PART I

1.0
1ol
| I
[
L3
1. 1.4
[I}
.1 o
I
2. C
2.1
2.2
2. %
2.1
Z.L.
2.4, 1
2. 4.2
2.5
2.5, 1
3.0
3.1
3.4
ERA
3.
3.4
3.6.2
3.8.2.
3.8
3.2.2
303

[

TABLE OF CONTENTS

Cieneral Description

Summary of Features
MiICToCcOompuULleT. ... L e
17O Devices,

Graphical Video. i o
Graphical Sound
Resident Software e
Compatible System Software
Functional Block Diagram

Microcomputer.

Introduction

Memory Usage

Timer and Interrupt Control.
Interrupt Control. e PRI
Master RAM Memory,
Programmable RAM Select Lagic.
Master RAM Configurations vs Graphical Capability........
ROM and Static RAM Memory
Simplified memory map.
Frogrammable Video Graphics Generator.................
Introduction. e e
Screen Data Format
Control Word Format.

High Address Byte (Mode byte). R
Low Address Byte (Colour type). . socolon YAole
Data Mode
Four Colour Mode
Sixteen Colour Mode v e
Character Mode e
Unit Colour Mode e

Video Interface e

o

-~

~1

14
14
16

16
18
19
19

v 18]

[
[

L S S . T .
g e W

—_— O

[C,BNC B NG IS D G N TS S L A G S R LI

el N2 "2 I N BN B e A e DN © A A SN VS R oo

o o8 o O O O O
NN NN

Programmable Graphic Sound Generator 28
Introduction., %8
Programmable Oscillators. 28
Frequency Selection 28
Volume Control 29
Random Noise Generator 29
Frequency Mixing 29
Frequency Calculator formula 30
Input-Output Section 30
Introduction...................... ... 30
Game Paddle Interface 31
Audio Cassette Interface 32
Stereo Interface......................... 32
Scientific Math Peripheral......................... 33
ASCII Keyboard 34
Keyboard Layout 34
Keyboard scan logic 35
DCE-BUS e 36
DCE-BUS Pinout it 37
RS 232 Interface 38
I/O Device Address Allocation Reference 39
Master Control Device Addresses 39
Discrete I/O Device addresses 40

Serial I/O, Timer & Interrupt Control Addresses 42

Resident System Software Guide. 44
Introduction. 44
Resident DAI BASIC ..., 45
Alphabetic Index of DAI BASIC Statements 45
BASIC Commands oot vt 45
BASIC Functionsiiuiiininine .. 4%

Arithmetic and Logical Operators 47

o o8 o 0 8 O O O O O 0 O O O O
[SST ST . SR A A I SR S AR s ST (R (ST JCRER (ST (VR V)
L L T A~ A "~ T \ TN SR (SR (SRR U V)

o o O 08 O 08 O 0 0 0 O O 0 00 O O O~ O
NN DN YN NNN
o o8 0 0 0 O O OO T LTI N

iii

Format Rules and Constraints ,....................
Variables and Numbers
Strings
Operators

Statements

[L S

Expressions i
Error Reporting
1 Error Report Format.............................
2 Error Message Dictionary

Interacting with DAI BASIC

—

Facilities of the character screen..................
Input of Programs and Data
Amending and Running of Programs e

Merging of BASIC Programs

ok W N

Merging of BASIC and Machine
Language Programs

User Control Statements

t
©
=

oA WD
Z
o)
=

=
Z
O

— 0 0 N 0N AW
g
H
o
=
Z

g
>
=

o o0 o~ o

o o0 o0 00 00 00 00 O 00 0 O 000 0 0 0 0 0 00 00 00 00 O8O0 O

oV DYDY NN DN DN DNDNDNNDND NN DNDDNDDNDDNDDN NN NN NN DN NN

O O O OV VW ® ©® W W W © 0O N 4 N 4 a4 N o~

N o0k W N =

(oA L I 2

G o W N

[R

(S O O

69
69
69
69
70
70
70
71
71
71
72
72
73
73
73
74
74
74
75
75
76
7
77
77
77
78
78
78
78
78
79
79
79

DN NN NN NN NN DNDNDNDNDNDNNNDN NN NN NN NN

[s]

L =N T o B e N N

(o e

— O 0 N 0N W N

—
—

MODE

CURY

Graphical Sound Statements

Programmable Sound Facility

FREQ

TALK

ABS .

80
80
82
82
82
83

83
84
87
87
87
87
88
88
89
89
92
92
93
93
94
94
95
96
96
96
96
96
96
97
97
97
97

o oo 0 0 00 00 0 0 0 0 O~ 60 & 00 O O O O O
[SCI I S S N N I I A S s

IR R S R B RS RS T T IS RPN RS B

o

W W W W W W W WwWw w W W w waoN ~ O

.14,
.14,
.14,
.14,
.14,
14.
14.
.14,
14.
14,
14.

14

14.
14.
14.
14.
14.
14.

15

O 0 N O U WY~

_ =
N o= O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

vi

Machine Language Utility

Introduction.

CONVERSION TABLEt i
USEFUL POKES

HOW TO GET RESTARTED IF ACCIDENTAL

RESET DURING PROGRAM KEYING OR AT END

OF PROGRAM . .. i
SAVING AND RELOADING A DRAWING...............

USEFUL ADDRESSES & DATA,. i

PROGRAMS EXAMPLES.

1.
GENERAL DESCRIPTION

The DAI Personal Computer is designed to provide the maximum
capability that can economically be provided to an individual. The design
is realised such that programs are loaded from a low cost audio cassette
or a floppy disc. The results of program execution are output to the user
via an antenna connector for PAL, SECAM or NTSC standard television
receiver. The Graphical Sound Generation also outputs two tracks of
separated sound for left and right stereo connections, and the sound

channel of the television.

The resources of the DAI Personal Computer are partitioned into four
segments; the Microcomputer Section, Programmable Graphical Video
Section, the Sound Generator Section and the 1/O Section. To optimise
usage of components within the design, considerable overlay of logic

usage exists within the system. Figure 1 is a logical block diagram of

the DAI Personal Computer.

The resident software is comprised of six major modules, Basic
Interpreter, Math Package, Screen Driver Module, Keyboard Scan +
Encode Routine, the Machine Language Utility and the General House-
keeping Module.

The Basic Interpreter incorporates most of the features found in other
Personal Computers as well as special statements to control the video
graphics and sound generator and interface with the Machine Language
Utility as well as assist with generation and editing of source programs.
In order to obtain the minimum possible execution time the design of the
Basic System is such that it functions as a quasi-interpreter. When the
user types in his source program it is compressed and encoded into a
special "run-time' code so that the Execution Routine has the smallest

possible amount of work left to do.

The Math Package is broken into an Integer Math Module and a Floating
Point Math Module. The integer module performs only basic operations
as +, -, multiply etc., while the Floating Foint Math Module provides
these plus transcendental functions.

Integer variables are calculated to nine digit resolution and floating point
variables to 6 digit resolution. The Math Package handles floating point

numbers in the range T1078 ot 1018

, and zero, When the Scientific
Math option is inserted into its socket the Math Package automatically

uses it for calculations instead of the software calculation modules.

The Screen Driver Module is responsible for arranging the data in memory
to give a correct picture in all modes. It also handles the changing of
screen colours, the drawing facilities (DOT,FILL,DRAW) and other
screen-related facilities.

The Keyboard of the DAI Personal Computer is a simple matrix of 56
keys connected in an 8 x 7 matrix. The Keyboard Scan + Encode Routine
scans the keyboard at fixed time intervals, detects key depressions and
encodes a specific key according to a look-up table. Since the keyboard
of the DAI Personal Computer has been constructed in this fashion it is
possible to provide DAI Personal Computers with other configurations and
codes. The keyboard driver software provides for a 3 key rollover

mechanism.

The Machine Language Utility is a complete set of keyboard and
subroutine callable functions that permit and assist the generation,
loading, de-bugging, and execution of machine language programs and
subroutines. The control subroutines and housekeeping subroutines of
this module allow direct interface between BASIC programs and machine
language program and subroutines. An unlimited number of machine
language subroutines may be called by a BASIC program.

The General Housekeeping Module is a set of routines that are shared by
other modules, providing for instance, the control of memory bank
switching. This allows the 8080A microprocessor to operate with 72K

bytes of memory instead of the 64K normally.

1.1

Summary of features

1.1.1

Microcomputer

8080A microprocessor running at 2ZMHz.

8K, 12K, 32K, 36K, 48K RAM memory configurations
24K PROM/ROM capability (software bank switched)
Memory mapped 1/0

AMD 9511 math chip support logic

Hardware random number generator

Stack overflow detect logic.

1.1.2
1/0 Devices
ASCII Keyboard
PAL/SECAM/NTSC/VIDEO TV connection via antenna input (color and B/W)
Sound channel audio modulated on TV signal.
Dual low cost Audio cassette input and output with stop/start control.
Stereo hi-fi output channels ’
Left and Right game paddle inputs (6 controls)
Interface bus (DAI's DCE-BUS) to:
floppy disk controller
printer controller
standard interface cards (DAI's RWC family)
IEEE bus adaptor
communication interconnections
control connection
prom programming
special interfaces
analog input and output
RS232 Interface
Programmable baud rates

Terminal or modem function

1.1.3
Graphical Video
Character screen mode (66 characters x 24 lines normally 11/22/44/66
characters + 13 to 32 lines possible)
16 colors or grey scales
Multiple resolution graphics modes (software selectable)
65 x 88

130 x 176

260 x 352
(Intermixed mode screens of lines of characters and graphics are possible).

True''square' graphics.

1.1. 4

Graphical Sound

3 independently programmable frequencies

1 programmable noise generator

Amplitude and frequency software selectable
smooth music
random frequencies
enveloped sound

vocal sound generator

1.1.5
Resident Software

Extended Highspeed B ASIC interpreter

Full floating point scientific math commands.
Hardware scientific functions automatically used if math module present.
Graphical video commands
full graphic plotting
arbitrary line specification
arbitrary dot placement
filling of arbitrary rectangles
Graphical sound commands
predetermined volume envelope specification

individual specification of frequency

individual specification of volume
individual specification of tremolo
individual specification of glissando

Machine Language Utility.

1.1.6

Compatible System Software

DAI Assembler
8080A Standard software support
FORTRAN Compiler support

MDS/Intellec non-disc software support.

Functional Block Diagram

10153uu0

10130uu0d

101>0uu0>

s10130uu0d appped

S10133uU0)> aaSsEd

101>2uu0> Z£ZSH

BUUIIUEB- AL [BUIIIXD SNE-IOA [BUIAIXD 0a101s [RUINIXD awed jeussixo [eusaixa Teuiaixa
punog [esydessy shay Joa1u0n) 010D 10i10pN 1156 QWV
(lomw0) sng-45a) alqewnueadorq 10) ERRTIFRIT s0san) Yyum Witm sadejraul 108533014 a5ej133u]
101B[NPON s104 [afleied 101B10UND) ASTON | apped paevoghoy onossen ylew siempaieq 1etiag
oo AL slqewiessorg ¢ pue S101R[[0SO € aurery om] oSV oipny omy, 105 1234308 26254
it 5 it i]
AL 101 otpny
>80y 1 — __
adejratu]
0apTA N RERTRY
A FOILTRIRIN a0/l

ﬂv

spiom wieq
0aprA 11q-91

1apeaeyy pue sowdean

0aptp olqewueItosq

L

Kroutopw
Wy

aoxapdump

K—]

ss2uppy WV

VAN

21807 [01jU0D

sauny, pue dnizaul

sritor
Auninoy ssaappy

sqrwwesiorq

U

V0808

10852501d01>1N

iitory
0407

ysaagoy

WOX Mpz uo

DIRMIOG JUSPISDY

SN§l VIVa LI4-8 "TVNUALNI

2.0
MICROCOMPUTER

2.1

Introduction

The DAI Personal Computer's processor section is designed around the
8080A Microprocessor. The design is based upon the popular and
economical high performance DCE microcomputer architecture. The
microcomputer section consists of the microprocessor and timing
circuitry; the ROM and Static RAM memory; Interrupt Control and
Interval Timer logic; and the Master RAM memory. The Master Ram
memory consists of a dynamic memory that is configurable from 8K

bytes up to 48K bytes.

2.2
Memory Usage

The DAI Personal Computer's memory space is organised on the basis of
memory mapped input-output which allocates normal memory addresses
to all I/O operations alongside the RAM and ROM memory addresses that
are required for normal system operation.

In the following descriptions the address space is described in terms of
hexadecimal numbers where the available range of 64 kilobytes is
represented by the address range 0000 to FFFF. Switched banks

represent a duplication of addresses.

0000 - O0O03F INTERRUPT VECTOR

0040 CONTROL OUTPUT IMAGE
0041 - 0061 UTILITY WORK AREA

0062 - 0071 UTILITY INTERRUPT VECTOR.
0077 - O0OCF SCREEN VARIABLES

00D0 - OOFF MATH WORK AREA

0100 - O02EB BASIC VARIABLES

02EC)
TO HEAP(STRINGS + ARRAYS)
TOP OF RAM <
(VARIABLE BOUNDARIES) PROGRAM (COMPILED BASIC)
SYMBOL TABLE
NOT USED RAM
t SCREEN DISPLAY
F800 - F8FF uC STACK

The following two byte variables are maintained by the system.

Addresses are stored on low order byte, high order byte (8080A)

Address (Hex) Variable

#29B START OF HEAP

#29D SIZE OF HEAP

g29F START OF PROGRAM BUFFER

g2A1 END PROGRAM BUFFER AND START SYMBOL
TABLE

g2A3 END SYMBOL TABLE

g2A5 BOTTOM OF SCREEN RAM AREA

2.3

Timer and Interrupt Control

The DAI Personal Computer has 5 interval Timers programmable from
64 us to 16 ms, 2 external interrupts and 2 serial I/O interrupts. These
are priority encoded with a masking system and allow an automatic or

polled interrupt system to be used.

2.3.1

Interrupt Control

The 8 interrupt vector addresses provided by the 8080 are assigned the

following functions:

Vector Address (Hex) Allocated function
00 Timer 1
08 Timer 2
10 External interrupt
18 Timer 3
20 Receive buffer full
28 Transmit buffer empty
30 Timer 4
38 Timer 5/auxiliary interrupt

The external interrupt is connected to a signal which indicates that the
address range F000 to F7FF has been accessed. This condition normally

""stack overflow' condition.

indicates a
The auxiliary interrupt is connected to a page signal from the TV picture
logic. This provides a convenient 20 ms clock for timing purposes.

More complex features of this part of the logic are beyond the scope of
this manual, and anyone needing such information should refer to the DAI
publication "DCE MICROCOMPUTER SYSTEMS DESIGNER'S HAND BOOK"',
The programming advice given on the TICC is valid also for Personal

Computer systems. The access to the keyboard is also via the same

logic, using the associated parallel input and output ports.

10.

2.4
Master RAM Memory

The Master RAM memory is divided into three separate memory banks,
called A,B,C. With one restriction each RAM memory may contain 4K or
16K dynamic RAM chips or they may be left empty. This yields a total
RAM availability from 8K to 48K bytes.

The addressing of the dynamic RAM is controlled by a single PROM
programmed to correspond to the physically present RAM configuration,
The exchange of this chip and changing of a switch is the only operation,
other than replacement of RAM chips, that is necessary to implement a
configuration change.

The RAM memory is seen by the program as a continuous block of
memory starting at (hex) address 0000 up to a maximum address which

for 48K is BFFF.

The first RAM bank, (if present) starts at address 0000 and is available
for program use only and may not contain display data. The remaining
two banks which must both be present are arranged for 16 bit (two-byte)
wide access by the display controller. Bank B contributes the low-order
bits, and bank C the high-order bits of the 16 bit word. For processor
access even-address bytes are in bank B and odd-address bytes are in
bank C, e.g.: if bank A is 4K and occupies addresses 0000 to OFFF then
address 1000 is in bank B, address 1001 is in bank C etc. to the end of

the Master RAM,
B C A

11.

2.4.1
Programmable RAM select Logic

For each RAM configuration of the DAI Personal Computer it is necessary
to define the address decoding. This is achieved using a single factory

programmable ROM. These are supplied for each defined RAM

configuration.
RAM configuration Banks B+C address Bank A
8K 0000 - 1FFF not used

12K 1000 - 2FFF 0000 - OFFF
32K 0000 - 7FFF not used
36K 1000 - 8FFF 0000 - OFFF
48K 4000 - BFFF 0 - 3FFF

No other aspect of the machine is altered by changes to the RAM

configuration.

2.4.2

Master RAM Configurations VS Graphical Capability

Master RAM Graphical Display Required Available Notes

Configuration Resolution Color Picture Prog. and
Modes Space Work space
8K 65x 88 4 16 1. 5K 6. 5K
130 x 176 4 16 5. 8K 2. 2K
12K 65x 88 4 16 1. 5K 10. 5K
130 x 176 4 16 5. 8K 6. 2K
32K 65x 88 4 16 1. 5K 30. 5K
130 x 176 4 16 5. 8K 26. 2K
260 x 352 4 16 22. 8K 9.2K
36K 65x 88 4 16 1. 5K 34K
130 x 176 4 16 5. 8K 30K
260 x 352 4 16 22. 8K 13K
240 x 528 4 16 32K 4K

12.

48K 65 x 88 4 16 1. 5K 46. 0K
130 x 176 4 16 5. 8K 42. 0K
260 x 352 4 16 22.8K 25. 0K
240 x 528 4 16 32 K 16. 0K non-square

The above are examples of the RAM requirement for possible all-
graphics screen configurations. Actual usage will be affected by the

screen driver package used.

2.5
ROM and Static RAM Memory

The system software resides in mask programmed ROM'S starting at
address C000 and extending to EFFF. Addresses C000 through DFFF
are continuous program space while addresses E000 through EFFF have
four switchable BANKS of program space. Total program ROM space is
therefore 24K bytes. In the address range F800 to F8FF a bank of static
RAM is included for use by the 8080A stack, and for a vector of jump

instructions that allow the emulation of an MDS system.

13.

2.5.1
Simplified memory map (48K RAM P, C.).

gggyg
¢§29B ADDRESS OF START OF HEAP
¢g29D SIZE OF HEAP
¢g29F ADDRESS OF START OF TEXT BUFFER
¢g2A1 ADDRESS OF START OF SYMBOL TABLE
(END OF TEXT B.)
¢g2A3 ADDRESS OF END OF SYMBOL TABLE
#2A5 ADDRESS OF BOTTOM OF SCREEN RAM
HEAP AREA,
@400
B350 (MODE ¢ TEXT ONLY FOR 48K RAM, 735¢
FOR 32K RAM) SEE ADDRESS ON (245 FOR
TEXT GRAPHIC MODES SEE 2.4.2
VIDEO
RAM
BFFF (FOR 48K RAM, 7FFF FOR 32K RAM,
IFFF FOR 8K) SEE 2.4.1
C000 '
ROM DFFF NON-SWITCHED ROM
ROM Eggyg 4 SWITCHABLE BANKS OF ROM
EFFF
Fogg
STACK FSW} SYSTEM STACK
F8FF
+
1/0
FChy I/O DEVICES MEMORY MAP
FFFF

14.

3.0
PROGRAMMABLE GRAPHICS GENERATOR

3.1

Introduction

The programmable video graphics + character system makes use of a
scheme of variable length data to give efficient use of memory when
creating pictures.

A few definitions are necessary before further examination of the scheme.

A '"Scan' is:
One traverse of the screen by the electron beam drawing the picture.

(there are 625 in a European television picture).

A "Line' is:
A number of scans all of which are controlled by the same information in

the RAM.

A '"Mode'" is:

One of the different ways information may be displayed on the screen.
For instance, in '"character mode' bytes in memory are shown as
characters on the screen, in '"4 colour graphics' mode, bytes describe

the colour of blobs on the screen.

A '""Blob'" is:
The smallest area on the screen whose color can be set (The physical

size of a blob is different in different screen modes).

A "Field" is:
A set of 8 blobs whose colour is controlled by a pair of bytes from

memory.

15.

The picture is defined by a number of lines, one after another down the
screen. 'Each line is independent of all others and may be in any of the
possible modes.

At the start of each line two bytes are taken from memory which define
the mode for that line, and may update the colour RAM two bytes. Thesec
are called respectively the Control and Colour Control bytes. The rest
of each line is colour or character information, and the number of bytes
used for it is a characteristic of the particular mode. (see example
programs).

The screen can operate at a number of different definitions horizontally
(e.g. blobs/scan). In the highest definition graphics mode there are
352 visible blobs across the screen. The two lower definitions have
respectively 1/2 and 1/4 of this number. There are about 520 scans
visibie on a '"625 line'' television, and the screen hardware can only
draw (at minimum) 2 scans per line, due to the interlacing. This gives
a maximum definition of ZQO by 352 which is close to the 3:4 ratio of the
screen sides. Thus circles come out round !

Characters are fitted onto this grid by using 8 columns of blobs per
character, the dot positions being defined tor each character by a ROM.
This allows 44 characters per line maximum (or 22/11 in lower
definition modes).

A fourth horizontal definition provides for a "high density' character
mode with 66 characters/line.

A total of 16 different colours, including white and black can be displayed
by the system. Whenever a 4 bit code is used to describe a colour, it
selects from this range of possibilities. In some modes (characters +
or four colour graphics) a set of 4 of these colours (not necessarily
distinct) are loaded into a set of '"colour registers'. Any 2 bit code
describing a colour selects an entry from these registers.

Vertical definition is set by a 4 bit field in the control byte. In graphics
modes this simply allows repetition of the information to fill any even
number at scans from 2 to 32. In character mode it defines the number
of scans occupied by each line of characters; thus the vertical spacing
on the screen can be changed to allow anything between an 8 x 7 (the

sensible minimum) and 8 x 16 character matrix, giving between 35and

16.

15 lines of characters on the screen.

Arrangement of information in memory

The first byte of information for the screen is located at the top of an 8K
or 32K block of memory. Successive bytes follow at descending addresses,
The screen takes memory and displays a picture on the screen accordingly
until the whole screen has been filled. It then starts again at the first

byte.

3.2

Screen Data Format

At the beginning of the data for each line, two bytes of data represent the
lines control word. The control word defines the raster scan depth of
the line, the horizontal graphical resolution of the line and selects the
display mode of that particular line. Subsequent to this control word a
number of data words are stored that represent the colour of pixels,or

definition and colour of characters according to the selected display mode.

3.2.1

Control Word Format

SN

High Address Byte (Mode byte)

Bits 7,6 5,4 3,2,1,0
L L _ILine Repeat Count
Resolution Control

Display Mode Control

17.

Line Repeat Count

The line repeat count controls the number of horizontal raster scans for
which the same data will be displayed. Since interlace of the TV scan is
ignored a minimum of two raster scans correspond to a line repeat count
of zero. Thereafter, each additional repeat adds two scans to the line.
The maximum programmable depth of any horizontal display segment is
thus 32 scans. (European TV sets will show approximately 520 scans

total for a full picture),

Resolution Control

The resolution control bits allow selection of one of four different
horizontal definitions for display of data on the TV screen for each

individual line.

Code (Bit 5, Bit 4) Definition (pixels per screen width)
00 88 (Low definition graphics)

01 176 (Medium definition graphics)

10 352 (High definition graphics)

11 528 (Text with 66 characters per line)

(Screendriver uses 60 characters for text).

(Could be used for a very high definition
graphics mode).

Mode Control
The mode control bits determine how data will be used to generate the
picture for that particular segment.

Code Display mode
(Bit 7, Bit 6)

00 Four colour graphics
01 Four colour characters
10 Sixteen colour graphics

11 Sixteen colour characters

18.

3.2.1.2
Low Address Byte (Colour type)

The Low Address control byte is used to store colours into a set of 4
""colour registers' for the four colour mode. Any one of the four colours
in the registers can be changed at the beginning of any line of display data.
Only the colours in these registers can be displayed in any 4 colour mode.
The four colours are freely selectable from the sixteen colours defined

in Colour Select Table.

Bits 7 3,2,1,0

6 5,4
l l Selection of one of
sixteen colours.
Select one of four
l colour registers to update.
If unset, forces 'unit colour mode' (see 3.2.2. 4)

Set to enable colour change.
If unset, bits 0 to 5 are ignored.

Code Code

Black

Dark blue
Purple Red
Red

Purple Brown
Emerand Green
Kakhi Brown
Mustard Brown
Grey

Middle Blue

= O 00 N O~ Uk W DN~ O

o

Orange

Pink

—
N

Light Blue

—
w

Light Green
Light Yellow
White

—
[I

19.

3.2.2
Data Mode

3.2.2.1
Four Colour Mode

In this mode only two bits of data are required to define the colour of a
pixel. These data bits are obtained in parallel from the upper and lower
bytes of each data word using the high order bits first.

The 2 bytes in a field are considered as 8 pairs of bits. Each pair sets

the colour for one spot.

HIGH

ADDRESS B7 BO Al

BYTE pairs of bits used
to address colour
RAM.

LOW

ADDRESS] B7 BO} A0

BYTE 1 T

Leftmost spot Rightmost spot

The 2 bits for each spot select one of the four colours which have been
loaded into the colour RAM by previous Colour Control bytes. So on any
line 4 colours are available., On the next line any one of these may be

changed for another, and so on.

3.2.2.2

Sixteen Colour Mode

This graphics mode is designed to allow multi-colour high definition
pictures in half the memory requirement of other systems.
The basic organization is that the low address byte selects two of the
sixteen possible colours.

Bits 0 - 3 "Background' colour.

Bits 4 - 7 " Foreground' colour.

20.

The high address byte than defines by each successive bit whether a
colour blob should be foreground or background.

NB

The two bytes in the field serve different purposes, one being used to
define two available colours for use in the field, and the other to choose

one of these for each spot.

HIGH
ADDRESS B7 BO
BYTE
leftmost 1 0 rightmost
blob /bit bit \ blob
LOW
ADDRESS B7 BO
BYTE -
— JL d
"Foreground ""Background
colour" colour"

The bit for each spot can select either the '"foreground' or the "back-
ground" colour. However, what these colours are is totally independent
of the preceding or following fields. So any line may use any and all of
the total 16 colours. The contents of the colour RAM are irrelevant in

this mode.

One additional feature is added to eliminate restrictions of the scheme.
After each eight bit field of colour the background is extended into a new
area, even if a new background colour is specified, until the new
foreground is first used. It is therefore possible to create a required

picture by suitable combination of foreground and background.

3.2.2.3
Character Mode

In this mode, characters are generated using a character generator ROM
in conjunction with the four colour registers or using any 2 colours for

each in the 16 colour character mode.

21.

The usual character matrix is 6 x 9 bits out of a possible 8 x 16.
Therefore the line repeat count should be at least eleven, to guarantee

full character display plus line spacing,

Four colour characters are produced on the screen in a way similar to
the four colour graphics mode, but with the character ASCIV data
replacing the high address data byte used for four colours. The result

is that characters are displayed using colours from the four colour
registers. The data from the character generator ROM control the lower
address bit and bits from the low-address byte determine the other.

This allows characters on a single horizontal display segment to be in
one of two colour combinations of character/ba.ckground, or even with a
vertical striped pattern controlled by the low address byte.

However, note that as compared with four colour mode

information (but not the low-address byte) is subject - to a one character
position delay before appearing on the screen.

In character mode the height of the characters is a set number of
horizontal scans. The character width is determined by the definition
selection in the control byte. A definition of 352 yields 44 characters per
line, 528 hields the normal 66 characters per line. Other definitions are
possible and they yield wide characters, useful as}.iigi E?E}ﬁfﬂf in
applications such as the power-on message. However, this feature is

not supported by the resident BASIC.

Special characters:

CR Terminates a line of characters and positions the cursor at the
first position of next line. If necessary, the screen is ''rolled
up'" to make room.

FF Fills the character area with spaces and positions the cursor at
the start of the tope line on the screen.

BS If the current line has some characters on it, then the cursor is
moved back to the previous position and the character there is

replaced by a space.

22.

A line of characters on the screen can be extended up to 4 screen
widths, Continuations are indented a few characters, and a letter "C"
is displayed in the first position of these lines.

When a third continuation line is full any character except CR, FF and
BS is ignored.

Attempts to backspace past the beginning of the line are ignored.

If the screen is in "all graphic mode' and character output is necessary
then a mode change will be to an appropriate mode including a character
area. First the corresponding "split" mode will be tried e. g. if the
screen is in mode 1, then mode 1A. If in mode 1 a program claims all
free memory (e.g. by using "CLEAR') then mode 1A, which requires
more memory than mode 1, will not be possible and the default is to
mode 0. In this case the program is deleted by an automatic "NEW"

command,

23.

CHANGING LINE BACKGROUND OR LETTERS COLOR ON ONE LINE

Line 1 Control byte is located at address XFEF and line 1 Color Control
byte address at XFEE (X being 1 for 8K machine, 7 for 32K machine, B
for 48K machine). The first character byte of line 1 is located at line 1
Control byte address minus 2, and the character Colour Control byte
at line 1 Control byte address minus 3. Each of the 66 positions of the
screen is located at line Control byte - (2 # position of character on the
line) for the character and at line Colour Control byte - (2% position of
character on the line) for the Colour Control byte of the character.
Remember that there are 66 character positions on the screen but that
the first and last three characters are kept blank for the margins.
Therefore the Control byte for the next line is located at Control byte
of previous line (i.e. XFEF) less 134 bytes (#=86. So if the Control
byte of line 1 is a BFEF, the Control byte of line 2 will be at 3§ BFEF -

3= 86 =4 BF69.

I | | l |

.~ _I S \m l Vi \.—’_A

Control first (Character 66 may not be
2 character fully transmitted by

Examples: hardware)

Control Byte Line 1 # BFEF

Control Byte Line 5 ABFEF - (4§ 86%5) =¥ BDD7

Colour Control byte Line 5 ’ = BDD6

Character N° 6 on Line 5 BDD7 - 632 = 4pBDCC

Colour Character 6 of Line 5 =4=BDCB

(see VIDEO RAM TABLE and examples 1 and 2)

Use the POKE in your program for changing line background, letter
colour, or letter, and Utility 3 for checking the location you intend to
POKE (when you return to BASIC the colour changes you made in Utility
mode are erased if you enter MODE 1, RETURN, MODE 0.

24,

ExanFle

COLORT & & S 16

FOKE #Bﬁ L, #0A (Will chanze colour of letter from black @
colour 190 on line 122

FOKE#BAZD, #C3 (Will chanse backarcund from & to 3

The locations from #x3qa to #x3SF and #<FFG to #:FFF
x =1 FOR 8K RAM, « = 2 FOR 12K, x = 7 FOF 32Y, = = B FOF 43K
control the screen backaround and forearcund colours

Examrle
COLORT 8 1S 7

06 00 BS IF 06 06 AT 3IF 60 69 ?F 3IF 60 00 86 IF

48 90 B2 IE 00 00 AV Z6 00 00 F 35 09 66 20 35
» 2@ FOKERTFF A, #20: POKERTISE, #20: FOKESTFFE. #20
-een black and the letterz black

9E ;Fd 268 can be rerlaced by any # number
TF and H20 to # 2F

to

25,

Chanaing colour of backarcund and test

Examrla 1

for 48K, #7EEZ for IIK,

wa
a3
5}

IFORE E=g. = HEY
1 - =T e
i > i !

I =77 i & i
Z -2 1= 1
14 riz taa bl = 15
11 -12 a2)
12 =14 (no taxt) 1= 1=
15 = 15
1& o 1%
i7 no haxty 1% 1z
12 1= Z

18 EN=#FF

28 COLORT 3 8 & &

25 REM START AT #BEEZ for 48K, ¥7EEZ for 32K, #ZEEZ for 12K, #1EEZ for &
30 EX=#EFEF

30 FOR A%=1 TO 23

—HEG: HEaT
33 w= IMOT E% IAMHC #FF
23 G0TO 38

26.

VIDEO RAM TABLE

Line N° Start Address of
Line (in Hex)

1 XFEF
2 XF69
3 XEE3
4 XE5D
5 XDD7
6 XD51
7 XCCB
8 XC45
9 XBBF
10 XB39
11 XAB3
12 XA2D
13 X9A7
14 X921
15 X89B
16 X815
17 X78F
18 X749
19 X683
20 X5FD
21 X577
22 X4F1
23 X46B
14 X3E5

Line Colour Control
byte Address (in Hex)

XFEE
XF68
XEE2
XE5C
XDD6
XD5¢
XCC4
XC44
XBBE
XB38
XAB2
XA2C
X9A6
X920
X89A
X814
X78E
X708
X682
X5FC
X576
X4F¢
X46A
X3E4

X =1 FOR 8K MACHINE, X =2 FOR 12K, X =7 FOR 32K, X = B FOR

48K

27.

3.2.2.4

Unit colour mode

This mode is available for space saving during uniform scans of the
picture. A horizontal band of constant colour (or repeated pattern) can be
drawn using only one control word and one data word. The data for this

mode should be in high speed format.

Using this mode a full screen of data need be no more than 40 bytes of ram.

3.3

Video Interface

The television interface is realized such that a separate adapfor module
plugs into the fundamental logic to realize normal Black and White
interface, standard colour modules of PAL, SECAM or NTSC and video
monitors. Other video interfaces are easily realizable by construction of
an adaptor that plugs into the video interface connector of the DAI

personal computer,

l
f

28.

4.0
PROGRAMMABLE GRAPHICAL SOUND GENERATOR

4.1

Introduction

The sound generator of the DAI Personal Computer has considerable
flexibility because every frequency is generated by digital oscillators that
yield precise results. Additional random noise generation and digital

volume controls complete the system.

4.2

Programmable Oscillators

The Programmable Graphical Sound Generator is realised via three
independent programmable oscillators and a random noise generator,
Each oscillator is connected as an I/O device to the microprocessor and
is programmable to any frequency within the range 30 HZ to 1IMHZ,.
Obviously the higher frequencies are not interesting for audio work but
since the three oscillators are added together before modulation of the
audio channel of the TV interesting effects can be obtained by beating
together various possibilities.

The programmable oscillators are used for sound generation and game

paddle interfaces.

4.2.1

Frequency Selection

In order to program a frequency into one of the channels a 16 bit number

must be sent to one of the following addresses:

Oscillator Channel Device Address
1 FCO00 or FOO1
2 FCO02 or F003

3 FCO04 or F005

29.

Prior to sending a frequency to a channel, address FC@6 must be loaded

with the following 8-bit data words:

1 36 Hex
2 76 Hex
3 B6 Hex

The 16 bit frequency data is sent as two 8-bit transfers to the specified

address sending least significant byte first,

4.2.2

Volume Control

The amplitude of the oscillator output as well as that of the noise
generator is digitally controllable by writing a control word to the address

specified in I/O device allocation section.

4.3

Random Noise

A noise generator circuit is included within the sound generation circuitry.
The purpose of this device is to simulate as near as possible white noise
for the purpose of complex sound generation and to provide a time random
sequence for random number generation. Random events generated by
this circuit provide the basis for information input on an I/O port to

generate a true random number.

4.4

Frequency Mixing

All sound channels as well as the output of the noise generator are added
together before modulation of the audio channel. Channels 1 and 2 and
2 and 3 are added together for left and right stereo output. For the

stereo configuration noise is inserted in Channels 1 and 3.

30.

4.5

Frequency Calculator Formula

To output a frequency of nHz from a given oscillator, program it with an
integer equal to 2 x 106 divided by n. A special BASIC function (FREQ.)

performs this calculation when required.

5.0
INPUT-OUTPUT SECTION

5.1

Introduction

All input-output of the DAI Personal Computer is arranged on a memory
mapped basis. I/O is thus directly accessible to BASIC programs,
however care is necessary to avoid conflict with the BASIC interpreter

activity when using POKE commands.

31.

5.2.

Game Paddle Interface

The Personal Computer is equipped with circuitry required to connect
two game paddles as input devices. Each paddle contains three variable
resistors whose positions are read as values and one on-off event (single

contact switch).

The position of any paddle resistor is found by putting its binary address
onto the 3 bits in port FD06. Then channel 0 of the sound generator is
put into a mode such that it operates as a counter. The read of the
positions is triggered by reading location FDOl. The value is read out

and mapped onto an 8 bit range for a result.

DIN PLUG CONNECTIONS FOR DAI PERSONAL COMPUTER

(6 PINS DIN PLUG 240° VIEWED FROM INSIDE OF THE PLUG OR
TO THE COMPUTER PLUG)

PADDLE INTERFACE (200KAN)

- POT 2

POT EVENT

5VOLTS
. POT 1

32,

5.3

Audio Cassette Interface

The Personal Computer of DAI contains the entire logic and interface
circuits needed to connect a low cost audio cassette for the input and
output of data and programs.

The Personal Computer input from the cassette should be made via the
crystal ear phone outlet or the external speaker outlet., In these cassettes
that have no such outputs simply connect the speaker wires to the Personal

Computer input,

DIN PLUG CONNECTIONS FOR DAI PERSONAL COMPUTER

(6 PINS DIN PLUG 240° VIEWED FROM INSIDE OF THE PLUG OR
TO THE COMPUTER PLUG)

CASSETTE RECORDER INTERFACE

—

MOTOR CONTROL ¢

NOT CONNECTED

OUTPUT P.C* INPUT TO PC FROM

TO CASSETTE CASSETTE
+{MICRO CASS PLUG (EARPHONE CASS PLUG)

GROUND GROUND

(TO MIC PLUG) (TO EAR PLUG)

5.4

Stereo Output

The DAI Personal Computer Graphical sound Generator is connectable to
the left and right channels of a stereo set. Channels 0 and 1 and channels

2 and 3 are summed to make the left and right channel respectively,

33.

RIGHT AUDIO

STEREO AUDIO OUTPUT

LEFT AUDIO

GROUND

5.5
Scientific Math Peripheral

As an option for high speed calculations the logic of the DAI Personal
Computer supports the Scientific Math Chip of Advanced Micro Devices
(9511).

The device is addressed at locations FB0O (data) and FB02 (command and
status). The "PAUSE' signal is correctly used to make the CPU wait for
data. Note that the SHLD and LHLD instructions are not usable with this

device for double byte transfers.

34.

5.6

ASCII Keyboard

The ASCII keyboard is scanned as a matrix of switches. Encoding,

debouncing and roll-over are realized via a software routine.

5.6.1
Keyboard Layout

"” 0&'
%12?2?67

T ABjlreak

00—~
Nel
o

'

~
Q WJl1E |R T]Y 8] I (@) P |/ |[RETURN

+]char
//CtrlA s|plrlcg|iuH]y L |] € lde1 [Fept
?
SHIFT | z X jc v BIN |IM], . / SHIFT

The keys are assigned to rows and columns.

re-
turn

6
A
1 1.19 A]I QY*
-
-

ROWS 2 2 B |J R | Z
Output 3 ! c K1s (
lines
(FFo07) 4 14 , D LT |A\]|Tab
_ s pace
515 E MU bar jctrl
6 |6 . F N | V |reptpreak

char} . .
7417 |/ |G O |W lje1 prift

COLUMNS
Input lines (FFO01)

35.

5.6.2
Keyboard Scan Logic

The Personal Computer contains a software keyboard scan and encoder.
This can be used by other programs which may use the standard key
encoding tables, or supply their own,

All keys are scanned periodically, and action is taken when a key is
noticed to have been newly pressed. Alternatively, if the repeat key is
pressed, then periodically all currently pressed down keys are acted on.

The repeat speed is fixed.

The actual code for the key is obtained from a table. The "shift'" system
selects which of two possible tables to use. By setting a flag byte the
keyboard handler can be made to scan only for the "BREAK'" key which

obviously takes less time.

On initialisation the alphabetic keys (A - Z) give capital letters if
unshifted, and small when shifted. Pressing the "CTRL" key inverts this
arrangement to give a 'type-writer-like' effect. Successive uses invert

each time.

The standard codes returned by each key: see decimal/characters table

end of this book.

36.

5.7
DCE-BUS

The DAI Personal Computer provides the possibility of external connection
by flat cable of a DCE standard bus. The provided logic drives the bus
exactly as a standard DCE Processor with the same addressing and
characteristics including reset and interrupt lines. 3 The DCE bus can
be connected directly to external equipment,

Included in the Personal Computer are routines to communicate with DAI
Real-World-Cards. Note that the interface to these routines is different
from that in some other DAI software.

Example routines follow in 6.2.15 third page, Note that the internal
logic of the routine is subject to changes. Only the interface is guaran-

teed.

EXAMPLE OF ROUTINE TO DRIVE A PARALLEL PRINTER THROUGH
DCE-BUS

10 CLEAR 1000 : REM MUST BE SET FOR YOUR PROGRAM
20 DIM PRI (10)

30 INPUT "TYPE JIF YOU WANT A PRINT" ; A$: PRINT
40 IF A$<L > "J'" GOTO 100

50 FOR X = #7400 TO 419

55 READ C
60 POKE X,C
65 NEXT X

70 POKE # FE@3,3F AC

75 POKE 3 2DD, 3= C3

80 'POKE %k 2DE, 3= ¢¢

85 POKE 4F2DF, 4k 4

90 DATA 229,213,197,17,2,254,6,16,33,1,254

95 DATA 119,43,54,¢,54,1,26,160,194,11,4,193,209,225,201
100 PRINT CHR $ (12)

110 IF A$ {> "J" GOTO 200

120 IF A$ = "J" THEN POKE #k131,3 : REM OUTPUT TO DCE-BUS
ONLY

37.

5.7.1
DCE-BUS Finout

SIGNAL DESCRIPTION
NAME
POBO General Interface PORT 0 Bit
POB1 deaven g Bit
POB2 Bit
POB3 Bit
P0OB4 Bit
POB5 Bit
POB6 Bit
POB7 Bit
P1BO General Interface PORT 1 Bit
P1Bl1 Bit
cHdG SELRELDT
P1B2 Bit
P1B3 Bit
P1B4 Bit
P1B5 INTEgreRe LR Bit
P1B6 ! Eiazgaet i o s § Bit
P1B7 e e Bit
P2B0 General Interface PORT 2 Bit
P2B1 T Eas Bit
P2B?Z e 8 Bit
P2B3 Bit
P2B4 Bit
P2B5 Bit
P2B6 Bit
P2B7 Bit
EXINTR+ External Interrupt
IN7+ Parallel input Bit 7(aux. interrupt)

EXRESET External Reset (Ground for Reset)

+12V +12V DC

+5V +5V DC

-5V -5V DC

INTR INTERRUPT PIN 14 OF CPU 8080
IN7+

NOT CONNECTED

A

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
0
1
2

3
4
5
6
7

pin on
real-world personal

card
24

26

28
29
27
25
23
12
10

8

7

9
11
13
15
18
17
16
14
19
20
21
22

o = N T W D

pin on
comp. card.
16
14
12
1

38.

PERSONAL COMPUTER RS-232 CONNECTOR:

13 1
i l
1]
‘:...........l
\
0
25 14 FEMALE CONNECTOR
(CUTSIDE VIEW)
PIN FUNCTION
1 GND
2 SERIAL OUT OUTPUT DATA FROM P, C.
3 SERIAL IN INPUT DATA TO P.C.
4 DATA TERMINAL RDY INPUT READY HIGH (5V), NOT
READY LOW (¢gV)
5 +1Z2V % Note: This connector is wired as fo
6 +12V % a terminal and signals to pins 2 and
3 may have to be swapped if it is to
7 GND send data to a terminal/printer.
8 +12V %
3 N. C.
5

* 12V THROUGH 220£.1/4W.

5.8
RS232 Interiace

The Personal Computer has an RS232 compatible interface giving a serial
input line, serial output line and a status line to halt output (DTR). These
are available on a CCITT standard connector at the rear of the machine,
The DTR signal allows synchronisation of the output with a printer. If
unused, then output will be unimpeded.

Interrupts to locations 20 and 28 can be set up for receive and transmit
ready. The BASIC interpreter however uses the locations for other

purposes.

5.9

39.

1/0 Device Address (Allocation Reference)

5.9.1

Master Control Device Address (Hex)

F900 - F9FF
FA00 - FAFF
FB00/1
FBO2/3

FCO00/1
FCO02/3
FC04/5
FC06/7

FDXX

FE00/1/2
FEO03

FFXX

Spare
Spare
Data Scientific Math Chip
Command

Channel 0

Channel 1

Channel 2 Graphical Sound

Generator
Command

See 5.8.2

1/O ports 0/1/2

DCE-BUS
Command port

See 5.9.3

40.

5.9.2
Discrete I/O Device Address (Hex)

ADDRESS NOTES IN/OUT
FDO00 1 IN
FDO1 3 IN
FDO04 2 ouT
FDO5 2 OouT

BIT ALLOCATION

0 -

1 -

2 Page Signal

3" Serial output ready

4 Right paddle button
(1 = closed)

5 Left paadle button
(1 = closed)

6 Random data
7 Cassette input

Single pulse used to trigger

paddle timer circuit.

Volume, oscillator

Channel 1

Volume, oscillator

Channel 2

NI

Volume, oscillator

Channel 3

Volume, random
noise

~N O Ul AW N~ O

Cont.....

41.

ADDRESS NOTE IN/OUT BIT ALLOCATION
FDO06 3 ouT 0 Cassette data out
0
1 Paddle channel select
code
2
3 Paddle enable bit
4 Cassette motor 1
control (0 = run)
5 Cassette motor 2
control (0 = run)
6,7 ROM bank switch
Notes:

1 User may read from or write to any of these addresses at will, No

harm can result,

[\

Reading from these locations does nothing.
Writing to them will modify the appropriate volume settings, but if the
BASIC system accesses the channel the effect may be lost, as it has an

internal memory of its own last set value.

w

These locations should not be written into.

42.

5.9.3

Serial I/O, timer & interrupt control

The detail given here is sufficient to allow use of the serial 1/O. All
these facilities are given by one LSI component, and the BASIC interpreter
uses many of the facilities itself. So care must be taken not to disturb

the normal running of the system.

ADDRESS NOTE FUNCTION

FF00 1 Serial input buffer
' Contains the last character received on the

RS232 interface.

FFOl 1 Keyboard input port
Bottom 7 bits are data input from the keyboard.
Bit 7 is the IN7 line from the DCE-BUS and is
attached to the page blanking signal for the TV.

FF02 2 Interrupt address register

FFO03 1 Status register

Bit allocations:
7,6,5 Not useful

Set if RS232 output ready to accept

|
| 4 Transmit buffer empty
| another character.

3 Receive buffer loaded
[Set if a character has been received

2 Overrun
Set if a character has been received but
not taken by the CPU,

1 Frame error
Set by a "BREAK'" on RS232 input
FF04 2 Command register
FF05 3 RS232 Communications rate register
Send (Hex) for
1/81 110 baud 2/1 stop bits
2/82 150 " "

4/%_ 300 " "

43.

8/88 1200 "
10/90 2400 " "
20/A0 4800 " "
40/C0 9600 ' "

Underlined is usual one to use.
Other combinations not useful
FFO06 3 Serial output
Write byte to this location to send it on RS232
output, Use only when address FF(@3 bit 4 HIGH
FFO07 4 Keyboard output port
Data output to scan keyboard. Not useful to
user.
FFo08 2 Interrupt Mask register
FF09
FFO0A
FFOB
FFOC
FFOD

2 Timer addresses

Notes:

1 May be read but not written to by user

2 Should not be accessed by user

3 May be written but not read by user

4 May not be read, writing is harmless and useless ! System kevhoard

scanner will overwrite user data.

44.

6.0
RESIDENT SYSTEM SOFTWARE

6.1

Introduction

The resident software is comprised of major modules, Basic Interpreter,
the Machine Language Utility, and the General Housekeeping Module.
Under normal system operation they work together to allow use of BASIC
programs from cassette. For machine code programs major functions

available as subroutines.

45.

6.2
Resident DAI BASIC

6.2.1
Alphabetic Index of DAI BASIC Statements

6.2.1.1
BASIC Commands

CHECK 6.2.9.1 LOADA
CLEAR 6.2.11.1 MODE
COLORG 6.2.12.2 NEW
COLORT 6.2.12.3 NEXT
CONT 6$2.10.1 NOISE
CURSOR 6.2.12.9 ON...GOSUB
DATA 6.2.8.1 ON...GOTO
DIM 6.2.11.2 ouT

DOT 6.2.12.4 POKE
DRAW 6.2.12.4 PRINT
EDIT 6.2.5.1 READ
END 6.2.6.1 RAM
ENVELOPE 6.2.13.3 RESTORE
FILL 6.2.12. 4 RETURN
FOR...NEXT 6.2.6.2 RUN
GOSUB 6 6.2.6.3 SAVE
GOTO 6.2.6.4 SAVEA
IF...GOTO 6.2.6.5 SOUND
IF... THEN 6.2.6.6 STOP
IMP 6.2.2 TALK
INPUT 6.2.7.3 TROFF
LET 6.2.11.4 TRON
LIST 6.2.5.3 WAIT
LOAD 6.2.9.2 UT

o o0 oo N O O O 0N O 08 O8N O O8N O8O0 O8N 8 8 0o 8 O8O0 O

NNNNNNNNNNNNNNNN}\)NNNNNNN

.9.3

12.1
5.4

.13.4

o O W N

10. 2

6.9
5.5

.9.4
.9.5
.13.2
.6.10
.13.5

7.4
7.5

.6.11
LTUT

6.2.1.2

BASIC Functions

ABS
ACOS
ALOG
ASC
ASIN
ATN
CHR $
COos
CURX
CURY
EXP
FRAC
FRE
FREQ
GETC
HEX$
INP
INT
LEFTS$
LEN

DD DD DD N DN DD DD DD DN DN DD DD DD DD NN NN

. 14,

14.
14,
14.
14.
14.
14,
14,
12,
12,
14.
14,
11.3
13. 6
8.2

® N 00 W N

— O =
o o o

. 14,11

7.12

. 14,12
. 14,13
. 14. 14

46.

LCG
LOGT
MID $
PDL
PEEK
PI
RIGHT $
RND
SCRN
SGN

SIN

SPC

SQR

STR $
TAB
TAN
VAL
VARPTR
XMAX
YMAX

DN DD DDV DD DN NN DD DN DN DN DNDDNDDNDDND NN DD N

. 14,15
.14.16
. 14,17

7.4
7.5

.14.18
.14.19

14.20
12.8
14,21
14,22
14,23
14. 24
14,25
14.26
14.27
14.28

11,5
.12.6
12,7

47.

6.2.1.3
Arithmetic and Logical Operators

+, -, %, /, MOD, t, =,¢,9.¢Y ., {=, »=, IOR, IAND, IXOR, INOT,
SHL, SHR, AND, OR.

6.2.2

Format rules and constraints

6.2.2.1

Variables and Numbers

DAI BASIC recognises 2 types of numeric value, integer, and floating
point. Integers are whole numbers only, and of restricted range.

e t 32 - 1 (e.g. about 9 digits). However, integer arithmetic is exact
and gives no rounding errors. Floating point numbers include non-integer
values, and allow numbers whose size is in range 10'18 to 10 18, with 6

digit printout resolution. (32 bit floating point format).

Various DAI BASIC commands expect either an integer or a floating point

value. For example:

a) DRAW A,B C,D X. All of parameters A,B,C,D and X are expected
to be integers.

b) LET A = SQRT (B). The parameter B is expected to be a positive
floating point number.

DAI BASIC obeys the following rules regarding numerical values:

1) When a floating point value is found where an integer value is required,
it is truncated (e.g. 2.3 = 2, -1.7 = -1).

2) When an integer value is found where a floating point value is required,
it is converted automatically.

3) Where an integer representation (e.g. '3'" not ''3.0") is typed in, it
will be encoded as a floating point or integer value as the context
demands, or if neither is defined, e.g. in "PRINT", as the type set
by the "IMP'" command.

48.

Variable names have from 1 to 14 characters, of which the first must be
alphabetic, and the rest either alphabetic or numeric. Alphanumeric
characters after the 14th are ignored. If no type letter ($,%,!) is
appended then the type depends on the IMP command. Initially all such

variables are floating point.

Numeric variables in DAI BASIC may be either floating point or integer
type. Integer variable names are terminated by the character '"%'", and
floating point by '"! '". String variables have ""$'" as a terminator. But

see examples for influence of IMP command.

Examples:
Initially
I,A,S are floating point, because they are abbreviations of
1!, A!, s!
1%,A%,S% are integer and distinct from I, A, S.
I!',A!,S! are floating point, and are the same variables as I,
A,S.

1$,A$,5% are string variables.
So if the IMP command is never used, floating point variables can be
indicated by leaving off the ''type' letter, integer variables by using %,
and string by using $.
After IMP INT I-N

IMP STR S-S

I is an abbreviation for 1%, or integer variable
A is an abbreviation for A! or floating point variable
S is an abbreviation for S$ or string variable

However any variable with a type letter (I$, A%, S!) is totally unaffected
by the IMP command. When the Personal Computer is LISTING a program,
it uses the shortest form for a name. In other words after the example
above, the variable I% would be printed as just I, S$ as just S, and A!

as just A. If the IMP command is used in the form "IMP INT" or

"IMP FPT", without a range of letters, then all variable names are
defaulted to that type. In addition integer number representations e.g.

''3", are interpreted as the required type.

49.

Command Means same as '"3" is interpreted as and A as
IMP INT IMP INT A - Z Integer 3 A,
IMP FPT IMP FPT A - Z Floating point 3.0 Al

IMP STR Not allowed - -

At power on the system does an initial "IMP FPT".

6.2.2.2

Strings

1) A string may be from 0 to 255 characters in length.

2) String arrays may be dimensioned exactly like numeric arrays. For
instance, DIM A$ (10,10) creates a string array of 121 elements,
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10).
Each string array element is a complete string, which can be up to

255 characters in length.

w

The total number of characters in use in strings and associated control
bytes at any time during program execution cannot exceed the amount

of string space requested, or an error message will result.

£
~

Strings cannot contain the character double quote (Hex 22). It can be

printed using CHR $ (¥#¢22).

Examples of String Usage (Do not forget to make first a CLEAR).
DIM A $(10,10)
Allocates space for a pointer in string space for each element of a

string matrix. No furhter string space is used at this time.

A$ ="F00"+V$
Assigns the value of a string expression to a string variable,

requiring string space equal to the number of characters plus one.

IF A$ = B$ THEN STOP
String comparison operators. Comparison is made on the basis of
ASCII codes, a character at a time until a difference is found. If
during the comparison of two strings, the end of one string is r
reached, the shorter string is considered smaller. Note that "A "

is greater than " A'" since trailing spaces are significant.

50.

INPUT X $
Reads a string from the keyboard. String does not have to be in
quotes, but if not leading blanks will be ignored and the string will

be terminated on a "," character.

READ X $
Reads a string from DATA statements within the program. Strings
do not have to be in quotes, but if they are not they are terminated

ona '"," character or end of line, and leading spaces are ignored.
PRINT X$

PRINT "FO00"+A$

Prints the result of the string expression.

6.2.2.3

Operators

It is obvious that the result of adding 1% + J% when 1% contains 3 and J%
contains 4 should be the integer 7. It is also reasonable to expect I+ J
where I contains 3.0 and J contains 4.0 to give the floating point result
7.0. Thus some B ASIC operators do different things depending on the
types of their operands. It is always permitted to give operands of
either type to any operator, However the operator may convert either
or both operands to another type before use.

Relational operators and the operators '""AND' and "OR' produce results
of type ''logical". These results cannot be assigned to any variables and

are only used in "IF'" statements.

6.2.2.4

Statements

In the description of statements, an argument of V or W denotes a
numeric variable, X denotes a numeric expression and an I, J or K

denotes an expression that is truncated to an integer before the statement

51.

is executed. A, B indicate array names without any parameters.
An expression is a series of variables, operators, function calls and
constants which after the operations and function calls are performed

using the precedence rules, evaluates to a numeric or string value.
A constant is either a number (3. 14) or a string literal (""F00").

6.2.2.5

Expressions

The cardinal principle behind the evaluation of expressions by DAI BASIC
is that if an expression contains only integer values or variables and
operators which work on integers, then at no time is floating point
arithmetic used. This gives fast integer arithmetic where it is needed

for industrial control and graphics applications.

Order of Evaluation

Expressions in Brackets

4

* / MOD
+ -

SHL SHR

IOR IAND IXOR

> = > (= >=

AND OR

Operators on the same level are evaluated from left to right.
E.g. 3 5MOD 2 =1

52.

6.2.3

Error Reporting

6.2.3.1

Error Report Format

When an error is encountered a message is printed giving details. Under

certain circumstances, other information will be given,

(i) If an immediate command has just been input, than no other
information is given.

(ii) If a stored program line has just been input, then a reflection of the
line with a "?'" near the error will be printed.

(iii) If an immediate command is being run, no other information is given.

(iv) If a stored program line is being run, the words "IN LINE NUMBER'"'
and the line number are given.

In case (ii), the line goes into the program with a '+ ' on the front,

(Internally coded as an ERROR LINE)

6.2.3.2

Error Messages Dictionary

CAN'T CONT

There is no suspended program to be "CONTinued'"

COLOUR NOT AVAILABLE
A colour has been used in 4 colour mode when it has not been set up by a

COLORG command.

COMMAND INVALID
This command cannot be used in a non-stored program line, or in a

stored program line, whichever was attempted.

DIVISION BY 0
Integer or floating point divide by 0.

53.

ERROR LINE RUN
A line which gave an error message when it was input has been run

without first correcting it.

INVALID NUMBER
The parameter given to a VAL function was not a valid floating point

number.

LINE NUMBER OUT OF RANGE

A line number greater than 65535 orzero has been used. (or negative)

LINE TOO COMPLEX

Line typed in would generate more than 128 bytes of encoded program.

LOADING ERROR 0 , 1, 2 or 3
The program or data requested could not be loaded.
For cassette:

0 means Checksum error on program name.

—

means Insufficient memory

2 means Checksum error on program.

w

means Data dropout error.

NEXT WITHOUT FOR
A "NEXT'" statement has been executed without a corresponding "FOR"

statement.

NUMBER OUT OF RANGE

Some number has been used in context where it is too large or small.

OFF SCREEN

A point has been referred to which does not exist in this mode.

54.

OUT OF DATA

A "READ" statement has tried to use more DATA than exists.

OUT OF MEMORY
Some attempt has been made to use too much space for the program,

symbol table, screen, heap (strings + arrays storage) or edit buffer.

OUT OF SPACE FOR MODE

This message occurs if a program is running in modes 1 or 2, with
insufficient free space to run mode 0, 1A or 2A, and attempts to print a
message. The system deletes the program by a NEW and prints this

message.

OUT OF STRING SPACE

More string space has been used than was allowed for.

OVERF LOW

Integer or floating point overflow.

RETURN WITHOUT GOSUB
A "RETURN" statement has been executed with no corresponding '""GOSUB"

STACK OVERFLOW
A line too complex has been typed in, or, too much stack space has been

used by a running program.

STRING TOO LONG

A string of over 255 characters has been created.

SUBSCRIPT ERROR
A subscript has been evaluated which is outside the declared range for
the array, an array name has been used with the wrong number of

parameters, or a dimension of 0 has been requested.

55.

SYNTAX ERROR

Some error in the line just typed in, or the line of data read by an INPUT
or READ.

TYFPE MISMATCH
Some expression gives a result of an incorrect type for its position. Can

occur on input or while a program is running.

UNDEFINED ARRAY
A reference has been made to an array which has not yet been

""DIMensioned",

UNDEFINED LINE NUMBER

A reference has been made to a non-existent program line.

56.

6.2.4
Interacting with DAI BASIC

6.2.4.1

Facilities of the Character Screen

When the Personal Computer first prints the message "BASIC" and the
prompt, the screen is in what is known as mode 0. That is 24 lines of 60
characters. At any time the screen can be returned to this rhode with the
command "MODE 0",

The next position where a character will be displayed is indicated by a
flashing underline cursor.

Lines on the screen are obviously physically 60 characters long. But
when characters are being output the line can be extended with up to 3
"continuation'' lines. These have the letter C in column 0 and the first
character of those coninuation lines are indented 7 spaces to the right.
The cursor is moved forward when a character is output, and backwards
for a backspace (4 8) character. Carriage return (4F D) ends a line.
The form feed character (3 C) has the special effect of entirely clearing
the character area (in any mode) and placing the cursor at the top left
position.

The tab (H9) character has no special function.

When the third continuation line is used up, further characters output to
the screen are ignored, until a carriage return, backspace or form feed.
When BASIC is expecting input it only notices characters in positions after
the prompt character. If the prompt is deleted with backspaces, then any

character put in that position will be ignored, probably causing a syntax

error. The colours used for characters are initially set at power on. They

can be changed using the COLORT Command.

57.

6.2.4.2

Input of programs and data

When the Personal Computer expects input, it always types a ''prompt"
character, noot.ally a "sk ", but during INPUT commands a "'?".

The user can then type in characters at will, To delete the last entered
character, the ""CHAR DEL" key is used. If more information is input
than fits across the screen, then it is continued on the following line,
indented and with a '"C'" (for continuation) in column 0. Up to 3 continuation

lines may be used, giving a line length of 59 + 53 + 53 + 53 = 218 characters.

Pressing BREAK while typing in commands causes a '' ' to be printed,
and the line is ignored. However during input for an INPUT command, it

causes suspension of the program.

6.2.4.3

Amending and running of programs.

When the Personal Computer is ready to accept instructions, it prints a
prompt character.

The user can then type in a line of one or more commands, separated by
the character '":'", and terminated by a "RETURN'. The commands will

be encoded immediately, and if they have the right syntax, will be run.

If the line has a number on the front, it will be encoded as before and
placed into the stored program in the machine, according to its line
number. It replaces any previous line with that number. If the line is not
syntactically correct, an error message will be printed. If there was no
line number, no other action is taken. If there was, then a is is inserted
as a dummy first command on the line, and the first 121 characters of the
line are encoded as if the line were a REM statement, Attempted execution
of the line yields the maessage "ERROR LINE RUN'". A question mark is
inserted near the point where the error was detected. The line is then
inserted into the program as before.

When the user wishes to run a stored program, he types "RUN", to start

at the first line or "RUN 22'" to start at line 22.

58.

(for example). The program will then run until some error, or one of

the following, occurs:

(i) If an END statement is executed, the program stops. It prints the
message: END PROGRAM. The program can only be restarted
using RUN.

(ii) If a STOP statement is executed, the program stops. It prints the
message: STOPPED IN LINE X with X the appropriate line number.
The program is then said to be '"'suspended'’.

(iii) If the BREAK key is held down, one of two results will occur:

a) In most circumstances the message BREAK IN LINE X will be
printed immediately. The program is then suspended.
b) Under some circumstances, after a pause the system will print:

s * *BREAK. The program cannot now be restarted.

When a program is suspended, it can be restarted by use of the CONT
command. This restarts the program just as if it had never stopped.
However any variables etc. changed by the user during the suspension
are not restored to their old values.

If the system has cause to report any run-time error to the user, or if
the user RUNs any other program or does a SAVE, LOAD, EDIT, CLEAR
or NEW, then the suspended program is no longer valid and cannot be
CONTinued. If the user tries to do so a message will be printed: CAN'T
CONT. When a RUN, SAVE, CLEAR, LOAD, EDIT or NEW command
is executed, all variables are reset to 0 (if arithmetic) or a null string
(if string). All space assigned to arrays is returned, and any subsequent
reference to an array before running a DIM statement for it will give an
error.

To delete the stored program the command NEW is used. After this
there are no stored lines in the machine and no variables are set to any

values,

When a program is suspended the STEP command may be used to continue
the program one line at a time. Before each line is executed it is listed
to the screen and the machine waits for a space to be typed in on the

keyboard.

59.

At power on DAI BASIC defaults into the floating point variable mode
where integer variable names must be concluded by the (%) character.
A facility to allow this to be switched is provided by the IMP statement.
The operator must type in any IMP switches that he desires before he

enters his ¥rograni,

6.2.4.4
Merging of BASIC Programs

CLEAR 10000
LOAD SEGMENT 1 OF PROGRAMS TO BE MERGED

EDIT + BREAK + BREAK

LOAD SEGMENT 2 OF PROGRAMS TO BE MERGED

(THE LINE NUMBERS CANNOT BE THE SAME IN SEGMENTS 1 AND 2)
POKE #135,2

6.2.4.5
Merging of BASIC and machine Language Programs (or routine)(MLP/R)

a) Prepare of the MLP/R and save it after the BASIC program you intend
to use with this MLP/R.

EXAMPLE SAVE FIRST YOUR BASIC PROGRAM (see example under
of program)

MLP/R 10 CLEAR 2000

20 DIM A (20,20)

30 FOR 1% = ¢ TO9

40 READ B% : POKE (:*:-'ZFI +1%), B% : NEXT

50 SAVEA A "TEST" : STOP

60 DATA # F5,%3E 3 FF #F32,3550,3 BE 2 F1,3C9,0,0
N. B. The size of a one dimension array is (256 x 4) bytes maximum.
In this example the size is (20 x 20 x 4) = 1764 bytes.

The basic program you intend to use must have:

60.

- a CLEAR - a DIM (of the same name and the same array size as the
MLP/R - a LOADA (of same name than the MLP/R)
EXAMPLE of BASIC program that you have on cassette before the
MLP/R

10 CLEAR 2¢gg
20 DIM A (2¢,2¢)
30 LCADA A

40 CALLM |-2F1
50 STOP

This program will load the MLP/R after you make a RUN and execute the
MLP/R by the CALLM of line 40. You should now RUN 40 each time for
calling the MLP/R. You can also delete the first 3 lines by typing 10,
RETURN, 30, RETURN.

Important: When the MLP/R has been loaded by the BASIC program do not
use the EDIT mode, nor RUN the lines containing the CLEAR, DIM and
LOADA commands (in this example you must RUN 40), nor use somewhere
in the BASIC program a CLEAR command or a DIM statement with the

same array name used for the MLP/R.,

When using an MLP/R with a BASIC program (if you have not been
locating this MLP/R at any location of your choice) you will find the "ﬁ""
location of the begin of the MLP/R by

PRINT HEX$ (VARPTR (A(¢,#))). This location is usually 2F¢ for the
first MLP/R for a one dimension array and={=2F1 for a 2 dimension

array (when the discs are not used,as the DOS moves the Heap).

61.

6.2.5.

User Control Statements

6.2.5.1
EDIT

EXAMPLE(s)

(i) EDIT
Moves entire BASIC program into edit Buffer for possible modification
and display

(ii) EDIT 100
Moves only the BASIC program line number 100 into the edit buffer
for possible modification and display.

(iii) EDIT 100 -
Moves the BASIC program line numbers 100 until the end of the
BASIC program into the edit buffer for pos siblé modification and
display.

(iv) EDIT 100-130
Moves the BASIC program line numbers 100 to 130 into the edit buffer
for possible modification and display.

(v) EDIT - 130
Moves the BASIC programs from the first line to line number 130

into the edit buffer for possible modification and display.

Functional Explanation
The Edit statement provides a simple means to modify or type-in aprogram

into the DAI Personal Computer. A number of program lines are placed
into an internal edit buffer. The first 24 BASIC program lines in the edit
buffer are displayed on the screen. The cursor is positioned at the first

character of the first line on the display.

The cursor can be moved around the screen by use uf the cursor control

keys. (4 4= «). If the operator attempts to move the cursor off the screen

62.

the part of the document which can be seen on the screen is moved to
keep the cursor visible., The visible area of the document is known as
the "window'. The window can also be changed by using the cursor
control keys plus the '"shift' key. The cursor stays in the same place in
the document, unless moving the window would take it off the screen.
The CHAR DEL key deletes the character at the cursor., It has no effect
to the right of a carriage return. Any other character typed in is inserted
before the cursor position, if the cursor is left of the carriage return on
the line.

When all editing is finished, the BREAK key should be pressed. If it is
followed by a second BREAK, then the whole effect of the editing is
ignored. If followed by a space, then the original version of the edited
text is deleted, just as if it were typed in from the keyboard.

Any necessary error messages will be put on the screen, andfollowed by
a prompt. The Edit command is also used to achieve Program merges
from different cassettes.

Special note:

Avoid pressing BREAK or any other key after typing the end of the EDIT
command and before the program has been displayed on the screen.

See "Edit BuffervPr.ograrn" in appendix.

6.2.5.2

IMP

EXAMPLES

See examples given in paragraph 6.2.2

6.2.5.3
LIST

EXAMPLE(S)

(i) LIST

Displays the entire BASIC program. During display the output can
be made to pause by pressing any character key, Then pressing

of the space bar will continue the listing disp.ay output.

63

(ii) LIST 100
Displays BASIC program line number 100 only.
(iii) LIST 100 -
Displays BASIC program starting at line number 100 until the end
of the program.
(iv) LIST 100-130
Displays BASIC program line numbers 100 to 130.
(v) LIST - 100
Displays BASIC program starting at first line of program and until

line number 130.

6.2.5.4
NEW

EXAMPLE(S)

(i) NEW
Deletes current BASIC program that is stored in memory and
resets all variables to the undefined state. The HEAP reservation is
is not changed. (See 6,2.11).

6.2.5.5

RUN

EXAMPLE(S)

(i) RUN
Starts execution of the BASIC program currently in memory at the
lowest line number.

(ii) RUN 100
Starts execution of ten BASIC program currently in memory at line

number 100. If line 100 does not exist, an error message occurs,

64.

6.2.6

Frogram control Statements

6.2.6.1
END

EXAMPLE(S)

(i) END
Terminates the execution of a BASIC program. The program cannot
be further continued without a RUN command. An "END PROGRAM"

message is displayed.

6.2.6.2
FOR...... NEXT
EXAMPLE(S)

(i) FOR V =1TO9.3 STEP .6

(ii) FORV =1TO9.3

(iii) FOR V = 10% N TO 3.4/Q STEP SQR(R)

(iv) FORV =9 TO1STEP -1

(v) FORW =1TO 10 : FOR W =0 TO 3 : NEXT : NEXT,

The variable in the FOR statement is set to the first expression given.
Statements are executed until a NEXT statement is encountered. Action
at this point depends on the rest ot the FOR statement. When the FOR
statement is executed the "TO'" and "STEP'" expressions are also
calculated. The step defaults to 1 if it is not explicitly given. Then the
range is divided by the step to calculate a repeat count for the loop. This
must be within the ranges 0 to 2423-1 for a floating point loop and 0 to
2431-1 for an integer one. The loop is run this number of times
irrespective of anything else, and is always run at least once.

If the STEP is not explicitely given then the NEXT statement uses a
special fast routine to increment the variable value. If it is explicitely
given it is added to the variable. Loops using integer variables run

faster than those using floating point ones.

65.

Special cases:
a) The interpreter will terminate an unfinished loop if a NEXT statement
for an outer one is encountered. E.g.
FOR A =1TO10: FOR B=0 TO 3 : NEXT A
is allowable.
b) The interpreter will terminate all loops up to the correct level if a
loop is restarted. E.g.
10 FOR A =1 TO 10
20 FOR B=0TO3
30 GCTO 10

is allowable.
c) FOR loops inside a subroutine are separate from those outside for
purpose of special cases (a) and (b)
d) A FOR loop may be abandoned by a RETURN statement., E. g.
10 GOSUB 10 ’
20 STOP
30 FOR A =1TO 10
40 RETURN
is allowable.
e) after a FOR loop finishes, the variable has the value it would next
have taken. '
E.g. 10 FORI=0 TO 10 : NEXT
20 PRINT I
Will print 11 ¢.

6.2.6.3
GOSUB

EXAMPLE

(i) GOSUB 910
Branches to the specified statement, i.e. (910). When a Return
statement is encountered the next statement executed is the
statement following the GOSUB. GOSUB nesting is limited only by
the available stack memory. A program can have 10 levels of

GOSUB or 15 levels of FOR loops without difficulty.

66.

EXAMPLE
GOTO 100

Branches to the statement specified.

6.2.6.5

IF. GOTO

EXAMPLES

(i) IF X =Y + 23.4GOTO 92
Equivalent to IF ... THEN, except that IF .., GOTO must be
followed by a line number, while IF ... THEN is followed by another

statement, or a line number.
(ii) IF X = 5 GOTO 50:Z = A
Warning: Z = A will never be executed.
6.2.6.6
IF ... THEN

EXAMPLE

(i) IF X 0 THEN PRINT "X LESS THAN 0" : GOTO 350
In this example, if X is less than 0, the PRINT statement will be
executed and then the GOTO statement will branch to line 350, If
the X was 0 or positive, BASIC will proceed to execute the lines
after this one.

(ii) IF X = Y + 23.4 THEN 92

IF ... THEN statement in this form is exactly equivalent to
IF ... GOTO example (1).
6.2.6.7

ON ... GOSUB

EXAMPLE(S)
(i ONIGOSUB 50, 60

6.2.
ON ...

(ii)

67.

Identical to "ON ... GOTO'", except that a subroutine call (GOSUB)
is executed instead of a GOTO. RETURN from the GOSUB branches
to the statement after the ON ... GOSUB.

6.8
GOTO

ON1IGOTO 10, 20, 30, 40
Branches to the line indicated by the I'th number after the GOTO.
That is: IF I=1 THEN GOTO LINE 10

IF I=2 THEN GOTO LINE 20

IF I=3 THEN GOTO LINE 30

IF I=4 THEN GOTO LINE 40
If Iis < =¢ or)(number of line numbers) then the following state-
ment is executed.
If I attempts to select a non-existent line, an error message will
result., As many line numbers as will fit on a line can follow an
ON ... GOTO.
ON SGN(X)+2 GOTO 40, 50, 60.
This statement will branch to line 40 if the expression X is less
than zero, to line 50 if it equals zero, and to line 60 if it is greater

than zero.

6.2.6.9
RETURN

EXAMPLE(S)

(i)

RETURN
Causes a subroutine to return to the statement that follows the most

recently executed GOSUB.

6.2.

68.

6.10

STOP

EXAMPLE(S)

(i)

6.2.

100 STOP
BASIC suspends execution of programs and enters the command
mode., "STOPPED IN LINE 100" is displayed. To continue program

with next sequential statement type in !"CONT",

6.11

WAIT

EXAMPLE(S)

(1)

(i)

(iii)

WAIT I, J, K

This statement reads the status of REAL WORLD INPUT port I,
exclusive OR's K with the status, and then AND's the result with J
until a result equal to J is obtained. Execution of the program
continues at the statement following the WAIT statement. If the
WAIT statement only has two arguments, K is assumed to be zero.
If waiting for a bit to become zero, there should be a one in the
corresponding position for K. I, J and K must be) = 0 and { = 255,
WAIT MEM 1,J,K \

WAIT MEM 1,7

As example (i), but I is a memory location, which of course may be
a memory-mapped I/O port.

WAIT TIME I

Delays program execution for a time given by the expression I. The
result should be in the range 0 to 65535,

Time is measured in units of 20 milliseconds.

69.

6.2.7

Physical Machine Access Statements

6.2.7.1
CALLM

EXAMPLES

(i) CALLM 1234
Calls a machine language routine located at the memory locations
specified.

(ii) CALLM I,V
Calls a machine language routine located at the memory locations
specified by I. Upon entry to the machine language program the
register pair H, L contains the address of the variable specified by
V. The machine language subroutine must preserve all of the 8080
registers and flags and restore them on return.

If V is a variable, the pointer is to V. If V is a string, the pointer is

to a pointer to the string. The string consists of a length byte followed

by characters. If V is a matrix, pointer is as though V is a normal

variable.

6.2.7.2 '
INP (I) .

EXAMPLE

A = INP (31)

Reads the byte present in the DCE-BUS CARD 3 PORT 1 and assigns it to
a variable A, The port-number should be =0 and =255,

6.2.7.3
OUT I, J

EXAMPLE
OouT 91,A
Sends the number in variable A to the DCE-BUS card 9 PORT 1. Both

I and J must be =0 and = 255.

70.

6.2.7.4
PDL (I)

EXAMPLE

A = PDL (I)

Sets the variable A to a number between 0 and 255 which represents the
position of one of the paddle potentiometers. I must be or = ¢ and

or = 5,

6.2.7.5

PEEK (I)

EXAMPLES

(i) A = PEEK (¥ 13C2)
The contents of memory address Hex 13C2 will be assigned to the
variable A. If Iis 65536 or 0 an errxor will be flagged. An
attempt to read a memory location non-existent in a particular

configuration will return an unpredictable value.

Displays the value in the decimal memory address 258,

6.2.7.6
POKE

EXAMPLE(S)

(i) POKEI, J-
The POKE statement stores the byte specified by its second argument
(J) into the memory location given by its first argument (I). The
byte to be stored must be » = 0 and £ =255, or an error will
occur., If address [is not > =0 and 64K, an error results,
Careless use of the POKE statement will probably cause BASIC
to stop, that is, the machine will hang, and any program already
typed in will be lost. A POKE to a non-existing memory location

is usually harmless.

71.

Example of POKEs (see also the ASSEMBLY section of the book)

POKEHF 131,¢ OUTPUT TO SCREEN AND RS 232
+131,1 OUTPUT TO SCREEN ONLY
$131,2 OUTPUT TO EDIT BUFFER
#135,2 READ (INPUT) FROM EDIT BUFFER

F13D,4F10 SELECT CASSETTE 1,3=20 FOR CASSETTE2
40,3 28 CASSETTE MOTOR CONTROL 1 ON
440, 328 CASSETTE MOTOR CONTROL 2 ON
440,430 CASSETTE MOTOR CONTROL 1 AND 2 OFF
730, #30 FLOPPY DRIVE ¢ ACTIVATED
4730, #31 FLOPPY DRIVE 1 ACTIVATED

See also useful POKES in paragraph (5.9.1 + 2 + 3)

53
N

EXAMPLE
uT
Calls the Machine Language Monitor.

6.2.8
BASIC System Data & I/O Statements

6.2.8.1
TA

EXAMPLES

(i) DATA 1, 3, -1E3, -0.4.
Specifies data, read from left to right. Information appears in
data statements in the same order as it will be read in by the
program,

(ii) DATA "F00", "Z00"

Strings may be read from DATA statements. If the string contains
leading spaces (blanks), or commas (,), it must be enclosed in

double quotes.

72.

6.2.8.2

EXAMPLE(S)

(i)

A = GETC

The ASCII value of the last character typed on the keyboard. If no
character has been typed in since the last GETC statement zero
value is returned. Note that GETC forces a scan of the keyboard.
Scanning the keyboard too often will cause 'key bounce'' and keys

may appear to be pressed twice when they were only pressed once.

6.2.8.3

INPUT

EXAMPLE(S)

(i)

(ii)

INPUT V, W, W2

Requests data from the terminal (to be typed in). Each value
must be separated from the previous value by a comma (,).
The last value typed should be followed by a carriage return.
A '""?" is typed as a prompt character. Only constants may be
typed in as a response to an INPUT statement, such as 4.5E-3
or "CAT'". If more data was requested in an INPUT statement
than was typed in, another '"?'" is printed and the rest of the
data should be typed in.

If more data was typed in than was requested, the extra data
will be ignored. The program will print a warning when this
happens. Strings must be input in the same format as they are
specified in DATA statements.

INPUT "VALUE';V

Optionally types a prompt string ('"VALUE') before requesting
data from the terminal.

Typing CONT after an INPUT command has been interrupted
due to the BREAK key will cause execution to resume at the
INPUT statement. If any error occurs, the INPUT statement

will restart completely.

73.

6.2.8.4
PRINT (can be replaced by "?")

EXAMPLES

(i) PRINT X, Y, 2

(i) PRINT

(iii) PRINT X, Y

(iv) PRINT "VALUE IS", A

(v) ? A2, B

Prints the numeric or string expressions on the terminal. If the list of
values to be printed out does not end with a comma, (,) or a semicolon
(;), then a new a new line is output after all the values have been printed.
If a semicolon separates two expressions in the list, their values are
printed next to each other. If a comma appears after an expression in
the list, the cursor is positioned at the beginning of thé next column
field. If there is no list of expressions to be printed, as in example (ii),
then the cursor goes to a new line.

There are 5 fields on the line in positions ¢, 12, 24, 36, 48.

6.2.8.5
AD

EXAMPLE

READ V,W

Reads data into a specified variables from a DATA statement. The
first piece of data read will be the first not read by any previous data
statement. A RUN or RESTORE statement restarts the process from
the first item of data in the lowest numbered DATA statement in the
program, The next item of data to be read will be the first
item in the second DATA statement of the program. Attempting to
read more data than there is in all the DATA statements in a program

will cause an error message.

74.

6.2.8.6
RESTORE

EXAMPLE

(i) RESTORE
Allows the re-.eading of DATA statements. After a RESTORE,
the next item of data read will be the first item listed in the
first DATA statement of the program, and so on as in a normal

READ operation.

6.2.9
Cassette and Disc 1/O Statements

Additional Cassette and Disc commands are available using the

Resident Machine Utility Program (See Section 6. 3).

6.2.9.1
CHECK

The CHECK command scans a cassette tape or disc and examines all
the files. The type and name of each is printed followed by the word
"OK" or '""BAD'" depending upon the file checksumming correctly. For
cassettes the command does not stop of its own accord, but will stop

if the BREAK key is held down,

6.2.9.2
LOAD

EXAMPLES

(i) LOAD "FRED"
Loads the program named "FRED" from the cassette tape or
disc. When done, the LOAD will type a prompt as usual. The
file name may be any string of printable characters.

(ii) LOAD

Loads the first program that is encountered on the tape. If

75.

the recorder motor is under automatic control it will be started.
Otherwise the recorder should be started manually.

If a LOAD command is executed directly, not as part of a
program, then as each data block or file is passed on the tape,
its type (0 for a BASIC program) and its name will be printed.
When the load is finished succesfully, a prompt is printed. If
the LOAD is unsuccessful, then a message '""LOADING ERROR"'
is printed. It is followed by a number giving details of the
problem. The flashing of the cursor will cease while the data

is being read from the tape.

6.2.9.3
LOADA
Loads ARRAY or Machine Language programs ctored as arrays.

Example LOADA A$ "FRED" or LOADA F$ + "J"

FRED or J are the array names,
10 DIM A$ (¢, 4) 100 DIM A$ (¢, 4)

20 INPUT A$ 110 LOADA A$
30 SAVEA A$ "INFO" 120 GOTO 100
40 GOTO 10

6.2.9. 4
SAVE

EXAMPLE

(i) SAVE "GEORGE"

(ii) SAVE A$
Saves on cassette tape or dicc the current program in the
memory. The program in memory is left unchanged. More
than one program may be stored on one cassette/disc using this
command, The program is written on the cassette under the
name given.

(iii) SAVE

The program is written on the cassette under a null name.

76.

The system replies to the command with the message

""SET RECORD, START TAPE, TYPE SPACE". Place the tape
recorder into the right state for recording (note that if the motor
control is connected to the Personal Computer, the motor will
not yet start). Then press the space key, When the motor will
stop (if automatically controlled) a prompt character will appear
on the screen. If the cassette is working manually, then it

should now be stopped.

6.2.9.5
SAVEA

EXAMPLE
(i) SAVEAG "GEORGES"
(i) SAVEA A$
Saves an array on cassette or disk,
(iii) SAVEA A

EXAMPLE
20 INPUT A$

30 SAVE A$
40 GOTO 10

After typing RUN and pressing RETURN key the tape recorder will start
automatically to record the input you enter in line 20 (the tape recorder

must have a remote control and must be in recording mode).

COPY OF A PROGRAM FOLLOWED BY AN ARRAY (OR MACHINE
LANGUAGE ROUTINE) WITH 2 TAPE RECORDERS (1 BEING ON PLAY,
2 ON RECORD).

POKE #40, 328 : LOAD : POKE =40, 3k 18 : SAVE : FOKE #=40,4°28 :
PRINT ""SAVE ENDED" : CLEAR 2000 : DIM A (20, 20) : LOAD A :
POKE 40, 18

SAVEA A POKE 40, 28

PRESS RETURN: the array is named A.

77.

6.2.10

Program Debug and Comment Statements

6.2.10.1
CONT

EXAMPLE
CONT
Continues BASIC program execution with the next statement following

the "STOP'" Statement or "BREAK!' position.

6.2.10.2
REM

EXAMPLES

(i) REM NOW SET V=0
Allows comments inside BASIC programs. REM statements are
not executed, but they can be branched to. A REM statement is
terminated by end of line, but not by a (:) character.

(ii) REM SET V=03V=0
The V=0 statement will not be executed.

(iii) The V=0 statement will be executed.

6.2.10.3
STEP

Command to allow single step execution of BASIC programs. After
"BREAK!'" or "STOP'" the operator types in STEP and then each
depression of the space bar allows execution of the next sequential
BASIC line. The line to be executed is displayed before execution of

that line.

16

78.

6.2.10.4

TRON

EXAMPLE

(i) 100 A =0 When you RUN, and after the TRON
105 TRON (TRACE ON) is executed the lines 106

and 107 will be executed and displayed
106 A =1 at the same time until the TROFF
(TRACE OFF) is reached and executed.

107 A =2
108 TROFF
6.2.10.5
TROFF

EXAMPLE SEE 6.2.10.4

6.2.11

Array and Variable Statements

6.2.11.1
CLEAR

EXAMPLE

(i) CLEAR 999
Resets all variables to §f or the null string, and returns all space
assigned to arrays. The size of the HEAP (array and string
storage) is than set to the number specified by the CLEAR
statement., The minimum size is 4 (no space would be

available) and the maximum is 32767

6.2.11.2
DIM

EXAMPLE
(i) DIM A(3), B(10)
(ii) DIM R3(5,5), D$(2,2,2)

79

Allocates space for arrays. Arrays can have more than one
dimension. All subscripts start at zero (0), which means that
DIM X (100) really allocates 101 matrix elements. The
maximum size for a dimension is 254 Dimensions may be
specified as variables or expfessions.

DIM statements may be re-executed to vary the size of an array.
The space used for arrays is in the same part of RAM as that

for strings, the size of which is set by the CLEAR command.

6.2.11.3

FRE
EXAMPLE(S)
(i) A = FRE

The variable A is set to the number of memory bytes currently
unused by the BASIC program. Memory allocated for string
and arrays is not included in this count.

(ii) PRINT FRE

The amount of remaining memory space will be displayed.

6.2.11. 4
LET

EXAMPLE(S)
(i) LET W =X
(ii) V=51

Assigns a value to a variable. The word "LET" is optional.

6.2.11.5
VARPTR (V)

EXAMPLE(S)
(i) A = VARPTR (B)
Variable named (A) is set to the memory address of the

variable named (B).

80.

(ii) A = VARPTR (B(3,4))
Variable named (A) is set to the memory address of the array

element B(3,4).

6.2.12
GRAPHICS AND DISPLAY STATEMENTS (See Example program
"TOWER OF HANOI")

6.2.12.1
MODE

EXAMPLE(S)
(1) MODE 0
Places display in character only mode.
(ii) MODE 1A
Places display in split mode. Low resolution graphics with 16

colours and a four line character display at the bottom.

The Personal Computer has 3 different graphic aefinitions available
for the graphics display and at each definition there are 4 possible
configurations of the screen. Two of these have only graphics on the
screen, and the others are exactly the same except that the graphics
area is moved up the screen to make room for four lines of characters.
The graphics hardware has 2 different ways in which it can be used.
That is why at each definition there are 2 different types of display.
The display types are known as 16-colour, and 4-colour modes. In
the 16 colour modes each point on the screen can be set to any of the

16 colours. However each field of 8 dots horizontally (positions 0 to 7,
8 to 15 etc.) can only have 2 or sometimes 3 separate colours in it.
For exact details of the restrictions on what can be drawn. (See 3.2.2.1)
At any time the 4 selected colours can be altered, and the existing
picture changes colour immediately. This allows interesting effects.

(see for instance "ANIMATE"),

81.

MODE DEFINITION TABLE

Number Graphics size Text size Tyype of graphics
0 - 24 X 60 CHAR -

1 72,65 - 16 colour
1A 72,65 4 X 60 16 colour
2 72,65 - 4 colour
2A 72,€5 4 X 60 4 colour
3 160,130 - 16 colour
3A 160,130 4 X 60 16 colour
4 140,130 - 4 colour
4A 160,130 4 X 60 4 colour
5 336,256 - 16 colour
5A 336,256 4 X 60 16 colour
6 336,256 - 4 colour

6A 336,256 4 X 60 4 colour

82.

6.2.12.2
COLORG

EXAMPLE

COLORG 12 3 4

Sets the colours available in any four colour graphics mode to 1,2,3 and
4.

If the screen is already in a 4 colour mode, then the colour change will
be immediate. Any area which was in the first-named colour of the
previous COLORG statement, is now displayed in colour 1, and so on.
If the screen is in a 16 colour mode, no immediate effect is visible.

In any event, the next time a new graphics mode is entered, the initial
colour of the graphics area will be the first colour given in the COLORG
command. This applies both for 4 and 16 colour modes.

If COLORG has not been used, then after a 4 colour mode command (i. e.

mode 2) the colours available will be ¢, 5, 1¢, 15,

6.2.12.3
COLORT

EXAMPLE

COLORT 81500

Sets up colour number 8 as the background colour for the text screen
and colour 15 as the colour of the characters. The other two colour
numbers are not normally used. However they define an alternative set

of colours which can be used by POKE access, or machine code routines.

6.2.12. 4

Drawing Facilities

Points on the graphic screen are specified by an X, Y co-ordinate with
0, 0 located at the bottom left corner of the display screen. An attempt
to draw out of the maximum area for a particular graphics mode will

result in an error,

e3.

It is possible, however, to draw in the invisible top section of the
graphics area in split screen modes. The drawing facilities provide
statements to draw dots, lines and rectangles on the graphic display
screen. The DOT statement places a single dot of a specified colour
at any allowable X, Y coordinate on the display statement allow the
drawing of a line and the colouring of a rectangular area specified by

two X, Y coordinates. See color codes paragraph 3.2, 12.

6.2.12.4.1
DOT

EXAMPLE(S)

(i) DOT 10, 20 15
Places a dot of colour 15 at the position X = 10 and Y = 20. The
size of the dot will depend upon which graphic resolution was

selected.

6.2.12. 4.2
DRAW

EXAMPLE

DRAW91,73 42,77 15

Draws a line in colour 15 between 91, 73 and 42, 77. There is no
restriction on the order of the coordinates, Line width will depend

upon which resolution was selected.

6.2.12.4.3
FILL

EXAMPLE

FILL 91,73 42,77 15

Fills the rectangle with opposite corners at 91, 73 and 42, 77 with the
colour 15, There is no restriction on the order of the points. The

physical size of the rectangle depends upon the resolution selected.

84.

6.2.12.5

Animated Drawing Facility.

With the screen in a 4 colour mode each point is described by 2 bits.
The binary value of these 2 bits selects which of the four available
colours should be displayed. Normally a DOT, DRAW or FILL sets
both of these bits to their new value. However, a facility is available
to set or clear only one of the two. This is accomplished by specifying
colour numbers 16, 17, 18 or 19. It is emphasized that these are not
real colours, but an extra facility.
For example:
MODE 2A
COLORG 69 12 15
These commands set all points on the screen to colour 6. The two bits
for each point on the screen are both ¢. (Binary ¢ 9).
DOT 10, 10 17
This sets the lower bit only for point 10, 10. Thus the point changes
to colour 9 (Binary 0 1).
DOT 10,10 19
This sets up the upper bit only. The point changes to colour 15 (binary
11 = 3)
DOT 10,10 16
This clears the lower bit, and gives colour 12 (binary 10 = 2).
DOT 10, 10 18
This clears the upper bit, and gives colour 6 (binary 00). The usefulness
of this system is that by the COLORT command two pictures can be
independently maintained and altered on the screen. This allows one
pattern to be changed invisibly while the other is displayed. The
pictures can be swapped instantaneously and the invisible one changed.
Example program:
5 MODE 2
10 COLORG ¢ @gg¢g
20 FOR Q=1 TO XMAX
30 DRAW ¢, Q, YMAX 17+2 % A:REM COLOR = 17 OR 19.

40 COLORG @15 -15% A 15% A 15:REM COLOR = 18 OR
16.

50 DRAW ¢, Q -1, YMAX 18-2 A :A=1-A:NEXT
"ANIMATE"

When the screen is in a 4 colour mode, each point on the screen is
described by 2 bits. A facility is provided for drawing using only one

bit from each pair, without affecting the other.

Drawing using the number has effect of
17 set lower bit
19 set upper bit
16 clear lower bit
18 clear upper bit

This allows two totally independent pictures to be maintained and
separately updated. They simply appear to overlap. If the SCOLG
entrypoint is used to make only 1 visible at a time, then animation

effects can be achieved,

If the colours set by the SCOLG command are numbered 0,1,2,3 in
order as given, then the colour seen on the screen is selected by the

two bits for each point in the natural way.

E. g
If SCOLG sets up red, yellow, green and blue, in that order
Upper Lower Visible
Bit Bit Colour
0 0 Red
0 1 Yellow
1 0 Green
1 1 Blue

""Colours 20 to 23"

In 4 colour mode only, the colour numbers 20 to 23 may be used to
request the 4 colours set up by the last SCOLG call. Colour 20 always
refers to the first colour given irrespective of what it is. Similarly 21

is the second colour, and so on.

The "animate' facility using colours 16 to 19 can be explained as a 4

boxes square where a colour is assigned to a bout.

Number 0

1 2

3 of the

COLORG A B C D command assigning a color to each box.

A DOT, DRAW or FILL Command with a 16 to 19 colour definition will

move the background and foreground colours as indicated by the arrows.

0=A 1=B
0 5
2=C 3=D
10 15

ba ck 417

g round

VI X -

19 19+17
C D

16 -
17—
18 4
19

COLORG 00 1515

COLORG 0 150 15

87.

6.2.12.6
XMAX

EXAMPLE
A = XMAX
Sets the variable A to the maximum allowable X value for the current

graphics mode.

6.2.12.7
YMAX

EXAMPLE
A = YMAX
Sets the variable A to the maximum allowable Y value for the current

graphics mode.

6.2.12.8
SCRN (X, Y)

EXAMPLE
(i) A = SCRN (31,20)
Sets the variable to a number corresponding to the colour of the

screen at coordinate 31,20,

6.2.12.9
CURSOR

EXAMPLE
(i) CURSOR 40,20
Moves the cursor to the fourtieth character position of the twentieth

line from the bottom of the screen,

88.

The cursor can be moved to any position on the screen by using the
CURSOR command. The positions are given by X,Y coordinates where

the bottom left corner of the screen is 0,0.

6.2.12.10
CURX

EXAMPLE
A = CURX
Sets the variable A to the X position of the cursor (character position).

Value returned will bé < = 60,

6.2.12.11
CURY

EXAMPLE
A = CURY
Sets the variable A to the Y position of the cursor (line position). Value

returned will be < = 24.

89.

6.2.13

Grarhical Sound Statement.

6.2.13.1

Programmable Sound Facility

The Graphical Sound Generator of the DAI Personal Computer is
supported by the BASIC to give a set of commands that allow program
control of the sound system, 3 oscillator channels p;lus‘ a white noise
channel. The SOUND command is the' primary method of control. The
SOUND command specifies a channel to which it applies, an envelope to
be used, the required volume and requency. A simple sound command
would be:

SOUND 0 1 15 0 FREQ (1000)
This would set channel 0, using envelope number 1, at a volume of 15
and frequency 1000 Hz. The ENVELOPE statement allows the volume
of a note to be rapidly changed, in the same way as that of a musical
instrument. Thus the rise and fall in volume for a note can be specified.
The command specifies a set of pairs of volume and time. The volume
constants are in the range 0 tol5 and the time is in units of 3.2 milli-
seconds. For example the comraand:
ENVELOPE 0 10,2;15,2;14,4;12,5;8,10;0

This sets a volume envelope like this:

15 T
14
12
10
8
Time after
2468 10121416182022 > SOUND

command.
(units of 3,2
milliseconds)

90.

So every time a SOUND command is given it produces a short burst of
sound whose volume is as shown above. Varying the envelope varies
the quality of the sound heard.
The volume given in a SOUND command is effectively multiplied by that
in the envelope. So if the SOUND command requests a volume of 8 units,
which is 8/15 of full volume, and the envelope requests 4 units, which
is 1/4 of the maximum figure, then the volume used is 2/15 of the
maximum. (as 1/4 x 8/15 =8/60 = 2/15.)
The envelope command can end, as above, in a single volume, in which
case that volume continues for ever, or in a pair of volume and time,
in which case the envelope is repeated indefinitely. For example:
ENVELOPE 0 15,10;0,10;

Sets an envelope like this:

Volume v
15 —
ETC.
0 -
time after
SOUND
That would give a series of '"blips' of sound. command

The simplest envelope is obviously:

ENVELOPE 0 15
Which then has no audible effect on SOUND commands, as all volumes
are multiplied by 15/15.
Special note:
The BASIC Interpreter limits the rapidity with which the volume on any
channel is allowed to change. The maximum change is d/2 + 1, where
d is the difference between the requested and current volumes. Thus

the actual volume output for the envelope above would be:

1.

15,

ETC.

This helps reduce spurious sound caused by volume changes.
The noise generator is controlled by a NOISE command that controls the
audible output of the white noise generator. Only its volume and envelope
can be set. e.g.

NOISE 0 15
Turns on the noise channel using envelope 0 and overall volume 15.
In addition to the facilities already described, the SOUND command
controls 2 others. They are TREMOLO and GLISSANDO.
Tremolo is simply a rapid variation of volume by t 2 units. This gives
a ""warbling' effect to the sound. Glissando is an effect where the new
note on a channel does not start immediately at the requested frequency,
but "slides' there from the previous frequency. The effect resembles
a Hawaiian Guitar or Stylophone. Glissando + Tremolo are controlled
by one parameter in the SOUND command. Setting the bottom bit
requests Tremolo and the next bit Glissando. E. g. :
(1) SOUND 0 0 13 1 FREQ (1000)
(ii) SOUND 0 0 15 2 FREQ (5000).
The first example sets channel 0, using envelope 0, at volume 13 and
with tremolo. The volume put will vary rapidly from 11 to 15.
The second example increases the volume to 15, and slides the
frequency "GLISSANDO'" up to 5000 Hz. The flexibility and facilities of
the Graphical Sound Generator have been illustrated fully and their

capabilities exploited with the three commands previously discussed.

92.

Due to the flexibility of change in volume and frzquency it is quite
feasible to explore the possibilities of vocal sound generation. The
BASIC of the DAI Personal Computer gives full control to the
programmer who wishes to develop experimentally a burst of sound and

frequencies that result in audible words.

6.2.13.2
SYNTAX : SOUND

(i) SOUND {CHAN)<{ENV) (VOL)» {(TG» FREQ ¢PERIOD)>
(ii) SOUND <{CHAN)D» OFF
(iii) SOUND OFF

< CHAND is an expression in the range 0 to 2. It selects programmable
oscillator 0,1 or 2.

< ENVD is an expression in the range 0,1. It selects which of the 2
previously defined envelopes should be used.

{ VOL is an expression in the range 0 to 16. It selects the volume for
this particular sound. It is multiplied by the volumes in the ENVELOPE
specified.

{ TG) is an expression in the range 0 to 3.

0 selects no tremolo + no glissando

1 selects tremolo + no glissando
2 selects no tremolo + glissando
3 selects tremolo + glissando

{ PERIOD> is an expression in the range 2 to 65535. It sets the period

of the required sound in units of 1/2 microseconds.

6.2.13.3
SYNTAX: ENVELOPE

(i) ENVELOPE <ENVY {<v) , <1d ;) ¢v> , <>
(ii) ENVELOPE (ENV) {{V> , (T) :} «V)>

Q3.

ENV is an expression in the range 0 to 1. It selects which of 2
envelopes is being defined.

V is an expression in the range 0 to 15. It selects a volume level
by which that in a SOUND command is to be multiplied.

T is an expression in the range 1 to 254. It selects the time for
which the volume V applies. It is in units of 3.2 milliseconds.
Note: The parts of the command in curly brackets are optional and may

be absent or repeated as many times as required.

6.2.13.4
SYNTAX: NOISE

(i) NOISE ENV VOL
(ii) NOISE OFF
ENV is 2n :xpression in the range g tol.
VOL is an expression in the range 0 to 15.
This represents a 4 bit binary number. The top 2 bits of this number
(when modified by the ENVELOPE specified) control the volume of the

noise. The bottom 2 bits control the frequency.

6.2.13.5
FREQ

EXAMPLE
A = FREQ (1000)
Sets the variable A to a number that can be sent to a Graphical Sound

Generator channel to result in a 1000 hertz rate.

9<.

6.2.13.6

Synthesing Vocal Sound.

6.2.13.6.1
TALK

TALK ADDRESS

CODE DATA

0 2 BYTES FREQ. CODE CHANNEL 0

2 " 1" 1

4 " 1 Z

8 1 BYTE VOLUME CHANNEL 0

9 " n 1

A " VOLUME W. NOISE GENERATOR
c 2 BYTES DELAY IN UNITS OF MSEC

D CALL MACHINE CODE '

FF END

DATA BLOCK
location content

2 2000 20 00 09C4 set channel 0 freq. 800
20 02 1AgA set channel 1 freq. 300

20 08 OF set maximum volume ch ¢
2009 OF set maximum volume ch 1

20 0C FEFE set + listen to it for ---- msec
20 08 00

turns volume ‘down
20 09 00

20 0D 0050 machine codes at 5000
20 FF End,

#5000 @¢ [LXI H, VARPTR (Q(¢)ﬂ 21 g¢ 20

5004 RETURN c9
Ex, 3 CLEAR 1000
4 DIM Q (100)
5 B% = VARPTR (Q(f))
1¢ READ A%
20 POKE B%, A% : B% = B% + 1
3¢ IF A%<LS> 4 FF GOTO 14
ag TALK VARPTR (Q(¢))

(5¢ WAIT TIME 1¢)

64 GOTO 4¢

8¢ DATA ¢, 9,3 C4, 2,4F 1A, ¥ A, 8, % F, 9,F F
9¢ DATA¥ C, #FE,FFE, 8, ¢, 9, ¢, 3 FF

6.2.14

Arithretic and String Functions

The following is a list of the mathematical + character handling
functions provided by BASIC. Each takes a number of expressions
(arguments) in brackets and works on them to return a result. This
result may be used in just the same way as a variable or constant in

expressions.

EXAMPLES
(i) A=3.0+2.1
(ii) A =SIN (3.0) + 2.1

1

96.

6.2.14.1
ABS(X)

Gives the floating point absolute value of the expression X. ABS returns

X if X > =0, -X otherwise, For example ABS(-253.7) = 253. 7.

6.2.14.2
ACOS(X)

Returns arc cosine of X. Result is between -PI/2 and PI/2.

6.2.14.3

ALOG(X)

Returns antilog base 10 of X.

6.2.14.4
ASC(X $)

Returns the integer ASCII value of the first character of the string X $.
E.g.: ASC("ABC") returns 65 since A has code 41 Hex or 65 decimal.

6.2.14.5
ASIN(X)

Returns the arcsine of X in radians. Result is between -PI/2 and +PI/2.

X may be any value between + 1 and - 1 inclusive,

6.2.14.6
ATN(X)

Returns the arctangent of X in radians.

97.

6.2.14.7
CHR $(1)

Inverse of ASC. Returns a | character string whose ASCII value is I.
I must be between 0 and 255,
E.g. : CHR$ (65) returns the character "A",

6.2.14.8
COS(X)

Gives the cosine of the expression X, measured in radians. (X) may be

any value between 0 and 2% inclusive.

6.2.14.9
EXP(X)

Returns the value "e' (2.71828) to the power X, (e X). 'e'" is the
base for natural logarithms. The maximum argument that can be
passed to EXP without overflow occurring depends on whether the
software or hardware maths option is being used. For hardware

- 324 X {32 exactly.

For software -43 & X < 43 approximately.

6.2.14.10
FRAC(X)

Returns the floating point fractional part of the argument.

e.g.: FRAC (2.7) = 0.7, FRAC (-1.2) = -0.2

6.2.14.11
HEX$ (I)

EXAMPLE(S)
Returns a string of characters representing the hexadecimal value of

the number I. I must be between 0 and 65535,

9°.

6.2.14.12
INT(X)

Returns the largest integral floating point value less than or equal to
its argument X. For example:

INT(.23) = 0, INT(7) = 7.0, INT(-2.7) = -3.0, INT(1.1) = 1.0

INT (43.999)= 43,0

Note: INT(-1) = -2.0.

6.2.14.13
LEFT $(X$,I)

Returns a string which is the leftmost I characters of the string X$.

E.g.: LEFT $("DOGFISH", 3) equals "DOG"

6.2.14, 14
LEN(X $)

Returns an integer giving the length in characters of the string X $.

E.g.: LEN("HELLO") equals 5,

6.2.14.15
LOG(X)

Calculates the natural logarithm (base e) of the argument (X).

6.2.14.16
LOGT(X)

Calculates the logarithm base 10 of X.

6.2.14.17
MID $(X$,1,7)

Returns (J) characters starting at position I in the string (X$). The
firct character is position 0.

E.g. : MID$ ("SCOWL'", 1,3) returns "COW".

6.2.14.18
PI

Returns the floating point value 3.14159

6.2.14.19
RIGHT $(X$,1)

Returns the rightmost (I) characters of string (X $).
E.g. : RIGHT $("SCOWL", 3) returns "OWL'",

6.2.14.20
RND(X)

Generates a hardware or software generated random number.

E.g.

If X0 Starts a new sequence of software numbers with X as seed. The
same negative X produces the same sequence of numbers. The
number returned is between 0 and X

If X> 0 Returns the next pseudo-random number from the current
sequence. The number is in the range 0 to X

If X = 0 Returns a hardware generated random number in the range

0tol:
Ex.
5 CLEAR 1000
10 DIM B% (100)
20 INPUT C%

30 FOR A% =1 TO 20

40 B% (A%) = RND (C%)
50 PRINT B% (A%)

60 NEXT A%

6.2.14.21

SGN(X)

Returns 1.0 if X> 0, 0 if X = 0, and -1.0 if X< 0.

6.2.14.22
SIN(X)

Calculates the sine of the variable X. X is in radians.
Note: 1 Radian = 180/PI degrees = 57. 2958 degrees; so that the sine of
X degrees = SIN(X/57.2958).

6.2.14.23
SPC(I)

Returns a string of the number of spaces given by I. 1 & 255.

6.2.14.24
SQR(X)
Gives the square root of the argument X. An error will occur if X is

less than zero.

6.2.14.25
STR $(X)

Returns a string which is the ASCII representation of the number X,

E.g.: STR$ (9. 2) returns the string "9, 2",

101.

6.2.14.26
TAB(I)

Returns a string of the number of spaces necessary to move the screen
cursor right to the column given by I. The cursor can only be moved to

the right.

6.2.14.27
TAN(X)

Gives the tangent of the expression X, X must be expressed in radians.

6.2.14.28
VAL(X$)

Returns the floating point value of the number represented by the string
variable X$.
E.g. : VAL ("9.2") returns 9.2

X $ must represent a valid floating point number.

6.2.15

Arithmetic and Logical Operators

Operator Usage Type of Result
+ (addition) int + int int
fpt + int
int + fpt | (Note 1) fpt
fpt + fpt
str + str str
-/%* (subtract, divide, as +, except no string version
multiply)
‘ * (power (AN on keyb.) as always fpt
i
|
‘f IAND int ... int
| IOR int ... fpt
IXOR fpt ... int integer
MOD int ... int (Note 2)
SHL
SHR '
INOT int integer
= equal str ... str
greater than fpt ... fpt
smaller than fpt ... int logical
different from int ... fpt}(NOte b
= greater than or equal to \int ... int

= smaller than or equal to

AND OR logical
logical logical

Note 1: The integer values are converted to fpt before use.
Note 2: The fpt values are truncated to integer before use.

EXAMPLE(S)

(Numbers without decimal parts represent integers)

(i) Operation Result
1+ 2 3
1.0+ 2.0 3.0
1.0 +2 3.0
3% 4 12
344 81.0
12.0/4.0 3.0
12.0/4 3.0
12/4 3
11/4 2
3 IAND 2 2
3.0 IAND 6.0 2
3.14 IAND 6. 72 2
3 SHL 2 12
3.2 SHL2.1 12
7=4 FALSE
3.0 2.1 TRUE
"FRED'" L"FREDA" TRUE
AN = AN TRUE
7.1 =17 FALSE
7.0 =7 TRUE
34 40R7=8 TRUE
3=7AND 9L 10 FALSE

Type of Result

integer
fpt

fpt

integer
fpt

fpt

fpt

integer
integer
integer
integer
integer
integer
integer
logical
logical
logical
logical
logical
logical
logical

logical

NB

NB

NB

104,

(i) (In all of the cases below, leading zeroes on binary numbers

are not shown).

63 IAND 16 = 16
15 IAND 14 = 14
-1 IAND 8 = 8
4IAND 2 =0
4I0R 2 =6

10 IOR 10 = 10

-1I0R -2 = -1

Since 63 equals binary 111111 and 16 equals binary
1000 , the result of the IJAND is binary 1000 or
16.

15 equals binary 1111 and 14 equals binary 1110,
so 15 IAND 14 equals binary 1110 or 14,

-1 equals binary 11 11 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.
Binary 100 IOR'd with binary 10 equals binary 110
or 6 decimal.

Binary 1010 IOR'd with binary 1010 equals binary
1010, or 10 decimal.

Binary 11....11 (-1) OR'd with binary 11....10
(-2) equals binary 11....11 or -1.

The following truth table shows the logical operations on bits:

Operator

IAND

IOR

INOT

Arg.

1
0
1

O O =

—

1 Arg. 2 Result
1 1
1
0
0

O = O
—_ O O e e = O O O

105.

A typical use of the bitwise operators is to test bits set in the REAL
WORLD input ports which reflect the state of some REAL WORLD

device.

Bit position 7 is the most significant bit of a byte, while position 0 is the

least significant.

For instance, suppose bit 1 of REAL WORLD port 5 is 0 when the door
to Room X is closed, and 1 if the door is open. The following program
will print "Intruder Alert" if the door is openea:

10 IF (INP(5)IAND 2) = 2 THEN 10

This alert will execute over and over until bit 1 (masked or selected by

the 2) becomes a 1. When that happens, we go to line 20.

20 PRINT "INTRUDER ALERT"
Line 20 will output "INTRUDER ALERT".

However, we can replace statement 10 with a "WAIT" statement, which

has exactly the same effect.

10 WAIT 5,2
This line delays the execution of the next statement in the program until
bit 1 of REAL WORLD port 5 becomes 1. The WAIT is much faster than

the equivalent IF statement and also takes less bytes of program storage.

HT

106.

7.0
Machine Language Utility

7.1

Introduction

The Utility provides a set of facilities to develop and debug programs in
machine-code. It has the ability to keep a safe copy of the registers for
a program being debugged. These can be displayed and modified, as can
the mode of operation of the Real World Bus, and the Timer and Interrupt
controller., The memory contents can also be displayed and changed, and
can be stored on, or loaded from, disc or cacssette. A machine code
program can be debugged using breakpoints, or an instruction - by -

instruction tracing facility.

7.2

User Interface

When the Utility is entered from BASIC by means of the UT command it
prints its sign-on message: P.C. UTILITY V3.3
The message is followed by the prompt character " >'. Whenever the
Utility prints this character, it is waiting for another command. The
format of commands is always a single letter followed possibly by one or
more numbers. No separator is required between the letter and the first
number. Numbers are always in hexadecimal, and are terminated by a
space or carriage return. The utility always uses the last hex characters
type d in , two or four depending on the required range of the
number. So G12345678 is equivalent to G5678, because a 4 digit hex
number is required
F0000 FFFF 5566 is equivalent to:

F0000 FFFF 66 as the third number is required to have 2 digits.
Any 2 or 4 digit number can be terminated early and the Utility will use
the number of digits typed. So:
G0003

G003

Go3 These are all equivalent.

~2

When lthere is any kind of an error, the Utility prints the character " ?'",
This is the only possible error message.

When the utility is tracing a program or printing memory contents the
display can be halted by use of the BREAK key.

Some functions require the use of a terminator apart from space or
carriage return. This is called an "ESCAPE'", and the key used is the
""cursor Left'" on the far left of the keyboard.

During the description of commands, some special signs will be used.

They are:

- for SPACE

d for CARRIAGE RETURN

« for ESCAPE (LEFT ARROW)

Characters typed in are underlined in the examples.

You will return to BASIC by typing "B"

e

7.3

Utility Commands

This section describes in detail the four classes of commands that assist
the user in his program development in the utility mode, Abbreviations

used in the text are defined as follows:

adr : ADDRESS

ladr : LOW ADDRESS

hadr : HIGH ADDRESS

dadr : DESTINATION ADDRESS

badr : BASE ADDRESS of PROM Reference

The address is a string of four hexadecimal numbers. If the string is
longer than four digits, the utility accepts the four rightmost digits as the
address. This feature provides the advantage that if a mistake is made
while entering an address, one can disregard the mistaken figures and
keep entering figures until the four rightmost digits are correct.

Command arguments can be separated by either space or comma.

The four classes of commands are:

Memory Commands: These commands enable the user to trace his
program while it is running, or single-step it.
He can also display blocks of memory bytes, and

insert user's program or data.

Register Commands These commands afford the facility to examine and
modify the 8080 registers, and the vector and
initialization bytes. In general these commands
allow the user to initialize the DCE card before

transferring control to the user program.

109.

Hexadecimal I/O With these commands the user can read file, write
Commands file

CLASS 1. MEMORY COMMANDS

7.3.1
LOOK: L adr ladr hadr

When the sequence is terminated with the "RETURN" key the command
initiates transfer to the user mode. The program counter is loaded with
the address specified., After each instruction execution, the contents of
all the CPU registers are displayed on the console:

1=1043A=02 F=02 B=00 C=00 D=00 E=05 H=00 L =00

S =P =1045

Where "I'" is the address of the instruction just executed, all the instructions
between the low and high address specified will be traced. To temporarily
abort program execution, press and hold the "BRAK'" key during the last
desired trace line, until the line is completed. To continue program
execution after the break, just type '""L' followed by the "RETURN" key.
Tracing will continue with the command whose address is equated to '"P"

on the last trace.

While under the control of the Utility during the break, all functions, may
be used without affecting subsequent LOOK restart. The programmer is
thus free to access and modify the entire register and memory area during
the break.

Before restarting execution, the ''trace window'' can be changed from the
one originally specified with this command. To alter the trace window
continue program execution by typing:

L ladr hadr

followed by a return. The LOOK function restarts with the new trace
limits. Whenever the LOOK function is initiated by typing all three
arguments, the system is initialized as described in Section 4. 1.
However, when LOOK is restarted by just typing L, or L with the new
trace window arguments, only the CPU registers are restored. No other
states are modified. This allows normal continution of a program after

the BREAK.

The BREAK key abort feature is always active, even when the program
is running outside the trace window. This feature allows escape from a

program loop while saving the Program Counter,

7.3.2
DISPLAY: D ladr hadr

When terminating the sequence by the "RETURN!" key, the ccnsole
displays consecutive memory bytes in hexadecimal starting with the one
specified by the low address and ending with the one specified by the
high address. Each line is preceeded by the memory address of the

first byte on the line,

Example: D1000, 110A
Pressing and releasing the BREAK key aborts printout.

7.3.3

When the sequence is terminated with the "RETURN'" key, the command
initiates transfer to the user mode. The system is initialized, and
program execution starts. The user program stored in the memory
controls the CPU until control is returned to the utility., The address
in the command is optional; if no address is given, only the 8080
registers are restored from the save area, and not the GIC and TICC
initialization bytes. Execution starts with the saved P (program counter)
value. Entering "G'" without address allows restarting the system after
a breakpoint without reinitializing.

Example: G1040

This command transfers control to the program segment starting at the

memory location 1040H.

7.3.4
FILL: F ladr hadr byte

When terminating the sequence with the "RETURN" key, the memory
space defined by and including the low and high addresses is filled with
the constant byte given. If no constant value is given the memory space
will be filled with zeroes.

Example: F1010 10l1A FF fill area from 1010 to 101A
with FF

F1010 101A fill area from 1010 to 101A with g¢

7.3.5
SUBSTITUTE: S adr

When terminating the sequence with space, or the "RETURN'" key, the
screen displays the content of the byte specified by the address given.
A new value can now be typed in. This value will replace the current
content of the addressed byte when the next separator, space or comma
or "RETURN!'", is entered. At the same time, the content of the next
higher order byte is displayed for substitution. To leave a byte
unchanged the space bar or "RETURN" is used after the display of the
byte.

Example: 51000 3D-8F 1A = CB-3F 81-AE 78-FA

In the example above, digits entered by the user are underlined, and the
space bar was used as separator. To return to the utility, press the
"LEFTCURSOR'" key. After escaping the sequence, the memory
locations starting from address 1000 to 1004 will have the following

contents:

1000: 8F, 1001: 1A, 1002: 3F, 1003: AE, 1004: FA

7.3.6
MOVE: M ladr hadr dadr

The MOVE command, when terminating the sequence with the "RETURN"
key, moves a block of memory specified by the low and high addresses

to a destination beginning with the destination address.

Example: M1000, 100A, 1100

After executing the above command, the program segment starting at
address 1000 and ending at address 100A has been moved to a starting
address at 1100, and it will occupy all the bytes up to and including

address 110A, The original program segment at location 1000 is not

destroyed.

The MOVE command is useful during program development when an
instruction must be inserted into the program already stored in the RAM
memory. For example, assume that three bytes must be inserted into
a program field ranging from RAM location 1040 through 1075. The new
bytes must occupy locations 1046, 1047, and 1048.
Using the MOVE command, the program segment ranging from 1046
through 1075 can be shifted right three bytes:

M1046 1075 1049
The three new bytes can now be inserted. Caution: the MCVE command

does not adjust reference addresses within instructions.

CLASS 2. USER REGISTER COMMANDS

7.3.7
EXAMINE: X

When the above command is terminated by pressing the "RETURN" key,
the screen displays the following CPU registers: Accumulator, Flags,

Registers B through L, Stack Pointer, and the Program Counter.

Example:

X

A=00 F=46 B=20 C=44 D=10 E=BF H=11 L=7A S=1I1BE
P = 1040

The bit assignment of the flag-byte is as follows:
B7 SIGN
B6 ZERO
B5 ALWAYS ZERO
B4 AUXILIARY CARRY
B3 ALWAYS ZERO
B2 PARITY
Bl ALWAYS ONE
BO CARRY

7.3.8
EXAMINE REGISTER: X reg

This command is exactly like the substitute command except that it

allows substitution or initialization of the user-register copy area.
Example: Suppose we wish to initialize the accumulator to the value of
35 and register B to the value of FF. We can do this task in either of

the following ways:

XA 00-35 46- 20-FF

or
XA 00-35
XB 20-FF

The digits entered by the user are underlined. In the first example the
space bar was used as separator, and the value of the flags remained
unchanged, since no replacement value was entered. In the second
example the first substitution was terminated by the "LEFT ARROW"
key.

7.3.9
VECTOR EXAMINE: V

When the "RETURN" key is pressed after the command, the console
displays the contents of the user initialization and interrupt-transfer

vector bytes.

Example:
A%
0=00 M=00 T=10 G=20 1=106F 2 =1089 3 =0040 4 =0040

5=0040 6 =0040 7 = 106F.

n

7.3.10
VECTOR EXAMINE BYTES: V byte

The function of this command is the same as that of the substitut or
examine register commands. It allows changing the contents of the
transfer vector or initialization bytes.

Example: V2 1089-1100

When the "CURSORLEFT'" key is pressed after the sequence above , the

interrupt 2 vector address is changed from 1089 to 1100.

CLASS 3 HEXADECIMAL I/O COMMANDS

7.3.11
READ: R adr

The address in the command is optional.

Pressing the "RETURN" key after the command, initiates action. The
READ function will start reading the binary file from tape or disc as soon
as the tape recorder or disc drive is turned on. While reading the tape,
the utility checksums each record. If a read error occurs, the error
exit is taken, the reading stops, and the control is returned to the user.
In this case the tape may be read again by backing it up at least one

record., The reading continues until the end of file record is read.

115.

7.3.12
WRITE: W ladr hadr

After pressing the "RETURN" key the hexadecimal content of the memory
range specified by the low and high addresses is output to the tape or
disc. The format of this output is the packed hexadecimal format

described below,

W600 60F
10060000B7C8CD380523C300060E0DCD3805C50 IQBL
A e e

Check sum

Data

Code: 00 = Data
01 = End

Starting load address

Number of bytes in datafield expressed in hexadecimal

WOU FFFUGEORGEZJ

Writes the area of memory from 0 to FFF to disc or cassette under the

name "GEORGE",

WOLIFga
Writes the area 0 to 1F on cassette with no name. Unnamed files should
not be used on disc. It is loaded back into exactly the same addresses

as it was written from.

R1000L FRED &

As above, but the data is read into addresses 1000 hex bytes higher than

it was written from.

117.

R .
The next binary file on the cassette is read into memory. No offset is

used. Note that unnamed files should not be used with discs.

The files created by the W and read in by the R command have a file type
of 1. They cannot be accessed by, and will be ignored entirely by the
LOAD, LOADA commands of BASIC. Similarily R will not read in files
of types other than 1.

File names include every character typed between the space and the
carriage return. There is no 'character delete' facility, so great care

should be taken.

118.

Decimal Character Decimal Character Decimal Character

000 NUL 031 us 062 >
001 SOH 032 SPACE 063 ?
002 STX 033 ! 064 @
003 ETX 034 ' 065 A
004 EOT 035 I 066 B |
005 ENQ 036 $ 067 C
006 ACK 037 %, 068 D
007 BEL 038 & 069 E
008 CH DEL 039 ! 070 F
009 TAB 040 (071 G
010 LF 041) 072 H
011 VT 042 * 073 I
012 FF 043 + 074 J
013 CR 044 ! 075 K
014 SO 045 - 076 L
015 SI 046 . 077 M
016 { CURS 047 / 078 N
017 { CURS 048 0 079)
018 < CURS 049 1 080 P
019 - CURS 050 2 081 Q
020 Shift+t 051 3 082 R
021 Shift+ ¢ 052 4 083 S
022 Shift+- 053 5 084 T
023 Shift+- 054 6 085 U
024 CAN 055 7 086 v
025 EM 056 8 087 w
026 SUB 057 9 088 X
027 £ 058 : 689 Y
028 [0 059 ; 090 A
029 GS 060 ' 091 (
030 RS 061 = 092 \

119.

Decimal Character Decimal Character Decimal Character
093) 123 L
094 t 124 |
095 - 125 }
096 * 126 ~
097 a 127 DEL
098 b

099 c

100 d

101 e

102 f

103 g

104 h

105 i

106 J

107 k

108 1

109 m

110 n

111 o

112 P

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 X

121 y

122 z

" 120.

LIST OF SOME USEFUL POKES

POKE #2C4,4 FF FORCE A BREAK

OUTPUT

POKE 4 131,0 OUTPUT TO SCREEN + RS 232

,1 OUTPUT TO SCREEN
,2 TO EDIT BUFFER
,3 TODISC — 1=c &

INPUT

POKE #135,0 INPUT FROM K. B./SCREEN

,1 INPUT FROM STRING

2 INPUT FROM EDIT BUFFER TO PROGRAM AREA

TAPE CONTROL

POKE = 40, 3F 28 TAPE 1 ON
#4740, 3¢ 18 TAPE 2 ON
H40, 30 TAPE 1 AND 2 OFF

PCKE ¥ 13D, 3 10
4F 13D, = 20 " "

SWITCH FLOPPY DRIVE

2

CASSETTE PORT 1 ACTIVATED

POKE 4730, 4F 30 FLOPPY DRIVE 0 ACTIVATED
730,431 FLOPPY DRIVE 1 ACTIVATED

AM 9511

UT FoU E
> SF BY# oU E
>

>B

++
=

O O

Y

L.i

’

/

¢
£

lneacy gy

R - Al g

{

121.

UNIT FLOPPY DISK

uT

> Z3

>XA 30 USE DRIVE N° ¢
31 " " A |

>G Bé6

>B

TOP OF STACK &FF900
BOTTOM OF STACK AFF800

POKE 3k 2C4, ¥ FF : FORCE A BREAK IN PROGRAM

v
1

ON TAPE "ACTIVATE"

TO ACTIVATE FLOPPY (2C5 TO 2E2)

2C5 C3 58 §5 C3 F2 ¢5 C3 12 g6 C3 Al

2D@ g5 C3 FB #5 C3 FC ¢6C9 gg g¢ C3 75 g6 C3 29 g6
2E@ C3 5C g6 (2E2)

2A0 08 5D 08 5E 08

TO ACTIVATE CASSETTE (2C5 TO 2E2)
2C5 C3 B8 D2 C3 F1 D2 C3 27 D4 C3 25
2D@ D3 C3 40 D3 C3 45 D4 C3 A2 D3 C9 ¢¢ g¢ C9 g¢ g¢

2E@ C3 B4 DD (2E2)

2A@ 33 ED 03 F6 03 50 B3 C5 E8

123.

SOFTWARE PROTECTION

1. Write program in BASIC (Avoid putting REM)
2, UT

3. D2A1 2A4 (Pointers) &J

ol A& 4 #

Low High Low High
VAL 1 VAL 2

4. SAVE ON CASSETTE BY
W (VAL 1+ 1) (VAL 2) FILE NAME (without double quote)

5. Protect by
F(VAL 1+1) (vaL2) cg C(C = Hex code for form feed)

6. B (return to BASIC)

7. SAVE ON CASSETTE (SAVE "FILENAME")
When loading from cassette you cannot LIST nor EDIT anymore as

all information is scrambled,

WHAT TO DO 1F AN ACCIDENTAL RESET HAPPENED DURING
PROGRAM KEYING OR AT END OF PROGRAM

—

O X 90Nt W

Push on BREAK

Type UT return

Type S29F and 6 x Space bar,result is b a x x x x
Note b a x x x x

Cursor ()

Type S a b space bar,result is x x

Note x x

Cursor (<)

Press B (BASIC)

If you accidentally RESET

1.

s W

wl

Type UT return

Type S29F press 6 times space bar; result is x y &&&&
Change the 6 positions if different to what you noted,

S a b change the 2 ' " " oo "

Cursor

Press B

Type EDIT press and BREAK Space

SAVING AND RELOADING A DRAWING

After you draw the picture for saving
Press on BREAK
Type MODE ? A (? being the mode in which you draw the picture)

Type UT Return
Type W XXXX BFFF PICTURE 1

Tc reload the picture

Type MODE ?A (? being the mode in which the picture was drawn)

Press UT Return
TypeR

125.

MODE 1
2 A B350 TO BFFF
3A A440 TO BFFF
4
5 5670 TO BFFF

126.

FAGE 7

EDIT 7 2Z-MARCH-20

00 DR OZO0ZH

XMINIT: [i i PACKAGE INIT

i

XFINM: 1 = i INCR FFPT NUMEER IN MEM
XFDIZM: k= = i DECR FFT NUMEBER IN MEM
COOD XFOOMF: D5] i FLOATING FOINT COMFARE
COOF XIINM: D= e ; INCR INT NUMEER IN MEM
Cot XIDCM: D z i DECR INT NUMEER IN MEM

0l

Cois XICOME: DS] i INTEGER COMPARE

CO1E XPUZH: D=] i SAVE FPAC ON STACH
CO1E XFOF: o= = ;i RETRIEVE FFAC FROM STACK

;10 FUNCTIONS

XFLE: INFUUT A FPT NUMEER TO FRAC

ns i
XFE 0= i CONVERT A FFT NUMEER FOR QUTFLUT
XICE: 0s i INPUT INTEGER NUMEER TO IAC
XIRBC: D= i CONVERT INTEGER FOR QUTPUT
XHCE: 0 = 5 INFUT HEX NUMEER TO IAC
XHEC - D= I} ; CONVERT IAC TD HEX FOR QUTPUT
2 ; PRETTIES WP FFPT DR INTEGER NUME ¢

XFRTY: D=
LOZATION OF QUTPUT BUFFER

[N

COR3 DECEUF: D=

H

20 ASSEMELY SERVICE, D2 Z FAGE 10

EASIC V1.0 DISK EDRIT 7 Z-MARCH-ZO0

+
i MEMORY + ID MAF
ﬁ DEFIMNES WHERE T0O FIND THE HARDWARE
FREOO 5THAD EQL OFEOOH ; MATH CHIF (IF FITTED)
FrOo ;NDAD EQL OFCOOH ;2252 ADDRESS (IF FITTED)
; Eci i ZHAN O
Ef i CHAN 1
EnL i CHAN Z
ERL i CONTROL
EnR ; PADDLE READING CHANNEL
; W MODE RBYTES
i Ef OEH ;i CHAN O, MODE 1,2 BYTE OFERATIC
i ECL) OZEH 5 CHAN O, MODE 2, Z RYTE
Evt 0O76H
OORA EfL OBAH
OOZ0 ; ZOMO EQ OZOH i CHAN O, MODE O, Z BYTE OF
0000 ; COFIX EQL O i FIX COUNT ON CHANNEL ©
FDOO. EDRI Ef OFDOOH ; INPUT FORT
0004 ; FIFGE ECL 0O4H i PAGE SIGNAL
O00E ; FIDTR EGL 0O2H i SERIAL OF READY
0010 ; FIELN EQU 10H i BUTTON CON FADDLE 1
OOZ0 ’ FIELZ E) ZOH i BUTTON ON FADDLE 2
0040 ' FIRFI EQL 40H i RANDOM BITS
; FICAT EQL 20H i CASSETTE INFUT DATA
FDO1 ;DLST EGt OFDO1IH ; PADDLE SAMPLING START
FLnoO4 ;DRO EQ) OFDO4H 3 VOLUME QUTPUTS CHANS O, 1

FROS FOR1 EQL PORO+1 5 VOLUMES CHAN Z AND NOISE

i

128,

20 ASZEMELY SERVICE, D2

. FAGE 11
0O DISK EDRIT 7 Z-MARCH-20

FLOOA FORD Evt OFDOAH 5 DUTPUT PORT
0001 o
0007 FOLMEE

Er O1H i CASSETTE OUTFUT EBIT
E 7 i PADDLE SELECT EBITS

(RIRIE FOFNA ERL 0zH ; FADDLE ENAEBLE EIT

0010 FOCML EL 10OH i CASZETTE MOTOR CONTROL
00z0 FOCMZ E ZOH ; " " "

i TOFR Z BITS ARE EANE SWITCHING

[B
—
D)

FEOO EGu OFEOOH i RWELE GIC ADDRESE

OOT0 RWMODF ERQL O20OH i RW DUTFUT MODE
OO0 RWMIF ERL OZOH i RW INFUT MODE
FFFO TICC Ei) OFFFOH 5 TICC ADDRES:

i

200 STTOF EG) OF200H ; TOF OF STACE RAM

F200 SREOT Ec OF200H ; EOTTOM OF STACK RAM

+ FAGE

[

—
(8]
Bel

O ASSEMELY SERVICE, D2 2 FAGE 14
Vi, 0 DISE EDIT 7 Z-MARCH-20

+
i VARIABLES: -
0100 QORG O100H
;o WSER STATE:
i FOLLOWING ARE SAVED BY S0OFT EREAE

SEOT:
G100 ﬁURRNT: D= ped ; START OF CLRRENT LINE

0107 EREFT: o= = i START OF CLURRENT COMMAND

0104 LOFVAR: TS 2 ; POINTS TD CURRENT LOOF VARIAGLE
;0 IF NO RUNNING LOOF

0104 LETFF: DS 1 ; FLAG FOR INTEGER/FPT LOOF
i AND IMPLICIT/EXPLICIT ZTEF

G107 LSTEF: DS 4 i STEF VALUE IF EXFLICIT

i

O10E LCOUNT: DS 4 i LOOF ITERATION ZOUNT

1N

0O10F LOFFT: DS i POINTER To START LOOF

0111 LOFLN: DS 2 ; POINTER TO START LOOF LINE
0010 FRAME EQU $-LOPVAR+1 ; ALLOW FOR FLAGS WHEN PUSHING

0113 STEGDS: DS ped i STACE LEVEL AT LAST GOSLUER
i O IF NO ACTIVE CALL
SYSTOR:

STRFL: i TRACE/STEF FLAGS TOSETHER

0115 TRAFL: D= 1 ; TRACE FLAG
0114 STEFF: DS 1 i STEP FLAG

0117 éDIFF: Ds 1 ; FLAG SET WHILE RUNNING INFUT
0118 RLINF DS 1 ; .o " " FROGRAM
; FREVIOUS Z EYTES MUST EE CONSECUTIVE
+ FAGE

DAL

LASIC

0119

OLLE

011D

0O11F

01zz

01z

01D

2020 ASSEMBLY SERVICE, DZ. Z FAGE 15
V1. 0 DISK EDIT 7 2Z-MARCH-20

i RUNTIME SCRATCH AREA
!

GENWE: 5 SCRATCH AREA FOR GOSUE/NBXT (2 BYTES
LISWL: i START OF LISTED AREA
CcoLWeE: DS bt i SCRATCH AREA FOR SCOLG, SCOLT (4 EBYTE!
LISWZ: DS ped i END LISTED AREA
i SAVE AREA FOR RESTART ON ERROR
ERSSF: ns pd i STACKE POINTER
Ds = i ¥
HE 3
ERSFL.: D= 1 i ZET IF ENCODING A STORED LINE

i DATA/READ VARIAELES

bATAC: DS i i DFFSET OF NEXT CH TO ENCODE IN “D..UA
bATAP: DS 2 i POINTER TO CURRENT DATA LINE

i 'DATAR: D= et i FOINTER AFTER CURRENT DL LINE IF Y
&DNFL: D= 1 i ZET IF THERE IT A SUSFENDED FROGRe

éTAEK: D 4 i CURRENT EASE STACE LEVEL

%FRAME E) SYSTOP-SYSEOT

i SCRATCH LOCN FOR EXPRESSION EVALUATION

WORKE: D% 4

i RANDOM NUMEER KERNEL

RNLIM: os 4
i 'RNDLY: DS 1 i RANDOM NUMEER DELAY COUNT

+ FAGE

DAT

RASIC VI O D

0121

0125

013264

01327

o1z

0139

O12R

131.

=0 ASSEMELY SERVICE, DX 2 FAGE 14

ik EDIT 7 Z-MARCH-20

H

i DUTFUT SWITCHING

)
OTEW: 0= 1

;0 TO QUTRPUT T
i1 QUTRUT TO
;2 TO EDIT BU
;02 TO DISKE

INFUT SWITCHING

VINSW: DS 1
O FROM KEYEDARD
1 FROM DISE

i ENCODING INFUT SOURCE SWITCHING

EFEFT: LS Z i PIINTER
EFECT: D= 1 i DOUNT
EFSW: DS 1 i SET O INFLUT FROM EER/SCREEN
: " " STRING
" EDIT LBUFFE

VARIAEBLES WSED DURING EXFR
(COULD OVERLAP WITH RUNTIME VARIAEL

YFE: 0= 1 i TYPE DOF LATEST EXFREZZION OR ITEM

[

RGTOF: DS 1 ; LATEST PRIORITY DFERATOR

QLDOF: D 1 ;o LD PRIDRITY+OFERATOR

HOFFT: DS ped i PTR TO FLACE FOR OFERATOR
RGTRT: D= bt i PTR T RGT OFERAND LATEST OFERATOR
; ORDER OF LAST 7 ERYTES IS IMPORTANT

+ FAGE

0120

01ZE

QOSF

O1BE

0120

QOOF

011

0002

FFFi
0040

0020

0004

EDIT 7

i ENCODED

EELF:

i

i INTERRLUFT HANDLER

;ICIM
TIMER:
ETIMR:
ETIMY
KEXCT:
KEXCK

i

SkEOTO

Z-MAR

SE

ns=

DE

EGL

D=

Dns

DS

EQU

i INTERRUPT

SNDIAD
SNDIM

EEIAD
FEIM
CLEIM

H

STHIM

EQL)
EQL

E
Eft

EQ

ER)
FAGE

INFUT

0 ASSEMELY ZERVICE, D2 2
.0 DOISKE

CH=-20

LECT CASSETTE
i i

EBLFFER

o

12% ;

OSFH ;

CSHORH

i

TICCD+OCH
40H i

OZ0H ;

04H i

FAGE 17

1 OR Z

#10 FOR ZA

LIEED ALED BY UTILITY

VARIAELES

CURRENT IMNTERRUFT MASE
TIMER LOCATION
CURSOR CLOCE

20 M=

FLAZH TIME IN

EXTEND KEE ZZAN TIME

SCAN TIME (UNITES
ROUTINE NEEDZ

K E:

RAND THIZ

: DEFINITIONS

TIMER ADDR
INT MAZK EIT

KE TIMER ADDR
KEYEODARD " "

CLOCE " " "

sTACKE vt

oF 14

TTE 1, #20 FOR 2

INITS

COUNTER

M)
EVEN

SEMELY SERVICE, DZ

FAGE 12

b EDIT 7 Z-MARCH-20

[]
N

[

T

)

;o I0 LOCATIONS

i VPOROM: D= 1 i MEMORY OF

; 'PORLIM: D= 1 ;o LAST QUTFUTS TO
FOROM EQ 40H i DUTRUT PORTS

5o CSOUND CONTROL BLOCE =TORAGE
= EGY 14 ;i LENGTH OF A

IUND CONTROL BLOCH
Ei) o i " " NOISE " "

SCREO: D= ZRSCEL+NCEL o S0OUND + NOISE CHANNELS
i ENVELOFE STORAGE
ENVLL E) -4 i NUMEBER OF BYTES/ZENVELOFE

NLIMENV EQL 5 NUMEER OF ENVELOFES

[N

ENVET: = NUMENV*ENVLL ; ENVELOFE STORAGE
IMFTAE: D= “Z9="A"+1 ; IMFLICIT TYFE TAELE
iMPTYP: 0= 1 i DEFALILT NUMEER TYFE

REQTYF: D= 1 i REQUIRED NUMEER TYFE

i SFARE VARIAELE SPACE

D=

DATAL ERL) i ¥
RNDLY EL) P ®
FOROM EQL i

FORIM EDl é §5H i #®
INZW EL 0Z94H P ¥
FAGE

I V10O DISKE

298

290
100

0 ASSEMELY

EDIT 7

i

SERVICE, DZ. 2
Z-MARCH-20

134,

i HEAF/TEXT EBUFFER/SYMTAE

HEAF:

HZIZE:
HZIZD

TXTEGN:

TXTUSE:
STEEGN:

STEUSE:

’
SCREOT:

H

+

s

Ds
ERL

o
“

2

100H

z

[

[

FPAGE 1%

FOINTERS
START OF HEAF

SIZE OF HEAF
DEFAULT SIZE

START OF TEXT RUFFER

END TEXT AREA AND
START SYMBOL TAELE

END SYMBOL TAELE

EOTTOM OF SCREEN RAM AREA

135.

DAI 2020 ASSEMELY SERVICE, DZ. 2 FAGE 20
BASIC Vi 0O DISK EDIT 7 Z-MARCH-20

+
; EEYBDARD VARIAELES + CONSTANTS

0OZAT7 FETPT: 0s z i POINTER TO CODE TAELE

OZAF MAF1: = k=] i LATEST SCAN OF KEYS

OZEL MAFZ: 0= = i PREVIOLEE SCAN

H

[eacad ENSCAN: D= 1 i SET TO SCAN FOR BREAK ONLY

0004 EELEN EGL 4 ; LENGTH OF ROLLOVER BLFFER
KEYL:
O7EA ELIND: D= EELEN ; CIRCULAR EUFFER FOR KEYZS FREZ

OZEE KLIIN: D=

et i NEXT POSN FOR INPUT TO ELIND
OZCO ELIOWL: D= ped i NEXT POSN FOR OUTPUT FROM KL INI
0202 RFCNT: DS 1 i COUNT FOR REFT

02CE %HLH: D= 1 i SET IF "SHIFT INVERT"
IF SUEP

OzZC4 &ERFL: ks 1 i FLAG FOR “EREAE PRESSED"
ENDIF

ERU MAF1+7 ; EYTE CONTAINING SHIFT
EGL 040H i SHIFT KEY EIT

QZEO
0040

OZAF EQU MAP1+& 5 BYTE CONTAIMING REFT KEY

OOZ0 EQL 0Z0H ; REPT KEY EIT
000z E 2 i TIMING FOR REPT

0040 ERZEL EQ 040H i COLUMN SELECT MASEK FOR EBREAE
0040 ERMSE EQL 040H i BREAK KEY BIT

0OZO ERLIM EQL 20H i TIMING FOR HARD EREAE

+ FAGE

OZCE

Oz

Ozh4a

Oz07

OZDA

ozon

OZEO

OZE=

OZEL

QOZES

OZEA

OXED

© V1.0 DISE

20 ASSEMBELY SERVICE, D2

7

EDIT 7 Z-MARCH-20

i

; DISC/CASSETTE

&DVEE:
QUPEN:
QBLK:
&CLDEE:
%DPEN:
%ELK:

RCLOEE:
RCLOH:

QBLH:
%ESET:
EDUTE:
EINC:
%APEL:
%APED:
%APET:
QARENU:
VARLAZT

RAM

i

ns
0=
o=
D=
k=
0s
0=

D=

SET

FAGE

0y

o)

136.

SWITCHING

i

VELCTOR

SFARE

JAI 2020 ASSEMELY SERVICE, D2 2 FAGE ZZ
ASIC VIO DISKE ERIT 7 Z-MARCH-20
+
A0 ORG OCACOH 5 START OF BASIC
; EBANE SWITCHING RESTARTS
; THE FOLLOWING ROUTINES SWITCH THE FAGED
; EANKS OF ROM. THEY ARE ENTERED VIA RET INSTRUCTIONS
MARZT:
CeCO EL POP H
(21 B = 01
T ZI4E00 SHLD REWHZ i SAVE HL
Fo FIISH FSW
E1l FOF H
224100 SHLD REWE 1 i PEW
CAZA ZH40 MVI H, 040H ; EANE SELECT EBITS FOR MATH PACK
CADC ZADA00 LDA MVECA ; OFFSET OF START HW/SW VECTOR
MRZS10:
CeCF ES XTHL
CADO ADD M ; ADD ENTRY NUMBER
(AN INX H
CeDz ES . XTHL
CaDE AF ' MOV L. A ; COMPLETE ENTRYFOINT ADDRESS
CaDA ZA4000 LDA POROM ; EBANK SELECT FORT STATUE
Cen7 PUSH PSW i REMEMEER
Cens ANI O3FH ; KEEP DTHER BITS
CADA ORA H ; ADD NEW SELECT BITS
CADE STA POROM i UPDATE MEMORY
CADE ! STA PORD i AND PORT
ZEEO MVI H, VECA SHR 2
CALL MRDCL
XTHL
FIISH PSW
MOV A H
=TA POROM ; REINSTATE MEMORY
STA PORD ; + PORT
FOP PSW
FOF H
RET ; BACK TO CALLER

DAI 8080 ASSEMBLY SERVICE, D2. 2

138.

BASIC V1. 0 DISK EDIT 7 2Z-MARCH-80

Cé&Fz
C&F3
C&Fé&
C&F7
C&F8
C4FB
C6&FC

ES
2A4100
ES
F1
2A4300

co

MRDCL.:

PUSH
LHLD
PUSH
POP
LHLD
EI
RET

PAGE

H.
RSWK1
H
PSW
RSWK2

PAGE 23

139.

THIS FEOGRAM HEMED SUM 1S CALLIMG A MACHIME LAHGUAGE
SUBRCUTIME LOADED &5 A aRRAY A% HAMED 7°SUM A*°
THE ROUTIHE LOCATED AT #3IFC . FERFORMS INTEGER
CALCOLATION WITH 64 DIGITS RESOLUTION. YOU MUST LOAD
THE FEOGRAM, STOF THE RECORDER IF wOU DO HMOT USE THE
REMOTE COMTROU, RUH THE PROGRAM WHAT IS MOW LOACING
THE FOUTIME &3 @AM ARRAY AHD ASK YOU THE OPERATION TO
FEREMRM [, E. 12345+432 <RETURH> AHD GIVES THE FESULT.
IF wOu ERESS THE BREAK KEY TO COMTIHUE WOU HAUE HOW
TO PUM IS L,0OR FIRST TWPE 1 <RETURM}> TO 24 <RETURH:
WHAT WILL ERASE THIS TEMT AMD LOADA ROUTIHE AND WOU
CAH MK MAKE A HORMAL RUM, IF 0L WaMT TO SAUE THE
CRAGRa @HG THE ROUTIHE %000 MUST SAVET *PROGRAM MAME®®
STOF RECORCGER. SAVEA & TROUTIME HAME®®

oy WILL HMOTICE IF vOU LIST THE FROGRAM THAT 3 FIRST
UIMES @RE CLEAR 2006, DIM &(20,20). LOADA A’7SUM A7°
SGFTER Y01} HAUE LOADED THE ARRAY YOU CAHHOT ERIT HOR
CLESF HOR DIM ARRAYS ALREADY DIMENSIOHED.

FREZS AMY KEY CONTIMUE THE FROGRAM LOADIMG ROUTIHE

o

4

Te ERT T 1% WU SUM "
10 THEUT gt

45, EETHT

=0 Sl e RTET,

=0 CETMT . T% THE CSHSWNERTY &F

o 0T OIS

R T Ry

Ul D R) e

i

Q] -
PoUERN

Do I

@D T T
- i s

T 1

=

Y e T Y

Poviio
NS D - T

5y
-
=

...
»
o

S N cx W)
Ta =] TS

=
I

-
&)
[
5]
[
g}
o
A

13— i

ek S =T

TIME

TIPONE #29E.0:POKE #TEC

41,

L N}

Fre Tu=f TO 11:8Fa0 0y

AR Tih=0 TO ISiREAD [Dix

TE ni=#180 THEH

DT BTIO0. $OS, #05.

TaTa #T10L TR, REE,

75, BEE

neTa BT BT, BEE,

G R

LT ORTE N OGN BT

AT RTTOL RTE B

TOLT BTES BTOLETT

rTE RTA0G BET L RIOE, BTE 4 HTD #00. #1ER,

TS RTAE L MTT BT

JHIML L HTE, #7,

i

D1x=CPEEXCHIAEY TAMD #FE ITOF #E2+D1%-#100

HHLTHERTIHERT

#

HOTCHOE HOTL#TI O HIT L HT

CETE L HEZ, #EE . ¥

CHETL 100 2T HTE HTE BTR L BTE

DT BT HEE B GR

HES, #HFS.#71 #20, #07, #05, #00 . #0E . #05,

SHET HETHTI.#TTH#T4.

BOTOREE L BATLOHTDOHTT

o REE, #OT L HTE L #OT

BOTOESTOENT OHTLOHRA BT HTE HTE 8

HIZ, HFDL B 1D, #32,

TOHSE,BOT L HTI HIT HT

CHEE BT

HEE . KT #T

1-#?3~##9‘#D?-ﬂ3ﬁ,&Eﬂ

TELHIIHED, #1100,

T L BT

GHTT RN, RITLHTE RS HTORTD L #FT L H10D. B2T, HTE,

Lo, #2T HTE, $06, #70,

IELREE. #1000, #T2, #FO, #1000, #3IZ, #F

BRO, #1060, #20,

mETH RTEG BT B OO0, BTTLRAE, #10 FO0, $#OT A5 #OT # 1A 400, $00, BO0, #00, BOG

TR T LT T

TAT Cm TEOUEHO T TIE=MIDE T L0 L
TE nEE T ay AT A
i s

TIVE 4 MH MM SE Y M TERIRRIMT

T OTHEN POKE AN URLCT1E 5

e

e oS

o me
o T 23

142.

1€

d
=
DA

e

T

- = C
T TE CE T

I EC TE
TE FE 32
TE TE 32

RN
el

.
o

iz

8]

oy
jul

=
[I]

.
0

18

143.

tal
—‘
I
—..
—4
n
eh]
I‘.
“
=

FRIMT "ROTHTIMG FYFEMIDE .1,2,3 AHD 4 ARE USED"

5 FEINT "WITH FEFT KEY FOF ROTATION":WAIT TIME 488
< TNE £iMODE 61SF=3. S:REM MODE +SCALING FACTOR
£ RG B 15 @ 15

= LE 2A@A:REM IMITIALISE DATA

2@

az BOSUE SP0:REM DRAW MEW SHAFE

as COLORG B 1S#01-0% 15+0 15

g GOSUE 900:REM ERASE OLD SHEPE

a7

a9 A S

189 ETC: IF A<ASCO"E"Y THEM 180

126 P=1.8 TO HP

136 Y= P L P Y=Y R

140

141 FEM

150 OH A-ASCC"@" GOTO 500, 510,600,610, 700,710

3

161 REM

(2]
<
1
€2
[e d

(B

DD D02

Ka=-KE
FOR P=1.8 TE NF

GOTO 9@
REM
REM

KS=-kS

FOR P=1.8 TO NP

F=TCRYIH=RERY
"r‘C \-'."ﬂ-'r‘.p {14
""C‘\—'“'*I»"C—.-', o

HEHT 144.
5OTO 28

REM

FEM DRAW MEW FICTURE

REM

FOR L=1.8 TO HL

Fa=Lall>

FE=LEL
DRl iR
MEXT
RETURH
FEM

FEM ERASE OLD PICTURE
FEM

FOF L=1.8 TO ML
FasLacl)
FE Ly

AYHECL WOPAT YD HOPED#HE, VIFEY+YE 17+0#2

Fa 60 YRR Y0 MMOPEHEDL. WIPEY Y0 18240

FETLRH
FEM
FEM DATR SETUR ROUTIME

OIM L ZOHP Y
30

LoIM LACHL Y LECHL Y
EEM

A= It =

=N
YR D=

R

FEM
FOR L=1.8 TO HL

FEAD LAcLy. LECLY

HEXT

FEM

GOEUE 260

RET!URH

REM

FEM [yaTa

EEM

FEM HMUMEER 0OF POTHTS AHD HUMBER OF LIMES
LpTa 5.2

REM

LaTa
DAty
DT
aTa
AT
FEM

maTe 1,72
DeTE 1.2
DaTa 1,4

145,

METHIMG ELZE!

i I SNRALYE U

LT

146.

1

4

1a FllﬁRJ Ce C1 C2 C2:COLORT CA 6 0@

11 MOLE 36

12 H=GETC

199 FEM DRAW

118 FEM CF

126 FEM DRAN

170 REM CRAW

14 FILL 15,28

156 REM DREAN 94,

1ea FEM DRAL 94,

1va FEM DEAN

128 REM DRAW

126 :

pels s

2108

€12 : " TO SHOOT CRAFS PRESS AHY KEY "3
B, ZFPRINT " Foint brmse
@, 1:FRINT * "

< ﬁs@ PPINT " "e
® IIIIIA-PL'F\ ?! >
2 THEM CURSOR 25, 1:GOSUE 1568:G60T0 216

=3 @ Or SUMx=12. 8 THEH CURSOR 24, 11G0SUE 16002 G0TO 2

r":”F‘ 1306

Jlﬂ” THEH FHFCOF 2%, 1:GOSUE 1S00:6GOTO 216
THEH CURSOR 25, 1:GOSUE 16409:50T0 218
SOTO 25
C=1, @+THT (10, @¥RHDC L, Br2 IF DY, 8 GOTO 760

. -4 .
AN Ics I T i |

r=1.8 0F D=32.8 OF D=5.8 THEH FILL EB.49 E1,47 C3
IF D=1 THEH PETHPH
FILL a.5&
FTLL ©,2¢

147.

IF 4 THEH FETHFH
FILL A.24 a1,73
FILL C.58 1.6
IF [6
FILL A.4E
FILL .46
RETURH
FILL 19, #
FILL 2%,
q. @2 GOSUE 708
=THT DD
A GOSUR PO
M+ THT L)

PETHFH
WATT TIME 18:H=GETC: IF H=A. 8 GOTD 13206:G0SUE 1286:RETURH

@ THEH FRIMT POIMTIH." "3
1461 TOSSH % 47, 14PRINT TOSSX:CURSOR 22, 2:RETURN
1588 PRIHT "qou win"s AF—1 ﬁ MQIT TIME Z2RG:RETURN

16608 PRINT "4ou lose"::JF=1, @:001T TIME ZRG:RETURM

¥

14nm CURSOR &,1:IF POIMT

148.

*
FaHbOoML I HESS

v

=

P e T D
v in

T & a0]
B

1 GOSUE 1808 HEST

16 Qs
8

138

118 13

128 11

128 o

146 &

156 3

158 1

17a

AR TO 2.8:50UHD A & 15 6 FREQOCII, @0 HE,,
EF A:GOSLE 10602 HEXT
B STEP —o2«106, B
-;EHH[5 D 15 2
wT ZeEOTO
RINSEE

FH"':U'IFE 6 16:FOR
. TO S41. 68

QCE+GD

MOD 3. @ R=i0+], CEHE, By MOD Z06
e 15 2 FPEﬁ'
5 T SRS

SRS

FFTHFH

149.

COLOFR GEAPHICLCES

FOR AXx=0 TO YMAX:DEAM 8.0 XMAK, A% 28+C(A% MOD JisHEXT
IR =1:0RAN 8,8 AYYMAK 28+ (A% MOD 32 HEKT
46 FOR == P OLORG FHDO1SY RHMDO1SY RHDO1SY RHLDCLS:
pi] 5| WEIT TIME 20:HEXT S%:RETURH

5]
Ca
3]

Qf oo RHOC 1S
] MHIT TIWF 2K

FErHDOM LTI HES

16

106 : MOD CYMAND

RS FOR A RHD ¢ HMAR D 2 W5 =FHD CYMAN)

P10 DRAL S%.T% . wn 15:0DRAW 8%, T% Wi,W% 82 8%=Xki TX=YXINENT:GOTO 16

THE =T IHS 150.

1
15
15
i7 (056, @xsDIM T(255, 62:0IM ECZI5, 82
R T, B2 0IM F(:ﬁq.ﬁ)‘DIM S(255. 8

2,00, 73,004,723, E8,. 8 2.F@, 87, F@+, 32, GY
'.Hﬁ.liﬂ A+, 1165, E"’1~J
38,0, 147, 0+, 155, E- 1S, F. 175, F+, 185,65
; 1,ﬁ+:233;' 247
701,294, 014,311, E1. 338, F1L. 349, F L+
eI 4lqul 440, 41+, 456, 81,494

T4, 02,087,024+, 622, E2, 659, F 2, G'C'S FZ+
1:H4:‘5 B‘HL."’-‘ -AvE'A‘

HE =
DPIHT LH'*‘I
FEM come

i 1.6 70 255, 8

:
-
=)

2.8 THEM GOTO 196
S DR MO

"from the motion picture * THE STIMG *"
OF 28, 2:PRINT "THE EMTERTAIHER *

R 38.8:FRIMT "bw SCOTT JOFLIH®

R P=1.8 TO ¥-1.0
SOUHED SCPY ECPY P MCPY FREQCTCPI)
WAIT TIME D(RPM#5. 8
HEMT
FEIMT CHE£C1Z2):SOUHD OFF :WAIT TIME 16
CURSOR 18,18
FQIHNT "AFTER A BOTTLE OF WHISKY"
FOR P=1.8 TO XH-1.0
SIOUHD SRy ECPY WP MCP) FREQCTIPI4RMDCLIS, @)
WAIT TIME DOPx#S5, @t HEXT
’ﬂ“ND WFF PEIHT CHRFC1Z20IPOKE #7921, #56

R 2,13:FPRINT "THAMK “ou '"

8:1,02.15,2,9,0,1,E2,15,2,0,8.1,C2,15, 2.0
#.1,41,15.4,0,8.1.B1, ISvaO #.1.61,15.4.8
1,01,18,2, 2,2, 1,E1,18, 2.0
2,1.01,18,2.8.2. 1,A. 10, 4,8, 2. 1,B, 10, 2,0
2. 1.G.10. 4,6

11,015, 2,08.1,1,E,15, 2,8, 1, 1.0, 15, 2,8
o1 he. 19, 4,8,1,1,B68, 15, 2.8, 1. 1. A0, 15, 2.0
lv'~60 201,169, 15, 2.08

3.6.G. 1. E. 15, 046.1w9s617151439
9,6, 0, 1 e,0,8:8,8.2,8.0,8,0.08

9. N Iﬁ-g-‘-ﬁ 8.E.18,2.0

9 'E B.E 18, 2.8,8.0.C1 viﬁsE,G
: E1E.C1110.n.ﬁ

151.

‘y-‘B E‘.-lu2~0
1, > 08.F1,12.2.8
g8,2.8.61,12.4.0
.0,01,12.2.0
a,F1,12.4.0
#.2.68,E1.12.2.8

D+, 12. 2.8
= ’rIvl.;.vs ‘:1
5 3,01.12.5.8
) @, 8, F lhy 9, 01,12. 16,8
A, 8. A1, 123:.3“ ﬁ f8.61,12.2.8
QRTH A8, F1+,12,8,0,2,8,C1, 12,2.8
5]
@

DATA 8,0.01,12,2
DATa BB, 0212
AT

@.E1,12.2.0@
A, F1+,1“-G B.1,

nHT.

"3: AR i
CATe 09 SRYSR @ Fl 2~f~_
DETR L, G.8,.8,E2 JE.E.2.8,61,12.2,6
DATA 8. :?‘@'El, 2-ﬁ~;
LaThH @ 7 :

DaTH

‘.o G1.12,2.0

DAaTs A, <

TATA . 2. 8,61.12,2.0

DAaTH E :‘G‘Gl 12,2.8

DATa 1. 0.0.E2,12.4,0.2.8.A1,12.2.8
DATA &, 2 C 12.2.8

DATA @, 2.8, ﬂ1’14..1~.39

TAaTH 1. 1.0, 0,E2,12.0,0,2.0,61+,12,3,8
UﬁTQv.‘ g‘g Ql 1W:-ﬁ

DETA AL,12.2.0

DATA @, ;L;,,h.n G.2.0,A1,12.2.0
DaTa 1, i:ﬁ 1%,8,68.0,.8,E2,12.8.0,2.0.61,12,2.8

TaTh
DATH
DT
DaTa
7 LHTA
IV CETH
160 LeTa

8.8 2.00E1L12.6.0
‘L'r‘ n';'n Fl 12.2,8
5,8.08,8.8,E2,12.0.0.2,0.61,12, 3,0
28,8,2.8.01,12. 2.0
BB 2.8,F1,12, 4,8
9,0.0,0 C2,12,8,8.2.8-E1.12,4.0

1
12
. 10
1

2
S

By e I o o R oy B I o o o R B

152.

HE ARM BAHDIT

3

o S RER B

4 R

5 s ZPRIMT PRESS AMY KEY Fralines"s
i yZIFRIMT O

16 WIH w o w -
tPRINT "

»1:FRINT
1E 1660

L) T

Bogl IFOWN A I N]

D) [N SRR O O N N N <

.._A n

"eralines"s iCURSOR 27 0:FRINT WIMS: "y
GDTU 140

FILL Ja-a SR ON+T, 136 K
SETURHN
FTLL
FILL
RETUR

WIMSR=1G: RETURM
TIRETURH

tRETURH
IRETLRH

FREIMT CHRE$I1ZD
GFOSUE 4080
MODE I

F=GETE

FFT”FH
et PR GRS

T A
B i DO]

R4

M

[PPN | T S SN

(i

oo OSUE 199, 118, 126, 138
EOTO T
FRINT
ECINT

HHEMT EM PREZSHHT":

TORTIE

F'F'IHT ! E : -v"'FFI”T " "e
FETHT &Sk
FRETHT 2
G FEIHT sPRIMNT "
. FETHT) BUDTR FRES r;:u.
1 FEINT . "IPRIMT tPRINT " "3
e FRIHT ! FH MODE DESSTIH:
eE FRINT PR Y TAE"IPRINT
47 FREINT "L EFFA LE LTECRAH STOBETIEMT "3
426 FRINT " EM FREZZAHT LA BARRE"
4 FRIWNT " O ESPaCEMENTY
436 FREINT (PRIHNT
491 IHFUT "FRESSEZ LU ET RETURM SFRES AUDIR FIMI":E
492 IF LEFT% sla="l THEH 499
497 PRIMT E0TO 491
423 FEIMT CHRE$O1Z
SR RETURM

- 154.
GREOFTEST SUEDERD

459 ;:
Z 4 FOR GOSUB4GE4E: X - % -~ O 7 UFLAG ~ AF ~ F
I DELETE LINE 48 33330 NN RN R R R
S 21385
=
g =914 1
s LS

RIZ2:FOR ¥=0.8 TO ”Mﬁ”'DOT K,225+”B*SIN§Xf2@.Bﬁ 1STHERT
. hﬂT

5] =0+1, @THERT
I-"DQI"'“F ﬁﬁ‘ﬁ @ F—T.O ED’“E 4Ea4a
F="TEXT":GOSLE 40040

AF="TH":GOSUE 46040
F=Z.2:Ag="GRAFICS" 1 GOSUE 40640
F=1.Gipd="TEL., 0 ~ ITS1114":1G0ZUE 40040

SLZTATETRIRN

. BI0=3, 00 F—-.B-PU«“B 40848
B:0=173, @:UFLAG=1. B:F=1, B:1GOZLE 4
0=, 1 0=12, 01 F=4, B: A$=LEFT$ A,

4@ G:READ A%
IF" THEH FETURH

¥ 2t HERTIRETURN

: F=@, 8 THEH F=1.8

FOR M=8.9 TO LEM<A$>-1.0
D TE=MIDECAS, M, 10
: CASCOTEY D
3 FOR H=8,8 TO LEMI(GR$>)-1.8 STEF 4.0
IF UFLAG=1.8 GOTD 48120
IF MIDEIGRE, M, 12="-" THEM H=H+(2. O¥F1:G0TO 48100
MLy NI[!fFPf Ha 122 aY=UALCMIDE(GRE, H+1. 100
ZTUF: JCEX="+VAL(MIDE(GRE, H+1, 1) 0 %F
“+UQL(MID$(GE$,N+ 1‘*VF JCEX=Y+UAL CMIDE(GREF H+T, 120 4F
JCSN, JCeX JOTH, JCB*
71,5 THEH GOTO 40@“8
+1+UAL CMIDECGRE L, N42, 1) 0 4F
fHLHUAL CHIDS (GRS, M43, 10 0 #F
HELHIZHE WL JC9N, JC10Y C

EH+8, DR =MAKY THEH M=K1iy=Y-10, OF
HEMT M
FETURH
IF MIDEIGREEM, 13="" THEN VY=\'-9, @¥F:G0TO 48120
C “HL(MI[$(PFI H+1, 1)2%F: JP“' =Y-UALCMIDE (GRE, M, 130 ¢F
¥ F¥ H+3,1**F-Ii4"V—“HLfMID$be£ H+2. 12 0%F
_..TP4”

BHES =@, f THEM Y=Yl tH=h-9, GFF
UITROER ', 313133377, QOUTES, 252745477, #

274147 x.: 12 532444 152626563137

25 2 1213213153311S51 16273536 7

T+, J2I6 1454, COMMA

155

£ B, 1216214 1529627471256
4444555647 27162772 3
4,4147 13531447

‘:--:'141 444
SHSIEET :
1627274734332
: ALITLITAY 14441141_,
5“1 141" ol 111?1141"".1—.1 v47s

T Fa 1117144417577, 5, 121627572 15151535343

TEEFEFF T TEST

.8 THEM GOTO 148

CoLaDRAN A+SH. B C+56,0 8:G60TO 120
THE FED LIGHT":¥=120, B:%=80. 0

iNZUE 40840
OH OH GREEM ''"ii
SUE 48040
AFILL 138,68 EMAR, 106

IF C=1.9 THEH
A, Q3 :WAIT TIME Qu:?E'HD OFF

i
-
L4
D
B

i
o
12
=

D

"HIT TTHE 2
M TEST

C HOC 2, B e CO=
OUME 2 1 18 &8 FFE

T TIY‘F' t'h-' S8, @)

)

A+ 1-gDUHﬁ 1 D 5 B FREGQCIL, B+80

HE=125. 8+70, A-5-2. 5
B THEH AF=" THE EHD":F=2. 8i¥=149, 2:G0SUE 40046
H THEW WHIT TIME 10692:G0T0 1

W @ THEM HiG=125.8

G.HG 1S

A8 THEM aF=" LaKE P ! "
. OO /RE SLOW ! "
1 THEM =" STTEMTION FLEASE !
THEHM Af=" HOT GO0 "
THEH af=" MMHM, .. "
THEH fAg=" G000 "
1opE=" LERY GOOD! "
faF=" EXCELLEMT ! "
ZUPERE ! "
MARVELLOUS ! "
GEMIWES ! "

= FILL 57,87 TI.183 8

PN NN

a0 o THEH GOTO 714
heE

18 14 0 FREGH 1008, 61
1 T TIME 1&:HEST
19 =175, 8

16

s

5i

‘=1.ﬁ

$OETO
1 TH LEH'hF"—I @ STEF 4.
LBOEOTO 48128
i-H;l?="ﬁ" THEH ¥=4+02, O¥F 21 60T0 46160
AL Bk Ff.H.1004F: ML CMIDECGRE. H+L, 10 HF
FOGRE, H+2, 10 0 ¥F L TOAN=+UAL CMIDE (GRE T, 10 2 %F
CIM, JC4%

.

MMAY THEH M=i1:v=y-16, G¥F

FETUEH
TF MIDECSREHL 10" THEM Y=Y/-3, B¥FIE0TO 40130

: L CMIDS CGRE, HeL, 14 T VAL CMTDS {GRE Mo 100 4F

‘ AL CMIDE CGRE . M2, 10 3 4F

IE

IF Y-S, GFFC=6, 0 THEH Y=b1iK=i-2, O%F
HEXT I

RETURH

DATA BLANCO. - UITROER !, 313133377, QOUTES, 25274547, #
DATA SSLLITS14T 3, 1242 4441526 26563137

DaTé 5. 26 1 D5 718, 1213213153311551162735367
DATA 3

TATA ESZILIT .+ 32361454, COMMA, 21323233
LETA 29550, IZ1E2 141525027471 256

[ATA
DaTa
rHTN

44445556472T162775 3
4, 414713531447

Py 6, 21411215144452531SI7ITSTL T
IT4T1213151652535556.
B41S162747.0 1. ITIISIG A, 1, 21 32T2ITIIGA 4

b 1545427 7, 1EETETATI4EEIL 313456, AFE,
MI"ET'ET“’"ES 1117174714441 14 S2530056. -ﬁ
"14]41‘“f 17114152561 747

T14441757.7, 6, 12162757 215151535347

Sl 11171151
PATSESTI1 41,

M 111’91q?11'”"’ 33340

560114

2, 17VET1I2561151

*iflnin

Py
—

LEE
T T

ATy 18.8,16,20, 23, 9,2m,80,
DaTa 135,25, 148,25, 140, 5, 14
taTA 8,35, 5, 20,399

23,
8.5

158.

=0
>

» 38,85, 30,585,308, 135,30
140,06, 135,06, 135,08, 85

nEMOS GHD FOKE ADRESSES UIDED RAM Z2K RAM 159

GOTO 26

GOTO E40608
GOTO &d4000
GOTO A4000
GOTO A4BEG
COLORT 2 @ @ &
‘OKE #131.1

1,28:PRINT "1 CHANGE BACKGROUND COLOLR"
FRINT "6 AHIMATION .~ COLORT
PRINT 2 FLASHING BACKGROUND®
SOR 31, 18:FRINT "7
IRS0F 1, 161FRINT "3 SCREEM LINE ADDRESS"

508 31, 161FRINT "8 ...,
? 1, 143FRINT "4 SCREEN CUP:OP ADDRESS"
OF T 143FRINT "8 Liieveuienascss

1, 12:FRINT S ANIMATION. COLOURS 1613"
123PRINT ™18 uuureees
ZTIMEUT "WICH PROGRAM "3P#: bR InT

F P OR Ff="2" OR PE£="3" OR P$="4" THEM 46

4z IF Pg="S" OR PE="6" THEN 46
4T IF Pg="7" OR FE="2" (R P$="9" OR P$="10" THEM 4000
44 CURSOR 1.4:PRINT "WRONG INFUT DHLY THE NUMEER OF THE PROGRAM "
45 CURSOR_36.Z:FRINT "WICH PROGRAM :GOTO 40

O]

B 0] e

—

1.1
36

2 GOTO 2@

T'HIITU

e THOT E% IQHN #FF

SH BOTO 126

36 FRINT CHREC12):ASH=4

OR Ax=e TO 16

POKE #7IES+I00N, #FF
FOKE #TIE+INANHRTE, #FF

f'ﬂ'1
LﬁPT B3 ASYN 15-A5K
unﬁHB 1186
WRIT TIME EX
COLORT @ 2 15-A%% A%

BOSUE 1160
WEIT TIME E%
HEHT

GATO 16048
RIN=GETC: IF RIN{XIZ THEM RETURH

160.

» "IRTE
GOSUE 64500 G0TO 20
THT 2G0OTO 29

e THER :
G, 1T FRIHT =

PIF ASNE1S THEHW ASX=H

CETHT
EETMT

#gFED—u#SE#H
I?”Blﬂﬁ

FE CHREC 120
FEIMT ©
CoTHT
FRINT »
FRIMT
FPEIHT
FCIHT
FEETURM

LOCATION"
LOCATION":

LOCATION"

ITH LIHE EEGIM LIME":

EHD LTIHE"

o G50TO 2158

FIN=G
RETURH
ERINT CHREFO1Z0:PRINT :PRIMT "CHARACTERS FROM (-2 TO
FRIMT "LIMES FEOM <@ TO 23 > “iPRINT

FRINT "IMFUT CURSOR EXAMFLE 21,12 FOR CEMTER OF SCREEH":FRIMWT

THFUT "IMFUT E "sBELNLA FREINT :FRINT

1.8 0OF A1%:27.8 THEHW FRINT "WROHG IHFUT":PRINT :GuTC

{1 wom

i

TO CHAMWGE ©™LC

CPOKE # "iHERS$C CHTFEA-C#E5¥
X TO CHAHGE + AF

"EOKE # "HEM((HTFED-(#
tFRTHT
HT_"FOR OTHERS PRESS RETURH LFOR OTHER FROGRAMS SPACE EAR"

L 4220

E 4220
T 4220

g ~.ll'/ E'
.8 THEW MOCE @:GOTO 26

161.

CEM FPOKE G2, #F

"HO PROGRAM TH"3FX

10T
G PETNT :LIST 168A-1676:G0SUE 2158:RETURH

162.

ETORNYTHM

390
406
426
430
440
450
460

ﬂLEﬁE 16660
‘I

Hi". 2.8
MECLLLE
MECLZ,
MEC16,
FI=a,
F1= *, g
L“'I‘PQ PLID2 F"
DATA 31,22,.31.36,3
THFUT "YOUR HAME P
FRINT
FREIHT "BIORYTHM OF YEAR OF MOMTH “:
IHPUT ¥
IF X%<:"WEAR" AMHD XE7 >"MOWTH" THEHW GOTO 3
H1=@. 68
ENSLE 2000
2.8 THEM GOTO 400

21=2.8 THEH IF B2=2%9.0 THEH S0TO 480
R={B3-1200, 3> 4, 8
IF INMTCRX<>R THEM GOTO 460
Hi=1.8
GOSUE 235006
FGP I=1.8

=P2/F3
.31,31,30,31, 30,31
"ihE

MEMT J
H1=N1+¥-B2
IF Bi=12. 6 THEHW GOTO 51@
FOR J=B1+1. 68 TO 12. 8
READ X
H1=M1+}
HEMT T
IF C3-B3<{Z. 8 THEHM GOTO S60
FOR J=P3-1299. 4 TO C3-1961.0
IF IHTCJo4, @2=Ts4.8 THEH Hi=H1+1,
H1=H1+385, &
HEMT I
FESTORE
IF C1=1.6 THEH GOTO &2
FOR J=1.8 TO C1-1.8
FERD
H1=M1+3
MEXT J
=(03-1360, 8.4, 8
IF IMTOTX:T THEM GOTO &40
IF 12,8 THEM MHi=H1+1.8
I1=H1:T2=H1:1T=H1

163.

£50 READ ¥
S FRINT CHR$C12)

7 FRINT EBIORYTHMIC CHART “sHE

FRINT :FRINT

BI%=BZ:B1%=E1:EBI%=E3

FRIMT "DATE OF BIRTH":E2%:" "iE1N:" ":B3X
FRINT :FRINT :FRINT

PEINT "1=IHTELLIGEHCE"

FRINT "P=PHYSICAL"

PRINT “E=ENMOTIONHAL"

D=041. B
IF Do+l @ THEM GOTO 1626

1= 1“ @ THEH GOTO 1566
C1=C1+1.68

IF C1*12.8 THEH GOTO 220
READ

IF ¥9= 1 0 THEH GOTO 1586
EOSUE 3660

GOTO 1ﬁ”

RESTORE

C1=1.6

CI=C3+1.0

GEOTO 25E

[=D

IF D<18. 8 THEM 1823
FRINT MEoCLds" "3l HE]
FPRIMT MEoC1as" "alis " ":
l!:_" "

3 FﬁP J=1.6 70O 31.08

1858 SE=VE+RE0 T

1858 MEXT J

164,

FEINT V3§

COTO 745

STOP

IF %$="MONTH" THEM X9=1,8

FRINT :PRINT " BIORVTHMIC CHART OF ":M$::
FRIMT " FOR "sMECCI1a:" "3C3%

FRINT
F'F: I ”T " " H "y jf‘ "
FRINT ™ a

FRINT

D=1, @

RETLIEH

IF ¥$="MOMTH" THEM 43=1.@

PRINT

D=1, @

FETLRHN

FEINT :PRINT "MOMTH,DAY.YEAR OF EIRTH"
FRINT "EMAMPLE ~EIRTH OM 3D MAY 1942
FRINT "P RETURH 3 RETURH 1942"
IHFUT E1,
RETLRH
FRINT
FRINT " GIVE MOMTH OMD YEAR FOF THE ETORYTHM"
FRINT "E}X FOR AND STARTIMG OH_JAMUARY 1980
FRINT "PRESS 1 RETURM 1988 RETURM"

IHFUT C1.1
IF _BI>=C3I THEM GOTO 98
RETLRH

m
4

- =l R o F N) o8 | 165.

H
o o

- = =T
-

B KNI D
()

I, GTHOTECS, 80 =392, A HOTECZ, @0 =027. ¢

TL80=V, aCOL0RCd, Br=11,

)

THTH £IS

TIME 7=

CUREOR 44, 2

LB

1L ECPLENY2G, 8 COLORCPLAYY

fLECRLAMY+IR. B @

FRIMT " "
FRINT "

166.

Froniarsl B S e e

1

=

16 : |

P SOUHD 1 0 R¥I-52 8 FRENCRE1Z, B+
10 €S

s OUHG < 8 FREG(SH1Z, B+T0

¢
o0

=l o R R B s

= FOR HARDWGRE OFR SOFTWARE":RHTE:

PEOTO 21
1L, EVIROTD T

K=FHDCHMAR+L, 6
=RHOCA, Y%

IS T A E

EHE OFE
EHILEL OFE

167.

168.

M
@
! UMD FE

CA A a4 e e iad

TR P

.

e

=

169.

=T

g aTT TIME

—_

YT FTRIRIE

FoMy s HEST

TIMF |

S.0. 4,58
7.2, 5.70
t*:"‘»"'n

a
5]
a
5]
TR

’T ETHG L
U FOE THE SMA

TUE SEMER TS WEGE YaUE THE FOLLOTHEG FURMCTIONS:

[T

BLTHE UF TO

DIHG AL RE

HOTES
ExCH TIME WO FR

FOUREES T2 B GRS I S P

1

z ot :

3 TIFRINT tFEINT "TUTOR MODE oy
4 GOTO 4

HEM TUTORY=1:G0T0 7

- LARGE OF SMALL. < L -~ % 2"
Shh=0 GOTO 2
Ly T—iFH MOCE 2
'S THEM MODE
"':'INT "AMSHER OMLY ?
CHUELOFE & 15 ”
! HAED 4l HUT_. 1
1 Tﬂ 1"fﬁP

i R e

.ﬂWP"°1 Wal S
Al COMPYCT
D e B s B
@ ﬁ"WnTEfIY:ﬁ.ﬁ'°NﬂTF 1%
9 TO 1:READ COMPXMOIN
HORD . B, @23 b
WIMEMT Tk

B s R RO R s
0

e

HF“T'I'

o781y

ST TIMERMN:SOUMD OFF 13070 22

" (=0 GO0 36

R ITH=1:G0TO I8

o LRARIGOTO 30

o4 =(~13 THEM OFFSET=0FFSET-7S. @1G0SUE ZE1G0T. 3
T LMD OFF sMODE 8:G6OTO 3

P T S, G G I8 THEM STYLEN=KEYY:

o ACTEUEY =1 TE CHEW A6 ﬂC f!F%.—ﬁﬁ THEH DCTAVES

171.

o

l
4
4
El
<

5]
1
!
Ie]
[

u ii 17

1

Y opk b ek ek b s

=TIMERN+1 1 HERT

| RECORDE=0: aREA

THEM FOTHTER™=0:

' THEH PAGER=LIMITH:

- ElE

H=ROTHTERD

THEH POTHTER?

172,

4 S5, @
Lo tS, @ FHDOLS, 6 RHEOLS, @5 RHLDC1S, 80

e R UDF HAHRUOI

________ 173,

1 MOGE @:FPRINT CHRF(12::PRINT :PRINT

2 FRIMT "...... vereveares TOWER OF HAMOI. cuveeeancnnnnannes”
I FRIMT :PRIHT

4 PRINT "AM EXAMFLE OF AMIMATED GRAFPHIC CAPABILITIES OF THE"
b= FEIMT :FRIMT " D A I FERSOMAL COMPUTER"

= FRINT :FRINT :FRINT :FRIHNT "DO %OU WAMT IHSTRUCTIOHS"

B PRIMT :PRIMT "@AHSWER YES OR MO ":IHFUT A%

=) IF Af="YES" GOTO 1G:IF A$="NO" GOTO 26

o FRIMT CHR$C12):PRIMNT :PRINT "AHSWER OWLY YES OR HMO":GOTOD Z
10 FRIMT CHREC1ZMIPRINT :PRINT

11 FRINT " TOWER OF HAMOI":PRINT :FRIMT :FRIHT

12 FREINT "Y0U HAUE TO MOUE ALL HORIZOMTAL BARS FROM COLUMM 1 TO"

1z FRIMT "COLUMH 3 WITHOUT PLACIMG A LARGER BAR AEOVE A SMALLER"
14 PEINT "EAF. FOR MOWIMG THE EAR %OU FRESS OM 1 . 2 OR 3"
S FRIMT "GIVIMG THE MUMEER OF THE COLUMH FROM WHERE THE ERR"
& FRIMT "HAS T0O LEAVE FOLLOWED BY THE HUMBER OF THE COLUMH"
FRIMT "WHERE THE BAF HAS TO GO":FRINT iPRIMT :FRIMT

FRIHNT "PRESS AMY EEY TO START THE GAME" -

T=GETC:IF T=4.8 GOTO 12

CLEAR 2068

CGIM Z01om, @

FEINT CHE$O12D

lﬂLIFT ToBoaa

IE

4a

5]

=18

v

]]

20 GOTO 119

pRsls) FEIHT UTHUALTIE MOVE"

11| . NEJCIN+LFRINT "“HHF MOUE FROM 1.2 OR 3> "3
1 WAIT TIME S:IF P=6.8 GOTO 111

11z 1rM1N=M1 FFIHT m FRINT " TO "3

113 GOTO 113

114 PIPRIMT JCLN: tPRIMT " MOUES"
126 183

136 X I < M. 106

146 IF Mi=MZ OR 11'—ﬁ 5] GHTD 160

156 ' 110+16, B¥Ml

126 1*?+1ﬂ.u0ﬂ'

176 '3

peds bl

wiH GOTO 118
:FIWT "THHT TOOK ”ﬂH "y JOANE "MOVES"

2.8

'"iﬂb
Ma+10, BEMa+2, 8

FFTHPH

IR R

1
1
1
1

4

e

17

DD DS 0D

T

174.

COLORT @ 15 @ G:PRINMT CHR$C1Z. B2:PRINT :PRINT

FEINT "THIZ FROGRAM DRAW A STHUS WAUE OH THE SCREEH"

FEINT :PRIMT :FPRIMT "IF YOUR MACHIME IS AH 2K REAM YOU MUST CHAMGE
FREINT 0 2R IM LIME 12 AHD IHTO 44 FOR A 12 K MACHIHE"

FEIHT S ACHIEVED BY TYPIMG EDIT Z6 AMD FLACIMG THE"
FEINT OH THE **6°* OF *7&R*7WITH THE CURSOR ARREOL
FRINT RHE PRESS CHAR DEL KEY AHD °727° OR 7747 EEY, "iFRINT

FRINT :FRINT 'FRESS AHY KEY TO COHMTINUE®

F=EETC:IF P=@. & GOTO 2

MODE Sa:FRINT CHREC1ZDIPRINT " FUHCTION = @A $SIHUS B %X - Ci+ D"
FRINT "a=7 ":
F=GETC: IF P=8, & GOT0 14

WEIT TIME S:Al=F-42. A1A1%=A1:PRINT Al%. "B= 7"
F=GETC: IF F=@, A8 GOTO 16

WETT TIME S:AZ=P-48, @:A2%=A21FRINT AZ%, "= 7"
FoRETC:IF Fep.d 60TA 18

WATT TIME StA3=P-43. 0:AI%=A3iFRINT AT, "D= 73
F=EETC: IF F=@, 0 G0TO 2

WSIT TIME StA4=F—d8, r#n4" =A4IPRINT A4,

WATT TIME 2@:PRINT CHRE(1Z

COLORS & 15 S 1@

FRINT "GRAFIC OF THE FUMCTIOW :"

FRINT Als"SIM"1AZ:" (H-"3AT; "2+" 144

a=EMARC S BT
M=@.@ TO ¥MAY STEF D

CRAW H.@ M, YMAK S

HE=T M

A4=YHAY. 2, B-AdHD

FOR M=8.8 TO A4 STEF D

DRAW B, Ad=M HMAN, A4-M 5

HEXT M

FOR M=A,8 TO YMAY-A4 STEP D

DRAW 0, Ad+M HMAK, Ad+M 5

HEHT M

DREW 8,44 HMAM.A4 10

FOR ¥=0.68 T0O XMAX

DOT ¥, STHCAZRC D, GRF TR KMAK-AT S SHDHAL+YMAK-2, B 15
MEXT ¥

FRIMT "PRESS AMY KEY TO COMTIMUE"

W=GETC:WAIT TIME 16:1F W=0.@ GOTO 220:G0TO 12

e

o

FRIHT ¢FRIMT iFRINT :PRIMT :FRINT "G R A F HLI C 0OF & 1M I"™R]

FRINT "===as========== =======":PRINT :PRIMT :FRINT
LI=T

pPRITHMET I OUE 175.

[SJs)

T CN=E y: Ry=01 =0 FOFERY=A: MODE &

SERERL=TN 13: GOSUE ZI00

Z1:PRINT g RITHMATIC TERCHEFR":

FRIMT "for add Fress.ccececcnenns .1"?
LABIPRINT "for subtract Fress 2"s
JATIPRINT “for take-awad-ad
CAEIPRINT "for multirly press
JASIFRIMT " for divide ere
"for multiela-d

AT IITITITIT IR, 1 18
2

-
FN
0
ales)
—
-
=
=

THEH ZBE: IF C'““‘l THEH 4£

49 THEM 168 IF -
T THEM 7@G: TF

» THEH e@@: IF C
MODE @:GOSUE IZ8&:REM CLEAR TOF OF SCREEM
LEFRINT "abht

=R MODE B

LGSR 18698

E —1 GOTO 256
L sEOTO 13

- THEH m —u"+1 rnﬂne ~A5A: BOSLE
: QHC“A»’_QH St B FSH ""

F CNP“UR WERLYPEIGNSLE 1080
MHIT TIME ﬂ : ISP
IF E¥=1 G0OT
GEOTO 162

FFIUT "WE’FRIT"

TMODE ©:GOSUB Z3I6A0:REM CLEAR TOF OF SCREEM
PFRIMT "TAKE- QMQ”—HDD"Y

”-ﬁ"rHP“ﬁP KPYL WP GOSUR 1607
’ QSUR 1860
=k 1 CLIRSOR i GOSUR 1960

FEM CALCULATE PﬂHDﬂM HUMBERS

176

. YN+
175 =A% G0SUE 1069
ks SIGOSUE 1668
4I5 : 49 PEN FPINT Pf

448 ’35 PEN AND 13

445 HE ZO03: REM DRAW BRSIC FACE

1 THEH GOTO 4&%5
455 GOSIE Z106:REM DRAW REWARD FACE
1ER PUTU 4’8

375 |_:|”_”E 1°¢ |f1ﬁ

426 IF POPEP”‘I a THFN G“Tn 18
425 IF 0%=A.@ AND CR%=73,@ THEM PRINT "-"3
81 THEH FRIMNT "+"3:R
73 THEM FRIHT "-"1:
‘RX=21.8 THEM FRINT *

RYE=RXN+1:60SUE 2046 60TO S25

b ZA4AIGOTO S25
= SRAAIGO0TD S25
.-1 GOSUE 2ad4Q9:60T0 925

IF
IF

CF:. 14
=1 OR FOPERY=2 THEM GOTO 475
THEM HE=CHREF(CRXMIFRINT MF::RN=RN+1:605UE D848 60T S

B 32A@:REM PUMISH FACE
L 2R58

%=1 THEM Hﬁ“E B ﬁﬂTﬁ 415
CH=UAL CHED § HPH=HP -7 1 YPE=YP
WAEIT TIME S
CLURSOR HPH4+T
FEIMT "MULTIFL
GOTO @
FRINT “DIVIDE"

SEOTO FE2

PREINT "MULTIFLY-DIVICE"
SFOTO 282
1 SUBROUTIME TQ FLACE DOMIMO DOTS
"EM EXFECTS TO HAUE DEFIMED BEFORE CALL

FEM THE ¥ aHD Y CURSOR POSITION OF THE FIRST 0OT
EEM SFECIFIED BY CHFNY AHD (YP*)
FEM THE HUMBER QF [0 T0 BE FRIMTED

FEM SPECIFIED B (X
o =F

Hu=CRICURSOR WPYLYPEIRENM GOSUE 1000

1 GOTO 482

GOTO 1626
FMEHLIGOSUE 1046 CURSOR HP, YRXN-MX

PR-SIGE0TO 1L

FHF F —1 TO ”"PﬁlﬂT "M EHERTIRETURH
FEM ROUTIME TO GET A CHQRQCTEH AHD TEST
FEM FOR OTHER FUHCTIOME A5 TAE AMD REFT
REM ZETS UeRIABLE FOFERX TO EQUAL 1
FEM WHEM DESIRARBLE TO RESELECT A HEW PROGRAM
ETC
ETC:IF CR¥=68 THEM 1511
=19 THEH FOFE FX=0: IX=0:G0SUB 2048: GOSUE 2856: RETURH
=1& THEM POFERN=1:RETURM

RETURH

| THEY ARE <
1ﬁ+FHD'1 LB

THFH

CURSOR &, 20:PRINT
FRINT
CURSOR &, 21:FPRINT
FRIHT "
CURSOR @, Z2:FRINT
FRINT "
CURSOR @, Z3:FPRINT
FREIMT "
RETURH
CURSOR 28, 14:MODE

11

NIPRIMT "# ™
SFRINT "# #"3
STPRIMHT "HH####":
18:FRINT "o o'
QIPRIMT " ¥ "3

CURZOR 43 lh.FFIHT "
" OEEY Tﬂ RESET SCORE"
" PE” T RESELECT"

CLRSOR FEq+:,..FFIHT
FETHFN

I ROUTIHES THHT FCIHT LIALUES HE

ZIFRIMT " °77 "
P OFRINAZ, TIFRIMT "7 "0

BrEO0TO 162

O LT
.

43 FE?HPH
141 RETLURH

178.

GO0 FE M Dok

= JT” ”HWC » SURHSMES (S8, B, aDRESSEISE, B
19 FF*HT [+ El=0.8 TO 59,48

S

Ta

iy

s

demonztration Frogram
who do ot koow aboogt
MFUTER. !
+4+4+++§‘+#~+++H'++'HH-+++++4H'+++"

h POLE 1 3
FF”IT " for Feorle
FRIHMT "%
FFIHT :

: a8 Tu S3.8
17 IHFI' 2nt

CURSOR @18
FREIMT " #ﬂ###ﬂ#########“#### !
FRINT "4 :

FRIHNT "# lle =hall wmake a lizt of i.e. S8 Ferzons with R
FRIHT "# ' #"
FRIHT "# 13 Hgnc un
FRINT "# 2y = '
FETHT "# I F

FREINT "# X HFFF— #n
FRIMT “# #"

FETHT "H## 8 R R S H B H R R AR B R R R R R R AR SR
GOSUE 1065 I’F

FRINT CHR$C12Y

FRIHNT ”###"

FETHT "# HOTE - If wou ture an error Fress on '"CHAaR DEL! #"
FRINT "# -zzet button !
FETHT "# -, 4 command to fhﬁ comeputer nust be !
FRINT "4 fn”nllh—u“l by presszina FETURH. w!
FRINT "# = When 9ou hawe tured all the names 200 wanted #"
FETHT "# to enter Just tuee HALT and the zame if wou #"
453 FRETHT "# want to pass to oan other part of the Frosram !
iég "###ﬂ#ﬂ#################ﬂ################################## !
3 l__!
=00
A e T F e T T T e e e e PP P T P T e Tl
g MEHMU '
ST FETHT R ,
S FETHT e data basze = HEW +"
Ef FETHT : the data =y LOOK +"
] FETHT ~ch OHE of the data ->» SEARCH o
Ly FEINT - HalT !

Sin EEINT
SR PETHT "adddd bbbttt bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb
T3 EETHT CHREOIT

179.

CIM OETIERC], @0t IHPUT "Ture now cne of those cetions "SOPTIES
IF OFTIE$="HEW" GOTD 10560
IF OFTIES="LO0OK" GOTO 2600
1F OFTIE$#="CSERRCH" GOTO 2068

1€ OFTIES="UL" GOTO 4684

IF QFTIEE="Hal T" G070 SAGE

FRINT

FRTIHT "Fleaze answer onld with HEW, LOOK, SEARCH or HALT."
GOTO &G0

F‘EM B TE UL T3 V00 R T o o3 B R o v 08 SR R R) R A | =y P K K

R o8 0 X o0 S0 R R R R %

1
S

:ﬁ:ﬁPIﬂT—"Vau have now looked to the S8 rerscons 'Y

: e ehhees SEARCH TR0 30 230 0 280 0 o 0 OB % R % R K O K 0% 8
Fi I‘IT
FRIHT " w0l WAMT TO SERARCH A FERSOM. "
FRIMT " Which characteristic do qou know??:
FRINT 13 = rHAME"

FRINT " LIRH"

FRINT " DRE"

FRINT " LIME ™"

FEIMT " OME"

FRINT CHE
LT EOMMsH
IF KOMMAMD

IF KOMMAHDD .:—'-

l-%'fl B2 THPUT KOMMAHDOE
: GATO 2266

D70 515]
EOTO 3504
g GEOTO 3408
1= }FIHUHH["!I—"NHHF“ GOTO 2016
FETHT :PRIMT "@nswar only with HAME, SURH. HUME. ADRE o HOME!"

180.

ST T
CM e e e TEERTL BIEAME e e e e e
COTHT CHREC LD

TTH Mg] : oo ko the name WES o MO UiDE

T?— I"I_llll
TC‘ r, ="”E" n hn-r” ;
MT sFRIMT " Anzwer onla with ®
HT fFRIHNT " Here follow the 11

BT or MO L UiPRIMT sE0T0 3282
=t of the namss ¢ "

OIS "HALTY THEH 2236
"I HAMEEC T E

0oGoToO 2

IHCHT "erh numbzr do wog want to Ses"s ¥
HOT 5
FEM - SEARCH SURMAME - ———

M F 2 IHPUT " do owou know the surname ture YED or HOYIFE
1F F#= "Hl"v" GOTO 3
IF FE="YES" GOTO

anle wit YES or HOO!PPIMIRRTHT 25070 3TAZ

FREIMT :PRIMT " A Fleazz
FFIHT " Hazre follo 2 list of the surrames & "

_.1
F HHNFs-Ikﬁi}"HﬁLT" THEH 2266
GOTO 3785
FRIHT Ixs" ":SURHAMESC IR
Th=1%+1
IF I%=20 G0TO 3346
THEUT "Wich numbzr do 9oy want to see "IN
GOTO I540
FEM ——— SEARCH ALRESG-———————m e
FRINT CHR$:12:
LIM GFECL, B0 THPUT " Do vou know the adress o tuyee YES or HO"iGE
IF GF="HO" GOTO 242
IF G#="YEZ" GOTO 7FZOd
FREIMT :FPEIMT " Answer onle with YES or HO ":FRIMT :G0TO 3482
“RIMT " Hersunder the list of all the adress

IF HAMEFC T3 "HALT" THEM 34£6
FOTO 3495
F?IHf 53" "spDRESSEIINY

w=2R GOTO 3446
THRFUT " WHich number do wou want to ses "31IX%
GOTO 35460

REM SEAR MUMEEFR

f FREINT CHREC12)
GO THFUT " Wich number do aou want
;?1 : I

HQNE hH;MH

LEDTTHFUT "Wich nams do w9ou want to see "IGEKEHDE
=GEEEHDE GOTO 7ASA

181.

SURMAME EHOLH

Axr THFUT " Wich zurname do 9oy want to s "IGERENDE

ADRESS FHOWH= == —m— e mmm e

=z do wou want to zee "IGERENDE

23 THFUT " Wich
KEMDE GOTO 7

CURZOR S, 2
FRIMT " #$% HOW FRESS OM ' RETURH ! ook
CLURZOR 5.1
0 FRINT " R ||

A 0IM TERUGEC L, @3 THRUT TERUGE

RETURH
FEM s
FEINT
FEINT
FRINT
A8 FRINT
46 FRIMNT
FEINT
RETURH
REM 48 :
CURSOR 54,2
R 7,21
F »
CURSOR 14, 13:FRINT ADRESSECIN?
FRETLRH

fddddededddd | GREELSUBR ffddded e

o DB DB RS DR S SR 3 DY D80 30 SR DR DB R W S DA O R 0 580 R o8 0 80 R 20 DR S S0 3 S0 B S0 S0 R 0 O 0 R R

" R K 0 580 B0 80 SRR Y S 0 TR Y S0 0 N0 DR R DR N 390 R DR 0 0 R0 R S 0 B R B o0 e o K B o

s FRINT SUBR fddddddddddodop by
TPRINT I
FRINT HAMEFCTIYN

	PCRM_00_0001
	PCRM_00_0002
	PCRM_00_0003
	PCRM_00_0004
	PCRM_00_0005
	PCRM_00_0006
	PCRM_00_0007
	PCRM_00_0008
	PCRM_00_0009
	PCRM_00_0010
	PCRM_01_0001
	PCRM_01_0002
	PCRM_01_0003
	PCRM_01_0004
	PCRM_01_0005
	PCRM_01_0006
	PCRM_01_0007
	PCRM_01_0008
	PCRM_01_0009
	PCRM_01_0010
	PCRM_01_0011
	PCRM_01_0012
	PCRM_01_0013
	PCRM_01_0014
	PCRM_01_0015
	PCRM_01_0016
	PCRM_01_0017
	PCRM_01_0018
	PCRM_01_0019
	PCRM_01_0020
	PCRM_01_0021
	PCRM_01_0022
	PCRM_01_0023
	PCRM_01_0024
	PCRM_01_0025
	PCRM_01_0026
	PCRM_01_0027
	PCRM_01_0028
	PCRM_01_0029
	PCRM_01_0030
	PCRM_01_0031
	PCRM_01_0032
	PCRM_01_0033
	PCRM_01_0034
	PCRM_01_0035
	PCRM_01_0036
	PCRM_01_0037
	PCRM_01_0038
	PCRM_01_0039
	PCRM_01_0040
	PCRM_01_0041
	PCRM_01_0042
	PCRM_01_0043
	PCRM_01_0044
	PCRM_01_0045
	PCRM_01_0046
	PCRM_01_0047
	PCRM_01_0048
	PCRM_01_0049
	PCRM_01_0050
	PCRM_01_0051
	PCRM_01_0052
	PCRM_01_0053
	PCRM_01_0054
	PCRM_01_0055
	PCRM_01_0056
	PCRM_01_0057
	PCRM_01_0058
	PCRM_01_0059
	PCRM_01_0060
	PCRM_01_0061
	PCRM_01_0062
	PCRM_01_0063
	PCRM_01_0064
	PCRM_01_0065
	PCRM_01_0066
	PCRM_01_0067
	PCRM_01_0068
	PCRM_01_0069
	PCRM_01_0070
	PCRM_01_0071
	PCRM_01_0072
	PCRM_01_0073
	PCRM_01_0074
	PCRM_01_0075
	PCRM_01_0076
	PCRM_01_0077
	PCRM_01_0078
	PCRM_01_0079
	PCRM_01_0080
	PCRM_01_0081
	PCRM_01_0082
	PCRM_01_0083
	PCRM_01_0084
	PCRM_01_0085
	PCRM_01_0086
	PCRM_01_0087
	PCRM_01_0088
	PCRM_01_0089
	PCRM_01_0090
	PCRM_01_0091
	PCRM_01_0092
	PCRM_01_0093
	PCRM_01_0094
	PCRM_01_0095
	PCRM_01_0096
	PCRM_01_0097
	PCRM_01_0098
	PCRM_01_0099
	PCRM_01_0100
	PCRM_01_0101
	PCRM_01_0102
	PCRM_01_0103
	PCRM_01_0104
	PCRM_01_0105
	PCRM_01_0106
	PCRM_01_0107
	PCRM_01_0108
	PCRM_01_0109
	PCRM_01_0110
	PCRM_01_0111
	PCRM_01_0112
	PCRM_01_0113
	PCRM_01_0114
	PCRM_01_0115
	PCRM_01_0116
	PCRM_01_0117
	PCRM_01_0118
	PCRM_01_0119
	PCRM_01_0120
	PCRM_01_0121
	PCRM_01_0122
	PCRM_01_0123
	PCRM_01_0124
	PCRM_01_0125
	PCRM_01_0126
	PCRM_01_0127
	PCRM_01_0128
	PCRM_01_0129
	PCRM_01_0130
	PCRM_01_0131
	PCRM_01_0132
	PCRM_01_0133
	PCRM_01_0134
	PCRM_01_0135
	PCRM_01_0136
	PCRM_01_0137
	PCRM_01_0138
	PCRM_01_0139
	PCRM_01_0140
	PCRM_01_0141
	PCRM_01_0142
	PCRM_01_0143
	PCRM_01_0144
	PCRM_01_0145
	PCRM_01_0146
	PCRM_01_0147
	PCRM_01_0148
	PCRM_01_0149
	PCRM_01_0150
	PCRM_01_0151
	PCRM_01_0152
	PCRM_01_0153
	PCRM_01_0154
	PCRM_01_0155
	PCRM_01_0156
	PCRM_01_0157
	PCRM_01_0158
	PCRM_01_0159
	PCRM_01_0160
	PCRM_01_0161
	PCRM_01_0162
	PCRM_01_0163
	PCRM_01_0164
	PCRM_01_0165
	PCRM_01_0166
	PCRM_01_0167
	PCRM_01_0168
	PCRM_01_0169
	PCRM_01_0170
	PCRM_01_0171
	PCRM_01_0172
	PCRM_01_0173
	PCRM_01_0174
	PCRM_01_0175
	PCRM_01_0176
	PCRM_01_0177
	PCRM_01_0178
	PCRM_01_0179
	PCRM_01_0180
	PCRM_01_0181
	PCRM_01_0182
	PCRM_01_0183
	PCRM_01_0184

