THE PROGRAMMER’S
CP/M° HANDBOOK

THE PROGRAMMER’S
CP/M® HANDBOOK

Andy Johnson-Laird

Berkeley, California

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne/McGraw-Hill at the above address.

CP/M is a registered trademark of Digital Research, Inc.

CP/M-86, MP/M-86, and MP/M II are trademarks of
Digital Research, Inc.

Z80 is a registered trademark of Zilog, Inc.

’
THE PROGRAMMER'S CP/M® HANDBOOK
Copyright ©1983 by Osborne/McGraw-Hill. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 89876543

ISBN 0-88134-103-7 (Paperback Edition)
ISBN 0-88134-119-3 (Hardcover Edition)

Mary Borchers, Acquisitions Editor
Ralph Baumgartner, Technical Editor
Susan Schwartz, Copy Editor

Judy Wohlfrom, Text Design

Yashi Okita, Cover Design

Dedication

Several years ago I was told that “Perfection is an English education, an
American salary, and a Japanese wife.”

Accordingly, T wish to thank the members of Staff at Culford School in
England, who gave me the English education, the people who work with me at
Johnson-Laird Inc. and Control-C Software and our clients, who give me my
American salary, and Mr. and Mrs. Kitagawa, who gave me Kay Kitagawa (who
not only married me but took over where my English grammar left off).

AJ-L.

Acknowledgments

Although this book is not authorized or endorsed by Digital Research, I would
like to express my thanks to Gary Kildall and Kathy Strutynski of Digital
Research, and to Phil Nelson (formerly of Digital Research, now of Victor Tech-
nology) for their help in keeping me on the path to truth in this book. I would also
like to thank Denise Penrose, Marty McNiff, Mary Borchers, and Ralph Baum-
gartner at Osborne/ McGraw-Hill for their apparently inexhaustible patience.

AJ-L.

Contents

- i =
DO P>PN2A0O0VONOCTDEDEWN

Introduction 1

The Structure of CP/M 5

The CP/M File System 17

The Console Command Processor (CCP) 45
The BASIC Disk Operating System 67
The BASIC Input/Output System 147
Building a New CP/M System 183
Writing an Enhanced BIOS 209 |
Dealing with Hardware Errors 295
Debugging a New CP/M System 319
Additional Utility Programs 371

Error Messages 449

ASCII Character Set 465

CP/M Command Summary 469
Summary of BDOS Calls 479
Summary of BIOS Calls 485

Index 487

Outline of Contents
Notation
Example Programs on Diskette

Infroduction

This book is a sequel to the Osborne C P/ M® User Guide by Thom Hogan. It is
a technical book written mainly for programmers who require a thorough knowl-
edge of the internal structure of CP/M — how the various pieces of CP/M work,
how to use CP/M as an operating system, and finally, how to implement CP/M on
different computer systems. This book is written for people who

+ Have been working with microcomputers that run Digital Research’s CP/M
operating system.

+ Understand the internals of the microprocessor world — bits, bytes, ports,
RAM, ROM, and other jargon of the programmer.

* Know how to write in assembly language for the Intel 8080 or Zilog Z80
Central Processing Unit (CPU) chips.

If you don’t have this kind of background, start by getting practical experience
on a system running CP/M and by reading the following books from Osborne/
McGraw-Hill:

* An Introduction to Microcomputers: Volume 1— Basic Concepts
This book describes the fundamental concepts and facts that you need to

1

2 The CP/M Programmer’s Handbook

know about microprocessors in order to program them. If you really need
basics, there is a Volume 0 called The Beginner’s Book.

- 8080A/8085 Assembly Language Programming
This book covers all aspects of writing programs in 8080 assembly language,
giving many examples.

- Osborne CP/M® User Guide (2nd Edition)
This book introduces the CP/M operating system. It tells you how to use
CP/M as a tool to get things done on a computer.

The book you are reading now deals only with CP/M Version 2.2 for the 8080
or Z80 chips. At the time of writing, new versions of CP/M and MP/M (the
multi-user, multi-tasking successor to CP/M) were becoming available. CP/M-86
and MP/M-86 for the Intel 8086 CPU chip and MP/M-II for the 8080 or Z80 chips
had been released, with CP/M 3.0 (8080 or Z80) in the wings. The 8086, although
related architecturally to the 8080, is different enough to make it impossible to
cover in detail in this book; and while MP/M-II and MP/M-86 are similar to
CP/M, they have many aspects that cannot be adequately discussed within the
scope of this book.

Outline of Contents

This book explains topics as if you were starting from the top of a pyramid.
Successive “slices” down the pyramid cover the same material but give more detail.

The first chapter includes a brief outline of the notation used in this book for
example programs written in Intel 8080 assembly language and in the C pro-
gramming language.

Chapter 2 deals with the structure of CP/M, describing its major parts, their
positions in memory, and their functions.

Chapter 3 discusses CP/M’s file system in as much detail as possible, given its
proprietary nature. The directory entry, disk parameter block, and file organiza-
tion are described.

Chapter 4 covers the Console Command Processor (CCP), examining the way
in which you enter command lines, the CP/M commands built into the CCP, how
the CCP loads programs, and how it transfers control to these programs.

Chapter 5 begins the programming section. It deals with the system calls your
programs can make to the high-level part of CP/M, the Basic Disk Operating
System (BDOS).

Chapters 6 through 10 deal with the Basic Input/Output System (BIOS). Thisis
the part of CP/M that is unique to each computer system. Itis the part that youasa
programmer will write and implement for your own computer system.

Chapter 6 describes a standard implementation of the BIOS.

Chapter I: Introduction K]

Chapter 7 describes the mechanism for rebuilding CP/M for a different
configuration.

Chapter 8 tells you how to write an enhanced BIOS.

Chapter 9 takes a close look at how to handle hardware errors—how to detect
and deal with them, and how to make this task easier for the person using the
computer.

Chapter 10 discusses the problems you may face when you try to debug your
BIOS code. It includes debugging subroutines and describes techniques that will
save you time and suffering.

Chapter 11 describes several utility programs, some that work with the features
of the enhanced BIOS in Chapter 8 and some that will work with all CP/M 2
implementations.

Chapter 12 concerns error messages and some oddities that you will discover,
sometimes painfully, in CP/M. Messages are explained and some probable causes
for strange results are documented.

The appendixes contain “ready-reference” information and summaries of
information that you need at your side when designing, coding, and testing
programs to run under CP/M or your own BIOS routines.

Notation

When you program your computer, you will be sitting in front of your terminal
interacting with CP/M and the utility programs that run under it. The sections that
follow describe the notation used to represent the dialog that will appear on your
terminal and the output that will appear on your printer.

Console Dialog

This book follows the conventions used in the Osborne CPIM User Guide,
extended slightly to handle more complex dialogs. In this book

-+ <name> means the ASCII character named between the angle brackets, <
and>. For example,<<BEL>> is the ASCII Bell character, and << HT>>is the
ASCII Horizontal Tab Character. (Refer to Appendix A for the complete
ASCII character set.)

- <cr> means to press the CARRIAGE RETURN key.
123 or a number without a suffix means a decimal number.
100B or a number followed by B means a binary number.

* 0ASH or a number followed by H means a hexadecimal number. A hexa-
decimal number starting with a letter is usually shown with a leading 0 to
avoid confusion.

4 The CP/M Programmer’s Handbook

. Ax means to hold the CONTROL (CTRL) key down while pressing the x key.

- Underline is keyboard input you type. Output from the computer is shown
without underlining.

Assembly Language Program Examples

This book uses Intel 8080 mnemonics throughout as a “lowest common
denominator”—the Z80 CPU contains features absent in the 8080, but not vice
versa. Output from Digital Research’s ASM Assembler is shown so that you can
see the generated object code as well as the source.

High-Level Language Examples

The utility programs described in Chapter 11 are writtenin C,a programming
language which lends itself to describing algorithms clearly without becoming
entangled in linguistic bureaucracy. Cryptic expressions have been avoided in
favor of those that most clearly show how to solve the problem. Ample comments
explain the code.

An excellent book for those who do not know how to program in Cis The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall).
Appendix A of this book is the C Reference Manual.

Example Programs on Diskette

Example programs in this book have been assembled with ASM and tested
with DDT, Digital Research’s Dynamic Debugging Tool. C examples were com-
piled using Leor Zolman’s BDS C Compiler (Version 1.50) and tested using the
enhanced BIOS described in Chapter 8.

All of the source code shown in this book is available on a single-sided,
single-density, 8-inch diskette (IBM 3740 format). Please do not contact Osborne/
McGraw-Hill to order this diskette. Call or write

Johnson-Laird, Inc.
Attn: The CP/M Programmer’s Handbook Diskette
6441 SW Canyon Court
Portland, OR 97221
Tel: (503) 292-6330

The diskette is available for $50 plus shipping costs.

CP/M from Digital Research
The Pieces of CP/M
CP/M Diskette Format
Loading CP/M
Console Command Processor
Basic Disk Operating System
Basic Input/Output System
CCP, BDOS, and BIOS
Interactions

The Structure
of CP/M

This chapter introduces the pieces that make up CP/M — what they are and
what they do. This bird’s-eye view of CP/M will establish a framework to which
later chapters will add more detailed information.

You may have purchased the standard version of CP/M directly from Digital
Research, but it is more likely you received CP/M when you bought your micro-
processor system or its disk drive system. Or, you may have purchased CP/M
separately from a software distributor. In any case, this distributor or the com-
pany that made the system or disk drive will have already modified the standard
version of CP/M to work on your specific hardware. Most manufacturers’ ver-
sions of CP/M have more files on their system diskette than are described here for
the standard Digital Research release.

Some manufacturers have rewritten all the documentation so that you may not
have received any Digital Research CP/M manuals. If this is the case, you should
order the complete set from Digital Research, because as a programmer, you will
need to have them for reference.

5

6 The CP/M Programmer’s Handbook

CP/M from Digital Research

Digital Research provides a standard “vanilla-flavored” version of CP/M that
will run only on the Intel Microcomputer Development System (MDS). The
CP/M package from Digital Research contains seven manuals and an 8-inch,
single-sided, single-density standard IBM 3740 format diskette.

The following manuals come with this CP/M system:

+ An Introduction to CPIM Features and Facilities. This is a brief description
of CP/M and the utility programs you will find on the diskette. It describes
only CP/M version 1.4.

CP/M 2.0 User’s Guide. Digital Research wrote this manual to describe the
new features of CP/M 2.0 and the extensions made to existing CP/M 1.4
features.

« ED: A Context Editor for the CP/M Disk System. By today’s standards, ED
is a primitive line editor, but you can still use it to make changes to files
containing ASCII text, such as the BIOS source code.

« CPIM Assembler (ASM). ASM is a simple but fast assembler that can be
used to translate the BIOS source code on the diskette into machine code.
Since ASM is only a bare-bones assembler, many programmers now use its
successor, MAC (also from Digital Research).

- CP/M Dynamic Debugging Tool (DDT). DDT is an extremely useful pro-
gram that allows you to load programs in machine code form and then test
them, executing the program either one machine instruction at a time or
stopping only when the CPU reaches a specific point in the program.

- CP/M Alteration Guide. There are two manuals with this title, one for CP/M
version 1.4 and the other for 2.0. Both manuals describe, somewhat crypti-
cally, how to modify CP/M.

« CP/M Interface Guide. Again, there are two versions, 1.4 and 2.0. These
manuals tell you how to write programs that communicate directly with
CP/M.

The diskette supplied by Digital Research has the following files:

ASM.COM
The CP/M assembler.

BIOS.ASM
A source code file containing a sample BIOS for the Intel Microcomputer
Development System (MDS). Unless you have the MDS, this file is useful
only as an example of a BIOS.

Chapter 2: The Structure of CP/M 7

CBIOS.ASM
Another source code file for a BIOS. This one is skeletal: There are gaps so
that you can insert code for your computer.

DDT.COM
The Dynamic Debugging Tool program.

DEBLOCK.ASM
A source code file that you will need to use in the BIOS if your computer
uses sector sizes other than 128 bytes. It is an example of how to block and
deblock 128-byte sectors to and from the sector size you need.

DISKDEF.LIB
A library of source text that you will use if you have a copy of Digital
Research’s advanced assembler, MAC.

DUMPASM
The source for an example program. DUMP reads a CP/M disk file and
displays it in hexadecimal form on the console.

DUMP.COM
The actual executable program derived from DUMP.ASM.

ED.COM
The source file editor.

LOAD.COM
A program that takes the machine code file output by the assembler, ASM,
and creates another file with the data rearranged so that you can execute
the program by just typing its name on the keyboard.

MOVCPM.COM
A program that creates versions of CP/M for different memory sizes.

PIP.COM
A program for copying information from one place to another (PIP is
short for Peripheral Interchange Program).

STAT.COM
A program that displays statistics about the CP/M and other information
that you have stored on disks.

SUBMIT.COM
A program that you use to enter CP/M commands automatically. It helps
you avoid repeated typing of long command sequences.

SYSGEN.COM
A program that writes CP/M onto diskettes.

XSUB.COM
An extended version of the SUBMIT program. The files named previously

8 The CP/M Programmer’s Handbook

fall into two groups: One group is used only to rebuild CP/M, while the
other set is general-purpose programming tools.

The Pieces of CP/M

CP/M is composed of the Basic Disk Operating System (BDOS), the Console
Command Processor (CCP), and the Basic Input/Output System (BIOS).

On occasion you will see references in CP/M manuals to something called the
FDOS, which stands for “Floppy Disk Operating System.” This name is given to
the portion of CP/M consisting of both the BDOS and BIOS and is a relic passed
down from the original version. Since it is rarely necessary to refer to the BDOS
and the BIOS combined as a single entity, no further references to the FDOS will
be made in this book.

The BDOS and the CCP are the proprietary parts of CP/M. Unless you are
willing to pay several thousand dollars, you cannot get the source code for them.
You do not need to. CP/M is designed so that all of the code that varies from one
machine to another is contained in the BIOS, and you do get the BIOS source code
from Digital Research. Several companies make specialized BIOSs for different
computer systems. In many cases they, as well as some CP/M hardware manufac-
turers, do not make the source code for their BIOS available; they have put time
and effort into building their BIOS, and they wish to preserve the proprietary
nature of what they have done.

You may have to build a special configuration of CP/M for a specific computer.
This involves no more than the following four steps:

1. Make a version of the BDOS and CCP for the memory size of your
computer.

2. Write a modified version of the BIOS that matches the hardware in your
computer.

3. Write a small program to load CP/M into memory when you press the
RESET button on your computer.

4. Join all of the pieces together and write them out to a diskette.

These steps will be explained in Chapters 7, 8, and 9.

In the third step, you write a small program that loads CP/M into memory
when you press the RESET button on your computer. This program is normally
called the bootstrap loader. You may also see it called the “boot” or even the “cold
start”loader. “Bootstrap” refers to the idea that when the computer is first turned
on, there is no program to execute. The task of getting that very first program into
the computer is, conceptually, as difficult as attempting to pick yourself up off the
ground by pulling on your own bootstraps. In the early days of computing, this
operation was performed by entering instructions manually —setting large banks

Chapter 2: The Structure of CP/M 9

of switches (the computer was built to read the switches as soon as it was turned
on). Today, microcomputers contain some small fragment of a program in “non-
volatile” read-only memory (ROM)— memory that retains data when the com-
puter is turned off. This stored program, usually a Programmable Read Only
Memory (PROM) chip, can load your bootstrap program, which in turn loads
CP/M.

CP/M Diskette Format

The standard version of CP/M is formatted on an 8-inch, single-sided diskette.
Diskettes other than this type will probably have different layouts; hard disks

definitely will be different.
The physical format of the standard 8-inch diskette is shown in Figure 2-1. The

Index Hole
(Marks Sector 1)

Central Hole

Track 76

Floppy Medium

Track 0

Sector 26

Sector 1

Figure 2-1. Floppy disk layout

10 The CP/M Programmer’s Handbook

Sector Track 0 Track 1

1 Bootstrap Loader

2

3

4

S

6

7 Basic Disk
8 Console Operating
o | Gommant | s

g
(BDOS)

11 (CCP) (Last Part)
12

13

14

15

16

17 I

18 I

19 I
3(1) Basic Disk [
» Operating Basic

System Input/Output

;;31 (BDOS) pSystemp
Y (First Part) (BIOS)
26 l ‘

Figure 2-2.

Layout of CP/M on tracks 0 and 1 of floppy disk

diskette has a total of 77 concentric tracks numbered from zero (the outermost) to
76 (the innermost). Each of these tracks is divided radially into 26 sectors. These
physical sectors are numbered from 1 to 26; physical sector zero does not exist.
Each sector has enough space for 128 bytes of data.

Even when CP/M is implemented on a large hard disk with much larger sector
sizes, it still works with 128-byte sectors. The BIOS has extra instructions that
convert the real sectors into CP/M-style 128-byte sectors.

A final note on physical format: The soft-sectored, single-sided, single-density,
8-inch diskette (IBM 3740 format) is the only standard format. Any other formats
will be unique to the hardware manufacturer that uses them. It is unlikely that you
can read a diskette on one manufacturer’s computer if it was written on another’s,
even though the formats appear to be the same. For example, a single-sided,
double-density diskette written on an Intel Development System cannot be read
on a Digital Microsystems computer even though both use double-density format.
If you want to move data from one computer to another, use 8-inch, single-sided,
single-density format diskettes, and it should work.

Chapter 2: The Structure of CP/M 11

In order to see how CP/M is stored on a diskette, consider the first two tracks
on the diskette, track 0 and track 1. Figure 2-2 shows how the data is stored on
these tracks.

Loading CP/M

The events that occur after you first switch on your computer and put the
CP/M diskette into a disk drive are the same as those that occur when you press the
RESET button—the computer generates a RESET signal.

The RESET button stops the central processor unit (CPU). All of the internals
of the CPU are set to an initial state, and all the registers are cleared to zero. The
program counter is also cleared to zero so that when the RESET signal goes away
(it only lasts for a few milliseconds), the CPU starts executing instructions at
location 0000H in memory.

Memory chips, when they first receive power, cannot be relied upon to contain
any particular value. Therefore, hardware designers arrange for some initial
instructions to be forced into memory at location 0000H and onward. It is this feat
that is like pulling yourself up by your own bootstraps. How can you make the
computer obey a particular instruction when there is “nothing” (of any sensible
value) inside the machine?

There are two common techniques for placing preliminary instructions into
memory:

Force-feeding

With this approach, the hardware engineer assumes that when the RESET
signal is applied, some part of the computer system, typically the floppy
disk controller, can masquerade as memory. Just before the CPU is un-
leashed, the floppy disk controller will take control of the computer system
and copy a small program into memory at location 0000H and upward.
Then the CPU is allowed to start executing instructions at location 0000 H.
The disk controller preserves the instructions even when power is off
because they are stored in nonvolatile PROM-based firmware. These
instructions make the disk controller read the first sector of the first track
of the system diskette into memory and then transfer control to it.

Shadow ROM

This is a variation of the force-feeding technique. The hardware manu-
facturer arranges some ROM at location 0000H. There is also some
normal read/write memory at location 0000H, but this is electronically
disabled when the RESET signal has been activated. The CPU, unleashed
at location 0000 H, starts to execute the ROM instruction. The first act of
the ROM program is to copy itself into read/write memory at some
convenient location higher up in memory and transfer control of the
machine up to this copy. Then the real memory at location 0000H can be
turned on, the ROM turned off, and the first sector on the disk read in.

42 The CP/M Programmer’s Handbook

With either technique, the result is the same. The first sector of the disk is read
into memory and control is transferred to the first instruction contained in the
sector.

This first sector contains the main CP/M bootstrap program. This program
initializes some aspects of the hardware and then reads in the remainder of track 0
and most of the sectors on track 1 (the exact number depends on the overall length
of the BIOS itself). The CP/M bootstrap program will contain only the most
primitive diskette error handling, trying to read the disk over and over again if the
hardware indicates that it is having problems reading a sector.

The bootstrap program loads CP/M to the correct place in memory; the load
address is a constant in the bootstrap. If you need to build a version of CP/M that
uses more memory, you will need to change this load address inside the bootstrap
as well as the address to which the bootstrap will jump when all of CP/M has been
read in. This address too is a constant in the bootstrap program.

The bootstrap program transfers control to the first instruction in the BIOS,
the cold boot entry point. “Cold” implies that the operation is starting cold from
an empty computer.

The cold boot code in the BIOS will set up the hardware in your computer.
That is, it programs the various chips that control the speed at which serial ports
transmit and receive data. It initializes the serial port chips themselves and
generally readies the computer system. Its final act is to transfer control to the first
instruction in the BDOS in order to start up CP/M proper.

Once the BDOS receives control, it initializes itself, scans the file directory on
the system diskette, and hands over control to the CCP. The CCP then outputs the
“A>”prompt to the console and waits for you to enter acommand. CP/M is then
ready to do your bidding.

At this point, it is worthwhile to review which CP/M parts are in memory,
where in memory they are, and what functions they perform.

This overview will look at memory first. Figure 2-3 shows the positions in
memory of the Console Command Processor, the Basic Disk Operating System,
and the Basic Input/Output System.

By touching upon these major memory components —the CCP, BDOS, and
BIOS —this discussion will consider which modules interact with them, how
requests for action are passed to them, and what functions they can perform.

Console Command Processor

As you can see in Figure 2-3, the CCP is the first part of CP/M that is
encountered going “up” through memory addresses. This is significant when you
consider that the CCP is only necessary in between programs. When CP/Misidle,
it needs the CCP to interact with you, to accept your next command. Once CP/M
has started to execute the command, the CCP is redundant; any console interac-
tion will be handled by the program you are running rather than by the CCP.

Chapter 2: The Structure of CPM 43

Locations in Locations in
Hexadecimal Decimal
FFFFH~| ~65535

Basic Input/Output System
(BIOS)
FC80H>}t ——-— e — — <+ 64640
Basic Disk Operating System
(BDOS)
B0~ e Snsoie Command Processor | 00
(CCP
DESOH) 56960
~ Memory Available for A
Programs ~
0100H 256
PM
0000H~ CP/M Reserved Area 0

Figure 2-3. Memory layout with CP/M loaded

Therefore, the CCP leads a very jerky existence in memory. It is loaded when you

first start CP/M. When you ask CP/M, via the CCP, to execute a program, this

program can overwrite the CCP and use the memory occupied by the CCP for its

own purposes. When the program you asked for has finished, CP/M needs to
: reload the CCP, now ready for its interaction with you. This process of reloading
| the CCP is known as a warm boot. In contrast with the cold boot mentioned
before, the warm boot is not a complete “start from cold”; it’s just a reloading of
the CCP. The BDOS and BIOS are not touched.

How does a program tell CP/M that it has finished and that a warm boot must
be executed? By jumping to location 0000 H. While the BIOS was initializing itself
during the cold boot routine, it put an instruction at location 0000H to jump to the
warm boot routine, which is also in the BIOS. Once the BIOS warm boot routine

14 The CP/M Programmer’s Handbook

has reloaded the CCP from the disk, it will transfer control to the CCP. (The cold
and warm boot routines are discussed further in Chapter 6.)

This brief description indicates that every command you enter causes a pro-
gram to be loaded, the CCP to be overwritten, the program to run, and the CCP to
be reloaded when the program jumps to location 0000H on completing its task.
This is not completely true. Some frequently needed commands reside in the CCP.
Using one of these commands means that CP/M does not have to load anything
from a diskette; the programs are already in memory as part of the CCP. These
commands, known as “intrinsic” or “resident” commands, are listed here with a
brief description of what they do. (All of them are described more thoroughly in
Chapter 4.) The “resident” commands are

DIR Displays which files are on a diskette

ERA Erases files from a diskette

REN Changes the names of files on diskette

TYPE Displays the contents of text files on the console
SAVE Saves some of memory as a file on diskette

USER Changes User File Group.

Basic Disk Operating System

The BDOS is the heart of CP/M. The CCP and all of the programs that you run
under CP/M talk to the BDOS for all their outside contacts. The BDOS performs
such tasks as console input/ output, printer output, and file management (creating,
deleting, and renaming files and reading and writing sectors).

The BDOS performs all of these things in a rather detached way. It is con-
cerned only with the logical tasks at hand rather than the detailed action of getting
a sector from a diskette into memory, for example. These “low-level” operations
are done by the BDOS in conjunction with the BIOS.

But how does a program work with the BDOS? By another strategically placed
jump instruction in memory. Remember that the cold boot placed the jump to the
BIOS warm boot routine in location 0000H. At location 0005H, it puts a jump
instruction that transfers control up to the first instruction of the BDOS. Thus,
any program that transfers control to location 0005H will find its way into the
BDOS. Typically, programs make a CALL instruction to location 0005H so that
once the BDOS has performed the task at hand, it can return to the calling
program at the correct place. The program enlisting the BDOS’s help puts special
values into several of the CPU registers before it makes the call to location 0005H.
These values tell the BDOS what operation is required and the other values needed
for the specific operation.

Chapter 2: The Structure of CP/M 15

Basic Input/Output System

As mentioned before, the BDOS deals with the input and output of informa-
tion in a detached way, unencumbered by the physical details of the computer
hardware. It is the BIOS that communicates directly with the hardware, the ports,
and the peripheral devices wired to them.

This separation of logical input/output in the BDOS from the physical input/
output in the BIOS is one of the major reasons why CP/M is so popular. It means
that the same version of CP/M can be adapted for all types of computers,
regardless of the oddities of the hardware design. Digital Research will tell you
that there are over 200,000 computers in the world running CP/M. Just about all of
them are running identical copies of the CCP and BDOS. Only the BIOS is
different. If you write a program that plays by the rules and only interacts with the
BDOS to get things done, it will run on almost all of those 200,000 computers
without your having to change a single line of code.

You probably noticed the word “almost” in the last paragraph. Sometimes
programmers make demands of the BIOS directly rather than the BDOS. This
leads to trouble. The BIOS should be off limits to your program. You need to know
what it is and how it works in order to build a customized version of CP/M, but
you must never write programs that talk directly to the BIOS if you want them to
run on other versions of CP/M.

Now that you understand the perils of talking to the BIOS, it is safe to describe
how the BDOS communicates with the BIOS. Unlike the BDOS, which has a
single entry point and uses a value in a register to specify the function to be
performed, the BIOS has several entry points. The first few instructions in the
BIOS are all independent entry points, each taking up three bytes of memory. The
BDOS will enter the BIOS at the appropriate instruction, depending on the
function to be performed. This group of entry points is similar in function to a
railroad marshalling yard. It directs the BDOS to the correct destination in the
BIOS for the function it needs to have done. The entry point group consists of a
series of JUMP instructions, each one three bytes long. The group as a whole is
called the BIOS jump table, or jump vector. Each entry point has a predefined
meaning. These points are detailed and will be discussed in Chapter 6.

CCP, BDOS, and BIOS Interactions

Figure 2-4 summarizes the functions that the CCP, BDOS, and BIOS perform,
the ways in which these parts of CP/M communicate among themselves, and the
way in which one of your programs running under CP/M interacts with the
BDOS.

16 The CP/M Programmer’s Handbook

Basic
Input/Output
System
(BIOS)

Basic
Disk
Operating
System
(BDOS)

Console
Command
Processor
(CCP)

Handles all physical I/O to

console, printer, serial 1/O
and disks (customized by user)

Entry Points

in JMP Table [*

Handles all logical 1/O to
console, printer, serial 1/0
including file management on
disk system.

(Not changed by user)

Handles communication with console;

accepts command lines; has some
commands built-in, or loads them
from disk (Not changed by user)

Program running

under CP/M

CALL S to make CP/M
requests

— JMP 0 when finished
processing

Location
— 5 JMP BDOS

—0 JMP RESTART

Figure 2-4. CP/M’s functional breakdown

How CP/M Views the Disk
The Making of a File

Disk Definition Tables

File Organizations

The CP/M File
System

This chapter gives you a close look at the CP/M file system. The Basic Disk
Operating System (BDOS) is responsible for this file system: It keeps a directory
of the files on disk, noting where data are actually stored on the disk. Because the
file system automatically keeps track of this information, you can ignore the
details of which tracks and sectors on the disk have data for a given file.

How CP/M Views the Disk

To manage files on the disk, CP/M works with the disk in logical terms rather
than in physical terms of tracks and sectors. CP/M treats the disk as three major
areas.

These are the reserved area, which contains the bootstrap program and CP/M
itself; the file directory, containing one or more entries for each file stored on the
disk; and the data storage area, which occupies the remainder of the disk. You will

17

18 The CP/M Programmer’s Handbook

be looking at how CP/M allocates the storage to the files as your programs create
them.

The Basic Input/ Output System (BIOS) has built-in tables that tell CP/M the
respective sizes of the three areas. These are the disk definition tables, described
later in this chapter.

Allocation Blocks

Rather than work with individual 128-byte sectors, CP/M joins several of these
sectors logically to form an allocation block. Typically, an allocation block will
contain eight 128-byte sectors (which makes it 1024 or 1K bytes long). This makes
for easier disk manipulation because the magnitude of the numbers involved is
reduced. For example, a standard 8-inch, single-density, single-sided floppy disk
has 1950 128-byte sectors; hard disks may have 120,000 or more. By using
allocation blocks that view the disk eight sectors at a time, the number of storage
units to be managed is substantially reduced. The total number is important
because numeric information is handled as 16-bit integers on the 8080 and Z80
microprocessors, and therefore the largest unsigned number possible is OFFFFH
(65,535 or 64K decimal).

Whenever CP/M refers to a specific allocation block, all that is needed is a
simple number. The first allocation block is number 0, the next is number 1, and so
on, up to the total remaining capacity of the disk.

The typical allocation block contains 1024 (1K) bytes, or eight 128-byte
sectors. For the larger hard disks, the allocation block can be 16,384 (16K) bytes,
which is 128 128-byte sectors. CP/M is given the allocation via an entry in the disk
definition tables in the BIOS.

The size of the allocation block is not arbitrary, but it is a compromise. The
originator of the working BIOS for the system —either the manufacturer or the
operating system’s designer— chooses the size by considering the total storage
capacity of the disk. This choice s tempered by the fact that if a file s created with
only a single byte of data in it, that file would be given a complete allocation block.
Large allocation blocks can waste disk storage if there are many small files, but
they can be useful when a few very large files are called for.

This can be seen better by considering the case of a I K-byte allocation block. If
you create a very small file containing just a single byte of data, you will have
allocated an entire allocation block. The remaining 1023 bytes will not be used.
You can use them by adding to the file, but when you first create this one-byte file,
they will be just so much dead space. This is the problem: Each file on the disk will
normally have one partly filled allocation block. If these blocks are very large, the
amount of wasted (unused) space can be very large. With 16K-byte blocks, a
10-megabyte disk with only 3 megabytes of data on it could become logically full,
with all allocation blocks allocated.

On the other hand, when you use large allocation blocks, CP/M’s performance
is significantly improved because the BDOS refers to the file directory less

Chapter 3: The CP/M File System 19

frequently. For example, it can read a 16K-byte file with only a single directory
reference.

Therefore, when considering block allocation, keep the following questions in
mind:

How big is the logical disk?
With a larger disk, you can tolerate space wasted by incomplete allocation
blocks.

What is the mean file size?
If you anticipate many small files, use small allocation blocks so that you
have a larger “supply” of blocks. If you anticipate a smaller number of large
files, use larger allocation blocks to get faster file operations.

When a file is first created, it is assigned a single allocation block on the disk.
Which block is assigned depends on what other files you already have on the disk
and which blocks have already been allocated to them. CP/M maintains a table of
which blocks are allocated and which are available. As the file accumulates more
data, it will fill up the first allocation block. When this happens, CP/M will extend
the file and allocate another block to it. Thus, as the file grows, it occupies more
blocks. These blocks need not be adjacent to each other on the disk. The file can
exist as a series of allocation blocks scattered all over the disk. However, when you
need to see the entire file, CP/M presents the allocation blocks in the correct order.
Thus, application programs can ignore allocation blocks. CP/M keeps track of
which allocation blocks belong to each file through the file directory.

The File Directory

Extents

Thefile directory is sandwiched between the reserved area and the data storage
area on the disk. The actual size of the directory is defined in the BIOS’s disk
definition tables. The directory can have some binary multiple of entries in it, with
one or more entries for each file that exists on the disk. For a standard 8-inch
floppy diskette, there will be room for 64 directory entries; for a hard disk, 1024
entries would not be unusual. Each directory entry is 32 bytes long.

Simple arithmetic can be used to calculate how much space the directory
occupies on a standard floppy diskette. For example, for a floppy disk the formula
is 64 X 32 = 2048 bytes = 2 allocation blocks of 1024 bytes each.

The directory entry contains the name of the file along with a list of the
allocation blocks currently used by the file. Clearly, a single 32-byte directory entry
cannot contain all of the allocation blocks necessary for a 5-megabyte file,
especially since CP/M uses only 16 bytes of the 32-byte total for storage of
allocation block numbers.

Often CP/M will need to control files that need many allocation blocks. It does
this by creating more than one directory entry. Second and subsequent directory

20 The CP/M Programmer’s Handbook

entries have the same file name as the first. One of the other bytes of the directory
entry is used to indicate the directory entry sequence number. Each new directory
entry brings with it a new supply of bytes that can be used to hold more allocation
block numbers. In CP/M jargon, each directory entry is called an exzent. Because
the directory entry for each extent has 16 bytes for storing allocation block
numbers, it can store either 16 one-byte numbers or 8 two-byte numbers. There-
fore, the total number of allocation blocks possible in each extent is either 8 (for
disks with more than 255 allocation blocks) or 16 (for smaller disks).

File Control Blocks

Before CP/M can do anything with a file, it has to have some control informa-
tion in memory. This information is stored in a file control block, or FCB. The
FCB has been described as a motel for directory entries—a place for them to
reside when they are not at home on the disk. When operations on a file are
complete, CP/M transforms the FCB back into a directory entry and rewrites it
over the original entry. The FCB is discussed in detail at the end of this chapter.

As a summary, Figure 3-1 shows the relationships between disk sectors,
allocation blocks, directory entries, and file control blocks.

The Making of a File

To reinforce what you already know about the CP/M file system, this section
takes you on a “walk-through” of the events that occur when a program running
under CP/M creates a file, writes data to it, and then closes the file.

Assume that a program has been loaded in memory and the CPU is about to
start executingit. First, the program will declare space in memory foran FCBand
will place some preset values there, the most important of which is the file name.
The area in the FCB that will hold the allocation block numbers as they are
assigned is initially filled with binary 0’s. Because the first allocation block that is
available for file data is block 1, an allocation block number of 0 will mean that no
blocks have been allocated.

The program starts executing. It makes a call to the BDOS (via location
0005H) requesting that CP/M create a file. It transfers to the BDOS the address in
memory of the FCB. The BDOS then locates an available entry in the directory,
creates a new entry based on the FCB in the program, and returns to the program,
ready to write data to the file. Note that CP/M makes no attempt to see if there is
already a file of the same name on the disk. Therefore, most real-world programs
precede a request to make a file with a request to delete any existing file of the same
name.

The program now starts writing data to the file, 128-byte sector by 128-byte
sector. CP/ M does not have any provision for writing one byte at a time. It handles
data sector-by-sector only, flushing sectors to the disk as they become full.

Chapter 3: The CP/M File System 24

128 Bytes

BN
w
=)}
-
o0

Physical I 5 3

Sectors S
NG _ M
T ’
Allocation Blocks L
(From 1024 to 0 1 2 3
b
<

16,384 bytes)

Allocation Blocks Containing

Diskette
Reserved Area File Directory File Data and Unused Blocks
A -\ M
S N N A~
—{ ¢
Reserved Area
(Normally 2 Tracks)
)2
<
Directory entry “points”
Memory to blocks used in file

File Control Block created from
FCB directory entry in order to
process file in a program

Figure 3-4. The hierarchical relationship between sectors, allocation blocks,
directory entires, and FCBs

The first time a program asks CP/M (via a BDOS request) to write a sector
onto the file on the disk, the BDOS finds an unused allocation block and assigns it
to the file. The number of the allocation block is placed inside the FCB in memory.
As each allocation block is filled up, a new allocation block is found and assigned,
and its number is added to the list of allocation blocks inside the FCB. Finally,
when the FCB has no more room for allocation block numbers, the BDOS

Writes an updated directory entry out to the disk.

22 The CP/M Programmer’s Handbook

- Seeks out the next spare entry in the directory.

. Resets the FCB in memory to indicate that it is now working on the second
extent of the file.

. Clears out the allocation block area in the FCB and waits for the next sector
from the program.

Thus the process continues. New extents are automatically opened until the
program determines that it is time to finish, writes the last sector out to the disk,
and makes a BDOS request to close the file. The BDOS then converts the FCB
into a final directory entry and writes to the directory.

Directory Entry

The directory consists of a series of 32-byte entries with one or more entries for
each file on the disk. The total number of entries is a binary multiple. The actual
number depends on the disk format (it will be 64 for a standard floppy disk and
perhaps 2048 for a hard disk).

Figure 3-2 shows the detailed structure of a directory entry. Note that the
description is actually Intel 8080 source code for the data definitions you would
need in order to manipulate a directory entry. It shows a series of EQU instruc-
tions — equate instructions, used to assign values or expressions to a label, and in
this case used to access an entry. It also shows a series of DS or define storage
instructions used to declare storage for an entry. The comments on each line
describe the function of each of the fields. Where data elements are less thana byte
long, the comment identifies which bits are used.

As you study Figure 3-2, you will notice some terminology that as yet has not
been discussed. This is described in detail in the sections that follow.

File User Number (Byte 0) The least significant (low order) four bits of byte 0 in the
directory entry contain a number in the range 0 to 15. This is the user number in
which the file belongs. A better name for this field would have been file group
number. It works like this: Suppose several users are sharing a computer system
with a hard disk that cannot be removed from the system without a lot of trouble.
How can each user be sure not to tamper with other users’ files? One simple way
would be for each to use individual initials as the first characters of any file names.
Then each could tell at a glance whether a file was another’s and avoid doing
anything to anyone else’s files. A drawback of this scheme is that valuable
character positions would be used in the file name, not to mention the problems
resulting if several users had the same initials.

The file user number is prefixed to each file name and can be thought of as part
of the name itself, When CP/M is first brought up, User 0 is the default user — the
one that will be chosen unless another is designated. Any files created will go into
the directory bearing the user number of 0. These files are referred to as being in
user area 0. However, with a shared computer system, arrangements must be made

Chapter 3: The CP/M File System 23

for multiple user areas. The USER command makes this possible. User numbers
and areas can range from 0 through 15. For example, a user in area 7 would not be
able to get a directory of, access, or erase files in user area 5.

This user-number byte serves a second purpose. If this byte is set to a value of
0ESH, CP/M considers that the file directory entry has been deleted and com-
pletely ignores the remaining 31 bytes of data. The number 0OE5SH was not chosen
whimsically. When IBM first defined the standard for floppy diskettes, they chose
the binary pattern 11100101 (OESH) as a good test pattern. A new floppy diskette
formatted for use has nothing but bytes of OESH on it. Thus, the process of erasing
a file is a “logical” deletion, where only the first byte of the directory entry is
changed to OESH. If you accidentally delete a file (and provided that no other
directory activity has occurred) it can be resurrected by simply changing this first
byte back to a reasonable user number. This process will be explained in Chapter
11.

FileName andType (Bytes1-8and 9-11) Asyou can see from Figure 3-2, the file name
in a directory entry is eight bytes long; the file type is three. These two fields are
used to name a file unambiguously. A file name can be less than eight characters
and the file type less than three, but in these cases, the unused character positions
are filled with spaces.

Whenever file names and file types are written together, they are separated by a
period. You do not need the period if you are not using the file type (which is the
same as saying that the file type is all spaces). Some examples of file names are

READ. ME

LONGNAME.TYP

1

1.2
0000 = FDE$USER EQU [¢] ;File user number (LS 4 bits)
0001 = FDE$NAME EQU 1 ;File name (8 bytes)
0009 = FDE$TYP EQU 9 ;File type

;0ffsets for bits used in type
0009 = FDE$RQ EQU 9 ;Bit 7 = 1 - Read only
000A = FDE$SYS EQU 10 sBit 7 = 1 - System status
000B = FDE$CHANGE EQU 1 sBit 7 = 0 = File Written To
000C = FDESEXTENT EQU 12 sExtent number
313, 14 reserved for CP/M
000F = FDE$RECUSED EQU 15 sRecords used in this extent
0010 = FDE$ABUSED EQU 16 sAllocation blocks used
7
12

0000 FD$USER: DS sFile user number
0001 FD$NAME : DS 8 sFile name
0009 FD$TYP: DS 3 ;File type
000C FD$EXTENT: DS 1 ;Extent
000D FD$RESV: DS 2 sReserved for CFP/M
[elelel 3 FD$RECUSED: DS 1 sRecords used in this extent
0010 FD$ABUSED: Ds 16 sAllocation blocks used

Figure 3-2. Data declarations for CP/M’s file directory entries

24 The CP/M Programmer’s Handbook

A file name and type can contain the characters A through Z, 0 through 9, and
some of the so-called “mark” characters such as “/ ” and “—”. You can also use
lowercase letters, but be careful. When you enter commands into the system using
the CCP, it converts all lowercases to uppercases, so it will never be able to find
files that actually have lowercase letters in their directory entries. Avoid using the
“mark” characters excessively. Ones you can use are

'1@#8%()—t/

Characters that you must not use are

<> ,50=7%[]

These characters are used by CP/M in normal command lines, so using them in file
names will cause problems.

You can use odd characters in file names to your advantage. For example, if
you create files with nongraphic characters in their names or types, the only way
you can access these files will be from within programs. You cannot manipulate
these files from the keyboard except by using ambiguous file names (described in
the next section). This makes it more difficult to erase files accidentally since you
cannot specify their names directly from the console.

Ambiguous File Names CP/M has the capability to refer to one or more file names by

File Type

using special “wild card” characters in the file names. The “?” is the main wildcard
character. Whenever you ask CP/M to do something related to files, it will match a
“?” with any character it finds in the file name. In the extreme case, a file name and

As another example, all the chapters of this book were held in files called
“CHAP1.DOC,” “CHAP2.DOC,” and so on. They were frequently referred to,
however, as “CHAP??2.DOC.” Why two question marks? If only one had been
used, for example, “CHAP?2.DOC,” CP/M would not have been able to match this
with “CHAP10.DOC” nor any other chapter with two digits. The matching that
CP/M does is strictly character-by-character.

Because typing question marks can be tedious and special attention must be
paid to the exact number entered, a convenient shorthand is available. The asterisk
character “*” can be used to mean “as many ?’s as you need to fill out the name or

could also be rewritten “CHAP*.DOC.”

The use of “+” is allowed only when you are entering file names from the
console. The question mark notation, however, can be used for certain BDOS
operations, with the file name and type field in the FCB being set to the “?” as
needed.

Conventions Although you are at liberty to think up file names without
constraint, file types are subject to convention and, in one or two cases, to the
mandate of CP/M itself.

Chapter 3: The CP/M File System

The types that will cause problems if you do not use them correctly are

ASM
Assembly language source for the ASM program

.MAC
Macro assembly language

.HEX
Hexadecimal file output by assemblers

.REL
Relocatable file output by assemblers

.COM
Command file executed by entering its name alone

.PRN
Print file written to disk as a convenience

.LIB
Library file of programs

.SUB
Input for CP/M SUBMIT utility program

Examples of conventional file types are

.C
C source code

.PAS
Pascal source code

.COB
COBOL source code

.FTN

FORTRAN source code
APL

APL programs
ITXT

Text files

.DOC
Documentation files

UANT
Intermediate files

.DTA
Data files

25

26

The CP/M Programmer’s Handbook

ADX
Index files

388
Temporary files

The file type is also useful for keeping several copies of the same file, for
example, “TEST.001,” “TEST.002,” and so on.

File Status Each one of the states Read-Only, System, and File Changed requires only a
single bit in the directory entry. To avoid using unnecessary space, they have been
slotted into the three bytes used for the file type field. Since these bytes are stored
as characters in ASCII (which is a seven-bit code), the most significant bit is not
used for the file type and thus is available to show status.

Bit 7 of byte 9 shows Read-Only status. As its name implies, if a file is set to be
Read-Only, CP/M will not allow any data to be written to the file or the file to be
deleted.

If a file is declared to be System status (bit 7 of byte 10), it will not show up
when you display the file directory. Nor can the file be copied from one place to
another with standard CP/M utilities such as PIP unless you specifically ask the
utility to do so. In normal practice, you should set your standard software tools
and application programs to be both Read-Only and System status/ Read-Only, so
that you cannot accidentally delete them, and System status, so that they do not
clutter up the directory display.

The File Changed bit (bit 7 of byte 11) is always set to 0 when you close a file to
which you have been writing. This can be useful in conjunction with a file backup
utility program that sets this bit to 1 whenever it makes a backup copy. Just by
scanning the directory, this utility program can determine which files have changed
since it was last run. The utility can be made to back up only those files that have
changed. This is much easier than having to remember which files you have
changed since you last made backup copies.

With a floppy disk system, there is less need to worry about backing up ona
file-by-file basis — it is just as easy to copy the whole diskette. This system is useful,
however, with a hard disk system with hundreds of files stored on the disk.

File Extent (Byte 12) Each directory entry represents a file extent. Byte 12 in the directory
entry identified the extent number. If you have a file of less than 16,384 bytes, you
will need only one extent—number 0. If you write more information to thie file,
more extents will be needed. The extent number increases by 1 as each new extent
is created.

The extent number is stored in the file directory because the directory entries
are in random sequence. The BDOS must do a sequential search from the top of
the directory to be sure of finding any given extent of a file. If the directory is large,
as it could be on a hard disk system, this search can take several seconds.

Chapter 3: The CP/M File System 27

Reserved Bytes 13 and 14 These bytes are used by the proprietary parts of CP/M’s file
system. From your point of view, they will be set to 0.

Record Number (Byte 15) Byte 15 contains a count of the number of records (128-byte
sectors) that have been used in the last partially filled allocation block referenced
in this directory entry. Since CP/M creates a file sequentially, only the most recent-
ly allocated block is not completely full.

Disk Map (Bytes 16-31) Bytes 16-31 store the allocation block numbers used by each
extent. There are 16 bytes in this area. If the total number of allocation blocks (as
defined by you in the BIOS disk tables) is less than 256, this area can hold as many
as 16 allocation block numbers. If you have described the disk as having more than
255 allocation blocks, CP/M uses this area to store eight two-byte values. In this
case allocation blocks can take on much larger values.

A directory entry can store either 8 or 16 allocation block numbers. If the file
has not yet expanded to require this total number of allocation blocks, the unused
positions in the entry are filled with zeros. You may think this would create a
problem because it appears that several files will have been allocated block 0 over
and over. In fact, there is no problem because the file directory itself always
occupies block 0 (and depending on its size several of the blocks following). For all
practical purposes, block 0 “does not exist,” at least for the storage of file data.

Note that if, by accident, the relationship between files and their allocation
blocks is scrambled—that is, either the data in a given block is overwritten, or two
or more active directory entries contain the same block number—CP/M cannot
access information properly and the disk becomes worthless.

Several commercially available utility programs manipulate the directory. You
can use them to inspect and change a damaged directory, reviving accidentally
erased files if you need to. There are other utilities you can use to logically remove
bad sectors on the disk. These utilities find the bad areas, work backward from the
track and sector numbers, and compute the allocation block in which the error
occurs. Once the block numbers are known, they create a dummy file, either in
user area 15 or, in some cases, in an “impossible” user area (one greater than 15),
that appears to “own” all the bad allocation blocks.

A good utility program protects the integrity of the directory by verifying that
each allocation block is “owned” by only one directory entry.

Disk Definition Tables

As mentioned previously, the BIOS contains tables telling the BDOS how to
view the disk storage devices that are part of the computer system. These tables are
built by you. If you are using standard 8-inch, single-sided, single-density floppy

28 The CP/M Programmer’s Handbook

diskettes, you can use the examples in the Digital Research manual CP/M 2
Alteration Guide. But if you are using some other, more complex system, you must
make some careful judgments. Any mistakes in the disk definition tables can
create serious problems, especially when you try to correct diskettes created using
the erroneous tables. You, as a programmer, must ensure the correctness of the
tables by being careful.

One other point before looking at table structures: Because the tables exist and
define a particular disk “shape” does not mean that such a disk need necessarily be
connected to the system. The tables describe logical disks, and there is no way for
the physical hardware to check whether your disk tables are correct. You may have
a computer system with a single hard disk, yet describe the disk as though it were
divided into several logical disks. CP/M will view each such “disk” independently,
and they should be thought of as separate disks.

Disk Parameter Header Table

This table is the starting point in the disk definition tables. It is the topmost
structure and contains nothing but the addresses of other structures. There is one
entry in this table for each logical disk that you choose to describe. There is an
entry point in the BIOS that returns the address of the parameter header table fora
specific logical disk.

An example of the code needed to define a disk parameter header table is
shown in Figure 3-3.

Sector Skewing (Skewtable) To define sector skewing, also called sector interlacing,
picture a diskette spinning in a disk drive. The sectors in the track over which the
head is positioned are passing by the head one after another —sector 1, sector 2,
and so on—until the diskette has turned one complete revolution. Then the
sequence repeats. A standard 8-inch diskette has 26 sectors on each track, and the
disk spins at 360 rpm. One turn of the diskette takes 60/360 seconds, about 166
milliseconds per track, or 6 milliseconds per sector.

Now imagine CP/M loading a program from such a diskette. The BDOS takes
a finite amount of time to read and process each sector since it reads only a single
sector at a time. It has to make repeated reads to load a program. By the time the
BDOS has read and loaded sector n, it will be too late to read sector n +1. This
sector will have already passed by the head and will not come around for another
166 milliseconds. Proceeding in this fashion, almost 414 seconds are needed to read
one complete track.

This problem can be solved by simply numbering the sectors logically so that
there are several physical sectors between each logical sector. This procedure,
called sector skewing or interlace, is shown in Figure 3-4. Note that unlike physical
sectors, logical sectors are numbered from 0 to 25.

Figure 3-4 shows the standard CP/M sector interlace for 8-inch, single-sided,
single-density floppy diskettes. You see that logical sector 0 has six sectors between

Chapter 3: The CP/M File System

29

DPBASE: ;Base of the parameter header
; (used to access the headers)
0000 1000 DW SKEWTABLE ;Pointer to logical-to-physical
3 sector conversion table
0002 0000 DW o] ;Scratch pad areas used by CP/M
0004 0000 DW o]
0006 0000 DW o]
0008 2A00 DW DIRBUF ;Pointer to Directory Buffer
3 work area
000A AAOO DW DPBO ;Pointer to disk parameter block
000C B900O DW WACD sPointer to work area (used to
3 check for changed diskettes)
O000E C900 DW ALVECO sPointer to allocation vector
H
H
H The following equates would normally be derived from
H values found in the disk parameter Block.
H They are shown here only for the sake of completeness.
4
O03F = NODE EQU 63 sNumber of directery entries 1
O00F2 = NOAB EQU 242 sNumber of allocation blocks
7
H Example data definitions for those objects pointed
H to by the disk parameter header
;
SKEWTABLE: ;Sector skew table.
3 Indexed by logical sector
0010 01070D13 DB 01,07,13,19 sLogical sectors 0,1,2,3
0014 19050B11 DB 25,05,11,17 $4,5,6,7
0018 1703090F DB 23,03,09,15 38,9,10,11
001C 1502080E DB 21,02,08,14 $12,13,14,15
0020 141A060C DB 20,26,06,12 316,17,18,19
0024 1218040A DB 18,24,04,10 320,21,22,23
0028 1016 DB 16,22 324,25
;
002A DIRBUF: DS 128 sDirectory buffer
00AA DPBO: Ds 15 sDisk parameter block
sThis is normally a table of
;s constants.
3A dummy definition is shown
3 here
00B? WACD: DS (NODE+1)/4 sWork area to check directory
30nly used for removable media
00C9 ALVECO: DS (NOAB/8)+1 sAllocation vector #0
sNeeds 1 bit per allocation
;3 block

Figure 3-3.

Data declarations for a disk parameter header

itand logical sector 1. There is a similar gap between each of the logical sectors, so
that there are six “sector times” (about 38 milliseconds) between two adjacent
logical sectors. This gives ample time for the software to access each sector.
However, several revolutions of the disk are still necessary to read every sector in
turn. In Figure 3-4, the vertical columns of logical sectors show which sectors are
read on each successive revolution of the diskette.

The wrong interlace can strongly affect performance. It is not a gradual effect,
either; if you “miss” the interlace, the perceived performance will be very slow. In
the example given here, six turns of the diskette are needed to read the whole
track — this lasts one second as opposed to 4/ without any interlacing. But don’t
imagine that you can change the interlace with impunity; files written with one
interlace stay that way. You must be sure to read them back with the same interlace
with which they were written.

30 The CP/M Programmer’s Handbook

Some disk controllers can simplify this procedure. When you format the
diskette, they can write the sector addresses onto the diskette with the interlace
already built in. When CP/M requests sector n, the controller’s electronics wait
until they see the requested sector’s header fly by. They then initiate the read or
write operation. In this case you can embed the interlace right into the formatting
of the diskette.

Because the wrong interlace gives terrible performance, it is easy to know when
you have the right one. Some programmers use the time required to format a
diskette as the performance criterion to optimize the interlace. This is not good
practice because under normal circumstances you will spend very little time
formatting diskettes. The time spent loading a program would be a better arbiter,
since far more time is spent doing this. You might argue that doing a file update
would be even more representative, but most updates produce slow and sporadic
disk activity. This kind of disk usage is not suitable for setting the correct interlace.

Hard disks do not present any problem for sector skewing. They spin at 3600
rpm or faster, and at that speed there simply is no interlace that will help. Some

Physical Sector

Logical Sector

Pass Pass Pass Pass Pass Pass

1 2 3 4 5 6

[R . N N N

o

22

10
23

24

20

25

21

NoTtE: Additional sector between logical sectors 12 and 13

Figure 3-4. Physical to logical sector skewing

Chapter 3: The CP/M File System 31

tricks can be played to improve the performance of a hard disk —these will be
discussed in the section called “Special Considerations for Hard Disks,” later in
this chapter.

To better understand these theories, study an example of the standard inter-
lace table, or skewtable. Bear in mind that the code that will access this table will
first be given a logical sector. It will then have to return the appropriate physical
sector.

Figure 3-5 shows the code for the skew table and the code that can be used to
access the table. The table is indexed by a logical sector and the corresponding
table entry is the physical sector. You can see that the code assumes that the first
logical sector assigned by CP/M will be sector number 0. Hence there is no need to
subtract 1 from the sector number before using it as a table subscript.

Unused Areas in the Disk Parameter Header Table The three words shown as 0’s in

Figure 3-3 are used by CP/M as temporary variables during disk operations.

DirectoryBuffer (DIRBUF) The directory buffer is a 128-byte area used by CP/M to store a

sector from the directory while processing directory entries. You only need one
directory buffer; it can be shared by all of the logical disks in the system.

Disk Parameter Block (DPBO) The disk parameter block describes the particular charac-

teristics of each logical disk. In general, you will need a separate parameter block
foreach rype of logical disk. Logical disks can share a parameter block only if their

SKEWTABLE: ;Logical sector
0000 01070013 DB 01,07,13,19 30,1,2,3
0004 19050B11 DB 25,05,11,17 $4,5,6,7
0008 1703090F DB 23,03,09,15 :8,9,10,11
000C 1502080E DB 21,02,08,14 $12,13,14,15
0010 141A060C DB 20,26,06,12 $16,17,18,19
0014 1218040A DB 18,24,04,10 $20,21,22,23
0018 1016 DB 16,22 ;24,25
i
H The code to translate lcgical sectors to physical
B sectors is as follows:
;
H On entry, the logical sector will be transferred from
H CP/M as a 16-bit value in registers BC.
H CP/M also transfers the address of the skew table
H in registers DE (it finds the skew table by locking in
; the disk parameter header entry).
On return, the physical sector will be placed
in registers HL.
SECTRAN:
001A EB XCHG sHL -> skew table base address
001B 09 DAD B sHL -> physical sector
3 entry in skew table
001C &E Mav L,M ;L = physical sector
001D &0 MQV H, 0 sHL = Physical Sector
001E C9 RET sReturn to BDOS

Figure 3-5.

Data declarations for the standard skewtable for standard diskettes

32 The CP/M Programmer’s Handbook

characteristics are identical. You can, for example, use a single parameter block to
describe all of the single-sided, single-density diskette drives that you have in the
system. However, you would need another parameter block to describe double-
sided, double-density diskette drives. It is also rare to be able to share parameter
blocks when a physical hard disk is split up into several logical disks. You will
understand why after looking at the contents of a parameter block, described later
in this chapter.

Work Area to Check for Changed Diskettes (WACD) One of the major problems that
CP/M faces when working with removable media such as floppy diskettes is that
the computer operator, without any warning, can open the diskette drive and
substitute a different diskette. On early versions of CP/M, this resulted in the
newly inserted diskette being overwritten with data from the original diskette.

With the current version of CP/M, you can request that CP/M check if the
diskette has been changed. Given this request, CP/M examines the directory
entries whenever it has worked on the directory and, if it detects that the diskette
has been changed, declares the whole diskette to be Read-Only status and inhibits
any further writing to the diskette. This status will be in effect until the next warm
boot operation occurs. A warm boot occurs whenever a program terminates or a
CONTROL-C is entered to the CCP, resetting the operating system.

The value of WACD is the address of a buffer, or temporary storage area, that
CP/M can use to check the directory. The length of this buffer is defined (some-
what out of place) in the disk parameter block.

Allocation Vector (ALVEC0) CP/M views each disk as a set of allocation blocks, assign-
ing blocks to individual files as those files are created or expanded, and relinquish-
ing blocks as files are deleted.

CP/M needs some mechanism for keeping track of which blocks are used and
which are free. It uses the allocation vector to form a bit map, with each bit in the
map corresponding to a specific allocation block. The most significant bit (bit 7) in
the first byte corresponds to the first allocation block, number 0. Bit 6 corresponds
to block 1, and so on for the entire disk.

Whenever you request CP/M to use a logical disk, CP/M will log in the disk.
This consists of reading down the file directory and, for each active entry or extent,
interacting with the allocation blocks “owned” by that particular file extent. For
each block number in the extent, the corresponding bit in the allocation vector is
setto 1. At the end of this process, the allocation vector will accurately represent a
map of which blocks are in use and which are free.

When CP/M goes looking for an unused allocation block, it tries to find one
near the last one used, to keep the file from becoming too fragmented.

In order to reserve enough space for the allocation vector, you need to reserve
one bit for each allocation block. Computing the number of allocation blocks is
discussed in the section “Maximum Allocation Block Number,” later in this
chapter.

Chapter 3: The CP/M File System 33

Disk Parameter Block

The disk parameter block in early versions of CP/M was built into the BDOS
and was a closely guarded secret of the CP/M file system. To make CP/M
adaptable to hard disk systems, Digital Research decided to move the parameter
blocks out into the BIOS where everyone could adapt them. Because of the
proprietary nature of CP/M’s file system, you will still see several odd-looking
fields, and you may find the explanation given here somewhat superficial. How-
ever, the lack of explanation in no way detracts from your ability to use CP/M as a
tool.

Figure 3-6 shows the code necessary to define a parameter block for 8-inch,
single-sided diskettes. This table is pointed to by —that is, its address is given
in—an entry in the disk parameter header. Each of the entries shown in the disk
parameter block is explained in the following sections.

SectorsPerTrack Thisis the number of 128-byte sectors per track. The standard diskette

shown in the example has 26 sectors. As you can see, simply telling CP/M that
there are 26 sectors per track does not indicate whether the first sector is num-
bered 0 or 1. CP/M assumes that the first sector is 0; it is left to a sector translate
subroutine to decipher which physical sector this corresponds to.

Hard disks normally have sector sizes larger than 128 bytes. This is discussed in
the section on considerations for hard disks.

Block Shift, Block Mask, and Extent Mask These mysteriously named fields are used

internally by CP/M during disk file operations. The values that you specify for
them depend primarily on the size of the allocation block that you want.

Allocation block size can vary from 1024 bytes (1K) to 16,384 bytes (16K).
There is a distinct trade-off between these two extremes, as discussed in the section
on allocation blocks at the beginning of this chapter.

An allocation block size of 1024 (1K) bytes is suggested for floppy diskettes
with capacities up to 1 megabyte, and a block size of 4096 (4K) bytes for larger
floppy or hard disks.

DPBO:
0000 1A00 DW 26 ;Sectors per track
0002 03 DB 3 sBlogk shift
0003 07 DB 7 sBlock mask
0004 03 DB 3 sExtent mask

0005 F200 DW 242 sMax. allocation block number
0007 3F00 DW 63 sNumber of directory entries 1
0009 CO DB 1100$0000B ;Bit map for allocation blocks
000A 00 DB 0000$0000B ; used for directory

000B 1000 DW 16 ;No. of bytes in dir. check buffer
000D 0200 oW 2 iNo. of tracks before directory

Figure 3-6.

Data declarations for the disk parameter block for standard diskettes

34 The CP/M Programmer’s Handbook

If you can define which block size you wish to use, you can now select the
values for the block shift and the block mask from Table 3-1.

Table 3-4. Block Shift and Mask Value

Allocation Block Size Block Shift Block Mask
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63
16,384 7 127

Select your required allocation block size from the left-hand column. This tells
you which values of block shift and mask to enter into the disk parameter block.

The last of these three variables, the extent mask, depends not only on the
block size but also on the total storage capacity of the logical disk. This latter
consideration is only important for computing whether or not there will be fewer
than 256 allocation blocks on the logical disk. Just divide the chosen allocation
block size into the capacity of the logical disk and check whether you will have
fewer than 256 blocks.

Keeping this answer and the allocation block size in mind, refer to Table 3-2
for the appropriate value for the extent mask field of the parameter block. Select
the appropriate line according to the allocation block size you have chosen. Then,
depending on the total number of allocation blocks in the logical disk, select the
extent mask from the appropriate column.

Table 3-2. Extent Mask Value

Number of Allocation Blocks
Allocation Block Size
1 to 255 256 and Above

1,024 0 (Impossible)
2,048 1

4,096 3 1

8,192 7 3
16,384 15 7

Maximum Allocation Block Number This value is the number of the last allocation
block in the logical disk. As the first block number is 0, this value is one less than
the total number of allocation blocks on the disk. Where only a partial allocation
block exists, the number of blocks is rounded down.

Chapter 3: The CP/M File System 35

Figure 3-7 has an example for standard 8-inch, single-sided, single-density
diskettes. Note that CP/M uses two reserved tracks on this diskette format.

Number of Directory EntriesMinus1 Do not confuse this entry with the number of files

that can be stored on the logical disk; it is only the number of entries (minus one).
Each extent of each file takes one directory entry, so very large files will consume
several entries. Also note that the value in the table is one less than the number of-
entries.

Ona standard 8-inch diskette, the value is 63 entries. On a hard disk, you may
want to use 1023 or even 2047. Remember that CP/M performs a sequential scan
down the directory and this takes a noticeable amount of time. Therefore, you
should balance the number of logical disks with your estimate of the largest file size
that you wish to support.

As a final note, make sure to choose a number of entries that fits evenly into
one or more allocation blocks. Each directory entry needs 32 bytes, so you can
compute the number of bytes required. Make sure this number can be divided by
your chosen allocation block size without a remainder.

Allocation Blocks for the Directory This is a strange value; it is not a number, but a bit

map. Looking at Figure 3-6, you see the example value written out in full as a
binary value to illustrate how this value is defined. This 16-bit value has a bit set to
I for each allocation block that is to be used for the file directory.

This value is derived from the number of directory entries you want to have on
the disk and the size of the allocation block you want to use. One given, or

Physical characteristics: Calculate:
77 Tracks/ Diskette 77 Tracks/Diskette
26 Sectors/ Track — 2 Tracks Reserved for CP/M
128 Bytes/Sector 75 Tracks for File Storage
2 Tracks Reserved for CP/M X26 Number of Sectors
1024 BytesfAllocation Block —

1950 Sectors for File Storage
X128 Bytes per Sector
249,600 Bytes for File Storage
+1024 Bytes/Allocation Block

243.75 Total Number of
Allocation Blocks

242 Number of the last
allocation block
(rounded and based on
first block being Block 0)

Figure 3-7. Computing the maximum allocation block number for standard diskettes

36 The CP/M Programmer’s Handbook

constant, in this derivation is that the size of each directory entry is 32 bytes.

In the example, 64 entries are required (remember the number shown is one
less than the required value). Each entry has 32 bytes. The total number of bytes
required for the directory thus is 64 times 32, or 2048 bytes. Dividing this by the
allocation block size of 1024 indicates that two allocation blocks must be reserved
for the directory. You can see that the example value shows this by setting the two
most significant bits of the 16-bit value.

As a word of warning, do not be tempted to declare this value using a DW
(define word) pseudo-operation. Doing so will store the value byte-reversed.

Size of Buffer for Directory Checking As mentioned before in the discussion of the disk
parameter header, CP/M can be requested to check directory entries whenever it is
working on the directory. In order to do this, CP/M needs a buffer area, called the
work area to check for changed diskettes, or WACD, in which it can hold working
variables that keep a compressed record of what is on the directory. The length of
this buffer area is kept in the disk parameter block; its address is specified in the
parameter header. Because CP/M keeps a compressed record of the directory, you
need only provide one byte for every four directory entries. You can see in Figure
3-6 that 16 bytes are specified to keep track of the 64 directory entries.

Number of Tracks Before the Directory Figure 3-8 shows the layout of CP/M on a
standard floppy diskette. You will see that the first two tracks are reserved,
containing the initial bootstrap code and CP/M itself. Hence the example in
Figure 3-6, giving the code for a standard floppy disk, shows two reserved tracks
(the number of tracks before the directory).

This track offset value, as it is sometimes called, provides a convenient method
of dividing a physical disk into several logical disks.

Special Considerations for Hard Disks

If you want to run CP/M on a hard disk, you must provide code and build
tables that make CP/M work as if it were running on a very large floppy disk. You
must even include 128-byte sectors. However, this is not difficult to do.

To adapt hard disks to the 128-byte sector size, you must provide code in the
disk driver in your BIOS that will present the illusion of reading and writing
128-byte sectors even though it is really working on sectors of 512 bytes. This code
is called the blocking/deblocking routine.

If hard disks have sector sizes other than 128 bytes, what of the number of
sectors per track, and the number of tracks?

Hard disks come in all sizes. The situation is further confused by the disk
controllers, the hardware that controls the disk. In many cases, you can think of
the hard disk as just a series of sectors without any tracks at all. The controller,
given a relative sector number by the BIOS, can translate this sector number into
which track, read/write head (if there is more than one platter), and sector are
actually being referenced.

Chapter 3: The CP/M File System 37

Logical Tracks),
Sector i
0 1 2 3 76
[} T
0 Bootstrap T Allocation
1 Allocation Block
2 Allocation Block #240
3 Block #3 _———
4 Basic N N
5 Disk || | |ecceoo___.
6 Console Operating | File l Allocation
7 Command System | _ ____ - Block
8 Processor (BDOS) . Allocation #241
9 (CCP) Directoty Block
10 Allocation #4
11 Block |\ N ___
12 #1
B0 1 0 4 Al N _____
14 { l Allocation
15 Block
16 A T Allocation #242
17 [} Block
18) Allocation #5
19 Block
20 Basic #2
21 Input/ L ________
22 Output
23 System e ____| Allocation g;::f)er(si
24 (BIOS) Block
25 #6
s
Figure 3-8. Layout of standard diskette

Furthermore, most hard disks rotate so rapidly that there is nothing to be
gained by using a sector-skewing algorithm. There is just no way to read more than
one physical sector per revolution; there is not enough time.

In many cases it is desirable to divide up a single, physical hard disk into
several smaller, logical disks. This is done mainly for performance reasons:
Several smaller disks, along with smaller directories, result in faster file operations.

The disk parameter header will have 0’s for the skewtable entry and the pointer
to the WACD buffer. In general, hard disks cannot be changed, at least not without
turning off the power and swapping the entire disk drive. If you are using one of
the new generation of removable hard disks, you will need to use the directory
checking feature of CP/M.

The disk parameter block for a hard disk will be quite different from that used
for a floppy diskette. The number of sectors per track needs careful consideration.
Remember, this is the number of 128-byte sectors. The conversion from the
physical sector size to 128-byte sectors will be done in the disk driver in the BIOS.

38 The CP/M Programmer’s Handbook

If you have a disk controller that works in terms of sectors and tracks, all you
need do is compute the number of 128-byte sectors on each track. Multiply the
number of physical sectors per track by their size in bytes and then divide the
product by 128 to give the result as the number of 128-byte sectors per physical
track.

But what of those controllers that view their hard disks as a series of sectors
without reference to tracks? They obscure the fact that the sectors are arranged on
concentric tracks on the disk’s surface. In this case, you can play a trick on CP/M.
You can set the “sectors per track” value to the number of 128-byte sectors that will
fit into one of the disk’s physical sectors. To do this, divide the physical sector size
by 128. For example, a 512-byte physical sector size will give an answer of four
128-byte sectors per “track.” You can now view the hard disk as having as many
“tracks” as there are physical sectors. By using this method, you avoid having to do
any kind of arithmetic on CP/M’s sector numbers; the “track” number to which
CP/M will ask your BIOS to move the disk heads will be the relative physical
sector. Once the controller has read this physical sector for you, you can look at the
128-byte sector number, which will be 0, 1, 2, or 3 (for a 512-byte physical sector) in
order to select which 128 bytes need to be moved in or out of the disk buffer.

The block shift, block mask, and extent mask will be computed as before. Use
a4096-byte allocation block size. This will yield a value of 5 for the block shift, 31
for the block mask, and given that you will have more than 256 allocation blocks
for each logical disk, an extent mask value of 1.

The maximum allocation block number will be computed as before. Keep
clear in your mind whether you are working with the number of physical sectors
(which will be larger than 128 bytes) or with 128-byte sectors when you are
computing the storage capacity of each logical disk.

The number of directory entries (less 1) is best set to 511 for logical disks of 1
megabyte and either 1023 or 2047 for larger disks. Remember that under CP/M
version 2 you cannot have a logical disk larger than 8 megabytes.

The allocation blocks for the directory are also computed as described for
floppy disks.

As a rule, the size of the directory check buffer (WADC) will be set to 0, since
there is no need to use this feature on hard disk systems with fixed media.

The number of tracks before the directory (track offset) can be used to divide
up the physical disk into smaller logical disks, as shown in Figure 3-9.

There is no rule that says the tracks before a logical disk’s directory cannot be
used to contain other complete logical disks. You can see this in Figure 3-9. CP/M
behaves as if each logical disk starts at track 0 (and indeed they do), but by
specifying increasingly larger numbers of tracks before each directory, the logical
disks can be staggered across the available space on the physical disk.

Figure 3-10 shows the calculations involved in the first phase of building disk
parameter blocks for the hard disk shown in Figure 3-9. The physical characteris-
tics are those imposed by the design of the hard disk. As a programmer, you donot
have any control over these; however, you can choose how much of the physical

Chapter 3: The CP/M File System 39

Track Track Track Track Track
0 10 58 211 363
']] |
Logical Disk A Logical Disk 3 Logical Disk C
A
=10 B
Reserved } _.4
Tracks 58
' 21 1 -

Figure 3-9. Dividing hard disks into logical disks

disk is assigned to each logical disk, the allocation block size, and the number of
directory entries. You can see that logical disk A is much smaller than disks B and
C, and that B and C are the same size. Disk A will be the systems disk from which
most programs will be loaded, so its smaller directory size will make program
loading much faster. The allocation block size for disk A is also smaller in order to
reduce the amount of space wasted in partially filled allocation blocks.

Figure 3-10 also shows the calculations involved in computing the maximum
allocation block number. Again, note that once the total number of allocation
blocks has been computed, it is necessary to round it down in the case of any
fractional components and then subtract 1 to get the maximum number (the first
block being 0).

Figure 3-11 shows the actual values that will be put into the parameter blocks.
It is assumed that the disk controller is one of those types that view the physical
disk as a series of contiguous sectors and make no reference to tracks; the internal
electronics and firmware in the controller take care of these details. For this
reason, CP/M is told that each physical sector is a “track” in CP/M’s terms. Each
“track”has 512 bytes and can therefore store four 128-byte sectors. You can see this
is the value that is in the sectors/“track” field.

The block shift and mask values are obtained from Table 3-1, using the
allocation block size previously chosen. Then, with both the allocation block size
and the maximum number of allocation blocks (see Figure 3-10), the extent mask
can be obtained from Table 3-2. You can see in Figure 3-11 that extent mask values
of 1 were obtained for all three logical disks even though two different allocation
block sizes have been chosen, and even though disk A has less than 256 blocks and
disks B and C have more.

40 The CP/M Programmer’s Handbook

Physical Characteristics: Calculate:
364 Tracks/Disk
20 Sectors/Track A: B:and C:
512 Bytes/Sector 48 153 Tracks assigned to Disk
10,240 Bytes/Track X10,240 X10,240 Bytes/ Track
491,520 1,566,720 Bytes/Disk
-+ 2048 + 4096 Bytes/Allocation Block
Chosen Logical Characteristics: 240 382.5 Number of Allocation Blocks
Allocation 239 381 Maximum Block Number
Tracks Block Size
Reserved Area 10 n/a
Disk A: 48 2048
Disk B: 153 4096
Disk C: 153 4096
Figure 3-10. Computing the maximum allocation block number for a hard disk

DPBA: DPBB: DPBC:
4 4

4 ;128-byte sectors/"track"
4 S S :Block shift
15 31 31 3Block mask
1 1 1 sExtent mask
239 381 381 sMax. all. block #
255 1023 1023 sNo. of directory entries
11110000B 11111111B 11111111B ;Bit Map for allocation blacks
00000000B 00000000B 00000000B ; used for directory
[o] o] (o] ;No. of bytes in dir.check buffer
10) (58) (211) jActual tracks before directory
200 1160 4220 s"Tracks" before directory

Figure 3-14.

Disk parameter tables for a hard disk

The bit map showing how many allocation blocks are required to hold the file
directory is computed by multiplying the number of directory entries by 32 and
dividing the product by the allocation block size. This yields results of 4 for disk A
and 8 for disks B and C. As you can see, the bit maps have the appropriate number
of bits set.

Since most of the hard disks on the market today do not have removable
media, the lengths of the directory checking buffer are set to 0.

The number of “tracks” before the directory requires a final touch of skull-
duggery. Having already indicated to CP/M that each “track™ has four sectors, you
need to continue in the same vein and express the number of real tracks before the
directories in units of 512-byte physical sectors.

As a final note, if you are specifying these parameter blocks for a disk
controller that requires you to communicate with it in terms of physical tracks and
128-byte sectors, then the number of sectors per track must be set to 80 (twenty

Chapter 3: The CP/M File System 44

512-byte sectors per physical track). You would also have to change the number of
tracks before the directory by stating the number of physical tracks (shown in
parentheses on Figure 3-11).

Adding Additional Information to the Parameter Block

Normally, some additional information must be associated with each logical
disk. For example, in a system that has several physical disks, you need to identify
where each logical disk resides. You may also want to identify some other physical
parameters, disk drive types, I/O port numbers, and addresses of driver sub-
routines.

You may be tempted to extend the disk parameter header entry because there is
a separate header entry for each logical disk. But the disk parameter header is
exactly 16 bytes long; adding more bytes makes the arithmetic that we need to use
in the BIOS awkward. The best place to put these kinds of information is to prefix
them to the front of each disk parameter block. The label at the front of the block
must be left in the same place lest CP/M become confused. Only special additional
code that you write will be “smart” enough to look in front of the block in order to
find the additional parameter information.

File Organizations

CP/M supports two types of files: sequential and random. CP/M views both
types as made up of a series of 128-byte records. Note that in CP/M’s terms, a
record is the same as a 128-byte sector. This terminology sometimes gets in the
way. It may help to think of 128-byte sectors as physical records. Applications
programs manipulate logical records that bear little or no relation to these
physical records. There is code in the applications programs to manipulate logical
records.

CP/M does not impose any restrictions on the contents of a file. In many cases,
though, certain conventions are used when textual data is stored. Each line of text
is terminated by ASCII CARRIAGE RETURN and LINE FEED. The last sector of a
text file is filled with ASCII SUB characters; in hexadecimal this is 1AH.

File Control Blocks

In order to get CP/M to work on a file, you need to provide a structure in which
both you and the BDOS can keep relevant details about the file, its name and type,
and so on. The file control block (FCB) is a derivative of the file directory entry, as
you can see in Figure 3-12. This figure shows both a series of equates that can be
used to access an entry and a series of DB (define byte) instructions to declare an
example.

The first difference you will see between the file directory entry and the FCB is
that the very first byte is serving a different purpose. In the FCB, it is used to

42 The CP/M Programmer’s Handbook

specify on which disk the file is to be found. You may recall that in the directory,
this byte indicates the user number for a given entry. When you are actually
processing files, the current user number is set either by the operator ina command
from the console or by a BDOS function call; this predefines which subset of files
in the directory will be processed. Therefore, the FCB does not need to keep track
of the user number.

The disk number in the FCB’s first byte is stored in an odd way. A value of 0
indicates to CP/M that it should look for the file on the current default disk. This
default disk is selected either by an entry from the console or by making a specific
BDOS call from within a program. In general, the default disk should be preset to
the disk that contains the set of programs with which you are working. This avoids
unnecessary typing on the keyboard when you want to load a program.

A disk number value other than 0 represents a letter of the alphabet based ona
simple codification scheme of A =1, B= 2, and so on.

As you can see from Figure 3-12, the file name and type must be set to the
required values, and for sequential file processing, the remainder of the FCB can
be set to zeros. Strictly speaking, the last three bytes of the FCB (the random
record number and the random record overflow byte) need not even be declared if
you are never going to process the file randomly.

This raises a subtle conceptual point. Random files are only random files
because you process them randomly. Though this sounds like a truism, what it
means is that CP/M’s files are not intrinsically random or sequential. What they
are depends on how you choose to process them at any given point. Therefore,

0000 = FCBE$DISK EQU 0 sDisk drive (0 = default, 1=A)
0001 = FCBE$NAME EQU 1 sFile name (8 bytes)
0009 = FCBES$TYP EQU 9 sFile type
;O0ffsets for bits used in type
0009 = FCBE$RQ EQU 9 sBit 7 = 1 - rvead only
000A = FCBES$SYS EQU 10 ;Bit 7 = 1 - system status
000B = FCBE$CHANGE EQU 11 ;Bit 7 = 0 - file written to
000C = FCBESEXTENT EQU 12 sExtent number
313, 14 reserved for CP/M

O00F = FCBE$RECUSED EQU 15 sRecords used in this extent
0010 = FCBE$ABUSED EQU 16 sAllocation blocks used
0020 = FCBES$SEQREC EQU 32 ;Sequential rec. to read/write
0021 = FCBES$RANREC EQU 33 sRandom rec. to read/write
0023 = FCBESRANRECO EQU 35 sRandom rec. overflow byte (MS)

i

H

;
0000 00 FCB$DISK: DB [o] ;Search on default disk drive
0001 44494CAS4EFCBSNAME: DB FILENAME” sFile name
0009 545950 FCB$TYP: DB ‘TYP” ;File type
000C 00 FCBS$EXTENT: DB o] ;Extent
000D 0000 FCBS$RESV: DB 0,0 sReserved for CP/M
O00F 00 FCB$RECUSED: DB (o] ;Records used in this extent
0010 0000000000F CB$ABUSED: DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB$SEQREC: DB [o] sSequential rec. to read/write
0021 0000 FCB$RANREC: DW o sRandom rec. to read/write
0023 00 FCB$RANRECO: DB o ;Random rec. overflow byte (MS)

Figure 3-12. Data declarations for the FCB

Chapter 3: The CP/M File System 43

while the manner in which you process them will be different, there is nothing
special built into the file that predicates how it will be used.

Sequential Files

A sequential file begins at the beginning and ends at the end. You can view it as
a contiguous series of 128-byte “records.”

In order to create a sequential file, you must declare a file control block with
the required file name and type and request the BDOS to create the file. You can
then request the BDOS to write, “record” by “record” (really 128-byte sector by
128-byte sector) into the file. The BDOS will take care of opening up new extents
as it needs to. When you have written out all the data, you must make a BDOS
request to close the file.

To read an existing file, you also need an FCB with the required file name and
type declared. You then make a BDOS request to open the file for processing and a
series of Read Sequential requests, each one bringing in the next “record” until
either your program detects an end of file condition (by examining the data
coming in from the file) or the BDOS discovers that there are no more sectors in
the file to read. There is no need to close a file from which you have been reading
data —but do close it. This is not necessary if you are going to run the program
only under CP/M, but it is necessary if you want to run under MP/M (the
multiuser version of CP/M).

What if you need to append further information to an existing file? One option
is to create a new file, copy the existing file to the new one, and then start adding
data to the end of the new file. Fortunately, with CP/M this is not necessary. In the
FCB used to read a file, the name and the type were specified, but you can also
specify the extent number. If you do, the BDOS will proceed to open (if it can find
it) the extent number that you are asking for. If the BDOS opens the extent
successfully, all you need do is check if the number of records used in the extent
(held in the field FCBSRECUSED) is less than 128 (80H). This indicates the extent
is not full. By taking this record number and placing it into the FCBSSEQREC
(sequential record number) byte in the FCB, you can make CP/M jump ahead and
start writing from the effective end of the file.

Random Files

Random files use a simple variation of the technique described above. The
main difference is that the random record number must be set in the FCB. The
BDOS automatically keeps track of file extents during Read/Write Random
requests. (These requests are explained more fully in Chapter 5.)

Conceptually, random files need a small mind-twist. After creating a file as
described earlier, you must set the random record number in the FCB before each
Write Random request. This is the two-byte value called FCBSRANREC in
Figure 3-12. Then, when you give the Write Random request to the BDOS, it will

44 The CP/M Programmer’s Handbook

look at the record number; compute in which extent the record must exist; if
necessary, create the directory entry for the extent; and finally, write out the data
record. Using this scheme, you can dart backward and forward in the file putting
records at random throughout the file space, with CP/M creating the necessary
directory entries each time you venture into a part of the file that has not yet been
written to.

The same technique is used to read a file randomly. You set the random record
number in the FCB and then give a system call to the BDOS to open the correct
extent and read the data. The BDOS will return an error if it cannot find the
required extent or if the particular record is nonexistent.

Problems lie in wait for the unwary. Before starting to do any random reading
or writing, you must open up the file at extent 0 even though this extent may not
contain any data records. For a new file, this can be done with the Create File
request, and for an existing file with the normal Open File request. If you create a
sparse file, one that has gaps in between the data, you may have some problems
manipulating the file. It will appear to have several extents, each one being
partially full. This will fool some programs that normally process sequential files;
they don’t expect to see a partial extent except at the end of a file, and may treat the
wrong spot as the end.

Functions of the CCP
Editing the CCP Command Line
Built-In Commands
Program Loading
Base Page
Memory Dumps of the Base Page
Processing the Command Tail
Available Memory
Communicating with the BIOS
Returning to CP/M

The Console
Command Processor
(CCP)

The Console Command Processor processes commands that you enter from
the console. As you may recall from the brief overview in Chapter 2, the CCP is
loaded into memory immediately below the BDOS. In practice, many programs
deliberately overwrite the CCP in order to use the memory it normally occupies.
This gives these programs an additional 800H bytes (2K bytes).

When one of these “transient programs” terminates, it relinquishes control to
the BIOS, which in turn reloads a fresh copy of the CCP from the system tracks of
the disk back into memory and then transfers control to it. Consequently, the CCP
leads a sporadic existence—an endless series of being loaded into memory,
accepting a command from you at the console, being overwritten by the program

45

46 The CP/M Programmer’s Handbook

you requested to be loaded, and then being brought back into memory when the
program terminates.

This chapter discusses what the CCP does for you in those brief periods when it
is in memory.

Functions of the CCP

Simply put, once the CCP has control of the machine, so do you. The CCP
announces its presence by displaying a prompt of two characters: a letter of the
alphabet for the current default disk drive and a “greater than” sign. In the
example A>, the A tells you that the default disk drive is currently set to be logical
drive A, and the “>,” that the message was output by the CCP.

Once you see the prompt, the CCP is ready for you toentera command line. A
command line consists of two major parts: the name of the command and,
optionally, some values for the command. This last part is known as the command
tail.

The command itself can be one of two things: either the name of a file or the
name of one of the frequently used commands built into the CCP.

If you enter the name of one of the built-in commands, the CCP does not need
to go out to the disk system in order to load the command for execution. The
executable code is already inside the CCP.

If the name of the command you entered does not match any of the built-in
commands (the CCP has a table of their names), the CCP will search the
appropriate logical disk drive for a file with a matching name and a file type of
“COM?” (which is short for command). You do not enter “.COM” when invokinga
command —the CCP assumes a file type of “COM.”

If you do not precede the name of the COM file with a logical disk drive
specification, the CCP will search the current default drive. If you have prefixed
the COM file’s name with a specific logical drive, the CCP will look only on that
drive for the program. For example, the command MYPROG will cause the CCP
to look for a file called “MYPROG.COM” on the current default drive, whereas
C:MYPROG would make the CCP search only on drive C.

If you enter a command name that matches neither the CCP’s built-in com-
mand table nor the name of any COM file on the specified disk, the CCP will
output the command name followed by a question mark, indicating it is unable to
find the file.

Editing the CCP Command Line

The CCP uses a line buffer to store what you type until you strike either a
CARRIAGE RETURN or a LINE FEED. If you make an error or change your mind, you
can modify the incomplete command, even to the point of discarding it.

Chapter 4: The Console Command Processor (CCP) 47

You edit the command line by entering control characters from the console.
Control characters are designated either by the combination of keys required to
generate them from the keyboard or by their official name in the ASCII character
set. For example, CONTROL-J is also known as CARRIAGE RETURN or CR.

Whenever CP/M has to represent control characters, the convention is to
indicate the “control” aspect of a character with a caret (“*”). For example,
CONTROL-A willappear as “* A”, CONTROL-Z as “AZ”, and so on. But if you press the
CONTROL key with the normal shift key and the “6” key, this will produce a
CONTROL-" or “A~”. The representation of control keys with the caret is only
necessary when outputting to the console or the printer— internally, these charac-
ters are held as their appropriate binary values.

CONTROL-C: Warm Boot If you enter a CONTROL-C as the first character of a command
line, the CCP will initiate a warm boot operation. This operation resets CP/M
completely, including the disk system. A fresh copy of the CCP is loaded into
memory and the file directory of the current default disk drive is scanned,
rebuilding the allocation bit map held in the BIOS (as discussed in Chapter 3).

The only time you would initiate a warm boot operation is after you have
changed a diskette (or a disk, if you have removable media hard disks). Thus,
CP/M will reset the disk system.

Note that a CONTROL-C only initiates a warm boot if it is the first character on a
command line. If you enter it in any other position, the CCP will just echo it to the
screen as “~C”. If you have already entered several characters on a command line,
use CONTROL-U or CONTROL-X to cancel the line, and then use CONTROL-C to
initiate a warm boot. You can tell a warm boot has occurred because there will be a
noticeable pause after the CONTROL-C before the next prompt is displayed. The
system needs a finite length of time to scan the file directory and rebuild the
allocation bit map.

CONTROL-E: Physical End-of-Line The CONTROL-E command is a relic of the days of the
teletype and terminals that did not perform an automatic carriage return and line
feed when the cursor went off the screen to the right. When you type a CONTROL-E,
CP/M sends a CARRIAGE RETURN/LINE FEED command to the console, but does
not start to execute the command line you have typed thus far. CONTROL-E is, in
effect, a physical end-of-line, not a logical one.

As you can see, you will need to use this command only if your terminal either
overprints (if it is a hard copy device) or does not wrap around when the cursor
gets to the right-hand end of the line.

CONTROL-H: Backspace The CONTROL-H command is the ASCII backspace character.
When you type it, the CCP will “destructively” backspace the cursor. Use it to
correct typing errors you discover before you finish entering the command line.
The last character you typed will disappear from the screen. The CCP does this by
sending a three-character sequence of backspace, space, backspace to the console.

48 The CP/M Programmer’s Handbook

The CCP ignores attempts to backspace over its own prompt. It also takes care
of backspacing over control characters that take two character positions on the
line. The CCP sends the character sequence backspace, backspace, space, space,
backspace, backspace, erasing both characters.

CONTROL-J: Line Feed/CONTROL-M: Carriage Return The CONTROL-J command is
the ASCII LINE FEED character; CONTROL-M is the CARRIAGE RETURN. Both of
these characters terminate the command line. The CCP will then execute the
command.

CONTROL-P: Printer ECho The CONTROL-P command is used to turn on and off a feature
called printer echo. When it is turned on, every character sent to the console isalso
sent to CP/M’s list device. You can use this command to get a hard copy of
information that normally goes only to the console.

CONTROL-Pis a “toggle.” The first time you type CONTROL-P it turns on printer
echo; the next time you type CONTROL-P it turns off printer echo. Whenever
CP/M does a warm boot, printer echo is turned off.

There is no easy way to know whether printer echo is on or off. Try typing a few
CARRIAGE RETURNS, and see whether the printer responds; if it does not, type
CONTROL-P and try again.

One of the shortcomings in most CP/M implementations is that the printer
drivers (the software in the BIOS that controls or “drives” the printer) do not
behave very intelligently if the printer is switched off or not ready when you or your
program asks it to print. Under these circumstances, the software will wait forever
and the system will appear to be dead. So if you “hang” the system in this way
when you type a CONTROL-P, check that the printer is turned on and ready.
Otherwise, you may have to reset the entire system.

CONTROL-R: Repeat CommandLine The CONTROL-R command makes the CCP repeat
or retype the current input line. The CCP outputs a “#” character, a CARRIAGE
RETURN/LINE FEED, and then the entire contents of the command line buffer. This
is a useful feature if you are working on a teletype or other hard copy terminal and
have used the RUB or DEL characters. Since these characters do not destructively
delete a character, you can get a visually confusing line of text on the terminal. The
CONTROL-R character gives you a fresh copy of the line without any of the logically
deleted characters cluttering it up. In this way you can see exactly what you have
typed into the command line buffer.

See the discussion of the RUB and DEL characters for an example of CONTROL-
R in use.

CONTROL-S: Stop Screen Output The CONTROL-S command is the ASCII XOFF (also
called DC3) character; XOFF is an abbreviation for “Transmit Off.” Typing
CONTROL-S will temporarily stop output to the console. Ina standard version of

Chapter 4: The Console Command Processor (CCP) 49

CP/M, the CCP will resume output when any character is entered (including
another CONTROL-S) from the console. Thus, you can use CONTROL-S as a toggle
switch to turn console output on and off.

In some implementations of CP/M, the console driver itself (the low-level code
in the BIOS that controls the console) will be maintaining a communication
protocol with the console; therefore, a better way of resuming console output after
pausing with a CONTROL-S is to use CONTROL-Q, the ASCII XON or “Transmit On”
character. Entering a CONTROL-Q instead of relying on the fact that any character
may be used to continue the output is a fail-safe measure.

The commands CONTROL-S and CONTROL-Q are most useful when you have
large amounts of data on the screen. By “riding” the CONTROL-S and CONTROL-Q
keys, you can let the data come to the screen in small bursts that you can easily
scan.

CONTROL-U or CONTROL-X: Undo Command Line The commands CONTROL-U and
CONTROL-X perform the same function: They erase the current partially entered
command line so that you can undo any mistakes and start over. The CONTROL-U
command was originally intended for hard copy terminals. The CCP outputs a “#”
character, then a CARRIAGE RETURN/LINE FEED, and then some blanks to leave
the cursor lined up and ready for you to enter the next command line. It leaves
what you originally entered in the previous line on the screen. The CONTROL-X
command is more suited to screens; the CCP destructively backspaces to the
beginning of the command line so that you can reenter it.

RUB or DEL: Delete Last Character The rubout or delete function (keys marked RUB,
RUBOUT, DEL, or DELETE) nondestructively deletes the last character that you
typed. That is, it deletes the last character from the command line buffer and
echoes it back to the console.

Here is an example of a command line with the last few characters deleted
using the RUB key:

A>RUN FAYROLLLLORYAFSALES

AAAAAAA

DELeted

You can see that the command line very quickly becomes unreadable. If you
lose track of what are data characters and what has been deleted, you can use
CONTROL-R to get a fresh copy of what is in the command line buffer.

The example above would then appear as follows:

A>RUN FAYROLLLLORYAPSALES#
RUN SALES_

The “#” character is output by the CCP to indicate that the line has been

50 The CP/M Programmer’s Handbook

YSE 1)

repeated. The “_” represents the position of the cursor, which is now ready to
continue with the command line.

Built-ln Commands

When you enter a command line and press either CARRIAGE RETURN or LINE
FEED. the CCP will check if the command name is one of the set of built-in
commands. (It has a small table of command names embedded in it, against which
the entered command name is checked.) If the command name matches a built-in
one, the CCP executes the command immediately.

The next few sections describe the built-in commands that are available;
however, refer to Osborne CP/M User Guide, second edition by Thom Hogan
(Berkeley: Osborne/ McGraw-Hill, 1982) for a more comprehensive discussion
with examples of the various forms of each command.

X: — Changing Default Disk Drives The default drive is the currently active drive that
CP/M uses for all file access whenever you do not nominate a specific drive. If you
wish to change the default drive, simply enter the new default drive’s identifying
letter followed by a colon. The CCP responds by changing the name of the disk
that appears in the prompt line.

On hard disks, this simple operation may take a second or two to complete
because the BDOS, requested by the CCP to log in the drive, must read through
the disk directory and rebuild the allocation vector for the disk. If you have a
diskette or a disk that is removable, changing it and performing a warm boot has
the same effect of refreshing CP/M’s image of which allocation blocks are used and
which are available. It takes longer on a hard disk because, as a rule, the directories
are much larger.

DIR — Directory of Files In its simplest form, the DIR command displays a listing of the
files set to Directory status in the current user number (or file group) on the current
default drive. Therefore, when you do not ask for any files after the DIR command,
a file name of “*.%” is assumed. This is a total wildcard, so all files that have not
been given System status will be displayed. This is the only built-in command
where an omitted file name reference expands to “all file names, all file types.”

You can display the directory of a different drive by specifying the drive in the
same command line as the DIR command.

You can qualify the files you want displayed by entering a unique or ambiguous
file name or extension. Only those files that match the given file name specification
will be displayed, and even then, only those files that are not set to System status
will appear on the screen. (The standard CP/M utility program STAT can be used
to change files from SYS to DIR status.)

Chapter 4: The Console Command Processor (CCP) 51

Another side effect of the DIR command and files that are SYS status is best
illustrated by an example. Imagine that the current logical drive B has two files on it
called SYSFILE (which has SYS status) and NONSYS (which does not). Look at
the following console dialog, in which user input is underlined:

E>DIR<er>

B: NONSYS SYSFILE does not show
E>DIR JUNK<er:
NO FILE JUNK does not exist

Do you see the problem? If a file is not on the disk, the CCP will display NO
FILE (or NOT FOUND in earlier versions of CP/M). However, if the file does
exist but is a SYS file, the CCP does not display it because of its status; nor does
the CCP say NO FILE. Instead it quietly returns to the prompt. This can be
confusing if you are searching for a file that happens to be set to SYS status. The
only safe way to find out if the file does exist is to use the STAT utility.

ERA—Erase aFile The ERA command logically removes files from the disk (logically
because only the file directory is affected; the actual data blocks are not changed).

The logical delete changes the first byte of each directory entry belonging to a
file to a value of OESH. As you may recall from the discussion on the file directory
entry in Chapter 3, this first byte usually contains the file user number. If it is set to
OESH, it marks the entry as being deleted.

ER A makes a complete pass down the file directory to logically delete all of the
extents of the file.

Unlike DIR, the ERA command does not assume “all files, all types” if you
omit a file name. If it did, it would be all too easy to erase all of your files by
accident. You must enter “*.x” to erase all files, and even then, you must reassure
the CCP that you really want to erase all of them from the disk. The actual dialog
looks like the following:

ALL (Y/ND
A

If you change your mind at the last minute, you can press “n” and the CCP will
not erase any files.

One flaw in CP/M is that the ERA command only asks for confirmation when
you attempt to erase all of your files using a name such as “*.*” or “%.7??”. Consider
the impact of the following command:

AYERA #.C7%<cr>
Ax_

The CCP with no hesitation has wiped out all files that have a file type starting
with the letter “C™ in the current user number on logical disk A.

52 The CP/M Programmer’s Handbook

If you need to use an ambiguous file name in an ERA command, check which
files you will delete by first using a STAT command with exactly the same
ambiguous file name. STAT will show you all the files that match the ambiguous
name, even those with SYS status that would not be displayed by a DIR command.

There are several utility programs on the market with names like UNERA or
WHOOPS, which take an ambiguous file name and reinstate the files that you may
have accidentally erased. A design for a version of UNERASE is discussed in
Chapter 11.

If you attempt to erase a file that is not on the specified drive, the CCP will
respond with a NO FILE message.

REN —RenameaFile The REN command renames a file, changing the file name, the file
type, or both. In order to rename, you need to enter two file names, the new name
and the current file name.

To remember the correct name format, think of the phrase new = old. The
actual command syntax is

A>ren newfile.typ=cldfile.typdcr>
A>_

You can use a logical disk drive letter to specify on which drive the file exists. If
you specify the drive, you only need to enter it on one of the file names. If you enter
the drive with both file names, it must be the same letter for both.

Unlike the previous built-in command, REN cannot be used with ambiguous
file names. If you try, the CCP echoes back the ambiguous names and a question
mark, as in the following dialog:

.doc=chapter®.docdcrs
HAPTER®.DOC?

If the REN command cannot find the old file, it will respond NO FILE. If the
new file already exists, the message FILE EXISTS will be displayed. If you receive
a FILE EXISTS message and want to check that the new file does exist, remember
that it is better to use the STAT command than DIR. The extant file may be
declared to be SYS status and therefore will not appear if you use the DIR
command.

TYPE—Type aTextFile The TYPE command copies the specified file to the console. You
cannot use ambiguous file names, and you will need to press CONTROL-S if the file
has more data than can fill one screen. With the TYPE command, the data in the
file will fly past on the screen unless you stop the display by pressing CONTROL-S.
Be careful, because if you type any other character, the TYPE command will abort
and return control to the CCP.

Chapter 4: The Console Command Processor (CCP) 53

Once you have had time to see what is displayed on the screen, you can press
CONTROL-Q to resume the output of data to the console. With standard CP/M
implementations, you will discover that any character can be used to restart the
flow of data; however, use CONTROL-Q as a fail-safe measure. CONTROL-S (X-OFF)
and CONTROL-Q (X-ON) conform to the standard protocol which should be used.

If you need to get hard copy output of the contents of the file, you should typea
CONTROL-P command before you press the CARRIAGE RETURN at the end of the
TYPE command line.

As you may have inferred, the TY PE command should only be used to output
ASCII text files. If for some reason you use the TYPE command with a file that
contains binary information, strange characters will appear on the screen. In fact,
you may program your terminal into some state that can only be remedied by
turning the power off and then on again. The general rule therefore is only use the
TYPE command with ASCII text files.

SAVE — Save Memory Image on Disk The SAVE command is the hardest of the CCP’s
commands to explain. It is more useful to the programmer than to a typical end
user. The format of this command is

A>SAVE n FILENAME,TYP<cr>
A _

The SAVE command creates a file of the specified name and type (or over-
writes an existing file of this name and type), and writes into it the specified
number n of memory pages. A page in CP/M is 256 (100H) bytes. The SAVE
command starts writing out memory from location 100H, the start of the Transient
Program Area (TPA). Before you use this command, you will normally have
loaded a program into the TPA. The SAVE command does just what its name
implies: It saves an image of the program onto a disk file.

More often than not, when you use the SAVE command the file type will be
“.COM.” With the file saved in this way, the CCP will be able to load and execute
the file.

USER— Change User Numbers As mentioned before, the directory of each logical disk
consists of several directories that are physically interwoven but logically separated
by the user number. When you use a specific user number, those files that were
created when you were in another user number are logically not available to you.

The USER command provides a way for you to move from one user number to
another. The command format is

A>USER n<lcr>
A _

where n can be any number from 0 to 15. Any other number will provoke the CCP
to echoing back your entry, followed by a question mark.

54 The CP/M Programmer’s Handbook

But once you have switched back and forth between user numbers several
times, it is easy to become confused about which user number you are in. The
STAT command can be used to find the current user number. If you are in a user
number that does not make a copy of STAT available to you however, all you can
do is use the USER command to set yourself to another user number. You cannot
find out which user number you were in; you can only tell the system the user
number you want to go to.

In the custom BIOS systems discussed later, there is a way of displaying the
current user number each time a warm boot occurs. If you are building a system in
which you plan to utilize CP/M’s user number features, you should give this
display of the current user number serious thought. If you are in the wrong user
number and erase files, you can create serious problems.

Some implementations of CP/M have modified the CCP so that the prompt
shows the current user number as well as the default drive (similar to the prompt
used in MP/ M). However, this use of a nonstandard CCP is not a good practice.
As a rule, customization should be confined to the BIOS.

Program Loading

Base Page

The first area to consider when loading a program is the first 100H bytes of
memory, called the base page. Several fields — units in this area of memory—are
set to predetermined values before a program takes control.

To aid in this discussion, imagine a program called COPYFILE that copies one
file to another. This program expects you to specify the source and destination file
names on the command line. A typical command would read

Adcopyfile tofile.typ fromfile.typ display

Notice the word “display.” COPY FILE will, if you specify the “display” option,
output the contents of the source file (“fromfile.typ”) on the console as the transfer
takes place.

When you press the CARRIAGE RETURN key at the end of the command line,
the CCP will search the current default drive (“A” in the example) and load a file
called COPYFILE.COM into memory starting at location 100H. The CCP then
transfers control to location 100H —just past the base page —and COPYFILE
starts executing.

The base page normally starts from location 0000H in memory, but where
there is other material in low memory addresses, it may start at a higher address.
Figure 4-1 shows the assembly language code you will need to access the base page.
RAM is assumed to start at location 0000H in this example.

Chapter 4: The Console Command Processor (CCP)

55

0000 = RAM
0000 :
0000 WARMBOOT
H
0002 = BIOSPAGE
0003 10BYTE:
H
0004 CURUSER:
0004 = CURDISK
H
0005 BDOSE:
0007 = TOPRAM
H
0005C
005C FCB1:
006C FCB2:
H
0080
H
COMTAIL:
0080 COMTAIL $COUNT:
0081 COMTAIL$CHARS:
0080
v
0080 DMABUFFER:
B
0100
TPA:

EQU

ORG
ns

EQU

Ds
EQU

DS
EQU

ORG

DS

Ds

DS
DS

ORG

DS

ORG

o sStart of RAM (and the base page)
;You may need to change this to
; some other value (e.g. 4300H)
RAM ;Set location counter to RAM base
3 sContains a JMP to warm boot entry
3 in BIOS Jump vector table
RAM+2 sBIOS Jump vector page
1 s Input/output redirection byte

1 ;Current user (bits 7-4)
CURUSER ;Default logical disk (bits 3-0)

3 ;Contains a JMP to BDOS entry
BDOSE+2 ;Top page of usable RAM

RAM+5CH ;Bypass unused locations
16 sFile control block #1
sNote: if you use this FCB here
3 you will overwrite FCB2 below.
16 sFile control block #2
$You must move this to another
3 place before using it

RAM+80H ;Bypass unused locations

sComplete command tail

1 ;Count of the number of chars
3 in command tail (CR not incl.)
127 ;Characters in command tail

; converted to uppercase and
3 without trailing carriage ret.

RAM+80H ;Redefine command tail area

128 sDefault "DMA" address used
$ as a 128-byte record buffer

RAM+100H ;BRypass unused locations
;Start of transient program area
3 into which programs are loaded.

Figure 4-1. Base page data declarations

Warmboot

Some versions of CP/M, such as the early Heathkit/Zenith system, have ROM
from location 0000H to 42FFH. Digital Research, responding to market pressure,
produced a version of CP/M that assumed RAM starting at 4300H. If you have
one of these systems, you must add 4300H to all addresses in the following
paragraphs except for those that refer to addresses at the top of memory. These
will not be affected by the presence of ROM in low memory.

The individual values used in fields in the base page are described in the

following sections.

The three-byte warmboot field contains an instruction to jump up to the high
end of RAM. This JMP instruction transfers control into the BIOS and triggers a
warm boot operation. As mentioned before, a warm boot causes CP/M to reload
the CCP and rebuild the allocation vector for the current default disk. If you need

56 The CP/M Programmer’s Handbook

to cause a warm boot from within one of your assembly language programs, code

JMP O sWarm Boot

BIOSPAGE The BIOS has several different entry points; however, they are all clustered

IOBYTE

together at the beginning of the BIOS. The first few instructions of the BIOS look
like the following:

JMP ENTRY1
JMF ENTRYZ2
JMFP ENTRY3 sand so on

Because of the way CP/M is put together, the first jump instruction always
starts on a page boundary. Remember that a page is 256 (100H) bytes of memory,
so a page boundary is an address where the least significant eight bits are zero. For
example, the BIOS jump vector (as this set of JMPs is called) may start at an
address such as F200H or E600H. The exact address is determined by the size of
the BIOS.

By looking at the BIOSPAGE, the most significant byte of the address in the
warmboot JMP instruction, the page address of the BIOS jump vector can be
determined.

CP/M is based on a philosophy of separating the physical world from CP/M’s
own logical view of the world. This philosophy also applies to the character-
oriented devices that CP/M supports.

The IOBYTE consists of four two-bit fields that can be used to assign a physical
device to each of the logical ones. It is important to understand that the IOBYTE
itself is just a passive data structure. Actual assignment occurs only when the
physical device drivers examine the IOBY TE, interpreting its contents and select-
ing the correct physical drive for the cooperation of the BIOS. These device drivers
are the low-level (that is, close to machine language) code in the BIOS that actually
interfaces and controls the physical device.

The four logical devices that CP/M knows about are

1. The console. This is the device through which you communicate with
CP/M. Itis normally a terminal with a screen and a keyboard. The console
is a bidirectional device: It can be used as a source for information (input)
and a destination to which you can send information (output).

In CP/M terminology, the console is known by the symbolic name of
“CON:”. Note the “:”— this differentiates the device name from a disk file
that might be called “CON.”

2. The list device. This is normally a printer of some sort and is used to make
hard copy listings. CP/M views the printer as an output device only. This
creates problems for printers that need to tell CP/M they are busy, but this

Chapter 4: The Console Command Processor (CCP) 57

problem can be remedied by adding code to the low-level printer driver.
CP/M’s name for this logical device is “LST:”.

3. Thepaper tape reader. It is unusual to find a paper tape reader in use today.
Originally, CP/M ran on an Intel Microcomputer Development System
called the MDS-800, and this system had a paper tape reader. This device
can be used only as a source for information.

CP/M calls this logical device “RDR:”.

4. The paper tape punch. This, too, is a relic from CP/M’s early days and the
MDS-800. In this case, the punch can be used only for output.
The logical device name used by CP/M is “PUN:”.

The physical arrangement of the IOBYTE fields is shown in Figure 4-2.

Each two-bit field can take on one of four values: 00, 01, 10, and 11. The
particular value can be interpreted by the BIOS to mean a specific physical device,
as shown in Table 4-1.

Although the actual interpretation of the IOBYTE is performed by the BIOS,
the STAT utility can set the IOBYTE using the logical and physical device names,
and PIP (Peripheral Interchange Program) can be used to copy data from one
device to another. In addition, you can write a program that simply changes the

Bit Number 7 6 5 4 3 2 1 0

N, am— —et— — — —
Logical Device List Punch Reader Console

Figure 4-2. Arrangement of the IOBYTE

Table 4-1. IOBYTE Values

Physical Device
Logical Device

00 01 10 1
Console (CON:) TTY: CRT: BAT: UCI:
Reader (RDR:) TTY: PTR: URI: UR2:
Punch (PUN:) TTY: PTP: UPI: UP2:
List (LST:) TTY: CRT: LPT: ULIL:

58 The CP/M Programmer’s Handbook

contents of the IOBYTE. But be careful: Changes in the IOBYTE take effect
immediately.
The values in the IOBYTE have the following meanings:

Console (CON:)

00

01

10

11

Teletype driver (TTY:)
This driver is assumed to be connected to a hard copy device being used
as the main console.

CRT driver (CRT:)
The driver is assumed to be connected to a CRT terminal.

Batch mode (BAT:)

This is a rather special case. It is assumed that appropriate drivers will be
called so that console input comes from the logical reader (RDR:) and
console output is sent to the logical list device (LST:).

User defined console (UC1:)

Meaning depends on the individual BIOS implementation. If, for exam-
ple, you have a high-resolution graphics screen, you could arrange for
this setting of the IOBYTE to direct console output to it. You might
make console input come in from some graphic tablet, joystick, or other
device.

Reader (RDR:)

00

01

10
11

Teletype driver (TTY:)
This refers to the paper tape reader device that was often found on
teletype consoles.

Paper tape reader (PTR:)

This presumes some kind of high-speed input device connected to the
system. Modern systems rarely have such a device, so this setting is often
used to connect the logical reader to the input side of a communications
line.

User defined reader #1 (UR1:)

User defined reader #2 (UR2:)

Both of these settings can be used to direct the physical driver to some
other specialized devices. These values are included only because they
would otherwise have been unassigned. They are rarely used.

Punch (PUNy)

00

01

Teletype driver (TTY:)
This refers to the paper tape punch that was often found on teletype
consoles.

Paper tape punch (PTP:)

CURUSER

CURDISK

BDOSE

Chapter 4: The Console Command Processor (CCP) 59

This presumes that there is some kind of high-speed paper tape punch
connected to the system. Again, this is rarely the case, so this setting is
often used to connect the logical punch to the output side of a communi-
cations line.

10 User defined punch #1 (UPI:)

11 User defined punch #2 (UP2:)
These two settings correspond to the two user defined readers, but they
are practically never used.

List (LST:)

00 Teletype driver (TTY:)
Output will be printed on a teletype.

01 CRT driver (CRT:)
Output will be directed to the screen on a CRT terminal.

10 Line printer driver (LPT:)
Output will go to a high-speed printing device. Although the name /ine
printer implies a specific type of hardware, it can be any kind of printer.

11 User defined list device (UL1:)
Whoever writes the BIOS can arrange for this setting to cause logical list
device output to go to a device other than the main printer.

To repeat: The IOBYTE is not actually used by the main body of CP/M. It is
just a passive data structure that can be manipulated by the STAT utility. Whether
the IOBYTE has any effect depends entirely on the particular BIOS implementa-
tion.

The CURUSER field is the most significant four bits (high order nibble) of its
byte. It contains the currently selected user number set by the CCP USER
command, by a specific call to the BDOS, or by a program setting this nibble to the
required value. This last way of changing user numbers may cause compatibility
problems with future versions of CP/M, so use it only under controlled conditions.

The CURDISK field is the least significant four bits of the byte it shares with
CURUSER. It contains a value of 0 if the current disk is A:, 1 if it is B:,; and so on.

The CURDISK field can be set from the CCP, by a request to the BDOS, or by
aprogram altering this field. The caveat given for CURUSER regarding compatibility
also applies here.

This three-byte field contains an instruction to jump to the entry point of the
BDOS. Whenever you want the BDOS to do something, you can transfer the
request to the BDOS by placing the appropriate values in registers and making a
CALL to this JMP instruction. By using a CALL, the return address will be

60 The CP/M Programmer’s Handbook

TOPRAM

placed on the stack. The subsequent JMP to the BDOS does not put any
additional information onto the stack, which operates on a last-in, first-out basis;
so when the system returns from the BDOS, it will return directly to your
program.

Because the BDOS, like the BIOS, starts on a page boundary, the most
significant byte of the address of the BDOS entry tells you in which page the
BDOS starts. You must subtract 1 from the value in TOPRAM to get the highest
page number that you can use in your program. Note that when you use this
technique, you assume that the CCP will be overwritten since it resides in memory
just below the BDOS.

FCB1 and FCB2 As a convenience, the CCP takes the first two parameters that appear in

COMTAIL

the command tail (see next section), attempts to parse them as though they were
file names, and places the results in FCB1 and FCB2. The results, in this context,
mean that the logical disk letter is converted to its FCB representation, and the file
name and type, converted to uppercase, are placed in the FCB in the correct bytes.
In addition, any use of “*” in the file name is expanded to one or more question
marks. For example, a file name of “abc.*” will be converted to a name of

Notice that FCB2 starts only 16 bytes above FCBI, yet a normal FCB is at least
33 bytes long (36 bytes if you want to use random access). In many cases, programs
only require a single file name. Therefore, you can proceed to use FCBI straight
away, not caring that FCB2 will be overwritten.

In the case of the COPYFILE program example on previous pages, two file
names are required. Before FCBI can be used, the 16 bytes of FCB2 must be
moved into a skeleton FCB that is declared in the body of COPYFILE itself.

The command tail is everything on the command line other than the command
name itself. For example, the command tail in the COPYFILE command line is

shown here:

A>copyfile tofile.type fromfile.typ display

The CCP takes the command tail (converted to uppercase) and stores it in the
COMTAIL area.

COMTAILSCOUNT This is a single-byte binary count of the number of characters in the

command tail. The count does not include a trailing CARRIAGE RETURN or a blank
between the command name and the command tail. For example, if you enter the
command line

A>PRINT ABCH. =

Chapter 4: The Console Command Processor (CCP) 61

the COMTAILSCOUNT will be six, which is the number of characters in the
string “ABCsx.%”.

COMTAILSCHARS These are the actual characters in the command tail. This field is not
blank-filled, so you must use the COMTAIL$COUNT in order to detect the end of
the command tail.

DMASBUFFER In Figure 4-1, the DMASBUFFER is actually the same area of memory as
the COMTAIL. This is a space-saving trick that works because most programs
process the contents of the command tail before they do any disk input or output.

The DMASBUFFER is a sector buffer (hence it has a length of 128 bytes). The
use of the acronym DMA (direct memory access) refers back to the Intel MDS-
800. This system had hardware that could move data to and from diskettes by
going directly to memory, bypassing the CPU completely. The term is still used
even though you may have a computer system that does not use DMA for its disk
I/O. You can substitute the idea of “the address to/from which data is read/writ-
ten” in place of the DMA concept.

You can request CP/M to usea DM A address other than DMASBUFFER, but
whenever the CCP is in control, the DMA address will be set back here.

TPA This is the transient program area into which the CCP loads programs. The
TPA extends up to the base of the BDOS.
The TPA is also the starting address for the memory image that is saved on disk
whenever you use the CCP SAVE command.

Memory Dumps of the Base Page

The following are printouts showing the contents of the base page (the first
100H bytes of memory) as the COPYFILE program will see it.
This is an example of the first 16 bytes of memory:

0000: C3 03 F2 95 00 C3 00 C2 FF Fé FS FF F3 F2 FF FO
N N —_ _/

p——

N
|—Arbitrary data left

from system startup

JMP to BDOS Entry Point
(Note 0C200H is starting page of BDOS)

Current default disk (0= A, 1 = B)
Current User (User = 0)
Settings of the IOBYTE

JMP WARMBOOT
(Note that the BIOS Jump Vector is at 0F200H)

62 The CP/M Programmer’s Handbook

The command line, as you recall, was

Arcopyfile tofile.typ fromfile.typ display
The FCB1 and FCB2 areas will be set by the CCP as follows:

Logical Disk Logical Disk

.
00SC: 00 54 4F 46
. T O F —_
0060: 49 4C 45 20 20 54 5% S0 00 00 00 00 00 46
1 L E T YP « « « . . F
0070: 4D 46 4% 4C 45 54 59 50 00 00 00 00 00 F2
M F I L ETY P e

F R
Mo
T

swDWL
w

Since the logical disks were not specified in the file names in the command line,
the CCP has set the disk code in both FCB1 and FCB2 to 00H, meaning “use the
default disk.” The file name and type have been converted to uppercase, separated,
and put into the FCBs in their appointed places.

The complete command tail has been stored in COMTAIL as follows:

31 in decimal

Residue

0080: 1F 54 4F 46 49 4C
00%0: 46 49 4C 45 2E 54
00A0: 00 43 Tz 43 3B 20 20 20 20 43 4F 4D 00 00 00 0A
00BO: B 5C 00 00 00 00 00 00 00 00 00 0O 00 00 (O 0O
ooco: ES ES ES £S ES ES E5 ES 5 ES ES £5 ES €5 ES ES
00D0: ES ES €S ES ES ES ES ES ES E£5 ES ES £5 ES ES ES
00EO: ES ES ES ES ES ES ES E5 ES £5 ES ES ES £5 €5 ES
00F0: ES £S5 ES ES ES £S5 ES ES ES £5 ES E5 €5 ES E5 ES

0100: 01 F?
Program Start

You can see that the command tail length is 01 FH (31 decimal). This is followed
immediately by the command tail characters themselves. Note that the command
tail stops at location 9FH. The remainder of the data that you can see is the residue
of some previous directory operation by the CCP. You can see the file name
CRCK.COM in a directory entry, followed by several OESHs that are unused
directory space.

Finally, at location 0100H are the first two bytes of the program.

Chapter 4: The Console Command Processor (CCP) 63

Processing the Command Tail

One of the first problems facing you if you write a program that can accept
parameters from the command tail is to process the command tail itself, isolating
each of the parameters. You should use a standard subroutine to do this. This
subroutine splits the command line into individual parameters and returns a count
of the number of parameters, as well as a pointer to a table of addresses. Each
address in this table points in turn to a null-byte-terminated string. Each parame-
ter is placed in a separate string.

Figure 4-3 contains the listing of this subroutine, CTP (Command Tail Pro-

cessor).
0100 ORG 100H
0100 CD3601 START: CALL cTP ;Test bed for CTP
0103 00 NOP
3 Remainder of your program
H This subroutine breaks the command tail apart, placing
5 each value in a separate string area.
H Return parameters:
H A =0 - No error (Z flag set)
y B = Count of number of parameters
i HL -> Table of addresses
H Each address points to a null-byte-
H terminated parameter string.
H If too many parameters are specified, then A = TMP
H If a given parameter is too long, then A = PTL
H and D points to the first character of the
H offending parameter in the COMTAIL area.
0080 = COMTAIL EQU 80H sCommand tail in base page
0080 = COMTAIL$COUNT EQU COMTAIL ;Count of chars. in command tail
0001 = CTP$TMP EQU 1 3 Too many parameters error code
0002 = CTP$PTL EQU 2 jParameter too long error code
3
PTABLE: ;Table of pointers to parameters
0104 0CO1 DW P1 ;5 Parameter 1
0106 1A01 DW P2 3+ Parameter 2
0108 2801 DW P3 ;3 Parameter 3
3 <--— Add more parameter addresses here
010A 0000 oW o] ; Terminator
H Parameter strings.
H The first byte is O so that unused parameters appear
H to be null strings.
; The last byte of each is a 0 and is used to detect
5 a parameter that is too long.
010C 0001010101P1: DB 0,1,1,1,1,1,1,1,4,1,4,1,1,0 ;Param. 1 & terminator
011A 0001010101P2: DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 2 & terminator
0128 0001010101P3: DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 3 & terminator
7 <——=- Add more parameter strings here
3
CTP: sMain entry point <<<<<
0136 210401 LXI H, PTABLE ;HL -> table of addresses
0139 0OE00 MVI >, 0 ;Set parameter count
013B 3A8000 LDA COMTAIL$COUNT ;Character count
013E B7 ORA A ;Check if any params.
O13F C8 RZ sExit (return params. already set)
0140 ES PUSH H sSave on top of stack for later
0141 47 MOV B,A ;B = COMTAIL char. count
0142 218100 LXI H, COMTAIL+1 sHL -> Command tail chars.

Figure 4-3. Command Tail Processor (CTP)

64 The CP/M Programmer’s Handbook

CTPSNEXTP: ;Next parameter loop
0145 E3 XTHL sHL -> Table of addresses
sTop of stack = COMTAIL ptr.
0146 S5E MOV E,M ;Get LS byte of param. addr.
0147 23 INX H sUpdate address pointer
0148 Sé Mov D,M ;Get MS byte of param. addr.
sDE -> Parameter string (or is 0)
0149 7A MOV A, D 3Get copy of MS byte of addr.
014A B3 ORA E ;Combine MS and LS byte
014B CAB001 Jz CTP$TMPX :Too many parameters—-exit
O14E 23 INX H ;Update pointer to next address
014F E3 XTHL sHL -> comtail
sTop of stack--update addr. ptr.
At this point, we have
3 HL -> next byte in command tail
;s DE -> first byte of next parameter string
CTP$SKIPB:
0150 7€ MoV A M ;Get next parameter byte
0151 23 INX H sUpdate command tail ptr.
0152 05 DCR B ;Check if characters still remain
0153 FA7301 MB CTPX sNo, so exit
0156 FE20 CPI s ;Check if blank
0158 CAS001 JZ CTP$SKIPB ;Yes, so skip blanks
015B 0OC INR C s Increment parameter counter
CTP$NEXTC:
015C 12 STAX D ;Store in parameter string
015D 13 INX D sUpdate parameter string ptr.
O15E 1A LDAX D ;Check next byte
015F B7 ORA A ;Check if terminator
0160 CA7A01 Jz CTP$PTLX ;Parameter too long exit
0163 AF XRA A sFloat a 00-byte at end of param.
0164 12 STAX D ;Store in param. string
0165 7E Mov AM ;Get next character from tail
0166 23 INX H ;Update command tail pointer
0167 0S5 DCR B ;Check if characters still remain
0168 FA7301 JM CTPX sNo, so exit
016B FE20 CPI ‘7 sCheck if parameter terminator
014D CA4501 Jz CTPS$NEXTP ;Yes, so move to next parameter
0170 C35CO1 JMP CTPSNEXTC ;No, so store it in param. string
;
CTPX: sNormal exit
0173 AF XRA A sA = 0 & Z-flag set
CTPCX sCommon exit code
0174 E1 POP H ;Balance stack
0175 210401 LXI H,PTABLE sReturn ptr. to param. addr. table
0178 B7 ORA A sEnsure Z-flag set appropriately
0179 C9 RET
CTP$PTLX: sParameter too long exit
017A 3E02 MVI A, CTP$PTL ;Set error code
017C EB XCHG sDE -> offending parameter
017D C37401 JMP CTPCX sCaommon exit
CTP$TMPX: ;s Too many parameters exit
0180 3E01 MVI A,CTP$TMP ;Set error code
0182 C37401 JMP CTPCX s Caommon exit
;
0185 END START

Figure 4-3. Command Tail Processor (CTP) (continued)

Available Memory

Many programs need to use all of available memory, and so very early in the
program they need to set the stack pointer to the top end of the available RAM. As
mentioned before, the CCP can be overwritten as it will be reloaded on the next
warm boot.

Chapter 4: The Console Command Processor (CCpP) 65

Figure 4-4 shows the code used to set the stack pointer. This code determines
the amount of memory in the TPA and sets the stack pointer to the top of available
RAM.

Communicating with the BIOS

If you are writing a utility program to interact with a customized BIOS, there
will be occasions where you need to make a direct BIOS call. However, if your
program ends up on a system running Digital Research’s MP/M Operating
System, you will have serious problems if you try to call the BIOS directly. Among
other things, you will crash the operating system.

If you need to make such a call and you are aware of the dangers of using direct
BIOS calls, Figure 4-5 shows you one way to do it.

Remember that the first instructions in the BIOS are the jump vector —a
sequence of JMP instructions one after the other. Before you can make a direct
call, you need to know the relative page offset of the particular JMP instruction
you want to go to. The BIOS jump vector always starts on a page boundary, so all
you need to know is the least significant byte of its address.

0007 = TOPRAM EQU 7 ;Most significant byte of

H BDOS entry point
0000 3A0700 LDA TOPRAM ;Get MS byte of BDOS entry point
0003 3D DCR A iBack off one page
0004 2EFF MVI L,OFFH ;Set LS byte of final address
0006 67 MoV H. A sHL = XXFFH
0007 F9 SPHL ;Set stack pointer from HL

Figure 4-4. Setting stack pointer to top of available RAM

§ Use this technique only for CP/M utility programs.
H MP/M programs do not permit this.
0009 = CONIN EQU O%H ;Get console input character
7 (It’s the 4th jump in the vector)
0002 = BIQSPAGE EQU 2 sAddress of BIOS page
H At this point you make a direct CONIN
H CALL...
H
0000 2E09 MVI L,CONIN ;Get LS byte of CONIN entry point
0002 CDO500 CALL BIOS 3Go to BIOS entry subroutine
... the rest of your program...
7
BIOS:
0005 3A0200 LDA BIOSPAGE;Get BIOS jump vector page
0008 &7 MoV H, A sHL -> entry point
:(You set LS byte before coming here)
0009 E9 PCHL 3 "Jump" to BIOS

iYour return address is already
3 on the stack

Figure 4-5. Making a direct BIOS call

66 The CP/M Programmer’s Handbook

s Note: This example assumes you have not
3 overwritten the CCP.

0100 ORG 100H ;Start at TPA

START:
0100 210000 LXI H,0 ;Save CCP’s stack pointer
0103 39 DAD SP ;By adding it to O in HL
0104 220F01 SHLD CCP$STACK
0107 314101 LXI SP, LOCAL$STACK

The main body of your program is here

. and when you are ready to return

H to the CCP...
010A 2A0FO1 LHLD CCP$STACK ;Get CCP’s stack pointer
010D F9 SPHL sRestore SP
010E C9 RET sReturn to the CCP
010F CCP$STACK: Ds 2 ;Save area for CCP SP
0111 Ds 48 sLocal stack
LOCAL$STACK:
0141 END START

Figure 4-6.

Returning to CCP at program end

Returning to CP/M

Once your program has run, you will need to return control back to CP/M. If
your program has not overwritten the CCP and has left the stack pointer as it was
when your program was entered, you can return directly to the CCP usinga RET
instruction.

Figure 4-6 shows how a normal program would do this if you use a local stack,
one within the program. The CCP stack is too small; it has room for only 24 16-bit
values.

The advantage of returning directly to the CCP is speed. This is true especially
on a hard disk system, where the time needed to perform a warm boot is quite
noticeable.

If your program has overwritten the CCP, you have no option but to transfer
control to location 0000H and let the warm boot occur. To do this, all you need do
is execute

EXIT: JMP 0 sWarm Boot

(Asa hint, if you are testing a program and it suddenly exits back to CP/M, the
odds are that it has inadvertently blundered to location 0000H and executed a
warm boot.)

