ClibPD

44,

6.0
RESIDENT SYSTEM SOFTWARE

6.1

Introduction

The resident software is comprised of major modules, Basic Interpreter,
the Machine Language Utility, and the General Housekeeping Module.
Uhdér normal system operation they work together to allow use of BASIC
programs from cassette. For machine code programs major functions

available as subroutines.

www . fastio.com

—

45,

6.2
Resident DAI BASIC

6.2.1 :
Alphabetic Index of DAI BASIC Statements

6.2.1.1
BASIC Commands

CHECK 6.2.9.1 LOADA
CLEAR 6.2.11.1 MODE
COLORG 6.2.12.2 NEW
COLORT 6.2.12.3. ' NEXT
CONT 52,1001 ‘ NOISE
CURSOR 6.2.12.9 ON...GOSUB
DATA 6.2.8.1 . ON...GOTO
DIM 6.2.11.2 ouT

DOT 6.2.12.4 o POKE
DRAW 6.2.12.4 " PRINT
EDIT 6.2.5:1 READ
END 6.2.6.1 ' RAM
ENVELOPE 6.2. 13.3 , RESTORE
FILL 6.2.12.4 RETURN
FOR...NEXT 6.2.6.2 RUN
GOSUB 6 6.2.6.3 SAVE
GOTO 6.2.6.4 SAVEA
IF...GOTO 6.2.6.5 SOUND
IF...THEN 6.2.6.6 STOP

IMP 6.2.2 TALK
INPUT 6.2.7.3 . TROFF

LET 6.2.11.4 TRON

LIST 6.2.5.3 WAIT

LOAD 6.2.9.2 UT

== N - N - N N T2 W =A = S -l Y - S - AT - U - - N = M- Y-S =N -
NN NNDNNDN NN DN NN NN

.

.

13.2
6.10

. 13,5

7.4
7.5

.6.11
70T

vt 2 S S

http://www.fastio.com/

46. l ! 47,

6.2.1.2 6.2.1.3

BASIC Functions Arithmetic and Logical Operators

ABS 6.2.14.1 LOG 6.2.14.15 +, -, %, /, MOD, t, =,4.,%,¢Y - €=, »=, IOR, IAND, IXOR, INOT,
ACOS 6.2.14,2 LOGT 6.2.14.16 SHL; SHR, AND, OR.
ALOG 6.2.14.3 MID $ 6.2.14.17
ASC 6.2.14. 4 PDL 6.2.7.4 6.2,2
ASIN 6.2,.14,5 PEEK 6.2.7.5 Format rules and constraints
ATN 6.2.14.6 PI 6.2.14.18
: CHR$ 6.2,14. 7 RIGHT $ 6.2.14.19 6.2.2.1
cos 6.2.14.8 RND 6.2.14.20 Variables and Numbers
CURX 6.2.12,10 SCRN 6.2.12.8 i ’ ’
CURY 6.2, 12; 10 SGN. 6.2.14.21 DAI BASIC recognises 2 types of numeric value, integer, and floating,
EXP 6.2.14.9 SIN 6.2.14,22 point. -Integers are'whole numbers only, and of restricted range. k
FRAC 6.2.14. 10 ‘ ‘ SPC 6.2.14.23 t 2432 -1 (e g. about 9 digits), However, integer a.rithn’ietib is exéct o
1‘ FRE 6.2.11.3 ‘ SQR 6.2.14,24 and gives no rounding efrors, Floating point nufﬁbers include non,—integ'er“
E FREQ 6.2.13.6 STR $ 6.2.14.25 vé'lues, ‘and allow numbers whose size is in range 10° 18'to 10 18, with 6
GETC 6.2.8.2 TAB 6.2.14.26 digit printout resolution. (32 bit floating point format). : ’
HEX$ 6.2.14.11 . TAN 6.2.14.27
INP 6.2.7.12 VAL 6.2.14.28 Various DAI BASIC commands.expect either an integer or a floéting point
INT 6.2.14.12 VARPTR 6.2..11.5 value. For example: ;
LEFTS$ 6.2.14.13 XMAX 6.2.12.6 a) DRAW A,B C,D X, All of parameters A, B,C,D and X are expected
LEN 6.2.14. 14 YMAX 6.2.12.7 to be integers.

b) LET A = SQRT (B). The parametef B is expected to be a positive
floating point number.
DAI BASIC obeys the following rules regarding numerical values:

1) When a floating point value is found where an integer value is required,

, it is truncated'(e. g. 2.3 = 2, -1.7 - -1).
] 2) When an integer value is found where a floating point value is réquired,
l . ’l it is converted automatically.

3) Where an integer representation (e.g. '3" not '3, 0") is typed in, it
| will be encoded as a floating point or integer value as the context
l l demands, or if neither is defined, e.g. in "PRINT", as the type set

by the "IMP'" command, ’

: ClibPD waww . fastio.com

http://www.fastio.com/

ClibPD

W

48.

Variable names have from 1 to 14 characters, of which the first must be
alphabetic, and the rest either alphabetic or numeric. Alphanumeric
characters after the 14th are ignored. If no type letter ($,%,!) is
appended then the type depends on the IMP command. Initially all such

variables are floating point.

Numeric variables in DAI BASIC may be either floating point or integer
type. Integer variable names are terminated by the character "%", and
floating point by ' ! ', String variables have "$'" as a terminator. But

see examples for influence of IMP command,

Examples:
Initially .
I,A,S are floating point, because they are abbreviations of
I, A!, 8!
1% ,A%,S% aré integer and distinct from I, A, S.
I ,;A!,S! are floating pqint, and are the same variables as I,
A,S.

1$,A$,8% are string variables.
So if the IMP command is never used, floating point variables can be
indicated by leaving off the "type'' letter, integer variables by using %,
and string by using $.
After IMP INT I-N

IMP STR S-S5

I is-an abbreviation for 1%, or integer variable
A is an abbreviation for A! or floating point variable
S is an abbreviation for S$ or string variable

However any variable with a type letter (I$, A%, S!) is totally unaffected
by the IMP command. When the Personal Computer is LISTING a program,
it uses the shortest form for a name. In other words after the example
above, the variable 1% would be printed as just I, S$ as just S, and A!

as just A, If the IMP command is used in the form "IMP INT" or

"IMP FPT", without a range of letters, then all variable names are
defaulted to that type. In addition integer number representations e. g.

31 are interpreted as the required type.
P q YP

/

vw.fastio.com

49,
Command Means same as 3" is interpreted as and A as
IMP INT IMP INT A - Z Integer 3 A%
IMP FPT IMP EPT A - Z Floating point. 3.0 Al

IMPSTR Not allowed = -
At power on the system does an initial "IMP. FPT'. '

6.2.2.2
Strings

1) A string may be from 0 to 255 charécters in 'lengt’h.

2) String arrays may be dimensioned exactly like numeric arrays. F‘o’r"
instance,} DIM A$(10,10) creates a string array of 121 elemen’fs,;’i
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10).

Each string array element is a complete string, which can be upto
255 characters in length; ‘

The total number of characters in'use .in strings and associated contrgl

w
~

bytes at any time during program éxecution ¢annot exceed the amount
of string space requested, or an error message will result.
Strings cannot contain the character double quote (Hex 22). . It can be

printed using CHR $ (&¥F22).

4

~—

Examples of String Usage (Do not forget to make first a CLEAR).
DIM A $(10,10)
Allocates space for a pointer in string space for each element of a

string matrix. 'No furhter string space is used at this time.

A$ ="FOO"+V$
Assigns the value of a string expression to a string variable,

requiring string space equal to the number of characters plus one.

IF A$ = B$ THEN STOP
String comparison operators. Comparison is made on the basis of
ASCII codes, a character at a time until a difference is found. If
during the comparison of two strings, the end of one string is r
reached, the shorter string is considered smaller. Note that "A "

is greater than " A" since trailing spaces are significant.

http://www.fastio.com/

~ ClibPD

Statements

www . fastio.com

50. '{ | l?
. \‘

INPUT X $
Reads a string from the keyboard. String does not have to be in |
quotes, but if not leading blanks will be ignored and the string will .

be terminated on a ",!" character.

READXS$

Reads a string from DATA statements within the program. Strings
do not have to be in quotes, but if they are not they are terminated ' . l
4

on a ''," character or end of line, and leading spaces are ignored,
PRINT X$

PRINT "FO00'"+A$

Prints the result of the string expression.

6.2.2.3

Operators

It is obvious that the result of adding 1% + J% when 1% contains 3 and J%
contains 4 should be the integer 7. It is also reasonable to expect I+ J
where I contains 3.0 and J contains 4. 0 to give the floating point result
7.0. Thus some B ASIC operators do different things depending on the
types of their operands. It is always permitted to give operands of
either type to any operator, However the operator may convert either
or both operands to another type before use.

Relational operators and the operators "AND" and "OR'" produce results
of type "logical"'. These results cannot be assigned to any variables and

are only used in "IF" statements.

6.2.2.4

In the description of statements, an argument of V or W denotes a l
numeric variable, X denotes a numeric expression and an I, J or K

denotes an expression that is truncated to an integer before the statement '

51.

is executed, A, B indicate array names without any parameters.
An expression is a series of variables, operators, function calls and
constants which after the operations and function calls are performed

using the precedence rules, evaluates to a numeric or string value.
A constant is either a number (3. 14) or a string literal ("F00"),

6.2.2.5

Expressions

The cardinal principlé behind the evaluation of expressions by DAI BASIC
is that if an expression-contains only integer values or variables and '
operators which work on integers, then at no time is floating point
arithmetic used. This gives fast integer arithmetic where it is needed

for industrial control and graphics applications.

Order of Evaluation

Expressions in Brackets

t

* /. MOD
+ -

SHL = SHR

JOR IAND IXOR |
> o= LY (= >=

AND OR

Operators on the same level are evaluated from left to right. - |

E.g. 3% 5MOD 2 =1

http://www.fastio.com/

|
|

ClibPD

52.

6.2.3

Error Reporting

6.2.3.1

Error Report Format

When an error is encountered a message is printed giving details. Under

certain circumstances, other information will be given.

(i) If an immediate command has just been input, than no other
information is given,

(ii) Ifa stored program line has just been input, then a reflection of the

line with a '"?'"" near the error will be printed.

(iii) If an immediate command is being run, no other information is given,

(iv) = If.a stored program line is being run, the words "IN LINE NUMBER"
and the line number are given. '

In case (ii), the line goés into the program with a 'Sk¥4«§ ' on the front.

{Internally coded as an ERROR LINE)

6.2.3.2

Error Messages Dictionary

CAN'T CONT

There is no suspended program to be "CONTinued'.

COLOUR NOT AVAILABLE
A colour has been used in 4 colour mode when it has not been set up by a

COLORG command.

COMMAND INVALID
This command cannot be used in a non-stored program line, or in a

stored program line, whichever was attempted.

DIVISION BY 0
Integer or floating point divide by 0.

/

www . fastio.com

53.

ERROR LINE RUN
A line which gave an error message when it was input has been run

without first correcting it.

INVALID NUMBER
The parameter given toa VAL function was not a valid floating point

number.

LINE NUMBER OUT OF RANGE

A line number greater than 65535 or zero has been used. (or negative)}

LINE TOO COMPLEX

Line typed in would geherate more thah 128 bytes -of encoded p‘rogra‘x/n;

LOADING ERROR 0, 1,2 or 3
The program or data requested could not be loaded,
For cassette:
0 means Checksum error on program name.
1 means Insufficient memory o
"2 means Checksum error on program.

3 means Data dropout error,

NEXT WITHOUT FOR
A "NEXT" statement has been executed without a corresponding "FOR"

statement.

NUMBER OUT OF RANGE

Some number has been used in context where it is too large or small

OFF SCREEN

A point has been referred to which does not exist in this mode.

http://www.fastio.com/

ClibPD

54.

OUT OF DATA

A "READ" statement has tried to use more DATA than exists.

OuUT OF MEMORY
Some attempt has been made to use too much space for the program,

symbol table, screen, heap (strings + arrays storage) or edit buffer,

OUT OF SPACE FOR MODE

This message occurs if a program is running in modes 1 or 2, with
insufficient free space to run mode 0, 1A or 2A, and attempts to print a
message. ‘The system deletes the program by’a NEW and prints this

message.

-.OUT OF STRING SPACE

More string space has been used than was allowed for.

OVERFLOW

Integer or floating point overflow.

RETURN WITHOUT GOSUB

A "RETURN" statement has been executed with no corresponding "GOSUB"

STACK OVERFLOW
A line too complex has been typed in, or, too much stack space has been

used by a running program.

STRING TOO LONG

A string of over 255 characters has been created.

SUBSCRIPT ERROR
A subscript has been evaluated which is outside the declared range for
the array, an array name has been used with the wrong number of

parameters, or a dimension of 0 has been requested.

wwav . fastio.com

55.

SYNTAX ERROR
Some error in the line just typed in, or the line of data read by an INPUT

or READ,

TYPE MISMATCH
Some expréssion gives a result of an incorrect type for its position.. Can

occur on input or while a program is running.

UNDEFINED ARRAY

A reference has been made to an array which has not yet been

"DIMensioned' .

UNDEFINED LINE NUMBER

A reference has been made to a non-existent program line,

http://www.fastio.com/

v Lines on the screen are obviously physically 60 characters long. But

56.

6.2.4 .
Interacting with DAI BASIC I '

6.2.4.1

Facilities of the Character Screen ' '
. vfi P

When the Personal Computer first prints the message "BASIC" and the

prompt, the screen is in what is known as mode 0. That is 24 lines of 60 l l

characters. At any time the screen can be returned to this mode with the
command '""MODE 0",)

The next position where a character will be displayed is indicated by a

flashing underline cursor.

when characters are being output the line can be extended with up to 3
""continuation' lines. These have the letter C in column 0 and the first
character of those coninuation lines are indented 7 spaces to the right.
The cursor is moved forward when a character is output, and backwards
for a backspace (4 8) character. Carriage return (4k D) ends a line.
The form feed character (3= C) has the special effect of entirely clearing
the character area (in any mode) and placing the cursor at the top left
position.

The tab (3} 9) character has no special function.

When the third continuation line is used up, further characters output to

the screen are ignored, until a carriage return, backspace or form feed,

When BASIC is expecting input it only notices characters in positions after)
the prompt character. If the prompt is deleted with backspaces, then any ' l

character put in that poésition will be ignored, probably causing a syntax

error, The colours used for characters are initially set at power on. They -
can be changed using the COLORT Command, l '

l‘\l
-

/

vw.fastio.com

-and the line is ignored. However during input for'an INPUT command; it S

57.

6.2.4.2

Input of programs and data

When the Personal Computer expects input, it always'types a "prompt'"
character, nosv.ally a "s "', but during INPUT commands'a ''?".
The user can then type in characters at will. To delete the last entered

character, the "CHAR DEL' key is used. If more information is input

_than fits across the screen, then it is continued onthe following line,

indented and with a ""C" (for’ continuation) in colurﬁn 0. . Up'to 3 continuation

lines may be used, giving a line length of 59 + 53 +.53'+ 53 = 218 characters.

Pressinyg BREAK while typing in commands causes a ! ! to be prinfed,’

causes suspension of the program:. -

6.2.4.3

Amending and running of programs.

When the Personal Computer is ready to accept instrhctions’,‘ it prints a
prompt chag"rac'ter. :

The user ’can then type in a line of one or more commands, separated by
the character '":', and terminated by'a “RETURN".‘ The cornmands will
be encoded immediately, and if they have the right syntax, will be run.’

If the line has a number on the front, it will be éncoded as before and

placed into the stored prégram in the machine, according to its line

number, It replaces any previous line with that number. 1If the line.is not
syntactically correct, an error message will be printed. if there was no
line number, no other action is taken. If there was, thena is is inserted
as a dummy first command on the line, and the first 121 characters of the
line are encoded as if the line were a REM statement, Attempted execution
of the line .yields the message "ERROR LINE RUN'". A question mark is
inserted near the‘point where the error was detected. The line is then
inserted into the program as before.

When the user wishes to run a stored program, he types "RUN", to start

at the first line or "RUN 22" to start at line 22.

http://www.fastio.com/

ClibPD

58.

(for example). The program will then run until some error, or one of

the following, occurs:

(i) If an END statement is executed, the program stops. It prints the
message: END PROGRAM. The program can only be restarted .
using RUN.

(ii) If a STOP statement is executed, the program stops. It prints the
message: STOPPED IN LINE X with X the appropriate line number,
The prograni is then said to be ''suspended', ‘

(iii) If the BREAK key is held down, one of two results will occur:

a) In most circumstances the message BREAK IN LINE X will be ¢
printed immediately. ‘The program is then suspended,
b) Under some circumstances, after a pause the system will print:

#* #**BREAK. The program cannot now be restarted.

When a program is suspended, it can be restarted by use of the CONT
command. "This restarts the program just as if it had never stopped.
However any variables etc. changed by the user during the suspension
are not restored to their old values.

If the systerm has cause to report any run-time error to the user, or if
the user RUNs any other program or does a SAVE, LOAD, EDIT, CLEAR
or NEW, then the suspended program is no longer valid and cannot be
CONTinued. If the user tries to do so a message will be printed: CAN'T
CONT. When a RUN, SAVE, CLEAR, LOAD, EDIT or NEW command
is executed, all variables are reset to 0 (if arithmetic) or a null string
(if string). All space assigned to arrays is returned, and any subsequent
reference to an array before running a DIM statement for it will give an
error,

To delete the stored program the command NEW is used. After this
there are no stored lines in the machine and no variables are set to any

values.

When a program is suspended the STEP command may be used to continue
the program one line at a time. Before each line is executed it is listed
to the screen and the machine waits for a space to be typed in on the

keyboard.

/

www . fastio.com

59.

At power on DAI BASIC defaults into the floating point variable mode
where integer variable names must be concluded by the (%) character.
A facility to allow this to be switched is provided by the IMP statement.
The operator must type in any IMP switches that he desires before he

enters his Trograrm.

6.2.4.4
Merging of BASIC Programs

~CLEAR 10000

LOAD SEGMENT I OF PROGRAMS TO BE MERGED

EDIT + BREAK + BREAK

LOAD SEGMENT 2 OF PROGRAMS TO BE MERGED

(THE LINE NUMBERS CANNOT BE THE SAME IN SEGMENTS 1 AND 2)
POKE:H:135 2

6.2.4.5 B
Merging of BASIC and machine Language Programs (or routine){MLP/R)

a) Prepare of the MLP/R and save it after the BASIC program you 1ntend

to use wiith this MLP/R.

EXAMPLE SAVE FIRST YOUR BASIC PROGRAM (see example under

of program)

MLP/R 10 CLEAR 2000

20 DIM A (20,20)

30 FOR1% = ¢ TO9

40 READ B% : POKE (#=2F1 + 1%), B% : NEXT

50 SAVEA A "TEST" : STOP

60 DATA # F5,33E 3 FF Ak 32,3450, % BEAFF1,35C9, 4,9
N. B. The size of a one dimension array is (256 x 4) bytes maximum.
In this example the size is (20 x 20 x 4) = 1764 bytes,

The basic program you intend to use must have:

http://www.fastio.com/

:
3

ClibPD

60.

- a CLEAR - a DIM (of the same name and the ‘same array size as the
MLP/R - a LOADA (of same name than the MLP/R)
EXAMPLE of BASIC program that you have on cassette before the
MLP/R

10. CLEAR 2¢¢g
20 DIM A (2¢,2¢)
30 LOADA A

40 CALLM }-2F1
50 STOP

This program will load the MLP/R after you make a RUN and execute the
MLP/R by the CALLM of line 40.
calling the MLP/R.‘ You can als‘o delete the first 3 lines by typing 10,
RETURN, 30, RETURN,

You should now RUN 40 each time for

Important: When the MLP/R has been loaded by the. BASIC program do not
use the EDIT mode, nor RUN the lines containing the CLEAR, DIM and
LOADA commands (in this example you must RUN 40), nor use somewhere
in the BASIC program a CLEAR command or a DIM statement with the

same array name used for the MLP/R.

When using an MLP/R with a BASIC program (if you have not been
locating this MLP/R at any location of your choice) you will find the "'H:
location of the begin of the MLP/R by

PRINT HEX$ (VARPTR (A(f,))).
first MLF/R

2Ffg for the

for a one dimension array and={=2F1 for a 2 dimension

This location is usually

array (when the discs are not used,as the DOS moves the Heap).

www . fastio.com

61.

6.2.5.

User Control Statements

6.2.5.1
EDIT

EXAMPLE(s)
(1) EDIT
Moves entire BASIC program into edit Buffer for possible’modification
: and display
(ii) . EDIT 100 - :
Moves only the BASIC program line number 100 mto the ed1t buffer
for possible modification.and display. '
(iii)- EDIT 100 -
M0ves the BASIC program line numbers 100 untll the end of the
BASIC program into the edit buffer for pos s1b1e mod1f1cat1on and
display. ‘
(iv) - ‘EDIT 100-130 -
Moves the BASIC program line numbers 100 to 130 into the edit Buffer
for possible modification and display.
(v) EDIT - 130 ,
" Moves the BASIC programs from the first line to line number 130

into the edit buffer for possible modification and display.

Functional Explanation

The Edit statement provides a simple means to modify or type-in aprogram
into the DAI Personal Computer. A number. of prograin lines are placed
into an internal edit buffer. The first 24 BASIC program lines in the edit
buffer are displayed on the screen. The cursor is positioned at the first

character of the first line on the display.

The cursor can be moved around the screen by use uf the cursor control

keys. (4t ¢~). If the operator attempts to move the cursor off the screen

http://www.fastio.com/

62. 63

(ii) LIST 100
Displays BASIC i:)rogram line number 100 only.
(iii) LIST 100 -
Displays BASIC program starting at line number 100 until the end

the part of the document which can be seen on the screen is moved to
keep the cursor visible. The visible area of the document is known as
the "window". The window can also be changed by using the cursor
control keys plus the ''shift'" key. The cursor stays in the same place in
of the program.
(iv)- LIST '100-130
Displays BASIC program line numbers 100 to 130.
(v) LIST - 100

the document, unless moving the window would take it off the screen.
The CHAR DEL key deletes the character at the cursor. It has no effect
to the right of a carriage return, Any other character typed in is inserted

: : before the cursor position, if the cursor is left of the carriage return on

| the line. i Displays BASIC program starting at first line of program and until

[;) : ‘ When all editing is finished, the BREAK key should be pressed. If it is line number 130.)
followed by a second BREAK, then the whole effect of the editing is

3 ignored. If followed by a space, then the original version of the edited 0 6.2.5.4

: text is deleted, just as if it were typed in from the keyboard, ~NEW
Any necessary error messages will be put on the screen, and followed. by

: a prompt. The Edit command is also used to achieve Program merges EXAMPLE(S)

E from different cassettes, (i) NEW

Special note: Deletes current BASIC program that is stored in memory and’
Avoid pressing BREAK or any other key after typing the end of the EDIT resets all variables to the undefined state. ,The HEAP reservation is

command and before the program has been displayed on the screen. is not changed. ' (See 6.2.11).

See "Edit Buffer Program'' in appendix, 6.2.5.5
6.2.5.2 ' RUN
IMP

EXAMPLE(S)
EXAMPLES (i) RUN

See examples given in paragraph 6.2.2 Starts execution of the BASIC program currently in memory at the

lowest line number,

6.2.5.3 (ii) = RUN 100
LIST Starts execution of ten BASIC program currently in memory at line
o numbet 100. If line 100 does not exist, an error message occurs.
EXAMPLE(S)

(1) LIST

Displays the entire BASIC program. During display the output can
be made to pause by pressing any character key. Then pressing

of the space bar will continue the listing dispiay output.

P

ClibPD www . fastio.com

http://www.fastio.com/

|
|

64.

6.2.6

Frogram control Statements

6.2.6.1
END

EXAMPLE(S)

(i) END
Terminates the execution of a BASIC program. The program cannot
be further continued without a RUN command. An "END PROGRAM"

message is displayed.

6.2.6.2 ;
FOR,..... NEXT '
EXAMPLE(S) '

(i) FORV =1TO9.3STEP .6

(ii) FORV =1TO9.3

(iii) FOR V =10% N TO 3. 4/Q STEP SQR(R)

(iv) FORV =9 TO'l STEP -1

(v, FORW=1TO10:FOR W =0 TO 3 : NEXT : NEXT,

The variable in the FOR statement is set to the first expression given.
Statements are executed until a NEXT statement is encountered. Action
at this point depends on the rest ot the FOR statement. When the FOR
statement is executed the "TO" and "STEP'" expressions are also
calculated. The step defaults to 1 if it is not explicitly given. Then the
range is divided by the step to calculate a repeat count for the loop. This
must be within the ranges 0 to 2423-1 for a floating point loop and 0 to
2431-1 for an integer one. The loop is run this number of times
irrespective of anything else, and is always run at least once.

If the STEP is not explicitely given then the NEXT statement uses a
special fast routine to increment the variable value. If it is explicitely
given it is added to the variable. Loops using integer variables run

faster than those using floating point ones.

/

www . fastio.com

b
i
il
il

|

65.

Special cases:
a) The interpreter will terminate an unfinished loop if a NEXT statement

for an outer one is encountered. E.g.
FORA=1TO10:FOR B=0TO3:NEXTA
is allowable.
b) The interpreter will terminate: all loops up to the correct level if a
loop is restarted. E.g. -
10 FOR A =1.TO 10
20 FOR B =0TO3
30-GCTO 10 ‘

is allowable.

il

¢) FOR loops inside a subroutine are separate from those 'outside for
purpose of special cases (a) and (b) .
d) A FOR loop may be abandoned by a RETURN statement. E,g.
10 GOSUB 10 : : :
20sTOP
30 FOR A= 1 TO 10
40 RETURN
is allowable."
e) after a FOR loop finishés, the variable has the value it would next
have taken.
E.g. 10FOR I =0 TO 10 : NEXT
20 PRINT I ‘
Will print- 11, ¢.

6.2.6.3

GOSUB

EXAMPLE ;

(i) GOSUB 910 /
Branches to the specified statement, i.¢. (910). When a Return
statement is encountered the néxt statement executed is the
sta.temeht following the GOSUB. GOSUB nesting is limited‘bnly by
the available stack memory. A program can have 10 levels of

GOSUB or 15 levels of FOR loops without diffi,culfy.

http://www.fastio.com/

ClibPD

66.

EXAMPLE
GOTO 100

Branches to the statement specified.

6.2.6.5

IF. GOTO

EXAMPLES

(i) IFX =Y +23,.4GOTO 92
Equivalent to IF ... THEN, except that IF .., GOTO must be
followed by a line number, while IF ... THEN is followed by another

statement, or a line number,
(ii) IF X = 5 GOTO 50:Z = A
Warning: Z = A will never be executed.
6.2.6.6 '
IF ... THEN

EXAMPLE
(i) I1F X { 0 THEN PRINT "X LESS THAN 0" : GOTO 350

In this example, if X is less than 0, the PRINT statement will be]
executed and then the GOTO statement will branch to line 350, If l l

the X was 0 or positive, BASIC will proceed to execute the lines

after this one. .
(ii) IF X = Y + 23. 4 THEN 92 ' l

IF ... THEN statement in this form is exactly equivalent to

IF ... GOTO example (1). l l

6.2.6.7

ON ... GOSUB ;
,l l

EXAMPLE(S)

(i) ON I'GOSUB 50, 60 l l

www . fastio.com

6.2.
ON ...

(ii)

67.

Identical to ""ON ... GOTO", except that a subroutine call (GOSUB)
is executed instead of a GOTO. RETURN from the GOSUB branches
to the statement after the ON ... GOSUB,

6.8
GOTO

ONIGOTO 10, 20, 30, 40
Branches to the line indicated by the I'th number after the GOTO.
That is: IF I=1 THEN GOTO LINE 10

IF I1=2 THEN GOTO LINE 20

IF I=3 THEN GOTO LINE 30

IF I=4 THEN GOTO LINE 40
If Iis < = ¢ or)(number of line numbers) then the following state-
ment is executed. '
If I attempts to select a non-existent line, an.error message will
result. As many line numbers as will fit on a line can.follow an
ON ... GOTO.
ON SGN(X)+2 GOTO 40, 50, 60.
This statement will branch to line 40 if the expressi‘on X is less
than zero, to line 50 if it equals zero, and to line 60 if it is greater

than zero.

6.2.6.9
RETURN

EXAMPLE(S)

(1)

RETURN
Causes a subroutine to return to the statement that follows the most

recently executed GOSUB.

http://www.fastio.com/

ClibPD

68.

6.2.6. 16
STOP

EXAMPLE(S)
(i) 100 STOP

BASIC suspends execution of programs and enters the command

mode.” "STOPPED IN LINE 100" is displayed. To continue program

w1th next sequentlal statement type in-MCONT'.

6.2.6.11
WAIT

EXAMPLE(S) Cea ‘ .

(1) WAITI, J, K e ' '

This statement reads the status of REAL WORLD INPUT port I,
ug‘}f‘clu‘sive OR's K- with the ‘status; anci theéen AND's the resu‘lt with.J

ur til a. result equal to J'is obtained. "Execution of the program
‘ coﬁ%inues at the statement following the WAIT statement. - If the
WAIT statement only has two rérguments , K is a‘ssumed- ‘to ‘be zero.
If. wa.'iting for 'a bit to bgcérﬁe zero,.there should be a oheﬁ in thé
corresponding positibn for K. 1,7 and K must be) 7 0.and { = 255,
(ii) WAIT MEM I,7J,K ' PR
WAIT MEM 1,7
As example (i), but I is a memory 10cat1on wh1ch of course may be
a memory-mapped I/O port,
(iii) WAIT TIME I
Delays program executlon for a time given by the expre551on I, The
result should be. in the range 0 to 65535. \

Time is measured in units of 20 milliseconds,

s

www fastio.com

69.

6.2..7

Physical Machine Access Statements

6.2,7.1
CALLM

EXAMPLES
(i) "CALLM - 1234
Calls a machine language routine located at the memory locations

specified:

~ {ii) CALLM 1,V

Calls"a machine language routine located at the memory locations .

spééified by 1. Upon entry to the machine "language progfé,m'the
. reglster pair H, L contains the address of the variable spec1£1ed by
V. The machine language subroutine must preserve all of the 8080
regxsters and flags and restore.them on return,

If V is a variable, the pointer is to-V. If Visa strmg, the po1nter is

to a pointer to the string. The string consists ofta length byté followed
by characters. IfV is a matrix, pointer is as though V is a normal

variable;

6.2.7.2
INP () .

EXAMPLE

= INP (. 31)
Reads the by;te present in the DCE-BUS CARD 3 PORT 1 and assigns it to
a variable A, The port-number should be . =0 and =255,

6.2.7.3
OuT I, J

EXAMPLE
ouUT 91,4
Sends the number in variable A to the DCE-BUS card 9 PORT 1. Both

Iand Jmust be =0and = 255.

“

http://www.fastio.com/

.

ClibPD

70.

6.2.7.4
PDL (1)

EXAMPLE

A=z PDL (1) ’

Sets the variable A to a number between 0 and 255 which represents the
‘poéition of one of the paddle potentiometers, I must be ~or:= ¢-and
or =.5.- ‘ :

6.2.7.5

PEEK (1)

EXAMPLES
(i) A =PEEK (2 1302) ;
The contents of memory address ‘Hex 13¢Cz W111 be ass1gned to the
variable A. .If Iis 65536 or. 0 an erxor will ‘be flagged An
attempt to read a memory locatmn non-existent in a partlcular ’

conflguratmn will return an unpredlctable value.
Displays: the value in the decimal memory address 258,

6.2.7:6
POKE

EXAMPLE(S)
(i) POKEI, J- ;
The POKE statement stores the byte specified by its second argument
(J3) into the miemory location given by its first argiment (I).- The
byte to be stored must be. > = 0 and & = 255, or an error will
If address I is not >

Careless use of the POKE statement will probably cause BASIC

occur, = 0 and £ 64K, an error results,
to stop, that is, the machine will hang, and any program already
typed in will be lost. A POKE to a non-existing memory location

is usually harmless.

wifastio.com

71.

Example of POKEs (see also the ASSEMBLY section of the book)

POKE® 131,¢ OUTPUT TO SCREEN AND RS 232

+ 131,1 OUTPUT TO SCREEN ONLY
H=131,2 OUTPUT TO EDIT BUFFER
+=135,2 READ (INPUT) FROM EDIT BUFFER

#13D,410 SELECT CASSETTE 1,#4=20 FOR CASSETTE2

#40,3= 28 CASSETTE MOTOR CONTROL 1 ON
=40, :H—TZB CASSETTE MOTOR CONTROL 2 ON
~H40, =H=3O CASSETTE MOTOR CONTROL 1 AND 2 OFF

730, 4 30 FLOPPY DRIVE g ACTIVATED
45730, 431 FLOPPY DRIVE 1 ACTIVATED
See also useful POKES in paragraph (5. 9. 1+ 2+ 3)

22,707
T

o

|

EXAMPLE
uT
Calls the Machine Language Monitor.

6.2.8
BASIC System Data & 1/O Statements

6.2.8.1

DATA

EXAMPLES

(i) DATA 1, 3, -1E3, -0.4,
Specifies data, read from left to right. Information appears in
data statements in the same order as it will be read in by the
program.

(ii) DATA "F00'", "Z00"

'Strings may be read from DATA statements. If the string contains
leading spaces (blanks), or commas (,), it must be enclosed in

double quotes.

http://www.fastio.com/

i
|

72.

EXAMPLE(S)

(i) A = GETC
The ASCII value of the last character typed on the keyboard. If no
character has been typed in since the last GETC statement zero
value is returned. Note that GETC forces a scan of the keyboard.

Scanning the keyboard too. often will cause "key bounce!' and keys

may appear to be pressed twice when they were only pressed once.

6.2.8.3

INPUT

EXAMPLE(S)

(i) INPUT V, W, W2
Requests.data from the terminal (to be typed in). Each value
must be separated from the previous value by a2 comma (,).
The last value typed should be followed by a carriage return.
Anon g typed as a prompt character. Only constants may be
typed in as a response to an INPUT statement, such as 4.5E-3
or "CAT". If more data was requested in an INPUT statement
than was typed in, another "?'" is printed and the rest of the
data should be typed in. '
If more data was typed in than was requested; the extra data
will be ignored. The program will print a warning when this
happens. 'Strings must be input in the same format as they are
specified in DATA statements.

(ii) INPUT "VALUE'";V
Optionally types a prompt string ("VALUE'") before requesting
data from the terminal.
Typing CONT after an INPUT command has been interrupted
due to the BREAK key will cause execution to resume at the
INPUT statement. If any error occurs, the INPUT statement

will restart completely.

ClihPDF - www fastio.com

73.

6.2.8.4
PRINT (can be replaced by "?")

EXAMPLES

(i) PRINT X, Y, Z

(ii) PRINT

(iii) PRINT X, Y

(iv) PRINT "VALUE IS", A e

) ? A2,B '

Prints the numeric or string expressions on the terminal. If the list of
values to be printed out does not end with a comma, (,) or a semicolon
(;), then a new a new line is output after all the values have been printed.
If a semicolon separates two expressions in the list, their values are
printed next to each other. If a comma 5ppear’s after an ekpression in
the list, the cursor is positioned at the beginning of thé_next column
field, If there is nolist of expressions to be printed, as in example (ii),
then the cursor goes to a new line.

There are 5 fields on the line in positions ¢, 12, 24, 36, 48,

6.2.8.5
READ

EXAMPLE

READ V,W

Reads data into a specified variables from a DATA statement. . The
first piece of data read will be the first not réad by any previous data
statement. A RUN or RESTORE statement restarts the process from
the first item of data in the lowest numbered DATA statement in the
program. The - next item of data to be read will be the first
item in the second DATA statement of the program. Attempting to
read more data than there is in all the DATA statements in a program

will cause an error message,

http://www.fastio.com/

ClibPD

4.

6.2.8.6
RESTORE

EXAMPLE

(i) RESTORE
Allows the re-.eading of DATA statements. After a RESTORE,
the next item of data read will be the first item listed in the
first DATA statement of the program, and so on as in a normal

READ operation.

6.2.9
Cassette and Disc I/O Statements

Additional Cassette and Disc commands are available using the

Resident Machine Utility Program (See Section 6, 3).

6.2.9.1
CHECK

The CHECK command scans a cassette tape or disc-and examines all
the files. The type and name of each is printed followed by the word
"OK" or '"BAD'" depending upon the file checksumming correctly. For
cassettes the command does not stop of its own accord, but will stop

if the BREAK key is held down.

6.2.9.2
LOAD

EXAMPLES

(i) LOAD "FRED"
Loads the program named "FRED" from the cassette tape or
disc, When done, the LOAD will type a prompt as usual. The
file name may be any string of printable characters,

(ii) LOAD

Loads the first program that is encountered on the tape. If

www . fastio.com

75.

the recorder motor is under automatic control it will be started.
Otherwise the recorder should be started manually.

If a LOAD command is executed directly, not as part of a
program, then as each data block or file is passed on the tape,
its type (0 for'a BASIC program) and its name wil‘l be printed.
When the load is finished succesfully, a prompt is printed. Ifr
the LLOAD is unsuccessful, then a message '""LOADING ERROR"
is printed. It is followed by a number giving details of the
problem. The flashing of the cursor will cease while the data

is being read from the tape.

6.2.9.3

LOADA
Loads ARRAY or Machine Language programs stored as arrays.

Example. LOADA A$ "FRED" or LOADA F$ + "J"
FRED or J are the array names.
10 DIMAS (¢, 0) 100 DIM A$ (¢, ¢)

20 INPUT A$ 110 LOADA A$
30 SAVEA A$ "INFO" 120 GOTO 100
40 GOTO 10

6.2.9.4
SAVE

EXAMPLE

(i) SAVE "GEORGE"

(i1) SAVE A$
Saves on cassette tape or disc'the current program in the
memory, The program in memory is left unchanged. More
than one program may be stored on one cassette/disc using this
command. The program is written on the cassette under the
name given.

(iii) SAVE

The program is written on the cassette under a null name.

http://www.fastio.com/

ClibPD

76.

The system replies to the command with the message

"SET RECORD, START TAPE, TYPE SPACE'", Place the tape
recorder into the right state for recording (note that if the motor
control is connected to the Personal Computer, the motor will
not yet start). Then press the space key. When the motor will
stop (if automatically controlled) a prompt character will appear
on the screen. If the cassette is working manually, then it

should now be stopped.

6.2.9.5
SAVEA

EXAMPLE
(i) SAVEAG "GEORGES"
(ii) SAVEA A$
Saves an array on cassette or disk,
(iii) SAVEA A

EXAMPLE
20 INPUT A$

30 SAVE A$
40 GOTO 10

After typing RUN and pressing RETURN key the tape recorder will start
automatically to record the input you enter in line 20 (the tape recorder

must have a remote control and must be in recording mode).

COPY OF A PROGRAM FOLLOWED BY AN ARRAY (OR MACHINE
LANGUAGE ROUTINE) WITH 2 TAPE RECORDERS (1 BEING ON PLAY,
2 ON RECORD),

POKE 3¢ 40,3 28 : LOAD : POKE =40, 3k 18 : SAVE : POKE =40 28 :
PRINT "SAVE ENDED" : CLEAR 2000 : DIM A (20, 20) : LOAD A :
POKE 40, 18

SAVEA A POKE 40, 28

PRESS RETURN: the array is named A.

www fastio.com

77.

6.2.10

Program Debug and Comment Statements

6.2.10.1
CONT

EXAMPLE
CONT .
Continues BASIC program execution with the next statement following

the "STOP' Statement or "BREAK" position:

6.2.10,2
REM

EXAMPLES

(i) “"' REM NOW SET V=0 ; »
Allows comments inside BASIC prog‘rams. REM statements are
not, executed,’ but they can-be branched to. A REM statement is
terminated by end of line, but not by a (:) character.

(ii) REM SET V=0;V=0 ‘
The V=0 statement will not be executed.

(iii) The V=0 statement will be executed.

6.2.10.3
STEP

Command to allow single step execution of BASIC programs. After
"BREAKY or "STOP! the operator types in. STEP and then each
depression of the space bar allows execution of the next sequential

BASIC line. The line to be executed is displayed before execution: of

that line.

http://www.fastio.com/

16

ClibPD

78,
6.2.10.4
TRON ’
EXAMPLE
(i) 100 A =0 When you RUN, and after the TRON
: (TRACE ON) is executed the lines 106
v, 105
TRON and 107 will be executed and displayed
106 A =1) at the same time until the TROFF
107 A = 2. (TRACE OFF) is reached and executed.
108 TROFF
6.2,10.5
TROFF

EXAMPLE SEE 6.2.10.4

6.2.11

Array and Variable Statements

6.2.11.1
CLEAR

EXAMPLE

(1) CLEAR 999
Resets all variables to ¢ or the null string, and returns all space
assigned to arrays. The size of the HEAP (array and string
storage) is than set to the number specified by the CLEAR
statement. The minimum size is 4 (no space would be

available) and the maximum is 32767

6.2.11.2
DIM

EXAMPLE
(i) DIM A(3), B(10)
(i1) DIM R3(5,5), D$(2,2,2)

www . fastio.com

79

Allocates space for arrays. Arrays can have more than one
dimension, . All subscripts start at zero (0), which means that
DIM X (100) really allocates 101 matrix elements. The
maximum size for a dimension is 254 Dimensions may be
speciﬁéd as variables or expr.essions.

DIM statemenfs may be re-executed to vary the size of an array,
The space used for arrays is in the same payrt of RAM as that

for strings, the size of which is set- by the CLEAR command.

6.2,11.3

FRE
EXAMPLE(S)
(1) A = FRE

The variable A is set to the number of memory bytes currently
unused.by the BASIC program. Memory allocated for string
and arrays is not included i‘n this count:

(ii) PRINT FRE

The amount of remaining memory space:will be displayed.

6.2.11. 4
LET

EXAMPLE(S)
() LET W = X
(i1) vi=s.1

Assigns a value toa variable. The word "LET" is optional.

6.2.11.5

VARPTR (V)

EXAMPLE(S)
(i) A = VARPTR (B)
Variable named (A) is set to the memory address of the

variable named (B),

http://www.fastio.com/

ClibPD

80.

(ii) A = VARPTR (B(3,4))
Variable named (A) is set to the memory address of the array
element B(3,4).
6.2.12
GRAPHICS AND DISPLAY STATEMENTS (See Example program
"TOWER OF HANOI")

6.2.12.1
MODE

EXAMPLE(S)
(i) MODE 0
Places display in character only mode.
(ii) ©~ ° MODE 1A
Places display in split mode. Low resolutidn graphics with 164

colours and a four line character display at the bottom.

‘The Personal Computer has 3 different graphic definitions available
for the graphics display and at each definition there are 4 possible
configurations of the screen. Two of these have only graphics on the
screen, and the others are exactly the same except that the graphics
area is moved up the screen to make room for four lines of characters.
The graphics hardware has 2 different wéys in which it can be used.
That is why at'each definition there are 2 different types of display.
The display types are known as 16-colour, and 4-colour modes. In
the 16 colour modes each point on the screen can be set to any of the

16 colours. However each field of 8 dots horizontally (positions 0 to 7,

8 to 15 etc,) can only have 2 or sometimes 3 separate colours in it.

For exact details of the restrictions on what can be drawn. (See 3.2.2.1)

At any time the 4 selected colours can be altered, and the existing
picture changes colour immediately. This allows interesting effects.

(see for instance "ANIMATE"Y),

www . fastio.com

Number

1A

2A

Y3A

4A
5A

6A

MODE DEFINITION TABLE

Graphics size

72,65
72,65
72,65
72,65
160,130
160, 130
160,130
160,130
336,256
336,256
336,256
336,256

Texﬁ size
24 X 60 CHAR
4 X 60
4 X 60
4’X 69‘
4X60
4 Xk’60~

4.X 60

Tygpe of graphics

16 colour
16 colour
4 colour
4 colour
16.-colour
16 colour
4 colour:"
4,colour
16 .colour
16. colour
4 éolo‘gr

4 colou¥

http://www.fastio.com/

ClibPD

82.

6.2.12.2

_COLORG

EXAMPLE

COLORG 12 3 4

Sets the colours available in any four colour graphics mode to 1,2,3 and
4.

If the screen is already in a 4 colour mode, then the colour change will
be immediate. Any area which was in the first-named colour of the

previous COLORG statement, is now displayed in colour 1, and so on.

- If the screen isina 16 colou.r mode, no immediate effect is visible.

‘In any event, the next time a new graphics mode is entered, the initial

colour of the graphics area will be the first colour given in the COLORG

command. This applies both for 4 and 16 colour modes.

1f COLORG has not been used, then after a 4 colour mode command (i. e.

mode 2) the colours available will be ¥, 5, 14, 15.

6.2.12.3
COLORT

EXAMPLE

COLORT 81500

Sets up colour number 8 as the background colour for the text screen
and colour 15 as the colour of the characters. The other two colour

numbers are not normally used, However they define an.alternative set

of colours which can be used by POKE access, or machine code routines.

6.2.12.4

Drawing Facilities

Points on the graphic screen are specified by an X, Y co-ordinate with
0, 0 located at the bottom left corner of the display screen. . An attempt
to draw out of the maximum area for a particular graphics mode will

result in an error.

www . fastio.com

EXAMPLE(S)

e3.

it is ‘possible, however, to draw in the invisible top section of the -
graphics area in split screen modes. The drawing facilities provide
statements to draw dots, lines and rectangles on the graphic display
screen, The DOT statement places a single dot of a specified colour
at any allowable X, Y coordinate on the display statement allow the

drawing of a line and the colouring of a rectangular area specified by

two X, Y coordinates., See color codes paragraph 3,2.12.

6.2:12.4.1
DOT

(1) DOT 10, 2015 ; : ! . :
laices a dot of colour 15 at the pésitionX‘z 10.and Y = 20. " The,

lizé of the dqj;“wilrl depend upon which graphic resolution was

selected:

6.2:12.4.2

DRAW

EXAMPLE

DRAW 91,73 42,77 15

Draws'a line in colour 15 between 91, 73 and 42, 77. There is‘no : 0
restriction on the order of the coo‘rdinate‘s. Line width will: dépeir’,id,' :

upon which re solution was selected.

6.2.12.4:3
FILL

EXAMPLE

FILL 91,73 42,77 15

Fills the rectangle with opposite corners at 91, 73 and 42, 77 with the
colour 15, There i;s no restriction on the order of the points. The

physical size of the rectangle depends upon the resolution selected.

http://www.fastio.com/

84, lj l’ 05,

l: ' 50 DRAW ¢, Q -1, YMAX 18-2 A :A =1-A:NEXT

6.2.12.5

Animated Drawing Facility.

With the screen in a 4 colour mode each point is described by 2 bits.
The binary value of these 2 bits selects which of the four available
colours should be displayed., Normally a DOT, DRAW or FILL sets
both of these bits to their new value. However, a facility is available
to set or clear only one of the two. This is accomplished by specifying
colour numbers 16, 17, 18 or 19, It is emphasized that these are not
real colours, but an extra facility.
For example:

MODE 2A

COLORG 6 912 15
These commands set all points on the screen to colour 6. The two bits
for each point on the screen are both ¢: * (Binary ¢ %).

’ DOT 10, 10 17

This sets the lower bit only for point 10, 10. Thus the point changes
to colour 9 (Binary 0 1).

DOT 10,10 19
This sets up the upper bit only. The point changes to colour 15 (binary
11 = 3)

UYANIMATE"

When . the screen is in a 4 colour mode, each point on the screen is
described by 2 bits. A facility is provided for drawing using only one

bit from each pair, without affecting the other.

Drawing using the number has effect of
17 set lower bit
19 set upper bit
16 clear lower bit
18 clear upper bit

This allows two totally independent pictures to be maintained and

separately updated. They simply appear to overlap. If the SCOLG

"entrypoint is used to-make only 1 visible at a time, then animation -

effects can be achieved,

If the colours:set by the SCOLG command are numbered 0; 1,2,3 in’
order as given; then the colour seen on'the screen is seiected by the
two bits for each point in the natural way. '

E.g. ’ ‘

If SCOLG sets up red, yellow, gréen and blue, in that order

: DOT 10,10 16 Upper Lower Visible
i i i Col

This clears the lower bit, and gives colour 12 (binary 10 = 2),] Bit Bit o-our

DOT 10, 10 18 l 0 0 Red
. : : . . ‘ 0 1 Yellow
This clears the upper bit, and gives colour 6 {binary 00). The usefulness
G
of this system is that by the COLORT command two pictures can be ! 0 reen
1 1 Blue

independently maintained and altered on the screen. This allows one

pattern to be changed invisibly while the other is displayed. The

"Col 20 to 23"
pictures can be swapped instantaneously and the invisible one changed. Colours 20 to 2

In 4 colour mode only, the colour numbers 20 to 23 may be used to

Example program:
5 MODE 2
10 COLORG @ g gy
20 FOR Q =1 TO XMAX
30 DRAW ¢,0 Q,YMAX 17+2% A:REM COLOR =17 OR 19,

40 COLORG 15 - 15% A 15% A 15:REM COLOR = 18 OR
) 16.

request the 4 colours set up by the last SCOLG call. Colour 20 always
refers to the first colour given irrespective of what it is. . Similarly 21

is the second colour, and so on.

ClibPD www . fastio.com

http://www.fastio.com/

86.

The "animate" facility using colours 16 tvo 19 can be explained as a 4
boxes square where a colour is assigned to a bo:.

Number 0 1 2 3 of the

COLORG A B C D command assigning a color to each box.

A DOT, DRAW or FILL Command with a 16 to 19 colour definition will

move the background and foreground colours as indicated by the arrows.

. 16 -
0=A 1=28B . 17—
18 4
0 5 194

10 15

back 417
ground COLORG 0 0 15 15

19 19+17
COLORG 0 15015

s

www fastio.com

87.

6.2.12.6
XMAX

EXAMPLE
A = XMAX
Sets the variable A to the maximurm allowable X value for the current

graphics mode.

6.2.12.7
YMAX =

EXAMPLE
A = YMAX , ey
Sets the variable A to the maximum allowable Y value for the' éii’rrg’nt ;

graphics mode,

6.2.12.8

SCRN (X, Y)

EXAMPLE
(1) A = SCRN (31,20))
Sets the variable to a number corresponding to the colour of the’

screen at coordinate 31,20,

6.2.12.9
CURSOR

EXAMPLE
(i) CURSOR 40,20

Moves the cursor to the fourtieth character position of the twentieth

line from the bottom of the screen,

http://www.fastio.com/

88.

The cursor can be moved to any position on the screen by using the
CURSOR command. The positions are given by X,Y coordinates where

the bottom left corner of the screen is 0,0.

6.2.12.10
CURX

EXAMPLE
A = CURX
Sets the variable A to the X position of the cursor (character position).

¥
Value returned will be { = 60.

6.2.12.11
CURY

EXAMPLE
A = CURY :
Sets the variable A to the Y position of the cursor (line position). Value

returned will be £ = 24,

www . fastio.com

89.

6.2.13

Gragphical Sound Statement.

6.2.13.1

Programmable. Sound Facility

The Graphical Sound Generator of the DAI Personal Computer is
supported by the BASIC to give a set of commands that allow program
control of the sound system, 3 oscillator channels }slus' a white noise
channel. The SOUND command is the primary method of control. The
SOUND command specifies a channel to which it applies, an envelope to
be used, .the required volume and requency. . A simple sound command
would be: '

SOUND 0.1 150 FREQ (1000)
This would set channel 0, using envelope number 1, at a volume of 15
and frequency 1000 Hz. The ENVELOPE statemenf allows the volume
of a note to be rapidly changed, in the same way as that of a musical
ingtrument, Thus the rise and fall in:volume for a note can be specified.
The command specifies a set of pairs of volume and tiyrne.' The volume
constants are in the range 0 tol5 and the time is in units of 3.2 milli-
seconds, For example the comriand:
ENVELOPE 0 10,2;15,2;14,4;12,5;8,10;0

This sets a volume envelope like this:

15

14
12

Time after

- SOUND
command.
(units of 3,2
milliseconds)

2468 1012141618202

http://www.fastio.com/

ClibPD

90.

S0 every time a SOUND command is given it produces a short burst of
sound whose volume is as shown above. Varying the envelope varies
the quality of the sound heard.
The volume given in a SOUND command is effectively multiplied by that
in the envelope. So if the SOUND command requests a volume of 8 units,
which is 8/15 of full volume, and the envelope requests 4 units, which
is 1/4 of the maximum figure, then the volume used is 2/15 of the
maximum. (as 1/4 x 8/15 = 8/60 = 2/15.)
The envelope command can end, as above, in a single volume, in which
case that volume continues for ever, or in a pair of volume and time,
in which case the envelope is repeated indefinitely. For example:
'ENVELOPE 0 15,10;0,10;

Sets an envelope like this:

Volume ; A\
15
ETC.
0 —_
time after
SOUND
That would give a series of "blips" of sound. command

The simplest envelope is obviously:

ENVELOPE 0 15
Which then has no audible effect on SOUND commands, as all volumes
are multiplied by 15/15.
Special note:
The BASIC Interpreter limits the rapidity with which the volume on any
channel is allowed to change. The maximum change is d/2 + 1, where
d is the difference between the requested and current volumes. Thus

the actual volume output for the envelope above would be:

www . fastio.com

c1l.

15,

ETC.

This helps reduce spurious sound caused by vblume changes..

The noise g‘ene‘rator is controlled by a NOISE command that cdntrols the
audible output of the white noise generator. Only its volume and envelope:
can be sét. e.g.

NOISE 0 15

' Turns on the noise channel using envelope 0 and:overall volume 15.

In addition to the facilities'already descfibed, the SOUND command
controls 2 others. They are TREMOLO and GLISSANDO:

Tremolo is simply a rapid variation of volume by t 2 units. This gives
a "warbling!" effect to'the sound. - Glissando is an effect where the new.
note on a channel does not start immediately at the requested frequency,
but ""slides! there from the previous frequency. The effect resembles
a Hawaiian Guitar or Stylophone. ‘Glissando + Tremolo are controlled -
by one parameter in the SOUND c‘ommand. Setting the bottom bit
requests Tremolo and the next bit Glissando. E. g.:

(i) SOUND 0 0 13 1 FREQ (1000)

(ii) SOUND 0 0 15 2 FREQ (5000).

The first example sets channel 0, using envelope 0, at volume 13 and
with tremolo. The volume put will vary rapidly from 11 to 15.

The second example increases the volume to 15, and slides the
frequency "GLISSANDO" up to 5000 Hz. The flexibility and facilities of
the Graphical Sound Generator have been illustrated fully and their

capabilities exploited with the three commands previously discussed.

http://www.fastio.com/

ClibPD

92.

Due to the flexibility of change in volume and fr=quency it is quite
feasible to explore the possibilities of vocal sound generation. The
BASIC of the DAI Personal Computer gives full control to the
programmer who wishes to develop experimentally a burst of sound and

frequencies that result in audible words.

6.2.13.2
SYNTAX : SOUND

(i) SOUND {CHAND {ENV)> {(VOL) {TG> FREQ {PERIOD>
(ii) ~ SOUND <CHAND> OFF
(iii) SOUND OFF

oscillator 0,1 or 2,

{ CHAND is an expression in the range 0 to 2, It selects programmable . I

< ENVD isan expression in the range 0,1. It selects which of the 2

previously defined envelopes should be-used.

< VOLY) is an expression in the range 0 to 16, It selects the volume for l l

this particular sound. It is multiplied by the volumes in the ENVELOPE

specified.
'8 TG> is an expression in the range 0 to 3.

0 selects no tremolo + no glissando

1 selects tremolo + no glissando
2 selects = no tremolo + glissando
3 selects tremolo + glissando

£ PERIOD> is an expression in the range 2 to 65535, It sets the period

of the required sound in units of 1/2 microseconds.

6.2.13.3
SYNTAX: ENVELOPE

(1) ENVELOPE <{ENVY {<v) , <1d ;) ¢v> , <«
(i) ENVELOPE {ENVD> {LVD> , (T) ;} <(Vv>

www . fastio.com

o3,

ENV is an expression in the range 0 to 1,. It selects which of 2
envelopes is being defined.

Vv is an expression in the rangé 0 to 15. It selects a volume level
by which that in a SOUND command is to be multiplied.

T is an expression in the range 1 to 254. It selects the time’for
which the volume V ~applies. It is in units of 3.2 milliseconds.
Note: The parts of the command in curly brackets are optional and may

be absent or repeated as many times as required;

6.2.13.4

(1) NOISE ENV VOL
(i) . NOISE OFF
ENV - is an ‘sxpression in the range ¢ to 1.
VOL . is an: expression in the range 0:to:15.
This represents a 4:bit binary nimber. ' The top 2 b1ts of th1s number
(when modified by the ENVELOPE spe.cified) control the volume of the

noise., . The bottom 2 bits control the frequency.

6.2.13.5
FREQ
EXAMPLE

A = FREQ (1000)
Sets the variable A to a number that can be sent to a Graphical Sound

Generator channel to result in a 1000 hertz rate.

http://www.fastio.com/

ClibPD

6.2.13.6

9.

Synthesing Vocal Sound.

6.2.13.6.1
TALK

TALK ADDRESS

CODE

> O o s N O

g O

FF

DATA BLOCK

DATA

2 BYTES FREQ. CODE CHANNEL 0

" " 1

" " 2
1 BYTE VOLUME CHANNEL 0

o " 1

" VOLUME W. NOISE GENERATOR
2 BYTES DELAY IN UNITS OF MSEC
CALL MACHINE CODE ;
END

location content

2 2000 20 00 09C4
20 02 1Ag@A

set channel 0 freq. 800
set channel 1 freq. 300

20 08 OF set maximum volume ch ¢
2009 OF set maximum volume ch 1

20 0C FEFE set + listen to it for ---- msec
2008 00 turns volume ‘down

20 09 00

20 0D 0050 machine codes at 5000

20 FF End.

www fastio.com

45000 0f [LXI H, VARPTR (Q(¢)ﬂ 21 g9 20
5004]

Ex.

6.2.14

3
4
5
19
2f
3¢
44
(59
60
8g
9¢

RETURN C9
CLEAR 1000

DIM Q (100)
B = VARPTR (Q(g))

READ A%

“POKE B%, A% : B% = B% + 1
IF A% LS 4 FF GOTO 19
TALK VARPTR (Q(¢))

WAIT TIME 1)

T GOTO 4¢

DATA ¢, 9, % C4, 2, % 1A, %A, 8, % F, 9, F

DATA¥ C, 3FE,3FE, 8, ¢, 9, ¢, % FF

Arithmetic and String Functions

The following is a list of the mathematical + character handling

functions provided by BASIC. Each takes a number of expressions

(arguments) in brackets and works on them to return a result.
result may be used in just the same way asa variable or constant in

expressions,

EXAMPLES

(1)
(ii)

A=30+2.1
A = SIN (3.0) + 2.1

ot

This

N
¥

http://www.fastio.com/

ClibPD

96.

6.2.14.1
ABS(X)

Gives the floating point absolute value of the expressidn X. ABS returns

X if X> = 0, -X otherwise. For example ABS(-253.7) = 253. 7.

6.2.14.2
ACOS(X)

Returns arc. cosine of X. Result is between -PI/2 and PI1/2.

6.2.14.3

ALOG(X)

Returns antilog base 10 of X,

6.2.14. 4
ASC(X $)

Returns the integer ASCII value of the first character of the string X$.
E.g.: ASC(""ABC") returns 65 since A has code 41 Hex or 65 decimal.

6.2.14.5
ASIN(X)

Returns the arcsine of X in radians., Result is between -PI/2 and +PI/2.

X may be any value between + 1 and - 1 inclusive;

6.2.14.6
ATN(X)

Returns the arctangent of X in radians.

/)

www.fastio.com

97.

6.2, 14.7
CHR $(J)

Inverse of ASC. Returns a l character string whose ASCII value is 1.
I must be between 0 and 255,
E.g. : CHR$ (65) returns the character "A'.

6.2.14.8
COS(X)

Giveés the cosine.of the expression X, measured in radians. (X) may be .

any value between 0.and 2% inclusive.

6.2.14.9
EXP(X)

Returns the value "e' (2. 71828) to the power X, (e t X).. "e' is the
base for natural logarithms. The maximum argument that can be
passed to EXP without overflow occurring depends on whether 'the
éoftwa.re or hardware maths option is being used. For hardware

- 324 X {32 exactly.

For software -43 & X £ 43 approximately.

6.2.14.10
FRAC(X)

Returns the floating point fractional part of the argument.

e.g.: FRAC (2.7) = 0.7, FRAC(-1.2) = -0.2

6.2.14.11
HEX$ (I)

EXAMPLE(S)
Returns a string of characters representing the hexadecimal value of

the number I. I must be between 0 and 65535,

http://www.fastio.com/

9°.

6.2.14.12
INT(X)

Returns the largest integral floating point value less than or equal to
its argument X. For example:

INT(.23) = 0, INT(7) = 7.0, INT(-2.7) = -3,0, INT(1.1) = 1.0

INT (43.999) = 43,0

Note: INT(-1) = -2.0,

6.2,14,13

LEFT$(X$,1)

Returns a string which is the leftmost I characters of the string X$:
E.g.: LEFT $("DOGFISH", 3) equals ''DOG"

[6.2.14.17 ™
' MID$(X$,1,J)

Returns (J) characters starting at position I in the string (X$). The

“.first”-character is position 0.

E, g. +MID$ ("*SCOWL", 1,3) returns '""COW".

6.2.14.18
PI

Returns the floativng point value 3. 14159

6.2.14.19
RIGHT $(x$,1)

6.2.14,14 ‘ Returns the rightmost (I) characters of strihg (X$). -
LEN(X$) " m ! . : E.g. : RIGHT $(""SCOWL", 3) returns "OWL",
Returns an integer giving the length in characters of the string X§. L - 6.2.14.20
E.g. : LEN("HELLO") equals 5, m ; l RND(X)
6.2.14.15 Generates a hardware or software generated random number: :
*LOG(X) ; , E.g . , ,
. : m I If X0 Starts a new sequence of software numbers with X as seed. The

Calculates the natural logarithm (base e) of the argument (X). same negative X produces the same sequence of numbers. The

number returned is between . 0 and X
6.2.14.16 m ' If X> 0 Returns the next pseudo-random number from the current !
LOGT(X) ‘ sequence, The number is in the range 0 to X
: If X = 0 Returns a hardware generated random number in the‘range
Calculates the logarithm base 10 of X. lt l 0tol:
V ' Ex.
b 5 CLEAR 1000
lt l 10 DIM B% (100)
20 INPUT C%
Y ‘ 30 FOR A% =1 TO 20
I}

ClibPD www . fastio.com

http://www.fastio.com/

oL T T A R SRR T R T R e

k ClibPD

100.
40 B% (A%) = RND (C%)
50 PRINT B% (A%)

60 NEXT A%

6.2.14.21

SGN(X)

Returns 1.0 if X> 0, 0 if X =0, and -1,0 if X4 0.

6.2.14.22
SIN(X)

Calculates the sine of the variable X. X is in radians.
Note: 1 Radian = 180/PI degrees = 57. 2958 degrees; so that the sine of
X degrees = SIN(X/57.2958).

6.2.14.23
SPG(I)

Returns a string of the number of spaces given by I. 1 & 255.

6.2.14.24
SQR(X)

Gives the square root of the argument X. An error will occur if X is

less than zero.

6.2,14.25
STR $(X)

Returns a string which is the ASCII representation of the numb\e{r X.

E.g.: STR$ (9. 2) returns the string '9.2".

www . fastio.com

101.

6.2.14.26

TAB(I)

Returns a string of the number of spaces necessary to move the screen
cursor right to the column given by I. The cursor can only be moved to

the right,

6.2.14,27
TAN(X)

Gives the tangent of the expression X, X must be expressed in radians.

6.2.14.28
VAL(X$)

Returns the floating point value of the number represented by the string
variable X$.)
E.g. : VAL ("9.2") returns 9.2

X $ must represent a valid floating point number.

http://www.fastio.com/

-

ClibPD

6.2.15

Arithmetic and Logicé.l Operators

Operator Usage Type of Result
+ (addition) int + int int
fpt + int
int + fpt (Note 1) fpt
fpt + fpt
str + str .str
-/* (subtract, divide, ‘as +, except no string version
multiply)
*, - (power (/\on keyb.) . as always fpt.
IAND int ... int
IOR int', .. fpt
IXOR fpt ... int integer
MOD int ... int (Note-2)
SHL
SHR .
INOT: int integer
= equal str ., . str
greater than fpt ... fpt
smaller than fpt ... int}) logical
different from int, .. fpt (Note 1)
= greater than or equal to \int ... int
= smaller than or equal to
AND OR logical
logical logical

Note 1: The integer values are converted to fpt before use.
Note 2: The fpt values are truncated to integer before use.

/

www . fastio.com

l('

1l
i
10

!

EXAMPLE(S)

(Numbers without decimal parts represent integers)

Result.

(i) Operation

142
1.0+ 2.0

1.0 42

3% 4

344

12.0/4.0

12.0/4

12 /4

11/4

3 IAND 2

3.0 IAND 6.0
3,14 JAND 6. 72
3 SHL 2 ‘
3.2 SHL2.1
7=4

3.09 201

"FRED" L"FREDA"™ -

"A”~,: nAii
71=7

7.0=7
34 40R 7 =8
3.=7AND 9L 10

Type of Result

integer
fpt
fpt
integer
fpt
fpt
fpt
integer .
integer
integer
intege’T
integer
inte‘ger'
integer
logical
" logical
logical
logical
logical -
logical
logical

logical

NB

NB

NB

http://www.fastio.com/

104,
(i) (In all of the cases below, leading zeroes on binary numbers
are not shown).
63 IAND 16 =16 Since 63 equals binary 111111 and 16 equals binary
1000 , the result of the IAND is binary 1000 or

16.
15 equals binary 1111 and 14 equals binary 1110,
so 15 JAND 14 equals binary 1110 or 14,

15 IAND 14 = 14
-1 IAND 8 = 8 -1 equals binary 11 11 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.
4 JAND 2 =0 4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

4I0R 2 =6 Binary 100 IOR'd with binary 10 equals binary 110
or 6 decihxal.

Binary 1010 IOR'd with binary 1010 equals binary
1010, or 10 decimal.

- 1IO0R -2 = -1 Binary 11....11 (-1) OR'd with binary 11....10

10 IOR 10 =10

(-2) equals binary 11....11 or. -1,

The following truth table shows the logical operations on bits:

Operator Arg. 1 Arg. 2 Result
IAND ! 1 1
0 1 0
1 0 0
0 0 0
IOR 1 1 1
1 0 1
0 1 1
0 0 0
INOT 1 - 0
0 - 1

www . fastio.com

]

105.

A typical use of the bitwise operators is to test bits set in the REAL
WORLD input ports which reflect the state of some REAL WORLD

device.

Bit position 7 is the most significant bit of a byte, while position 0 is the

least significant.

For instance, suppose bit 1 of REAL WORLD port 5 is 0 when the door

to Room X is closed, and 1 if the door is open., The following program

will print "Intruder Alert' if the door is openeda:
10 IF (INP(5)IAND 2) =2 THEN 10
This alert will execute over and over until bit 1 (masked or selected by

the 2) becomes a 1. When that happens, we go to line 20.

20 PRINT "INTRUDER ALERT"
Line 20 will output:"INTRUDER ALERT'.

However, we can replace statement 10 with a "WAIT" statement, which

has exactly the same effect.

10 WAIT 5,2

This line delays the execution of the next statement in the program until
bit 1 of REAL WORLD port 5 becomes 1. The WAIT is much faster than -

the equivalent IF statement and also takes less bytes of program storage.

http://www.fastio.com/

	./044-045.tif
	./046-047.tif
	./048-049.tif
	./050-051.tif
	./052-053.tif
	./054-055.tif
	./056-057.tif
	./058-059.tif
	./060-061.tif
	./062-063.tif
	./064-065.tif
	./066-067.tif
	./068-069.tif
	./070-071.tif
	./072-073.tif
	./074-075.tif
	./076-077.tif
	./078-079.tif
	./080-081.tif
	./082-083.tif
	./084-085.tif
	./086-087.tif
	./088-089.tif
	./090-091.tif
	./092-093.tif
	./094-095.tif
	./096-097.tif
	./098-099.tif
	./100-101.tif
	./102-103.tif
	./104-105.tif

