Classes of Errors

BIOS Error-Handling Functions
Practical Error Handling
Character 1/ O Errors

Disk Errors

Improving Error Messages

Dealing with
Hardware Errors

This chapter describes the enhancements you can make to improve CP/M’s
somewhat primitive error handling. It covers the general classes of errors that the
BIOS may have to handle. It describes some of the underlying philosophical
aspects of errors, how to detect them, and how to correct them or otherwise make
the best of the situation.

At the end of the chapter are some example error-handling subroutines. Some
of these have already been shown in the previous chapter as part of the enhanced
BIOS (Figure 8-10); they are repeated here so that you can see them in isolation.

Classes of Errors

Basically, the user perceives only two classes of errors — those that are user-
correctable and those that are not. There is a third, almost invisible class of
errors—those that are recoverable by the hardware or software without the user’s
intervention.

295

296 The CP/M Programmer’s Handbook

The possible sources for hardware errors vary wildly from one computer
system to another, since error detection is heavily dependent on the particular
logic in the hardware. The BIOS can detect some hardware-related errors — mainly
errors caused when something takes too long to happen, such as when a recalci-
trant printer does not react in a specified length of time.

The BDOS has no built-in hardware detection code. It can detect system errors,
such as an attempt to write to a disk file that is marked “Read-Only” in the file
directory or attempts to access files that are not on the disk. These BDOS-detected
errors, however, generally are unrelated to the well-being of the hardware. For
example, a disk controller with a hardware problem could easily overwrite a sector
of the directory, thereby deleting several files. This error would not show up until
the user tried to use one of the now-departed files.

BIOS Error-Handling Functions

The error-handling code in the BIOS has to serve the following functions:

Detection
Analysis
Indication
Correction.

Error Detection

Clearly, before any later steps can be taken, an error must be detected. Thiscan
be done by the software alone or by the BIOS interacting with error-detecting logic
in the hardware. In general, the only errors that the BIOS can detect unassisted are
caused when certain operations take longer to complete than expected. Because
the writer of the BIOS knows the operating environment of the specific peripherals
in the system, the code can predict how long a particular operation should take
and can signal an error when this time is exceeded. This would include such
problems as printers that fail to react within a specified time period. '

The BIOS can work in cooperation with the hardware to determine whether
the hardware itself has detected an error. Armed with the hardware’s specifica-
tions, the BIOS can input information on controller or device status to trigger
error-detecting logic. How this should be done depends heavily on the peripheral
devices in your computer system and the degree to which these devices have
“smart” controllers capable of processing independently of the computer. Un-
fortunately, many manufacturers document the significance of individual status
bits that indicate errors, but not combinations of errors, or what to do when a
particular error occurs.

Chapter 9: Dealing with Hardware Errors 297

Error Analysis

Given that your BIOS has detected an error, it must first determine the class of
error; that is, whether or not the error can be corrected by simply trying the
operation again. Some errors appear at first to be correctable, but retrying the
operation several times still fails to complete it. An example would be a check-sum
error while reading a disk sector. If several attempts to read the sector all yield an
error, then it becomes a “fatal” error. The code in your BIOS must be capable of
initial classification and then subsequent reclassification if remedial action fails.

Other types of errors can be classified immediately as fatal errors—nothing
can be done to save the situation. For example, if the floppy disk controller
indicates that it cannot find a particular sector number on a diskette (due to an
error in formatting), there is nothing that the BIOS can do other than inform the
user of the problem and supply other helpful information.

Analysis of errors may require some basic research, such as inducing failures in
the hardware and observing combinations of error indicators. For example, some
printers (interfaced via a parallel port) indicate that they are “Out of Paper” or
“Busy” when, in fact, they are switched off. The BIOS should detect this condition
and tell the user to switch the printer on, not load more paper.

Error Indication

An incomplete or cryptic error message is infuriating. It is the functional
equivalent of saying, “There has been an error. See if you can guess what went
wrong!”

An error message, to be complete, should inform the recipient of the following:

* The fact that an error has occurred.
Whether or not automatic recovery has been attempted and failed.

- The details of the error, if need be in technical terms to assist a hardware
engineer.

What possible choices the user has now.

To put these points into focus, consider the error message that can be output by
CP/M after you have attempted to load a program by entering its name into the
CCP. What you see on the console is the following dialog:

A myprog<{ery
BAD LOAD
A>

All you know is that there has been an error, and you must guess what it is, even
though the specific cause of the error was known to CP/M when it output the
message. This error message is output by the CCP when it attempts to load a

298 The CP/M Programmer’s Handbook

« COM” file larger than the current transient program area. The message “BAD
LOAD?” is only understandable after you know what the error is. Even then, itdoes
not tell you what went wrong, whether there is anything you can do about it, and
how to go about doing it.

To be complete, this error message could say something like this:

A> re
"MYPROG.COM" exceeds the available memory space by
1,024 bytes, and therefore cannot be loaded under the
current version of CP/M.

Notice how the message tells you what the problem s, and even quantifies it so
that you can determine its severity (you need to get 1K more memory or reduce the
program’s size). It also tells you how you stand—you cannot load this program
under the current version of CP/M, so retrying the operation is futile.

Not many systems programmers like to output messages like the example
above. They argue that such a message is too long and too much work for
something that does not happen often. Admittedly, the message is too long. It
could be shortened to read

(131) Program 1,024 bytes too large to load.

This conveys the same information; the number in parentheses can serve as a
reference to a manual where the full impact of the message should be described.

The major problem with the way error messages are designed is that they
usually are written by programmers to be read by nontechnical lay users, and
programmers are notoriously bad at guessing what nonexperts need to know.

Error indications you design should address the following issues, from the
point of view of the user:

- The cause of the error
- The severity of the error
The corrective action that has and can be taken.

Examine the error messages in the error processor for the example BIOS in
Figure 8-10, from line 03600 onward. Although these are an improvement on the
BDOS all-purpose

BDOS Error on A: Bad Sector

even these messages do not really meet all of the requirements of a good error
message system.

Another often overlooked aspect of errors is that most hardware errors forma
pattern. This pattern is normally only discernible to the trained eye of a hardware
maintenance engineer. When these engineers are called to investigate a problem,

Chapter 9: Dealing with Hardware Errors 299

they will quiz the user to determine whether a given failure is an isolated incident
or part of an ongoing pattern. This is why an error message should contain
additional technical details. For example, a disk error message should include the
track and sector used in the operation that resulted in an error. Only with these
details can the engineer piece together the context of a failure or group of failures.

Error Correction

Given that a lucid error message has been displayed on the console, the user is
still confronted with the question: “Now what do I do?” Not only can this be
difficult for the user to answer, but also the particular solution decided upon can
be hard for the BIOS to execute.

Normally, there are three possible options in response to errors:

+ Try the operation again
Ignore the error and attempt to continue
Abort the program causing the error and return to CP/M.

For some errors, retrying can be effective. For example, if you forget to put the
printer on-line and get a “Printer Timeout” error message, it is easy to put the
printer back on-line and ask the BIOS to try again to send data to the printer.

Seldom can you ignore an error and hope to get sensible results from the
machine; many disk controllers do not even transfer data between themselves and
the disk drive if an error has been detected. Only ignorant users, or brave ones in
desperation, ignore errors.

Aborting the program causing the error is a drastic measure, although it does
escape from what could otherwise be a “deadly embrace” situation. For example, if
you misassign the printer to an inactive serial port and turn on printer echoing
(with the CONTROL-P toggle), you will send the system into an endless series of
“Printer Timeout” messages. If you abort the program, the error handler in the
BIOS executes a System Reset function (function 0) in the BDOS, CP/M warm
boots, and control is returned to the CCP. In the process, the printer toggle is reset
and the circle is broken.

Practical Error Handling

This section discusses several errors, describing their causes and the way in
which the BIOS and the user can handle them when they occur.

Character I/O Errors

At the BIOS level, most detectable errors related to character input or output
will be found by the hardware chips.

300 The CP/M Programmer’s Handbook

Parity Error

Parity, in this context, refers to the number of bits set to 1 in an 8-bit character.
The otherwise unused eighth bit in ASCII characters can be set to make this
number always odd, or alternatively, always even. Your computer hardware can be
programmed to count the number of 1 bits in each character and to generate an
error if the number is odd (odd parity) or, alternatively, if it is even (even parity). If
the hardware on the other end of the line is programmed to operate in the same
mode, parity checking provides a primitive error-detection mechanism —you can
tell that a character is bad, but not what it should have been.

CP/M does not provide a standard mechanism for reporting a parity error, so
your only option is to reset the hardware and substitute an ASCII DEL (7FH;
delete) character in the place of the erroneous character.

If your BIOS is operating in a highly specialized environment, you may need to
count the number of such parity errors so that a utility program can report on the
overall performance of the system.

Framing Error

When an 8-bit ASCII character is transmitted over a serial line, the eight bits
are transmitted serially, one after the other. A start bit is transmitted first, followed
by the data character and then a szop bit. If the hardware fails to find the stop and
start bits in the correct positions, a framing error will occur. Again, the only option
available to the BIOS is to reset the hardware chip and substitute an ASCII DEL.

Overrun Error

This error occurs when incoming data characters arrive faster than the pro-
gram can handle them, so that the last characters overrun those being processed by
the hardware chip. This error can normally be avoided by the use of serial line
protocols, such as those in the example BIOS in Figure 8-10.

An overrun error implies that the protocol has broken down. As with the
parity and framing errors, almost the only option is to reset the hardware and
substitute a DEL character.

Printer Timeout Error

This is one of the few errors where the BIOS can sensibly attempt an error
recovery. The error occurs when the BIOS tries to output a character to a serial
printer and finds that the printer is not ready for more than, say, 30 seconds. The
most common cause of this error is that the user forgets to put the printer on-line.
Many printers require that they be off-line during a manual form feed, and users
will often forget to push the on-line button afterward.

After a 30-second delay, the BIOS can send a message to the console device(s)
informing the user of the error and asking the user to choose the appropriate
course of action. Note that console output can be directed to more than one device.

Chapter 9: Dealing with Hardware Errors 304

Parallel Printers

Printers connected to your system by means of a parallel port can indicate their
status to the computer much more easily than.can serial printers. They can
communicate such error states as “Out of Paper,” “End of Ribbon,” and “Off-line.”

These single-error indicators can also be used in combination to indicate
whether the printer cable is connected, or even whether the printer is receiving
power. You need to experiment, deliberately putting the printer into these states
and reading status in order to identify them. It is misleading to indicate to the
inexperienced user that the printer is “Out of Paper” when the problem is that the
data cable has inadvertently become disconnected.

However, each of these errors can be dealt with in the same way as the serial
printer’s timeout problem: display an error message and request the user’s choice
of action.

Example Printer Error Routine

Figure 9-1 shows an example of a program that handles printer errors. It
consists of several subroutines, including

+ The error detection classification and indication routine
+ The error correction routine.

It uses other subroutines that are omitted from the figure to avoid obscuring
the logic. These subroutines are listed in full in the example BIOS in Figure 8-10.

0000 =
0005 =

0000 00

0708 =

This example shows, in outline form, how to handle the
situation when a serial printer remains busy for tco long.
It is intended that this generic example show how to

deal with this class of errors.

The example presupposes the existence of a clock interrupt
every 16.666 milliseconds (1/60th of a second), and that
control will be transferred to the Real Time Clock service
routine each time the clock "ticks".

Figure 8-10 shows a more complete example, installed in a real

e NB we we NE uE ws we we v e wE we we

BIOS.

B$System$Reset EQU 0 sBDOS system reset function

BDOS EQU S sBDOS entry point

:

Printer$Timeout$Flag: DB o ;This flag is set by the interrupt
3 service subroutine that is called
$+ when the watchdcg timer subroutine
3 count hits zero (after having
3 counted down a 30-second delay)

Printer$Delay$Count EQU 1800 ;Given a clock period of 16.666 ms

3 this represents a delay of 30 secs

Figure 9-1.

Serial printer error handling

302 The CP/M Programmer’s Handbook

1
000D = CR EQU ODH sCarriage return
000A = LF EQU OAH sLine feed
1
Printer$Busy$Message:
0001 ODOA CR,LF
0003 S072696E74 DB ‘Printer has been busy for too long,”,CR,LF
0028 436865636B DB ‘Check that it is on-line and ready.’,CR,LF,0
7
004E 00 Printers$Character: DB o ;Save area for the data character
3 to be cutput
¥
1
LIST: Main BIOS entry point
Freavsons 1/0 redirection code occurs here
004F 79 MOV A, C the data character
0050 324E00 STA Printers$Character
Printers$Retry:
0053 010807 LXI B,Printer$Delay$Count sThis is the count of the number
; of clock ticks before the watchdog
;3 subroutine call
0056 217E00 LxI H,Printer$Timed$Out 3 <== this address
0059 CDA300 CALL SetsWatchdog ;Sets the watchdog running
Printer$Wait:
00SC CDA300 CALL Get$Printer$Status ;See if the printer is ready to
;s accept a character for output
;3 This includes checking if the printer
3 is "Busy" because the driver is
s waiting for XON, ACK, or DTR to
3 come high
005F C26C00 JNZ Printers$Ready ;The printer is now ready
0062 3A0000 LDA Printer$Timeout$Flag ;Check if the watchdog timer has
; hit zero (if it does, the
;3 watchdog routine will call
;s the Printer$Timed$0Out code
;5 that sets this flag)
0065 B7 ORA A
0066 C28400 JNZ Display$Busy$Message ;Yes, so display message to
; indicate an error has occurred
0069 C35C00 JMP PrintersWait ;Otherwise, check if printer is
3 now not busy
Printer$Ready: 3;The printer is now ready te cutput
; a character, but befocre doing so,
3 the watchdog timer must be reset
006C F3 DI ;Ensure no false timeout occurs
006D 010000 LXI B, O 3This is done by setting the count
0070 CDA300 CALL Set$Watchdog ;3 to zero
0073 FB EI
0074 IA4E0O LDA Printer$Character 3Get character to output
0077 11A300 LXI D,Printer$Device$sTable ;DE -> device table for printer
007A CDA300 CALL Output$Data$Byte ;Output the character to the printer
007D C9 RET 3;Return to the BIOS‘s caller
1
v
Printer$Timed$Out: ;Control arrives here fram the
; watchdog routine if the
3 watchdog count ever hits zerc
3 This is an interrupt service
3 routine
3All registers have been saved
3 before control arrives here
007E 3EFF MVI A, OFFH ;Set printer timeout flag
0080 320000 STA Printer$Timeout$Flag
0083 C9 RET sReturn back to the watchdcg
;Interrupt service routine
Figure 9-4. (Continued)

Chapter 9: Dealing with Hardware Errors 303

Display$Busy$Message: sPrinter has been busy for
3 30 seconds or more
0084 AF XRA A sReset timeout flag
0085 320000 STA Printer$Timeout$Flag B
0088 210100 LXI H,Printer$Busy$Message ;Output error message
008B CDA300 CALL Output$Error$Message
O0BE CDA300 CALL Request$User$Choice Displays a Retry, Abort, Ignore?

H

5 Prompt, accepts a character from
the keyboard, and returns with the
character, converted to upper
case in the A register

e

0091 FES2 CPI ‘R” Check if Retry
0093 CAS200 Jz Printer$Retry
009é FE41 CPI ‘A7 iCheck if Abort
0098 CAPEOQ Jz Printers$Abort
009B FE49 CPI 17 ;Check if Ignare
009D C8 RZ
Printers$Abort:
009E QEQQO MVI C,B$System$Reset iIssue system reset
00AQ CR0500 JMP BDOS 3No need to give call as

5 control will not be returned

Dummy subroutines
These are shown in full in Figure 8-10. The line numbers in
Figure 8-10 are shown in the comment field below

Printer$Device$Table: iLine 01300 (example layout)
Requests$User$Choice: sLine 03400
Output$Error$Message: sLine 03500
Get$Printer$Status: ;Line 03900 (similar code)
Output$DatasByte: sLine 05400 (similar code)
Set$Watchdog: sLine 05800

Figure 9-1. Serial printer error handling (continued)

Disk Errors

Disks are much more complicated than character I/O devices. Errors are
possible in the electronics and in the disk medium itself Most of the errors
concerned with electronics need only be reported in enough detail to give a
maintenance engineer information about the problem. This kind of error is rarely
correctable by retrying the operation. In contrast, media errors often can be
remedied by retrying the operation or by special error processing software built
into the BIOS. This chapter discusses this class of errors.

Media errors occur when the BIOS tries to read a sector from the disk and the
hardware detects a check-sum failure in the data. This is known as a cyclical
redundancy check (CRC) error. Some disk controllers execute a read-after-write
check, so a CRC error can also occur during an attempt to write a sector to the
disk.

304 The CP/M Programmer’s Handbook

With floppy diskettes, the disk driver should retry the operation at least ten
times before reporting the error to the user. Then, because diskettes are inexpen-
sive and replaceable, the user can choose to discard the diskette and continue with
a new one.

With hard disks, the media cannot be exchanged. The only way of dealing with
bad sectors is to replace them logically, substituting other sectors in their place.

There are two fundamentally different ways of doing this. Figure 9-2 shows the
scheme known as sector sparing—substituting sectors on an outer track for a
sector that is bad.

The advantage of this scheme is that it is dynamic. If a sector is found to be bad
in a read-after-write check, even after several retries, then the data intended for the
failing sector can be written to a spare sector. The failing sector’s number is placed
into a spare-sector directory on the disk. Thereafter, the disk drivers will be
redirected to the spare sector every time an attempt is made to read or write the
bad sector.

The disadvantage of this system is that the read/ write heads on the disk must
move out to the spare sector and then back to access the next sector. Thiscanbea
problem if you attempt to make a high-speed backup on a streaming tape drive
(one that writes data to a tape in a single stream rather than in discrete blocks). The
delay caused by reading the spare sector interrupts the data flow to the streaming
tape drive.

You need a special utility program to manipulate the spare-sector directory,
both to substitute for a failing sector manually and to attempt to rewrite a spare
sector back onto the bad sector.

Track 0 Track n
“Spare” Sector X
Directory
. . lea——— Drivers directed to use Sl\?(c)toxr l«———— Bad Sector
Spare < this spare sector instead of -
Sectors the bad one

Figure 9-2.

Sector sparing

Chapter 9: Dealing with Hardware Errors 305

Figure 9-3 shows another scheme for dealing with bad sectors. In this method,
bad sectors are skipped rather than having sectors substituted for them.

The advantage of sector skipping is that the heads do not have to perform any
long seeks. The failing sector is skipped, and the next sector is used in its place.
Because of this, sector skipping can give much better performance. Data can be
read off the disk fast enough to keep a streaming tape drive “fed” with data.

The disadvantage of sector skipping is that it does not lend itself to dynamic
operation. The bad sector table is best built during formatting. Once data has been
written to the disk, if a sector goes bad, all subsequent sectors on the disk must be
“moved down one” to make space to skip the bad sector. On a large hard disk, this
could take several minutes.

Example Bad Sector Management

Sector sparing and sector skipping use similar logic. Both require a spare-
sector directory on each physical disk, containing the sector numbers of the bad
sectors. This directory is read into memory during cold start initialization. There-
after, all disk read and write operations refer to the memory-resident table to see if
they are about to access a bad sector.

For sector sparing, if the sector about to be read or written is found in the spare
directory, its position in the directory determines which spare sector should be
read.

Skip
, 103 104 105 — 106 107 \
¢ -
Bad
Sector
p b)
< S
Spare Directory
Sector
106 - Marks sector bad. Add 1 to all sector

numbers greater or equal to 106 in order
207 \to get the correct physical sector.

Add 2 (this is the second entry in the

J directory) to all sectors greater or equal to

-~ ’ 207.

Figure 9-3.

Sector skipping

306 The CP/M Programmer’s Handbook

In the case of sector skipping, every access to the disk makes the driver check
the bad sector directory. The directory is used to tell how many bad sectors exist
between the start of the disk and the failing bad sector. This number must be added
to the requested track and sector to compensate for all the bad sectors.

The physical low-level drivers need four entry points:
- Read the specified sector without using bad sector management. This is used
to read in the spare directory itself.

- Write the specified sector without using bad sector management. This is
used to write the spare directory onto the disk, both to initialize it and to
update it.

. Read and write the sector using bad sector management. These entry points
are used for normal disk input/output.

Figure 9-4 shows the code necessary for both sector sparing and (using
conditional code) sector skipping.

This example shows the modifications to be made in arder
to implement bad sector management using sector sparing
and sector skipping.

7

0000 = ’ False EQU o
FFFF = True EQU Not False
i
0000 = Sector$Sparing EQU False
FFFF = Sector$Skipping EQU Not Sector$Sparing
7
1
L] Additional equates and definitions
7
Spares$Directories: y)Table of spare directory addresses

sNote: The directories themselves
;3 are declared at the end of the

BIOS
0000 DS00 DW SparesDirectory$0 sPhysical disk O
0002 9701 DW Spares$Directorys$l sPhysical disk 1

12
SparesDirInMemory: sFlags used to indicate whether spare
0004 00 DB (] ;s directory for a given physical disk
?

0005 00 DB o] has been loaded into memory. Set by SELDSK
1
0000 = Spare$Track EQU o] sTrack containing spare directory
3 sectors
0004 = Spare$Sector EQU 4 ;Sector containing directory
0005 = First$Spares$Sector EQU Spare$Sector + 1
H Variables set by SELDSK
Selected$Spare$Directory:
0006 0000 DW o] sPointer to directory
0008 00 Selected$Disk: DB o] ;Logical disk number
0009 00 Disk$Type: DB (o] sFloppy/hard disks
000A 00 Deblocking$Required: DB o sDeblocking flag
Q00B 00 Selected$Physical$Disk: DB (o] ;Physical disk number
000C 0000 Disk$Track: oW] ;) These variables are part of the command
000E 00 Disk$Sector: DB o] :) block handed over to the disk controller

Figure 9-4. Bad sector management

Chapter 9: Dealing with Hardware Errors

307

i
8000 = Maximum$Track EQU 32768 sUsed as a terminator
0012 = SectorsPerTrack EQU 18
0000 = First$Sector$On$Track EQU o]
Disk$Farameter$Headers:
3
sStandard DPH Declaraticns
7
7
H Equates for disk parameter block
3 The special disk parameter byte that precedes each disk
H parameter block, needs to be rearranged so that a
H pPhysical disk drive number can be added.
H Disk types
H vvvv-—= Physical disk number
0010 = Floppy$S EQU 0$001$0000B 35 1/4" mini floppy
0020 = Floppy$8 EQU 0$010$0000B ;8" floppy (SS SIN
0030 = M$Disk EQU 0$011$0000R iMemory disk
0040 = H$Disk$10 EQU 0$100$0000R iHard disk - 10 megabyte
12
0070 = Disk$Type$$Mask EQU 0$111$0000B sMasks to isolate values
Q00F = Physical$Disk$Mask EQU 0$000%$1111B
H Blocking/deblocking indicator
0080 = Need$Deblocking EQU 1$000$0000B sSector size > 128 bytes
H Disk parameter blocks
H
s Standard DPB“s for A: and B:
H
;Logical disk C:
;Extra byte indicates disk type
+ deblocking requirements and physical
5 disk drive.
000F CO DB H$Disk$10 + Need$Deblocking + O ; Physical drive O
Hard$S¢Parameter$Block$C:
;Standard format parameter block
1
0010 CO juc] H$Disk$10 + Need$Deblocking + O ; Physical drive O
HardsSParameter$Blocks$D:
sStandard format parameter block
0004 = Numbersoflogical$Disks EQU 4
7
SELDSK: ;Select disk in register C
sC = 0 for drive A, 1 for B, etc.
sReturn the address of the appropriate
3 disk parameter header in HL, or 000OH
3 if the selected disk does not exist.
0011 210000 LXI H, 0 sAssume an error
0014 79 MQV A,C ;Check if requested disk valid
0015 FEO4 CPI Numberoflogical$Disks
0017 DO RNC sReturn if > maximum number of disks
figure 9-4. (Continued)

308 The CP/M Programmer’s Handbook

0018 320800 STA Selected$Disk ;Save selected disk number
;Set up to return DPH address
001B &F Mov L,A sMake disk into word value
001C 2600 MVI H, 0
sCompute offset down disk parameter
s header table by multiplying by
s parameter header lenath (16 bytes)
001E 29 DAD H 3 %2
001F 29 DAD H ;%4
0020 29 DAD H ;%8
0021 29 DAD H P®16
0022 110F00 LXI D, Disk$Parameter$Headers ;Get base address
0025 19 DAD o ;DE -> appropriate DOFH
0026 'ES PUSH H ;Save DFH address
sAccess disk parameter block in order
3 to extract special prefix byte that
; identifies disk type and whether
s deblocking is required
0027 110A00 LXI D, 10 ;Get DPE pointer offset in DPFH
002A 19 DAD D sDE -> DPB address in D[FH
0028 SE MOV E,M ;Get DFE address in DE
002C 23 INX H
002D 56 MoV o.M
00ZE EB XCHG sDE -> DPB
SELDEKSetDisk$Types
002F ZB DCX H ;DE -> prefix byte
0030 7E MoV AM ;Get prefix byte
0021 E&70 ANI Disk$Type$Mask ;Isolate disk type
0033 320700 STA Disk$Type ;Save for use in low-level driver
0036 7E MOV AM ;Get another copy of prefix byte
0037 E680 ANI Need$lieblocking sIsclate deblocking flag
0039 320A00 STA Deblocking$Required ;Save for use in low-level driver
sAdditional code to check if spare
; directory for given disk has already
s been read in.
003C 7E MOV A M ;Get physical disk number
003D ESOF ANI Physical$Disk$Mask
003F 320B00 STA Selected$Physical$Disk ;Save for low-level drivers
0042 SF MoV E,A sMake into ward
0043 1600 MVI 0,0
0045 210400 LXI H, SparesDirInMemory sMake pointer into table
0048 19 DAD D
0049 7E MOV AM ;Get flag
004A B7 ORA A
004B C27700 JINZ DirInMemary ;Spare directory already in memory
004E 34 INR M ;Set flag
004F 210000 LXI1 H, Spares$Directories ;Create pointer to spare
0052 19 DAD D ;s spare directory (added twice
0053 19 DAD D ;s as table has word entries)
sHL -> word containing directory addr.
0054 SE MOV E.M
00SS 23 INX H
0056 Sé Mav D,M ;Spare directory address in [E
0057 EB XCHG sHL -> spare directory
0058 2204600 SHLD Selected$SparesDirectory ;Save for use in physical
3 drivers later on
00SB 110000 LXI D, Spare$Track sTrack containing spare directaory
00SE 3A0BOOQ LDA Selected$Physical$Disk
0061 47 MOV B, A
0062 3E04 MVI A,Spares$Sector ;Sector containing spare directory
00464 OE18 MVI C,Spare$Length/8 ;Number of bytes in spare directory / 8
0064 CDDSO0 CALL Absolute$Read sRead in spare directory - without
;s wusing bad sector management
Figure 9-4. (Continued)

Chapter 9: Dealing with Hardware Errors

309

0089
00sC
00&F
0070
0073
0074
007S

0077
0078

0079

007C
007D
0080
0081
0082

0083
0086

0089
008A
008B

008C

008D
008E
0091
0092

240600
11C000

2A0C00

3A0EQ0
aF

Q&FF

23
23
23

04

EB
2A0C00
EB
CDCDOO

LHLD Selected$SparesDirectory ;Set end marker
LXI D,SparesLength 3 at back end of spare directory
DAD D
LXT D, Maximum$Track sUse maximum track number
Mav M, E
INX H
MVI M, D
DirsIn$Memory:
H ;Recover DPH pointer

RET

LHLD Disk$Track

XCHG

LHLD Selected$Spares$Directory
DCX

nCx H

ncx H

LDA Disk$Sector

MOV C,A

MVI B, OFFH

Check$Next$Entry:
INX H
Check$Next$Entryl:

H

Check$Next$Entry2:

INX H

INR B

IF Sector$Sparing

LXI D,Maximum$Track

CALL CMPM

Jz NotBadSector

ENDIF

XCHG

LHLD Disk$Track

XCHG

CALL CMFM

IF Sector$Sparing

JINZ Check$Next$Entry

INX H

INX H

MoV A, C

CMP M

JNZ Check$Next$Entry2

In the low-level disk drivers,
inserted just before the disk controller is activated to
execute a read or a write command.

the following code must be

;Get track number from disk
3 controller command table
sDE = track

sHL -> spare directory
sBack up one entry

3 (3 bytes)

;Get sectar number
sSave for later

sSet counter (biased -1)

sUpdate to next (or first) entry

;Update count

sIf sparing is used, the

3 end of the table is indicated

¢ by an entry with the track number
3 = to maximum track number

;Get maximum track number

;Compare DE to (HL),
sEnd of table reached

(HL+1)

sNote: For sector skipping
the following search loop will
terminate when the requested track
is less than that in the table.
This will always happen when the
maximum track number is encountered
at the end of the table.

sDE -> table entry

sGet requested track

sDE = req. track, HL -> table entry
;Compare req. track to table entry

3Use the following code far
3 sector sparing

sTrack does not match

sHL -> MS byte of track

sHL -> sector

;Get requested sector
;Compare to table entry
sSector does not match

sTrack and sector match, so
;7 substitute spare track and
¢ appropriate sector

Figure 9-4.

(Continued)

310 The CP/M Programmer’s Handbook

0095
0098
009B

00%E
009F
00A0

00A1
00A2
00AS
00A8

00AB

O0AC
Q0AD
00AE

00RO
Q0R3

Q0B&
00B7
Q0BY
OOBC
00BD

00C0O

CASEQOQ
D2ACO0
C38900

23
23
77
BY
CAABOO
D2ACO0
C38B0O0O

04

79
80
0812

CRC300
320E00

59
1600
2A0C00
19
220C00

C3D500

LXI H, Spares$Track

SHLD Disk$Track

MVI A,First$SparesSector

ADD B

STA Disk$Sector

ENDIF

IF Sector$Skipping

Jz Tracks$Match

JNC Compute$Increment

JMP Check$Next$Entry
Tracks$Match:

INX H

INX H

MoV M, A

CMP Cc

JZ Sectors$Match

JNC Compute$Increment

JMP Check$Next$Entry2
Sectors$Match:

INR B

Compute$Increment:

MOV A, C
ADD B
MVI B,SectorsPerTrack
CALL DIVABY$B
STA Disk$Sector
MOV E,C
MVI 0,0
LHLD Disk$Track
DAD D
SHLD Disk$Track
ENDIF
NotRadSector:
JMP Read$Write$Disk
IF Sector$Skipping
DIVABYS$B

Divide A by B

This routine divides A by B,
and the remainder in A.

Entry parameters

A = dividend
B = divisor

o wE ws wa NE N NE we ws @ e we N e

Exit parameters

sGet track number used for spare
;3 sectors
sSubstitute track

;Get first sector number
;Add on matched directory
s entry number
;Substitute sector

;Use the following code for

;3 sector skipping

;The object is to find the
entry in the table which
is greater or equal to the
requested sector/track

;Possible match of track and sector
sRequested track < table entry
;Requested track > table entry

sHL -> MS byte of track
sHL -> sector
;Get sector from table

;Compare with requested sector
s Track/sector matches

;Req. trk/sec < spare trk/sec
sMove to next table entry

sIf track and sectors match with
;3 a table entry, then an additional
;3 sector must be skipped

3B contains number of cumulative
s number of sectors to skip
;Get requested sector

;Skip required number

sDetermine final sector number

;3 and track increment
;Returns C = quotient,
;A = new sector number

A = remainder

;Make track increment a word

;Get requested track
sAdd on increment
sSave updated track

sEither track/sector were not bad,

s or requested track and sector have
; been updated.

;Go to physical disk read/write

;Subroutine required for skipping
s routine

returning the gquotient in C

Figure 9-4.

(Continued)

Chapter 9: Dealing with Hardware Errors

314

00CS oC
00Cé 90

00CA
00CB 80
00CC C9

0ooCDh 7€
O0CE BA
O00CF CO
00D0 23
0o0D1 7E
00D2 BB
00D3 2B
00D4 C9

. e

remainder
quotient

A
C

H
DIVSA$SRYS$E:

00C3 OE0O

MVI '‘c,0 sInitialize quotient

DIVABYBLoop:

00C7 F2CS500
oD

(N8 %8 N8 we wn e s wE e uB e ue s we N we e

3
3
=

Cc s Increment quotient
SUB B sSubtract divisor

JP DIV$ASBY$B$Loop ;Repeat if result still +ve
DCR C sCorrect quotient

ADD B ;Correct remainder

RET

ENDIF

CMPM
Compare memory

This subroutine compares the contents of DE to (HL) and (HL+1)
returning with the flags as though the subtraction (HL) - DE
were perfarmed.

Entry parameters

HL => word in memory
DE = value to be compared

Exit parameters

Flags set for (HL) - DE

MoV M ;Get MS byte
CMP
RNZ
INX
MoV
CMP
DCX
RET

;Return now if MS bytes unequal
sHL -> LS byte
;Get LS byte

Im»r o>
x

sReturn with HL unchanged

Absolute$Read:

e ws ve s we we v e

sThe absclute read (and write) routines

3 access the specified sector and track

3 without using bad sector management.
Entry parameters

HL -> Buffer

DE = Track

A = Sector

B = Physical disk drive number
C = Number of bytes to read / 8

Set up disk controller command block with parameters in
registers, then initiate read operation by falling through
into Read$Write$Disk code below.

ead$WritesDisk:

The remainder of the low level disk drivers follow,
reading the required sector and track.

Spare directory declaraticns

Note: The disk format utility creates an initial spare
directory with track/sector entries for those track/sectors
that it finds are bad. It fills the remainder of the
directory with OFFH’s (these serve to terminate the
searching of the directory).

Figure 9-4.

(Continued)

312 The

CP/M Programmer’s Handbook

H
00CO = SpareslLength EQU &4 ® 3 ;44 Entries, 3 bytes each
;3 Byte 0,1 = track
; Byte 2 = sector
Spares$Directory$0:
00DS D SparesiLength ;Spare directory itself
0195 ns 2 3Set to maximum track number by SELDSK as
s a safety precaution. The FORMAT utility
;5 puts the maximum track number into all
s unused entries in the spare directory.
Spare$Directory$l:
0197 Ds SparesLength ;Spare directory itself
0257 Dns 2 sEnd marker
Figure 9-4. Bad sector management (continued)

Improving Error Messages

The final extension to BIOS error handling discussed here is in disk-driver
error-message handling. The subroutine shown in the example BIOS in Figure
8-10, although a significant improvement on the messages normally output by the
BDOS, did not advise the user of the most suitable course of action for each error.
Figure 9-5 shows an improved version of the error message processor.

0001
0002

0000

0043

0001
0002
0003
0004

This shows slightly more user-friendly errar processor
for disk errors than that shown in the enhanced BIOS
in Figure 8-10.

This version outputs a recommended course of acticn
depending on the nature of the errcr detected.

Code that remains unchanged from Figure 8-10 has been
abbreviated.

Dummy equates and data declarations needed to get
an error free assembly of this example.

o we v s ws we we ws we v

= Floppy$Read$Code EQU O1H sRead command for controller
= Floppy$Writes$Code EQU 02H ;Write command for controller
;
00 Disk$Hung$Flag: DB o sSet NZ when watchdog timer times
5 out
= Disk$Timer EQU 600 ;10-second delay (16.6éms tick)
12
= Disk$Status$Block EQU 43H ;Address in memory where controller
3 returns status
sValues from controller command table
00 Floppy$Command: DB o]
00 Floppy$Head: DB [o]
00 Floppy$Track: DE (o]
00 Floppy$Sector: DB [¢]

Figure 9-5.

User-friendly disk-error processor

313

Chapter 9: Dealing with Hardware Errors

0005

0006
0007

0007
000D
000A

0005

0008

O00R
000D

0010
0012

0015
0016

0019
0o1C
001F

0022
0023
0024
0027
002A
002R

002E

0031
0033

0036

00.

00

00

C31500

3E02
C31200

3E01

320100

AF
320000

213100
015802
CD3RO3

7€
B7
CA3700
3A0000
B7
C29Fo02

€32200

3E40
320000

c9

Deblocking$Required: DB (o] 3Flag set by SELDSK according
7 to selected disk type

Disk$Error$Flag: DB [d] ;Error flag returned ta BDOS

H

In$Buffer$Disk: DR g sLogical disk Id. relating to current
3 disk sector in deblacking buffer

B

; Equates for Messages

1

BELL EQU O7H ;Sound terminal bell

CR EQU ODH sCarriage return

LF EQU 0AH sLine feed

12

BDOS EQU S sBDOS entry point (for system reset)

7

No$Deblock$Retry:

Omitted code to set up disk controller command table
and initiate the disk operaticn

[T

MP
7

;
Write$Physical:

MVI

JMP
Read$Physical:

MVI

Common$FPhysical:

STA

¥
Deblock$Retry:

Wait$Fors$DisksComplete

A,Floppy$WritesCode
Common$Physical

A,Floppy$Read$Code

Floppy$Command

sWrite contents of disk buffer to
3 correct sectar
;Get write function code

1Go to common code
:Read previously selected sector
7 into disk buffer
1Get read function code

;Set command table

sRe—entry point to retry after error

Omitted code sets up disk controller command block
and initiates the disk operaticn

7
Wait$ForsDisk$Complete:

XRA
STA

LXI

LXI

CALL
Disk$Wait$lLoop:

MOV

ORA

Jz

LDA
ORA
JNZ
Jmp
Disk$Timed$Cut:
MVI
STA

RET

A
Disk$Hung$Flag

H,Disk$Timed$Cut

B,Disk$Timer
Sets$Watchdog

A M

A
Disk$Complete
Disk$Hung$Flag
A

Disk$Error

Disk$WaitslLoop

A, 40H
Disk$Hung$Flag

sWait until disk
operation has completed,
i if any errors aoccurred
30n entry HL -> disk control byte
;Ensure hung flag clear

status block indicates
then check

;Set up watchdog timer
:Time delay

;1Get control byte
;Operation done

sAlso check if timed out

sWill be set to 40H

;Control arrives here from watchdog
7 routine itself -- so this is effectively
t pPart of the interrupt service routinen
;Set disk hung error code
7 into error flag to pull
3 control out of loop
sReturn to watchdog routine

Figure 9-5.

(Continued)

314 The CP/M Programmer’s Handbook

Disk$Complete:
0037 010000 LXI B,O ;Reset watchdog timer
sHL is irrelevant here
003A CD3BO3 CALL SetsWatchdog
003D 3A4300 LDA Disk$Status$Block ;Complete —— now check status
0040 FE80 CPI 80H sCheck if any errors occurred
0042 DAPFO2 Jc Disk$Error ;Yes
;
Disk$Error$lgnore:
0045 AF XRA A sNo
0046 320600 STA Disk$Error$Flag ;Clear error flag
0049 C9 RET
7
3 Disk error message handling
H
3
Disk$Error$Messages: 3This table is scanned, comparing the
3 disk error status with those in the
;3 table. Given a match, or even when
3 the end of the table is reached, the™
;3 address following the status value
;s points to the correct advisory message text.
;3 Following this is the address of an
3 error description message.
004A 40 DB 40H
004B B0OO19500 ju) Disk$Advicel,Disk$Msg$40
004F 41 DR 41H
0050 C9019A00 DW Disk$Advice2,Disk$Msg$4l
0054 42 DB 42H
00SS E301A400 DW Disk$Advice3,Disk$Msg$42
0059 21 DB 21H
005A Q702B400 DW Disk$Advice4d,Disk$Msg$21
005E 22 DB 22H
00SF 1BO2B?00 oW Disk$Advice5, Disk$Msg$22
0063 23 DB 23H
0064 1B02C0O00 DW Disk$AdviceS,Disk$Msg$23
0068 24 DB 24H
0069 3D02D200 DW Disk$Advices,Disk$Msg$24
004D 25 DB 25H
004E 3ID02DEOO DW Disk$Advices, Disk$Msg$25
0072 11 DE 11H
0073 S302F100 DW Disk$Advice7,Disk$Msa$ll
0077 12 DB 12H
0078 S302FF00 DW Disk$Advice7,Disk$Msg$12
0Q07C 13 DR 13H
007D S3020C01 oW Disk$Advice7,Disk$Msg$13
0081 14 DR 14H
0082 S53021A01 oW Disk$Advice7,Disk$Msa%14
0086 1S DB 15H
0087 53022901 DW Disk$Advice7,Disk$Msg$1S
008B 16 DB 16H
008C S3023501 Dw Disk$Advice7,Disk$Msg$16
POY0 00 DB o} ;<== Terminator
0091 53024501 DW Disk$Advice7,Disk$Msg$lnknown sUnmatched code
0005 = DEM$Entry$Size EQU S sEntry size in error message table
H
1
H Message texts
0095 487S6ES700DiskMsg40: DB “Hung”, 0 ;Timeout message
009A A4E6F742052DiskMsg4al: DR “Not Ready’,0
00A4 S5772697465DiskMsg42: DB “Write Protected’,0
Q0B4 4461746100DiskMsg21: DB “Data’,0
O0B? 466F726D61DiskMsg22: DB “Format”, 0
00CO 4D69737369DiskMsg23: DR “Missing Data Mark’,0
00D2 4275732054DiskMsg24: DB “Bus Timecut”,0
OODE 436F6E7472DiskMsg25: DB “Controller Timeout’,0
OOF1 4472697665DiskMsg1l: DB ‘Drive Address”,0
OOFF 4865616420DiskMsa12: DB “Head Address’,0
010C S47261636BDiskMsg13: DB “Track Address’,0

Figure 9-5.

(Continued)

Chapter 9: Dealing with Hardware Errors

315

011A S536563746FDiskMsg14: DB “Sector Address’,0
0129 4275732041DiskMsg15: DB ‘Bus Address’,0
0135 496C6CE567DisksMsg$16: DB “Illegal Command”,0
0145 SSEE6BSESFDiskMsgUnknown: DB “Unkncwn’, 0
H
DiskEM1: iMain disk error message -- part 1
014D 070D0A DB BELL,CR,LF
0150 4469736B20 DR “Disk 7,0
7
;Error text output next
12
DiskEM2: sMain disk error message -- part 2
0156 204572726F DB < Errar (7
01SE 0000 DiskEMStatus: DB 0,0 ;Status code in hex
0140 290D0A2020 DB “)*,CR,LF,” Drive ~
014E 00 DiskEMDrive: DB 0 sDisk drive code, A,R...
016F 2C20486561 DB “, Head ~
0176 00 DiskEMHead: DB [o] ;Head number
0177 20205472681 DB 7, Track -
017F 0000 DiskEMTrack: DB 0,0 ; Track number
0181 2C20536563 DB “, Sector “
018A 0000 DiskEMSector: DB 0,0 sSector number
018C 2C204F 7065 DB “, Operation - -~
01%9A 00 DB [o] sTerminator
019B 526561642EDiskEMRead: DB “Read.”,0 sOperation names
01A1 5772697465DiskEMWrite: DB ‘Write.”,0
12
01A8 OD0A202020Disk$AdviceO: DB CR,LF,” ‘.0
01BO 436865636BDisk$Advicel: DB “Check disk loaded, Retry’,0
01C9 DS06F737369DisksAdvice2: DB ‘Possible hardware problem’,0
01E3 S5772697485Disk$Advice3: DB “Write enable if correct disk, Retry~’,0
0207 S265747279DisksAdvices: DR ‘Retry several times”,0
021B 5265666F72Disk$AdviceS: DB “Reformat disk or use another disk”,0
0230 4861726477Disk$Adviceéd: DB “Hardware error, Retry’,0
0253 4861726477Disk$Advice7: DB “Hardware or Software error, Retry’,0
0275 2C206F7220Disk$Advice?: DB “, or call for help if error persists,CR,LF
7
Disk$Action$Confirm:
029B 00 DB (4] ;Set to character entered by user
029C ODOAOO DB CR,LF,0
H Disk error processor
; This routine builds and outputs an error message.
H The user is then given the opportunity to:
H
H R -- retry the operation that caused the error
3 I -- ignore the error and attempt to continue
H A -- abort the program and return to CP/M
3
Disk$Error:
029F FS PUSH PSW sPreserve error code from controller
02A0 215E01 LXI H,DiskEMStatus ;Convert code for message
02A3 CD3BO3 CALL CAH ;Converts A to hex
02A6 3A0700 LDA InsBuffers$Disk sConvert disk id. for message
02A9 Cé41 ADI ‘A7 iMake into letter
02AB 326E01 STA DiskEMDrive
02AE 3A0200 LDA Floppy$Head ;Convert head number
02B1 Cé30 ADI 707
02B3 327601 STA DiskEMHead
02B6 3A0300 LDA Floppy$Track sConvert track number
02BY 217F01 LXI H,DiskEMTrack
02BC CD3BRO3 CALL CAH
02BF 3A0400 LDA Floppy$Sector ;Convert sector number
02C2 218A01 LXI H,DiskEMSector
02C5 CD3BO3 CALL CAH
02C8 214D01 LXI H,DiskEM1 ;Output first part of message
02CB CD3R03 CALL Qutput$Error$Message
Figure 9-5. (Continued)

316

The CP/M Programmer’s Handbook

02CE F1 POP PSW sRecover error status code
02CF 47 MoV B, A sFor comparisons
0200 214500 LXI H,Disk$Error$Messages — DEM$Entry$Size
sHL => table -- one entry
0203 110500 LXI1 D, DEM$Entrys$Size :For loop below
Disk$Error$Next$Code:
02Dé 19 DAD D sMove to next (or first) entry
0207 7€ MOV AM ;Get code number from table
0208 B7 ORA A ;Check if end of table
02D9 CAE302 JzZ Disk$Error$Matched ;Yes, pretend a match occurred
02DC B8 CMP B sCompare to actual code
02DD CAE3202 Jz Disk$Error$Matched iYes, exit from loop
02E0 C3D602 JMP Disk$Error$Next$Code ;Check next code
Disk$Error$Matched:
02E3 23 H sHL -> advisory text address
02E4 SE MoV E,M
02ES 23 INX H
02E& S6 MOV D,M sDE -> advisory test
02E7 DS PUSH D ;Save for later
O2E8 23 INX H 3HL —-> message text address
02E9 SE MOV E,M ;Get address into DE
02EA 23 INX H
02EB Sé MoV o.M
02EC EB XCHG sHL -> text
02D CDIRO3 CALL Qutput$Error$Message sDisplay explanatory text
02F0 215601 LXI H, DiskEMS2 sDisplay second part of message
02F3 CD3BOR CALL Outputs$Error$Message
02Fé 219BO1 LXI H, DiskEMRead ;Choose operation text
3 (assume a read)
02F9 3A0100 LDA Floppy$Command ;Get controller command
02FC FEO1 CPI, Floppy$Read$Code
02FE CA0403 Jz Disk$Error$Read sYes
0201 21A101 LXI H,DiskEMWrite sNo, change address in HL
Disk$Error$Read:
0304 CDIRO3 CALL Output$Error$Message sDisplay operation type
0307 21A801 LXI H,Disk$AdviceO ;Display leading blanks
020A CD2BEO3 CALL Output$Error$Message
030D E1l POP H sRecover advisory text pointer
030E CD3BO3 caLL Output$Error$Message
0311 217502 LXI H,Disk$Advice?9 sDisplay trailing component
0314 CD3BO3 CALL Cutput$Error$Message
Disk$Error$Request$Action: sAsk the user what to do next
' 0317 CD3BO3 ALL Request$User$Choice sDisplay prompt and get single
3 character response (folded to
3 uppercase)
031A FES2 CPI ‘R” sRetry
031C CA2C03 Jz Disk$Error$Retry
031F FEA1 CPI ‘A’ sAbort?
0321 CA3603 Jz System$Reset
0324 FE49 CPI ‘17 sIgnore?
0326 CAA4500 Jz Disk$Errors$lgnore
0329 C31703 JMP Disk$Error$Request$Action
Disk$Error$Retry: $The decision on where to return to
3 depends on whether the operation
s failed on a deblocked or
3 nondeblocked drive
032C 3A0500 LDA Deblocking$Required
032F B7 ORA A
0330 C21500 JUNZ Deblock$Retry
0333 C30800 JMP No$Deblock$Retry
Figure 9-5. (Continued)

Chapter 9: Dealing with Hardware Errors 317

i
System$Reset: sThis is a radical approach, but
5 it does cause CP/M to restart
0336 OE0O MVI c,0 ;System reset
0338 CDOS00 CALL BDOS

Omitted subroutines (listed in full in Figure 8-10)

;
SetsWatchdog: sSet watchdog timer (to number of "ticks" in BC, and

3 to transfer control to (HL) if timer hits zerc).
CAH: ;Convert A to two ASCII hex characters, storing

3 the ocutput in (HL) and (HL+1)
Qutput$Error$Message: sDisplay the 00-byte terminated errcr message
pointed to by HL. Output is directed only to
those console devices not being used for list
output as well.
Display prompt "Enter R, A, I..." and return
single keybcard character (uppercase) in A
Dummy

.

Requestslser$Choice:

033E C9 RET H

Figure 9-5. User-friendly disk-error processor (continued)

Basic Debugging Techniques

Debug Subroutines

Software Tools for Debugging

Bringing Up CP/M for the First Time

Debugging the CP/M Bootstrap
Loader

Debugging the BIOS

Live Testing a New BIOS

Debugging A New
CP/M System

This chapter deals with some of the problems you will face bringing up CP/M
on a computer system for the first time or enhancing it once it is up and running on
your system.

In the first case, when CP/M does not yet run on your computer, you may be
writing the complete BIOS yourself, although you can model what you do on the
example BIOS provided on the CP/M release diskette and the example code from
Chapter 6.

In the second case, you can extend the existing BIOS by adding code —from
the examples in Chapters 8 and 9, code from computer magazines, or code you
create yourself. To do this, you will need access to the BIOS source code —a
problem if the manufacturer of your computer does not make it available. In
general, however, the BIOS source code is included with the system or can be
obtained at nominal or no cost. If you cannot obtain the source code, you can, of

319

320 The CP/M Programmer’s Handbook

course, take the bull by the horns and reimplement CP/M on your system. This
may require many hours of disassembling the current BIOS machine code to find
out how to access all the various ports and how to control the devices to which they
are connected.

Although the BIOS is the major component of a new CP/M implementation,
remember that it is only the beginning — you can spend the same amount of time
and effort getting the bootstrap loader and all the utilities to function.

Basic Debugging Techniques

Before getting involved in the details of how to debuga CP/M implementation,
it is worth considering the nature of the task. Some quotations that are appropri-
ate here:

“Program testing can be used to show the presence of bugs, but never to show

their absence.” — Dijkstra
“We call them bugs because to call them mistakes would be psychologically
unacceptable.” — Hopkins
“Constants aren’t, variables won’t.” — Osborne

Debugging is the name we give to the process of executing programs and
ascertaining whether the programs are running correctly. “Correctly” means in
accordance with the mental model we have built of how the program should
behave, subject to the constraints imposed by the physical hardware. Therein lies
the first of the problems; you and the hardware are the arbiters of correct
performance. The hardware is usually unforgiving; if there is a flaw in the way you
program it, it will either be dramatically “uncooperative” or not work at all. As for
how you perceive the system, several fairly simple tests, along with attempts to use
the system for useful work for a few days, will shake the system down fairly well.
The most difficult problems will be with intermittent failures or logical con-
tradictions.

Computers are deterministic. That is, if you start from a known state and
perform a known series of operations, the computer will always yield the same
results. To achieve a known state is not so difficult —resetting the system and
clearing memory will do it. Performing a known series of operations just means
running the program again, although if you are using interrupts, you cannot
truthfully say that exactly the same operations are being performed, because the
interrupts will not happen at exactly the same time as before.

The “Orville Wright” Approach

Your role in debugging a new CP/M system is comparable to the popular,
though untrue, idea of the way the Wright brothers developed flying machines:

Chapter 10: Debugging a New CP/M System 321

build a machine, take it to the top of a hill, throw it off, and, when it crashes,
examine the debris to discover what went wrong.

Each time you do an assembly and test, you are building the aircraft and
lobbing it off the edge of a cliff. Each time it crashes, you examine the wreckage
and try to determine the possible cause.

This is a highly inferential process. With the wreckage as a starting point, you
use inference and intuition to extrapolate the real problem and the correction for
it.

Built-In Debug Code

The single most important concept that you will need in testing CP/M systems
is the same as that used in the modern day “black box” flight recorder. This device
is essentially a multi-channel tape recorder that records all of the relevant condi-
tions of the aircraft, its height, altitude, throttle settings, flap settings, and even the
voice communications among crew members. If the airplane crashes, investigators
can replay the information and understand what happened during the flight.

Applying this concept to debugging CP/M means that you must build into
your code some method for recording what it is doing, so that if the system crashes,
you can see what it was doing. Make the code tell you what went wrong.

The debug code should be designed at the same time as the rest of the program.
Plan the debugging code while the design is still on the drawing board. The source
code for debugging should be a permanent part of the BIOS. Use conditional
assembly to “IF” out most of the debug code from the final version, or make the
code sensitive to a flag in the configuration block so that you can re-enable the
debug code at a moment’s notice if the system begins to behave strangely.

The more meaningful the debug output data, the less you will have to guess at
what is wrong, and therefore the less painful and time-consuming the debugging
process will be. Make the output intelligible to others who may use it or yourself
several months hence. Data that tells you what is happening is more useful than
internal hexadecimal values, particularly if someone else must interpret it or relay
it to you over the telephone.

Debug Subroutines

Many programmers do their debugging on a casual “catch as catch can” basis
because they are overwhelmed by the task of building the necessary tools. Others
aretoo eager to start on a new program to take a few extra hours or days to build
debug subroutines.

To help solve this problem, the following section provides some ready-made
debugging tools that can be used “as.is.” Each of these routines has been thor-

322 The CP/M Programmer’s Handbook

oughly debugged (there’s nothing worse than debug code with bugs in it!) and has
been used in actual program testing.

Overall Design Philosophy

Some common methods run through the examples that follow. These include
displaying meaningful “captions” (including the specific address that called the
debug routine), grouping all debugging code together, preserving the contents of
all registers, and setting up the stack area in a standard way.

Debug Code Captions When the contents of registers or memory are output as part of a
debugging process, a caption of explanatory text describing the values should be
displayed. For example, rather than displaying the contents of the A register like
this,

A = IF
you can use a meaningful caption such as:
Transaction Code A = 1F.

When you write additional debugging code, especially if you need to add it to
an existing routine, it is cumbersome to have to write the call to the debug routine
and then search through the source code to find a convenient place to put an
ASCII caption string. A caption string several pages removed from the point
where it is referenced makes for problems when you want to relate the debug
output on the screen or listing to the source code itself. Therefore, all of the
routines that follow allow you to declare the caption strings “in-line” like this:

IF DEEBLG

CALL Debug$Routine

DB “Caption string here’,CR,LF,0
ENDOIF

MVI e sNext instruction

All of the following routines that output a caption recognize one specific 8-bit
value in the caption string. If they encounter a value of 0ADH (mnemonic for
ADdress), they will output the address of the byte following the call to the debug
routine. For example,

0210 CALL Debug$Routine
0213 DE OADH, “Caption string’,0

will cause the routine to display the following:
0213 Caption string

This identifies the point in your program from which the debug routine was
called, and thus avoids any possible ambiguity between different calls to the same
debug routine with similar captions.

Chapter 10: Debugging a New CP/M System 323

Grouping Debug Code Grouping all the debug code together lends itself to using con-
ditional assembly with IF/ENDIF statements.

Setting Up the Stack Area All of the following routines preserve the CPU registers so
that there are no side effects from using them. All of them assume that they can use
the stack pointer and that there is sufficient room in the stack area. Hence you will
need to declare adequate stack space for your main code and for the debug
routines. Fill the stack area with a known pattern like this:

DW 9IIIH, YIVIH, P999H, ?FIVH, YYIVH, YIVIIH, -/'? ?‘;IH F92IH
jal?) 99FIH, Y99IH, FYIVH, FIIVH, FPIVH, FI9TIH, E 2

DW 9999H, 9999H, 9999H, 99P?VH, ¥TIIH, FIFIH, C/';wa -/9':1 “H
Stack$Area: sLabel the upper end of the area

Then, during debugging, you can examine the stack area and determine how
much of it is unused. For example, if you looked at the stack area you might see
something like this:

"Low-water mark"
v
99 99 97 99 99 99 99 IP 9F IV YV VI 0F 15 43 42

01 29 00 Q0 1A 2B 10 FF FF 39 02 ED 11 01 27 44
DO Q0 00 11 1A 23 31 00 41 AE FE 00 01 10 70 C?

Stack area overflow can give arcane bugs; the program seems to leap off into
space in a nondeterministic way. By setting up the stack area in this way, you can
recognize an overflow condition easily.

Debug Initialization Before you can execute any of the debug subroutines in this chapter,
you must make a call to the initialization subroutine, DBS$Init. The DB$Init
routine sets up some of the internal variables needed by the debug package. You
may need to add some of your own initialization code here.

Console Output

Normally, you can use the CONOUT functions either via the BDOS (Function
2), or via the BIOS by calling the jump vector directly. You cannot do this when you
need to debug console routines themselves, nor when you need to debug interrupt
service routines. In the latter case, if an interrupt pulled control out of the
CONOUT routine in the BIOS, you would get unwanted re-entrancy if the debug
code again entered the CONOUT driver to display a caption. Therefore, the debug
routines have been written to call their own local CONOUT routine, which is called
DBS$CONOUT. DBSCONOUT can be changed to call the BDOS, the BIOS, or a
“private” polled output routine.

A counterpart DBSCONIN routine for console input is provided for essen-
tially the same reasons.

324 The CP/M Programmer’s Handbook

Controlling Debug Output

All output of debug routines in this chapter is controlled by a single master
flag, DB$Flag. If this flag is nonzero, debug output will occur; if zero, all output is
suppressed.

This flag can be set and cleared from any part of the program you are testing. It
is especially useful when you need to debug a subroutine that is called many times
from many different places. You can write additional code to enable debug output
when certain conditions prevail; for example, when a particular track or sector is
about to be written or when a character input buffer is almost full.

Two subroutines, DB$SOn and DBS$Off, are shown that access the debug
control flag. These, as their names suggest, turn debug output on and off.

Turning the debug output on and off from within the program can create a
confusing display of debug output, lacking any apparent continuity. DB$Off gives
you the option of outputting a character string indicating that debug output has
been turned off.

Pass Counters

Another method of controlling debug output is to use a pass counter, enabling
debug output only after control has passed througha particular point in the code a
specific number of times.

Two subroutines are provided for this purpose. DBSetPass sets the pass
counter to a specific value. DB$Pass decrements this pass count each time control
is transferred to it. When the pass count hits zero, the debug control flag DB§Flag
is nonzero and debug output begins.

Using pass counter techniques can save you time and effort in trackingdowna
problem that occurs only after the code has been running for several minutes.

Displaying Contents of Registers and Memory

Figure 10-2 shows a series of display subroutines, the primary one of which is
DBS$Display. It takes several parameters, depending on the information you want
displayed. The generic call to DB$Display is as follows:

CALL DB$Display

DE Code <— Indicates the data to be
displayed

iDW Opticonal additional parameters}

DE “Caption string”,0

The codes that can be used in this call are shown in Table 10-1.
The only function that uses additional parameters is DB$Memory. This dis-
plays bytes from memory in hexadecimal and ASCII, using the start and finish

Chapter 10: Debugging a New CP/M System

addresses following the call. Here is an example:

CALL DB$Display

DB OERsMemory

DW Start$Address, End$Address
DE “Caption string”, 0

325

Table 10-4. Codes for DB$Display
Code Value displayed
8-bit registers
DBSF Condition Flags
DBSA Register A
DBS$B Register B
DBS$C Register C
DB$D Register D
DBSE Register E
DB$H Register H
DBSL Register L
Memory
Bytes starting and ending at the addresses
DB$Memory specified by the two word values following
the code value.
16-bit registers
DBS$BC Register pair BC
DBS$DE Register pair DE
DB$HL Register pair HL
DBS$SP Stack Pointer
Byte values
DBBBC Byte addressed by BC
DB$BSDE Byte addressed by DE
DB$BSHL Byte addressed by HL
Word values
DBWBC Word addressed by BC
DBSWS$DE Word addressed by DE
DBSWSHL Word addressed by HL

326 The CP/M Programmer’s Handbook

Debugging Program Logic

In addition to displaying the contents of registers and memory, you need to
display the program’s execution path, not in terms of addresses, but in terms of the
problem. You can do this by displaying debug messages that indicate what deci-
sions have been made by the program as it executes. For example, if your BIOS
checks a particular value to see whether the system should read or write on a
particular device, the debug routine should display a message like this:

Entering Disk Read Routine

This is more meaningful than just displaying the function code for the drivers —
although you may want to display this as well, in case it has been set to some
strange value.

Two subroutines are provided to display debug messages. They are DBSMSG
and DB$MSGI. Both of these display text strings are terminated with a byte of
00H. You can see the difference between the two subroutines if you examine the
way they are called.

DB$MSG is called like this:

LXI H,Message$Text sHL —> text string
CALL DE$MSG

DBS$MSGI is called like this:

CALL DE$MSG
DB ODH, OAH, “Message Text”,0 ;In-line

DB$MSGI is more convenient to use. If you decide that you need to add a
message, you can declare the message immediately following the call. This also
helps when you look at the listing, since you can see the complete text at a glance.

Use DBSMSG when the text of the message needs to be selected from a table.
Get the address of the text into HL and then call DB§MSG to display it.

Creating Your Own Debug Displays

If you need to build your own special debug display routines, you may find it
helpful to incorporate some of the small subroutines in the debug package. The
following are the subroutines you may want to use:

DB$CONOUT
Displays the character in the C register.

DBSCONIN
Returns the next keyboard character in A.

DB$CONINU
Returns the next keyboard character in A, converting lowercase letters to
uppercase.

Chapter 10: Debugging a New CP/M System 327

DBSDHLH
Displays contents of HL in hexadecimal.

DBSDAH
Displays contents of A in hexadecimal.

DB3CAH
Converts contents of A to hexadecimal and stores in memory pointed at
by HL.

DB$Nibble$ To$ Hex
Converts the least significant four bits of A into an ASCII hexadecimal
character in A.

DBSCRLF
Displays a CARRIAGE RETURN/LINE FEED.

DB$§Colon
Displays the string “: ”.

DB$ Blank
Displays a single space character.

DBS$Flag3Save$On
Saves the current state of the debug output control flag and then sets the
flag “on” to enable debug output.

DBS$ Flag$ Restore
Restores the debug output control flag to the state it was in when the
DB$Flag$Save$On routine was last called.

DB3GHV
Gets a hexadecimal value from the keyboard, displaying a prompt message
first. From one to four characters can be specified as the maximum number
of characters to be input.

DB$A8To3 Upper
If the A register contains a lowercase letter, this converts it to an uppercase
letter.

Debugging I/O Drivers

Debugging low-level device drivers creates special problems. The major one is
that you do not normally want to read and write via actual hardware ports while
you are debugging the code —either because doing so would cause strange things
to happen to the hardware during the debugging, or because you are developing
and debugging the drivers on a system different from the target hardware on
which the drivers are to execute.

Before considering the solution, remember that the input and output instruc-
tions (IN and OUT) are each two bytes long. The first byte is the operation code

328 The CP/M Programmer’s Handbook

(ODBH for input, 0D3H for output), and the second byte is the port number to
“input from” or “output to.”

Debug subroutines are provided here to intercept all IN and OUT instructions,
displaying the port number and either accepting a hexadecimal value from the
console and putting it into the A register (in the case of IN), or displaying the
contents of the A register (for the OUT instruction).

IN and OUT instructions can be “trapped” by changing the operation code to
one of two RST (restart) instructions. An RST is effectively a single-byte CALL
instruction, calling down to a predetermined address in low memory. The debug
routines arrange for JMP instructions in low memory to receive control when the
correct RST is executed. The code that receives control can pick up the port
number, display it, and then accept a hex value for the A register (for IN) or display
the current contents of the A register (for OUT). The example subroutines shown
later in this chapter use RST 4 in place of IN instructions, RST 5 for OUT.

Wherever you plan to use IN, use the following code:

IF Debug

RST 4

ENDIIF

IF NQT Debug
jalc] IN

ENDIF

DB For t $Number

Note that you can use the IN operation code as the operand of a DB statement. The
assembler substitutes the correct operation code.
Use the following code wherever you need to use an OUT instruction:

IF Diebug

RST 5 .
ENDIF

IF NOT Debug
DE auT

ENDIF

DE Por t $Number

When the RST 4 (IN) instruction is executed, the debug subroutine displays
1AR2 @ Input from Port 01 :

The “1AB3”is the address in memory of the byte containing the port number. It
serves to pinpoint the IN instruction in memory. You can then enter one or two
hexadecimal digits. These will be converted and put into the A register before
control returns to the main program at the instruction following the byte contain-
ing the port number.

When the RST 5 (OUT) instruction is encountered, the debug subroutine
displays
1AES 1 QOutput to Port 01 @ FF

This identifies where the OUT instruction would normally be as well as the port
number and the contents of the A register when the RST 5 (OUT) is executed.

Chapter 10: Debugging a New CP/M System 329

Debugging Interrupt Service Routines

You can use a technique similar to that of the RST instruction just described to
“fake” an interrupt. You preset the low-memory address for the RST instruction
you have chosen for the jump into the interrupt service routine under test.

When the RST instruction is executed, control will be transferred into the
interrupt service routine just as though an interrupt had occurred. You will need to
intercept any IN or OUT instructions as described above — otherwise the code
probably will go into an endless loop.

Before executing the RST instruction to fake the interrupt, load all the
registers with known values. For example:

MVI A, OAAH

LXI R, OBBCCH

LXI 0, ODDEEH

LXI H,01122H

RST & sFake interrupt
NOP

When control returns from the service routine, you can check to see that it restored
all of the registers to their correct values. An interrupt service routine that does not
restore all the registers can produce bugs that are very hard to find.

Check, too, that the stack pointer register has been restored and that the
service routine did not require too many bytes on the stack.

You also can use the CALL instruction to transfer control to the interrupt
service routine in order to fake an interrupt. RST and CALL achieve the same
effect, but RST is closer to what happens when a real interrupt occurs. Asitisa
single-byte instruction, it also is easier to patch in.

Subroutine Listings

Figure 10-1 is a functional index to the source code listing for the debug
subroutines shown in Figure 10-2. The listing’s commentary defines precisely how
each debug subroutine is called.

Figure 10-3 shows the output from the debug testbed.

Software Tools for Debugging

In addition to building in debugging subroutines, you will need one of the
following proprietary debug programs:

DDT (Dynamic Debugging Tool)
This program, included with the standard CP/M release, allows you to
load programs, set and display memory and registers, trace through your
program instruction by instruction, or execute it at full speed, but stopping

330 The CP/M Programmer’s Handbook

Start Line Functional Component or Routines
00001 Debug subroutine’s Testbed
00100 Test register display
00200 Test memory dump display
00300 Test register pair display
00400 ~ Test byte indirect display
00500 Test DB$On/ Off
00600 Test DBSetPass and DB$Pass
00700 Test debug input/output
00800 Debug subroutines themselves
01100 DBS$Init - initialization
01200 DB$CONINU - get uppercase keyboard character
01300 DBSCONIN - get keyboard character
01400 DBSCONOUT - display character in C
01500 DBS$On - enable debug output
01600 DBS$Off - disable debug output
01700 DBSSetPass - set pass counter
01800 DBS$Pass - execute pass point
01900 DBS$Display - main debug display routine
02200 Main display processing subroutines
02500 DBS$Display$CALLA - display CALL’s address
02600 DBS$DHLH - display HL in hexadecimal
02700 DBSDAH - display A in hexadecimal
02800 DBSCAH - convert A to hexadecimal in memory
02900 DB$Nibble$To$Hex - convert LS 4 bits of A to hex.
02930 DB$CRLF - display Carriage Return, Line Feed
02938 DB$Colon - display “: ”
02946 DB$Blank - display “ ”
03100 DB$MSGI - display in-line message
03147 DB$MSG - display message addressed by HL
03300 DBSInput - debug INput routine
03500 DB$Output - debug OUTput routine
03700 DBS$Flag$Save$On - save debug flag and enable
03800 DBS$Flag$Restore - restore debug control flag
03900 DBS$GHYV - get hexadecimal value from keyboard
04100 DBSASTo$Upper - convert A to upper case

Figure 10-4. Functional index for Figure 10-2

at certain addresses (called breakpoints). It also has a built-in mini-
assembler and disassembler so you do not have to hand assemble any
temporary code “patches” you add.

SID (Symbolic Interactive Debug)
Similar to DDT in many ways, SID has enhancements that are helpful if
you use Digital Research’s MAC (Macro Assembler) or RMAC (Relocat-
ing Macro Assembler). Both of these assemblers can be told to output a file

Chapter 10: Debugging a New CP/M System

331

00001
00002

00003 :
00004 :
00005 5
00006 3 (=
00007 ;
00008 ;
00009 :
00010 :
00011 ;
00012 ;
00013 ;
00014 ;
00015 ;
00016 ;
00017 ;
00018 ;
00019 0100

00020 START:
00021 0100 316B03
00022 0103 CDEAO4
00023 010& CD1S0S
00024

00025 0109 3EAA

00026 010B 01CCBR
00027 010E 11EEDD
00028 0111 2111FF
00100 T H
00101 ;
00102 ;
00103 0114 B7

00104 0115 37

00105 0116 CDS20S
00106 0119 00

00107 011A 4660616773
00108 ;
00109 0120 CDS20S
00110 0123 02

00111 0124 4120526567
00112 :
00113 012F CDS5205
00114 0132 04

00115 0133 4220524567
00116 ;
00117 013E CDS205
00118 0141 06

00119 0142 4320526567
00120 ;
00121 014D CDS20S
00122 0150 08

00123 0151 4420524567
00124 ;
00125 015C CD5205
00128 015F OA

00127 0160 4520526567
00128 ;
00129 014B CDS205
00130 016E 0OC

00131 01&F 4820524567
00132 ;
00133 017A CDS5205
00134 017D OE

00135 017E 4C20526567
00200 P
00201 ;
00202 :
00203 0189 CD5205
00204 018C 18

00205 018D 08012801
00206 0191 4DES6DEF72
00207 ;
00208 01A0 CDS205
00209 01AZ 18

00210 01A4 00011FO1
00211 01A8 4DESED&F72
00212 ;

Debug Subroutines

NOTE:

The line numbers at the extreme left are included purely
to reference the code from the text.

There are deliberately induced discontinuities

in the numbers in order to allow space for expansian.

Because of the need to test these routines thoroughly,
and in case you wish to make any changes, the testbed
routine for the debug package itself has been left in
in this figure.

Debug testbed

ORG 100H
LXI SP, Test$Stack sSet up local stack
CALL DE$Init sInitialize the debug package
CALL DB$0On sEnable debug ocutput
3Simple test of A register display
MVI A, O0AAH sPreset a value in the A register
LXI B, OBBCCH sPrefill all other registers, partly
LXI D, ODDEEH ;7 to check the debug display, but
LXI H, OFF11H ;7 also to check register save/restore
Test register display
ORA A ;Set M-flag, clear Z-flag, set E-flag
sTC ;Set carry
CALL DB$Display ;Call the debug routine
DB DE$F
DR “Flags’, 0
CALL DB¢Display 5Call the debug routine
DB DE$A
DB “A Register”,0
CALL DEs$Display sCall the debug routine
DB DBE$R
DB ‘B Register”,0
CALL DRs$Dlisplay sCall the debug routine
DR DR$C
DR “C Register”,0
CALL DB$Display sCall the debug routine
DB DE$D
DR “D Register”,0
CALL DBR$Display sCall the debug rcoutine
DB DE$E
DE “E Register’,0
CALL DB$Display sCall the debug routine
DB DR$H
DB ‘H Register”,0
CALL DB$Display sCall the debug routine
DB DB$L
DB ‘L Register’,0
Test Memory Dump Display
CALL DB$Display
DR DB$M ; Dump memory
DW 108H, 128H ;Check start/end at nonmultiples
DB “Memory Dump #17,0 5 of 10H
CALL [B$Display
DR DB$M s Dump memory
DW 100H, 1 1FH iCheck start and end on displayed
DB “Memory Dump #27,0 3 line boundaries

Figure 10-2.

Debug subroutines

332 The CP/M Programmer’s Handbook

00213 01B7 CDS205 CALL DBs$Display
00214 O1BA 18 DB DB$M ;Dump memory
00215 O01BB 01010001 oW 101H, 100H ;Check error handling where
00216 O1BF 4D656D6F72 DB “Memory Dump #37,0 3 start > end address
00217 H
00218 01CE CDS205 CALL DB$Display
00219 01D1 18 DB DB$M sDump memory
00220 01D2 00010001 DW 100H, 100H sCheck end-case of single byte
00221 01Dé 4DES6DEF72 DB “Memory Dump #47,0 3 output
00300 - i
00301 H Test register pair display
00302 H
00303 O1ES CD5205 CALL DB$Display ;Call the debug routine
00304 O1E8 10 DB DB$BC
00305 O01E9 4243205245 DR “BC Register”,0
00306 H
00307 01FS CDS205 CALL DB$Display ;Call the debug routine
00308 O1F8 12 DB DB$DE
00309 O1F9 4445205265 DB “DE Register”,0
00310 H
00311 0205 CDS205 CALL DB$Display sCall the debug routine
00312 0208 14 DB DB$HL
00313 0209 484C205265 DB “HL Register’,0
00314 s
00315 0215 CDS205 CALL DR$Display sCall the debug routine
00316 0218 16 DB DB$SP
00317 0219 5350205265 DB “SP Register’,0
00318 H
00319 0225 013203 LXI B,Byte$BC ;Set up registers for byte tests
00320 0228 113303 LXI D,Byte$DE
00321 022B 213403 LXI H,Bytes$HL
00400 1.
00401 3 Test byte indirect display
00402 '
00403 022E CD5205 CALL DB$Display ;Call the debug routine
00404 0231 1A. DB DBBBC
00405 0232 4279746520 DB “Byte at (BC)”,0
00406 H
00407 023F CD5205 CALL DBsDisplay sCall the debug rcutine
00408 0242 1C DB DBBDE
00409 0243 4279746520 DB ‘Byte at (DE)‘,0Q
00410 B
00411 0250 CDS205 CALL DB$Display sCall the debug rcutine
00412 0253 1E DB DBBHL
00413 0254 4279746520 DB “Byte at (HL)’,0
00414 3
00415 0241 013503 LXI B, Word$BC ;Set up the registers for word tests
00416 02464 113703 LXI D, Word$DE
00417 0267 213903 LXI H, Word$HL
00418
00419 026A CDS205 CALL DB$Display sCall the debug routine
00420 028D 20 DB DRWSBC
00421 026E S76F726420 DB ‘Word at (BC)”,0
00422 H
00423 027B CDS205 CALL DBs$Display ;Call the debug routine
00424 027€ 22 DB DB$WSDE
00425 027F S76F726420 DB ‘Word at (DE)’,0
00426 H
00427 028C CDS205 CALL DB$Display ;Call the debug routine
00428 028F 24 DB DR$WSHL
00429 0290 S76F726420 DB ‘Word at (HL)’,0
00500 (24
00501 H Test DB$On/Off
00502 B
00503 029D CD1DOS CALL DBR$Of f ;Disable debug output
00504 02A0 CDD&07 CALL DB$MSGI sDisplay in-line message
00505 02A3 ODOASAE869 DB ODH, 0AH, “This message should NOT appear”,0
00506
00507 02C4 CD1505 CALL DB$0On
00508 02C7 CDD&07 CALL DB$MSGI
00509 02CA 0DOA444562 DE ODH, OAH, “Debug output has been re-enabled.’,0
00600 ;
00601 H Test pass count logic
00602 H
Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System

00603 02EE CD1DOS CALL DB$Of f ;Disable debug output

00604 02F1 CD2405 CALL DBSetPass ;Set pass count

00605 02F4 1E00 DW 30

00606 ;

00607 02F&6 3E22 MvVI A, 34 ;Set loop counter greater than pass
00408 ;5 counter

00609 TestsPassslLoop:

00610 02F8 CD3S0S CALL DB$Pass ;Decrement pass count

00611 02FB CDD&O7 CALL DB$MSGI ;Display in-line message

00612 O2FE ODO0AS44869 DB ODH, 0AH, “This message should display S times’,0

00613 0324 3D DCR

00614 0325 C2F802 JNZ Test$Pass$loop

00700 ¥

00701 H Test debug input/output

00702 ;

00703 0328 CD1DOS CALL DBR$Of f ;Check that debug IN/OUT

00704 3 must still occur when debug
00705 5 output is disabled.

00706 032B E7 RST 4 s Debug input

00707 032C 11 DB 11H jPort number

00708 032D EF RST S ;Debug ocutput (value return from input)
00709 032E 22 DB 22H sPort number

00710

00711 032F C30000 JMP [¢] sWarm boot at end of testbed
00712]

00713 H

00714 3 Dummy values for byte and word displays

00715 0332 BC Byte$BC: OBCH

00716 0333 DE Bytes$DE: DB ODEH

00717 0334 F1 Bytes$HL: DB OF {1H

00718 H

00719 0335 0COB Word$BC: DW OBOCH

00720 0337 OEOQD Word$DE: W ODOEH

00721 0339 010F WordsHL : DW OFO1H

00722 B

00723 033B 9999999999 DW 9999H, I999H, 9999H, 9999H, 9999H, 9999H, 9999H, 9997H
00724 034B 9999999999 DW FIIIH, 9999H, 9999H, 9999H, 9999H, 9999H, 9999H, I999H
00725 035B 9999999999 bW FI9IH, I999H, F999H, 9999H, F999H, 9999H, Y999H, Y997H
00726 Test$Stack:

00727 H

00728 H

00729 H

00730 0400 ORG 400H ;To avoid unnecessary listings
00731 7 when only the testbed changes
00732 H

00800 34

00801 H

00802 H Debug subroutines

00803 B

00804 H

00805 H Equates for DB$Display codes

008046 H These equates are the offsets down the table of addresses
00807 H for various subroutines to be used.

00808 §

00809 0000 = DB$F EQU 00 3;Flags

00810 0002 = DB$A EQU 02 3A register

00811 0004 = DB$B EQU 04 ;B

00812 0006 = DB$C EQU 06 :C

00813 0008 = DB$D EQU 08 ;D

00814 000A = DBS$E EQU 10 sE

00815 000C = DB$H EQU 12 sH

00816 000E = DBS$L EQU 14 sl

00817 0010 = DB$BC EQU 16 ;BC

00818 0012 = DBS$DE EQU 18 3 DE

00819 0014 = DBS$HL EQU 20 sHL

00820 0016 = DB$SP EQU 22 ;Stack pointer

00821 0018 = DB$M EQU 24 3 Memory

00822 001A = DBBBC EQU 26 s (BC)

00823 001C = DBBSDE EQU 28 3 (DE)

00824 001E = DBBSHL EQU 20 3 (HL)

00825 0020 = DBWBC EQU 32 3 (BC+1), (BC)

00826 0022 = DBSW$DE EQU 34 3 (DE+1), (DE)

00827 0024 = DBWSHL EQU 36 3 (HL+1), (HL)

00828 4

00829 3

00830] Equates

00831 0020 = RST4 EQU 20H sAddress for RST 4 - iIN instruction
Figure 10-2. (Continued)

333

334 The CP/M Programmer’s Handbook

00832 0028 = RSTS EQU 28H sAddress for RST 5 - OUT instruction

00833 ;

00834 0001 = BS$CONIN EQU 1 ;BDOS CONIN function code

00835 0002 = B$CONOUT EQU 2 s BDOS CONOUT function code

00836 000A = BSREADCONS EQU 10 ;BDOS read console function code

00837 0005 = BDOS EQU S ;BDOS entry point

00838 ;

00839 0000 = False EQU o]

00840 FFFF'= True EQU NOT False

00841 H

00842 sEquates to specify how DB$CONOUT

00843 3 and DE$CONIN should perform

00844 3 their input/output

00845 0000 = DB$Polled$10 EQU False 3)

00846 0000 = DB$RIOS$IO0 EQU False 3) Only one must be true

00847 FFFF = DB$BDOS$10 EQU True 3)

00848 H :

00849 sEquates for polled 1/0

00850 0001 = DB$Status$Port EQU O1H ;Console status port

00851 0002 = DB$DatasPort EQU 02H ;Console data port

00852 3

00853 0002 = DB$Input$Ready EQU 0000%0010B sIncoming data ready

00854 0001 = DB$Output$Ready EQU 0000$0001B sReady for output

00855 H

00856 sData for BIOS I/0

00857 0400 C3 BIOS$CONIN: DB JMP sThe initialization routine sets these

00858 0401 0000 W o] ;3 two JMP addresses into the BIOS

00859 0403 C3 BIOS$CONOUT: DB JMP

00860 0404 0000 oW o]

00861 H

00862 H Main debug variables and constants

00863 3

00844 0406 00 DB$Flag: DB o sMain debug control flag

00865 ;3 When this flag is nonzero, all debug

00886 ; output will be made. When zero, all

00867 ; debug output will be suppressed.

00868 s It is altered either directly by the user

00849 s or using the routines DBOn, DB0ff and

00870 ; DB$Pass.

00871 3

00872 0407 0000 DB$Pass$Count: DW [o] ;Pass counter

00873 ; When this is nonzero, calls to DB$Pass

00874 ;3 decrement it by one. When it reaches

00875 s zero, the debug control flag, DB$Flag,

00876 s 1is set nonzero, thereby enabling

00877 3 debug output.

00878 5 .

00879 DB$Saves$HL: ;Save area for HL

00880 0409 00 DB$Saves$l: DB o]

00881 040A 00 DB$Save$H: DB o

00882

00883 040B 0000 DB$Save$SP: Dw o] ;Save area for stack pointer

00834 040D 0000 DR$Save$RA: 0w o] ;Save area for return address

00885 040F 0000 DB$Call$Address: W o ;Starts out the same as DB$Save$RA

00886 s but DB$Save$RA gets updated during

00887 s debug processing. This value is

00888 3 output ahead of the caption

00889 DB$Start$Address: ;Start address for memory display

00890 0411 0000 oW o

00891 DBEndAddress: ;End address for memcry display

00892 0413 0000 o

00893 DB$Display$Code: ;Display code requested

00894 0415 00 DB [¢]

00895 H

00896 s

00897 ;Stack area

00898 0416 9999999999 oW F999H, 9999H, 9999H, 9999H, F999H, F999H, F999H, 999YH

00899 0426 9999999999 oW I999H, 9999H, 9999H, 9999H, 9999H, 9999H, 9999H, 9999H

00900 0436 9999999999 oW 9999H, P999H, I999H, 9999H, 9999H, I999H, 999H, 9999H

00901 0446 00 DB$Saves$E: DB 4] $E register

00902 0447 00 DB$Save$D: DB (o] 3D register

00903 0448 00 DB$Saves$C: DB (o] ;C register

00904 0449 00 DB$Save$B: DB J 3B register

00905 044A 00 DB$Saves$F: DB [sFlags

00906 044B 00 DB$Saves$A: DB (o] ;A register

00907 DBs$Stack: ;Debug stack area

00908 3 The registers in the stack area are PUSHed

00909 ; onto the stack and accessed directly.
Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System

335

00910 H

00911 H Register caption messages

00912 H

00913 H The table below, indexed by the Display$Code is used to access

00914 H the register caption string.

00915 H

00916 DB$Register$Captions:

00917 044C 7204 DW DBFRC sFlags

00918 044E 7804 DW DB$ASRC 3A register

00919 0430 7A04 DW DBBRC ;B

00920 0452 7C04 DW DBCSRC ;C

00921 0454 7E04 DW DBDSRC sD

00922 0456 8004 DW DBS$ESRC sE

00923 0458 8204 DW DBHSRC sH

00924 045A 8404 DW DBLRC 1S

00925 045C 8604 DW DBBCSRC s BC

00926 0435E 8904 DW DBDERC sDE

00927 04460 8CO4 DW DBHLSRC sHL

00928 0462 8F04 DW DBSPSRC iStack pointer

00929 0464 9204 DW DBSMSRC sMemory

00930 0466 AS04 DW DBBBCS$RC 3 (BC)

00931 0448 ABO4 DW DBBDESRC s (DE)

00932 046A BOO4 DW DBBHL $RC 5 (HL)

00933 046C BS04 DW DBWBCSRC 3 (BC+1), (RC)

00934 046E C104 DW DBWSDES$RC s (DE+1), (DE)

00935 0470 CDO4 DW DBWSHL$RC 3 (HL+1), (HL)

00936 i

00937 0472 466C616773DBFRC: DB “Flags”’,0 sFlags

00938 0478 4100 DB$ASRC: DB ‘A%, 0 A register

00939 047A 4200 DBBSRC: DB ‘B”,0 ;B

00940 047C 4300 DBSCSRC: DB ‘Cc’,0 ;C

00941 047E 4400 DBDRC: DB “D’,0 ;D

00942 0480 4500 DBSESRC: DB ‘E’,0 sE

00943 0482 4800 DBHSRC: DB “H”, 0 sH

00944 0484 4C00 DBSLSRC: DB ‘L, 0 sL

00945 0486 424300 DBBCSRC: DE “BC’,0 3 BC

00944 0489 444500 DEB$DESRC: DB “DE“,0 s DE

00947 048C 484C00 DBHLRC: DB “HL”,0 sHL

00948 048F 535000 DBSPRC: DB “SP7,0 ;Stack pointer

00949 0492 5374617274DBMRC: DB “Start, End Address “,0 ;Memory

00950 04A& 2842432900DBBBCS$RC: DB “(BC)*,0 3 (BC)

00951 04AE 2844452900DBBDES$RC: DB “(DE)“, 0 s (DE)

00952 04B0 28484C2900DRBHL$RC: DB “(HL) 7, 0 5 (HL)

00953 04BS 2842432B31DBWBC$RC: DB “(BC+1), (BC)~,0 ;(BC+1), (BC)

00954 04C1 28444S2B31DB$WSDESRC: DB “(DE+1),(DE)“,0 ;(DE+1), (DE) -

00955 04CD 28484C2B31DBWHLS$RC: DB “(HL+1), (HL) 7,0 ; (HL+1), (HL)

00956& H

00957 H Flags message

00958 4

00959 04D9 43735A784DDB$Flags$Msg: DB “CXZxMxExIx“,0 j;Compatible with DDT’s display

00960 H

00961 H Flags masks used to test user’s flag byte

00962 3

00963 DB$Flag$Masks:

00964 04E4 01 DB 0000%0001B sCarry

00965 04ES 40 DB 0100$0000R s Zero

00966 04E4 80 DB 1000$0000B 3Minus

00967 04E7 04 DR 0000$0100R ;Even parity

00948 04E8 10 DB 0001$0000B sInterdigit carry (aux carry)

00969 04E9 00 DB o sTerminator

01100 i #

01101 i DE$Init

01102 H This routine initializes the debug package.

01103 3

01104 DB$Init:

01105 IF DB$BIOS$IO sUse BIOS for CONIN/CONCQUT

01106 LHLD 1 ;1Get warm boot address from base

01107 5 Page. H = BIOS jump vector page

01108 MVI L,0%H ;Get CONIN offset in jump vector

01109 SHLD BIOS$CONIN + 1 ;Set up address

01110 MVI L,0CH ;Get CONOUT offset in jump vector

01111 SHLD RIOS$CONOUT + 1

01112 ENDIF

01113

01114 ;Set up UMP instructions to receive control

01115 7 when an RST instruction is executed

01116 O4EA 3EC3 MVI A, JMP ;Set JUMP instructions at RST points
Figure 10-2. (Continued)

336 The CP/M Programmer’s Handbook

01117 04EC 322000 STA RST4

01118 04EF 322800 STA RSTS

01119 04F2 211A08 LXI H, DB$Input sAddress of fake input routine

01120 04FS 222100 SHLD RST4 + 1

01121 04F8 216C08 LXI H, DB$Output s;Address of fake output routine

01122 O4FB 222900 SHLD RSTS + 1

01123

01124 O4FE C9 RET

01200 i

01201 ‘ H DB$CONINU

01202 H This routine returns the next character from the console,

01203 H but converting "a" to "z" to uppercase letters.

01204 i

01205 DB$CONINU:

01204 04FF CDOS0S CALL DB$CONIN ;Get character from keyboard

01207 0502 C31B0Y JMP DBR$AsTo$Upper ;Fold to upper and return

01300 i

01301 H DE$CONIN

01302 H This routine returns the next character from the conscle.

01303 H According to the setting of equates, it uses simple

01304 H polled 1/0, the BDOS (function 2) or the BIOS.

01305 3

01306 H Exit parameters

01307 B

01308 H A = character from conscole

01309 3

01310 DB$CONIN:

01311 IF DB$Polled$10 3sSimple polled input

01312 IN DR$Statuss$Port ;Check if incoming data

01313 ANI - DB$Input$Ready

01314 Jz DB$CONIN ;No

01315 IN DB$Datas$Port s Input data character

01316 PUSH PSW ;Save data character

01317 Mov C,A ;Ready for output

01318 CALL DB$CONOQUT ;Echa it back

01319 PQF PSW ;Recover data character

01320 RET

01321 ENDIF

01322

01323 IF DR$BDOS$10 sUse BDOS for input

01324 0505 0EOQ1 MVI C, B$CONIN sRead console

01325 0507 C30500 JMP BDOS 3BDOS returns to our caller

01326 ENDIF

01327

01328 IF DB$RIOS$10 sUse BIOS for input

01329 JMP BIOS$CONIN ;1 This was set up during BIOS

01330 5 initialization

01331 ‘ ENDIF

01332

01400 i

01401 H DB$CONOUT

01402 H This routine outputs the character in the C register to the

01403 H console, using simple polled I/0, the BDOS or the BIOS.

01404 B

01405 H Entry parameters

01406 H A = byte to be output

01407 ;

01408 DB$CONOUT:

01409 050A 3A0604 LDA DB$Flag ;Check if debug cutput enabled

01410 050D B7 ORA A

01411 0S0E C8 RZ ;Ignore output if disabled

01412

01413 IF DB$Polled$10 sUse simple polled output

01414 IN DB$Statuss$Port ;Check if ready for output

01415 ANI DB$Output$Ready

01416 JZ DB$CONOUT 3 No

01417 MOV A,C ;Get data byte

01418 ouT DBs$DatasPort

01419 RET

01420 ENDIF

01421

01422 IF DB$BDOS$ 10 ;Use BDOS for output

01423 O3S0F 359 MOV E,C sMove into correct register

01424 03510 0EO02 MVI C, BSCONOUT

01423 0312 C30500 JMP BDOS 3BDOS returns to our caller

01426 ENDIF

01427

01428 IF DB$BIOS$I0 sUse BIOS for output
Figure 10-2. (Continued)

337

Chapter 10: Debugging a New CP/M System

01429 MOV A,C iMove into correct register
01430 JMP BIOS$CONOUT sSet up during debug initialization
01431 ENDIF

01500 i

01501 H

01502 H DB$On

01503 H This routine enables all debug output by setting the

01504 H DB$Flag nonzero.

01505 3

01506 DB$On:

01507 0515 FS PUSH PSW sPreserve registers

01508 0516 3EFF MVI A, OFFH

01509 0518 320604 STA DB$Flag ;Set control flag on

01510 051B F1 POP PSW

01511 051C C9 RET

01600 i #

01401 H

01602 H DB$Of f

01603 H This routine disables all debug output by setting the

01604 H DB$Flag to zero.

01605 1

01606 DB$Off:

01607 051D FS PUSH PSW iPreserve registers

01608 0S1E AF XRA A

01609 OS1F 320604 STA DB$Flag iClear control flag

014610 0522 F1 POP PSW

01611 0523 C9 RET

01700 e

01701 H

01702 H DBSetPass

01703 H This routine sets the pass counter. Subsequent calls to DB$Pass
01704 H decrement the count, and when it reaches 0O, debug cutput
01705 H is enabled.

01706 B

01707 H Calling sequence

01708 H

01709 H CALL DB$Sets$Pass

01710 3 DW Passs$Count$Value

01711 i

01712 DBSetPass:

01713 0524 220904 SHLD DB$Save$HL iPreserve user’s HL

01714 0527 E1 POP H sRecover return address
01718 0528 DS PUSH D iPreserve user’s DE

01716 0529 SE Mav E,M ;Get LS byte of count

01717 052A 23 INX H i1Update pointer

01718 052B Sé MOV D,M 3Get MS byte

01719 052C 23 INX H sHL points to return address
01720 052D EB XCHG sHL = pass counter

01721 0S2E 220704 SHLD DB$Pass$Count ;Set debug pass counter
01722 0531 EB XCHG HL points to return address
01723 0532 D1 POP D 3Recover user’s DE

01724 0533 E3 XTHL 3sRecover user’s HL and set
01725 # return address on top of stack
01726 0534 C9 RET

01800 124

01801 H

01802 H DB$Pass

01803 H This routine decrements the debug pass counter -

01804 3 if the result is negative, it takes no further action.

01805 H If the result is zero, it sets the debug control flag nonzero
01806 H to enable -debug output.

01807 3

01808 DB$Pass:

01809 0535 FS PUSH PSW ;Save user’s registers

01810 0536 ES PUSH H

o1811 0537 2A0704 LHLD DB$Pass$Count ;Get pass count

01812 053A 2B DCX H

01813 053B 7C MOV AH 3Check if count now negative
01814 053C B7 ORA A

01815 053D FAA470S5 JM DB$Pass$x ;Yes, take no further action
01816 0540 220704 SHLD DB$Pass$Count ;Save downdated count

01817 03543 BS ORA L ;Check if count now zero
01818 0544 CA4A0S Jz DR$FPass$ED ;Yes, enable debug

01819 DB$Pass$x: ;

01820 0547 E1 POP H ;Recover user’s registers
01821 0548 F1 POP PSW

01822 0549 C9 RET
Figure 10-2. (Continued)

338 The CP/M Programmer’s Handbook

01823 H
01824 DB$Pass$Ed: sEnable debug
01825 0S4A 3EFF MVI A, OFFH
01828 054C 320604 STA DB$Flag sSet debug control flag
01827 0S4F C34705 JMP DB$Pass$x
01900 34
01901 ;
01902 H DR$Display
01903 3 This is the primary debug display routine.
01904 H
01905 H Calling sequence
01908 H
01907 i CALL DB$Display
01908 3 DB Display$Code
01909 H DR “Caption String”,0
01910 H .
01911 H Display code identifies which register(s) are to be
01912 H displayed.
01913 H
01914 H When the display code specifies a block of memory
01915 g the sequence is:
01916 ;
01917 H CALL DEs$Display
01918 H DB Display$Code
01919 H Dw Start$Address, End$Address
01920 i DB “Caption String”’,0
01921 H
01922 DR$Display: v
01923 3
01924 DB$Display$Enabled:
01925 0552 220904 HLD DB$Saves$HL s Save user‘s HL
01926
01927 0555 E3 XTHL 3Get return address from stack
01928 0556 220004 SHLD DR$Save$RA ;This gets updated by debug code
01929 0559 ES PUSH H ;Save return address temporarily
01930 055A 2B DCX H . ;Subtract 3 to address call instructicon
01931 OSSR 2B DCX H ;3 itself
01932 0SSC 2B DCX H
01933 055D 220F04 SHLD DR$Call$Address ;Save actual address of CALL
01934 0560 E1l POP H sRecover return address
01935
01936 0561 FS PUSH PSW sTemporarily save flags to avoid
01937 3 them being changed by DAD SP
01938 0562 210000 LXI H, 0 sPreserve stack pointer
01939 0565 39 | DAD SP
01940 0566 23 INX H sCorrect for extra PUSH PSW needed
01941 0567 23 INX H 3 to save the flags
01942 0568 220B04 SHLD DR$Save$SP
01943 056B F1 POP PSW 1Recover flags
01944
01945 0S6C 314C04 LXI SP, DR$Stack ;Switch to local stack
01946
01947 056F FS PUSH P3SW ;Save other user’s registers
01948 0570 CS PUSH B ;The stack area is specially laid
01949 0571 DS PUSH D 3 out to access these registers
01950
01951 0572 2A0DO4 LHLD DB$Saves$RA ;Get return address
01952 0575 7E MOV A M ;Get display code
01953 0576 321504 STA DR$Display$Code
01954 0579 23 INX H sUpdate return address
01955
01956 057A FE18 CPI DBR$M sCheck if memory to be displayed
01957 057C C29105 JNZ DBNotMemory
01958 057F SE MOV E,M ;Get DE = start address
019359 0580 23 INX H
01960 0581 56 MOV o,M
01961 0582 23 INX H
01962 0583 EB XCHG sHL = start address
01963 0584 221104 SHLD DBR$Start$Address
01964 0587 EB XCHG sHL -> end address
01965 0588 SE Mav E.M ;Get DE = end address
01966 0589 23 INX H
01967 058A 56 Mov o.M
01968 058B 23 INX H
01969 058C EB XCHG sHL = end address, DE -> caption
01970 0S8D 221304 SHLD DBEndAddress
01971 0590 EB XCHG sHL -> caption string
Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System

01972 DB$Not $Memory:
01973 H
01974 H Output preamble and caption string
01975 H The format for everything except memory display is:
01976 H
01977 H nnnn : Caption String : RC = vvvy
01978 H * * .
01979 H Call Address H Value
01980 B Register Caption (A, B, C...)
01981 H
01982 H A carriage return, line feed is output at the start of the
01983 i message - but NOT at the end.
01984 H
01985 [Memory displays look like :
01986 H
01987 s nnnn : Caption String : Start, End ssss, eeee
01988 7 ssss : hh hh hh hh hh hh hh hh hh bh hh hh hh hh hh hh : ccce ccce cecee cecee
01989 H
01990
01991 0591 ES PUSH H ;Save pointer to caption string
01992 0592 CDC107 CALL DB$CRLF sDisplay carriage return, line feed
01993 0595 CDh7C07 CALL DB$Display$CALLA sDisplay DB$Call$Address in hex.
01994
01995 0598 E1 POP H sRecover pointer to caption string
01996 DB$Display$Caption: sHL ~> caption string
01997 0599 7E MoV AM 3Get character
01998 059A 23 INX H
01999 059B B7 ORA A ;Check if end of string
02000 059C CAAB0S Jz DREndCaption iYes
02001
02002 O059F ES PUSH H ;Save string pointer
02003 05A0 4F Mov C,A sReady for output
02004 05A1 CDOAOS CALL DB$CONOUT sDisplay character
02005 05A4 E1 POP H sRecover string pointer
02006 05AS C39905 JMP DB$Display$Caption 3Go back for next character
02007 §
02008 DREndCaption:
02009 05A8 220004 SHLD DB$SavesRA ;Save updated return address
02010
02011 05SAB CDC8O7 CALL DB$Colon ;Display <~ & ~
02012
020123 ;Display register caption
02014 0SAE 3A1504 LDA DB$Display$Code ;Get user’s display cade
02015 0SR1 SF Mav E.A sMake display code into word
02016 0SB2 1600 MVI D, o
02017 0SB4 DS PUSH D ;Save word value for later
02018
02019 0SBS FE18 CP1 DE$M iMemory display is a special case
02020 OSBR7 CACFOS Jz DB$Display$Mem$Caption ;Yes
02021
02022 OSBA 214C04 LXI H,DB$Register$Captions ;Make pointer to address in table
02023 OSBD 19 DAD D sHL -> word containing address of
02024 5 register caption
02025 OSBE SE MoV E,M ;Get LS byte of address
02026 OSBF 23 INX H
02027 0SCO Sé Mav o,M ;DE -> register caption string
02028 0SC1 ER XCHG tHL -> register caption string.
02029 0SC2 CDEEO7 CALL DB$MSG sDisplay message addressed by HL
02030
02031 OSCS CDD&O7 CALL DBR$MSGI sDisplay in-line message
02032 05C8 203D2000 DB c=7,0
02023 OSCC CIEDOS JMP DB$Select$Routine ;Go to carrect processar
02034 3
02035 DBE$Display$Mem$Caption: ;The memory display requires a special
02036 3 caption with the start and end
02037 3 addresses
02038 OSCF 219204 LXI H, DRMRC ;Display specific captiaon
02039 05D2 CDEEO7 CALL DB$MSG
02040 0SDS CDC8o7 CALL DRs$Colon sDisplay ~ : 7
02041
02042 0SD8 2A1104 LHLD DB$Start$Address ;Display start address
02042 OSDR CD8707 CALL DER$DHLH ;Display HL in hex.
02044
02045 OSDE CDD&07 CALL DE$MSGI ;Display in-line message
02046 0SE1 2C2000 DB Yy 40
02047
02048 OSE4 2A1304 LHLD DBEndAddress ;Get end address
Figure 10-2. (Continued)

339

340 The CP/M Programmer’s Handbook

02049 0SE7 CD8707 CALL DB$DHLH sDisplay HL in hex.
02050 0SEA CDC107 CALL DR$CRLF sDisplay carriage return, line feed
02051 sDrop into select routine
02052 DR$Select$Routine:
02053 OSED D1 POP D sRecover word value Display$Code
02054 0SEE 210A06 LXI H,DE$Display$Table
02055 0SF1 19 DAD D sHL —-»> address of code to pracess
02056 ; display requirements
02057 05F2 SE Mav E.M ;Get LS byte of address
02058 05F3 23 INX H sUpdate pointer
02059 QSF4 56 Mov o.M ;Get MS byte of address
02060 0SFS ER, XCHG sHL —» code
02061
02062 0SF6é6 11FROS LXI D, DB$Exit ;Fake link on stack
02063 QSF9 DS PUSH D
Q2044 OSFA E? PCHL ;s "CALL" display processor
02065 7
02066 DR$Exit: sReturn to the user
02067 OSFB D1 POP o ;Recover user”s registers saved
02048 OSFC C1 PQP B s on local debug stack
02069 OSFD F1 POP PSW
02070 OSFE 2A0B04 LHLD DR$Save$SF sRevert to user‘s stack
02071 0601 F9 SPHL
02072 0602 2A0D04 LHLD DB$Save$RA ;Get updated return address (bypasses
02073 s in-line parameters)
02074 0605 E3 XTHL sReplace on top of user’s stack
02075 0606 2A0904 LHLD DB$Saves$HL ;Get user”s HL
020746 0609 C? RET . sTransfer to correct return address
02077
02078
02079 DE$Display$Table:
02080 060A 3004 oW DFP$F ;Flags
02081 060C 5406 W DP$A A register
02082 060E SAOé DW DP$E ;B
02083 0610 6006 DwW DP$C ;C
02024 0612 6606 oW oPsD sD
02085 0614 6C06 DW DPS$E sE
02034 0616 7208 DW DP$H sH
02087 0618 7806 DW DP$L 3L
02088 061A 7EQ6 W DP$EC s BC
02089 0461C 8406 jut] DP$DE sDE
02090 061E 8A06 DW DP$HL sHL
02091 0620 9006 oW DP$SP ;Stack peointer
02092 0622 9606 W DP$M sMemory
02093 0624 4907 oW DPEEC 3 (BC)
02094 0626 5007 DW DPBDE 3 (DE)
02095 0628 5707 DW DPBHL 3 (HL)
02096 062A SEQ7 oW DPWBC 3 (BC+1), (BC)
02097 062C 6807 DwW DPWDE s (DE+1), (DE)
02098 062E 7207 W DP$WSHL 3 (HL+1), (HL)
02200 P #
02201 H Debug display processing routines
02202 5
02203 DP$F: sFlags
02204 :The flags are displayed in the same way that
02205 X ; DDT uses: C1ZOMOEOIO
02206 0630 2A4A04 LDA DR$Save$F ;Get flags
02207 0633 47 MOV B, A ;Preserve copy
02208 0634 21DA04 LXI H,DB$Flags$Msg + 1 sHL => first 0/1 in message
02209 0637 11E404 LXI D,DB$Flag$Masks ;DE —» table of flag mask values
02210 DRFNext:
02211 063A 1A LDAX o :Get next flag mask
02212 063B B7 ORA A sCheck if end of table
02213 063C CAAEO& Jz DBRFDisplay sYes, display the results
02214
02215 Q&3F A0 ANA B sCheck if this flag is set
02216 0640 3E31 MVI A, 717 sAssume yes
02217 0642 C24706 JINZ DRFNZ sYes, it is set
02218 0645 3E30 MVI A, 70" 3No, it is clear
02219 DEFNZ:
02220 0647 77 MoV M, A ;Store “0° or ‘17 in message text
02221 0648 23 INX H sUpdate painter to next 0/1
02222 0649 23 INX H .
02223 064A 13 INX D sUpdate flag mask pointer
02224 064B C33A06 JMP DBFNext
02225 DBFsDisplay: sDisplay results
02226 044E 21D904 LXI H, DB$Flags$Msg
Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System

341

02227 0651 C3EEQ7 JMP DB$MSG ;Display message and return

02228 3

02229 DP$A: 3A register

02230 0654 3A4R04 LDA DB$SavesA 31Get saved value

02231 0657 C39107 JMP DB$DAH ;Display it and return

02232 3

02233 DP$R: ;B

02234 045A 3A4904 LDA DBR$Saves$R ;Get saved value

02235 065D C39107 JMP DB$DAH sDisplay it and return

02238 3

02237 DP$C: ;C

02238 0880 3A4804 LDA DB$Saves$C ;Get saved value

02239 0643 C39107 JMP DR$DAH sDisplay it and return

02240 ;

02241 DP$D: ;D

02242 0466 3A4704 LDA DB$SavesD ;Get saved value

02243 0669 C39107 JMP DB$DAH sDisplay it and return

02244 ;

02245 DPS$E: sE

02244 064C 3A4604 LDA DB$SavesE ;0et saved value

02247 0&6F C€39107 JMP DB$DAH sDisplay it and return

02248 7

02249 DP$H: sH

02250 0672 3A0A04 LDA DB$SavesH 3Get saved value

02251 0675 C39107 JIMP DB$DAH sDisplay it and return

02252 3

02253 DPs$L: sL

02254 0678 3A0904 LDA DR$Saves$L 3Get saved value

02255 047B C39107 JMP DB$DAH sDisplay it and return

02256 7

02257 DP$BC: ;BC

02258 067E 2A4804 LHLD DBR$Saves$C ;Get saved word value

02259 0681 C38707 JIMP DB$DHLH ;Display it and return

02260 ;

02261 DP$DE: ;s DE

02262 0684 2A44604 LHLD DB$SavesE ;Get saved word value

02243 0687 C38707 JMP DB$DHLH sDisplay it and return

02264 ¥

02265 DP$HL: s HL

02266 068A 2A0904 LHLD DB$Saves$HL ;Get saved word value

02267 068D C38707 JMP DB$DHLH sDisplay it and return

02248 3

02269 DP$SP: ;Stack Pointer

02270 0690 2A0BO4 LHLD DB$Save$SP ;Get saved word value

02271 0693 C38707 JMP DB$DHLH sDisplay it and return

02272 i

02273 DP$M: sMemory

02274 0696 2A1304 LHLD DBEndAddress ;Increment end address to make

02275 0699 23 INX H 3 arithmetic easier

02276 069A 221304 SHLD DREndAddress

02277

02278 069D 2A1104 LHLD DB$Start$Address

02279 06A0 CD3A07 CALL DBMCheck$End ;Compare HL to End$Address

02280 06A3 DAD106 JC DBMAddress$0K ;End > start

02281 06A& CDD&07 CALL DB$MSGI sError start > end

02282 06A9 ODOA2A2A20 DB ODH, QAH, “#% ERROR - Start Address > End ##°,0

02283 046CD C9 RET

02284 ;

02285 DBMNextsLine:

02286 06CE CDC107 CALL DB$CRLF ;O0utput carriage return, line feed

02287 DBMAddress$0K: iBypass CR,LF for first line

02288 06D1 CDD&0O7 ALL DB$MSGI ;Indent line

02289 06D4 202000 DR Y

02290 046D7 2A1104 LHLD DB$Start$Address sGet start of line address

02291 0&DA CD8707 CALL DR$DHLH ;Display in hex

02292

02293 0é6DD CDC8O7 CALL DB$Colon sDisplay ~ ¢ -

02294

02295 O6EO0 2A1104 LHLD DB$Start$Address

0229¢ DBMNextHexByte:

02297 O8E3 ES PUSH H ;Save memory address

02298 06E4 CDDOO7 CALL DB$Blank $Output a blank

02299 06E7 E1N POP H ;Recover current byte address

02300 06E8 7E MOV A M ;Get byte from memory

02301 06E9 23 INX H sUpdate memory pointer

02302 O6EA ES PUSH H ;Save for later

02303 O06EB CD9107 CALL DBR$DAH sDisplay in hex.

02304 O8EE E1A POP H sRecover memory updated address
Figure 10-2. (Continued)

342 The CP/M Programmer’s Handbook

02305 06EF CD3A07 CALL DBMCheck$End sCompare HL vs.end address
02306 06F2 CAFEO& Jz DBMDisplay$ASCII sYes, end of area
02307 06F5 7D MOV AL ;Check if at start of new line,
02308 06F&é ESOF ANI 0000%1111B ;3 (is address XXXOH?)
02309 06F& CAFEOé Jz DBMDisplay$ASCII sYes
02310 06FB C3E306 JMP DBMNextHexByte sNo, loop back for another
02311 H
02312 DBMDisplay$ASCII: sDisplay bytes in ASCII
02313 04FE CDCR07 CALL DB$Colon ;Display 7
02314 0701 2A1104 LHLD DR$Start$Address ;Start ASCII as beginning of line
02315 DBMNext$ASCII$Byte:
023156 0704 7E MO A M ;Get byte from memory
02317 0705 ES PUSH H ;Save memory address
02318 0706 E67F ANI 0111$1111B ;Remove parity
02319 0708 4F MOV C,A ;Prepare for output
02320 0709 FE20 CPI e . ;Check if non-graphic
02321 070B D21007 JNC DBMDisplay$Char sChar >= space
02322 070E OE2E MVI C,".7 sDisplay non-graphic as 7.~
02323 DBMDisplay$Char:
02324 0710 FE7F CPI 7FH ;Check if DEL (may be non-graphic)
02325 0712 C21707 JINZ DBMNot $DEL ;No, it is graphic
02326 0715 OE2E MVI c,”.” sForce to 7.7
02327 5
02328 DBMNot $DEL :
02329 0717 CDOAOS CALL DB$CONOUT ;Display character
02330 071A E1 POP H sRecover memory address
02331 071B 23 INX H B sUpdate memory pointer
02332 071C 221104 SHLD DB$Start$Address sUpdate memory copy
02333 071F CD3A07 CALL DBMCheck$End sCheck if end of memory dump
02334 0722 CA3707 Jz DRMSExXit sYes, done
02335 0725 7D MoV AL sCheck if end of line
02336 0726 E&60F ANI 0000%1111E ;+ by checking address = XXXOH
02337 0728 CACEO6 Jz DBMNext$Line sYes, start next line
02338 072B 7D MoV AL sCheck if extra blank needed
02339 072C E603 ANI 000080011 E ; if address is multiple of 4
02340 072E C20407 JINZ DBMNext $ASCII$Byte ;No -- go back for next character
02341 0731 CDDOO7 CALL DE$Blank sYes, output blank
02342 0734 C30407 JMP DBMNext $ASCII$Eyte ;Go back for next character
02343
02344 ?
02345 DBSM$Exit:
023446 0737 C3C107 JMP DB$CRLF ;Output carriage return, line feed
02347 s and return
02348 H
02349 DBMCheck$End: ;Compares HL vs End$Address
02350 073A DS PUSH D sSave DE (defensive programming)
02351 073B EB XCHG sDE = current address
02352 073C 2A1304 LHLD DBEndAddress ;Get end address
02353 O73F 7A Mov A,D sCompare MS bytes
02354 0740 BC CMP H
02355 0741 C24607 JNZ DBMCheckEndX ;Exit now as they are unequal
02356 0744 7B MoV AE sCompare LS bytes
02357 0745 BD CMP L
02358 DBMCheckEndX:
02359 0746 EB XCHG sHL = current address
02360 0747 D1 POP D sRecover DE
02361 0748 C9 RET sReturn with condition flags set
02362 s
02363 DPBBC: 3 (BC)
02364 0749 2A4804 LHL! DB$Saves$C ;Get saved word value
02365 074C 7E MOV ’ ;Get byte addressed by it
02366 074D C39107 JMP DB$DAH sDisplay it and return
02367 H
02368 DPBDE: s (DE)
02369 0750 2A4604 LHLD DB$Save$E ;Get saved word value
02370 0753 7€ MOV A, M ;Get byte addressed by it
02371 0754 C39107 JMP DB$DAH sDisplay it and return
02372 ;
02373 DPBHL : 3 (HL)
02374 0757 2A0904 LHLD DB$Save$HL sGet saved word value
02375 075A 7E MOV A M ;Get byte addressed by it
02376 075B C39107 JMP DR$DAH sDisplay it and return
02377 3
02378 DPWBC: 3 (BC+1), (BC)
02379 O075SE 2A4804 LHLD DB$Saves$C ;Get saved word value
02380 0761 SE MOV E,M ;Get word addressed by it
02381 0762 23 INX H
Figure 40-2. (Continued)

Chapter 10: Debugging a New CP/M System

343

02382 0763 56 MOV o,M
02383 0764 EB XCHG sHL = word to be displayed
02384 0765 €38707 JMP DB$DHLH ;Display it and return
02385 ;
02386 DP$WSDE: s (DE+1), (DE)
02387 0768 2A4404 LHLD DB$Saves$E ;Get saved word value
02388 076B SE MOV E,M 3Get word addressed by it
02389 074C 23 INX H
02390 076D Sé MOV o.M
02391 076E EB XCHG sHL = word to be displayed
02392 076F C238707 JMP DB$DHLH ;Display it and return
02393 3 :
02394 DPSWS$HL : 3 (HL+1), (HL)
02395 0772 2A0904 LHLD DBR$Save$HL ;Get saved word value
02396 0775 SE Mav E,M ;Get word addressed by it
02397 0776 23 INX H
02398 0777 Sé MOV D,M
02399 0778 EB XCHG HL = word to be displayed
02400 0779 C38707 JMP DE$DHLH ;Display it and return
02401 H
02500 1]
02501 H DB$Display$CALLA
02502 i This routine displays the DB$Call$Address in hexadecimal,
02503 H followed by " : ",
02504 3
02505 DB$Display$CALLA:
02506 077C ES PUSH H ;Save caller’s HL
02507 077D 2A0F04 LHLD DB$Call$Address ;Get the call address
02508 0780 CD8707 CALL DB$DHLH ;Display HL in hex.
02509 0783 E1l PQP H sRecaver caller’s HL
02510 0784 C3C807 JMP DB$Colon ;Display " : " and return
02511 H
02600 24
02601 ;
02602 H DB$DHLH
02603 ; Display HL in hex.
02604 i
02605 s Entry parameters
02606 ;
02607 H HL = value to be displayed
02608 7
02609 DB$DHLH:
02610 0787 ES PUSH H sSave input value
02611 0788 7C MOV A H sGet MS byte first
02612 0789 CD9107 CALL DB$DAH sDisplay A in hex.
02613 078C E1 POP H sRecover input value
02614 078D 7D MOV AL ;Get LS byte
02615 078E C39107 JMP DB$DAH ;Display it and return
02616 H
02700 24
02701 H
02702 H DB$DAH
02703 H Display A register in hexadecimal
02704 2
02705 H Entry parameters
02706 4
02707 H A = value to be converted and output
02708 3
02709 DB$DAH:
02710 0791 FS PUSH PSW 3Take a copy of the value to be converted
02711 0792 OF RRC sShift A right four places
02712 0793 OF RRC
02713 0794 OF RRC
02714 0795 OF RRC
02715 0796 CDB407 CALL DB$Nibble$To$He x ;Convert LS 4 bits to ASCII
02716 0799 CDOAOS CALL DB$CONQUT ;Display the character
02717 079C F1 POP PSW ;Get original value again
02718 079D CDB407 CALL DB$Nibble$To$Hex ;Convert LS 4 bits to ASCII
02719 07A0 C30A05 JMP DB$CONOUT sDisplay and return to caller
02800 e
02801 $
02802 H DB$CAH
02803 3 Convert A register to hexadecimal ASCII and store in
02804 3 specified address.
02805 ;
02806 H Entry parameters
02807 3
Figure 10-2. (Continued)

344 The CP/M Programmer’s Handbook

02808 H A = value to be converted and cutput
02809 H HL -> buffer area to receive two characters of output
02810 ;
02811 3 Exit parameters
02812 H
02813 3 HL -> byte fcllowing last hex.byte output
02814 5
02815 DB$CAH:
02816 07A3 FS PUSH PSW ;Take a copy of the value to be converted
02817 07A4 OF RRC ;Shift A right four places
02818 07AS OF RRC
02819 07A6 OF RRC
02820 07A7 OF RRC
02821 07A8 CDB407 CALL DB$Nibble$To$Hex sConvert to ASCII hex.
02822 07AB 77 MoV M, A ;Save in memory
02823 07AC 23 INX H : ;Update pointer
02824 O07AD F1 POP PSW ;Get original value again
02825 O7AE CDB407 CALL DB$Nibble$TasHex ;Convert to ASCII hex.
02826 07B1 77 MOV M, A sSave in memory
02827 07B2 23 INX H ;Update pointer
02828 07B3 C9 RET
02900 i
02901 H
02902 H Minor subroutines
02903 ;
02904 H N
02905 H DB$Nibble$To$Hex
02906 H This is a minor subroutine that converts the least
02907 H significant four bits of the A register into an ASCII
02908 H hex. character in A and C
02909 H
02910 H Entry parameters
02911 4
02912 3 A = nibble to be converted in LS 4 bits
02913 H
02914 H Exit parameters
02915 §
02916 H A,C = ASCII hex. character
02917 ;
02918 DB$Nibble$To$Hex:
02919 07B4 E&OF ANI 0000%1111B ;Isolate LS four bits
02920 07B6 C630 ADI “0” 3Convert to ASCII
02921 07B8 FE3A CPI ‘9 + 1 sCompare to maximum
02922 07BA DABFO7 JC DBNTHNumeric 3;No need to convert to A —> F
02923 07BD Cé07 ADI 7 sConvert to a letter
02924 DBNTHNumeric:
02925 O7BF 4F MOV C,A sFor convenience of other routines
02926 07C0 C9 RET
02927
02928
02929 H
02930 3 DB$CRLF
02931 H Simple routine to display carriage return, line feed.
02932 5
02933 DB$CRLF:
02934 07C1 CDD607 CALL DB$MSGI sDisplay in-line message
02935 07C4 ODOAOO DB ODH, OAH, O
02936 07C7 C9 RET
02937 1
02938 t DB$Colon
02939 s Simple routine to display 7 : “.
02940 3
02941 DBs$Colon:
02942 07C8 CDD&07 CALL DB$MSGI jDisplay in-line message
02943 07CB 203A2000 DB s 7,0
02944 07CF C9 RET
02945 ; .
02946 H DB$Blank
02947 H Simple routine to display 7 7.
02948 3
02949 DB$Elank:
02950 Q7D0 CDD&07 CALL DB$MSGI sDisplay in-line message
02951 07D3 2000 DB c 40
02952 0o7DS C9 RET
03100 P
03101 H
03102 H Message processing subroutines
Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System

345

03103 H
03104 H DB$MSGI (message in-line)
03105 H Output null-byte terminated message that follows the
03106 3 CALL to MSGOUTI
03107 H
03108] Calling sequence
03109 H
03110 H CALL DB$MSGI
03111 H DB ‘Message’, 0
03112 H «.. next instruction
03113 H
03114 H Exit parameters
03115 H HL -> instruction following message
03116 ;
03117 i
03118 DB$MSGI:
03119 3Get return address of stack, save
03120 3 user’s HL on top of stack
03121 07Dé E3 XTHL sHL -> message
03122
03123 07D7 FS PUSH PSW ;Save all user’s registers
03124 0708 CS PUSH B
03125 07D9 DS PUSH D
03126 DB$MSGI$Next:
03127 07DA 7E MoV AM ;Get next data byte
03128 O7DB 23 INX H sUpdate message pointer
03129 07DC B7 ORA A sCheck if null byte
03130 07DD C2ES07 JNZ DB$MSGIC ;No, continue
03131
03132 07E0 D1t PQP D jRecover user“s registers
03133 07E1 C1 POP B
03134 07E2 F1 POF PSW
03135 07E3 E3 XTHL ;Recover user’s HL from stack, replacing
03136& 7 it with updated return address
03137 07E4 C9 RET ;Return to address after 00-byte
03138 ; after in-line message
03139 DB$MSGIC:
03140 07ES ES PUSH H ;Save message pointer
03141 07Eé 4F MoV C,A sReady for output
03142 Q7E7 CDOAOS CALL DB$CONQUT
03143 07EA E1 POP H sRecover message pointer
03144 07EB C3DA07 JMP DB$MSGI$Next :Go back faor next char.
03145
03148 H
Q02147 3 DR$MSG
03148 H Output null-byte terminated message
03149 3
03150 H Calling sequence
03151 H
03152 H MESSAGE: DB “Message”, 0
03153 H :
03154 H LXI H, MESSAGE
03155 3 CALL DB$MSG
03156 H
03157 § Exit parameters
03158 H HL -> null byte terminator
03159 H
03160 3
03161 DES$MSG:
03162 Q7EE F3 PUSH PSW ;Save user’s registers
03163 07EF CS PUSH B
03184 07F0 DS PUSH D
03145 DRMSGNext:
03166 07F1 7€ MOV AM ;Get next byte for output
03167 07F2 R7 ORA A ;Check if 00-byte terminator
03168 Q7F3 CA0Q0& Jdz DBMSGX sExit
03169 07F& 23 INX H ;Update message pointer
03170 07F7 ES PUSH H ;Save updated pointer
03171 07F8 4F MoV C,A ;Ready for output
03172 07F9 CDOAQS CALL DB$CONQUT
03173 O7FC E1l POP H sRecover message pointer
03174 07FD C3F107 JMP DRMSGNex t ;Go back for next character
03175 ;
03176 DBMSGX:
03177 0800 D1 POFP D ;Recover user’s registers
03178 0801 C1t POP B
03179 0802 F1 PQOP PSW
figure 10-2. (Continued)

346 The CP/M Programmer’s Handbook

03180 0803
03300
03301
03302
03303
03304
03305
03306
03307
03308
03309
03310
03311
03312
03313
03314
03315
0331&
03317
03318
03319
03320
03321
03322 0804
03323 0814
03324
03325
03326
03327 081A
03328 081D
03329 081E
03330 081F
03331 0822
03332
03333 0823
03334 0824
03335 0825
03336 0828
03337 0829
03338 082A
03339
03340
03341 082B
03342
03343
03344 082E
03345 0831
03344 0834
032347 0835
03348 o838
03349 Q83R
03350 083E
Q3351 0841
03352 0843
03353 0846
03354
03355 0847
03356
03357 0844
03358 084B
03359 084C
Q3360 084F
03361 0850
03362 0853
03363 0854
03500
03501
03502
03503
03504
03505
035046
03507
03508
03509
03510
03511

ce RET
P #
H Debug input routine
H This routine helps debug cade in which input instructians
H would normally cccur. The opcode of the IN instructicn
H must be replaced by a value of QE7H (RST 4).
H This routine picks up the port number contained in the byte
H following the RST 4, converts it to hexadecimal, and
H displays the message:
v
3 Input from port XX :
H It then accepts two characters (in hex.) from the keyboard,
; converts these to binary in A, and then returns control
s to the byte following the port number
H
3 R R
H WARNING — This routine uses both DE$CONOUT and BDOS calls
s R E R
;
496E707574DBIN$Message: DB “Input from Port 7
S5858203A20DBINS$Port: . DB XX ¢ 7,0
12
DB$Input:
220904 SHLD DE$Save$HL sSave user”’s HL
El POP H ;Recover address of port number
2B DCX H sBackup to point to RST
220F04 SHLD DB$Call$Address ;Save for later display
23 INX H ;Restore to point to port number
;Note: A need not be preserved
7E Mov AM 3Get port number
23 INX H ;Update return address to bypass port
220D04 SHLD DB$Save$RA ;Save return address
CS PUSH B ;Save remaining registers
DS PUSH D
FS PUSH PSW ;Save port number for later
CDB108 CALL DB$Flag$Saves$On ;Save current state of debug flag
3 and enable debug cutput
CDC107 CALL DB$CRLF ;Display carriage return, line feed
cn7co7 CALL DB$Display$CALLA;Display call address
F1 POP PSW sRecover port number
211408 LXI H, DRIN$Port
CDA307 CALL DBR$CAH sConvert to hex.and store in message
210408 LXI H,DBIN$Message ;Qutput prompting message
CDEEOQ7 CALL DB$MSG
QEO2 MVI c,2 ;Get 2 digit hex, value
CDCFOR CALL DR$GHV sReturns value in HL
7D Mav AL ;Get just single byte
CDBFO8 CALL DB$Flag$Restore ;Restore debug cutput to previous state
D1 POF D ;Recover registers
c1 POP B
2A0904 LHLD DR$Saves$HL sGet previous HL
ES PUSH H sPut on top of stack
2A0D04 LHLD DB$Saves$RA ;Get return address
E3 XTHL ;TOS = return address, HL = previcus value
ce RET
¥
H Debug output routine
H This routine helps debug code in which output instructions
H would normally occur. The opcode of the QUT instructicon
3 must be replaced by a value of OEFH (RST 5).
i
H This routine picks up the port number contained in the byte
H following the RST 5, converts it to hexadecimal, and
H displays the message:
H

Figure 10-2.

(Continued)

Chapter 10: Debugging a New CP/M System

347

03512 H Output to port XX : AA
03513 H
03514 H where AA is the contents of the A register pricr to the
03515 H RST S being executed.
03516 H Control is then returned to the byte following the port number.
03517 H
03518 s P I
03519 H WARNING - This routine uses both DB$CONOUT and BDOS calls
03520 3 L EE 13
03521 H
03522 3
03523 0855 4F7574707SDBO$Message: DR “Output to Port ~
03524 0864 5858203A20DBO$Paort: DB XX 2 7
03525 08479 414100 DBO$Value: DR “AAT, O
03526 H
03527 3
03528 DB$Qutput:
03529 084C 220904 SHLD DR$SavesHL sSave user’s HL
03530 086F E1 POF H sRecover address of port number
03531 0870 2B DCX H ;Backup to point to RET
03532 0871 220F04 SHLD DB$Call$Address ;Save for later display
03533 0874 23 INX H sRestore to point at port number
03534 0875 324B04 STA DB$Save$A sPreserve value to be output
03535 0878 7E Mav A M ;Get port number
033536 0879 23 INX H sUpdate return address to bypass port number
03537 087A 220D04 SHLD DE$SavesRA ;Save return address
03538 087D C5 PUSH ;Save remaining registers
03539 087E DS PUSH o
03540 087F FS PUSH PSW ;Save port number for later
03541
03542 08280 CDB108 CALL DBR$Flag$Save$On ;Save current state of debug flag
03543 3 and enable debug cutput
03544
03545 0883 CDC107 CALL DB$CRLF sDisplay carriage return, line feed
03546 088é CD7C07 CALL DBR$Display$CALLA;Display call address
03547 0889 F1 POP PSW sRecover port number
03548 088A 216408 LXI H, DRO$Por t
03549 088D CDA307 CALL DB$CAH ;Convert to hex.and store in message
03550
03551 0890 3A4R04 LDA DR$Save$A
03552 0893 216708 LXI H, DRO$Value ;Convert value to be output
03553 0896 CDA307 CALL DB$CAH sConvert to hex.and store in message
03554
03555 0899 215508 LXIX H, DBO$Message ;0utput prompting message
03556 089C CDEEO7 CALL DB$MSG
03557
03558 089F CDBFO8 CALL DB$Flag$Restore ;Restore debug flag to previous state
03559
03560 08A2 D1 POP D sRecover registers
03561 08A3 Ct POP B
03562 08A4 2A0904 LHLD DB$Saves$HL ;Get previous HL
03563 08A7 ES PUSH H ;Put on top of stack
03564 08A8 2A0DO4 LHLD DB$Save$RA ;Get return address
03565 08AB E3 XTHL ;TOS = return address, HL = previous value
03566 08AC 3A4B04 LDA DBR$Saves$A ;Recover A (NOTE: FLAG NOT RESTORED)
03567 08AF C9 RET
03700 ¥
03701 3
03702 H DB$F1ag$Saves$On
037023 H This routine is only used for DB$IN/OUT.
03704 H It saves the current state of the debug control flag,
03705 3 D$Flag, and then enables it to make sure that
03706 H DB$IN/OUT output always goes out.
03707 3
03708 08RO 00 DB$Flag$Previous: DB (o] sPrevious flag value
03709 ¥
03710 DR$Flag$SavesOn:
03711 08B1 FS PSW sSave callaer’s registers
03712 08B2 3A0604 LDA DB$F1lag ;Get current value
03713 08BS 32B008 STA DB$Flag$Previous sSave it
03714 08B8 3EFF MVI A, OFFH ;Set flag
03715 08BA 320604 STA DB$Flag
03716 08BD F1 POP PSW
03717 08BE C9 RET
03800 (24
03801 H
Figure 10-2. (Continued)

348 The CP/M Programmer’s Handbook

03802 H DB$Flag$Restore

03803 H This routine is only used for DB$IN/OUT.

03804 3 It restores the debug control flag, DB$Flag, to

03805 H its former state.

03806]

03807 DB$Flag$Restore:

03808 08BF FS PUSH PSW

03809 08CO 3AB0O08 LDA DB$Flag$Previous ;Get previous setting

03810 08C3 320604 STA DB$Flag ;Set debug control flag

03811 08Cé F1 POP PSW

03812 08C7 C9 RET

03813

03814 H

03900 ¥

03901 H

03902 H Get hex. value

03903 H

03904 H This subroutine outputs a prompting message, and then reads

03905 H the keyboard in order to get a hexadecimal value.

03906 H It is somewhat simplistic in that the first non-hex value

03907 H terminates the input. The maximum number of digits to be

03908 H converted is specified as an input parameter. If more than the

03909 H maximum number is entered, only the last four are significant.

03910 ;

03911 H

03912 H . WARNING :

03913 H DB$GHV will always use the BDOS to perform a read conscle

03914 H function (#10). Be careful if you use this routine from

03915 H within an executing BIOS.

03916 §RRRRERR %

03917 H

03918 H Entry parameters

03919 H

03920 H HL -> 00-byte terminated message to be output

03921 H C = number of hexadecimal digits to be input

03922 ;

03923 3

03924 DEGHVBuffer: s Input buffer for console characters

03925 DEGHVMax$Count:

03926 o8C8 00 DB 0 ;Set to the maximum number of chars.

03927 s to be input

03928 DBRGHVInput$Count:

03929 08C% 00 DB o] ;Set by the BDOS to the actual number

03930 3 of chars. entered

03931 DRGHVData$Bytes

03932 08CA Ds S ;Buffer space for the characters

03933 H

03934 H

03935 DB$GHV:

0393& 08CF 79 Mav A,C ;Get maximum characters to be input

03937 08D0 FEOS CPI S ;Check against maximum count

03938 08D2 DAD708 JC DBGHVCount $0K ;Carry set if A <5

03939 08DS 3E04 MV A4 sForce to only four characters

03940 DBGHVCount $0K:

03941 08D7 320808 STA DBGHVMax$Count ;Set up maximum count in input buffer

03942 08DA CDEEO7 CALL DB$MSG ;Output prompting message

03943 080D 11C808 LXI D, DRGHVBuf fer sAccept characters from conscle

03944 08E0 OEOA MVI C, BSREADCONS sFunction code

03945 08E2 CDO0500 CALL BOOS ’

03946

03947 08ES OEO2 MVI C, B$CONOUT sOutput a line feed

03948 O8E7 1EOA MVI E, OAH

03749 08E9 CDOS00 CALL BDOS

03950

03951 08EC 210000 LXI H, 0 sInitial value

03952 O8EF 11CA08 LXI D, DBGHVDatas$Bytes sDE -> data characters

03953 08F2 3ACY08 LDA DBGHVInput$Count ;Get count of characters input

03954 08FS 4F MoV C,A sKeep count in C

03955 DBGHVLoop:

03956 08F6 OD DCR C sDowndate count

03957 08F7 F8 RM sReturn when all done (HL has value)

03958 08F8 1A LDAX D ;Get next character from buffer

03959 08F9 13 INX D sUpdate buffer pointer

03960 08FA CD1BO? CALL DBATos$Upper ;Convert A to uppercase if need be

03961 08FD FE30 CPI ‘07 ;Check if less than O

03962 O8FF D8 RC 3Yes, terminate

03963 0900 FE3A CPI ‘97 4+ 1 sCheck if > 9

03964 0902 DA1009 JC DBGHVHex$Digit 3sNo, it must be numeric
Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 349

03965 0905 FE41 CPI ‘A ;Check if < “A”

03966 0907 D8 RC ;Yes, terminate

03967 0908 FEA47 CPI ‘F7 + 1 ;Check if > “F~

03948 090A DO RNC i1Yes, terminate

03949 090B D&37 suUI ‘A - 10 ;Convert A through F to numeric
03970 090D C3120% JMP DBGHVShiftsLeft$4 sCombine with current result
03971 0

03972 DBGHVHex$Digit:

03973 0910 D&30 su1 <07 ;Convert to binary

03974 DBGHVShiftélLefts4:

03975 0912 29 H 3Shift HL left four bits
03976 0913 29 DAD H

03977 0914 29 DAD H

03978 0915 29 DAD H

03979 0916 85 ADD L sAdd binary value in LS 4 bits of A
03980 0917 6F MoV L,A ;Put back into HL total
03981 0918 C3F408 ~ JMP DBGHVLoop sLoop back for next character
04100 ¥

04101 ;

04102 3 A to upper

04103 3 Converts the contents of the A register to an uppercase
04104 H letter if it is currently a lowercase letter

04105]

04106 3 Entry parameters

04107 H

04108 3 A = character to be converted

04109 H

04110 H Exit parameters

04111 3

04112 H A = converted character

04113 3

04114 DBATosUpper:

04115 091B FEé1 CPI ‘a“’ sCompare to lower limit

04116 091D D8 RC sNo need to convert

04117 091E FE7B CPI ‘20 + 1 sCompare to upper limit

04118 0920 DO RNC sNo need to convert

04119 0921 E6SF ANI SFH jConvert to uppercase

04120 0923 C9 RET

Figure 10-2. Debug subroutines (continued)

B>ddt =

DDT VERS 2.0

NEXT PC

0924 0000

-9100<qr>

0116 : Flags : Flags = C1ZOMIELIO

0120 : A Register ¢ A =

O12F : B Register : B = BB

O13E : C Register : C = CC

014D : D Register : D = DD

015C : E Register : E = EE

016B : H Register : H = FF

017A : L Register : L = 11

0189 : Memory Dump #1 : Start, End Address : 0108, 0128
0108 : OS5 3E AA 01 CC BB 11 EE & .>%, L;.n
0110 : DD 21 11 FF B7 37 CD 52 05 00 46 6C 61 67 73 00 : 1!.. 77MR ..F1l ags.
0120 : CD 52 05 02 41 20 S2 65 67 : MR.. A Re 9

01A0 : Memory Dump #2 : Start, End Address : 0100, O1i1F
0100 : 31 6B 03 CD EA 04 CD 1S5 05 3E AA 01 CC BB 11 EE : 1k.M j.M. .>%, Li.n
0110 : DD 21 11 FF B7 37 CD 52 05 00 46 &C 61 67 73 00 : 1!.. 77MR ..Fl ags.

O1B7 : Memory Dump #3 : Start, End Address : 0101, 0100
*% ERROR - Start Address > End =

O1CE : Memory Dump #4 : Start, End Address : 0100, 0100
0100 ¢+ 31 : 1

Figure 10-3. Console output from debug testbed run

350 The CP/M Programmer’s Handbook

Q1FS
0205

01ES @

0215 :
022€ :
023F :
0250 :
026A :
027B :
028C :
Debug cutput

: HL Register : HL

Byte
Byte
Byte
Word
Word
Word

BC Register : BC =
: DE Register : DE = DDEE

SP Register : SP = 0369

at
at

at

has been re-enabled.

(BC) : (BC) = BC
(DE) : (DE) = DE
(HL) : (HL) = F1

(BC) : (BC+1),(BC) = OBOC
(DE) : (DE+1),(DE) = ODOE
(HL) : (HL+1),(HL) = OFO0O1

This message should display 5 times
This message should display 5 times
This message should display S times
This message should display 5 times
This message should display 5 times
032B : Input from Port 11 : aa

032D : Output to Port 22 : AA

Figure 10-3. Console output from debug tested run (continued)

containing all of the symbols in your program, along with their
respective addresses. Once the program has been loaded by SID, you can
refer to the memory image of your program not by address, but by the
actual symbol name from your source code. SID also supports the “pass
count” concept when using breakpoints.

ZSID (Z80 Symbolic Debug)
This is the Z80 CPU’s version of SID. The mini-assembler/disassembler
uses Zilog instruction mnemonics rather than those used by Intel.

Bringing Up CP/M for the First Time

It is much harder to bring up CP/M on a new computer system than to debug
an enhanced version on a system already running CP/M. You will often find
yourself staring at a programmatic “brick wall” with no adequate debugging tools
to assist you.

For example, you install the CP/M system on a diskette (using another CP/M-
based computer system), put the diskette into the new computer, and press the
RESET button. The disk head loads on the disk, and then —nothing! You cannot
use any programs such as DDT or SID because you do not yet have CP/M up and
running on the new computer. Or can you?

The answer is, wherever possible, debug the code for the new machine on an
existing CP/M system. You may have to “fake” some aspects of the new bootstrap
or BIOS so that the act of testing it on the host machine does not interact with the
CP/M already running on it.

This scheme permits you to be fairly sure of your program logic before loading
the diskette into the new machine. It will help pin down problems caused by
hardware problems on the new computer.

Chapter 10: Debugging a New CP/M System 351

The hardest situation of all is if you have only the new computer and the release
diskettes from Digital Research. Your only option is to find a way of reading the
CP/M image on the release diskette into memory, hand patch in new console and
disk drivers (not a trivial task), write the patched image back onto a diskette, and
resort to Orville Wright testing.

If you value your time, it is always more cost-effective to use another system
with CP/M already installed. This is true even if the two systems do not have the
same diskette format. You can stilldo the bootstrap and build the CP/M image on
the host machine. Then download the image directly into the memory of the new
machine and write it out to a diskette.

This downloading process does require, however, that the new computer have a
read-only memory (ROM) monitor program. Depending on the capability of this
ROM monitor program, you may have to hand patch into the new machine’s
memory a primitive “download” program that reads 8-bit characters from a serial
port, stacking them up in memory and returning control to the monitor program
when you press a keyboard character on the new machine’s console. In fact, some
ROM monitor programs have a downloading program built in.

Debugging the CP/M Bootstrap Loader

The CP/M bootstrap loader, as you may recall, is written on one of the
outermost tracks on a diskette or hard disk. On a standard 8-inch single-sided,
single-density diskette, CP/M’s bootstrap loader is stored on the first sector of the
first track. The loader is brought into memory by firmware that gets control of the
CPU when you turn your machine on or press the RESET button.

The bootstrap has to be compact, as the diskette space on which it is stored is
limited: no more than 128 bytes for standard 8-inch diskettes. This tends to rule
out the use of the debug subroutines already described, so you have to fall back to
more primitive techniques.

Testing the Bootstrap Under CP/M

A bootstrap is best developed on a CP/M-based system. The task is easiest of
all if you already have CP/M running on your new machine and are simply
preparing an enhanced version of the bootstrap loader. In this case, you can test
most of the code as though it were a user program running in the transient
program area (TPA).

Most bootstraps get loaded into memory at location 0000H, so at the front of
the code to be debugged you must put a temporary origin line that reads

QORG 100H

352 The CP/M Programmer’s Handbook

If you omit this and ask DDT to load the HEX file output by the assembler, it
will load at the true origin, 0000H, and wipe out the contents of the base page for
the version of CP/M that you are running. This will cause a system crash; you will
have to press the RESET button and reload CP/M. When this happens, DDT does
not tell you directly that anything is amiss; it just displays a “?” after your request to
load the HEX file. You will discover that the system has “gone away” only when
you try to do something else.

You also will need to adjust the addresses into which the bootstrap tries to load
the CP/M image. If you do not, you will overwrite the version of CP/M presently
running.

With these adjustments made, you can load the bootstrap under DDT and
watch it execute, confirming that it does load the correct image into the correct
addresses for debugging and transfer control to the BIOS jump vector. When
everything appears to be functioning correctly, use the IF instruction to disable the
debug code, reassemble the bootstrap, and write it onto a diskette. Then put the
diskette into drive A and press RESET.

Was the Bootstrap Loaded?

At this point you must establish whether the bootstrap is being loaded into
memory when the machine is turned on or RESET is pressed. The best way of doing
this, and one that you can leave in place permanently, is to output a sign-on
message as soon as the loader gets control. This requires hardware set up to
prepare the USART (Universal Synchronous/ Asynchronous Receive/ Transmit)
chip to output data, although some manufacturers write this initialization code
into the firmware that loads the bootstrap. A suitable sign-on message would be
the following:

CP/M Bootstrap Loader : Vn 1.0 11/18/82

If you do not see this message, assume that control is not being transferred to
the bootstrap loader. This will be useful in the future if someone should call you
with a complaint that CP/M cannot be loaded. If this message does not appear,
they probably do not have CP/M on the disk.

Did the Bootstrap Load CP/M?

This is a harder question to answer than whether the bootstrap itself has been
loaded, especially if the bootstrap loader sign-on is displayed and then the system
crashes. A sign-on message early in the BIOS cold boot processing can confirm the
correct transfer of control into the BIOS.

If the problems with the bootstrap program are severe, you may have to adapt
the memory-dump debugging subroutine, dumping the contents of memory to the
console in order to see what information the bootstrap loader is placing in
memory. Display 100H bytes starting from the front of the BIOS jump vector. This

Chapter 10: Debugging a New CP/M System 353

table has an immediately recognizable pattern of 0C3H values every three bytes.

You should also check to see that the bootstrap is loading the correct number
of sectors from the disk into memory. If it loads too few, CP/M may sign on only to
crash a few moments later because it attempts either to execute code or access a
constant at the end of the BIOS. If the bootstrap loads too many sectors from the
disk, the excess may “wrap around” the top of memory and overwrite the boot-
strap itself, down at location 0000H, before it has completed its task. In this case,
you would see only the sign-on for the bootstrap, not for the BIOS.

Debugging the BIOS

Rather than try to debug the BIOS as a single piece of code, debug it as a series
of separate functional modules.

Notwithstanding current “top-down” philosophies of dealing with overall
structure first, it can be quicker to debug the low-level subroutines in a device
driver first. This gives you a solid base on which to build.

The BIOS can be divided up into its constituent modules as follows:

Character input
Interrupt service
Non-interrupt service

Character output

Interrupt routines
Real time clock
Watchdog timers

Disk drivers
High-level (deblocking)
Low-level (physical 1/O)

Plan to write a testbed program for each of these modules. This testbed code
serves two purposes; first, it provides a means of transferring control into the
module under test in a controlled way. Second, it includes the necessary modules
or dummy modules to “fool” the module under test into responding as if it were
running in a complete BIOS under CP/M.

Using the testbed, you can check every part of the module’s logic except the
part that may be time-critical. Problems caused by timing, such as interrupts
disabled for too long or code that is too slow or too fast for a particular peripheral
controller chip, tend to show up only when you are testing on the final hardware
and when you are running your new BIOS under CP/M.

354 The CP/M Programmer’s Handbook

What You Should Test for in the BIOS

Describing fully how to debug each module in the BIOS ould fill several books.
Remember that you are trying to establish the absence of errors using a technique
that, by its very nature, tends to show only their presence.

There are two basic approaches to debugging. One is the plodding method,
checking every aspect of the code to ensure that every feature really does work.
The second is to try to do something useful with the code.

Plan to use both. Start with the plodding method, testing each feature under
control of the testbed until you are sure that it is working in vitro. Whenall of the
BIOS modules have been tested individually, build a CP/M system and try to do
some useful work with it. Trying to use the system for actual work testing in vitro
can be a good test.

Feature Checklist

Make a list of the specific features included in the various BIOS modules. Then
devise specific test sequences that will show that each of the features is working
correctly.

The same testbed code can often test all of the features of a driver module. If it
cannot, create a new testbed for the more exotic features.

Keep the testbed routines. Experience shows that they are most often needed
shortly after you have erased them. Even after you have tested the BIOS, the
testbed routines will come in handy if you decide to enhance a particular driver
later on. You can extract the driver code from the BIOS, glue it together with the
testbed, and test the new feature code in isolation from the BIOS.

The following sections show example testbeds for the various drivers, along
with example checklists. These checklists were used to test the example BIOS
routines shown in earlier chapters.

Character Drivers

Figure 10-4 shows the code for an example testbed routine for character I/O
drivers in the BIOS. This code would be followed by the actual character 1/O
drivers, exactly as they would appear in the BIOS except that all IN and OUT
instructions would be replaced with RST 4’s and 5’s respectively (see Figure 10-2)
so that you could enter input values and inspect output values on the console.

This example contains the initialization code for the debug package shown in
Figure 10-2 and the code setting up an RST 6 used to “fake” incoming character
interrupts.

The main testbed loop consists of a faked incoming character interrupt fol-
lowed by optional calls to CONIN or CONOUT, the return of controlto DDT, ora
loop back to fake another character interrupt. You can only return control to DDT
if you used DDT to load the testbed and driver programs in the first place.

Chapter 10: Debugging a New CP/M System

355

FFFF
0000

FFFF

0030
0100

0100
0103
0106
0108
010B
010E

o111
0113
0116
0119
011C

011D
0120
0152

0159
015C
015E
0161
0163
0166
0168
016B

016E
016F

0172
0175
0178

017B
O17E
O17F

018E

0191

0194
0197
019A
019R
019E

01A1
01B1
01C1

<o ws v ws we we e we

Testbed for character I/0 drivers in the BIOS
The complete source file consists of three components:
1. The testbed code shown here

2. The character I/0 drivers destined for the EIOS
3. The debug package shown in Figure 10-2.

= TRUE EQU OFFFFH
= FALSE EQU NOT TRUE
= DEBUG EQU TRUE sFor conditional assembly of RST
3 instructions in place of IN and
5 OUT instructions in the drivers
= RSTé EQU 30H sUse RST & for fake incoming character
3 interrupt
ORG 100H
START:
31D101 LXI SP, Test$Stack sUse a local stack
CDD101 CALL DB$Init sInitialize the debug package
3EC3 MVI A, JMP ;Set up RST & with JMP opcode
323000 STA RSTé
21D101 LXI H,Character$Interrupt ;Set up RST 6 JMP address
223100 SHLD RSTS + 1
H Make repeated entry to character interrupt routine
H to ensure that characters can be captured and stored in
H an input buffer
;
Testbed$loop:
3EAA MVI A, OAAH sSet registers to known pattern
01CCBB LXI B, OBBCCH
11EEDD LXE D, ODDEEH
2111FF LXI H, OFF11H
F7 RST é ;Fake interrupt for incoming character
CcDD101 CALL DB$MSGI sDisplay in-line message
ODOA4S6E74 DB ODH, OAH, “Enter I to Input Char., O to Output, D to enter
444454203A DB ‘DDT = 7,0
CDD101 CALL DB$CONINU ;Get uppercase character
FE49 CPI “1° s CONIN?
CA7201 JZ Go$CONIN
FE44 CPI ‘D’ s DDT?
CAGEO1 Jz Go$DDT
FEA4F CPI 70 s CONOUT?
CA9101 Jz Go$CONOQUT
C31101 JMP Testbed$lLoop sLoop back to interrupt again
Go$DDT:
FF RST 7 sEnter DDT (RST 7 set up by DDT)
C31101 Testbed$lLoop
Go$CONIN:
CpD101 CALL CONST ;Get console status
CA1101 Jz Testbed$lLoop ;No data waiting
CDD101 CALL CONIN ;Get data from buffer
CDD101 CALL DB$Display s;Display character returned
02 DB DB$A 3 in A register
434F4EA94E DB “CONIN returned’, 0
C37201 JMP Go$CONIN sRepeat CONIN loop until no chars.
’ waiting
Go$CONOUT:
CDD101 CALL CONST ;Get console status
CAl101 Jz Testbed$loop '3No data waiting
cDD101 CALL CONIN
4F MoV C,A . sReady for output
CDD101 CALL CONQUT ;Output to conscle
C39101 JMP Go$CONOUT ;Repeat while there is still data
;
PIPIPIIIIP oW FIIPH, F999H, 9999H, P999H, I999H, 9999H, 9999H, 999%H
9999999999 oW 999PH, 9999H, 9999H, 9999H, F999H, 9999H, 9999H, 9999H
PPNV oW F99PH, I999H, F999H, FI99H, 9999H, 9997H, I999H, 9999H

Figure 10-4.

Testbed for character 1/O drivers in the BIOS

356 The CP/M Programmer’s Handbook

Test$Stack:
3 Dummy routines for those shown in other figures

BIOS routines (Figure 8-10)

CONST: ;BIOS console status

CONIN: ;BIOS console input

CONQUT: 3sBIOS console output;

Characters$Interrupt: sInterrupt service routine for incoming chars.

H
Debug routines (Figure 10-2)

DB$Init: sDebug initialization
DB$MSGI: sDisplay message in-line
DB$CONINU: ;Get uppercase character from keyboard
DBs$Display: sMain debug display routine
0002 = DBs$A EQU 02 sDisplay code for DB$Display

Figure 10-4. Testbed for character I/O drivers in the BIOS (continued)

Executing an RST 7 without using DDT will cause a system crash, as DDT sets up
the necessary JMP instruction at location 0038H in the base page.

The faked incoming character interrupt transfers control directly to the inter-
rupt service routine in the BIOS (see the example in Figure 8-10, line 04902, label
Character$Interrupt). This reads the status ports of each of the character devices;
you can enter the specific status byte values that you want. If you enter a value that
indicates that a data character is “incoming,” you will be prompted for the actual
8-bit data value to be “input.” You can make the interrupt service routine appear to
be inputting characters and stacking characters up in the input buffer. For debug-
ging purposes, reduce the size of the input buffer to eight bytes. Making it larger
means you will have to input more characters to test the buffer threshold logic. To
check the interrupt service routine, you will pass through the main testbed loop
doing nothing but faking incoming character interrupts and entering status and
data values. The data characters will then be stacked up in the input buffer.

To check the correct functioning of the interrupt service routines, you can stay
in control with DDT from the outset. Alternatively, you can just use DDT to load
the testbed/driver HEX file, loop around inputting several characters, and then
request that the testbed return control to DDT. Then you can use DDT to inspect
the contents of the device table(s) and input buffers.

Another possibility is to create debugging routines that display the contents of
the device table in a meaningful way, with each field captioned like this:

DEVICE TAELE O

Status Fort a1 Data Port 20
Output Ready 01 Input Ready 02
DTR high 40

Reset Int. Frt D8 Reset Int. Val. 20

Status Eyte 1
Gutput Suspended
Output Xon Enabled

Chapter 10: Debugging a New CP/M System 357

Buffer Base QEZC

Fut Offset 05 Get DOffset 01
Char. Count 04 Control Count Q0
Data Euffer

41 42 42 44 45 00 00 00

This display device table routine will require a fair amount of effort to code and
debug — but it will pay dividends. You can obtain a complete “snapshot” of the
device table without having to decode hexadecimal memory dumps and individual
bits. Constant values in the device tables are also displayed, so that if a bugin your
code corrupts the table, you will know about it immediately.

The next section shows examples of the specific tests you need to make, along
with a description of the strategy you can use.

Interrupt Service Routine Checklist In a functioning BIOS, control is transferred to the
interrupt service module whenever an incoming character causes an interrupt. In
the example BIOS in Figure 8-10 (line 4900), the code scans each character device
in turn to determine which one is causing the interrupt.

When you are debugging the interrupt service routines using the “fake” input/
output instructions, you will have to enter specific status byte values. Refer to the
device table declarations in Figure 8-10, line 1500, to determine what values you
must enter to make the service routine think that an incoming character is arriving
or that data terminal ready (DTR) is high or low.

Start the debugging process using the first device table. Then repeat the tests on
the other device tables.

The following is a checklist of features that should be checked in debugging the
interrupt service routine:

Are all registers restored correctly on exit from the interrupt servicing’?

Using DDT, start execution from the beginning of the testbed. Set a
breakpoint (with the G100,nnnn command) to get control back imme-
diately before the CALL Character$Interrupt. Use the X command to
display all of the registers, and then, by using the G,nnnn command, you
set a breakpoint at the instruction that immediately follows the CALL
Character$Interrupt. The character drivers will prompt you for the status
values. Enter 00 (which indicates that no character is incoming). Display
the registers again — their values should be the same. Remember to check
the value of the stack pointer and the amount of the stack area that has
been used.

NOTE: Do not be too surprised if you lose control of the machine
when you first try this test. You may have some fundamental logic errors
initially. If the system crashes, reset it, reload CP/M, and then start the test
again. This time, rather than setting the second breakpoint at the
instruction following the CALL Character$Interrupt, venture down into
the Character$Interrupt code and go through the code a few instructions

358 The CP/M Programmer’s Handbook

at a time, setting breakpoints before any instructions that could cause a
transfer of control. Find out how far you are getting into the driver before
it either jumps off into space or settles into a loop.

Does the service routine push a significant number of bytes onto the stack
after an interrupt has occurred?

When you get control back after the CALL Character$Interrupt, use
the D (dump) command to dump the stack area’s memory on the console.
Check how far down the stack came by looking for the point where the
constants that used to fill the stack area are overwritten by other data.

The example BIOS in Figure 8-10 saves only the contents of the HL
register pair on the pre-interrupt stack. It then switches over to a private
BIOS stack to save the contents of the rest of the registers and service the
interrupt.

Are data characters added to the input buffer correctly?
“Input” a noncontrol character via the Character$Interrupt routine.
Then check the contents of the appropriate device table. The character
count and the put offset should both be set to one. Then check the contents
of the input buffer ‘itself;, does it contain the character that you
“input?”

Are control characters added to the input buffer correctly?
“Input”a control character such as 01 H. Do not use ETX, ACK, XON, or
XOFF (03H,06H, 11H, and 13H, respectively); these may cause side effects
if you have errors in the protocol handling logic. Check that the character
is stored in the next byte of the input buffer and that the character and
control counts are set to two and one, respectively. The put offset should
also be set to two.

When the input buffer full threshold is reached, does the driver output the
correct protocol character?

Set the first status byte in the first device table to enable input XON
or RTS protocol, or both. Then go round the main testbed loop putting
characters into the input buffer. Check the console display to see if the
drivers output the correct values when the buffer is almost full (the default
threshold is when five bytes remain). The driver should then drop the RTS
line or output an XOFF character or both, according to the input protocol
that you enabled.

When the input buffer is completely full, does the driver respond correctly?

This is an extension of the test above. Input one more character than

can fit into the buffer. Check to see that the drivers do not stack the

character into the input buffer and that a BELL character (07H) is output to
the data port.

Chapter 10: Debugging a New CP/M System 359

Are protocol characters XON| X OFF recognized and the necessary control flags
set or reset?

Reload the testbed and drivers. Set the status byte to enable the output
XON/XOFF protocol. Then use the Character$Interrupt routine to input an
XOFF character (13H). Check to see that the XOFF character has not been
put into the input buffer. Instead, the status byte should be set to indicate
that output has indeed been suspended.

Input an XON and check to see that the output suspended flag has
been reset.

Does the driver detect and reset hardware errors correctly?

Proceed as though you were going to input a character into the input
buffer, but instead enter a status byte value that indicates that a hardware
error has occurred (enter the value given in the device table for
DT$Detect$Error$ Value).

Check that the driver detects the error status and outputs the correct
error-reset value to the appropriate control port.

Non-interrupt Service Routine Checklist Ina “live” BIOS, non-interrupt service routines
are accessed via the CONIN and CONST entry points in the BIOS jump vector.
During debugging, the testbed can call the CONIN and CONST code directly.

Is input redirection functioning? Does control arrive in the driver with the
correct device table selected?

This is best tested directly with DDT. Use the Gnnnn,bbbb command to
transfer control into the CONIN code with a breakpoint at the RET
instruction at the end of the Select$ Device$ Table routine (see Figure 8-10,
line 04400). Check that the DE register pair is pointing at device table 0. If it
is not, you will have to restart the test. Use the Tn command to make DDT
trace through the Select§ Device$ Table subroutine to find the bug.

Are characters returned correctly from the buffer?
Use the testbed to “input” a character or two. Then use the testbed to
make several entries into CONIN. Check the characters returned from the
buffer.

Are the data character and control character counts correctly decremented?
After each character has been removed from the buffer by CONIN, use
DDT to examine the device table and check that the data character and
control character counts have been decremented correctly. Also check that

the get pointer has moved up the input buffer.

When the buffer “almost empty” threshold is reached, does the driver emit the
correct protocol character or manipulate the request to send (RTS) line
correctly?
Use DDT to enable the input RTS or XON protocol or both. Then input
characters into the input buffer until it reaches the buffer full threshold (the

360 The CP/M Programmer’s Handbook

default is when only five spare bytes remain in the buffer). Confirm that
“buffer almost full” processing occurs. Then make repetitive calls to
CONIN to flush data out of the buffer. Check that the “buffer emptying”
processing occurs when the correct threshold is reached. For RTS protocol,
the driver should output a raise RTS value to the specified RTS control port.
For XON, the driver should output an XON character to the data port (after
first having read the status port to ensure that the hardware can output
the character).

Does the driver handle buffer “wraparound” correctly?

Input characters to the input buffer until it becomes completely full.
Then make a single CONIN call to remove the first character from the
buffer. Follow this by inputting one more character to the buffer. Check
that the get pointer is set to one and the put pointer set to zero.

Next, make successive CONIN calls to empty the buffer. Then input
one more character to the buffer. Check that this last character is put into
the first byte of the input buffer.

Can the driver handle “forced input” correctly?

Using DDT, set the forced input pointer to point to a 00-byte-
terminated string; for example, use one of the function key decode default
strings. (In Figure 8-10, the forced input pointer is initialized to point to a
“startup string”— this is declared at the beginning of the configuration
block at line 00400.)

Using DDT, call the CONST routine and check that it returns with A=
OFFH (indicating that there appears to be input data waiting).

Make successive calls to CONIN and confirm that the data bytes in the
forced input string are returned. Check that the forcing of input ends when
the 00H-byte is detected.

Does the console status routine operate correctly when it checks for data
characters in the buffer, control characters in the buffer, and forced input?
Input a single noncontrol character, such as 41H, into the input buffer.
Using DDT, check that the second status byte in the device table has the
fake type-ahead flag set to zero. Call the CONST routine — it should return
with A= 0FFH (meaning that there is data in the buffer). Then set the fake
type-ahead bit in the second status byte and call CONST again. It should
return with A = 00H (meaning that there is now “no data” in the buffer).
Input a single control character into the buffer. Now CONST should return
with A = OFFH because there is a control character in the buffer.

Does the driver recognize escape sequences incoming from keyboard function
keys?

This is a difficult feature to test when the real time clock routine is not

running. The driver uses the watchdog timer to wait until all characters in

Chapter 10: Debugging a New CP/M System 361

the escape sequence have arrived. You will therefore have to modify the
code in CONIN so that the watchdog timer appears to time out
immediately, rather than waiting for the real time clock to tick. To make
this change, refer to Figure 8-10, line 2200; this is the start of the CONIN
routine. Look for the label CONIN$Wait$For$Delay. A few instructions
later there is a JNZ CONINS$Wait§For$Delay. Using DDT, set all three
bytes of this JNZ to 00H.

Then, using the testbed, input the complete escape sequence into the
input buffer. For example, input hexadecimal values 1B, 4F, 51 (ESCAPE, O,
P), which correspond to the characters emitted on a VT-100 terminal when
FUNCTION KEY 1 (PF1) is pressed.

Next, use the testbed to make successive calls to CONIN. You should
see the text associated with the function key (FUNCTION KEY 1, LINE FEED)
being returned by CONIN.

Repeat this test using different function key sequences, including a
sequence that does not correspond to any of the preset function keys.
Check that the escape sequence itself is returned by CONIN without being
changed into another string.

Can the driver differentiate between a function key and the same escape
sequence generated by discrete key strokes?

This is almost the same test as above. Make the same patch to the
CONIN code, only this time do not enter the complete escape sequence into
the buffer. Enter only the hex characters 1B and 4F. Make sure that the
CONIN routine does not substitute another string in place of this quasi-
escape sequence.

This test only mimics the results of manually entering an escape
sequence. You could not press the keys on a terminal fast enough to get all
three characters into the input buffer within the time allowed by the
watchdog timer.

Character Output Checklist Can the driver output a character?

The CONOUT option in the testbed calls CONIN first to get a charac-
ter. To start with, you may want to use DDT to set the C register to some
graphic ASCII character such as 41H (A), and transfer control into
CONOUT directly. Check that CONOUT reads the USART’s status, waits
for the output ready value, and then outputs the data to the data port. Note
that the testbed will output all characters waiting in the input buffer (or
forced input) when you select its CONOUT option. This is a convenience
for advanced testing of the drivers—for initial testing you may want to
modify the testbed to make only one call to CONIN and CONOUT and
then return to the top of the testbed loop.

362 The CP/M Programmer’s Handbook

Does the driver suspend output when a protocol control flag indicates that
output is to be suspended?-

Using DDT, set the status byte in the device table to enable output
XON/XOFF protocol. Then input an XOFF character and confirm that the
output suspended bit in the status byte is set. Output a single character, and
using DDT, confirm that the driver will remain in a status loop waiting for
the output suspended bit to be cleared. Clear the bit using DDT and check
that the character is output correctly.

When using ETX/ACK protocol, does the driver output an ETX after the
specified number of characters have been output, then indicate that output
is suspended?

For debugging purposes, alter the ETX message count value in the
device table to three bytes. Then output three bytes of data via CONOUT.
Check that the driver sends an ETX character (03H) after the three bytes
have been output and that the output suspended flag in the status byte has
been set.

Then input an ACK character (06H). Check that this character is not
stored in the input buffer and that the output suspended flag is cleared.

Does the driver recognize and output escape sequences?

Input an ESCAPE, “t” (1BH, 74H) into the input buffer. Then output
them via CONOUT. Using DDT, check that the CONOUT routine
recognizes that an escape sequence is being output and selects the correct
processing routine. In this case, the forced input pointer should be set to
point at the ASCII time of day in the configuration block.

Does each of the escape sequence processors function correctly? Can the time
and date be set to specified values using escape sequences?
Repeat the test above using all of the other escape sequences to make
sure that they can be recognized and that they function correctly.

Real Time Clock Routines

A separate testbed program, shown in Figure 10-5, is used to check these
routines. It calls the interrupt service routine directly to simulate a real time clock
“tick,” and then displays the time of day in ASCII on the console.

As you can see, the testbed makes a call into the debug package’s initialization
routine, DB$Init, and then uses an RST 6 to generate fake clock “ticks.”

There is a JMP instruction in the testbed that bypasses a call to Set$Watchdog.
Remove this JMP, either by editing it out or by using DDT to change it to NO
OPERATIONs (NOP, 00H) when you are ready to test the watchdog routines.

Real Time Clock Test Checklist Is the clock running at all?
Using DDT, trace through the interrupt service routine logic. Check
that the seconds are being updated.

Chapter 10: Debugging a New CP/M System

363

FFFF
0000

FFFF

0030
0100

0100
0103
0106
0108
010B
O10E

0111

0114
0117
O11A

011D
O11F
0122
0125
0128

0129
o12Cc

0134
0137

013A
013D

O013F

0142
0145
015A

015B
016B
017B

Testbed for real time clock driver in the BIOS.
The complete source file consists of three components:

1. The testbed code shown here

2. The real time clock driver destined for the BIGS.
3. The debug package shown in Figure 10-2.

= TRUE EQU OFFFFH
= FALSE EQU NOT TRUE
= DEBUG EQU TRUE sFor conditional assembly of RST
3+ instructions in place of IN and
3 OUT instructions in the drivers.
= RSTé EQU 30H ;Use RST 6 for fake clock tick.
ORG 100H
START:
318B0O1 LXI SP, Test$Stack sUse local stack
CD8BO1 CALL DB$Init sInitialize the debug package
3EC3 MVI A, JMP iSet up RST 6 with JMP opcode
323000 STA RST&
218B01 LXI H,RTC$Interrupt ;Set up RST 6 JUMP address
223100 SHLD RSTé + 1
C31D01 JMP Testbed$Loop 3 <{=== REMOVE THIS JMP WHEN READY TO
H TEST WATCHDOG ROUTINES
013200 LXI B, 50 350 ticks before timeout
214201 LXI H,WD$Timeout ;Address to transfer to
CD8BO1 CALL SetsWatchdog ;Set the watchdog timer
7
H Make repeated entry to RTC interrupt routine
H to ensure that clock is correctly updated
Testbed$lLoop:
3EAA A, OAAH ;Set registers to known pattern
01CCBB LXI B, OBBCCH
11EEDD LXI D, ODDEEH
2111FF LXI H,OFF11H
F7 RST é ;Fake interrupt clock
CD8BO1 CALL DB$MSGI sDisplay in-line message
436C6F636B DB “Clock =7,0
218BO1 LXI H, TimeInASCII ;Get address of clock in driver
CD8BO1 CALL DB$MSG sDisplay current clock value
3 (Note: TimeInASCII already has
7 a line feed character in it)
CD8BO1 CALL DB$MSGI sDisplay in-line message
0DOO DB ODH, 0 sCarriage return
C31D01 JMP Testbed$Loop
1
3 Control arrives here when the watchdog timer times
3 out
WD$Timeout:
CD8BO1 CALL DB$MSGI
ODOAS76174 DB ODH, OAH, “Watchdog timed out”,0
ce RET sReturn to watchdog routine
9999999999' DwW FII9H, I999H, 9999H, 9999H, 9999H, 9999H, 2999H, 9999H
9999999999 DW FIIIH, 9999H, 9999H, 9999H, 9999H, 9999H, 9999H, 9999H
9999999999 jult) F999H, 9999H, 9999H, F999H, 9999H, 9999H, 9999H, 9999H
Test$Stack:
H
H Dummy routines for those shown in other figures
; BIOS routines (Figure 8-10)
RTC$Interrupt: s Interrupt service routine for clock tick
Sets$Watchdog: 3Set watchdog timer
TimeInASCII: 3ASCII string of HH:MM:SS, LF, O

. e e

D

Debug routines (Figure 10-2)

B$Init: ;Debug initialization
DB$MSGI: ;Display message in-line
DB$MSG: sDisplay message

Figure 10-5.

Testbed for real-time-clock driver in the BIOS

364

The CP/M Programmer’s Handbook

Are the hours, minutes, and seconds carrying over correctly?

Let the testbed code run at full speed. You should see the time being
updated on the console display —although it will be updated much more
rapidly than real time. /

Use DDT to set the minutes to 58 and then let the clock run again. Does
it correctly show the hour and reset the minutes to 00? Then set the hours to
11 and the minutes to 58 and let the clock run. Do minutes carry over into
hours and are hours reset to 0?

Repeat these tests with the clock update constants set for 24-hour
format.

Is the clock interrupt service routine restoring the registers correctly?
Using DDT, check that the registers are still set correctly on return from
the clock interrupt service routine.

How much of aload on the pre-interrupt stack is the service routine imposing?

Check the “low water mark” of the preset values remaining in the

testbed stack area to see how much of a load the interrupt service routine is
imposing on the stack.

Can the watchdog timer be set to a nonzero value? Can it be set back to zero?
Using the second part of the testbed, call the Set$ Watchdog routine,

and then monitor the testbed’s execution as the watchdog timer times out.
Check that the registers and stack pointer are set correctly when control is
transferred to the timeout routine. Also check that control is returned
properly from this routine, and thence from the interrupt service routine.

Disk Drivers

It is only feasible to check the low-level disk drivers in isolation from a real
BIOS, as the BDOS interface to the deblocking code is very difficult to simulate.
The testbed shown in Figure 10-6 serves only as a time-saver. It does not test the
interface to the subroutines. Use DDT to set up the disk, track, and sector
numbers, and then monitor the calls into SELDSK, SETTRK, SETSEC,
SETDMA, and the read/ write routines.

Unless you have the same disk controller on the host system as you do on the
target machine, you will have to use the fake input/ output system described earlier
in this chapter, rather than attempt to read and write on real disks.

You can see that the testbed, after initializing the debugging package, makes
calls to SELDSK, SETTRK, SETSEC, and SETDMA. It then calls a low-level
read or write routine. The low-level routine called depends on which driver you
wish to debug. For the standard floppy diskette driver shown in Figure 8-10, use
ReadNoDeblock and Write§No$Deblock. For the 5 1/4-inch diskettes, use
Read$Physical and Write$Physical. You will have to use DDT to set up some of
the variables required by the low-level drivers that would normally be set up by the
deblocking code.

Chapter 10: Debugging a New CP/M System

365

Testbed for disk I/0 drivers in the BIOS
The complete source file consists of three companents:
1. The testbed code shown here

2. The Disk I/0 drivers destined for the BIOS
3. The debug package shown in Figure 10-2.

[

FFFF = TRUE EQU OFFFFH
0000 = FALSE EQU NOT TRUE
FFFF = DEBUG EQU TRUE ;For conditional assembly of RST
7 instructions in place of IN and
; OUT instructions in the drivers.
0100 ORG 100H
START:
0100 314704 LXI SP, Test$Stack :Use a local stack
0103 CD4704 CALL DB$Init s;Initialize the debug package
H
H Make calls to SELDSK, SETTRK, SETSEC and SETDMA,
H then either a read or write routine.
Testbed$lLoop:
0106 314704 LXI SP, Test$Stack sUse local stack
0109 3A1202 LDA Logical$Disk ;Set up for SELDSK call
010C 4F Mov C,A
010D CD4704 CALL SELDSK
0110 CDA704 CALL DB$Display sDisplay return value in HL
0113 14 DB DB$HL
0114 53454C4453 DB “SELDSK returned’,0
0124 223201 SHLD DPH$Start ;Set up to display disk parameter header
0127 111000 LXI D, 16 sCompute end address
012A 19 DAD D
012B 223401 SHLD DPH$End ;Store into debug call
012E CD4704 CALL DB$Display sDisplay DPH
0131 18 DB DR$M sMemory
DPH$Start:
0132 0000 DW (o}
DPH$ENnd:
0134 0000 oW o]
0136 S53656C6563 DB “Selected DPH’,0
0143 2A1302 LHLD Track sCall SETTRK
0146 ES PUSH H
0147 C1 POP B $SETTRK needs track in EC
0148 CD4704 CALL SETTRK
014B 3A1502 LDA Sector sCall SETSEC
O14E 4F MOV C,A s SETSEC need sector in C
014F CD4704 CALL SETSEC
0152 011702 LXI B, Test$Buffer ;Set DMA address
0155 CD4704 CALL SETDMA
0158 3A1602 LDA WritesDisk :Check if reading or writing
01SB B7 ORA A
015C Cc2Dp101 JNZ TestsWrite
015F CD4704 CALL ReadNoDeblock ;%%% or Read$Physical depending on which
%% drivers you are testing
0162 CD4704 CALL DB$Display sDisplay return code
0165 02 DB DB$A
0166 5465737420 DB “Test Read returned’,0
0179 CD0102 CALL Check$Ripple sCheck if ripple pattern in buffer
017C CA0&01 Jz Testbed$Loop ;Yes, it is correct
017F CD4704 CALL DB$MSGI sIndicate problem
0182 14 DB DB$HL 3Display HL (points to offending byte)
0183 S26%970706C DB “Ripple pattern incorrect. HL -> failure.”,0
01AC CD4704 CALL DERs$Display sDisplay test buffer
01AF CD1800 CALL DB$M s Memory
01B2 1702 DW Test$Buffer

Figure 10-6.

Testbed for disk I/O drivers in the BIOS

366 The CP/M Programmer’s Handbook

01B4 0002 DW TestsBuffer$Size
01Bé 436F6E7465 DB “Contents of Test$Buffer”,0
01CE C30601 JMP Testbed$loop
TestsWrite:
01D1 CDF201 CALL Fill$Ripple 3Fill the test buffer with ripple pattern
01D4 CD4704 CALL WriteNoDeblock; %% or Write$Physical depending on which
s%%% drivers you are testingp
01D7 CD4704 CALL DB$Display ;Display return code
01DA 02 DB DB$A
O1DB 5465737420 DB “Test Write returned’,0
O1EF C30601 JMP Testbed$lLoop
Fill$Ripple: 3Fills the TestsBuffer with a pattern
3 formed by putting into each byte, the
5 least significant 8-bits of the byte“s
3 address.
01F2 010002 LXI B,Test$Buffers$Size
O1FS 211702 LXI H, Test$Buffer
FR$Loop:
O1F8 75 MOV M, L ;Set pattern value into buffer
O1F% 23 INX H ;Update buffer pointer
O1FA OB DCX B ;Down date count
OiFB 79 MOV A, C ;Check if count zero
O1FC BO ORA B *
O1FD C2F801 JNZ FR$Loop sRepeat until zero
0200 C9 RET
1
Check$Ripple: ;Check that the buffer is filled with the
3 correct ripple patternm
3 Returns with zero status if this is true,
3 nonzero status if the ripple is not
3 correct. HL point to the offending byte
3 (which should = L)
0201 010002 LXI B, Test$Buffer$Size
0204 211702 LXI H, Test$Buffer
CR$Loop:
0207 7D MoV AL ;Get correct value
0208 BE cMP M ;Compare to that in the buffer
0209 CO RNZ sMismatch, nonzero already indicated
020A 23 INX H sUpdate buffer pointer
020B OB DCX B sDowndate count
020C 79 MOV A,C ;Check count zero
020D BO ORA B
020E C20702 JINZ CR$Loop sRepeat until zero
0211 C9 RET sZero flag will already be set
H Testbed variables
0212 00 Logical$Disk: DB o] A =0, B=1,...
0213 0000 Track: DW o] sDisk track number
0215 00 Sector: DB 0 ;Disk sector number
0216 00 WritesDisk: DR o] sNZ to write to disk
;
0200 = Test$Buffers$Size EQU S12 ;<=== Alter as required
0217 Test$Buffer: Ds Test$Buffer$Size
0417 9999999999 DW 9999H, 9999H, 9999H, 9999H, 9999H, 9999H, 9999H, Y999H
0427 9999999999 oW 9999H, 9999H, F999H, 9999H, 9999H, 9999H, 9999H, F999H
0437 9999999999 DW F999H, 9999H, 9999H, 9999H, 9999H, F999H, 9999H, 9999H
Test$Stack:
H
; Dummy routines for those shown in other figures
H BIOS routines (Figure 8-10)
;
SELDSK: ;Select logical disk
SETTRK: ;Set track number
SETSEC: ;Set sector number
SETDMA: ;Set DMA address
ReadNosDeblock: sDriver read routines
Read$Physical:
Write$NosDeblock: sDriver write routines
Write$Physical:
Figure 10-6. (Continued)

Chapter 10: Debugging a New CP/M System

367

H

Debug routines (Figure 10-2)

DB$Init: sDebug initialization
DB$MSGI: sDisplay message in-line
DB$Display: sMain debug display routine
0002 = DB$A EQU 02 ;Display codes for DB$Display
0014 = DB$HL EQU 20
0018 = DB$M EQU 24
Figure 10-6. Testbed for disk I/O drivers in the BIOS (continued)

Disk Driver Checklist

Before issuing the write call, the testbed fills the disk buffer with a known

pattern. This pattern is checked on return from a read operation.

For both reading and writing, the testbed shows the contents of the A register.
If you have added the enhanced disk error handling described in the previous

chapter, the return value in A must always be zero.

system variables?

Does SELDSK return the correct address and set up the required

Check that the correct disk parameter header address is returned for
legitimate logical disks. Check, too, that it returns an address of 0000H for

illegal disks.

Check that any custom processing, such as setting the disk type and
deblocking requirements from extra bytes on the disk parameter blocks, is

performed correctly.
Does the SETTRK and SETSEC processing function correctly?

Using DDT, check that the correct variables are set to the specified

values.

Does the driver read in the spare-sector directory correctly?

Set up to execute a physical read and, using DDT, trace the logic of the
READ entry point. Check that the spare-sector directory would be loaded
into the correct buffer. If you are using fake input/output, use DDT to
patch in a typical spare-sector directory with two or three “spared-out”

sectors.

Does the driver produce the correct spare sector in place of a bad one?

Continuing with the physical read operation, check that, for “good”
track/sectors, the sector-sparing logic returns the original track and sector
number, and for “bad” track/ sectors, it substitutes the correct spare track
and sector. If you are using sector skipping, check that the correct number

of sectors is skipped.

Can a sector be read in from the disk?

Continuing further with the physical read, check that the correct sector
is read from the specified disk and track. If you are using real 1/O (as

368 The CP/M Programmer’s Handbook

opposed to faking it), the “ripple pattern”set by the testbed can be used, or
you can fill the disk buffer area with some known pattern (using DDT’s F
command) so you can tell if any data gets read in.

Make sure you do not have any disks or diskettes in the computer
system that are not write-protected — you may inadvertently write on a
disk rather than read it during the early stages of testing.

Can a sector be written to the disk?

Using DDT, set up to write to a particular disk, track, and sector.
Remove any write protection that you put on the target disk during earlier
testing. You can either use the testbed’s ripple pattern or fill the disk buffer
area with a distinctive pattern. Write this data onto the disk, fill the buffer
area with a different pattern, and read in the sector that you wrote. Check
that the disk buffer gets changed back to the pattern written to the disk.

Does the driver display error messages correctly?

Rather than deliberately damaging a diskette to create errors, use DDT
to temporarily sabotage the disk driver’s logic. Make it return each of the
possible error codes in turn, checkiﬁg each time that the correct error
message is displayed.

For each error condition in turn, check that the disk driver performs
the correct recovery action, including interacting with the user and offering
the choice of retrying, ignoring the error, or aborting the program.

Live Testing a New BIOS

Given that the drivers have passed all of the testing outlined above, you are
ready to pull all of the BIOS pieces together and build a CP/M image.

For your initial testing, disable the real time clock, and use simple, polled 1/O
for the console driver if you can. It is important to get something up and running as
soon as possible, and it is easier to do this without possible side effects from
interrupts.

Prepare a complete listing of the BIOS and plan to spend at least an hour
checking through it. Take a dry run through the console and disk driver — if there
are any serious bugs left in these two drivers, CP/M may not start up. Remember
that once the BIOS cold boot code has been executed and controlis handed overto
the CCP, the BDOS will be requested to log in the system disk, and this involves
reading in the disk’s directory.

Pay special attention to checking some of the major data structures. Make
certain that everything is at a reasonable place in memory; for example, if the last
address used by the BIOS is greater than OFFFFH, you will need to move the
entire CP/M image down in memory.

Chapter 10: Debugging a New CP/M System 369

Then build a system disk, load it into the machine, and press the RESET button.
You should see the bootstrap sign on, then the BIOS, and after a pause of about
one second, the A> prompt (or 0A> if you have included the special feature that
patches the CCP).

If you see both sign-on messages but do not get an A> prompt, a likely cause of
the problem is in the disk drivers. Alternatively, the directory area on the disk may
be full of random data rather than OESH’s.

If you cannot see what is wrong with the system, you might try faking the disk
drivers to return a 128-byte block of 0ESH’s for each read operation. The CCP
should then sign on. ‘

Once you do have the A> prompt, you can proceed with the system checkout.
Start by checking that the warm boot logic works. Type a CONTROL-C. There
should be a slight pause, and the A> prompt should be output again.

Next, check that you can read the disk directory by using the DIR command. If
you have an empty directory, you should get a NO FILE response. If you get
strange characters instead, you either forgot to initialize the directory area or the
disk parameter block is directing CP/M to the wrong part of the disk for the file
directory. If the system crashes, there is a problem with the disk driver.

Check that you can write on the disk by entering the command SAVE 1 TEST.
Then use the DIR command to confirm that file TEST shows up in the file
directory. If it does, use the ERA command ERA TEST and do another DIR
command to confirm that TEST has indeed been erased.

If TEST either does not show up on the disk or cannot be erased, then you have
a problem with the disk driver WRITE routine.

Put a standard CP/M release diskette into drive B and use the DIR command
to check that you can access the drive and display a disk directory. If youdo, then
load the DDT utility and exit from it by using a GO (G, zero) command. This
further tests if the disk drivers are functioning correctly.

To test the deblocking logic (if you are using disks that require deblocking), use
the command:

PIP A:=B:#.%[V]

This copies all files from drive B to drive A using the verify option. It is a
particularly good test of the system, and if you have any problems with the
high-level disk drivers and deblocking code, you will get a Verify Error message
from PIP. You can also get this message if you have hardware problems with the
computer’s memory, so run a memory test if you cannot find anything obviously
wrong with the deblocking algorithm.

To completely test the deblocking code, you need to use PIP to copy a file of
text larger than the amount of memory available. Thus, you may have to create a
large text file using a text editor just to provide PIP with test data.

With the disk driver functioning correctly, rebuild the system with the real time
clock enabled. Bring up the new system and check that the ASCII time of day is

370 The CP/M Programmer’s Handbook

being updated in the configuration block; use DDT to inspect this in memory. Set
the clock to the current time, let it run for five minutes, and see if it is still accurate.
You may have to adjust one of the initialization time constants for the device that is
providing the periodic interrupts for the clock.

Rebuild the system yet again, this time with the real interrupt-driven console
input and the real console output routines. Check that the system comes up
properly and that the initial forced-input startup string appears on the console.

Check that when you type characters on the keyboard they are displayed as
you type them. If not, there could be a problem with either the CONIN or
CONOUT routines. Experimentally type in enough characters to fill the input
buffer. If the terminal’s bell starts to sound, the interrupt service routine is
probably not the culprit. Check the CONOUT routine again.

Check that the function key decode logic is working correctly. With the A>
prompt displayed, press a function key. The CONIN driver should inject the
correct function key string and it should appear on the terminal. For example,
with the BIOS in Figure 8-10, pressing PF1 on the VT-100 terminal should produce
this on the display:

A>Function Keyl

Function?

A

The CCP does not recognize “Function” as a legitimate command name, nor is
there such a COM file— hence the question mark.

Using DDT, write a small program that outputs ESCAPE, “t”to the console, and
check that the ASCII time of day string appears on the console. This checks that
the escape sequence has been recognized.

