file old2.typ on drive z: using parameters q.

xfilename.typ=dev:[p]<cr> Copies data from device dev: to the file filename.typ on
drive x:.

dev:=xfilename.typ[p]<cr> Copies data from filename.typ on drive x: to device dev:.

dst=src:[p]<cr> Copies data to device dst: from device src:.

PIP Parameter Summary
B Specifies block mode transfer.
Dn Deletes all characters after the “n”th column.
E Echoes the copying to the console as it is being performed.
F Removes form feed characters during transfer.
Gn Directs PIP to copy a file from user area “n.”
H Checks for proper Intel Hex File format.
I Ignores any :00 records in Intel Hex File transfers.
L Translates uppercase letters to lowercase.
N Adds a line number to each line transferred.
(0) Object file transfer (ignores end-of-file markers).
Pn Issues page feed after every “n”th line.
QshZ Specifies quit of copying after the string “s” is encountered.
R Directs PIP to copy from a system file.
SshZ Specifies start of copying after the string “s” is encountered.
Tn Sets tab stops to every “n”th column.

U Translates lowercase letters to uppercase.

\Y Verifies copy by comparison after copy finished.
A\ Directs PIP to copy onto an R/O file.

Z Zeroes the “parity” bit on ASCII characters.

PIP Destination Devices

CON: PUN: LST: Logical devices

TTY: PTP:. LPT:
CRT: UPI: ULLIL
UCIl: UP2: Physical devices

OUT: PRN: Special PIP devices

Appendix B: CP/M Command Summary 477

PIP Source Devices
CON: RDR: Logical devices
TTY: PTR:
CRT: URLI:
UCIL: UR2: Physical devices

NUL: EOF: |INP: Special PIP devices

REN Command Line

REN newname.typ=oldname.typ<cr> Finds the file oldname.typ and renames it
newname.typ.

SAVE Command Line

SAVE nnn xfilename.typ<cr> Saves a portion of the Transient Program Area of
memory in the file filename.typ on drive x: where nnn is a decimal number
representing the number of pages of memory. Drive x: is the option drive
specifier.

STAT Command Lines

STAT<cr> Displays attributes and amount of free space for all diskette drives accessed
since last warm or cold start.

STAT x:<cr> Displays amount of free space on the diskette in drive x:.

STAT xfilename.typ<cr>(CP/M 2.0 and newer) Displays size and attributes of file(s)
filename.typ on drive x:. filename.typ may be ambiguous. x: is optional; if
omitted, currently logged drive is assumed.

STAT xfilename.typ $atr<cr> Assigns the attribute atr to the file(s) filename.typ on drive
x:. File filename.typ may be ambiguous. Drive x: is optional; if omitted,
currently logged drive is assumed.

STAT DEV:<cr> Reports which physical devices are currently assigned to the four logical
devices.

STAT VAL:<cr> Reports the possible device assignments and partial STAT command line
summary.

STAT log:=phy:<cr> Assigns the physical device phy: to the logical device log: (may be
more than one assignment on the line; each should be set off by a comma).

STAT USR:<cr>(CP/M2.0andnewer) Reports the current user number as well as all user
numbers for which there are files on currently logged disks.

478 The CP/M Programmer’s Handbook

STAT x:DSK<cr> (CP/M 14 and newer) Assigns a temporary write-protect status to
drive x:.

SUBMIT Command Lines

SUBMIT filename<cr> Creates a file $$$.SUB which contains the commands listed in
filename.SUB; CP/M then executes commands from this file rather than the
keyboard.

SUBMIT filename parameters<cr> Creates a file $$$.SUB which contains commands
from the file filename.SUB; certain parts of the command lines in filename.
SUB are replaced by parameters during creation of $$$.SUB. CP/M then gets
commands from this file rather than the keyboard.

SYSGEN Command Line

SYSGEN<cr> lLoads the SYSGEN program to transfer CP/M from one diskette to
another.

TYPE Command Line
TYPE xfilename.typ<cr> Displays the contents of file filename.typ from drive x: on the

console.

USER Command Line

USER n<cr> Sets the User Number to “n,” where “n” is an integer decimal number from
0 to 15, inclusive.

x: Command Line

x<cr> Changes the currently logged disk drive to drive x:. Drive x: can be “A”
through “P.”

summary of BDOS
Calls

Table C4. BDOS Function Definitions for CP/M-80 Version 2.2
Function Entry Exit .
Parameter(s) | Parameter(s) Explanation
No. Name
00 |SYSTEM | None None Restarts CP/M-80 by returning control to the
RESET the CCP after reinitializing the disk subsystem.
01 CONSOLE| None A = ASCII | Returns the next character typed to the
INPUT character character calling program.

Any non-printable character is echoed to the
screen (like BACKSPACE, TAB, Oor CARRIAGE
RETURN). Execution does not return to the
calling program until a character has been
typed. Standard CCP control characters are
recognized and their actions performed
(CONTROL-P begins or ends printer echoing
and so on).

479

480 The CP/M Programmer’s Handbook

Table C1. (Continued)
Function .
P Entry P Exntt Explanation
No. Name arameter(s) arameter(s)
02 |CONSOLE|E = ASCIl | None Displays the character in the E register on
OUTPUT |character the console device. Standard CCP control
characters are recognized and their actions
performed (CONTROL-P begins or ends printer
echoing and so on.).
03 |READER [None A = ASCII | Returns the next character received from the
INPUT character reader device to the calling program.
Execution does not return to the calling
program until a character is received.
04 |PUNCH E = ASCII | None Transmits the character in the E register to
OUTPUT |[character the punch device.
05 |LIST E = ASCII None Transmits the character in the E register to
OUTPUT |character the list device.
06 |DIRECT |E=FFhex |A = ASCII If register E contains an FF hex, the console
CONSOLE device is interrogated to see if a character is
IN ready. If no character is ready, a 00 is
DIRECT |E = ASCII None returned to the calling program in register A;
CONSOLE | character otherwise the character detected is returned
OouT in register A. If register E contains any char-
acter other than an FF hex, that character is
passed to the console display. All CCP con-
trol characters are ignored. The user must
protect the program against nonsensical
characters being sent from or received by the
console device.
07 |GET None A= Places a copy of the byte stored at location
IOBYTE IOBYTE | 0003 hex in the A register before returning
control to the calling program.
08 |SET E = IOBYTE | None Places a copy of the value in register E into
IOBYTE the memory location of 0003 hex before
returning control to the calling program.
09 |PRINT DE = String | None Sends the string of characters stored
STRING |address beginning at the address stored in the DE
register pair to the console device. All
characters in subsequent addresses are sent
until BDOS encounters a memory location
which contains a 24 hex (an ASCII “$”). The
CCP control characters are checked for and
performed if encountered.
Note: CP/M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

Appendix C: Summary of BDOS Calls

481

Table C4. (Continued)
Function Entry Exit .
Parameter(s) | Parameter(s) Explanation
No. Name
0A |READ DE = Buffer | Data in This function performs essentially the same
CONSOLE| address buffer as the CCP would in that it takes the
BUFFER characters the user types and stores them
into the buffer that begins at the address
stored in the DE register pair. The first byte
in the buffer pointed to by the DE pair must
be the maximum length of the command;
BDOS will place the number of characters
encountered in the second byte, with the
typed command beginning with the third
byte pointed to by the DE pair. All standard
CCP editing characters are recognized during
the command entry.
0B |GET None A = Status | BDOS checks the status of the console
CONSOLE device and returns a 00 hex if no character is
STATUS ready, FF hex if a character has been typed.
0C |GET None HL = If the byte returned in the H register is 00
VERSION Version | hex then CP/M is present, if 01, then MP/M
NUMBER is present. The byte returned in the L register
is 00 if the version is previous to CP/M 2.0,
20 hex if the version is 2.0, 21 hex if 2.1 and
SO on.
0D | RESET None Used to tell CP/ M to reset the disk subsystem.
DISK Should be used any time diskettes are
| SYSTEM changed.
0E |SELECT | E = Disk None Selects the disk to be used for subsequent
DISK number disk operations. A 00 hex in the E register
indicates disk A, a 01 hex indicates
disk B, etc.
OF | OPEN DE = FCB |A =‘Found’/| Used to activate a file on the current disk
FILE address not found drive and current user area. BDOS scans the
code first 14 bytes of the designated FCB block
and attempts to find a match to the filename
in the block. A 3F hex (ASCII “?”) can be
used in any of the filename positions to indi-
cate a “don’t care” character.

If a match is found, the relevant informa-
tion about that file is filled into the rest of
the FCB by CP/M-80. A value of 00 hex to
03 in register A upon return indicates the
open operation was successful, while an FF
hex indicates that the file could not be found.
If question marks are used to identify a file,
the first matching entry is used.

NotE: CP/M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

482 The CP/M Programmer’s Handbook

Table C4. (Continued)
Function Entry Exit Explanati
, No. Name Parameter(s) | Parameter(s) Xplanation }
10 CLOSE DE = FCB |A =‘Found’/| Performs the opposite of the open file
FILE address not found function. A close file function must be
code performed upon completion of use of any file
which has had information written
into it.

11 SEARCH | DE = FCB |A= ‘Found’/| Performs the same as the open file function
FOR address not found with the difference being that the current
FIRST code disk buffer is filled with the 128-byte record

which is the directory entry of the matched
file.

12 SEARCH | None A= ‘Found’/| Performs the same as search for first function
FOR not found except that the search continues on from
NEXT code the last matched entry.

13 DELETE | DE = FCB |A=‘Found’/| Changes a flag on the directory entry for the
FILE address not found file pointed to by the FCB so that CP/M-80

code no longer recognizes it as a valid file. No
information is actually erased when this
function is performed, although subsequent
writes to diskette may use some of the area
previously associated with the “deleted” file.

14 READ DE = FCB | A = Error If a file has been activated for use by an open
SEQUEN- | address code file or make file function, the read sequential
TIAL function reads the next 128-byte block into

memory at the current DMA address. The
value of 00 hex is returned in the A register if
the read was successful, while any nonzero
value in the A register indicates failure.

15 WRITE DE = FCB | A = Error If a file has been activated for use by an
SEQUEN-| address i code open file or make file function, the write
TIAL ‘ sequential function writes the 128-byte block

of memory at the current DMA address to
the next 128-byte record of the named file.

16 MAKE DE = FCB |A = DIR Creates a new file with the information
FILE address code (name) indicated by the FCB. CP/M-80 does

not check to see if the file indicated already
exists, so you must first check to see if the
file exists (or delete it). A newly created file
need not be opened, as the make file function
also performs the necessary opening
operations.

17 RENAME | DE = FCB |A = DIR Changes the name of the file referenced by
FILE address code the first 16 bytes of the FCB to the name in

the second 16 bytes.

NotEe: CP/M-80 always copies the contents of the H register in the A register if nothing is to be

specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of

such information to reduce movement of information between the H and A registers.

Appendix C: Summary of BDOS Calls

Table C4. (Continued)
Function Entry Exit E .
xplanation
No. Name Parameter(s) | Parameter(s)

18 |RETURN | None HL = Disk | The bits in the HL register are used to
LOGIN login specify which disk drives are active. The first
VECTOR bit in the L register refers to drive A, the last

bit in the H register corresponds to drive P,
the highest possible drive. A bit value of 1
indicates active status, a zero denotes an
inactive drive.

19 |RETURN | None A = Current| The numbers 0 through 15 are used to
CURRENT disk represent the current default disk drive upon
DISK return from this function.

IA |SET DMA | DE = DMA | None Used to select the 128-byte memory block to
ADDRESS be used for buffering all disk transfers. Upon

system or disk reset, cold or warm start, the
buffer is reset to 0080 hex on a normal
CP/M-80 system.

IB |GET None HL = Alloca-| Returns the starting address of the allocation
ALLOC tion address | vector, a table which is maintained in
ADDRESS memory for each on-line disk drive that indi-

cates the portions of the diskette which
are in use.

IC |WRITE None None Provides temporary write protection for the
PROTECT diskette in the current default disk drive.
DISK

ID |GETR/O | None HL = Disk [Returns a 16-bit value in the HL registers
VECTOR R/O which indicate which drives on the system

are write protected. The drives are assigned
as in the LOGIN VECTOR, with a value 1
indicating write-protection.

IE |[SETFILE | DE=FCB | A= DIR Sets the file attributes that indicate system/
ATTRI- address code directory and R/O or R/ W file status for the
BUTES file pointed to by the FCB address.

IF |GET DISK| None HL = DPB | Retrieves the disk parameter block for the
PARMS address current active disk drive. These parameters

can be used to determine space available on a
diskette or to change the characteristics of
the disk drive under user control.

20 |GET USER| E = FF A = Current| If the E register contains an FF hex, the
ICODE User or current user number is returned in the A reg-
SET USER| E = User None ister. To reset the user number, the appro-
ICODE code priate user code is placed in the E register.

While the USER command allows user
numbers in the range 0-15, this BDOS func-
tion can set user numbers in the range

of 0-31.

Note: CP/M-80 always copies the contents of the H register in the A register if nothing is to be

specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of

such information to reduce movement of information between the H and A registers.

483

484 The CP/M Programmer’s Handbook

Table C4. (Continued)
Function Ent Exit .
ntry Xl Explanation
No. Name Parameter(s) | Parameter(s)

21 |READ DE = FCB | A = Error Reads the random record number contained
RANDOM| address code in the 33rd, 34th, and 35th byte (a 24-bit

address) of the FCB pointed to.

22 |WRITE DE = FCB A = Error Writes information from the current DMA
RANDOM)| address code address to the random record pointed to by

the number contained in the 33rd, 34th, and
35th bytes of the indicated FCB.

23 |COMPUTE| DE = FCB RRF set Returns the current size of the random
FILE SIZE| address record file in the three bytes that constitute

the random record field of the FCB. If the
third byte contains a 1, then the file contains
the maximum record count of 65536, other-
wise the value in the first two bytes is a 16-bit
value that represents the file size.

24 |SET DE = FCB RRF set Returns the next random record (fills in the
RANDOM] address random record field of the FCB) after the
RECORD last sequentially read record. Digital

Research suggests that this function is most
appropriate to file indexing.

25 |RESET DE = Reset | A = Error Forces the specified drives to be reset to the
DRIVE drive bits code drive bits initial non-logged status.

28 |WRITE DE = FCB | A = Error Writes a record of all zeros to diskette before
RANDOM| address code a record is written; useful for identifying
(ZERO) unused random records (an unused record

would contain zeros instead of data).

NotEe: CP/M-80 always copies the contents of the H register in the A register if nothing is to be

specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of

such information to reduce movement of information between the H and A registers.

Summary of BIOS
Calls

Table D-4. CP/M-80 BIOS Routine Definitions

Label in Entry Exit Exol .
Jump Table Parameter(s) Parameter(s) Xplanation
COLDSTART None C=0 Your routine should perform all the
4 necessary start-up operations, including

initializing all the values in the base page.
Before exiting, the C register must be set
to zero.

WARMSTART None C = Drive Your routine should perform all the
necessary restart operations but does not
need to reinitialize the base page. The C
register, on exit, should contain the cur-
rent drive number.

CONSOLE None A = Status

STATUS

(CONST)

CONSOLE* None A = Character

INPUT

485

486 The CP/M Programmer’s Handbook
Table D1. (Continued)

Label in Entry Exit Explanati
Jump Table Parameter(s) Parameter(s) Xplanation

READER* None A = Character | Your routine should wait for a character

INPUT to be entered at the appropriate device
and then return the character in the
A register.

CONSOLE* C = Character | None

OUTPUT

LIST* C = Character | None

OUTPUT

PUNCH* C = Character | None Your routine should take the character in

OUTPUT the C register and display it on the
appropriate device.

HOME DISK None None The head of the disk drive should be
returned to the home position (track 0,

: sector 0).
SELECT DISK C = Drive HL = DHA Your routine should select the drive indi-

cated by the number in the C register.
The HL register on return should contain
the address of the disk parameter header.

SET TRACK C = Track None The track indicated by the C register
value should be set as the next track to be
accessed by the disk drive.

SET SECTOR C = Sector ‘None The sector indicated by the C register
value should be set as the next track to be
accessed by the disk drive.

SET DMA BC = DMA None The DMA address indicated by the BC

ADDRESS address register pair should be set as the address
to use for all information transfers from
memory to diskette and vice versa.

READ DISK None A = Status Read the current track and sector and
transfer the data to the DMA address
already set. A 01 hex should be returned
if there was an error during transfer.

WRITE DISK None A = Status Write the current track and sector from
the data at the DMA address.

SECTOR BC = Logical | HL = Physical
sector sector

TRANSLATION | DE = Sector A special routine used for systems which
map address maintain data in other than 128-byte

blocks. The logical sector on entry is
changed to reflect the appropriate actual
sector on the diskette.

LIST STATUS None A = Status Your routine should interrogate the
appropriate device to see if a character is
ready and return a 00 hex in the A regis-
ter if not ready, or a FF hex if ready.

*All console and device 1/ O should be done by first looking at the IOBYTE (0003 hex) to determine
which device is selected.

Index

A

ANSI Standard Escape sequences:
Support via BIOS, 220

ASCIIL:

Updating the time in ASCII, 224

ASM:

Assembler, 185

Manual, 6

AUX:

Logical Auxiliary (Reader/Punch) device, 56
Allocation block:

Choosing size, 18

Concepts, 18

In file directory entry, 26

Maximum number in disk parameter block, 34
Prereading used block prior to writing, 155
Reserving in disk parameter block, 35
Allocation vector:

Finding address of, 119

Pointer in disk parameter header, 32
Ambiguous file names:

Avoidance in Rename File, 116

Concepts and restrictions, 24

Example processing, 401

Suggestion for utility program, 426

Used in BDOS Open File, 99

Used in DIR, 50

Used in ERA, 52

Used in Search for First Name Match, 103
Argc, argv:

C Functions for command parameters, 405
Assign:

C program, assigns logical to physical devices, 439

Attributes:
In file directory entry, 26

Available RAM:
Finding amount available, 65

BASIC:

Problems with “gobbling” characters, 218
BDOS:

Accessing file directory, C functions, 408
Entry Point, in base page, 59

Errors detected, 296

BDOS Function:

0, System Reset, 71

1, Read Console Byte, 72

2, Write Console Byte, 73

3, Read Reader Byte, 75

4, Write Punch Byte, 77

5, Write List Byte, 77

6, Direct Console I/O, 79

7, Get IOBYTE Setting, 80

8, Set IOBYTE, 86

9, Display $-Terminated String, 88
10, Read Console String, 90

11, Read Console Status, 94

12, Get CP/M Version Number, 94
13, Reset Disk System, 95

14, Select Logical Disk, 97

15, Open File, 98

16, Close File, 102

17, Search for First Name Match, 103
18, Search for Next File Name Match, 107
19, Erase (Delete) File, 108

20, Read Sequential, 109

21, Write Sequential, 110

22, Create (Make) File, 112

23, Rename File, 115

24, Get Active Disks, 116

25, Get Current Default Disk, 118
26, Set DM A (Read/Write) Address, 118
27, Get allocation vector, 119

28, Set Logical Disk Read-Only, 120
29, Get Read-Only Disks, 120

30, Set File Attributes, 121

31, Get Disk Parameter Block Address, 125
32, Set/Get User Number, 131

33, Read Random, 131

34, Write Random, 133

35, Get File Size, 142

36, Set Random Record Number, 142
37, Reset Logical Disk Drive, 143

40, Write Random with Zero-fill, 144

BDOS Function codes: 69

In LIBRARY.H, 391
Initialization concepts, 12
Interface to other software, 15
Introduction to function calls, 20
Making a function request, 68
Making calls in C, 395

487

488 The CP/M Programmer’s Handbook

BDOS Function codes (continued)

Naming conventions, 68

Register conventions for function requests, 70
Use of Function 0 after hardware error, 299
Use of Function 0 after printer error, 224

Use of location 0005H, 14

What the BDOS does, 67

BDOS Error:

Bad Sector, 98, 154
R/O, 120

Select, 98, 153

BIOS:

Blocking/Deblocking, 152

Bootstrap functions, 148

CONIN, console input, 151

CONOUT, console output, 151

CONST, console input status, 150
Character drivers, debugging, 354
Components, 147

Configuration Block, accessing from C, 396
Debugging, 353

Debugging interrupts service routines, 357
Device table, accessing from C, 398
Different types of disk write, 155

Direct BIOS calls, example code, 156
Direct calls, examples, 65

Direct calls to read/write disk from C, 399
Disk Parameter Block, accessing from C, 398
Enhanced BIOS listing, 235

Enhanced data structures, 225
Enhancements, 209

Enhancements to support different protocols, 218
Entry points, 148

Example code for standard BIOS, 158
Feature checklist for debugging, 354
Finding the jump vector in RAM, 56
Function key table, accessing from C, 397
HOME disk heads, 153

Hardware error handling functions, 296
Host Buffer, HSTBUF, 152

Initialization concepts, 12

Interface to other software, 15

Jump numbers in LIBRARY.H, 391

Jump vector, 15, 56

Keeping the current date, 224

Keeping the current time, 224

LIST, list output, 151

LISTST, list device output status, 156
Live testing, 368

Logical Input/Output, 15

Making calls in C, 396

BIOS (continued)

PUNCH (Auxiliary) output, 151

Preparing a special version, 184

READ sector, 154

READER input, 152

SECTRAN, logical to physical sector translation, 156
SELDSK, select disk, 153

SETDMA, set DMA address, 154
SETSEC, set sector, 153

SETTRK, set track, 153

Sequence of operations for sector write, 155
Support of function keys, 210

Using PIP to test, 369

WRITE sector, 155

What needs to be tested, 354

When to avoid direct calls, 15

Backspace:

CONTROL-H, 47

Bad sector management: 303

In the BIOS, 154

Suggestion for utility program, 426, 448
Base page:

Current user number, 59

Example memory dumps, 61

Set by the CCP for loaded program, 54
Basic Debugging for a BIOS: 320

Basic Disk Operating Systern:

See BDOS

Baud rates:

Speed, C program to set Baud rates, 431

Bit Bucket:

If no Punch driver used, 77

Bit map:

See Allocation vector

Bit vector:

As used in C functions, 402

Boolean AND, bv__and, Code, 389, Narrative, 404
Definition of structure in LIBRARY.H, 395
Display, bv__disp, Code, 389, Narrative, 404
Fill, bv__fill, Code, 387, Narrative, 404
Inclusive OR, bv__or, Code, 389, Narrative, 404
Make, bv__make, Code, 387, Narrative, 404
Set bit, bv__set, Code, 387, Narrative, 404
Test bit, bv__test, Code, 388, Narrative, 404
Test bit non-zero, Code, 388, Narrative, 404
Block mask:

In disk parameter block, 33

Block shift:

In disk parameter block, 33
Blocking/Deblocking:

Concepts, 36

Blocking/Deblocking (continued)

Disk write types from BDOS to BIOS, 155
In the BIOS, 152

Bootstrap loader:

Building a new version, 184

Debugging, 351

Example code, 197

Overview, 8

Buffer overflow:

Debugging character driver, 358

Buffer thresholds:

Debugging character driver, 359

Buffer wraparound:

Debugging character driver, 360

Building a new CP/M system:

Example console dialog, 206

The major steps, 183

Building an index file:

Using Set Random Record Number, 143
Building your first CP/M system: 138
Built-in commands:

In the CCP, 46

Built-in debug code: 321

Bv_and:

Bit vector, boolean AND, Code, 389, Narrative, 404
Bv__disp:

Bit vector, display, Code, 389, Narrative, 404
Bv__fill:

Bit vector, fill, Code, 387, Narrative, 404
Bv__make:

Bit vector, make, Code, 387, Narrative, 404
Bv_nz:

Bit vector, test bit non-zero, Code, 388, Narrative, 404
Bv_or:

Bit vector, inclusive OR, Code, 389, Narrative, 404
Bv__set:

Bit vector, set bit, Code, 387, Narrative, 404
Bv__test:

Bit vector, test bit, Code, 388, Narrative, 404

C

C Language:

Reference manuals, 4

Use for utility programs, 371

C programs:

ASSIGN, assigns logical to physical devices, 439
DATE, sets the date, 442

ERASE, a safer way to erase files, 409

Index 489

C programs (continued)

FIND, finds lost files, 416

FUNKEY, sets the function keys, 445
MAKE, makes files visible/invisible, 427
MOVE, moves files between user numbers, 423
PROTOCOL, sets serial line protocols, 434
SPACE, shows used/free disk space, 420
SPEED, sets Baud rates, 431

TIME, sets the time, 442

UNERASE, restores erased files, 412
CBIOS.ASM:

An ingredient for a new system, 185
CCP:

Base page, set for program loaded, 185
Built-in commands, 50

Command Line Editing, 46

Control characters and their effects, 47
Default DMA buffer in base page, 61
Details, 45

ERA, erase (delete) files, 51

Example memory dumps of base page, 61
Functions, 46

Initialization concepts, 12

Interface to other software, 15

Logical devices, 56

Modifying the prompt to show the user number, 235
Overview, 12

Overwriting to gain memory, 45
Program loading, 54

Prompt, 46

REN, rename file, 52

Reloading on warm boot, 45

Resident commands, 14

Returning without warm boot, 66

SAVE, save memory image on disk, 53
Setting of command tail in base page, 60
Setting of default FCB’s in base page, 60
TYPE, type an ASCII file, 52

USER, changing user number, 53

CCPM:
Example of Get CP/M Version Number, 95

CDISK:
Example of Reset Disk System, 96

COM file structure: 194

COM files:

Loaded by the CCP, 46
CON:

Logical console, 16

CONIN:
Accessing the date and time, 223

490 The CP/M Programmer’s Handbook

CONIN (continued)

Console input, in the BIOS, 151
Recognizing incoming function key characters, 221
Use with forced input, 219

CONOUT:

Console output, in the BIOS, 151
Escape sequences to input date and time, 223
Processing output escape sequences, 222
CONST:

Console input status, in the BIOS, 50
Problems with programs that “gobble” characters, 218
Use with forced input, 219

CP/M:

Bringing up a new system, 350

CP/M 128-byte “records™: 41

CP/M file system:

Concepts, 17

CP/M records as 128-byte sectors: 71
CRC:

See Cyclic Redundancy Check

CRF:

Example of Random Write, 135

Cancel command line:

CONTROL-U, 49

Captions:

For debug subroutines, 322

CARRIAGE RETURN:

CONTROL-M, 48

Changed diskette:

Size of buffer for detection, in disk parameter block, 36
Work area in disk parameter header, 32
Changing disks:

Need to force disk log-in, 96

Changing user number:

USER, 53

Character drivers:

Example testbed, 355

Character 1/0:

Enhancements, 213

In the BIOS, 150

Interrupts for input, 215

Practical handling of errors, 299
Choosing allocation block size: 18
Circular buffer:

For interrupt-driven input, 217
Structure in device table, 226

Close File:

BDOS Function 16, 102

Code table:

Definition of structure in LIBRARY.H, 394

Display all strings, ct__disps, Code, 385, Narrative,
407 R

Get string for code, ct__strc, Code, 386, Narrative, 407

Get string for index, ct__stri, Code, 386, Narrative, 407

Initialize, ct__init, Code, 384, Narrative, 407

Prompt and return code, ct__parc, Code, 384, Narrative,
407

Return code, ct__code, Code, 385, Narrative, 407

Return index, ct__index, Code, 386, Narrative, 407

Used for command tail parameters, 406

Cold Boot:

BIOS functions, 149

Concepts, 12

Command line:

Canceling, CONTROL-U, 49

Deleting last character typed, 49

Repeating, CONTROL-R, 49

Command Line Editing:

By the CCP, 46

Command tail:

Code tables, C functions, 405

Example program to process parameters, 63

In base page, 60

Input to the CCP, 46

Processing, C functions, 405

Communications:

Using Reader/Punch (Auxiliary), 151

Comp _fname:

Compare file name, Code, 374, Narrative, 401

Compare file name:

Comp__fname, Code, 374, Narrative, 401

Configuration Block:

Accessing from C, 396

Concepts, 211

Suggestion for utility program, 448

Variable codes in LIBRARY.H, 391

Console Command Processor:

See CCP

Console output:
From debug subroutines, 323
Temporary pause, CONTROL-S, 47

Console output to printer:

CONTROL-P, 48

Console status:

Debugging character driver, 360
Control characters:

Used in CCP command line editing, 47

Default disk:

Changing, 50

In base page, 59

In CCP prompt, 46

Default File Control Blocks:

In base page, 60

Deferred writes:

In conjunction with track buffering, 231

Delete character:
Rubout/Del, 49

Deleting files:
ERA, 51

Device table:

Accessing from C, 398
Displaying for debugging, 356
Structure, 225

Digital Research:

Manuals, 6

Direct BIOS calls:

Example code, 156

Examples, 65

When to avoid, 15

Directory code:

As returned by BDOS calls, 71

As returned from Create (Make) File, 114

As returned from Rename File, 116

Returned by BDOS Close File, 103

Returned by BDOS Open File, 99

Returned by Search for First Name Match, 103
Returned by Search for Next Name Match, 107

Directory entry: 99
Definition in LIBRARY.H, 394

Directory Parameter Block:
Definition in LIBRARY.H, 393

Disk Drivers:

Debugging, 364

Disk I/O:

Enhancements, 231

In the BIOS, 152

Disk Map:

In file directory entry, 26

Disk Parameter Block:

Accessing from C, 398

Adding extra information, 41

Block shift, mask, and extent mask, 33
Definition in LIBRARY.H, 394
Details, 33

Finding the address of, 125

Maximum allocation block number, 34

Index

Disk Parameter Block (continued)
Number of directory entries — 1, 35

Number of tracks before directory, 36
Pointer in disk parameter header, 31
Reserving allocation blocks for file directory, 35
Sectors per track, 33

Size of buffer for detecting changed diskettes, 36
Worked example for hard disk, 39

Disk Parameter Header:

Details, 28

Disk buffer, 31

Disk parameter block, 31

Pointer to allocation vector, 32

Sector skewing, 28

Work area for changed diskette detection, 32
Disk buffer:

In disk parameter header, 31

Disk definition tables:

Concept, 18

Details, 27

Disk drivers:

Example testbed code, 365

Disk errors:

Strategy, 303

Disk full:

Error returned from Sequential Write, 112
Disk layout:

CP/M on diskettes, 189

Disk map:

As used in C functions, 402

Disk map clear:

Dm__clr, Code, 382, Narrative, 403

Disk map display:

Dm__disp, Code, 382, Narrative, 403
Diskette:

Layout of standard CP/M diskette, 37
Diskette format:

Concepts, 9

Display $-Terminated String:

BDOS Function 9, 88

Display directory error:

Err__dir, Code, 381, Narrative, 400
Displaying an ASCII file:

TYPE, 52

Displaying current user number: 54
Dm__clr:

Disk map clear, Code, 382, Narrative, 403
Dm__disp:

Disk map display, Code, 382, Narrative, 403

491

492 The CP/M Programmer’s Handbook

Control characters (continued)

CONTROL-C:

Used to abort after BDOS error, 98

CONTROL-P:

Errors generated, 299

CONTROL-Z:

If no Reader driver in BIOS, 75

Used to indicate end of file, 110

Used to terminate prior to BDOS Close File, 103

Conv_dfname:

Convert directory file name, Code, 375, Narrative, 402

Conv_fname:

Convert file name, Code, 375, Narrative, 408

Convert directory file name:

~Conv__dfname, Code, 375, Narrative, 402
- Convert file name:

Conv__fname, Code, 375, Narrative, 408

Create (Make) file:

BDOS Function 22, 112

Ct_code:

Code table, return code, Code, 385, Narrative, 407

Ct_disps:

Code table, display all strings, Code, 385, Narrative,
407

Ct__index:’

Code table, return index, Code, 386, Narrative, 407

Ct_init:

Code table, initialize, Code, 384, Narrative, 407

Ct__parc:

Code table, prompt and return code, Code, 384, Narra-
tive, 407

Ct__strc:

Code table, get string for code, Code, 386, Narrative,
407

Ct__stri:

Code table, get string for index, Code, 386, Narrative,
407

Current default drive: 97

Current logical disk:

In base page, 59

Current record number:

In FCB, unchanged for Random Read, 132

In FCB, unchanged for Random Write, 132

Current user number:

Displaying, 54

In base page, 59

Customization:

Of CP/M, an overview, 8

Cyclic Redundancy Check:
As used in disk errors, 303

D

DDT:

Dynamic Debug Tool, 185, 329

Manual, 6

I Command used for building new CP/M system, 195
R Command used for building new CP/M system, 195
Used for checking CP/M images, 204

Used for debugging character drivers, 354

Used to create CP/M memory image, 194

Used to debug disk drivers, 364

DESPOOL:

Use of LISTST BIOS entry, 156

- DIR:

Display directory of files, 50

DMA buffer:

Default in base page, 60

DPB:

See Disk Parameter Block

DPH:

See Disk Parameter Header

DTR:

PROTOCOL, C program to set protocols, 434
See Data Terminal Ready

Data storage area:

Concept, 17

Data Terminal Ready:

Explanation of DTR protocol, 219
DATE:

C program, sets the date, 442

Date:

Keeping the current date in the BIOS, 224
Reading the date from the console driver, 223
Debug output:

Controlling when it occurs, 324
Debug subroutines: 322

Overall design philosophy, 322
Debugging a new CP/M system, 319
Debugging checklist:

Character output, 361

Disk drivers, 367

Interrupt service routines, 359
Non-interrupt service routine, 359
Real Time Clock, 362

Default DMA Address: 118

Default DMA buffer:

In base page, 60

DO:

Suggestion for utility program, 448
DPB:

See Disk Parameter Block

DPH:

See Disk Parameter Header

E

ED:

Editor, manual, 6
ERA:

Erase (delete) files, 51

Echoing of keyboard characters:

Read Console Byte, 72

End of File:

Detection using Read Sequential, 110
Erase (Delete) File:

BDOS Function 19, 108

ERASE:

C program, a safer way to erase files, 409
Erased files:

Unerasing them, 26

Erasing a file:

ERA, 51

Logical deletion only, 23

Err_dir:

Display directory error, Code, 381, Narrative, 400
Error messages:

Debugging disk drivers, 368, Chapter 12
Errors:

Dealing with hardware errors, 295
Example printer error routine, 301
Handling disk errors, 303

Hardware, analysis, 297

Hardware, correction, 299

Hardware, detection strategy, 296
Hardware, indication, 297

Improved disk error messages, 312
Practical handling, character 1/0, 299

Escape sequences:

Function keys, debugging character driver, 360
Incoming, debugging character driver, 360
Processing output sequences, 222

Recognizing function key sequences, 222
Suggestion for utility program, 448

Support via device table, 226

Etx/Ack:

Debugging character drivers, 358, 362
Explanation of protocol, 219

Index

Etx/Ack (continued)

Protocol, C program to set protocols, 434
Example programs:

Ordering diskette, 4

Extent:

In file directory entry, 26

Of files, concepts, 18

Extent mask:

In disk parameter block, 33

F

FCB:

Default FCB’s in base page, 60

See File Control Block

FDOS:

Rarely used term for BDOS/CCP combined
File Attributes: 99

Setting, 121

See File status

File Control Block:

Creating one from an ASCII file name, 100
Concepts, 18

Definition in LIBRARY.H, 393

Structure, 41

Used for random file operations, 43 .
Used for sequential file operations, 43

Used in BDOS Open File, 99

Used in BDOS Requests, 71

File Directory:

Accessing entries directly, 399
Processing, C functions, 402

File Organizations:

Concepts, 41

File Protection:

Special characters in file name, 114

File changed:
File status bit in file directory entry, 26

File directory:

Accessing, C functions, 400

Accessing, via BDOS & C functions, 408
Concept, 17

Details, 18

Disk map, 26

Displaying contents, DIR, 50

Entry structure, 22

Erasing files, ERA, 51

File extent, 26

File name and type in entry, 27
Matching names, C functions, 401
Number of entries — 1, in disk parameter block, 35

493

494 The CP/M Programmer’s Handbook

File directory (continued) GFA:

Number of tracks before, 36 Example of Get File Attributes, 122
Record number, 27 GNF:

Status (attribute) bits, 26 Example of Search First/Next File Name Match, 104
User number in entry, 22 Get CP/M Version Number:

File extent: BDOS Function 12, 94

Concepts, 18 Get Current Default Disk:

In file directory entry, 26 BDOS Function 25, 118
Manipulation to achieve Random /O, 110-12 Get Disk Parameter Block Address:
Opening extent 0 for Random 1/O, 133-34 BDOS Function 31, 125

File name/type: Get Disk Parameter Block Address:
In file directory entry, 23 Get__dpb, Code, 383

File protection: Get File Size:

Suggestion for utility program, 426 BDOS Function 35, 142

File status: Get IOBYTE Setting:

In file directory entry, 26 BDOS Function 7, 80

File system: Get Read-Only Disks:

Concepts, 17 (BDOS Function 29, 120

File type: Get allocation vector:

Conventions for actual types, 24 BDOS Function 27, 119

Filecopy: Get configuration block address:
Suggestion for utility program, 426 Get__cba, 372

Files:

Get next directory entry:

Creating, sequence of operations, 20 Get__nde, Code, 378, Narrative, 400

Displaying a directory, DIR, 50 Get next file name:

Find: Get__nfn, Code, 376, Narrative, 408
C program, finds lost files, 416

N Get__cba:
Flushing buffers: Get configuration block address, 372
Prior to BDOS Close File, 103 Get_dpb:
Forced input: Get Disk Parameter Block Address, Code, 383
Concepts, 219 Get__nde:
Debugg}ng chara(.:t.er driver, 360 Get next directory entry, Code, 378, Narrative, 400
Suggestion for utility program, 448 Get_nf

et__nfn:

Framing error:

Get t fil de, 376, N tive, 408
Character 1/O, handling, 300 et next file name, Code arrative

Function Key table: H
Accessing from C, 397 HEX file structure: 195
Function keys: HOME:
ztructure lf:hLlB]:{ARZ"I;I’(;gz 20 Home disk heads, in the BIOS, 153

upport with enhance: , .
Testing in a live BIOS, 370 ::ii?g:;s 152

NKEY: ’
l(TIU rogram, sets the function keys, 445 Hard disk:
program, e Division into several logical disks, 39

G Special considerations, 36
GETC: Hardware errors:
Example of Read Sequential, 111 Dealing with, 295, Chapter 9
GETDPB: Hardware reset:

Example of Get Disk Parameter Block Address, 126 Debugging character driver, 359

Heath/Zenith:

Special version of CP/M, 55
Host Buffer:

In the BIOS, 152

Host sector size:
In the BIOS, 152

I/0 Redirection:

Assign, C program to assign physical devices, 439
Concepts, 214

IOBYTE Structure, 57

IF/ENDIF directives:

Used for debug subroutines, 323

IOBYTE:

Equates for bit fields, 86

Structure, 57

Use for polling communications line, 75

Use with Direct Console I/O for communications, 80

Initialization of debug subroutines: 323
Input redirection:

Debugging character driver, 359
Input/Output:

Fake 1/O for debugging purposes, 327
Interactions:

Between CCP, BDOS, and BIOS, 15
Interlace:

See Sector skewing

Interrupt service routines:

Debugging checklist, 357

Interrupts:

Architecture, 216

Circular buffers, 217

Dealing with buffer overflow, 219
Debugging service routines, 329

Use for character input drivers, 215

J

Johnson-Laird Inc.:
Ordering diskette, 4

Jump vector:
Use for entering the BIOS, 15

L

LIBRARY.C:

Utility function library, 372
LIBRARY.H:

Header for LIBRARY.C functions, 390
LIST:

List output, in the BIOS, 151

Index

LISTST:

List device output status, in the BIOS, 156
LST:

Logical list device, 56

Line editing:

Using Read Console String, 91

Line feed:

CONTROL-J, 48

List Device Errors:

Problems with BDOS Function 5, 78
Loading CP/M:

Overview, 11

Loading programs:

Via the CCP, 54

Loadsys:

Suggestion for utility program, 448
Location 0000H:

Use for warm boot, 13

Location 0005H:

Simple examples of use, 20

Use for BDOS function calls, 14
Logging in a disk:

Using BDOS Reset Disk System, 96
Logical deletion of files, 23

ERA, 51

Logical devices:

CON;, LST:, AUX:, RDR:, PUN:, 56
Logical disk:

As represented in File Control Block, 42
Division of hard disk into several logical disks, 39
Selecting, 97

Logical Input/Output:

As afforded by the BIOS, 15

Logical records:

Concepts, 41

Logical sectors to physical: 28
SECTRAN, in the BIOS, 156

Login Vector:

See BDOS Function 24, 116

Lowercase letters in file name: 114
M-disk:

Using memory as an ultra-fast disk, 232
M80:

Macro Assembler, 185

MAC:

Macro Assembler, 185

MAKE:

C program, makes files visible/invisible, 427

495

496 The CP/M Programmer’s Handbook

MOVE: Output Escape sequence:

C program, moves files between user numbers, 423 Debugging character output driver, 362
MOVCPM: Overrun error:

In conjunction with patches to CP/M, 234 Character /O, handling, 300
Relocating the CCP and BDOS, 201 Overwriting the CCP: ~
Use in building a new CP/M system, 182 To gain memory, 45

MSGOUT: Owner:

Example of Write Console Byte, 74 Suggestion for utility program, 426
MSGOUTI: i
Example of Write Console Byte, 74 P

Manuals: PIP:

From Digital Research, 6 Used to test a new BIOS, 369
Maximum allocation block number: PROM Bootstrap:

In disk parameter block, 34 Used to load CP/M, 11

Memory: . PUN:

Displaying in debug subroutines, 324 Logical Punch, 56

Finding size of area available for programs, 65 PUNCH:

Use of hidden memory for buffers, 216 ‘ Punch (Auxiliary) output, in the BIOS, 151
Used as an ultra-fast disk, 232 PUTC:

Memory dumps: Example of Write Sequential, 113
Base page, 61 PUTCPM:

Memory image: Example program, 191

Checking a new system, 204 Writing a utility, 189

Of new CP/M system, 185 Parallel printers:

Memory layout: Error handling, 301

For example BIOS, 190

For input to SYSGEN, 187
With CP/M loaded, 13
Messages:

As an aid to debugging, 326

Parameters:

Example program to process command tail, 63
Parity error:

Character 1/O, handling, 300

Pass counters:
N Use in debug subroutines, 324

Patching CP/M:
General techniques, 234

Notation:

For example console dialog, 3
Performance:

Number of file directory entries: .
Effect of sector skewing, 29

In disk parameter block, 35
O Physical end of line:

CONTROL-E, 47

OM: Physical sectors:

Example of Display $-Terminated String, 89 Relative, on a hard disk, 38
OPENF: . Polled Reader Input:
Example of Open File, 100 Problems and solutions, 75
Open File: . Polled communications:
BDOS Function 15, 98 Using Direct Console 1/0, 80
Open directory: Printer echo:

Open__dir, Code, 378, Narrative, 400 CONTROL-P, 48

Open_dir: Printer errors:

Open directory, Code, 378, Narrative, 400 Example routine, 301

Orville Wright approach to debugging: 320 Use of watchdog timer, 224

Printer timeout error:

Handling, 300

Program loading:

Via the CCP, 54

Program termination:

Returning to CP/M, 66

Prompt:

From the CCP, 46

Protect/Unprotect:

Suggestion for utility program, 426

PROTOCOL:

C program, sets serial line protocols, 434

Protocol:

See also Data Terminal Ready, Request to Send,
Xon/Xoff, Etx/Ack

Definitions in LIBRARY.H, 392

Support in enhanced BIOS, 218

Support via device table, 226

Xon/ Xoff, used by TYPE, 52

Public files:

Patches to create this feature, 235

Suggestion for utility program, 448

Public/Private:

Suggestion for utility program, 448

RAM-disk:

Using memory as an ultra-fast disk, 232
RCS:

Example of Direct Console 1/O, 81
RDR:

Logical Reader, 56

READ:

Read Sector, in the BIOS, 154
READER:

Reader input, in the BIOS, 152
REN:

Rename file, 52

RF:

Example of Rename File, 117
RLSRDR:

Example of Read Reader Byte, 76
RMAC:

Relocatable Macro Assembler, 185
RO:

Example of Random File 1/O, 136
RSA:

Example of Read Console String, 92

Index

RST7:

Use for debugging drivers, 356

RTS:

See also Buffer thresholds, Request to Send
Protocol, C program to set protocols, 434
Random Read:

Using Read Sequential, 110

Random Write:

Using Write Sequential, 112

Random files:

Concepts, 43

Creating an empty file, 144

Problem of sparse files, 44

Virtual size, 142

Random record number:

In FCB, set for Random Read, 132

In FCB, set for Random Write, 132

Rd_disk:

Read disk (via BIOS), Code, 377, Narrative, 400
Read Console Byte:

BDOS Function 1, 72

Read Console Status:

BDOS Function 11, 94

Read Console String:

BDOS Function 10, 90

Read Random:

BDOS Function 33, 131

Read Reader Byte:

BDOS Function 3, 75

Read Sequential:

BDOS Function 20, 109

Read disk (via BIOS):

Rd__disk, Code, 377, Narrative, 400

Read-Only:
Automatic setting after changing diskettes, 32
File status bit in file directory entry, 26

Read-Only Disks: 120

Read-Only File:

Attribute bit, 121

Read/write directory:

Rw__dir, Code, 380, Narrative, 400
Reading/Writing disk:

Direct BIOS calls from C, 399
Real Time Clock:

Debugging, 362

Example testbed code, 363

TIME, C program to set the time, 444

497

498 The CP/M Programmer’s Handbook

Reclaim:

Suggestion for utility program, 426
Record number:

In file directory entry, 26
Manipulation to achieve Random 1/0O, 110, 112
Registers:

Displaying in debug subroutines, 324
Relative page offset:

Use for making direct BIOS calls, 65
Relative physical sectors:

On a hard disk, 38

Release diskettes:

Files from Digital Research, 6
Rename File:

BDOS Function 23, 115

Renaming a file:

REN, 52

Repeat command line:

CONTROL-R, 48

Request to Send:

Explanation of RTS protocol, 219
Reserved area:

Concept, 17

Reset:

Signal used to start loading of CP/M, 11
Reset Disk System:

BDOS Function 13, 95

Reset Logical Disk Drive:

BDOS Function 37, 143

Resident CCP commands: 14

Restoring registers:

In interrupt service routine, 356
Rw.dir:

Read/write directory, Code, 380, Narrative, 400

S

SAVE:

Save memory image in disk file, 53
Use in building new CP/M system, 194
SECTRAN:

Logical sector to physical, in the BIOS, 156
SELDSK:

Debugging disk drivers, 367

Select disk, in the BIOS, 153
SETDMA:

Set DMA Address, in the BIOS, 154
SETSEC:

Set Sector, in the BIOS, 153

SETTRK:

Set Track, in the BIOS, 153
SETTRK/SEC:

Debugging disk drivers, 367
SFA:

Example of Set File Attributes, 122
SID:

Debugging tool, 330

STAT:

Use for displaying current user number, 54
SYSGEN:

System Generator, 185

Writing a new system to disk, 186
Savesys:

Suggestion for utility program, 448
Saving memory on disk:

SAVE, 53

Search First/Next:

Example use together, 107

Search for file:

Srch__file, Code, 376, Narrative, 408
Search for Next File Name Match:
BDOS Function 18, 107

Require for Search for First, 104

Sector interlace:
See Sector skewing

Sector size:
Host, in the BIOS, 152

Sector skewing:

Effect on performance, 29
For CP/M image on disk, 190
In disk parameter header, 28
Sector skipping:

Concepts, 304

Sector sparing:

Concepts, 304

Sectors:

Use in allocation blocks, 18
Sectors per track:

In disk parameter block, 33
Select Logical Disk:

BDOS Function 14, 97
Sequential Files:

Concepts, 43

Set DMA (Read/Write) Address:
BDOS Function 26, 118
Required by Search for First Name Match, 104

Set File Attributes:

BDOS Function 30, 121

Set IOBYTE:

BDOS Function 8, 86

Set Logical Disk Read-Only:

BDOS Function 28, 120

Set Random Record Number:

BDOS Function 36, 142

Set disk parameters for rd/wrt__disk:

Set__disk, Code, 378, Narrative, 400

Set search control block:

Setscb, Code, 381, Narrative, 401

Set/Get User Number:

BDOS Function 32, 131

Set__disk:

Set disk parameters for rd/wrt__disk, Code, 378,
Narrative, 401

Setsch:

Set search control block, Code, 381, Narrative, 401

Setterm:

Suggestion for utility program, 448

Shadow PROM:

Used to load CP/M, 11

Short:

Minor change to C Language, 395

Single-density, single-sided:

Diskette format, 10

Single disk reset, 143

Skewing:

See Sector skewing

Skipping:

Skipping bad sectors on disk, 304

SPACE:

C program, shows used/free disk space, 420

Spare:

Suggestion for utility program, 448

Spare directory:

Debugging disk drivers, 367

Sparing:

Use of spare sectors on disk, 304

Sparse Random Files:

Problem, 44

Special version of CP/M:

Heath/Zenith, 55

SPEED:

C program, sets baud rates, 431

Srch_file:

Search for file, Code, 376, Narrative, 408

Index 499

Sstremp:
Substring compare, 373

Stack:
Filling with known pattern, 323

Stack overflow:
In interrupt service routine, 358

Standard BIOS:
Example code, 158

String scan:

Strscn, 372

String scan, uppercase:
Ustrscn, 372

Strscn:
String scan, 372

Structure:

Of CP/M, 5

Subroutine:

CCPM, Check if CP/M Version 2, 95

CDISK, Change Disk, 96

CREF, Create Random File, 135

DB$Blank, Display a blank, 344

DBS$SCAH, Convert A to ASCII Hex., 343

DBS$CRLEF, Display Carriage Return, Line Feed, 344

DB$Colon, Display a colon, 344

DB$Conin, Debug console input, 336

DB$Conout, Debug console output, 336

DBS$DAH, Display A in Hex., 343

DBSDHLH, Display HL in Hex., 343

DBS$Display$CALLA, Display call address, 343

DBS$Display, Main debug display, 338

DBSGHYV, Get Hex. Value, 348

DBS$Init, Debug initialize, 335

DBS$Input, Debug Port Input, 346

DBSMEMORY, Debug display of memory;registers,
325

DB$SMSG, Display Message, 345

DBS$MSGI, Display Message (In-line), 345

DBSOff, Turn debug output off, 337

DB$On, Turn debug output on, 337

DB$Output, Debug Port Output, 347

DBS$Pass, Decrement the pass counter, 337

DBSetPass, Set pass counter, 337

DIVHL, Divide HL by DE, 129

FOLD, Fold lowercase to upper, 93

FSCMP, Folded String Compare, 93

GAB, Get Allocation Block given Track/Sector, 128

GDTAS, Get Directory Track/Sector, 127

GETC, Get Character from Sequential File, 111

GETDPB, Get Disk Parameter Block Address, 126

GFA, Get File Attributes, 122

GMTAS, Get Maximum Track/Sector, 127

500 The CP/M Programmer’s Handbook

Subroutine (continued)

GNF, Get Next File matching ambiguous name, 104

GNTAS, Get Next Track/Sector, 128

GTAS, Get Track/Sector from Allocation block No.,
126

MSGOUT, Message Output, 74

MSGOUTI, Message Output In-Line, 74

MULHL, Multiply HL by DE, 129

OM, Output Message selected by A register, 89

OPENF, Open File given ASCII file name, 100

PUTC, Put Character to Sequential File, 113

RCS, Read Console String, 81 <

RF, Rename File, 117

RLSRDR, Read Line from Reader, 76

RO, Random File I/O (non-128-byte records), 136

RSA, Return Subprocessor Address, 93

SDLR, Shift DE,HL one bit right, 141

SFA, Set File Attributes, 122

SHLR, Shift HL right one bit, 130

SUBHL, Subtract DE from HL, 130

TERM, Terminal Emulator, 87

TOUPPER, Fold lowercase to upper, 84

WLSLST, Write Line to List Device, 79

WLS$PUN, Write Line to Punch, 78

Substring compare:

Sstrcmp, 373

Uppercase: Usstrcmp, 373

System file:

Attribute bit, 121

File status bit in file directory entry, 26

Not displayed by DIR, 51

System Reset:

BDOS Function 0, 71

T
TERM:
Example of Set/Get IOBYTE, 87

TIME:
C program, sets the time, 442

TYPE:

Type an ASCII file, 52

Tab:

Interaction of tab characters and escape sequences, 222
Tab expansion:

Supported by Write Console Byte, 73

Using Display $-Terminated String, 89

Termination of programs, returning to CCP: 45
Testbed:

Use for new drivers, 353

Time:

Correct display during debugging, 364
Keeping the current time in the BIOS, 224
Reading the time from the console driver, 223
Top of RAM:

Finding, via base page, 60

Track buffering:

Enhancement to disk 1/0, 231

Track offset:

See Traclks before directory

Tracks before directory:

In disk parameter block, 36

Transient Program Area:
Finding available size, 65
Typeahead: !
Concepts, 217

Dealing with buffer overflow, 219

U

Undo command line:

CONTROL-U, 49

UNERASE:

C program, restores erased files, 412
User Number:

Changing under program control, 131
Changing using USER, 53
Displaying, 54

In base page, 59

In file directory entry, 22 |
Patches to make this appear in CCP prompt, 235
Suggestion for utility program, 426
Usstremp: _

Uppercase substring compare, 373
Ustremp:

Uppercase string scan, 372

Utility programs: 371

\'J

Variable record lengths:
Processing in Random Files, 133, 134

w

WLSLST:

Example of Write List Byte, 79
WLSPUN:

Example of Write Punch Byte, 78
WRITE:

Write sector, in the BIOS, 155
Warm Boot:

After BDOS Error, 98

Warm Boot (continued)

BIOS functions, 150

Initiated by CONTROL-C, 47
Initiated by pressing a key, 94
Initiated by System Reset BDOS Function, 72
JMP at location 0000H, 55
Reloading the CCP, 45

Resetting Read-Only disks, 120
Setting default DMA Address, 118
Technique for avoiding, 66

Use of location 0000H, 13
Watchdog timer:

Concepts, 225

Debugging Real Time Clock, 364
Use for detecting printer errors, 224
Write Console Byte:

BDOS Function 2, 73

Write List Byte:

BDOS Function 5, 77

Write Punch Byte:

BDOS Function 4, 77

Write Random:

BDOS Function 34, 133

Write Random with Zero-fill:
BDOS Function 40, 144

Index

Write Sequential:

BDOS Function 21, 110

Write disk (via BIOS):

Wrt__disk, Code, 377, Narrative, 400

Wrt _disk: !

Write disk (via BIOS), Code, 377, Narrative, 400

X

Xoff:

CONTROL-S, 48

Xon:

CONTROL-Q, 49

Xon/Xoff:

Debugging character driver, 358, 362
Explanation of protocol, 240

PROTOCOL, C program to set protocols, 434
Supported by Read Console Byte, 72

Use by TYPE, 53

4

ZSID: _
Z80 Symbolic Interactive Debugger, 185, 350

501

