What the BDOS Does
BDOS Function Calls
Naming Conventions
Making a BDOS Function Request

The Basic Disk
Operating System

The Basic Disk Operating System is the real heart of CP/M. Unlike the
Console Command Processor, it must be in memory all the time. It provides all of
the input/output services to CP/M programs, including the CCP.

As a general rule, unless you are writing a system-dependent utility program,
you should use the BDOS for all of your program’s input/ output. If you circum-
vent the BDOS you will probably create problems for yourself later.

67

68 The CP/M Programmer’s Handbook

What the BDOS Does

The BDOS does all of the system input/ output for you. These services can be
grouped into two types of functions:

Simple Byte-by-Byte I/ O
This is sending and receiving data between the computer system and its
logical devices—the console, the “reader” and “punch” (or their substi-
tutes), and the printer.

Disk File I/ O
This covers such tasks as creating new files, deleting old files, opening
existing files, and reading and writing 128-byte long “records”to and from
these files.

The remainder of this chapter explains each of the BDOS functions, shows
how to make each operating system request, and gives additional information for
each function. You should also refer to Digital Research’s manual, CP/M 2
Interface Guide, for their standard description of these functions.

BDOS Function Calls

The BDOS function calls are described in the order of their function code
numbers. Figure 5-1 summarizes these calls.

Naming Conventions

In practice, whenever you write programs that make BDOS calls, you should
include a series of equates for the BDOS function code numbers. We shall be
making reference to these values in subsequent examples, so they are shown in
Figure 5-2 as they will appear in the programs.

The function names used to define the equates in Figure 5-2 are shorter than
those in Figure 5-1 to strike a balance between the abbreviated function names
used in Digital Research’s documentation and the need for clearer function
descriptions.

Making a BDOS Function Request

All BDOS functions are requested by issuing a CALL instruction to location
0005H. You can also request a function by transferring control to location 0005H
with the return address on the stack.

In order to tell the BDOS what you need it to do, you must arrange for the
internal registers of the CPU to contain the required information before the CALL
instruction is executed.

Chapter 5: The Basic Disk Operating System

69

Function
Code

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28%*
29
30
31
32%
33
34
35
36
37
40

Description

Simple Byte-by-Byte 1/0

Overall system and BDOS reset

Read a byte from the console keyboard
Write a byte to the console screen

Read a byte from the logical reader device
Write a byte to the logical punch device
Write a byte to the logical list device
Direct console I/ O (no CCP-style editing)
Read the current setting of the IOBYTE
Set a new value of the IOBYTE

Send a “$”-terminated string to the console
Read a string from the console into a buffer
Check if a console key is waiting to be read
Return the CP/M version number

Disk File I/0

Reset disk system

Select specified logical disk drive

Open specified file for reading/ writing

Close specified file after reading/ writing

Search file directory for first match with filename
Search file directory for next match with filename
Delete (erase) file

Read the next “record” sequentially

Write the next “record” sequentially

Create a new file with the specified name

Rename a file to a new name

Indicate which logical disks are active

Return the current default disk drive number

Set the DMA address (read/ write address)

Return the address of an allocation vector

Set specified logical disk drive to Read-Only status
Indicate which disks are currently Read-Only status
Set specified file to System or Read-Only status
Return address of disk parameter block (DPB)
Set/ Get the current user number

Read a “record” randomly

Write a “record” randomly

Return logical file size (even for random files)

Set record number for the next random read/ write
Reset specified drive

Write a “record” randomly with zero fill *These do not

work under MP/ M.

Figure 5-1.

BDOS function calls

70 The CP/M Programmer’s Handbook

0000
0001
0002
0002
0004
0005
0004
0007
0008
0009
QO0A
000R
000C
[oJele)n]
000E
000F
0010
0011
0012
0012
0014
0015
0016
0017
0012
00179
001A
[ee3R:]
oo1c
001D
001E
001F
0020
0021
o022
00232
0024
0025
0028

= B$SYSRESET EGL o] ;System Reset

= B$CONIN EOL 1 sRead Consaole EByte

= B$CONOUT Eqil 2 sWrite Console EByte

= B$READIN EQU 3 sRead "Reader" Byte

= B$PLUNOUT EQU 4 sWrite "Punch" Byte

= B$LISTOUT EQU S sWrite Printer Byte

= B$DIRCONIO EQU & sDirect Conscle 1/0

= E$GETIO EQu 7 sGet IOBYTE

= B$SETIO EQU] ;Set IOBYTE

= B$PRINTS EQU Ed ;Print Console String

= B$READCONS EQU 10 sRead Console String

= B&CONST EQu 11 ;Read Console Status

= B$GETVER EQU 12 ;Get CP/M Version Number

= B$DSKRESET EQU 12 ;Disk System Reset

= B$SELDSK EQU 14 sSelect Disk

= BSCOPEN EQU 15 ;Cpen File

= B$CLOSE EQU 1é ;Close File

= B$SEARCHF EQU 17 ;Search for First Name Match
= B$SEARCHN EQU 18 ;Search for Next Name Match

= B$ERASE EQL 19 ;Erase (delete) File

= B$READSER EQL 2 ;Read Sequential

= B$WRITESER EQU 21 sWrite Sequential

= B$CREATE EQU 22 sCreate File

= B$RENAME EQL 23 ;Rename File

= B$GETACTDSK EQU 24 ;Get Active (Logged-in) Disks
= E$GETCURDSK EQL 29 ;Get Current Default Disk

= B$SETDMA EQU 26 ;Set DMA (Read/Write) Address
= B$GETALVEC EQU 27 ;Get Allocation Vectcor Address
= B$SETDSKRO EQU 238 ;Set Disk to Read Only

= B$GETRODSKS EQU 29 ;Get Read Only Disks

= B$SETFAT EQU 20 ;Set File Attributes

= E$GETDPR EQU 31 ;Get Disk Parameter Block Address
= B$SETGETUN EQL 32 ;Set/Get User Number

= B$READRAN EQU a3 ;sRead Randam

= EB$WRITERAN EQU 34 sWrite Random

= B&GETFSIZ EQU 35 ;Get File Size

= B$SETRANREC EQU & ;Set Random Record Number

= EB$RESETD EQU 37 jReset Drive

= B$WRITERANZ EQU 40 sWrite Random with Zero-Fill

Figure 5-2. Equates for BDOS function code numbers

The function code number of the specific function call you want performed
must be in register C.

If you need to hand a single-byte value to the BDOS, suchas a character to be
sent to the console, then you must arrange for this value to be in register E. If the
value you wish to pass to the BDOS is a 16-bit value, such as the address of a buffer
or a file control block (FCB), this value must be in register pair DE.

When the BDOS hands back a single-byte value, such as a keyboard character
or a return code indicating the success or failure of the function you requested, it
will be returned in register A. When the BDOS returns a 16-bit value, it will be in
register pair HL.

On return from the BDOS, registers A and L will contain the same value, as
will registers B and H. This odd convention stems from CP/M’s origins in PL/M
(Programming Language/ Microprocessor), a language used by Intel on their
MDS system. Thus, PL/M laid the foundations for what are known as “register
calling conventions.”

Chapter 5: The Basic Disk Operating System 74

The BDOS makes no guarantee about the contents of the other registers. If you
need to preserve a value that is in a register, either store the value in memory or
push it onto the stack. The BDOS uses its own stack space, so there is no need to
worry about it consuming your stack.

To sum up, when you make a function request to the BDOS that requires a byte
value, the code and the required entry and exit parameters will be as follows:

MVI C, FUNCTION$CQODE 3C = function code
MVI E, SINGLE$RYTE ;E = single byte value
caLL BDOS sLocation S

tA = return code or value
sor HL = return value

For those function requests that need to have an address passed to the BDOS,
the calling sequence is

MVI C, FUNCTIONS$CQDE - 3C = function code

LXI D, ADDRESS sDE = address

CALL BDOS sLocation S
3A = return code or value
sor HL = return value

If a function request involves disk files, you will have to tell the BDOS the
address of the FCB that you have created for the file. (Refer back to Chapter 3 for
descriptions of the FCB.)

Many file processing functions return a value in register A that is either OFFH,
indicating that the file named in the FCB could not be found, or equal to a value of
0, 1,2, or 3. In the latter case, the BDOS is returning what is called a “directory
code.” The number is the directory entry number that the BDOS matched to the
file name in your FCB. At any given moment, the BDOS has a 128-byte sector
from the directory in memory. Each file directory entry is 32 bytes, so four of them
(numbered 0, 1, 2, and 3) can be processed at a time. The directory code indicates
which one has been matched to your FCB.

References to CP/M “records” in the following descriptions mean 128-byte
sectors. Do not confuse them with the logical records used by applications
programs. Think of CP/M records as 128-byte sectors throughout.

Function 0: System Reset

Example

Function Code: C = 00H
Entry Parameters: None
Exit Parameters: Does not return

0000 = B$SYSRESET EQU [¢] ;System Reset

0005 = BDOS EQU S sBDOS entry point

0000 OE00 MVI C,B$SYSRESET ;Set function code

0002 C30500 JMP BDOS ;Note: you can use a JMP since

5 you don‘t get control back

72 The CP/M Programmer’s Handbook

Purpose

Notes

The system reset function makes CP/M do a complete reset, exactly the same
as the warm boot function invoked when you transfer control to the WARM-
BOOT point (refer to Figure 4-1).

In addition to resetting the BDOS, this function reloads the CCP, rebuilds the
allocation vectors for the currently logged disks, sets the DMA address (used by
CP/M to address the disk read/write buffer) to 80H, marks all disks as being
Read/ Write status, and transfers control to the CCP. The CCP then outputs its
prompt to the console.

This function is most useful when you are working in a high-level language that
does not permit a jump instruction to an absolute address in memory. Use it when
your program has finished and you need to return control back to CP/M.

Function 1: Read Console Byte

Example

Purpose

Notes

Function Code: C = 01H
Entry Parameters: None
Exit Parameters: A = Data byte from console

0001 = B$CONIN EQU 1 :Console input
0005 = BDOS EQU 5 :BDOS entry
0000 OEO1 MVI C, B$SCONIN 3Get function code
0002 CDOS00 CALL BDOS
This function reads the next byte of data from the console keyboard and puts it

into register A. If the character input is a graphic character, it will be echoed back
to the console. The only control characters that are echoed are CARRIAGE RETURN,
LINE FEED, BACKSPACE, and TAB. In the case of a TAB character, the BDOS outputs
as many spaces as are required to move the cursor to the next multiple of eight
columns. All of the other control characters, including CONTROL-C, are input but
are not echoed.

This function also checks for CONTROL-S (XOFF) to see if console output should
be suspended, and for CONTROL-P (printer echo toggle) to see if console output
should also be sent to the list device. If CONTROL-S is found, further output will be
suspended until you type another character. CONTROL-P will enable the echoing of
console output the first time it is pressed and disable it the second time.

If there is no incoming data character, this function will wait until there is one.

This function ofteh hinders rather than helps, because it echoes the input.
Whenever you need console input at the byte-by-byte level, you will usually want
to suppress this echo back to the console. For instance, you may know that the
“console” is actually a communications line such as a modem. You may be trying
to accept a password that should not be echoed back. Or you may need to read a

Chapter 5: The Basic Disk Operating System 73

cursor control character that would cause an undesirable side effect on the
terminal if echoed there.

In addition, if you need more than a single character from the console, your
program will be easier to use if the person at the console can take full advantage of
the CCP-style line editing. This can best be done by using the Read Console String
function (code 10, 0AH).

Read Console String also is more useful for single character input, especially
when you are expecting a “Y” or “N” (yes or no) response. If you use the Read
Console Byte function, the operator will have only one chance to enter the data.
When you use Read Console String, however, users have the chance to type one
character, change their minds, backspace, and type another character.

Function 2: Write Console Byte

Example

Purpose

Notes

Function Code: C = 02H
Entry Parameters: E = Data byte to be output
Exit Parameters: None

0002 = B$CONOUT EQU 2 ;Write Console Byte
0005 = BDOS EQU s ;BDOS entry
0000 OEO2 MVI C, BSCONOUT sFunction code
0002 1E2A MVI E, "%/ sE = data byte to be output
0004 CDOS00 CALL BDOS
This function outputs the data byte in register E to the console. As with

function 1, if the data byte is a TAB character, it will be expanded by the BDOS to
the next column that is a multiple of eight. The BDOS also checks to see if there is
an incoming character, and if there is, checks to see if it is a CONTROL-S (in which
case console output is suspended) or CONTROL-P (in which case echoing of console
output to the printer is toggled on or off).

You may have problems using this function to output cursor-addressing
control sequences to the console. If you try to output a true binary cursor address
to position 9, the BDOS will interpret this as a TAB character (ASCII code 9) and
dutifully replace it with zero to eight blanks. If you need to output binary values,
you must set the most significant bit of the character (use an ORI 80H, for
example) so that it will not be taken as the ASCII TAB.

Here are two general-purpose subroutines that you will need for outputting
messages. The first one, shown in Figure 5-3, outputs a null-byte-terminated
message from a specified address. The second, in Figure 5-4, does essentially the
same thing except that the message string follows immediately after the call to the
subroutine.

74 The CP/M Programmer’s Handbook

3 MSGOUT (message out)

sOutput nul

1-byte—terminated message.

3;Calling sequence

H MESSAGE: DB “Message”, 0
H H

H LXI H, MESSAGE

H CALL MSGOUT

sExit Parameters

H HL
0002 = B$CONOUT
0005 = BDOS

MSGOUT:
0000 7E MOV
0001 B7 ORA
0002 C8 RZ
0003 23 INX
0004 ES FUSH
0005 SF MoV
0006 OEOZ MVI
0008 CDOS00 CAL
O00R E1 PaP
000C C30000 JIMP

=> Null byte terminator

EQU 2 sWrite Conscle Byte
EQU S ;BDOS entry point
A M ;Get next byte for cutput
A
sReturn when null-byte
H ‘sUpdate message pointer
H H ;Save updated pointer
E,A sReady for BDOS
C, B$CONOUT
L BDOS
H ;Recover message pointer
MSGOUT ;Go back for next character

Figure 5-3. Write console byte example, output null-byte terminated message from
specified address
sMSGOUTI (message cut in-line)
sOutput null-byte-terminated message that
sfollows the CALL to MSGOUTI.
;Calling sequence
H CALL MSGOUTI
H DB “Message”, 0
H ..+ next instruction
sExit Parameters
5 HL -> instruction following message
0002 = B$CONOUT EQU 2 tWrite Conscle Byte
0005 = BOOS EQU S s BDOS entry point
MSGOUTI:
0000 E1 POF H tHL -> message
0001 7E MOV AM ;Get next data byte
0002 23 INX H ;Update message poainter
0003 B7 ORA A sCheck if null byte
0004 C20800 JNZ MSGQUTIC ;No, continue
0007 E% PCHL ;Yes, return to next instruction
3 after in-line message
MSGOUTIC:
0008 ES PUSH H ;Save message pointer
0009 SF MoV E,A sReady for BDOZ
000A OEO2 MYI C, B$CONOUIT sFunction code
000C CDOS00 CALL BDOS
000F C30000 JIMP MSGOUTI ;Go back for next char.
Figure 5-4. Write console byte example, output null-byte terminated message

following call to subroutine

Chapter 5: The Basic Disk Operating System 75

Function 3: Read “Reader” Byte

Example

Purpose

Notes

Function Code: C = 03H
Entry Parameters: None
Exit Parameters: A = Character input

0003 = B$SREADIN EQU i sRead "Reader" Byte
0005 = BDOS EQU S sBOOS entry

0000 OEO3 MVI C, B$READIN sFunction code
0002 CDOS00 CALL BDQOS sA = reader byte

This function reads the next character from the logical “reader” device into
register A. In practice, the physical device that is accessed depends entirely on how
your BIOS is configured. In some systems, there is no reader at all; this function
will return some arbitrary value such as 1AH (the ASCII CONTROL-Z character,
used by CP/M to denote “End of File”).

Controlis not returned to the calling program until a character has been read.

Since the physical device (if any) used when you issue this request depends
entirely on your particular BIOS, there can be no default standard for all CP/M
implementations. This is one of the weaker parts of the BDOS.

You should “connect” the reader device by means of BIOS software to a serial
port that can be used for communication with another system. This is only a
partial solution to the problem, however, because this function call does not return
control to your program until an incoming character has been received. There is
no direct way that you can “poll” the reader device to see if an incoming character
has been received. Once you make this function call, you lose control until the next
character arrives; there is no function corresponding to the Read Console Status
(function code 11, 0BH) that will simply read status and return to your program.

One possible solution is to build a timer into the BIOS reader driver that
returns control to your program with a dummy value in A if a specified period of
time goes by with no incoming character. But this brings up the problem of what
dummy value to use. If you ever intend to send and receive files containing pure
binary information, there is no character in ASCII that you might not encounter in
a legitimate context. Therefore, any dummy character you might choose could
also be true data.

The most cunning solution is to arrange for one setting of the IOBYTE (which
controls logical-device-to-physical-device mapping) to connect the console to the
serial communication line. This done, you can make use of the Read Console
Status function, which will return not the physical console status but the serial line
status. Your program can then act appropriately if no characters are received
within a specified time. Figure 5-11 shows a subroutine that uses this technique in
the Set IOBYTE function (code 8, 08H).

76 The CP/M Programmer’s Handbook

Figure 5-5 shows an example subroutine to read lines of data from the reader
device. It reads characters from the reader, stacking them in memory until eithera
LINE FEED or a specified number of characters has been received. Note that
CARRIAGE RETURNs are ignored, and the input line is terminated by a byte of 00H.
The convention of 00H-byte terminated strings and no CARRIAGE RETURNs is used
because it makes for much easier program logic. It also conforms to the conven-
tions of the C language.

3 RL$RDR

sRead line from reader device.

;Carriage returns are ignored, and input terminates
swhen specified number of characters have been read
jor a line feed is input.

sNote: Potential weakness is that there is no
stimeout in this subroutine. It will wait forever
;if no more characters arrive at the reader device.

sCalling sequence

LXI H, BUFFER
LXI B, MAXCOUNT
CALL RL$RDR

Exit Parameters
HL -> OOH byte terminating string
BC = residual count (0 if max. chars.read)

E = last character read
0003 = B$READIN EQU 3 sReader input
0005 = BDOS EQU S sBOOS entry point
Q00D = CR EQU OoDH s;Carriage return
000A = LF EQU OAH sLine feed (terminator)
RL$RDR:
0000 77 Mov A, C sCheck if count O
0001 BO ORA B sIf count O on entry, fake
0002 SF MOV E,A s last char. read (OOH)
0003 CA2000 Jz RL$RDRX ;Yes, exit
000& CS PUSH B ;Save max. chars. count
0007 ES PUSH H sSave buffer pointer
RL$RDRI: sLoop back here to ignore
0008 OEO3 MVI C, B$READIN
000A CDOS00 CALL BDOS sA = character input
000D SF Moy E,A ;Preserve copy of chars.
00Q0E FEOD CPI CR ;Check if carriage return
0010 CA0200 Jz RL$RDRI sYes, ignore it
0013 El POP H sRecover buffer pointer
0014 C1 POP B sRecover max. Count
0015 FEOA CPI LF sCheck if line feed
0017 CAZ2000 Jz RL$RDRX sYes, exit
001A 77 MoV M, A ;No, store char. in buffer
Q01R 23 INX H sUpdate buffer pointer
001C OB DCX B sDowndate count
0010 CI0000 JMP RL$RDR sLocp back for next char.
RL$RDRX:
0020 3600 MVI M, 0 sNull-byte-terminate buffer
0022 .9 RET ’

Figure 5-5. Read line from reader device

Chapter 5: The Basic Disk Operating System 77

Function 4: Write “Punch” Byte

Example

Purpose

Notes

Function Code: C= 04H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0004 = B$PUNOUT EQU a iWrite "Punch" Byte
0005 = BDOS EQU 5
0000 OEO4 MVI C, B$PUNOUT sFunction code
0002 1E2A MVI E, "% ;Data byte to output
0004 CDOSO0 CALL BDOS
This function is a counterpart to the Read “Reader” Byte described above. It

outputs the specified character from register E to the logical punch device. Again,
the actual physical device used, if any, is determined by the BIOS. There is no set
standard for this device; in some systems the punch device is a “bit bucket,” so
called because it absorbs all data that you output to it.

The problems and possible solutions discussed under the Read “Reader” Byte
function call also apply here. One difference, of course, is that this function
outputs data, so the problem of an indefinite loop waiting for the next character is
less likely to occur. However, if your punch device is connected to a communica-
tions line, and if the output hardware is not ready, the BIOS line driver will wait
forever. Unfortunately, there is no legitimate way to deal with this problem since
the BDOS does not have a function call that checks whether a logical device is
ready for output.

Figure 5-6 shows a useful subroutine that outputs a 00 H-byte terminated string
to the punch. Wherever it encounters a LINE FEED, it inserts a CARRIAGE RETURN
into the output data.

Function 5: Write List Byte

Example

Purpose

Function Code: C= 05H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0005 = B$LSTOUT EQU S sWrite List Byte
0005 = BDOS EQU S
0000 OEOS MVI C,B$LSTOUT sFunction code
0002 1E2A MVI E, "% sData byte to output
0004 CDOS00 CALL BDOS
This function outputs the specified byte in register E to the logical list device.

As with the reader and the punch, the physical device used depends entirely on the
BIOS.

78 The CP/M Programmer’s Handbook

s WLSPUN

sWrite line ta punch device.
;when a OOH byte is encountered.

Output terminates

;A carriage return is output when a line feed is

sencountered.

;Calling sequence

H LXI H, BUFFER
; CALL WL$FUN
sExit parameters
H HL —> OOH byte terminator
0004 = B$PUNQUT EQU 4
0005 = BDOS EQU S
000D = CR EQU QDH jCarriage return
000A = LF EQU 0AH sLine feed
WLS$PUN:
0000 ES PUSH H ;Save buffer pointer
0001 7E MOV AM sGet next character
0002 B7 ORA A sCheck if OOH
0003 CAZ000 Jz WLS$PUNX ;Yes, exit
00046 FEOA CPI LF ;Check if line feed
0008 CC1600 cz WL$PUNLF sYes, Q/P CR
000B SF Mav E,A sCharacter to be cutput
000C OEO04 MVI C, BSPUNOUT sFunction code
000E CDOS00 CALL BDOS sOutput character
0011 E1 POP H, sRecaver buffer pointer
0012 23 INX H s Increment to next char.
0013 C30000 JMP WL$PUN sQutput next char
WLEPUNLF: sLine feed encountered
0016 0EO4 MV C, B$PUNQUT sFunction code
0018 1EOD MVI E,CR sOutput a CR
001A CDOS00 CALL BDOS
001D 3EO0A MVI A, LF sRecreate line feed
001F C9 RET sOutput LF
WLEPUNX: sExit
0020 E1 POF H ;Balance the stack
0021 C9 RET

Figure 5-6.

Notes

Write line to punch device

One of the major problems associated with this function is that it does not deal
with error conditions very intelligently. You cannot be sure which physical device
will be used as the logical list device, and most standard BIOS implementations
will cause your program to wait forever if the printer is not ready or has run out of
paper. The BDOS has no provision to return any kind of error status to indicate
that there is a problem with the list device. Therefore, the BIOS will have to be
changed in order to handle this situation.

Figure 5-7 is a subroutine which outputs data to the list device. As you can see,
this is essentially a repeat of Figure 5-6, which performs the same function for the

logical punch device.

Chapter 5: The Basic Disk Operating System

79

sWLSLST

;Write line to list device.

Output terminates
swhen a OOH byte is encountered.

$A carriage return is output when a line feed is

sencountered.

;Calling sequence

LXI
CALL

;Exit parameters
H

H, BLUFFER
WLSLST

HL -> OOH byte terminator

0005 = BSLSTOUT EQU S
000S = BDOS EQU S
000D = CR EQU ODH ;Carriage return
000A = LF EQU OAH iLine feed
WLSLST:
0000 ES PUSH H ;Save buffer pointer
0001 7E MoV AM ;Get next character
0002 B7 ORA A iCheck if OOH
0003 CA2000 Jz WLELSTX sYes, exit
0006 FEOA CPI LF 7Check if line feed
0008 CC1&800 cz WLSLSTLF iYes, G/P CR
Q00B SF Mav E, A sCharacter to be output
000C OEQS MVI C, B$LSTOUT sFunction code
000E CDOSO0 CALL BDOS sO0utput character
0011 El POP H ;Recover buffer pointer
0012 23 INX H sUpdate to next char.
0013 C30000 JMP WLSLST sO0utput next char.
WLSLSTLF: ;Line feed encountered
0016 OEOS MVI C, B$LSTOUT sFunction code
0018 1EOD MVI E,CR ;Output a CR
001A CDOS00 CALL BDOS
001D 3EQA MVI A, LF sRecreate line feed
001F C% RET ;Output LF
WLSLSTX: sExit
0020 E1 POP H ;Balance the stack
0021 C9 RET
Figure 5-7. Write line to list device
Function 6: Direct Console I/O
Function Code: C = 06H

Example

0006
0005

0000
0002

0004* CDOS00

Entry Parameters: E = OFFH for Input
E = Other than OFFH for output

Exit Parameters:

OEO06
1EFF

B$DIRCONIO
BDOS
MVI
MVI
CALL

A = Input byte or status

EQU tDirect (raw) Console 1/0
EQU sBDOS entry point

;Example of console input
C,B$DIRCONIO ;Function code
E, OFFH ;OFFH means input
BDOS) 00 if no char. waiting

A = NZ if character input

80 The CP/M Programmer’s Handbook

Purpose

Notes

sExample of console output

0007 OEO06 MVI C,B$DIRCONIO sFunction code
0009 1E2A MVI E, "% sNot OFFH means output char.
000B CDOS00 CALL BDOS

This function serves double duty: it both inputs and outputs characters from
the console. However, it bypasses the normal control characters and line editing
features (such as CONTROL-P and CONTROL-S) normally associated with console
1/O. Hence the name “direct” (or “unadorned” as Digital Research describes it). If
the value in register E is not OFFH, then E contains a valid ASCII character thatis
output to the console. The logic used is most easily understood when written in

pseudo-code:
if this is an input request (E = OFFH)
{

if console status indicates a character is waiting
{
read the char from the console and
return to caller with char in A
3

else (no input character waiting) and
return to caller with A = 00

3

else (output request)

output the char in E to the conscle and
return to caller

This function works well provided you never have to send a value of OFFH or
expect to receive a value of 00H. If you do need to send or receive pure binary data,
you cannot use this function, since these values are likely to be part of the data
stream.

To understand why you might want to send and receive binary data, remember
that the logical “reader” does not have any method for you to check its status to see
if an incoming character has arrived. All you can do is attempt to read a character
(Read Reader Byte, function code 3). However, the BDOS will not give control
back to you until a character arrives (which could be a very long time). One
possibility is to logically assign the console to a communications line by the use of
the IOBYTE (or some similar means) and then use this Direct I/ O call to send and
receive data to and from the line. Then you could indeed “poll” the communica-
tions line and avoid having your program go into an indefinite wait for an
incoming character. An example subroutine using this technique is shown in
Figure 5-11 under Set IOBYTE (function code 8).

Figure 5-8 shows a subroutine that uses the Direct Console Input and Output.
Because this example is more complex than any shown so far, the code used to
check the subroutine has also been included.

Function 7: Get IOBYTE Setting

Function Code: C=07H
Entry Parameters: None
Exit Parameters: A = IOBYTE current value

Chapter 5: The Basic Disk Operating System

81

s TESTBED CODE

sBecause of the complexity of this subroutine, the

; actual testbed code has been left in this example.

; It assumes that DDT or ZSID

7 will be used for checkcut.

IF 1 ;Change to IF 0 to disable testbed

0100 ORG 100H
0100 C31101 JMP START ;Bypass "variables" setup by DDT
0103 00 OPTIONS: DB o ;Option flags
0104 41454900 TERMS: DB “ATL,CET, 7T, 0 sTerminators
0108 05 BUFFER DE S ;Max. characters in buffer
0109 00 DB (o] ;Actual count
010A 6363836363 DB 99,99,99,99,99 ;Data bytes
O10F 6343 DE 99,99

START:
0111 210801 LXI H, BUFFER ;Get address of buffer
0114 110401 LXI D0, TERMS sAddress of terminator table
0117 3A0301 LDA OPTIONS ;Get opticns set by DOT
011A 47 MoV B, A sPut in correct register
011B CD2BO1 CALL RCS ;Enter subroutine
011E CD3800 CALL 38H sForce DDT breakpoint
0121 C31101 JMP START ;Test again

ENDIF sEnd of testbed

sRCS: Read conscle string (using raw input)

sReads a string of characters into a memcry

i buffer using raw input.

;Supports options:

H o to echo characters or not (when echaing,

H a carriage return will be echoed followed

H by line feed)

i o warm boot on input of cantral-C or nat

H o terminating input either an:

i a max. no of chars input

H 2 matching terminator character

7 Calling Sequence

H LXI H, BUFFER

H Buffer has structure:

[BUFFER: DE 10 Max. size

3 DE [d] Actual Read

[Ds 10+1 Buffer area

$ MVI B, OPTIONS Options required

3 (see equates)

H LXI D, TERMZ Pointer to OOH-byte

H terminated Chars,

H any one of which is a

H terminator.

H CALL RCS

3 Exit Parameters

; BUFFER: Updated with data bytes and actual

H character count input.

3 (Does not include the terminator).

H A = Terminating Code

H [Maximum number of characters input.

H NZ = Terminator character found.
0001 = RCS$ECHO EQU 0000$0001E i Input characters to be echoed
0002 = RCS$ARORT EQU 0000$0010F ;Abort on Control-C
0004 = RCS$FOLD EQU 0000$0100E ;Faold lowercase to uppercase
0008 = RCS$TERM EQU 0000%$1 000 ;DE -> term. char. set
0006 = B$DIRCONIOQ EQU é ;Direct console I/0
0005 = EBDOS EQU S sBDOS entry point
0003 = CTL$C EGQU O3H ;Control-C
ooon = CR EQU ODH s;Carriage return

Figure 5-8. Read/write string from/to console using raw 1/ O

82 The CP/M Programmer’s Handbook

000A = LF EQU OAH sLine feed
0008 = BS EQU 0gH ;Backspace
RCS$ST: sInternal standard terminator table
0124 0D 0B ODH sCarriage return
0125 0A DE OAH sLine feed
0126 00 DB o sEnd of table
RCS$BSS: sDestructive backspace sequence
0127 08200800 DR BS,” 7,BS,0
RCS: 3 {<<<< Main entry
012E 23 INX H sHL => actual count
0120 3600 MVI M, 0 ;Reset to initial state
012E 2B nex H sHL —> max. count
RCS$L:
012F ES PUSH H ;Save buffer pointer
0130 CD9201 CALL RCS$GC sGet character and execute:
3 ECHO, ABORT, and FOLD opticns
;C = character input
0133 E1 POP H ;Recover buffer pointer
0134 3E08 MVI A, RCS$TERM sCheck if user-specified terminator
0136 AQ ANA B 3B = options
0137 C23D01 JINZ RCS$UST sUser specified terminatars
013A 112401 LXI D, RCS$ST ;Standard terminatcors
RCE$UST:
013D CDD401 CALL RCE$CT sCheck for terminator
0140 CA4CO1L Jz RCSENOTT ;Not terminator
0143 47 Mov B, A ;Preserve terminating char.
RCS$MCI: s (Max. char. input shares this ccde)
0144 QEQO MVI c,0 ;Terminate buffer
0144 CD7FO1 CALL RCS$SC ;Save character
0149 78 MOV A B sRecover terminating char.
014A B7 '0RA A ;Set flags
014B C9 RET
RCS$NOTT: ;Not a terminator
014C 3E08 MVI A, RS ;Check for backspace
O14E B9 CMP [
014F CA&001 Jz RCS$BS ;Backspace entered
0152 CD7F01 cAaLL RCS$SC ;Save character in buffer
0155 CD2RO1 cAaLL RCS$UC sUpdate count
0158 C22F01 JINZ RCS$L sNot max. so get another char.
01SE 0600 MVI B, 0 ;Fake terminating char.
0150 C34401 JMP RCS$MCI 3A = 0 for max. chars. input
RCS$BS: ;Backspace entered
0160 ES PUSH H ;Save buffer pointer
0161 23 INX H sHL -» actual count
0162 35 DCR M ;Back up one
0162 FA7AO1 JM RCS$NES ;Check if count negative
0166 212701 LXI H, RCS$ESS sHL -» backspacing sequence
016% 3EO01 MVI A, RCS$ECHO 3N, check if echcing
016B AQ ANA B 3BS will have been echoed if so
014C CA7001 4z RCS$BSNE ;No, input BS not echoed
016F 23 INX H ;Bypass initial backspace
RCS$BENE:
0170 CS PUSH B ;Save options and character
0171 DS PUSH o ;Save terminator table painter
0172 CDF&01 CALL wcs sWrite console string
0175 D1 FOP D ;Recover terminator table pointer
017¢& C1 POP B ;Recover options and character
0177 C37B0O1 JMP RCS$BSX ;Exit from backspace logic
RCSENES:
017A 34 INR M ;Reset count to O
RCS$BSX:
017k E1 PQF H sRecover buffer pointer
017C C32F01 JMP RCS$L ;Get next character
Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System

83

RCS$5C: ;Save character in C in buffer
sHL —> buffer pointer
017F DS PUSH D ;Save terminator table pocinter
0180 ES PUSH H ;Save buffer pointer
0181 23 INX H fHL -> actual count in buffer
0182 SE Mav E,M ;Get actual count
0182 1C INR E ;Count of O points to first data byte
0124 1800 MVI D,0 tMake word value of actual count
01848 19 DAD D sHL ~> next free data byte
0187 71 MOV M, C ;Save data byte away
0188 E1l PQOP H ;Recover buffer paointer
0189 D1 POF o sRecaver terminator table
;7 Pointer
018A C9 RET
RCS$UC: sUpdate buffer count and check for max.
sReturn Z set if = to max., NZ
s if not HL -> buffer on entry
O18B ES PUSH H ;Save buffer pointer
018C 7E MOV A M ;Get max. count
018D 23 INX H sHL -> actual count
O18E 34 INR M ;Increase actual count
018F BE CMP M ;Compare max. to actual
0190 E1l POP H sReccaver buffer pointer
0191 C9 RET iZ-flag set
RCS$GC: ;Get character and execute
7 ECHO, ABORT and FOLD options
0192 DS PUSH D iSave terminator table pointer
0193 ES PUSH H :Save buffer pointer
0194 CS PUSH B sSave option flags
RCS$WT:
0195 0E06 MVI C, B$DIRCONIO sFunction code
0197 1EFF MVI E,OFFH iSpecify input
0199 CDOS00 CALL BDOS
019C B7 ORA A sCheck if data waiting
019D CA9S01 Jz RCS$WT ;Go back and wait
01A0 C1 POP B sRecover option flags
O1A1 4F Mav C,A ;Save data byte
01A2 3E02 MVI A, RCS$ABRORT sCheck if abort option enabled
01A4 AO ANA B
01AS5 CAAEO1 Jz RCS$NA $No abort
01A8 3EO03 MVI A, CTLS$C sCheck for control-C
01AA B? CMP (o
01AR CA0000 Jz o iWarm boot
RCS$NA:
01AE 3E04 MVI A, RCS$FOLD ;Check if folding enabled
01BO A0 ANA B
O1B1 C4ESO1 CNZ TOUPPER :Convert to uppercase
01B4 3E01 MVI A, RCS$ECHO sCheck if echca required
01R& AO ANA B
01B7 CAD101 Jz RCS$NE iNo echo required
O1BA CS PUSH B ;Save options and character
O1BB 59 MoV E,C tMove character for ocutput
01BC OEQé& MVI C, B$DIRCONIO iFunction code
O1BE CDOS00 CALL BDROS sEcho character
01C1 C1t POP B sRecover options and character
01C2 3EOD MVI A,CR $Check if carriage return
01C4 B9 CMP c
01CS C2p101 JINZ RCS$NE 3No
o1c8 Ccs PUSH B $Save options and character
01C9 OE04 MVI C,B$DIRCONIQ sFunction code
O1CB 1EOQA MVI E,LF ;0utput line feed
01CD CDOS00 CALL BDOS
01D0 C1 POP B tRecover options and character
RCS$NE @
01D1 E1 POP H iRecover buffer pointer
01D2 D1 POP D sRecover terminator table
01D3 C9 RET sCharacter in C
Figure 5-8. (Continued)

84 The CP/M Programmer’s Handbook

RCS$CT: ;Check for terminator
3C = character just input
sDE -> 00-byte character
string of term. chars.
Returns Z status if no
match found, NZ if found
(with A = C = terminating
character)

4
B
7
H
H
H

01D4 DS PUSH D Save table pointer
RCS$CTL:
01DS 1A LDAX D ;Get next terminator character
01D6 B7 ORA. A ;Check for end of table
01D7 CAE201 JZ RCS$CTX ;No terminator matched
01DA BY CMP [sCompare to input character
01DB CAE201 Jz RCS$CTX sTerminator matched
O1DE 13 INX D ;Move to next terminator
01DF C3D501 JMP RCS$CTL s loop to try next character in table
RCS$CTX: ;Check terminator exit
01E2 B7 ORA A At this point, A will either

; be O if the end of the

3 table has been reached, or
5 NZ if a match has been

3 found. The Z-flag will be
;s set.

01E3 D1 POP D Recover table pointer
O1E4 C9 RET
;s TOUPPER - Fold lowercase letters to upper
H C = Character on entry and exit
TOUPPER:
01ES 3E&0 MVI A, 7a’-1 ;Check if folding needed
O1E7 B9 CMP c ;Compare to input char.
01E8 D2FS01 JNC TOUPX 3No, char. is < or = "
01EB 3E7A MVI A, 7z7 ;Maybe, char. is = or > "a"
O1ED B? CMP C
O1EE DAFS01 JC TOUPX sNa, char. is > "z"
01F1 3EDF MVI A, ODFH ;Fold character
01F3 Al ANA Cc
O1F4 4F MoV c,A sReturn folded character
TOUPX:
01FS C9 RET

+WCS — Write console string (using raw I/C)
sOutput terminates when a QOH byte is encountered.
+A carriage return is output when a line feed is
sencountered.

;Calling sequence
H, BUFFER
CALL wes

sExit parameters

H HL -> OOH byte terminator
WCS:
O1F6 ES PUSH H sSave buffer pointer
O01F7 7E MOV AM ;Get next character
01F8 B7 ORA A sCheck if OOH
01F9 .CA1602 Jz WCsX sYes, exit
O1FC FEOA CPI LF sCheck if line feed
O1FE CCOCO2 cz WCSLF sYes, output a carriage return
0201 SF MoV E,A ;jCharacter to be cutput
0202 OE06 MVI C, E$DIRCONIO sFunction code
0204 CDOS00 CALL BDOS ;Output character
0207 E1 POP H sRecover buffer pointer
0208 23 INX H ;Update to next char.
0209 C3F601 JMP wcs sOutput next char.
WCSLF: sLine feed encountered
020C QEO6 MVI C, B$DIRCONIC sFunction code

Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System 85

020E 1EOD
0210 CDOS00
0213 3EO0A
0215 C9

0216 Et
0217 C9

MVI E,CR 7O0utput a CR
CALL BDOS
MVI A,LF sRecreate line feed
RET ;Output LF

WCSX: sExit
POP H ;Balance the stack
RET

Figure 5-8. (Continued)

Example

0007 =
0005 =

0000 OEO7
0002 CDOS00
Purpose

Notes

BS$GETIO EQU 7 sGet IOBYTE

BDOS EQuU S sBDOS entry point
MVI C,B$GETIO sFunction code
CALL BDOS sA = I0OBYTE

This function places the current value of the IOBYTE in register A.

As we saw in Chapter 4, the IOBYTE is a means of associating CP/M’s logical
devices (console, reader, punch, and list) with the physical devices supported by a
particular BIOS. Use of the IOBYTE is completely optional. CP/M, to quote from
the Digital Research CP/M 2.0 Alteration Guide, “...tolerate[s] the existence of the
IOBYTE at location 0003H.”

In practice, the STAT utility provided by Digital Research does have some
features that set the IOBYTE to different values from the system console.

Figure 5-9 summarizes the IOBYTE structure. A more detailed description
was given in Chapter 4.

Each two-bit field can take on one of four values: 00,01, 10, and 11. The value
can be interpreted by the BIOS to mean a specific physical device, as shown in
Table 4-1.

Figure 5-10 has equates that are used to refer to the IOBYTE. You can see that
the values shown are declared using the SHL (shift left) operator in the Digital
Research Assembler. This is just a reminder that the values are structured this way
in the IOBYTE itself,

Bit No. 7:615:413:21!11:0

-+
+ == 4

Logical Device List Punch Reader Console

Figure 5-9. The IOBYTE structure

86 The CP/M Programmer’s Handbook

; IOBYTE equates
:These are for accessing the IOBYTE.
sMask values to isalate specific devices.
: (These can alsc be inverted to preserve all BUT the
; specific device)
0003 = 10%CONM EQU 0000%001 1B ;Console mask
ooC = 10$RDRM EQU 0000%$1100B sReader mask
0030 = I0$PUNM EQU 0011%0000B ;FPunch mask
00CoO = 10$LSTM EQU 1100$0000B sList mask
;Console values
0000 = 10$CTTY EQU o] ;Console —-> TTY:
0001 = I0$CCRT EQU 1 ;Console -> CRT:
0002 = I10$CBAT EQU 2 ;Console input <- RDR:
;Console output -> LE&T:
0003 = 10$CUC1 EQU 3 :Console -> UC1: (user consocle 1)
;Reader values
0000 = I0$RTTY EQU O SHL 2 sReader <- TTY:
0004 = I0$RRDR EQU 1 SHL 2 ;Reader <- RDR:
0008 = I0%$RUR1 EQU 2 SHL 2 sReader <- UR1: (user reader 1)
000C = 10$RUR2 EQU 3 SHL 2 sReader <- UR2: (user reader 2)
sPunch values
0000 = 10$PTTY EQU 0 SHL 4 sFunch -> TTY:
0010 = 10$PPUN EGQU 1 SHL 4 sPunch -> PUN:
0020 = 10¢PUP1 EQU 2 SHL 4 sPunch —> UP1: (user punch 1)
0030 = 10$PUP2 EQU 3 SHL 4 ;Punch —-» UP2: (user punch 2)
sList values
0000 = I0$LTTY EQU 0 SHL é sList —-> TTY:
0040 = I0$LCRT EQU 1 SHL 6 sList -> CRT:
0080 = I0$LLPT EQU 2 SHL & ;List —-> LPT: (physical line printer)
QOCO = 10$LULY EQU 3 SHL é sList —» UL1: (user list 1)

Figure 5-10. IOBYTE equates

Function 8: Set IOBYTE

Function Code: C= 08H
Entry Parameters: E = New IOBYTE value
Exit Parameters: None

Example This listing shows you how to assign the logical reader device to the BIOS’s
console driver. It makes use of some equates from Figure 5-10.

0007 = B$GETIO EQU 7 ;Get IOBYTE

0008 = B$SETIO EQU 8 ;Set IOBYTE

0005 = BDOS EQU S s BDOS entry point

000C = I0$RDRM EQU 0000%$1100B sReader bit mask

0008 = I0$RUR1 EQU 2 SHL 2 ;User reader select
sThis example shows how to assign the logical
sreader to the user-defined reader #1 (UR1:)

0100 ORG 100H

0100 OEO7 MVI C,B$GETIO sFirst, get current IOBYTE

Chapter 5: The Basic Disk Operating System 87

0102 CDOS00 CALL BDOS A
0105 E&F3 ANI (NOT IO$RDRM) AND OFFH :Preserve all but
3 reader bits
0107 F608 ORI 10$RUR1 ;0R in new setting
0109 SF MOV E,A ;Ready for set IOBYTE
010A OEO8 MVI C,B$SETIO ;Set new value
010C CDO500 CALL BDOS
Purpose This function sets the IOBYTE to a new value which is given in register E.

Notes

Because of the individual bit fields in the IOBYTE, you will normally use the Get
IOBYTE function, change some bits in the current value, and then call the Set
IOBYTE function.

You can use the Set IOBYTE, Get IOBY TE, and Direct Console I/ O functions
together to create a small program that transforms your computer system into a
“smart” terminal. Any data that you type on your keyboard can be sent out of a
serial communications line to another computer, and any data received on the line
can be sent to the screen.

Figure 5-11 shows this program and illustrates the use of all of these functions.

For this program to function correctly, your BIOS must check the IOBYTE
and detect whether the logical console is connected to the physical console (with
the IOBYTE set to TTY:) or to the input side of the serial communications line
(with the IOBYTE set to RDR:).

Figure 5-11 shows how to use the Get and Set IOBYTE functions to make a
simple terminal emulator. For this example to work, the BIOS must detect the
Console Value as 3 (I0$CUCI) and connect Console Status, Input, and Output
functions to the communications line.

0006 = B$DIRCONIO EQU é ;Direct console input/output

0007 = B$GETIOQ EQU 7 ;Get IORYTE

0008 = B$SETIO EQU] sSet IOBYTE

000B = B$CONST EQU 11 ;Get console status (sneak preview)

0005 = BDOS EQU S sBDOS entry point

0003 = I0O$CONM EQU 0000400118 ;Conscle mask for IOBYTE

0001 = I0$CCRT EQU 1 ;Console - CRT:

0003 = I0s$CUC1 EQU 3 ;Console - user console #1
TERM:

0000 CD2A00 CALL SETCRT ;Connect consale —> CRT:
TERM$CKS:

Q003 CDS200 CALL CONST ;Get CRT status

0006 CA2400 JZ TERM$NOK I ;No console input

0009 CD4BOO CALL CONIN ;Get keyboard character

000C CD2000 CALL SETCOMM sConnect console -> comm. line

000F CD4500 CALL CaNQuUT sOutput to comm. line
TERM$CCS: ;Check comm. status

0012 CDS200 CALL CONST ;Get "console" status

0015 CA0000 Jz TERM iNo incoming comm. character

0012 CD4ROO CALL CONIN ;Get incoming comm. character

Figure 5-14.

Simple terminal emulator

88 The CP/M Programmer’s Handbook

001B CD2A00 CALL SETCRT ;Connect console => CRT:
001E CD4S00 CALL CONQUT sOutput to CRT
0021 C30300 JMP TERM$CKS sLoop back to check keyboard status
TERMSNOKI :
0024 CD3I000 CALL SETCOMM ;Connect conscle —> comm. line
0027 C31200 JMP TERM$CCS s;Loop back. to check comm. status
SETCRT: s;Connect conscle -> CRT:
002A FS PUSH PSW ;Save possible data character
002 0401 MVI B, IO$CCRT ;Connect conscle -> CRT:
0020 C333I00 JMP SETCON s Common code
SETCOMM: ;Connect console —> comm. line
0030 FS PUSH PSW ;Save possible data character
0031 0803 MVI B, I0sCUC1 ;Connect console —-> comm. line
sDrop into SETCON
SETCON: ;Set console device
;New code in B (in bits 1,0)
0033 CS PUSH B ;Save code
0034 QEQ7 MVI C,B$GETIO ;Get current IOBYTE
0036 CDOS00 CALL BDOS
0039 E&FC ANI (NOT IQ$CONM) AND OFFH j;Freserve all but canscle
003B C1 POF B sRecover required code
003C BO ORA B sO0R in new bits
003D SF MQy E,A ;Ready for setting
003E OEOS8 MVI C,B$SETIO sFunction code
0040 CDOS00 CALL BDCS
0043 F1 POP PSW sRecover possible data character
0044 C9 RET
CONQUT :
0045 SF Mav E,A ;Get data byte for output
0044 QEOE MVI C,B$DIRCONIC sFunction code
00423 C30500 JMP BDOS ;BDOS returns to CONOUT’ s caller
CONIN:
004R QE0& MVI C, B$DIRCONICO sFunction code
Q04D 1EFF MVI E, OFFH ;Indicate conscle input
004F C30500 JMP BDOS ;BDOS returns to CONIN“s caller
CONST:
0052 OEOB MVI C, B$CONST sFunction code
0054 CDOS00 CALL BDOS
0057 B7 ORA A ;Set Z-flag to result
0058 C% RET
Figure 5-11. (Continued)

Function 9: Display “$"-Terminated String

Function Code: C=09H
Entry Parameters: DE = Address of first byte of string

Exit Parameters: None
Example
0009 = B$PRINTS EQU 9 ;Print $-Terminated String
0005 = BDOS EQU S ;BDOS entry point
000D = CR EQU ODH sCarriage return
Q00A = LF EQU 0AH sLine feed
0009 = TAR EQU 09H sHorizontal tab

Chapter 5: The Basic Disk Operating System 89

0000 ODOAOPSASBMESSAGE: DB CR,LF,TAB, “This is a message”,CR,LF, "$~
0017 OEO09 MVI C, B$PRINTS sFunction code
0019 110000 LXI D, MESSAGE ;Pointer to message
001C CDOS00 CALL BDOS
Purpose This function outputs a string of characters to the console device. The address

of this string is in registers DE. You must make sure that the last character of the
string is “$”; the BDOS uses this character as a marker for the end of the string.
The “$” itself does not get output to the console.

While the BDOS is outputting the string, it expands tabs as previously de-
scribed, checks to see if there is an incoming character, and checks for CONTROL-S
(XOFF, which stops the output until another character is entered) or CONTROL-P
(which turns on or off echoing of console characters to the printer).

Notes One of the biggest drawbacks of this function is its use of “$” as a terminating
character. As a result, you cannot output a string with a “$” in it. To be truly
general-purpose, it would be better to use a subroutine that used an ASCII NUL
(00H) character as a terminator, and simply make repetitive calls to the BDOS
CONOUT function (code 2). Figure 5-3 is an example of such a subroutine.

Figure 5-12 shows an example of a subroutine that outputs one of several
messages. It selects the message based on a message code that you give it as a
parameter. Therefore, it is useful for handling error messages; the calling code can
passitan 8-bit error code. You may find it more flexible to convert this subroutine
to using 00H-byte-terminated messages using the techniques shown in Figure 5-3.

30M (Output message)

This subroutine selects one of several messages based on

3 the contents of the A register on entry. It then displays
s this message on the console.

;Each message is declared with a "$" as its last character.
;s If the A register contains a value larger than the number
3 of messages declared, OM will output "Unknown Message".

3As an option, OM can ocutput carriage return / line feed
$ Prior to outputting the message text.

:Entry parameters

H HL -> message table

H This has the form :

i DB 3 sNumber of messages in table
H DW MSGO sAddress of text (A = 0)

H DW MSG1 (A = 1)

H DW MSG2 (A = 2)

H MSGO: DB ‘Message text$”

; ...etc.

3 A = Message code (from O on up)

; B = Output CR/LF if non-zero

Figure 5-42. Display $-terminated message on console

90 The CP/M Programmer’s

Handbook

Calling sequence

H
H LXI H, MSG$TABLE
H LDA MSGCODE
H MVI E, 0 sSuppress CR/LF
H CALL oM
0009 = B$PRINTS EQU 7 ;sPrint $-terminated string
0005 = RDOS EQU S ;BDOS entry point
ooon = CR EQU ODH sCarriage return
000A = LF EQU 0AH sLine feed
0000 QDOA24 OM$CRLF: DE CR,LF, "%~
0003 SSEEARAESFOMSLM: DE “Unknown Message$”’
aM:
0013 FS PUSH PSW ;Save message code
0014 ES PUSH H ;Save message table pointer
0015 78 Mav A E ;Check if CR/LF required
0014 B7 ORA A
0017 CA2200 Jz OM&ENOCR sNo
001A 110000 LXI D, OM$CRLF sOutput CR/LF
0010 OEQ9 MVI C,B$PRINTS
001F CDOS00 CALL BOOE
OM$NQCR:
0022 E1 POP H ;Recover message table pointer
00232 F1 POF PSW sRecover message cade
0024 BE CMP M sCompare message to max. value
0025 D23700 JNC OM$ERR sErrar—code not <= max.
0028 23 INX H sBypass max. value in table
0029 87 ADD A sMessage code ® 2
002A SF Mav E,A ;Make (code ® 2Z) a word value
002B 1600 MVI oo
0020 19 DAD D sHL -» address of message text
002E SE MoV E.,M ;Get LS byte
002F 23 INX H sHL —> MS byte
0020 S6 Moy o,M sGet MS byte
sDE —> message text itself
OM$FS: sPrint string entry point
0031 OE0% MVI C, B$PRINTS sFunction code
Q0 COOS00 cAaLL BDOS
ce RET sReturn to caller
OM$ERR: sError
0037 110300 LXI D, OM$UM ;Point to "Unknown Message"
003A C3Z100 JMP OM$PS sPrint string
Figure 5-12. (Continued)

Function 10: Read Console String

Example

000A
0005

Function Code:
Entry Parameters:
Exit Parameters:

B$READCONS
BDOS

C=0AH

DE = Address of string buffer
String buffer with console bytes in it

EQU 10
EQU S

sRead Console String
;BDOS entry point

Q050 =

Chapter 5: The Basic Disk Operating System 94

BUFLEN EQU 80 ;Buffer length

BUFFER: ;Console input buffer

0000 S0 BUFMAXCH: DB BUFLEN ;Max. no. of characters in

s buffer

0001 00 BUFACTCH: DB [¢] ;Actual no. of characters input

0002

BUFCH: DS BUFLEN ;Buffer characters

0052 OEOA MVI C, B$READCONS ;Function ccde
0054 110000 LXI D, BUFFER sPointer to buffer
0057 CDOS00 CALL BDOS

Purpose

Notes

This function reads a string of characters from the console device and stores
them in a buffer (address in DE) that you define. Full line editing is possible: the
operator can backspace, cancel the line and start over, and use all the normal
control functions. What you will ultimately see in the buffer is the final version of
the character string entered, without any of the errors or control characters used to
do the line editing.

The buffer that you define has a special format. The first byte in the buffer tells
the BDOS the maximum number of characters to be accepted. The second byte is
reserved for the BDOS to tell you how many characters were actually placed in the
buffer. The following bytes contain the characters of the string.

Character input will cease either when a CARRIAGE RETURN is entered or when
the maximum number of characters, as specified in the buffer, has been received.
‘The CARRIAGE RETURN is not stored in the buffer as a character—it just serves as a
terminator.

If the first character entered is a CARRIAGE RETURN, then the BDOS sets the
“characters input” byte to 0. If you attempt to input more than the maximum
number of characters, the “characters input” count will be the same as the
maximum value allowed.

This function is useful for accepting console input, especially because of the
line editing that it allows. It should be used even for single-character responses,
such as “Y/N” (yes or no), because the operator can type “Y”, backspace, and
overtype with “N”. This makes for more “forgiving” programs, tolerant of humans
who change their minds.

Figure 5-13 shows an example subroutine that uses this function. It accepts
console input, matches the input against a table, and transfers control to the
appropriate subroutine. Many interactive programs need to do this; they accept an
operator command and then transfer control to the appropriate command proces-
sor to deal with that command.

This example also includes two other subroutines that are useful in their own
right. One compares null-byte-terminated strings (FSCMP), and the other con-
verts, or “folds,” lowercase letters to uppercase (FOLD).

92 The CP/M Programmer’s Handbook

000A
0005

0050
0000
0001
0002
0052

0053
0054
0055
0056
0058
005B

00SE
0061
0062
0064
0065
0066

0068
0069
006A
006E

nu

S0
00

00

2B

2B

ES
OEOA
110000
CDOS00

210100
SE
1600
23

19
3600

El
23

SE

3 RSA

sReturn subprocessor address
3This subroutine returns one of several addresses selected

strings.

that is,

strings,
cleared.

Entry parameters

from a table by matching keybocard input against specified
It is normally used to switch control to a
particular subprocessor according to an cption entered

by the operator from the keyboard.

Character string comparisons are performed with case-folding;
lowercase letters are converted to uppercase.

If the operator input fails to match any of the specified
then the carry flag is set.

Qtherwise, it is

HL -> Subprocessor select table
This has the form :

oW TEXTO, SUBPROCO

oW TEXT1, SUBRPROC1

oW [¢] sTerminator
TEXTO: DB “add’,0 ;00H-byte terminated
TEXT1: DR “subtract’,0
SUBPRQCO:

Code for processing ADD function.
SUBPROC1 :
Code for processing SUBRTRACT function.

Exit parameters

DE -> operator input string (OOH-terminated

Carry Clear,

input string).

Carry Set, HL = O000H.
sCalling sequence
; LXI H, SUBPROCTAR
H CALL RSA
H JC ERROR
H LXI D, RETURN
H PUSH D
; PCHL
3 RETURN:
BSREADCONS EQU 10
BDOS EQU S
RSASBL EQU 80
RSASBUF : DB RSASBL
RSASACTC: DB g
RSASBUFC: DS REASEL

DR [e]

RSA:

DCX H

DCX H

PUSH H

MVI C, B$READCONS

LXI D, REASBUF

CALL BDOS

LXT H, REASACTC

MOV E.M

MVI D,0

INX H

DAD D

MVI M, 0
RSASML:

POP H

INX H

INX H

Mav E/M

HL -> subprocessor.

s Subprocessor table

sCarry set only on errar
sFake CALL instruction

sPush return address on stack
s "CALL" to subprocessor

;Read console string into buffer

sBOOS entry point

sBuffer length

;Max. no. of characters
sActual no. of characters
sBuffer characters
;Safety terminator

3Adjust Subprocessor pointer
5 for code below
3Top of stack (TOS)
sFunction code

sDE -> buffer

;Read operator input and

3 Convert to OOH-terminated
sHL -> actual nco. of chars.
;Get actual nc. of chars.
sMake into word value
sHL -> first data character

sHL -> first UNUSED character in buffer
sMake input buffer OOH terminated

-> subproc. table - 2

input
input

sCompare input to specified values
;3 Main loop

sRecover subprocessor table pointer
sMave to top of next entry

sHL -> text address

;Get text address

Figure 5-13.

Read console string for keyboard options

Chapter 5: The Basic Disk Operating System

93

006C 23 INX H
006D Sé MOV o.M sDE ~> text
006E 7A MoV A, D sCheck if at end of subprocessor table
004F B3 ORA E
0070 CA8500 Jdz RSASNFND ;Match not found
0073 23 INX H sHL -> subprocessor address
0074 ES PUSH H ;Save ptr. to subprocessor table
0075 210200 LXI H, RSA$BUFC sHL -> input characters
0078 CD8AOO CALL FSCMP ;Folded string compare
007B C26800 JNZ RSASML ;No match, move to next entry
007E E1 POP H iMatch found, recover subprocessor ptr.
O007F SE MoV E,M ;Get actual subprocessor address
0080 23 INX H
0081 Sé MoV DM sDE ~> Subprocessor code
0082 EB XCHG sHL -> Subprocessor code
0083 R7 ORA A ;Clear carry (match found)
0084 C9 RET

RSASNFND:
0085 210000 LXI H,0 sIndicate no match found
0088 37 sTC ;Set carry
0089 C9 RET

s FSCMP

;Compare folded (lowercase to upper) string.

;This subroutine compares two OOH-byte terminated

sstrings and returns with the condition flags set

;to indicate their relationship.

;Entry parameters

i DE -> string 1

H HL -> string 2

sExit parameters

H Flags set (based on string 1 - string 2, on a

H character-by-character basis)

FSCMP:
008A 1A LDAX D ;Get string 1 character
008B CDPEO0O CALL FOLD ;Fold to uppercase
008E FS PUSH PSW ;Save string 1 character
Q08F 7E MOV AM ;Get string 2 character
0090 CDYEOO CALL FOLD ;Fold to uppercase
0093 47 MoV B,A ;Save string 2 character
0094 F1 POF PSW ;Recover string 1 character
0095 B8 CMF B 3String 1 - string 2
0096 CO RNZ jReturn if not equal
0097 B7 ORA A ;Equal, so check if end of strings
0098 C8 RZ sYes
0099 13 INX D sNo, update string 1 pointer
009A 23 INX H 3 and string 2 painter
009E C38A00 JMP FSCMP sCheck next character

sFOLD

;Folds a lowercase letter (a—-z) to uppercase (A-7)

sThe character to be folded is in A on entry and on exit.

FOLD:
009E 4F MoV C,A ;Preserve input character
009F BE&O MVI A,7a’-1 3sCheck if folding needed
O0A1 B9 CMP C ;Compare to input character
00A2 D2AF0O0 JNC FOLDX $sNo, char. is <= "a"
Q0AS 3E7A MVI A, 7z ;Check if < "z"
00A7 B? CMP o
00A8 DAAF OO0 JC FOLDX :No, char. is > "z"
Q0AR 3EDF MVI A, ODFH ;Fold character
00AD Al ANA o
00AE C9 RET

FOLDX:
00AF 79 Mav A,C sRecover original input char.
Q00RO C9 RET

Figure 5-13. (Continued)

94 The CP/M Programmer’s Handbook

Function 11: Read Console Status

Function Code: C= 0BH

Entry Parameters: None

Exit Parameters: A = 00H if no incoming data byte
A = OFFH if incoming data byte

Example
O00B = B$CONST EQU 11 sGet Conscle Status
0005 = BDOS EQU S sBDOS entry point
0000 OEOB Mv1 C, B$CONST ;Function code
0002 CDOS00 CALL BDOS sA = 00 if no character waiting
sA = OFFH if character waiting
Purpose This function tells you whether a console input character is waiting to be
processed. Unlike the Console Input functions, which will wait until there is input,
this function simply checks and returns immediately.
Notes Use this function wherever you want to interrupt an executing program if a

console keyboard character is entered. Just put a Console Status call in the main
loop of the program. Then, if the program detects that keyboard data is waiting, it
can take the appropriate action. Normally this would be to jump to location
0000H, thereby aborting the current program and initiating a warm boot.
Figure 5-11 is an example subroutine that shows how to use this function.

Function 12: Get CP/M Number

Function Code: C= 0CH
Entry Parameters: None
Exit Parameters: HL = Version number code

Example
000C = B$GETVER EQU 12 ;Get CP/M Versian Number
0005 = BDOS EQU 5 ;BOOS entry point
0000 OEOC Mv1 C, B$GETVER ;Function code
0002 CDOSO0 CALL BDOS tH = 00 for CP/M
sL = version (e.g. 22H for 2.2)
Purpose This function tells you which version of CP/M you are currently running. A

two-byte value is returned:

H = 00H for CP/M, H = 01H for MP/M
L = 00H for all releases before CP/M 2.0

L=20H for CP/M 2.0, 21 H for 2.1,22H for 2.2, and so on for any subsequent
releases.

Chapter 5: The Basic Disk Operating System 95

This information is of interest only if your program has some version-specific
logic built into it. For example, CP/M version 1.4 does not support the same
Random File Input/Output operations that CP/M 2.2 does. Therefore, if your
program uses Random 1/O, put this check at the beginning to ensure that it is
indeed running under the appropriate version of CP/M.

Notes Figure 5-14 is a subroutine that checks the current CP/M version number, and,
if it is not CP/M 2.2, displays an explanatory message on the console and does a
warm boot by jumping to location 0000 H.

Function 13: Reset Disk System

Function Code: C= 0DH
Entry Parameters: None
Exit Parameters: None

eck if CP/M
iThis subroutine determines the version number of the
;operating system and, if not CP/M version 2, displays
$an 2rror message and executes a warm boot.
;Entry and exit parameters
H None
;Calling sequence
H CALL CCPM iWarm boots if not CP/M 2
0007 = B$PRINTS EGU v ;Display $-terminated string
000C = B$GETVER EQuU 12 sGet version number
0005 = BDOS EQL S sBOOS entry point
oo0Dn = CR EQU ODH ;Carriage return
000A = LF EQU OAH sLine feed
0000 ODOA CCPMM: DB CR,LF
0002 S4&3897320 DE “This program can only run under CP/M version 2.~
0021 0D0A24 DR CR,LF, "%~
CCPM:
0034 OEOQC MVI C, B§GETVER ;Get version number
0034 CDOS00 CALL BDOS
003% 7C MOV AH #H must be O fcr CF/M
003A B7 ORA A
003B C24700 JINZ CCPME sMust be MF/M
Q03E 7D MOV AL sL = version number of CF/M
Q03F E6FO ANI OFOH ;Version number in M3 nibble
0041 FE20 CPI 20H ;Check if version 2
0043 C24700 JNZ CCPME sMust be an earlier version
004¢& C? RET sYes, CP/M version 2
CCPME: ;Error
0047 QEO® MVI C, B$PRINTS sDisplay error message
0049 110000 LXI 0, CCPMM
004C CDOS00 CALL BLOOS
004F CR0000 JIMP (¢ ;Warm boot

Figure 5-14. Determine the CP/M version number

96 The CP/M Programmer’s Handbook

Example

Purpose

Notes

000D = B$DSKRESET EQU 13 sReset Disk System
0005 = BDOS EQU S sBDOS entry point
0000 OEOD MVI C, B$DSKRESET sFunction code
0002 CDOS00 CALL BDOS

This function requests CP/M to completely reset the disk file system. CP/M
then resets its internal tables, selects logical disk A as the default disk, resets the
DMA address back to 0080H (the address of the buffer used by the BDOS to read
and write to the disk), and marks all logical disks as having Read/ Write status.

The BDOS will then have to log in each logical disk as each disk is accessed.
This involves reading the entire file directory for the disk and rebuilding the
allocation vectors (which keep track of which allocation blocks are free and which
are used for file storage).

This function lets you change the diskettes under program control. If the
operator were to simply change diskettes, without CP/M knowing about it, the
next access to the (now different) diskette would force CP/M to declare the disk
Read-Only, thwarting any further attempts to write on the diskette. If youneed to
reset one or two disks, rather than the entire disk system, look ahead to the Reset
Disk function (code 37) described at the end of this chapter.

Figure 5-15 shows a simple subroutine that outputs a message on the console,
requesting that the diskette in a specified drive be changed. It then issues a Reset
Disk function call to make sure that CP/M will log in the diskette on the next
access to the drive.

sCDISK

sChange disk

;This subroutine displays a message requesting the
suser to change the specified logical disk, then waits
:for a carriage return to be pressed. It then issues
sa Disk Reset and returns to the caller.

sEntry parameters
H A = Logical disk to be changed (A =0, B = 1)

sExit parameters
i None

;Calling sequence

MVI A, 0 ;Change drive A:
; caLL CDISK
000D = B$DSKRESET EQU 13 ;Disk Reset function code
0009 = B$PRINTS EQU 9 sPrint $-terminated string
0001 = B$CONIN EQU 1 ;Get conscle input
00035 = BDOS EQU S ;BDOS entry point

Figure 5-15.

Reset requested disk drive

Chapter 5: The Basic Disk Operating System

97

[elelel]
000A

0000

0D0OA43EB61

0016 00

0017

003F
0041
0044
0044
0049

004C
004E
0051
0053
0056
0038
005B

3A20616E64

Cé40
321800
0E09
110000
CDOS00

OEO1
CDOS00
FEOD
C24C00
OEOD
CDO500
ce

CR
LF

CDISKM:
CDISKD:

CDISK:

CDISKW:

ADI
STA
MVI
LXI
CALL

MVI
CALL
CPI
JNZ
MVI
CALL
RET

EQU ODH
EQU OAH

DB

DB CR,LF,“Change logical disk ~
(¢}

DB “: and press Carriage Return to continues$”

A =1
CDISKD

C, B$PRINTS
D, CDISKM
BDOS

C, B$CONIN
BDROS

CR

CDISKW

C, B$DSKRESET
BDOS

sConvert to letter
;Store in message
sDisplay message

;Get keyboard character

;Now reset disk system

Figure 5-15.

Reset requested disk drive (continued)

Function 14: Select Logical Disk

Function

Entry Parameters:

Exit Parameters:

Example
000E =
0005 =
0000 OEOE
0002 1EOO
0004 CDOS00
Purpose

Notes

Code: C =0EH
E = Logical Disk Code
00H = Drive A
0lIH = Drive B and so on
None
B$SELDSK EQU 14 ;Select Logical Disk
BDOS EQU s ;BDOS entry point
MVI C, B$SELDSK sFunction code
MVI E,O sE = 0 for A:, 1 for B: etc.

CALL BDOS

This function makes the logical disk named in register E the default disk. All
subsequent references to disk files that do not specify the disk will use this default.
When you reference a disk file that does have an explicit logical disk in its name
you do not have to issue another Select Disk function; the BDOS will take care of
that for you.

Notice the way in which the logical disk is specified in register E. It is not the
same as the disk drive specification in the first byte of the file control block. In the
FCB, a value of 00H is used to mean “use the current default disk” (as specified in
the last Select Disk call or by the operator on the console). With this function, a

98 The CP/M Programmer’s Handbook

Function 15:

Example

value of 00H in register A means that A is the selected drive, a value of 01 H means
drive B, and so on to OFH for drive P, allowing 16 drives in the system.

If you select a logical disk that does not exist in your computer system, the
BDOS will display the following message:

BDOS Err on J: Select

If you type a CARRIAGE RETURN in order to proceed, the BDOS will do a warm
boot and transfer control back to the CCP. To avoid this, you must rely on the
computer operator not to specify nonexistent disks or build into your program the
knowledge of how many logical disk drives are on the system.

Another problem with this function is that you cannot distinguish a logical
disk for which the appropriate tables have been built into the BIOS, but for which
there is no physical disk drive. The BDOS does not check to see if the drive is
physically present when you make the Select Disk call. It merely sets up some
internal values ready to access the logical disk. If you then attempt to access this
nonexistent drive, the BIOS will detect the error. What happens next is completely
up to the BIOS. The standard BIOS will return control to the BDOS, indicating an
error condition. The BDOS will output the message

BDOS Err on C: Bad Sector

You then have a choice. You can press CARRIAGERETURN, in which case the BDOS
will ignore the error and attempt to continue with whatever appears to have been
read in. Or you can enter a CONTROL-C, causing the program to abortand CP/M to
perform a warm boot.

Note that the Select Disk function does not return any values. If your program
gets control back, you can assume that the logical disk you asked for at least has
tables declared for it.

Open File

Function Code: C = 0FH

Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
O00F = B$OPEN EQU 15 ;Open File
0005 = BDOS EQU S sBDOS entry point

FCB: sFile control block

0000 00 FCB$DISK: DB [\] sSearch on default disk drive
0001 46494CA4S4EFCRSNAME: DB FILENAME” ;File name
0009 545950 FCB$TYP: DB ‘TYP”’ sFile type
000C 00 FCB$EXTENT: DB (o] sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
Q00F 00 FCB$RECUSED: DB (o] sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
Q020 00 FCB$SEQREC: DB] :Sequential rec. to read/write

Purpose

Notes

Chapter 5: The Basic Disk Operating System 99

0021 Q000 FCB$RANREC: DW [¢] ;Random rec. to read/write

0023 00 FCB$RANRECO: DB (o] sRandom rec. overflow byte (MS)
0024 OEOF MVI C, R$OPEN sFunction code

0026 110000 LXI D,FCB sDE -> File control block

0029 CDOS00 CALL BDOS A = OFFH if file not found

This function opens a specified file for reading or writing. The FCB, whose
address must be in register DE, tells CP/M the user number, the logical disk, the
file name, and the file type. All other bytes of the FCB will normally be set to 0.

The code returned by the BDOS in register A indicates whether the file has
been opened successfully. If A contains OFFH, then the BDOS was unable to find
the correct entry in the directory. If A=0, 1, 2, or 3, then the file has been opened.

The Open File function searches the entire file directory on the specified
logical disk looking for the file name, type, and extent specified in the FCB; that s,
it is looking for an exact match for bytes 1 through 14 of the FCB. The file name
and type may be ambiguous; that is, they may contain “?” characters. In this case,
the BDOS will open the first file in the directory that matches the ambiguous name
in the FCB. If the file name or type is shorter than eight or three characters
respectively, then the remaining characters must be filled with blanks.

When the BDOS searches the file directory, it expects to find an exact match
with each character of the file name and type, including lowercase letters or
nongraphic characters. However, the BDOS uses only the least significant seven
bits of each character—the most significant bit is used to indicate special file status
characteristics, or attributes.

By matching the file extent as well as the name and type, you can, if you wish,
open the file at some point other than its beginning. For normal sequential access,
you would not usually want to do this, but if your program can predict which file
extent is required, this is a method of moving directly to it.

Itis also possible to open the same file more than once. Each instance requires
aseparate FCB. The BDOS is not aware that this is happening. It is really only safe
to do this when you are reading the file. Each FCB can be used to read the file
independently.

Once the file has been found in the directory, the number of records and the
allocation blocks used are copied from the directory entry into the FCB (bytes 16
through 31). If the file is to be accessed sequentially from the beginning of the file,
the current record (byte 32) must be set to zero by your program.

The value returned in register A is the relative directory entry number of the
entry that matched the FCB. As previously explained, the buffer that CP/M uses
holds a 128-byte record from the directory with four directory entries numbered 0,
1,2, and 3. This directory code is returned by almost all of the file-related BDOS
functions, but under normal circumstances you will be concerned only with
whether the value returned in A is OFFH or not.

Figure 5-16 shows a subroutine that takes a 00H-byte terminated character

400 The CP/M Programmer’s Handbook

string, creates a valid FCB, and then opens the specified file. Shown as part of this
example is the subroutine BF (Build FCB). It performs the brunt of the work of
converting a string of ASCII characters into an FCB-style disk, file name, and

type.
s OPENF
s0pen File
;Given a pointer to a OOH-byte—terminated file name,
;and an area that can be used for a file cantrol
sblock, this subroutine builds a valid file control
sblock and attempts to open the file.
sI1f the file is opened, it returns with the carry flag clear.
;If the file cannot be opened, this subroutine returns
swith the carry flag set.
sEntry parameters
3 DE -> 3é-byte area for file control block
; HL -> OOH-byte terminated file name of the
H form {disk:} Name {.typ}
H (disk and typ are optional)
sExit parameters
i Carry clear : File opened correctly.
3 Carry set : File not opened.
;Calling Sequence
; LXI D,FCB
H LXI H, FNAME
H CALL OPENF
3 Jdc ERROR
swhere
s FCB: DS 38 sSpace for file control black
sFNAME: DB “As TESTFILE.DAT”,0
000F = B$OPEN EQU 15 sFile Open function code
0005 = BDOS EQU S ;BDOS entry point
QPENF:
0000 DS PUSH D sPreserve pointer to FCB
0001 CDOECOO CALL BF sBuild file control blaock
0004 OEOF MVI C, B$OPEN
0004 D1 POP D ;Recover pointer to FCB
0007 CDOS00 CALL BDOS
000A 17 RAL ;1f A=OFFH, carry set
sotherwise carry clear
000R C9 RET
3 BF
sBuild file control block
sThis subroutine formats a OOH-byte-terminated string
s (presumed to be a file name) into an FCB, setting
sthe disk and file name and type and clearing the
sremainder of the FCB to 0’s.
sEntry parameters
H DE -> file control block (36 Eytes)
3 HL -> file name string (OOH-byte-terminated)
sExit parameters
3 The built file control block
sCalling sequence
H LXI D,FCB
H LXI H, FILENAME
H CALL BF
BF:

Figure 5-16. Open file request

Chapter 5: The Basic Disk Operating System 404

000C 23 INX H ;Check if 2nd char. is ":"
000D 7€ MOV AM 3Get character from file name
Q00E 2B nex H sHL -> now back at 1st char.
000F FERA CPI ‘e sIf ":", then disk specified
0011 C21C00 JNZ BF$ND ;No disk
0014 7€ MoV A M ;Get disk letter
0015 E&1IF ANI 0001$1111R A (41H) -> 1, B (42H) -> 2 ..,
0017 23 INX H ;Bypass disk letter
0018 23 INX H ;Bypass ":"
0019 C231D00 JIMP BF&3D ;Store disk in FCB
BF$ND: iNo disk present
001C AF XRA A ;Indicate default disk
BF$SD:
001D 12 STAX D ;Store disk in FCB
001E 13 INX D sDE -> 1st char. of name in FCR
001F OEO8 MVI c,8 ;File name length
0021 CD3700 CALL BFS$GT ;Get token
;Note -- at this point, BF$GT
3will have advanced the string
spointer to either a "." ar
s00H byte
0024 FE2E CPI1 ‘e’ ;Check terminating character
00286 C22A00 JINZ BFSNT iNo file type specified
0029 23 INX H sBypass "." in file name
RFSNT:
002A OEOQ3 MVI c,3 ;File type length
002C CD3700 CALL BF$GT ;Get token
sNote —- if no file type is
iPresent BF$GT will merely
;spacefill the FCB
002F 0400 MVI R, 0 30-fill the remainder of the FCB
0031 QOE18 MVI C,24 736 - 12 (disk, name, type = 12 chars.)
0033 CD&400 CALL BF$FT ;Re—use fill token S/R
0036 €9 RET
;BF$GT
;Build FCB -- get token
7This subroutine scans a file name string,
sPlacing characters into a file control block.
30n encountering a terminator character ("." ar O0H),
ithe remainder of the token is space filled.
;If an "=" is encountered, the remainder of the taoken
sis filled with "7".
;Entry parameters
H DE -> Into file control black
H HL => Into file name string
3 C = Maximum no. of characters in token
sExit parameters
H File control block contains next taken
H A = Terminating character
. BF$GT:
0037 7E MoV AM ;Get next string character
0038 B7 ORA A ;Check if end of string
0039 CAS5700 Jz BF$SFT ;Yes, space fill token
003C FE2A CPI . ;Check if ?-fill required
003E CASCO0 Jz BF$QFT sYes, fill with ?
0041 FE2E CPI e sAssume current tcoken is file
sname
;Check if file type coming up
s (If current token is file
stype this check is
;benignly redundant)
0043 CAS700 Jz BF$SFT :Yes, space fill taken
0046 12 STAX D iNone of the above, so stare
;in FCB
0047 13 INX D sUpdate FCB pointer
0048 23 INX H ;Update string pointer
Figure 5-46. (Continued)

102 The CP/M Programmer’s Handbook

0049 OD DCR (= ;Countdown on token length
004A C23700 JINZ BF$GT 3Still more characters to go
BF$SKIP: ;Skip chars. until "." or OOH
004D 7E MoV A M ;Get next string character
Q04E B7 ORA A sCheck if OOH
004F C8 RZ sYes
0050 FEZ2E CPI .7 sCheck if "."
0052 c8 RZ ;Yes
0053 23 INX H sUpdate string peointer (only)
0054 C24D00 JMP BF$SKIP ;Try next character
BF$SFT: ;Space fill token
0057 0820 MVI B,” ~
0059 CR8400 IMP BF&FT sCaommon fill token code
;BF$FT returns to caller
BF$QFT: ;Question mark fill token
QOSC Q&3F MVI B, "7
00SE CDé4A00 CALL BF$FT sCommon fill token code
0041 C34D00 JMP BF$SKIP ;Bypass multiple "x®" etc.
BF$FT: 3Fill token
0064 FS PUSH PSW ;Save terminating character
0065 78 Mov AR ;Get fill characer
BF$FTL: ;s Inner loop
0066 12 STAX D ;Store in FCB
0067 13 INX D jllpdate FCE Pointer
0068 Q0D DCR c sDowndate residual count
0067 C26600 JINZ BFSFTL ;Keep going
006C F1 POP PSW sRecover terminating character
006D C9 RET
Figure 5-16. (Continued)
Function 16: Close File
Function Code: C=10H

Example

Purpose

Entry Parameters: DE = Address of file control block
A = Directory code

Exit Parameters:

0010
0005

0000
0024

0024
0029

This function terminates the processing of a file to which you have written
information. Under CP/M you do not need to close a file that you have been
reading. However, if you ever intend for your program to function correctly under
MP/M (the multi-user version of CP/M) you should close all files regardless of

= RDOS
FCR:

0E10

110000

CDOS00

their use.

B$CLOSE

MVI
LXI
CALL

EQU 16
EQU S
ns 36
C, B$CLOSE
D,FCB
BDOS

;Close File
;BDOS entry point

sFile control block

sFunction code
sDE -> File control black
A 0,1,2,3 if successful
A OFFH if file name not
directory

in

Notes

Chapter 5: The Basic Disk Operating System 103

The Close File function, like Open File, returns a directory code in the A
register. Register A will contain OFFH if the BDOS could not close the file
successfully. If A is 0, 1, 2, or 3, then the file has been closed.

When the BDOS closes a file to which data has been written, it writes the
current contents of the FCB out to the disk directory, updating an existing
directory entry by matching the disk, name, type, and extent number in the same
manner that the Open File function does.

Note that the BDOS does not transfer the last record of the file to the disk
during the close operation. It merely updates the file directory. You must arrange
to flush any partly filled record to the disk. If the file that you have created is a
standard CP/M ASCII text file, you must arrange to fill the unused portion of the
record with the standard 1AH end-of-file characters as CP/M expects, as
explained in the section on the Write Sequential function (code 21).

Function 17: Search for First Name Match

Example

Purpose

Function Code: C=11H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code
0011 = B$SEARCHF EQU 17 s Search First
0005 = BDOS EQU S sBDOS entry point
FCB: ;File control block
0000 00 FCR$DISK: DR [¢] sSearch on default disk drive
0001 46494CAS3FFCBSNAME: DB ‘FILE???7?” sAmbiguous file name
0009 S43FS0 FCR$TYP: DR TP sAmbiguous file type
000C 00 FCB$EXTENT: DB 0 sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F Q0 FCB$RECUSED: DR (o] sRecords used in this extent
0010 0000000000FCR$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB [sSequential rec. to read/write
0021 0000 FCB$RANREC: DW (o] sRandom rec. to read/write
0023 00 FCB$RANRECO: DE o] sRandom rec. overflow byte (MS)
0024 QE11 MVI C, BE$SEARCHF ;Function code
0026 110000 LXI D,FCE sDE -> File control block
0029 CDOS00 CALL BDOS A = 0,1,2,3.
: (A % 32) + DMA -> directory
3 entry
sA = OFFH if file name not
3 found
This function scans down the file directory for the first entry that matches the

file name, type, and extent in the FCB addressed by DE. The file name, type, and
extent may containa “?” (ASCII 3FH) in one or more character positions. Where
a *“?” occurs, the BDOS will match any character in the corresponding position in
the file directory. This is known as ambiguous file name matching.

The first byte of an FCB normally contains the logical disk number code. A
value of 0 indicates the default disk, while I meansdisk A,2is B,andsoonuptoa

404 The CP/M Programmer’s Handbook

Notes

possible maximum of 16 for disk P. However, if this byte contains a “?”, the BDOS
will search the default logical disk and will match the file name and type regardless
of the user number. This function is normally used in conjunction with the Search
Next function (which is described immediately after this function). Search First, in
the process of n‘ihtching afile, leaves certain variables in the BDOS set, ready fora
subsequent Search Next.

Both Search First and Search Next return a directory code in the A register.
With Search First, A = OFFH when no files match the FCB; if a file match is
found, A will have a value of 0, 1, 2, or 3.

To locate the particular directory entry that either the Search First or Search
Next function matched, multiply the directory code returned in A by the length of
adirectory entry (32 bytes). This is easily done by adding the A register to itself five
times (see the code in Figure 5-17 near the label GNFC). Then add the DMA
address to get the actual address where the matched directory entry is stored.

There are many occasions when you may need to write a program that will
accept an ambiguous file name and operate on all of the file names that match it.
(The DIR and ERA commands built into the CCP are examples that use ambigu-
ous file names.) To do this, yott must use several BDOS functions: the Set DMA
Address function (code 26, described later in this chapter), this function (Search
First), and Search Next (code 18). All of this is shown in the subroutine given in
Figure 5-17.

s GNF

;This subroutine returns an FCB setup with either the
sfirst file matched by an ambiguous file name, or (if
sspecified by entry parameter) the next file name.

;Note : this subroutine is context sensitive. You must
; not have more than one ambiguous file name
sequence in process at any given time.

323> Warning : This subroutine changes the DMA address
33> inside the BDOS.

sEntry parameters
H DE -> Possibly ambiguous file name
(00-byte terminated)
(Only needed for FIRST request)
; HL -> File control block
B A QO : Return FIRST file name that matches
H NZ : Return NEXT file name that matches

nu

sExit parameters
;Carry set : A = FF, no file name matches
H A not = OFFH, error in input file name
sCarry clear : FCB setup with next name
H HL -> Directory entry returned
by Search First/Next

;Calling sequence
$ LXI D, FILENAME
LXI H,FCB

Figure 5-17.

Search first/next calls for ambiguous file name

Chapter 5: The Basic Disk Operating System

105

H MVI A, 0 sor MVI A,1 for NEXT
H CALL GNF
0011 = B$SEARCHF EQU 17 sSearch for first file name
0012 = B$SEARCHN EQU 18 ;Search for next file name
001A = B$SETDMA EQU 26 ;Set up DMA address
0005 = BDOS EQU S sBDOS entry point
0080 = GNFDMA EQU 80H sDefault DMA address
000D = GNFSVL EQU 13 ;Save length (no. of chars to move)
0024 = GNFFCL EQU 36 sFile control block length
0000 GNFSV: DS GNF3VL ;Save area for file name/type
GNF 2
000D ES PUSH H ;Save FCB pointer
QO0E DS PUSH D ;Save file name pointer
000F FS PUSH PSW sSave first/next flag
0010 118000 LXI D, GNFDMA ;Set DMA to known address
0013 OE1A MVI C, B$SETDMA sFunction code
0015 CDOS00 CALL BDOS
0018 F1 POP PSW sRecover first/next flag
0019 E1 POP H sRecover file name pointer
001A D1 POP D sRecover FCB pointer
OO01B DS PUSH D sResave FCB pointer
001C B7 ORA A ;Check if FIRST or NEXT
001D C23E00 JNZ GNFN sNEXT
0020 CD9300 CALL BF 3Build file control block
0023 E1 POP H ;Recover FCB pointer (to balance stack)
0024 D2 RC sReturn if errvor in file name
0025 ES PUSH H sResave FCB pointer
sMove ambiguous file name to
;save area
sHL -> FCB
0026 110000 LXI D, GNFSV sDE -> save area
0029 OEOD MVI C, GNFSVL ;Get save lenath
002B CD8AOO CALL MOVE
002E D1 POP D sRecover FCB pointer
002F DS PUSH D sand resave
0030 OE11 MVI C, B$SEARCHF sSearch FIRST
0032 CDOS00 CALL BDOS
0035 E1 POP H ;Recover FCB pointer
0036 FEFF CPI OFFH ;Check for error
0038 CA7DO0O Jz GNFEX sError exit
003B C3SDO0 JMP GNFC s Common code
GNFN: sExecute search FIRST to re-
sestablish contact with
sprevious file
sUser’s FCB still has
sname/type in it
003E CD7F00 CALL GNFZF sZero-fill all but file name/type
0041 D1 POP D sRecover FCB address
0042 DS PUSH D sand resave
0043 OE11 MVI C, B$SEARCHF sRe—-find the file
0045 CDOS00 CALL BDOS
0048 Di POP D sRecover FCB pointer
0049 DS PUSH D sand resave
004A 210000 LXI H, GNF3V sMove file name from save area
sinto FCB
004D OEOD MVI C, GNFSVL ;Save area length
004F CDB8AOO CALL MOVE
0052 OE12 MVI C, B$SEARCHN ; Search NEXT
0054 CDOS00 CALL RDOS
0057 E1 POP H ;Recover FCB address
0058 FEFF CPI OFFH ;Check for error
005A CA7D00 Jz GNFEX s;Error exit
GNFC:
005D ES PUSH H ;Save FCB address
00SE 87 ADD A sMultiply BDOS return code % 32
Figure 5-47. (Continued)

106 The CP/M Programmer’s Handbook

005F 87 ADL A 3% 4
0060 87 ADD A 3% 3
0061 87 ADD A ¥ 16
0062 87 ADD A PE 32
0063 218000 LXI H, GNFDMA sHL -> DMA address
0066 SF Mav E,A ;Make (code ® 32) a word value
jin DE
0067 1600 MVI 0,0
0069 19 DAD D sHL -> file“s directory entry
sMove file name into FCB
006A D1 POP D ;Recover FCB address
006B ES PUSH H ;Save directory entry pointer
006C DS PUSH D sand resave
006D QEOD MVI C, GNFSVL sLength of save area
Q06F CDEAOO CALL MOVE
0072 3A0000 LDA GNFSV sGet disk from save area
0075 D1 POP D sRecover FCB address
0076 12 STAX D sOverwrite user number in FCB
sSet up to zero-fill tail end
sof FCB
0077 CD7F00 CALL GNF ZF sZero—-fill
007A E1 POP H sRecover directory entry
jpointer
007B AF XRA A sClear carry
007C C9 RET
GNFEX:
007D 37 sTC ;Set carry to indicate error
007E C9 RET
s GNFZF
;Get next file —— zero fill
$This subroutine zero-fills the bytes that follow the
;file name and type in an FCB.
sEntry parameters
H DE -> file control block
GNF ZF 2
007F 210D00 LXI H, GNFSVL ;Bypass area that holds file name
0082 19 DAD D sHL -> FCB + GNFSVL
0083 54 MOV D,H sDE => FCB + GNFSVL
0084 SD MOV E, L
0085 13 INX D sDE -> FCB + GNFSVL + 1
0086 3600 MVI M, 0 sFCB + GNFSVL = 0
0088 Q0E17 MVI C, GNFFCL-GNFSVL ;Remainder of file control block
sDrop into MOVE
sSpread 0°s through remainder
sof FCB
s MOVE
3This subroutine moves C bytes from HL to DE.
MOVE:
008A 7E MoV AM ;Get scurce byte
008B 12 STAX D ;Save destination byte
008C 13 INX D s Increment destination pointer
008D 23 INX H s Increment source pointer
008E 0D DCR C ;Decrement count
008F C28A00 JINZ MOVE 3Go back for more
0092 C? RET
s BF
sBuild file control block
sThis subroutine formats a OOH-byte terminated string
; (presumed to be a file name) into an FCB, setting the
sdisk and file name and type, and clearing the
sremainder of the FCB to 0’s.
Figure 5-17. (Continued)

Chapter 5: The Basic Disk Operating System 107

0093 C9 BF: RET sDummy subroutine for this example

sEntry parameters
H DE -> File control block (3& bytes)
H HL -> File name string (OOH-byte-terminated)

sExit parameters
H The built file control block

1 This subroutine is shown in full in Figure S-1é

Figure 5-17.

(Continued)

Function 18: Search for Next Name Matich

Example

Purpose

Notes

Function Code: C= 12H
Entry Parameters: None (assumes previous Search First call)
Exit Parameters: A = Directory code

0012 = B$SEARCHN EQL 18 ;Search Next
0005 = BDOS EQU S sBDOS entry point
0000 OE12 MVI C, B$SEARCHN sFunction code
sNote: No FCB pointer
sYou must precede this call
3 with a call to Search First
0002 CDOS00 CALL BDOS sA =0,1,2,3
s (A % 32) + DMA -> directory
;3 entry
3A = OFFH if file name not
;3 found

This function searches down the file directory for the next file name, type, and
extent that match the FCB specified in a previous Search First function call.

Search First and Search Next are the only BDOS functions that must be used
together. As you can see, the Search Next function does not require an FCB
address as an input parameter—all the necessary information will have been left in
the BDOS on the Search First call.

Like Search First, Search Next returns a directory code in the A register; in
this case, if A = O0FFH, it means that there are no more files that match the file
control block. If A is not 0OFFH, it will be a value of 0, 1, 2, or 3, indicating the
relative directory entry number.

There are two ways of using the Search First/ Next calls. Consider a simple file
copying program that takes as input an ambiguous file name. You could scan the
file directory, matching all of the possible file names, possibly displaying them on
the console, and storing the names of the files to be copied in a table inside your
program. This would have the advantage of enabling you to present the file names

108 The CP/M Programmer’s Handbook

to the operator before any copying occurred. You could even arrange for the
operator to select which files to copy on a file-by-file basis. One disadvantage
would be that you could not accurately predict how many files might be selected.
On some hard disk systems you might have to accommodate several thousand file
names.

The alternative way of handling the problem would be to match one file name,
copy it, then match the next file name, copy it, and so on. If you gave the operator
the choice of selecting which files to copy, this person would have to wait at the
terminal as each file was being copied, but the program would not need to have
large table areas set aside to hold file names. This solution to the problem is
slightly more complicated, as you can see from the logic in Figure 5-17.

The subroutine in Figure 5-17, Get Next File (GNF), contains all of the
necessary logic to search down a directory for both alternatives described. It does
require that you indicate on entry whether it should search for the first or next file
match, by setting A to zero or some nonzero value respectively.

You can see from Figure 5-17 that whenever the subroutine is called to get the
next file, you must execute a Search First function to re-find the previous file. Only
then can a Search Next be issued.

As with all functions that return a directory code in A, if this value is not
OFFH, it will be the relative directory entry number in the directory record
currently in memory. This directory record will have been read into memory at
whatever address was specified at the last Set DMA Address function call (code
26, l AH). Notwithstanding its odd name, the DM A Address is simply the address
into which any record input from disk will be placed. If the Set DM A Address
function has not been used to change the value, then the CP/M default DMA
address, location 0080H, will be used to hold the directory record.

The actual code for locating the address of the particular directory entry
matched by the Search First/ Next functions is shown in Figure 5-17 near the label
GNFC. The method involves multiplying the directory code by 32 and then adding
this product to the current DM A address.

Function 419: Erase (Delete) File

Example

Function Code: C=13H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0013 = B$ERASE EQU 19 sErase File
0005 = BRDOS EQU S sBDOS entry point
FCB: ;File control block
0000 00 FCR$DISK: DB o] ;Search on default disk drive
0001 3F3F4CA4SAEFCB$NAME: DB “??LENAME“ sAmbiguous file name
0009 JFTPSO FCR$TYP: DB “?YP” sAmbiguous file type

000C 00 FCB$EXTENT: DB (o] ;Extent

Purpose

Notes

Chapter 5: The Basic Disk Operating System 109

Q0D 0000 FCB$RESV: DB 0,0 sReserved for CP/M

00Q0F 00 FCBR$RECUSED: DB o] sRecords used in this extent
0010 0000000000FCR$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0

0020 00 FCEB$SEQREC: DR o ;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW [sRandom rec. to read/write

0023 00 FCB$RANRECQO: DB o sRandom rec. overflow byte (MS)
0024 0E13 MVI C, B$ERASE sFunction code

0026 110000 LXI D,FCR sDE -> file control block

0029 CDOS00 CALL BDOS sA = OFFH if file not found

This function logically deletes from the file directory files that match the FCB
addressed by DE. It does so by replacing the first byte of each relevant directory
entry (remember, a single file can have several entries, one for each extent) by the
value OESH. This flags the directory entry as being available for use.

Like the previous two functions, Search First and Search Next, this function
can take an ambiguous file name and type as part of the file control block, but
unlike those functions, the logical disk select code cannot be a “?”.

This function returns a directory code in A in the same way as the previous file
operations.

Function 20: Read Sequential

Example

Purpose

Function Code: C=14H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0014 = B$READSEQ EQU 20 ;Read Sequential
0005 = BDOS EQU S sBDOS entry point
FCB: ;File control block

0000 00 FCB$DISK: DE [¢] ;Search on default disk drive.

Q001 44474C454EFCRSNAME: DB “FILENAME s file name

0009 545950 FCR$TYP: DR ‘TYP? sFile type

000C Ds 24 ;Set by file open
sRecord will be read into
;5 address set by prior SETDMA
3 call

0024 0E14 MVI C, B$READSEQR sFunction code

0024 110000 LXI D,FCB sDE -> File control block

0029 CDOSO00 CALL BDOS A = 00 if operation successful
A nonzero if no data in

s file

This function reads the next record (128-byte sector) from the designated file
into memory at the address set by the last Set DM A function call (code 26, 1 AH).
The record read is specified by the FCB’s sequential record field (FCB$SEQREC
in the example listing for the Open File function, code 15). This field is incre-
mented by 1 so that a subsequent call to Read Sequential will get the next record
from the file. If the end of the current extent is reached, then the BDOS will

410 The CP/M Programmer’s Handbook

s GETC
3This subroutine gets the next character from a
ssequential disk file. It assumes that the file has
salready been cpened.
33> Note : this subroutine changes CP/M“s DMA address.
sEntry parameters
] DE -> file control block
;Exit parameters
H A = next character from file
H (= OFFH on physical end of file)
: Note : 1AH is narmal EOF character for
: ASCII Files.
;Calling sequence
H DE,FCB
3 CALL GETC
H CPI 1AH
H Jz EOFCHAR
H CPI OFFH
H Jz ACTUALEQF
0014 = B$READSEQ EGU 20 sRead sequential
001A = B$SETDMA EQU 26 ;Set DMA address
0005 = BDOS EQU S sBDOS entry point
0080 = GETCBS ERU 128 sBuffer size
0000 GETCBF: DS GETCRS sDeclare buffer
0080 00 GETCCC: DB [¢] ;Char. count (initially
s"empty")
GETC:
0081 3AR000 LDA GETCCC sCheck if buffer is empty
0084 B7 ORA A
0085 CA9900 Jz GETCFE sYes, fill buffer
GETCRE: sRe—entry point after buffer filled
0088 2D DCR A 3No, downdate count
0089 328000 STA GETCCC ;Save downdated count
008C 47 MoV B, A ;Compute offset of next
scharacter
008D 3E7F MVI A, GETCBS-1 sBy subtracting
008F %0 SUB B ; (buffer size —- downdated count)
0090 SF MOV E,A sMake result into word value
0021 1800 MVI 0,0
0093 210000 LXI H, GETCBF sHL -> base of buffer
0096 19 DAD D sHL —-> next character in buffer
0097 7€ MoV AM ;Get next character
0098 C9 RET
GETCFR: sFill buffer
0099 DS PUSH o ;Save FCR pointer
009A 110000 LXI D, GETCRF ;Set DMA address to buffer
0090 OE1A MVI C, B$SETDMA s function code
009F CDOS00 CALL EDOS
00AZ D1 POP D ;Recaver FCE pointer
00A2 OE14 MVI C, B$READSER ;Read sequential "record" (sector)
00AS CDOS00 CALL EBDOS
00AS R7 ORA A ;Check if read unsuccessful (A = NZ)
00A% C2R400 JINZ GETCX sYes
00AC 3E80 MV A, GETCBS sReset count
00AE 328000 STA GETCCC
00B1 C38200 JIMP GETCRE ;Re—enter subroutine
GETCX: sPhysical end of file
OOR4 3EFF MVI A, OFFH s Indicate such
O0BR& C9 RET

Figure 5-18. Read next character from sequential disk file

Notes

Chapter 5: The Basic Disk Operating System 444

automatically open the next extent and reset the sequential record field to 0, ready
for the next Read function call.

The file specified in the FCB must have been readied for input by issuing an
Open File (code 15, 0FH) or a Create File (code 22, 16H) BDOS call.

The value 00H is returned in A to indicate a successful Read Sequential
operation, while a nonzero value shows that the Read could not be completed
because there was no data in the next record, as at the end of file.

Although it is not immediately obvious, you can change the sequential record
number, FCB$SEQREC, and within a given extent, read a record at random. If
you want to access any given record within a file, you must compute which extent
that record would be in and set the extent field in the file control block (FCBSEX-
TENT) before you open the file. Thus, although the function name implies
sequential access, in practice you can use it to perform a simple type of random
access. If you need to do true random access, look ahead to the Random Read
function (code 33), which takes care of opening the correct extent automatically.

Figure 5-18 shows an example of a subroutine that returns the data from a
sequential file byte-by-byte, reading in records from the file as necessary. This
subroutine, GETC, is useful as a low-level “primitive” on which you can build
more sophisticated functions, such as those that read a fixed number of characters
or read characters up to a CARRIAGE RETURN/ LINE FEED combination.

When you read data from a CP/M text file, the normal convention is to fill the
last record of the file with 1AH characters (CONTROL-Z). Therefore, two possible
conditions can indicate end-of-file: either encountering a 1AH, or receiving a
return code from the BDOS function (in the A register) of OFFH. However, if the
file that you are reading is not an ASCII text file, then a 1AH character has no
special meaning—it is just a normal data byte in the body of the file.

function 241: Write Sequential

Example

Function Code: C=15H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code
0015 = B$WRITESEQ EQU 21 sWrite Sequential
0005 = BDOS EQU S ;BDOS entry point
FCB: sFile control block
0000 00 FCB$DISK: DR [¢] ;Search on default disk drive
0001 44494C4S4EFCRENAME: DR “FILENAME~ ;s file name
0009 545950 FCR$TYP: DB ‘TYP” ;File type
QooC Ds 24 ;Set by Open or Create File
;Record must be in address
5 set by prior SETDMA call
0024 OE1S MVI C, B$WRITESEQ sFunction code
0028 110000 LXI D,FCR sDE -> File control block
0029 CDOSQO0 CALL BDOS A = O0OH if operation

; successful
;A = nonzero if disk full

442 The CP/M Programmer’s Handbook

Purpose

Notes

This function writes a record from the address specified in the last Set DMA
(code 26, 1 AH) function call to the file defined in the FCB. The sequential record
number in the FCB (FCB$SSEQREC) is updated by | so that the next call to Write
Sequential will write to the next record position in the file. If necessary, a new
extent will be opened to receive the new record.

This function is directly analogous to the Read Sequential function, writing
instead of reading. The file specified in the FCB must first be activated by an Open
File (code 15, 0FH) or create File call (code 22, 16H).

A directory code of 00H is returned in A to indicate that the Write was
successful; a nonzero value is returned if the Write could not be completed be-
cause the disk was full.

As with the Read Sequential function (code 20, 14H), you can achieve a simple
form of random writing to the file by manipulating the sequential record number
(FCB$SEQREC). However, you can only overwrite existing records in the file,
and if you want to move to another extent, you must close the file and reopen it
with the FCBSEXTENT field set to the correct value. For true random writing to
the file, look ahead to the Write Random function (code 34, 22H). This takes care
of opening or creating the correct extent of the file automatically.

The only logical error condition that can occur when writing to a file is
insufficient room on the disk to accommodate the next extent of the file. Any
hardware errors detected will be handled by the disk driver built into the BIOS or
BDOS.

Figure 5-19 shows a subroutine, PUTC, to which you can pass dataabyteata
time. It assembles this data into a buffer, making a call to Write Sequential
whenever the buffer becomes full. You can see that provision is made in the entry
parameters (by setting register B to a nonzero value) for the subroutine to fill the
remaining unused characters of the buffer with 1 AH characters. You must do this
to denote the end of an ASCII text file.

Function 22: Create (Make) File

Example

Function Code: C= 16H

Entry Parameters: DE = Address of file control block

Exit Parameters: A = Directory code
0016 = B$CREATE EQU 22 ;File Create
0005 = BDOS EQU S. sBDOS entry point

FCB: sFile control block

0000 00 FCR$DISK: DB o ;sSearch on default disk drive
0001 46494C4SAEFCB$NAME: DB *FILENAME * ; file name
0009 S45950 FCB$TYP: DB ‘TYP ;File type

000C 00 FCB$EXTENT: DB (4] ;Extent

Chapter 5: The Basic Disk Operating System 113

000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
000F 00 FCB$RECUSED: DB o sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allacation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB 0 ;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW o} sRandom rec. to read/write
0023 00 FCB$RANRECOQ: DB o sRandom rec. overflow byte (MS)
sNote : file to be created
smust not already exist....
0024 OE16 MVI C, B$CREATE sFunction code
0026 110000 LXI D,FCB sDE -> file control block
0029 CDOS00 CALL BDOS A = 0,1,2,3 if operation
3 successful
A = OFFH if directory full

s PUTC

This subroutine either puts the next chararacter cut
sto a sequential file, writing out completed "records"

3 (128-by
sremaind

te sectors) or, if requested to, will fill the
er of the current "record" with 1AH"s ta

7indicate end of file to CP/M.

sEntry p

sExit pa
;Calling
H or
001S = BSWRITES
001A = B$SETDMA
0008 = BDOS
Q030 = PUTCRS
0000 PUTCRF:
0080 00 PUTCCC:
PUTC:
0081 DS
0082 FS
0083 78
0084 R7

0085 C29900
0088 CDCR00O

O08R F1
008C 77
008D 7B
008E 3C
008F FER0
0091 CAARQO
0094 328000
0097 D1
0098 C9

arameters

DE -> File control block

B = 0, A = next data character to be cutput
B /= 0, fill the current "record" with 1AH"s

rameters
none.
sequence

LXI D,FCB

MVI B, 0 sNot end of file

LDA CHAR

CALL PUTC

LXI D, FCR

MVI B, 1 ;Indicate end of file

CALL PUTC

EQ EQU 21 sWrite sequential

EQuU 28 ;Set DMA address
EQU k] sBDOS entry point

EQU 128 sBuffer size

ns PUTCRS sDeclare buffer

DR o ;Char. count (initially “"empty")

PUSH D ;Save FCR address

PUSH PSW ;Save data character

MoV A B ;Check if end of file requested

ORA A

JINZ PUTCEF sYes

CALL PUTCGA ;No, get address of next free byte
sHL -> next free byte
sE = Current char. count (as
swell as A)

POFP PSW sRecover data character

MoV M, A ;Save in buffer

MoV A E ;Get current character count

INR A ;Urdate character count

CP1 PUTCES ;Check if buffer full

Jz FUTCWE sYes, write buffer

sTA PUTCCC ;No, save updated count

PQOP D ;Dump FCE address for return

RET

Figure 5-19.

Write next character

to sequential disk file

444 The CP/M Programmer’s Handbook

0099
009A

ooon
QO9F
Q0AZ
00A4
00AS
00AS

00A9
Q0AA
00ALD
00BO
00BZ2
Q0BT
O0BRé
QOBS
OOBB
0OBC
O0BF

00CO
oocz2

00C3
00Cé
00C7
Q0CY
oocc
oocD

PUTCEF: sEnd of file
F1 POP PSW sDump data character
CDC300 calL FUTCGA sHL -> next free byte
A = current character count
PUTCCE: sCopy EOF character
FE20 CP1 PUTCES ;Check for end of buffer
CAAZ00 JZ PUTCWE sYes, write out the buffer
261A MVI M, 1AH 3sNo, store EOF in buffer
3C INR A sUpdate count
23 INX H sUpdate buffer painter
C39000 JMP PUTCCE ;Continue until end of buffer
PUTCWE: sWrite buffer
AF XRA A ;Reset character count to O
222000 STA FUTCCC
110000 LXI 0, FUTCEF sDE -> buffer
OE1A MVI C, B$SETDMA ;Set DMA address —»> buffer
CDOS00 CALL EBOOS
D1 POP o sRecover FCR address
QE1S MVI C, BSWRITESER sWrite sequential record
CDOS00 CALL BOOS
B7 ORA A sCheck if error
Cc2C000 JNZ PUTCX 1Yes if A = NZ
co RET ;No, return to caller
PUTCX: sErrar exit
ZEFF MVI A, OFFH sIndicate such
ce RET
PUTCGA: sReturn with HL -> next free char.
sand A = current char. count
3AR000 LDA PUTCCC ;Get current character count
SF Mav E,A sMake word value in DE
1600 MVI 0,0
210000 LXI H, PUTCBF sHL -> Base of buffer
19 DAD D sHL -> next free character
ce RET

Figure 5-19.

Write next character to sequential disk file (continued)

Purpose

Notes

This function creates a new file of the specified name and type. You must first
ensure that no file of the same name and type already exists on the same logical
disk, either by trying to open the file (if this succeeds, the file already exists) or by
unconditionally erasing the file.

In addition to creating the file and its associated file directory entry, this
function also effectively opens the file so that it is ready for records to be written
to it.

This function returns a normal directory code if the file creation has completed
successfully or a value of OFFH if there is insufficient disk or directory space.

Under some circumstances, you may want to create a file that is slightly more
“secure” than normal CP/M files. You can do this by using either lowercase letters
or nongraphic ASCII characters such as ASCII NUL (00H) in the file name or
type. Neither of these classes of characters can be generated from the keyboard; in
the first case, the CCP changes all lowercase characters to uppercase, and in the
second, it rejects names with odd characters in them. Thus, computer operators

cannot erase such a file because there is no way that they can create the same file

Chapter

name from the CCP.

The converse is also true; the only way that you can erase these files is by using
aprogram that can set the exact file name into an FCB and then issue an Erase File

function call.
Note that this function cannot accept an ambiguous file name in the FCB.

Figure 5-20 shows a subroutine that creates a file only after it has erased any

existing files of the same name.

Function 23: Rename File

Function Code: C=17H
Entry Parameters: DE = Address of file control block

Exit Parameters:

5: The Basic Disk Operating System 1415

A = Directory code

Example
0017 = B$RENAME EQU 23 ;Rename file
0005 = BDOS EQU S ;BDOS entry point
FCB: ;File control block
0000 00 DB [¢] ;Search on default disk drive
0001 4F4C444E41 DB “OLDNAME ~ sFile name
0009 545950 DB “TYP” sFile type
000C 00000000 DR 0,0,0,0
3 CF
;Create file
3This subroutine creates a file. It erases any
sPrevious file before creating the new cne.
sEntry parameters
3 DE -> File control block for new file
sExit parameters
H Carry clear if operation successful
; (A =0,1,2,3)
H Carry set if error (A = OFFH)
sCalling sequence
H LXI D,FCB
H CALL CF
H Jc ERRCOR
0012 = B$ERASE EQU 19 sErase file
001& = R$CREATE EQU 22 ;Create file
0005 = BDOS EQU S sBDOS entry point
CF:
0000 DS PUSH D ;Preserve FCE pointer
0001 OE13R MVI C, BSERASE ;Erase any existing file
0003 CDROS00 CALL BLOS
0004 D1 POP D ;Recover FCB pointer
0007 QE1é MVI C, B$CREATE ;Create (and open new file)
000% CDOS00 CALL BDOS
000C FEFF CPI OFFH sCarry set if OK, clear if error
000E 3F CMC ;Complete to use Carry set if Error
Q0OF C9 RET

Figure 5-20. Create file request

446 The CP/M Programmer’s Handbook

Purpose

Notes

0010 00 DB [d] sFCB + 16

0011 4E4SS74E41 DB “NEWNAME ~ - 3File name

0019 545950 DB “TYP* ' ;File type

001C 00000000 DB 0,0,0,0

0020 QE17 MVI C, B$RENAME sFunction code

0022 110000 LXI D,FCB sDE -> file control black

0025 CDOS00 CALL BDOS A O0H if operation succesful

A OFFH if file not found

This function renames an existing file name and type to a new name and type.
It is unusual in that it uses a single FCB to store both the old file name and type (in
the first 16 bytes) and the new file name and type (in the second 16 bytes).

This function returns a normal directory code if the file rename was completed
successfully or a value of OFFH if the old file name could not be found.

The Rename File function only checks that the old file name and type exist; it
makes no check to ensure that the new name and type combination does not
already exist. Therefore, you should try to open the new file name and type. If you
succeed, do not attempt the rename operation. CP/M will create more than one file
of the same name and type, and you stand to lose the information in both files as
you attempt to sort out the problem.

For security, you can also use lowercase letters and nongraphic characters in
the file name and type, as described under the File Create function (code 22, 16H)
above.

Never use ambiguous file names in a rename operation; it produces strange
effects and may result in files being irreparably damaged. This function will
change all occurrences of the old file name to the new name.

Figure 5-21 shows a subroutine that will accept an existing file name and type
and a new name and type and rename the old to the new. It checks to make sure
that the new file name does not already exist, returning an error code if it does.

Function 24: Get Active Disks (Login Vector)

Example

Purpose

Function Code: C=18H
Entry Parameters: None
Exit Parameters: HL = Active disk map (login vector)

0018 = B$GETACTDSK EQU 24 ;Get Active Disks
0005 = BDOS EQU S sBDOS entry point
sExample of getting active
0000 OE18 MVI C, B$SGETACTDSK s disk function code
0002 CDOS00 CALL BDOS sHL = active disk bit map

sBits are = 1 if disk active
;Bits 15 14 13 ... 21 0
;Disk P 0O N ... CBA
This function returns a bit map, called the login vector, in register pair HL,

indicating which logical disk drives have been selected since the last warm boot or

Chapter 5: The Basic Disk Operating System 447

A OFFH old file name does not exist
sCalling sequence
H LXI H, OLDNAME sHL -> old name
H LXI D, NEWNAME ;DE -> new name
H CALL RF
H Jc ERROR
000F = B$OPEN EQU 15 ;0pen file
0017 = B$RENAME EQU 23 ;Rename file
0005 = BDOS EQU S sBDOS entry paint
0000 0000000000RFFCB: DW 0,0,0,0,0,0,0,0 ;1 1/2 FCB’s long
0010 0000000000 DW 0,0,0,0,0,0,0,0
0020 0000000000 DW 0,0,0,0,0,0,0,0
0030 000000 oW 0,0,0
RF:
0036 DS PUSH D ;Save new name pointer
0037 110000 LXI D, RFFCR 3Build old name FCB
sHL already -> old name
003A CDSDOO CALL BF
003D E1 POP H ;Recover new name pointer
003E 111000 LXI D, RFFCB+16 sBuild new name in second part of file
0041 CDSDOO CALL BF scontrol block
0044 111000 LXI D, RFFCB+18 sExperimentally try
0047 OEOF MVI C, B$OPEN stao open the new file
0049 CDOS00, CALL BDOS sto englire it does
004C FEFF CPI OFFH snot already exist
004E 3EFE MVI A, OFEH ;Assume errvor (flags unchanged)
0050 D8 RC ;Carry set if A was 0,1,2,3
0051 110000 LXI D, RFFCB ;Rename the file
0054 OE17 MVI C, B$RENAME
0056 CDOS00 CALL BDOS
0059 FEFF CPI OFFH ;Carry set if OK, clear if error
Q05B 3F CcMC sInvert to use carry, set if error
00SC C9 RET
s BF
;Build file control block
$This subroutine formats a OOH-byte terminated string
s (presumed tc be a file name) into an FCB, setting the
;disk and the file name and type, and clearing the
;remainder of the FCB to 0°s.
sEntry parameters
H DE -> file cantral block (36 bytes)
H HL -> file name string (OOH-byte terminated)
sExit parameters
H The built file control block.
;Calling sequence
; LXI D,FCB
H LXI H, FILENAME
H CALL BF
BF:
005D C9 RET ;Dummy subroutine : see Figure 5.16.

;RF

;Rename file

:This subroutine renames a file.

71t uses the BF (build FCB) subroutine shown in Figure 5.16

sEntry parameters

*%® No case-folding of file names occurs sxx
HL -> old file name (0O-byte terminated)

DE -> new file name (0O-byte terminated)

Exit parameters
Carry clear if operation successful
(A =0,1,2,3)
Carry set if error
A OFEH '; new file name already exists

NN Ne e v

Figure 5-24.

Rename

file request

448 The CP/M Programmer’s Handbook

Notes

Function 25:

Example

Purpose

Notes

Function 26:

Example

Reset Disk function (code 13, 0DH). The least significant bit of L corresponds to
disk A, while the highest order bit in H maps disk P. The bit corresponding to the
specific logical disk is set to 1 if the disk has been selected or to 0 if the disk is not
currently on-line.

Logical disks can be selected programmatically through any file operation
that sets the drive field to a nonzero value, through the Select Disk function (code
14, 0EH), or by the operator entering an “X:” command where “X” is equal to A,
B,..P

This function is intended for programs that need to know which logical disks
are currently active in the system—that is, those logical disks which have been
selected.

Get Current Default Disk

Function Code: C = 19H

Entry Parameters: None

Exit Parameters: A = Current disk
(0=A,1=8B,.., F=P)

0019 = B$GETCURDSK EQU 25 ;Get Current Disk
0005 = BDOS EQU 5 ;BDOS entry point
0000 OE19 MVI C,B$GETCURDSK ;Function code
0002 CDOS00 CALL BDOS 1A =0 if Az, 1 if Br ...
This function returns the current default disk set by the last Select Disk

function call (code 14, 0EH) or by the operator entering the “X:” command (where
“X”is A, B, ..., P) to the CCP.

This function returns the current default disk in coded form. Register A= 0 if
drive A is the current drive, 1 if drive B, and so on. If you need to convert this to the
corresponding ASCII character, simply add 41H to register A.

Use this function when you convert a file name and type in an FCB to an
ASCII string in order to display it. If the first byte of the FCB is 00H, the current
default drive is to be used. You must therefore use this function to determine the
logical disk letter for the default drive.

Set DMA (Read/Write) Address

Function Code: C=1AH
Entry Parameters: DE = DMA (read/write) address
Exit Parameters: None

B$SETDMA EQU
BDQOS EQU

001A
0005

& ;Set DMA Address
;BDOS entry point

an

Purpose

Notes

Chapter 5: The Basic Disk Operating System 119

0000 SECRUFF: DS 128 ;Sector buffer
0080 OE1A MVI C, B$SETDMA sFunction code
0082 110000 LXI D, SECRUFF ;Pointer to buffer
0085 CDOS00 CALL BDOS

This function sets the BDOS’s direct memory access (DMA) address to a new
value. The name is an historic relic dating back to the Intel Development System
on which CP/M was originally developed. This machine, by virtue of its hardware,
could read data from a diskette directly into memory or write data to a diskette
directly from memory. The name DM A address now applies to the address of the
buffer to and from which data is transferred whenever a diskette Read, Write, or
directory operation is performed.

Whenever CP/M first starts up (cold boot) or a warm boot or Reset Disk
operation occurs, the DMA address is reset to its default value of 0080H.

No function call can tell you the current value of the DM A address. All you can
do is make a Set DMA function call to ensure that it is where you want it.

Once you have set the DM A address to the correct place for your program, it
will remain set there until another Set DMA call, Reset Disk, or warm boot
occurs.

The Read and Write Sequential and Random operations use the current
setting of the DMA address, as do the directory operations Search First and
Search Next.

Function 27: Get Allocation Vector

Example

Purpose

Notes

Function Code: C = 1BH
Entry Parameters: None
Exit Parameters: HL = Address of allocation vector

001R = BR$GETALVEC EQU 27 sGet Allocation Vector Address
0005 = BDOS EQU s :BDOS entry point
0000 OE1B MV1 C, B$GETALVEC iFunction code
0002 CDOSO0 CALL BDOS tHL -> Base address of
H allocation vector
This function returns the base, or starting, address of the allocation vector for

the currently selected logical disk. This information, indicating which parts of the
disk are assigned, is used by utility programs and the BDOS itself to determine
how much unused space is on the logical disk, to locate an unused allocation block
in order to extend a file, or to relinquish an allocation block when a file is deleted.

Digital Research considers the actual layout of the allocation vector to be
proprietary information.

120 The CP/M Programmer’s Handbook

Function 28: Set Logical Disk to Read-Only Status

Example

Purpose

Notes

Function Code: C= ICH
Entry Parameters: None
Exit Parameters: None

001C = B$SETDSKRO EQU 28 1Set disk to Read Only
function code
0005 = BDOS EQU S :BDOS entrvy point
:1Sets disk selected by prior
:1Select disk function call
0000 OE1IC MVI C.B$SETDSKRO tFunction code
0002 CDOS00 CALL BDOS

This function logically sets the currently selected disk to a Read-Only state.
Any attempts to execute a Write Sequential or Write Random function to the
selected disk will be intercepted by the BDOS, and the following message will
appear on the console:

BDOS Err on X: R/O

where X: is the selected disk.

Once you have requested Read-Only status for the currently selected logical
disk, this status will persist even if you proceed to select other logical disks. In fact,
it will remain in force until the next warm boot or Reset Disk System function call.

Digital Research documentation refers to this function code as Disk Write
Protect. The Read-Only description is used here because it corresponds to the
error message produced if your program attempts to write on the disk.

Function 29: Get Read-Only Disks

Example

Purpose

Function Code: C= 1DH
Entry Parameters: None
Exit Parameters: HL = Read-Only disk map

001D = B$GETRODSKS EQU 29 :Get Read Onlv disks

0003 = BDOS EQU S 3sBDOS entry point

0000 OEL® MVI C, B$GETRODSKS sFunction code

0002 CDOS00 CALL BDOS JHL = Read Only disk bit map
yBits are = | if disk Read Only
}Bits 15 14 13 ... 21 0
}Disk P O N ... CBA

This function returns a bit map in registers H and L showing which logical

disks in the system have been set to Read-Only status, either by the Set Logical

Chapter 5: The Basic Disk Operating System 121

Disk to Read-Only function call (code 28, ICH), or by the BDOS itself, because it
detected that a diskette had been changed.

The least significant bit of L corresponds to logical disk A, while the most
significant bit of H corresponds to disk P. The bit corresponding to the specific
logical disk is set to 1 if the disk has been set to Read-Only status.

Function 30: Set File Attributes

Example

Purpose

Function Code: C=1EH
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Directory code

O01E = B$SETFAT EQU 30 3Set File Attribute
0005 = BDOS EQU S ;BDOS entry point

FCB: sFile control block
0000 00 FCBS$DISK: DB (o] 3;Search on default disk drive
0001 46494C4S4EFCBSNAME: DB “FILENAME~ sFile name
0009 D4 FCBS$TYP: DB “T*+80H s Type with R/0

s attribute
000A 5950 DB “YP
000C 0000000000 DW 0,0,0,0,0,0,0,0,0,0,0
0022 OELE MVI C, B$SETFAT sFunction code
0024 110000 LXI D,FCB 3DE -> file control block
3MS bits set in file name/type

0027 CDOS00 CALL BDOS tA = OFFH if file not found

This function sets the bits that describe attributes of a file in the relevant
directory entries for the specified file. Each file can be assigned up to 11 file
attributes. Of these 11, two have predefined meanings, four others are available for
you to use, and the remaining five are reserved for future use by CP/M.

Each attribute consists of a single bit. The most significant bit of each byte of
the file name and type is used to store the attributes. The file attributes are known
by a code consisting of the letter “f” (for file name) or “t” (for file type), followed by
the number of the character position and a single quotation mark. For example,
the Read-Only attribute is t1’.

The significance of the attributes is as follows:

fl’ to {4’ Available for you to use
5’ to 8’ Reserved for future CP/M use

tl’ Read-Only File attribute
t2’ System File attribute
t3’ Reserved for future CP/M use

Attributes are set by presenting this function with an FCB in which the
unambiguous file name has been preset with the most significant bits set appro-
priately. This function then searches the directory for a match and changes the
matched entries to contain the attributes which have been set in the FCB.

122 The CP/M Programmer’s Handbook

Notes

The BDOS will intercept any attempt to write on a file that has the Read-Only
attribute set. The DIR command in the CCP does not display any file with System
status.

You can use the four attributes available to you to set up a file security system,
or perhaps to flag certain files that must be backed up to other disks. The Search
First and Search Next functions allow you to view the complete file directory
entry, so your programs can test the attributes easily.

The example subroutines in Figures 5-22 and 5-23 show how to set file
attributes (SFA) and get file attributes (GFA), respectively. They both use a bit
map in which the most significant 11 bits of the HL register pair are used to
indicate the corresponding high bits of the 11 characters of the file name/type
combination. You will also see some equates that have been declared to make it
easier to manipulate the attributes in this bit map.

1SFA

;Set file attributes

3 This subroutine takes a compressed bit map of all the
;file attribute bits, expands them into an existing
;file contral block and then requests CP/M to set

sthe attributes in the file directory.

sEntry parameters

DE -> file control block

HL = bit map. Only the most significant 11
bits are used. These correspond directly

3 with the possible attribute bytes.

sExit parameters
H Carry clear if operation successful (A = 0,1,2,3)
; Carry set if error (A = OFFH)

sCalling sequence

;

; LXI D, FCE

3 LXI H, 0000%$0000%$1100$0000B ;Rit Map

3 CALL SFA

JC ERROR
sFile Attribute Equates

8000 = FAS$F1 EGQU 1000$0000$0000$0000E sF17 - F4°
4000 = FA$F2 EQU 0100%$0000$0000$0000R sAvailable for use by
2000 = FA$F2 EQU 0010%$0000$0000$0000B 3 application programs
1000 = FA$F4 EQU 0001$0000$0000$0000R
0800 = FASFS EQu 0000%1000%$0000$0000E sFS” - F8~
0400 = FA$F& EQU 0000%0100$0000$0000E ;Reserved far CP/M
0200 = FASF7 EQU 0000%0010$0000$0000R
0100 = FA$F3 EQU 000040001 $0000$0000B
0080 = FA$T1 EQU 0000$0000%1000$0000B 3T1” -- read/only file
0080 = FASRQ EQU FA$T1
0040 = FAST2 EQU 0000$0000$0100$0000R 3T2” —- system files
0040 = FA$SYS EQU FA$TZ :
0020 = FA$T3 EQU 0000%$0000$0010$0000B s T3” -- reserved for CP/M
001E = B$SETFAT EQU 30 ;Set file attributes
0005 = BDOS EQU S sBDOS entry point

Figure 5-22. Set file attributes

Chapter 5: The Basic Disk Operating System

123

0000 DS
0001 13

0002 OEOR

0004 AF
0005 29

0006 CEOQ

0008 OF
0009 47
000A EB
000B 7E

000C E&7F

000E BO
000F 77
0010 EB
0011 13
0012 0D

0013 C20400
0016 OELE

0018 D1

0019 CDOSO0
001C FEFF

001E 3F
001F C%

SFA:

PUSH D ;Save FCB pointer

INX D sHL -> 1st character of file name

MVI C,8+3 iLoop count for file name and type
SFAL: sMain processing locp

XRA A ;Clear carry and A

DAD H $Shift next MS bit into carry

ACI (o] sA = 0 or 1 depending on carry

RRC sRotate LS bit of A into MS bit

Mav B, A ;Save result (OOH or 80H)

XCHG tHL -> FCB character

MoV A M sGet FCB character

ANI 7FH ;Isolate all but attribute bit

ORA B ;Set attribute with result

MoV M. A sand store back into FCB

XCHG $DE -> FCB, HL = remaining bit map

INX D sDE -> next character in FCE

DCR c sDowndate character count

JINZ SFAL ;Loop back for next character

MVI C,B$SETFAT ;Set file attribute function cade

POP D sRecover FCB painter

CALL BDOS

CPI OFFH ;Carry set if OK, clear if error

CMC ;Invert to use carry set if errar

RET

Figure 5-22.

Set file attributes (continued)

001A
o011
0005
0080

8000
4000

nonowou

s GFA

sGet file attributes .

3This subroutine finds the appropriate file using a

isearch for First Name Match functicon rather than cpening
sthe file. It then builds a bit map of the file attribute
sbits in the file name and type. This bit map is then ANDed
;jwith the input bit map, and the result is returned in the
szero flag. The actual bit map built is also returned in case
imore complex checlk is required.

[l Note: This subroutine changes the CP/M DMA address.

sEntry parameters

DE -> File control block

HL = Bit map mask to be ANDed with attribute
results

Exit parameters
Carry clear, operation successful
Nonzerco status set to result of AND between
input mask and attribute bits set.
HL = Unmasked attribute bytes set.
Carry set, file cculd not be found

B$SETDOMA EQU 2é ;Set DMA address
B$SEARCHF EQU 17 ;Search faor first entry to match
BLOOS EQU S ;BDOS entry point
GFADMA EQU 80H sDefault DMA address
;Calling sequence
; LXI D,FCB
; LXI H, 0000$0000%$1 100$0000B ;Rit map
; CALL GFA
5 JC ERROR
;File attribute equates
FASF1 EQU 1000$0000$0000$0000B sF17 - FS”
FASF2 EQU 0100%$0000%$0000$0000B sAvailable for use by

Figure 5-23.

Get file attributes

124 The CPM Programmer’s Handbook

2000
1000

0800
0400
0200
0100

nononou

0080
0080
0040
0040
0020

L I I T 1]

0000 ES
0001 D3
0002 OE1A
0004 118000

0007 CDOS00

000A D1
000B OE11
000D CDOS00
0010 FEFF
0012 3F
0013 DA4100

0016 87
0017 87
0018 87
0019 87
001A 87
O01B SF
001C 1600
O01E 218000
0021 19
0022 23
0023 EB

0024 OEOB
0026 210000

0029 1A
002A E&80
002C 07
0020 BS
O02E 6&F
002F 29
0030 13
0031 OD
0032 C22900

0035 29
0036 29
0037 29
0038 29

003% D1
003A 7A
O03B A4
003C 47
003D 7B
O03E AS
003F EO

0040 C9

0041 E1
0042 C9

FASF3
FA$F4

FASFS
FASF&
FASF7
FASF8

FAS$T1
FA$RO
FA$T2
FA$SYS
FA$T3

GFA:

GFAL:

GFAX:

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

PUSH
PUSH
MVI
LXI

CALL

POP
MVI
CALL
CP1
CcMC
JC

ADD
ADD
ADD
ADD
ADD
MoV
MVI
LXI
DAD
INX
XCHG

MVI
LXI

LDAX
ANI
RLC
ORA
MoV
DAD
INX
DCR
JINZ

DAD
DAD
DAD
DAD

POP
MoV
ANA
Mav
MOV
ANA
ORA

RET

POP
RET

0010$0000$0000$0000B sApplication programs
0001$0000$0000$0000B

0000%$1000$0000$0000B sF6° - F8°
0000$0100$0000$0000E sReserved for CP/M
0000$0010$0000$0000R

0000$0001$0000$0000B

0000$0000%1000$0000B 3T1” —-- read/only file
FAS$T1

0000$0000$0100$0000R 372 —— system files
FAST2

0000$0000$0010$0000R 3 T3 —- reserved for CP/M
H 3 Save AND-mask

D ;Save FCB pointer

C, B$SETDMA ;Set DMA to default address

0, GFADMA sDE >

BDOS

D
C, B$SEARCHF
BDOS

OFFH sCarry

DMA address

sRecover FCEB pointer
;Search for match with name

set if OK, clear if error

;Invert to use set carry if error

GFAX

sReturn if error

sMultiply by 32 to get offset into DMA buffer

3= 2
% 4
3% 8
¥ 16
e 32

FADMA sHL =>
sHL ->
sHL =5
sDE >

IOIOM>»>2>>D>

sCount
Y ;Clear

sMake into a word value

DMA address

Directory entry in DMA buffer
1st character of file name
1st character of file name

of characters in file name and type
bit map

sMain loop

[+ =]
(=]
I

;Get next character of file name
sIsolate attribute bit

sMove MS bit intc LS bit

sOR in

>

;Shift
sDE >

QOooIrr

n
>
2

wWr>wWIP»D IITT
m>» o

any previously set bits

sSave result

HL left one bit for next time

next character in file name, type

;Downdate count
31Go back for next character

sLeft justify attribute bits in HL
sMS attribute bit will already be in
sbit 11 of HL,
snecessary

so only 4 shifts are

sRecover AND-mask

;Get MS byte of mask

;AND with MS byte of result

;Save interim result

;Get LS byte of mask

;AND with LS byte of result
sCombine two results to set Z flag

sError exit
H ;Balance stack

Figure 5-23.

Get file attributes (continued)

Chapter 5: The Basic Disk Operating System 125

Function 31: Get Disk Parameter Block Address

Example

Purpose

Notes

Function Code: C=1FH
Entry Parameters: None
Exit Parameters: HL = Address of DPB

QO01F = B$GETDPB EQU 31 sGet Disk Parameter Block
s Address
0005 = BDOS EQU S ;BDOS entry point

;Returns .DPB address of
3 logical disk previously
3 selected with a Select
s Disk function.
0000 OELF MVI C,B$GETDPB sFunction code
0002 CDOS00 CALL BDOS sHL -> Base address of current
3 disk’s parameter block

This function returns the address of the disk parameter block (DPB) for the
last selected logical disk. The DPB, explained in Chapter 3, describes the physical
characteristics of a specific logical disk—information mainly of interest for system
utility programs.

The subroutines shown in Figure 5-24 deal with two major problems. First,
given a track and sector number, what allocation block will they fall into? Con-
verseley, given an allocation block, what is its starting track and sector?

These subroutines are normally used by system utilities. They first get the DPB
address using this BDOS function. Then they switch to using direct BIOS calls to
perform their other functions, such as selecting disks, tracks, and sectors and
reading and writing the disk.

The first subroutine, GTAS (Get Track and Sector), in Figure 5-24, takes an
allocation block number and converts it to give you the starting track and sector
number. GMTAS (Get Maximum Track and Sector) returns the maximum track
and sector number for the specified disk. GDTAS (Get Directory Track and
Sector) tells you not only the starting track and sector for the file directory, but
also the number of 128-byte sectors in the directory.

Note that whenever a track number is used as an entry or an exit parameter, it is
an absolute track number. That is, the number of reserved tracks on the disk before
the directory has already been added to it.

GNTAS (Get Next Track and Sector) helps you read sectors sequentially. It
adds 1 to the sector number, and when you reach the end of a track, updates the
track number by 1 and resets the sector number to 1.

GAB (Get Allocation Block) is the converse of GTAS (Get Track and Sector).
It returns the allocation block number, given a track and sector.

Finally, Figure 5-24 includes several useful 16-bit subroutines to divide the HL
register pair by DE (DIVHL), to multiply HL by DE (MULHL), to subtract DE
from HL (SUBHL —this can also be used as a 16-bit compare), and to shift HL
right one bit (SHLR). The divide and multiply subroutines are somewhat
primitive, using iterative subtraction and addition, respectively. Nevertheless, they
do perform their role as supporting subroutines.

126 The

CP/M Programmer’s Handbook

000E
001F
0005

0000
0002
0003
0004
0005
0007
0009
000B
000D

000F

000F
0010
0012
0015
0017
001A
001C

001F
0020
0021
0022
0023
0024
0027

0000
00
00
00
0000
0000
0000
0000
0000

n

SF
QEOE
CDOS00
OE1LF
CnoSo00
OEOF
110000

7€
12
13
23
oD
C21F00Q
[

sUseful subroutines for accessing the data in the
sdisk parameter block

B$SELDSK EQU 14 ;Select Disk function code
B$GETOPB EQU 21 ;Get DPB address
BDOS EQu S sBDOS entry point

sIt makes for easier, more compact code to copy the
sspecific disk parameter block into local variables
swhile manipulating the information.

sHere are those variables --

DPE: sDisk parameter block

DPBSPT: DW o] 3128-byte sectors per track
DPBBS: DB ¢} ;Block shift

DPBEM: DB (] ;Block mask

DPBEM: DB [¢] sExtent mask

DPBMAR: DW] sMaximum allocation block number
DPBNOD: DW o] :Number of directory entries
DPBDAR: DW (o] ;Directory allocation blacks
DPBCBS: DW [¢] ;Check buffer size

DPBTBD: DW [¢] ;Tracks before directory (reserved tracks)
DPBSZ EQU $-DPEB ;Disk parameter block size

;s GETDPE

;Gets disk parameter block
;This subroutine copies the DPB for the specified
slogical disk into the local DPB variables above.

sEntry parameters

H A = Logical disk number (A: = 0, B: = 1...)
sExit parameters
H Lacal variables contain DPE
GETDPB:
Mav E,A ;Get disk code for select disk
MVI C, B$SELDSK ;Select the disk
CALL BDO3
MVI C, B$GETDPE ;Get the disk parameter base address
CALL BDOS sHL -> DFB
MVI C, DPRSZ ;Set count
LXI D, DFB ;Get base address of local variables
GDPBL: ;Copy DPB into local variables
Mav AM sGet byte from DFRB
STAX n ;Store into local variable
INX D ;Update local variable pointer
INX H sUpdate DPB pointer
DCR C sDowndate count
JINZ GDPBL sLocp back for next byte
RET
3 GTAS
:Get track and sector (given allocaticn block number)
sThis subroutine converts an allocation block into a
strack and sector number —- note that this is based on
$128-byte sectors.
:$>>>>> Note: You must call GETDPB before
[R you call this subroutine
sEntry parameters
H HL = allocation block number
sExit parameters
3 HL = track number
H DE = sector number
sMethod :
;In mathematical terms, the track can be derived from:
:Trk = ((allocation block * sec. per all. block) / sec. per trk)

H + tracks before directory

-1

Figure 5-24.

Accessing disk parameter block data

Chapter 5: The Basic Disk Operating System 427

;The sector is derived from:
;Sec = ((allocation block % sec. per all. block) modula/

H sec. per trk) + 1
GTAS:
0028 3A0200 LDA DPBBS sGet block shift —- this will be 3 to
37 depending on allocation block size
It will be used as a count for shifting
GTASS:
002B 29 DAD H ;Shift allocation block left one place
002C 3D DCR A ;Decrement block shift count
0020 C22B00 JNZ GTASS sMore shifts required
0030 EB XCHG sDE = all. black % sec. per block
7ji.e. DE = total number of sectors
0031 2A0000 LHLD DPBSPT ;Get sectors per track
0034 EB XCHG tHL = sec. per trk, DE = tot. no. of sec.
0035 CDSFOO CALL DIVHL sBC = HL/DE, HL = remainder
sBC = track, HL = sector
0038 23 INX H ;Sector numbering starts from 1
0039 ER XCHG ;DE = sector, HL = track
003A 2A0DO0 LHLD DFRTBD i Tracks before directory
003D 09 DAD E sDE = sector, HL = absclute track
Q03E C9 RET
3 GMTAS
;Get maximum track and sector
3This is just a call toc GTAS with the maximum
sallocation block as the input parameter
32>>>> Note: You must call GETDFR before
3O you call this subroutine
;Entry parameters: none
sExit parameters:
H HL = maximum track number
H DE = maximum sectaor
GMTAS:
003F 2A0500 LHLD DFEMAE ;Get maximum allocation black
0042 C32800 JMP GTAS sReturn from GTAS with parameters in HL and DE
; GDTAS
;Get directory track and sector
:This returns the START track and sector for the
sfile directory, along with the number of sectors
3in the directory.
3>>>>> Note: You must call GETDFR before
R0 you call this subroutine
sEntry parameters: nane
sExit parameters:
i BC = number of sectors in directory
H DE = directory start sector
H HL = directory start track
GDTAS:
0045 2A0700 LHLD DPBRNOD sGet number of directory entries - 1
0048 23 INX H ;Make true number of entries
sEach entry is 32 bytes long, so to
sconvert to 128 byte sectors, divide by 4
0049 CDDOOO CALL SHLR #/ 2 (by shifting HL right one bit)
004C CDDOOO CALL SHLR 3/ 4
004F ES PUSH H ;Save number of sectors
0050 210000 LXI H,0 sDirectary starts in allocation black O
0053 CD2800 CALL GTAS sHL = track, DE = sector
0056 C1 POP B ;Recover number of sectors
0057 €9 RET
Figure 5-24. (Continued)

428 The CP/M Programmer’s Handbook

; GNTAS
sGet NEXT track and sector
sThis subroutine updates the input track and sector
:by one, incrementing the track and resetting the
ssector number as required.
$3>3>> Note: You must call GETDPR before
R4 you call this subroutine
: Note: you must check for end of disk by comparing
i the track number returned by this subroutine
H to that returned by by GMTAS + 1. When
H equality occurs, the end of disk has been reached.
sEntry parameters
H HL = current track number
§ DE = current sector number
;Exit parameters
' HL = updated track number
3 DE = updated sector number
GNTAS:
0058 ES PUSH H ;Save track
0059 13 INX D ;Update sector
005A 2A0000 LHLD DPBSPT ;Get sectors per track
005D CDC00 CALL SUBHL sHL = HL - DE
0060 El POP H ;Recover current track
0061 DO RNC sReturn if updated sector <= sec. per trk
0062 23 INX H ;Update track if upd. sec > sec. per trk.
0063 110100 LXI D,1 sReset sector to 1
0066 C9 RET
s GAB
;Get allocation block
;This subroutine returns an allocation block number
:given a specific track and sector. It also returns
sthe offset down the allocation block at which the
ssector will be found. This offset is in units of
;128-byte sectors.
[RaEasd Note: You must call GETDPB before
RS2 24 you call this subroutine
sEntry parameters
H HL = track number
H DE = sector number
sExit parameters
i HL = allocation block number
sMethod
;The allocation black is formed from:
:AB = (sector + ((track - tracks before directary)
H % sectors per track)) / log2 (sectors per all. block)
;The sector offset within allocaticn block is formed fram:
:0ffset = (sector + ((track - tracks before directory)
H % sectors per track)) / AND (sectors per all. block - 1)
GAB:
0067 DS PUSH D ;Save sectar
0068 EB XCHG sDE = track
0049 2A0DO0O LHLD DPBTRD ;Get no. of tracks before directory
00&C EB XCHG sDE = no. of tracks before dir. HL = track
006D CDCYO0 CALL SUBHL sHL = HL - DE
sHL = relative track within logical disk
0070 EB XCHG ;DE = relative track
0071 2A0000 LHLD DPRSFT ;Get sectors per track
0074 CDA400 CALL MULHL sHL = HL ®* DE
sHL = number of sectors
0077 EB XCHG ;DE = number of sectors
Figure 5-24. (Continued)

Chapter 5: The Basic Disk Operating System

129

0078 E1 POP H ;Recover sector
0079 2B DCx H ;Make relative to O
007A 19 DAD D ;HL = relative sector
007R 3A0300 LDA DPBBM ;Get block mask
OQ7E 47 MoV B, A sReady for AND operaticn
QO7F 7D MoV AL ;Get LS byte of relative sector
0080 AQ ANA B AND with block mask
0081 FS PUSH PSW ;A = sector displacement
0082 3A0200 LDA DPBBS ;Get block shift
0085 4F Mav C,A ;Make into counter
GABS: 3Shift loop
0086 CDDOOO CALL SHLR sHL shifted right (divided by 2)
0089 0D DCR [sCount down
008A C28400 JINZ GABS sShift again if necessary
008D F1 POFP PSW ;Recover offset
O08E C9 RET
sUtility subroutines
:These perform 16-bit arithmetic on the HL register pair.
s DIVHL
;Divides HL by DE using an iterative subtract.
;In practice, it uses an iterative ADD of the complemented divisar.
sEntry paramaters
3 HL = dividend
H DE = divisar
FExit parameters
H BC = quotient
H HL = remainder
DIVHL:
Q08F DS PUSH D sSave divisor
iNote : 275 complement is farmed by
sinverting all bits and adding 1.
0090 7R Mav AE sComplement divisor (for iterative
0091 2F CMA sADD later on)
0092 SF -MOV E, A
0093 7A MOV A, D ;Get MS byte
0094 2F CMA ;Complement it
0095 57 MOV n,A
0096 12 INX D iMake 2“s complement
;Now, subtract negative divisar until
sdividend goes negative, counting the number
jof times the subtract occcurs
0097 010000 LXI B,0 ;Initialize quotient
DIVHLS: sSubtract loop
009A 03 INX B ;Add 1 to quotient
009B 19 DAD D s"Subtract" divisor
009C DAYAOO Jc DIVHLS ;Dividend not yet negative
;Dividend now negative, quotient 1 tco large
009F OB DeXx B ;Correct quotient
;Compute correct remainder
00A0 EB XCHG sDE = remainder - divisor
00A1 E1l POP H ;Recover positive divisor
00A2 19 DAD D sHL = remainder
00A3 C% RET sBC = quotient, HL = remainder
s MULHL
sMultiply HL ®* DE using iterative ADD.
sEntry parameters
H HL = multiplicand
H DE = multiplier
sExit parameters
H HL = product
: DE = multiplier
MULHL :
00A4 CS PUSH B ;Save user register
iCheck if either multiplicand
3 or multiplier is O
Figure 5-24. (Continued)

430 The CP/M Programmer’s Handbook

Q0AS 7C Mav A H
00Aé BS ORA L
00A7 CACA00 JZ MULHLZ ;Yes, fake product
00AA 7A MOV A, D
00AR B3 ORA E
00AC CAC400 Jz MULHLZ sYes, fake praduct
:This routine will be faster if
; the smaller value is in DE
QOAF 7A Mov A, D :Get MS byte of current DE value
QOBRO BC CMP H ;Check which is smaller
OOR1 DABSQO JC MULHLN :C set if D < H, so no exchange
0OR4 EB XCHG
MULHLN:
00BS 42 MOV B,D sBC = multiplier
Q0B& 4R Mav C,E
QOB7 54 MOV D,H ;DE = HL = multiplicand
00B8 SD Mav E, L
00BY OB ncx B sAdjust count as
;1 =% multiplicand = multiplicand
MULHLA: ;ADD loop
Q0BA 78 Mav A,B ;Check if all iterations completed
Q0BRB B1 ORA c
00BC CAC700 Jdz MULHLX ;Yes, exit
Q0BF 19 DAD D sHL = multiplicand + multiplicand
00CO OB ncx B sCountdown on multiplier - 1
00C1 C3RAOO JIMFP MULHLA :Loop back until all ADDs done
MULHLZ:
00C4 210000 LXI H, 0 ;Fake product as either multiplicand
; or multiplier is O
MULHLX:
00C7 C1 POP B sRecover user register
00Ccg C¥ RET
3 SUBHL
;Subtract HL - DE
;Entry paramaters
H HL = subtrahend
H DE = subtractor
;Exit parameters
H HL = difference
SUBHL:
00cy 7D MoV AL ;Get LS byte
00CA 93 SUB E sSubtract without regard to carry
QOCE &F MOV L,A sPut back into difference
oocc 7C MOV AH ;Get MS byte
ooch 9A SEE n sSubtract including carry
00CE &7 Mav H, A ;Move back into difference
00OCF C%9 RET
; SHLR
:Shift HL right cne place (dividing HL by 2)
sEntry parameters .
H HL = value to be shifted
sExit parameters
; HL = value/2
SHLR:
o0no B7 ORA A sClear carry
oont 7C MQV AH ;Get MS byte
oon2 1F RAR sBit 7 set from previous carry,
;s bit O goes into carry
0oD3 67 MoV H, A ;Put shift MS byte back
ooD4 7D MOV AL ;Get LS byte
oons 1F RAR sBit 7 = bit 0 of MS byte
o0Ds &F MQV L, A sPut back into result
oon7 €9 RET
Figure 5-24. (Continued)

Function 32:

Example

Purpose

Notes

Function 33:

Example

Chapter 5: The Basic Disk Operating System 131

Set/Get User Number

Function Code: C = 20H
Entry Parameters: E = OFFH to get user number, or
E = 0 to 15 to set user number
Exit Parameters: A = Current user number if E was OFFH

0020 = B$SETGETUN EQU 32 sSet/Get User Number
0005 = BDOS EQU S sBDOS entry point
;To set user number
0000 QE20 MVI C, B$SETGETUN sFunction code
0002 1EOF MVI E, 15 sRequired user number
0004 CDOS00 CALL BDOS 3To get user number
0007 OE20 MVI C, B$SETGETUN sFunction code
0009 1EFF MVI E, OFFH sIndicate request to GET
Q00B CDOS00 CALL BDOS 3A = Current user no. (0 —— 15)

This subroutine either sets or gets the current user number. The current user
number determines which file directory entries are matched during all disk file
operations.

When you call this function, the contents of the E register specify what action is
to be taken. If E= 0FFH, then the function will return the current user number in
the A register. If you set E to a number in the range 0 to 15 (that is, a valid user
number), the function will set the current user number to this value.

You can use this function to share files with other users. You can locate a file by
attempting to open a file and switching through all of the user numbers. Or you can
share afile in another user number by setting to that number, operating on the file,
and then reverting back to the original usetr number.

If you do change the current user number, make provisions in your program to
return to the original number before your program terminates. It is disconcerting
for computer operators to find that they are in a different user number after a
program. Files can easily be damaged or accidentally erased this way.

Read Random

Function Code: C=2lH
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Return code
0021 = B$READRAN EQU 33 s Read Random
Q005 = BDOS EQU S sBDOS entry point
FCB: sFile control block
Q000 00 FCBR$DISK: DR] sSearch on default disk drive
0001 44494CAS4EFCBSNAME:: DB “FILENAME~ ;File name

0009 545950 FCR$TYP: DB “TYP” sFile type

432 The CP/M Programmer’s Handbook

000C
000D
000F
0010
0018
0020
0021
0023

0024

0026
0029
002C
Q02E
0031

Purpose

Q0 FCR$EXTENT: DB V] sExtent
0000 FCB$RESV: DR 0,0 sReserved for CP/M
00 FCR$RECUSED: DB 0 sRecords used in this extent
0000000Q00FCBSARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
Q000000000 DB 0,0,0,0,0,0,0,0
00 FCB$SEQREC: DR o ;Sequential rec. to read/write
0000 FCB$RANREC: oW] sRandom rec. to read/write
00 FCB$RANRECO: DB o] sRandom rec. overflow byte (MS)
D204 RANRECNQ: DW 1234 sExample random record number
sRecord will be read into
; address set by prior
; SETDMA call
2A2400 LHLD RANRECNC ;Get random record number
222100 SHLD FCR$RANREC ;Set up file control block
OE21 MVI C, BSREADRAN sFunction code
110000 LXI D,FCRB sDE -> .file control block
CDOSO00 CALL BDOS sA = 00 if operation successful
sA = nonzero if no data in
s file specifically:
:A = 01 —— attempt to read
H unwritten record
3 03 -- CP/M could not
H close current extent
H 04 -- attempt to read
H unwritten extent
H 06 -- attempt to read
H beyond end of disk
This function reads a specific CP/M record (128 bytes) from a random file—

that is, a file in which records can be accessed directly. It assumes that you have
already opened the file, set the DM A address using the BDOS Set DMA function,
and set the specific record to be read into the random record number in the FCB.
This function computes the extent of the specified record number and attempts to
open it and read the correct CP/M record into the DMA address.

The random record number in the FCB is three bytes long (at relative bytes 33,
34, and 35). Byte 33 is the least significant byte, 34 is the middle byte, and 35 the
most significant. CP/M uses only the most significant byte (35) for computing the
overall file size (function 35). You must set this byte to 0 when setting up the FCB.
Bytes 33 and 34 are used together for the Read Random, so you can access from
record 0 to 65535 (a maximum file size of 8,388,480 bytes).

This function returns with A set to 0 to indicate that the operation has been
completed successfully, or A set to a nonzero value if an error has occurred. The
error codes are as follows:

A = 01 (attempt to read unwritten record)

A = 03 (CP/M could not close current extent)

A = 04 (attempt to read unwritten extent)

A = 06 (attempt to read beyond end of disk)

Unlike the Read Sequential BDOS function (code 20, 14H), which updates the
current (sequential) record number in the FCB, the Read Random function leaves
the record number unchanged, so that a subsequent Write Random will replace

the record just read.
You can follow a Read Random with a Write Sequential (code 21, 15H). This

Notes

Function 34:

Example

Chapter 5: The Basic Disk Operating System 133

will rewrite the record just read, but will then update the sequential record number.
Or you may choose to use a Read Sequential after the Read Random. In this case,
the same record will be reread and the sequential record number will be incre-
mented. In short, the file can be sequentially read or written once the Read
Random has been used to position to the required place in the file.

To use the Read Random function, you must first open the base extent of the
file, that is, extent 0. Even though there may be no actual data records in this
extent, opening permits the file to be processed correctly.

One problem that is not immediately obvious with random files is that they can
easily be created with gaps in the file. If you were to create the file with record
number 0 and record number 5000, there would be no intervening file extents.
Should you attempt to read or copy the file sequentially, even using CP/M’s file
copy utility, only the first extent (and in this case, record 0) would get copied. A
Read Sequential function would return an “end of file” error after reading record
0. You must therefore be conscious of the type of the file that you try and read.

See Figure 5-26 for an example subroutine that performs Random File Reads
and Writes. It reads or writes records of sizes other than 128 bytes, where necessary
reading or writing several CP/M records, prereading them into its own buffer
when the record being written occupies only part of a CP/M record. It also
contains subroutines to produce a 32-bit product from multiplying HL by DE
(MLDL—Multiply double length) and a right bit shift for DE, HL (SDLR— Shift
double length right).

Write Random

Function Code: C =22H
Entry Parameters: DE = Address of file control block

Exit Parameters: A = Return code

0022 = B$SWRITERAN EQU 24 ;Write Random
0005 = BDQS EQU S ;BDOS entry point

FCB: sFile control block
0000 00 FCR$DISK: DB 0 ;Search on default disk drive
0001 46494CAS4EFCBR$NAME: DR “FILENAME " sFile name
Q009 545950 FCR$TYP: DB “TYP” sFile type
000C 00 FCBSEXTENT: DR Q sExtent
000D 0000 FCB$RESV: DR Q0,0 sReserved for CP/M
000F Q0 FCB$RECUSED: DR [d] sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCR$SEQREC: DB o sSequential rec. to read/write
0021 0000 FCR$RANREC: DW o sRandom rec. to read/write
0023 00 FCB$RANRECQ: DR o sRandom rec. overflow byte (MS)
0024 D204 RANRECNQ: oW 1234 ;Example random record number

:ﬁecord will be written from
3 address set by priaor
3 SETDMA call

434 The CP/M Programmer’s Handbook

Purpose

Notes

0026 2A2400 LHLD RANRECNO ;Get random record number
0029 222100 SHLD FCBR$RANREC ;Set up file control block
002C OE22 MVI C, B$WRITERAN sFunction code

Q02E 110000 LXI D,FCB ;DE -> file control block

0031 CDOS00 CALL BDOS A = 00 if operation successful
;A = nonzero if no data in file
;3 specifically:
3A = 03 —— CP/M could not
H close current extent
05 —-- directory full
? 06 ——- attempt to write
H beyond end of disk

This function writes a specific CP/M record (128 bytes) into a random file. It is
initiated in much the same way as the companion function, Read Random (code
33, 21 H). It assumes that you have already opened the file, set the DM A address to
the address in memory containing the record to be written to disk, and set the
random record number in the FCB to the specified record being written. This
function also computes the extent in which the specified record number lies and
opens the extent (creating it if it does not already exist). The error codes returned in
A by this call are the same as those for Read Random, with the addition of error
code 05, which indicates a full directory.

Like the Read Random (but unlike the Write Sequential), this function does
not update the logical extent and sequential (current) record number in the FCB.
Therefore, any subsequent sequential operation will access the record just written
by the Read Random call, but these functions will update the sequential record
number. The Write Random can therefore be used to position to the required
place in the file, which can then be accessed sequentially.

In order to use the Write Random, you must first open the base extent (extent
0) of the file. Even though there may be no data records in this extent, opening
permits the file to be processed correctly.

As explained in the notes for the Read Random function, you can easily create
arandom file with gaps in it. If you were to create a file with record number 0 and
record number 5000, there would be no intervening file extents.

Figure 5-25 shows an example subroutine that creates a random file (CRF) but
avoids this problem. You specify the number of 128-byte CP/M records in the file.
The subroutine creates the file and then writes zero-filled records throughout. This
makes it easier to process the file and permits standard CP/M utility programs to
copy the file because there is a data record in every logical record position in the
file. It is no longer a “sparse” file.

Figure 5-26 shows a subroutine that ties the Read and Write Random func-
tions together. It performs Random Operations (RO). Unlike the standard BDOS
functions that operate on 128-byte CP/M records, RO can handle arbitrary record
size from one to several thousand bytes. You specify the relative record number of
your record, not the CP/M record number (RO computes this). RO also prereads a
CP/M record when your logical record occupies part of a 128-byte record, either
because your record is less than 128 bytes or because it spans more than one

Chapter 5: The Basic Disk Operating System

135

0013
0016
001A
0015
00035

0000
0032
0064

0080

0082
0085
0084
0088
Q08B
008C
Q08D
Q08F
0092
0094
0095
0026
0097

0098
00%A
009D
00A0

00A1
00A4
00AS
00A&
00A7
00A8
00AB
00AC
00AE

00B1
00B2

0000000000
0000000000

0000000000

0000

228000
DS
OE13
CDOS00
D1

ns
QE16
CDOS00
FEFF
3F

D1

ng

DS

OE1A
110000
CDOS00
D1

2A8000
7D

B4

ce

2B
228000
DS
0E1S
CDOS00

D1
C3A100

s CRF

sCreate random file

:This subroutine creates a random file. It erases any previous
sfile before creating the new cne, and then writes O-filled
srecords throughout the entire file.

;Entry parameters

B DE -> file control block faor new file

3 HL = Number of 128-byte CP/M records to be
3 zerc-filled.

sExit parameters
H Carry clear if operation successful (A = 0,1,2,3)
H Carry set if errar (A = OFFH)

;Calling sequence
LXI

;
H D,FCB
; CALL CRF
H Jc ERROR
B$ERASE EQU 19 sErase file
B$CREATE EQU 22 ;Create file
B$SETDMA EQU 2é ;Set DMA address
ESWRITESEQ EQU 21 ;Write sequential record
BDOS EQU S ;BDOS entry point
CRFBUF: sZero—filled buffer
oW ¢,9,0,
0,0,0
DW 0,
0,0,0
oW 0,0,0,0,0,0,0,0,0,0,0,0,0,0
CRFRC: DW (o] sRecord count
CRF:
SHLD CRFRC sSave record count
PUSH D ;Preserve FCR pointer
MVI C, B$ERASE ;Erase any existing file
CALL BDOS
POP D ;sRecover FCB pointer
PUSH D s and resave
MVI C, B$CREATE sCreate (and cpen new file)
CALL BDOS .
CPI OFFH sCarry set if OK, clear if error
CcMC sComplete to use carry set if errar
POP j sRecaver FCB address
RC sReturn if ervor
PUSH' D sResave FCB pointer
MVI C, B$SETDMA ;Set DMA address to O-buffer
LXI D, CRFELUF
CALL BDOS
PQOP D ;Recaver FCB pointer
CRFL:
LHLD CRFRC ;Get record count
MOV AL
ORA H ;Check if count now zerco
RZ iYes, exit
DCX H sDowndate count
SHLD CRFRC sSave count
PUSH o sResave FCB address
MVI C, B$WRITESER ;Write sequentially
CALL BDOS
POP D sRecover FCE
JMP CRFL ;Write next record

Figure 5-25. Create random file

436 The CP/M Programmer’s ﬁandbook

128-byte sector. The subroutine suppresses this preread if you happen to use a
record size that is some multiple of 128 bytes. In this case, your records will fit
exactly onto a 128-byte record, so there will never be some partially occupied
128-byte sector.

This example also contains subroutines to produce a 32-bit product from
multiplying HL by DE (MLDL—Multiply double length) and a right bit shift for
DE, HL (SDLR—Shift double length right).

RO
sRandom operation (read or write)

3This subroutine reads or writes a random record from a file.

s The record length can be other than 128-bytes. This

ssubroutine computes the start CF/M record (which

;is 128 bytes), and, if reading, performs a random read

sand moves the user-specified record into a user buffer.

3 I1f necessary, more CP/M records will be read until the complete
suser—-specified record has been input.

;For writing, if the size of the user-specified record is not an exact
smultiple of CP/M records, the appropriate sectors will be preread.
;It is not necessary to preread when the user-specified record

sis an exact CP/M record, nor when subroutine is processing

sCP/M recards entirely spanned by a user-specified reccord.

sEntry parameters
HL -> parameter block of the form:
D (o] s OFFH when reading, OO0H for write

DW FCB sPointer to FCB

DW RECNO sUser recaord number
DW RECSZ sUser record size

oW BUFFER jPointer to buffer of

;3 RECSZ bytes in lenath

Exit parameters
A = 0 if operation completed (and user record
copied into user buffer)

H 1 if attempt to read unwritten CP/M record
H 3 if CP/M cculd not close an extent
; 4 if attempt to read unwritten extent
§ S if CP/M could not create a new extent
H 6 if attempt to read beyond end of disk
;Calling sequence
H LXI H, PARAMS sHL -> parameter block
; CALL RO
H ORA A sCheck if error
H JINZ ERROR
0021 = FCBE$RANREC EQU 33 ;0ffset of random record no. in FCB
001A = B$SETOMA EQU 26 ;Set the DMA address
0021 = B$READRAN EQU 33 ;Read random record
0028 = B$WRITERANZ EQU 40 ;Write random record with zerc-fill
; Ppreviously unallocated allocation
; blocks
0005 = BDOS EQU S sBDOS entry point
ROPB: ;Parameter block image
0000 00 ROREAD: DB (o] 3NZ when reading, Z when writing
0001 0000 ROFCB: DW o sPointer to FCB
0003 0000 ROURN: DW] sUser record number
0005 0000 ROURL: DW o] sUser record lenath
0007 0000 ROUB: DW (o] sPointer to user buffer
0009 = ROPBL EQU $-ROPE ;Parameter block lenath
0009 0000 ROFRP: DW o sPointer to start of user record fraagment
3 in first CP/M-record read in
Figure 5-26. Read/ Write variable length records randomly

Chapter 5: The Basic Disk Operating System

137

Q00E 00 ROFRL: DB 0o sFragment length
000C 0000 RORNP: DW [¢] ;Record number pointer (in user FCE)
Q00E 00 ROWECR: DB 0 sNZ when writing user records that are an
; exact super-multiple of CP/M-record (and
3 therefore no preread is required)
000F ROBUF: DS 12g ;Buffer for CP/M recaord
RO:
008F 110000 LXI D, ROPE sDE -> local parameter block
0092 0E09 MVI C, ROPBL sParameter block length
0094 CDFEO1 CALL MQVE sMove C bytes from HL to DE
;T compute offset of user record in CP/M record,
;3 compute the relative BYTE offset of the start
3 of the user record within the file (i.e.
3 user record number * record size). The least
3 significant 7 bits of this product give the
; byte offset of the start of the user record.
i The product / 128 (shifted left 7 bits) gives the
;CP/M record number of the start of the user record.
0097 2A0500 LHLD ROURL ;Get user record length
00%9A 7D MoV AL ;Get LS bytes of user rec. length
Q09R E&7F ANI 7FH ;Check if exact multiple of 128
009D B7 ORA A s(i.e. exact CP/M records)
009E RIEQO MVI A0 $A = 0, flags unchanged
00A0 C2A400 JNZ RONE sNot exact CP/M records
00A3 3D DCR A A =FF
RONE: .
00A4 320E00 STA ROWECR ;Set write-exact-CP/M-records flag
00A7 EB XCHG sDE = user record length
00A8 2A0300 LHLD ROURN ;Get user record number
O00AB CDB801 CALL MLDL sDE,HL = HL * DE
sDE,HL = user-record byte offset in file
Q0AE DS PUSH D sSave user-record byte offset
00AF ES PUSH H
00BO 7D MoV AL sGet LS byte of product
00B1 E&7F ANI 7FH sIsolate byte offset within
00B3 4F Mov C,A sCP/M record
00B4 0600 MVI B, 0 ;Make into word value
00Bé 210F00 LXI H, ROBUF ;Get base address of lacal buffer
00B% 09 DAD B sHL —> Start of fragment in buffer
00BA 220900 SHLD ROFRP s;Save fragment pointer
;Compute maximum fragment length that could reside in
sremainder of CP/M record, based on the offset in the
sCP/M record where the fragment starts.
OOBD 47 Mav B,A ;Take copy of offset in CP/M record
O0BE 3E80 MVI A, 128 ‘P/M record size
00CO 90 SUB B ‘ompute 128 - offset
00C1 320B0O STA ROFRL sAssume this is the fragment length
sIf the user record length is less than the assumed
3 fragment length, use it in place of the result above
00C4 47 MOV B, A ;Get copy of assume frag. length
00CS 3A0600 LDA ROURL +1 ;Get MS byte of user record length
ooce B7 ORA A s If NZ, rec. len. must be > 128
00C9 C2D600 JNZ ROFLOK ;S0 fragment length is OK
00CC 3A0500 LDA ROURL ;Still a chance that rec. len.
O0CF B8 CMP B + less than fragment len.
00D0 D2D&00 JINC ROFLOK ;NC if user rec. len. => frag. len.
00D3 320R00 STA ROFRL ;User rec. len. < frag. len. so
; reset fragment length to smaller
ROFLOK:
00D& 3A0EQQ LDA ROWECR ;Get exact CP/M record flag
o0DY 47 MOV B,A ;for ANDing with READ flag
00DA 3A0000 LDA ROREAD 3Get read operation flag
ooDD 2F CcMA sInvert so NZ when writing
Figure 5-26. (Continued)

438 The CPM Programmer’s Handbook

sForm lagical AND
;Save back in flag

;Recover the double length byte offset within the file
sof the start of the user record. Shift 7 places right
sto divide by 128 and get the CP/M record number far

sRecover user rec. byte offset

;Count for shift right

sDE,HL = DE,HL /7 2

Error if DE still NZ after
division by 128.

;Set CP/M record number in FCR

sDE = CP/M record number

sGet pointer to FCB

;0ffset of random record no. in FCB
sHL -> ran. rec. no. in FCB

;Save record number pointer

;Store LS byte

;Store MS byte

;Set DMA address to local buffer
;Bypass preread if exact sector write

;Get pointer to FCB
sDE -> FCB
sRead random functicn

sCheck if error code < 5

sYes, check if ignorable error

(i.e. error reading unwritten part
of file for write operation preread)
heck if error

es

C
Y

sMove next fragment

;Get pointer to user buffer

sDE -> user buffer

sHL => start of user rec. in local buffer
;Get fragment lenagth

sReady far MOVE

;Check if reading

sYes, so leave DE, HL unchanged

sWriting, so swap scurce and destination
sDE -> start of user rec. in local buffer
sHL -> user buffer

> user buffer
local buffer

;Reading - fragment local
sWriting - fragment user -3
;Check if writing

sWriting, so leave HL -»> user buffer
sHL => next byte in user buffer

;Save updated user buffer pcinter
sCheck if reading

Q0DE AOQO ANA B
Q0DF 320EQ0 STA ROWECR
;the start of the user record.

00E2 E1l POP H
00E3 D1 POP D
00E4 QEQ7 MVI c,7

ROS:
00Eé CDF101 CALL SDLR
Q0E? OD DCR Cc
00EA C2E&00 JNZ ROS
Q0ED 7A MoV A, D
OOEE B3 ORA E
O0EF C2ACO1 JINZ ROERO
00F2 ER XCHG
00F3 2A0100 LHLD ROFCB
O0F6 012100 LXI R, FCBE$SRANREC
00F9 09 DAD B
Q0FA 220C00 SHLD RORNP
Q0FD 73 Mav M, E
OOFE 23 INX H
O00FF 72 Mov M, D
0100 OE1A MVI C, B$SETDMA
0102 110F00 LXI D, ROBUF
0105 CDOS00 CALL BDOS
0108 3A0EQQ LDA 'ROWECR
010B B7 ORA A
010C C21F01 JNZ ROMNF
010F 2A0100 LHLD ROFCB
0112 EB XCHG
0113 OE21 MVI C, B$READRAN
011S CDOS00 CALL BDOS
0118 FEOS CPI S
011A DCAFO1 cc ROCIE
011D B7 ORA A
011E CO RNZ

ROMNF =
011F 2A0700 LHLD ROUE
0122 EB XCHG
0123 2A0900 LHLD ROFRP
012& 3A0BOO LDA ROFRL
0129 4F MoV C,A
012A 3A0000 LDA ROREAD
012D B7 ORA A
012E C23201 JNZ RORD1
0131 EB XCHG

RORD1:
0132 CDFEO1 CALL MQVE
0135 3A0000 LDA ROREAD
0138 B7 ORA A
0139 CA3DO1 Jz ROWR1
013C EB XCHG

ROWR1 =
0130 220700 SHLD ROUE
0140 3A0000 LDA ROREAD

Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System

139

0143 B7 ORA A
0144 C25001 JINZ RORD3 ;Yes, bypass write code
0147 QE28 MVI C, B$WRITERANZ sWrite random
0149 2A0100 LHLD ROFCB ;Get address of FCB
014C EBR XCHG ;DE -> FCB
014D CDOS00 CALL BDOS
RORD3: ;Compute residual length of user record as yet unmaved.
;3 If necessary (because more data needs to be transferred)
smore CP/M records will be read. In this case
sthe start of the fragment will be offset 0. The fragment
;length depends on whether the user record finishes within
sthe next sector or spans it. If the residual length of the
suser record is > 128, the fragment length will be set to
3128,
0150 2A0500 LHLD ROURL ;Get residual user rec. length
0153 3A0BOO LDA ROFRL ;Get fragment length just moved
0156 SF MOV E,A sMake into a word value
0157 1600 MVI 0,0
0159 CDEAO1L CALL SUBHL ;Compute ROURL - ROFRL
015C 7C Mav AH sCheck if result O
015D BS ORA L
015E C8 RZ jReturn when complete USER
3 record has been transferred
015F 220500 SHLD ROURL sSave downdated residual rec. length
0162 4D MOV c,L sAssume residual length < 128
0163 118000 LXI D, 128 ;Check if residual length is < 128
0166 CDEAO1L CALL SUBHL ;HL = HL - DE
0169 FAGEOL JM ROLT128 ;negative if < 128
016C OE80 MVI c,128 3=> 128, so set frag.length to 128
ROLT128:
016E 79 MOV A C
016F 320B0OO STA ROFRL sFragment length now is either 128
s if more than 128 bytes left to input
3 in user record, or just the right
s number of bytes (< 128) to complete
3 the user record.
0172 210F00 LXI H, ROBUF A1l subsequent CP/M records will start
0175 220900 SHLD ROFRP ; at beginning of buffer
sUpdate random record number in FCB
0178 2A0C00 LHLD RORNP sHL -=> random record number in user FCB
017B SE May E,M ; Increment the random record number
017C 23 INX H sHL -> MS byte of record number
017D Sé MOV o.M ;Get MS byte
017E 13 INX D sUpdate record number itself
017F 7A MoV A, D sCheck if record now O
0180 B3 ORA E
0181 C28701 JNZ ROSRN sNo, so save record number
0184 3E06 MVI A b ;Indicate "seek past end of disk"
0186 C9 RET ;Return to user
ROSRN:
0187 72 Mov M, D sSave recaord number
0188 2B ncx H sHL -> LS byte
018% 73 MOV M, E
3If writing, check if preread required
018A 3A0E0O LDA ROWECR 3sCheck if exact CP/M record write
018D B7 ORA A
018E C21F01 JNZ ROMNF sYes, go move next fragment
0191 3A0000 LDA ROREAD 3If reading, perform read unconditionally
0194 B7 ORA A
0195 C2A001 JINZ RORD2
0198 3A0BOO LDA ROFRL sFor writes, bypass preread if
019B FE80 CPI 128 3 whole CP/M-record is to be overwritten
019D CA1FO1 Jz ROMNF 3 (fragment length = 128)
RORDZ2:
01A0 OE21 MVI C, B$READRAN sRead the next CP/M record
01A2 2A0100 LHLD ROFCR ; in sequence
Figure 5-26. (Continued)

440 The CP/M Programmer’s Handbook

01A5 EB XCHG
01Aé CDOS00 CALL BDOS
01A9 C31FO1 JMP ROMNF
ROEROQ:
01AC 3E04 MVI)
01AE C% RET
ROCIE:
O1AF 47 MoV B, A
01BO 3A0000 LDA ROREAD
01B3 B7 ORA A
01B4 78 MoV A B
01BS CO RNZ
01Bé AF XRA A
01B7 C9 RET
sMLDL

sreturned in DE,HL.

;Entry parameters
H HL

H DE = multiplier
Exit parameters
DE,HL = product
DE = multiplier

MLDL:
01B8 010000 LXI B,0
O1BB CS PUSH B
01BC 7C MoV AH
01BD BS ORA L
O1BE CAESO01 JZ MLDLZ
01C1 7A MoV A, D
01C2 B3 ORA E
01C3 CAESO01 Jz MLDLZ
01Cé 7A MOV A, D
01C7 BC CMF H
01C8 DACCO1 Jdc MLDLNX
01CB EB XCHG

MLDLNX:
01CC 42 MOV B,D
01CD 4B Mov C,E
01CE 54 MQV D, H
O1CF SD MOV E,L
01D0 OB DCX B

MLDLA:
01Dl 78 MOV A/B
01D2 B1 ORA Cc
01D3 CAES8O01 Jz MLDLX
01Ds 19 DAD D
01D7 E3 XTHL
oip8 7D MOV AL
01D9 CEOO ACI o
O1DB 6&F MoV L. A
01DC 7C MOV AH
01DD CEOO ACI (o]
01DF 67 MOV H, A
O1EO E3 XTHL
O1E1 OB DCX B
01E2 C3D101 JMP MLDLA

multiplicand

sDE -> FCB
;Go back to move next fragment

s;Error because user record number

3 % User record length / 128 gives

;s a CP/M record number > 65535.
sIndicate "attempt to read unwritten
s extent"

;Check ignorable errcor (preread
; for write operation)

;Save original error code
;Check if read operation

sRestore original error code but
3 leave flags unchanged

sReturn if reading

;Fake "no error" indicator

sMultiply HL ®* DE using iterative ADD with product

sPut 0 on top of stack

3 to act as MS byte of product
sCheck if either multiplicand
3 or multiplier is O

sYes, fake product

sYes, fake product

3This routine will be faster if
3 the smaller value is in DE
;Get MS byte of current DE value
;Check which is smaller

sC set if D < H, so no exchange

sBC = multiplier
;DE = HL = multiplicand

sAdjust count as

3 1 % multiplicand = multiplicand
sADD lcop

sCheck if all iterations completed

sYes, exit

sHL = multiplicand + multiplicand

sHL = MS bytes of result, TOS = part prod.
;Get LS byte of top half of product

;Add one if carry set

jReplace

;Repeat for MS byte

sCountdown on multiplier - 1
sLoop back until all ADDs done

Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System

144

MLDLZ:
01ES 210000 LXI H,0 ;Fake product as either multiplicand
5 or multiplier is O
MLDLX:
O1ES D1 POP D ;Recaver MS part of product
O1E9 C9% RET
3 SUBHL
sSubtract HL - DE.
sEntry parameters
H HL = subtrahend
; DE = subtractor
sExit parameters
H HL = difference
SUBHL :
O1EA 7D MOV AL ;Get LS byte
O1EB 93 SUR E ;Subtract without regard to carry
O1EC &F MoV L,A sPut back into difference
O1ED 7C MOV A H ;Get MS byte
O1EE 9A SBB D ;Subtract including carry
O1EF &7 MoV H, A ;Move back into difference
01F0 C9% RET
s SDLR
3Shift DE,HL right one place (dividing DE,HL by 2)
sEntry parameters
H DE,HL = value to be shifted
sExit parameters
s DE,HL "= value / 2
SDLR:
O1Fi B7 ORA A sClear carry
01F2 EB XCHG 3Shift DE first
01F3 CDF701 CALL SDLR2
01Fé EB XCHG sNow shift HL
sDrop into SDLR2 with carry
;3 set correctly from LS bit
3 of DE
SDLR2: sShift HL right one place
01F7 7C MoV A H ;Get MS byte
O1F8 1F RAR ;Bit 7 set from previous carry,
sBit 0 goes into carry
O1F9 67 MOV H, A sPut shift MS byte back
O1FA 7D MOV AL ;Get LS byte
O1FB 1F RAR sBit 7 = bit 0 of MS byte
O1FC 6&F Mav L,A sPut back into result
01FD C9 RET
s MOVE
;Moves C bytes from HL tc DE
MOVE:
OIFE 7E Mov AM ;Get source byte
O1FF 12 STAX D ;Store in destination
0200 13 INX D sUpdate destination pointer
0201 23 INX H sUpdate source pointer
0202 oD DCR C sDowndate count
0203 C2FEO01 JNZ MOVE ;Get next byte
0206 C9 RET
Figure 5-26. (Continued)

142 The CP/M Programmer’s Handbook

Function 35: Get File Size

Function Code:

C=23H

Entry Parameters: DE = Address of FCB

Exit Parameters: Random record field set in FCB

Example
0023 = B$GETFSIZ EQU 3s ;Get Random File LOGICAL size
0005 = BDOS EQU s :BDOS entry point
FCB: ;File control block
0000 00 FCB$DISK: DR 0 sSearch on default disk drive
0001 45494CAS4EFCBSNAME: DB “FILENAME~ ;File name
0009 545950 FCBS$TYP: DB “TYP’ 3File type
000C 00 FCBSEXTENT: DB o ;Extent
000D 0000 FCR$RESV: DB 0,0 ;Reserved for CP/M
Q00F 00 FCBS$RECUSED: DB o sRecords used in this extent
0010 0000000000FCB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB o} sSequential rec. to read/write
0021 0000 FCB$RANREC: DW 0 sRandom rec. to read/write
0023 00 FCB$RANRECO: DB o sRandom rec. overflow byte (MS)
0024 0E23 MVI €, B$GETFSIZ ;Function code
0026 110000 LXI D,FCB :DE -> file control block
0029 CDOSQ0 CALL BDOS
002C 2A2100 LHLD FCB$RANREC ;Get random record number
sHL = LOGICAL file size
s i.e. the record number of the
s last record
Purpose This function returns the virtual size of the specified file. It does so by setting
the random record number (bytes 33-35) in the specified FCB to the maximum
128-byte record number in the file. The virtual file size is calculated from the
record address of the record following the end of the file. Bytes 33 and 34 form a
16-bit value that contains the record number, with overflow indicated in byte 35. If
byte 35 is 01, this means that the file has the maximum record count of 65,536.

If the function cannot find the file specified by the FCB, it returns with the
random record field set to 0.

You can use this function when you want to add data to the end of an existing
file. By calling this function first, the random record bytes will be set to the end of
file. Subsequent Write Random calls will write out records to this preset address.

Notes Do not confuse the virtual file size with the actual file size. In a random file, if

you write just a single CP/M record to record number 1000 and then call this
function, it will return with the random record number field set in the FCB to
1000—even though only a single record exists in'the file.

For sequential files, this function returns the number of records in the file. In
this case, the virtual and actual file sizes coincide.

Function 36: Set Random Record Number

Function Code: C=24H
Entry Parameters: DE = Address of FCB
Exit Parameters: Random record field set in FCB

Example

Purpose

Notes

Chapter 5: The Basic Disk Operating System 443

0024 = B$SETRANREC EQU 36 ;Set Random Record Number
0005 = BDOS EQU S sBDOS entry point

FCB: sFile control block
0000 00 FCB$DISK: DB (o] sSearch on default disk drive
0001 46494C454EFCBSNAME: DB “FILENAME~ sFile name
0009 545950 FCBR$TYP: DB “TYP” sFile type
Q00C 00 FCBSEXTENT: DB [o] sExtent
Q00D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
00QOF 00 FCB$RECUSED: DB 0 sRecords used in this extent
0010 0000000000FCB$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
Q020 00 FCR$SEQREC: DB [} 3;Sequential rec. to read/write
0021 0000 FCB$RANREC: DW] sRandom rec. to read/write
0023 00 FCB$RANRECO: DB (o] ;Random rec. overflow byte (MS)

... file opened and read
3 or written sequentially...

0024 OE24 MVI C, B$SETRANREC sFunction code
0024 110000 LXI D,FCR sDE -> file control block
0029 CDOSQO CALL BDOS
Q02C 2A2100 LHLD FCB$RANREC sGet random record number

;HL = random record number
that corresponds to the
sequential progress down
the file.

This function sets the random record number in the FCB to the correct value
for the last record read or written sequentially to the file.

This function provides you with a convenient way to build an index file so that
you can randomly access a sequential file. Open the sequential file, and as you read
each record, extract the appropriate key field from the data record. Make the
BDOS Set Random Record request and create a new data record with just the key
field and the random record number. Write the new data record out to the index
file.

Once you have done this for each record in the file, your index file provides a
convenient method, given a search key value, of finding the appropriate CP/M
record in which the data lies.

You can also use this function as a means of finding out where you are currently
positioned in a sequential file—either to relate a CP/M record number to the
position, or simply as a place-marker to allow a repositioning to the same place
later.

Function 37: Reset Logical Disk Drive

Example

Function Code: C=25H
Entry Parameters: DE = Logical drive bit map
Exit Parameters: A = 00H

0025
Q005

B$RESETD EQU 37 tReset Logical Disks
BDOS EQU S sBDOS entry point

444 The CP/M Programmer’s Handbook

Purpose

Notes

sDE = Bit map of disks to be
;s reset

:Bits are = 1 if disk to be
;s reset

;Bits 15 14 13 ... 210
;Disk P O N ... CBA

0000 110200 LXI D, 0000$0000$0000$0010B ;Reset drive B:
0003 OE25 MVI C, B$RESETD sFunction code
0005 CDOS00 CALL BDOS

This function resets individual disk drives. It is a more precise version of the
Reset Disk System function (code 13,0DH), in that you can set specific logical
disks rather than all of them.

The bit map in DE shows which disks are to be reset. The least significant bit of
E represents disk A, and the most significant bit of D, disk P. The bits set to |
indicate the disks to be reset.

Note that this function returns a zero value in A in order to maintain compati-
bility with MP/M.

Use this function when only specific diskettes need to be changed. Changinga
diskette without requesting CP/M to log it in will cause the BDOS to assume that
an error has occurred and to set the new diskette to Read-Only status as a
protective measure.

Function 40: Write Random with Zero-fill

Example

Function Code: C=28H
Entry Parameters: DE = Address of FCB

Exit Parameters: A = Return Code
0028 = B$WRITERANZ EQU 40 sWrite Random with Zerc-Fill
Q005 = BDOS EQU S s BDOS entry point
FCB: sFile control block
0000 00 FCB$DISK: DB (o] ;Gearch on default disk drive
0001 46494CASAEFCBSNAME: DB “FILENAME~ sFile name
0009 545950 FCB$TYP: DB “TYP’ ;File type
000C 00 FCB$EXTENT: DB [d] sExtent
000D 0000 FCB$RESV: DB 0,0 sReserved for CP/M
Q00F 00 FCB$RECUSED: DR Q sRecords used in this extent
0010 0000000000FCB$ARUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB 0 :Sequential rec. to read/write
0021 0000 FCR$RANREC: DW (o] sRandom rec. to read/write
0023 00 FCB$RANRECO: DB [sRandom rec. overflow byte (MS)
0024 D204 RANRECNO: DW 1234 sExample random record number
sRecord will be written from
;s address set by prior
3 SETDMA call
0026 2A2400 LHLD RANRECNOQ ;Get random record number
0029 222100 SHLD FCB$RANREC :Set up file control block
002C 0EZ8 MVI C, B$WRITERANZ sFunction code
Q02E 110000 LX1 D,FCB sDE -> file control block

0031 CDOS00 CALL RDOS sA = 00 if operation successful

Chapter 5: The Basic Disk Operating System 445

A = nonzero if no data in file
specifically @
= 03 —- CP/M could not
close current extent
05 -- directory full
Vé -- attempt to write
beyond end of disk

A

Purpose This function is an extension to the Write Random function described pre-
viously. In addition to performing the Write Random, it will also fill each new
allocation block with 00H’s. Digital Research added this function to assist Micro-
soft with the production of its COBOL compiler—it makes the logic of the file
handling code easier. It also is an economical way to completely fill a random file
with 00H’s. You need only write one record per allocation block; the BDOS will
clear the rest of the block for you.

Notes Refer to the description of the Write Random function (code 34).

