Introduction to BASIC Programming

COMX 35 is a trademark of COMX World Operations Ltd

ChibPDF - www.fastio.com

http://www.fastio.com/

y

|
© COMX WORLD OPERATIONS LTD., 1983 .’F\ﬁ;s CONTENTS
All rights reserved. No part of this publication may be reproduced, stored in a . i s
retrieval system, or tr.ansmitted, _in any form f)r by‘ any means, ‘electrfmic, ‘ _a
mechanical, photocopying, recording, or otherwise, without the prior written ; PREFACE
permission of COMX WORLD OPERATIONS LTD. E ‘ g
‘ 1. GETTING STARTED 3
The information in this document has been carefu-lly checked anf:I is belie\'led E | 'Ig
to be entirely reliaple. No r.esponsibility, however, is assumed for inaccuracies. S 1.1 Unpacking the COMX 35 3
Furth.ermore, smfch information does not f:onvey to the !)urchaser of the product g 35 1.2 Connecting up the TV and the cassette
described any licence under the patent rights or copyrights of COMX WORLD " :
OPERATIONS LTD. or others. N tape recorder 4
i 1.3 Turning the power on 6
E ‘ “g 1.4 The COMX 35 keyboard 8
-7 1.6 The COMX 35 screen 9
E z 2. GETTING FAMILIAR WITH SOME BASIC COMMANDS 10
E
2.1 Using the COMX 35 to print a message 11
E B 2.2 Using the COMX 35 as a calculator 14
E g 2.3 Changing Colors 17
j 2.3.1 Experiment with the COLOR command 17
E 1 2.3.2 Experiment with the SCREEN command 18
) 2.3.3 The CTONE command) 20
E 1)3 2.4 Producing sound effect 20
! i 2.4.1 Experiment with the MUSIC command 20
) 24.2 Experiment with the NOISE command 22
E ‘]3 2.4.3 Experiment with the TONE command 23
244 The VOLUME command 23
E 13 2.5 Using the cassette recorder for storing programs and data 24
E 33 251 Transferring a program from the
- - computer to the recorder using PSAVE 24
‘ a 2.5.2 Saving data using PSAVE 26
2.5.3. Transferring programs from the recorder
El ia to the computer using PLOAD 26
a 25.4 l.oading data using PLOAD 27
Printed In Hong Kong .
E 4
] ‘ a 1]

ChibPDF - www.fastio.com

http://www.fastio.com/

255 Further points related to PLOAD
256 Further tips on saving or loading
programs on tapes

3. WRITING SIMPLE PROGRAMS

3.1 Your first COMX 35 BASIC program
3.2 Teaching the COMX 35 to jump (using

the GOTO statement)
3.3 Displaying and editing a program
3.4 Write a program which will accept data

from the keyboard (using the INPUT statement)
3.5 Algebraic expressions and BASIC expressions
3.6 Getting the COMX 35 to make decisions
3.7 Forming good programming habits
3.8 Simply programming exercises with solutions
3.9 Going around in loops (use of the FOR/NEXT

loop)
3.10 Breaking a complicated program into blocks

{using subroutines) — GOSUB and RETURN
3.11 Further editing tips
3.12 Creating special graphical characters

3.12.1 Built-in “’Graphical Characters”’

— using the function CHR$
3.12.2 User-definded characters
— using the command SHAPE

3.13 Time-controiled subroutines

— use of the commands TIMOUT and TIME
3.14 Functions of the Control {CNTL) key
3.15 Real-time control of a program

— using KEY and the JOYSTICK

v
ClihPDF - www . fastio.com

28

28

29

29

32
32

35
37
39
41
43
47
51
54
57
57

59

63
65

66

T T T TR LR

LLLLLLEEEERY

§ W

"
W

R

ﬁ?ﬂ

FUNDATMENTAL COMPUTER CONCEPTS

4.1
4.2
4.3

What is a computer?
The main parts of a computer
Computer software

COMX 35 BASIC REFERENCE GUIDE

5.1
5.2
53
5.4

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Programs, statements, expressions and functions
Numbers and variables

Operators

Mathematical Functions

541 Built-in functions

5.4.2 More examples on mathematical functions
5.4.3 Derived functions

Strings and string functions

Arrays

Commands to control the flow of a program
Command statements

Comment and definition statements

Program data statement

1/0 statement

Machine language subroutine statement

1/0 functions

Machine language function

MORE PROGRAMMING EXAMPLES

6.1

First example on CAl {Computer Aided

Instruction) — demonstrating the use of the

COMX 35 COLOR, SCREEN and MUSIC commands
6.1.1 The program listing

6.1.2 Notes on programming tips

69

69
70
71

73

73
73
74
77
77
81
81
82
88
89
94
101
106
108
110
111
112

113

113
113
116

http://www.fastio.com/

6.2 Second example program on CA| (Computer
Aided Instruction) — using COMX 35 to evaluate
mathematical expressions
6.2.1 The program listing
6.2.2 Notes on programming tips

APPENDIX

A.1 COMX 35 Error Messages

A.2 Key ASCII codes and the built-in characters
A.3 Important cassette recording guidelines

A.4 Index of COMX 35 Statements and Functions
A.5 Notes on Hardware

A.6 Memory Map

ClihPDFE - www.fastio.com

PREFAGE

http://www.fastio.com/

ChhPDF -

wvvwfastio.com

e =

EEXNRENNENNNN
L T T T T

mm
LUV

"
LY

USING THE CcOMX 35

Preface

Congratulations! You are now the proud owner of a COMX 35 computer.
Together with this manual, you now have the keys to the Magic Kingdom of
Computing.

The COMX 35 is a powerful, yet easy to use, computer and this guide will
show you how. This manual serves three purposes,

(1) ... to enable you to have fun with the COMX 35 without going through
the whole book. Every step will be explained, and you will learn by “hands-on*’
experience (chapters 1, 2 and 3),

{2) ... to provide you with some fundamental computer concepts, and a com-
prehensive reference guide to the COMX 35 BASIC language {chapters 4 and
5),

(3} ... to provide you with many programming examples illustrating the more
advanced aspects of the art of programming (chapters 3, 5 and 6).

To turn the computer on and connect it to your TV, follow the steps in Chapter
1. The COMX 35 computer has been especially designed to be easy to use, or
as the computer experts say, It is user friendly.”

The fundamental commands the COMX 35 obeys are described in Chapter 2.
Follow the step-by-step guidance, you wiil soon be in the world of computer
arithmetics, color graphics, sound effects and video games.

Chapter 3 deals with elementary programming, including teaching the computer
how to make decisions, and to obey a section of program repeatedly. Programming
exercises with answers to selected problems are provided. As a budding pro-
grammer, you will be guided to form good programming habits, such as using
“REM” or “comment statements” to record the thinking behind each section
of your program.

If you aspire to be a competent programmer, you should pay attention to
Chapters 4, 5 and 6. Concepts such as algorithm, use of subroutines and com-
prehensive information about the COMX 35 BASIC, graphics, and sound effects
are presented.

http://www.fastio.com/

{
L

The COMX 35is a source of fun and games. But, it is also a useful tool at the
office, at .home, and in the school. The COMX 35 and this Manual have been
designed to serve also as a self-learning package for BASIC PROGRAMMING and
basic computer concepts.

{ 3
SEER\R!

\

To program a computer is to write a sequence of instructions for the computer
to obey. Solving problems by programming is rapidly becoming a basic skiil,
which, like reading, writing and doing arithmetic, is to be included in the
“survival kit” of a school curriculum. The COMX 35 offers something to
everyone — the hobbist, the businessman or the student.

A
: ¢
a—

Programming helps to sharpen the mind and promotes logical thinking. Color
graphics and computer music fire the imagination. The rapid response of the
COMX—35 will enhance your creativity.

CHAPTER ONE

GETTING STARTED

! 1

-
==
E=
Es
E:
E
E
{1

ALLELLE.

ChhPDFE - www

http://www.fastio.com/

ChhPDF -

wiwy fastio.com

|

L |
3
g
|
-5
=3
=
g
i
g
1
e |

AR BN NENENENENNHNEHS.HNH..

& W

CHAPTER 1 GETTING STARTED

1.1

Unpacking the COMX 35

The COMX 35 package consists of
(1) ... the COMX 35 computer with built-in keyboard and joystick,

(2) ... a power cord with a plug at one end, and an AC/DC converter at
the other. The converter is intended to be plugged into a household AC
socket on the wall. Please check that your AC wall outlet voltage rating
matches the input rating on your converter.

(3) ... a video cable with a plug at one end, and a connector at the other
for plugging intc the antenna input of the TV,

{4) ... a pair of cables (with two plugs on each end) for connecting COMX
35 to an audio cassette recorder, and

(5) ... a user manual entitled “Introduction to BASIC Programming”.
{n addition to the above, you will need,

{a) ... an ordinary home TV. (COMX 35 sold in Europe and Hong
Kong are designed for TV sets using the UHF PAL system, whereas
COMX 35s sold in the U.S.A., Canada and Mexico are designed
for TV sets using the VHF NTSC system.}

{b) ... an ordinary audio cassette recorder (but NOT a stereo
recorder) which is equipped with earphone and microphone jacks
and some cassette tapes for storing your programs.

Note: Like all delicate electronic equipment, your COMX 35 computer
should be stored and operated in a cool and dry environment. High
humidity is especially harmful to your computer. If your COMX -35
is to be stored for a prolonged period, place it in a plastic bag
together with a bag of silica gel.

http://www.fastio.com/

1.2 Connecting up the TV and the Cassette tape recorder

" The television set is used as the display device. Input into the computer
{by pressing the keys on the keyboard) will be displayed {or echoed) on
the screen in one color, and output from the computer (e.g. results from
computations, graphics, etc) in another color. The cassette tape recorder is
used for the storage of programs and data. When the computer is switched
off, any programs or data stored temporarily in the computer memory will
be lost. If you wish to store the programs or data you have been working
on, record them onto a cassette tape.

To connect the TV to the computer, connect the plug end of the video
cable into the jack or socket labelled TV PAL {or TV NTSC), at the back
of the COMX 35, and the connector end into the antenna input socket
(usually located at the back) of your TV set. (An external RF modulator
is NOT needed as there is one built-in inside the COMX 35.)

AY 4

=

1

Reorient the receiving antenna

Relocate the computer with respect to the receiver

Move the computer away from the receiver

Plug the computer into a different outlet so that computer and
receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/
television technician for additional suggestions. The user may find the
following booklet prepared by the Federal Communications Commission
helpful:

“How to ldentify and Resolve Radio—TV Interference Problems’”

This booklet is available from the U.S. Government Printing Office,
Washington, DC 20402 Stock No. 004-000-00345-4.

WARNING: THIS EQUIPMENT HAS BEEN CERTIFIED TO COMPLY
WITH THE LIMITS FOR A CLASS B COMPUTING DEVICE, PUR-
SUANT TO SUBPART J OF PART 15 of FCC RULES. ONLY PERI-
PHERALS (COMPUTER INPUT/OUTPUT DEVICES, TERMINALS,
PRINTERS, ETC.) CERTIFIED TO COMPLY WITH THE CLASS B
LIMITS MAY BE ATTACHED TO THIS COMPUTER. OPERATION
WITH NON-CERTIFIED PERIPHERALS IS LIKELY TO RESULT IN
INTERFERENCE TO RADIO AND TV RECEPTION.

Power C i
To Wall ower Cord, Video Cable To TV Antenna or switch box
Socket AC/DC Converter (PALINTSC)

To MON Cable with black plugs, Cable with red ptugs To Mi
of Recorder Record

To connect the cassette recorder, use the cable pair provided. One cable
has a red plug at both ends. The other has a black plug at both ends.

or Input

This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the manu-
facturer’s instructions, may cause interference to radio and television
reception. It has been type-tested and found to comply with the limits
for a Class B computing device in accordance with the specifications in
Subpart J of Part 156 of FCC Rules, which are designed to provide reason-
able protection against such interference in a residential installation.
However, there is no guarantee that interference will_not occur in a parti-
cular installation. If this equipment does cause interference to radio or
television reception, which can be determined by turning the equipment
off and on, the user is encouraged to try to correct the interference by
one or more of the following measures:

ChibPDF - www.fastio.com

A R T TV T T | TR T T

AL N N NN NN
&

&g‘;‘j—f—_‘f" e

v
P

Connect one red plug to the EAR or EARPHONE or MON or MONITOR
jack on the recorder, and the other red plug into the jack at the back of
COMX 35 marked CASSETTE IN or EAR. Connect one black plug to the
MIC or MICROPHONE jack on the recorder, and the other black plug to
the jack marked CASSETTE OUT or MIC. Connect the cassette recorder’s
power cord into a wall socket, and it is now ready for use. We do not
recommend using batteries with the cassette recorder, as they may weaken
during playback or recording, producing unacceptable results. In addition,
always unplug the cassette cables before disconnecting the power of your
cassette recorders.

http://www.fastio.com/

Y

oW W WW W W Wl Www

Turning the power on

INSTALLATION WITH ROUND,

Round “COAX" Cabie
‘COAX” ARTENNA CABLE: A

From TV Antennz

INSTALLATION WITH FLAT,
"TWIN LEAD” ANTENNA CABLE

VHF/UHF Antanna IF/UHF Antonnn
Sockat on TV Set Teroinals on TV Sat

To COMX 35 Camputer

Firstly, you MUST check the following:

(a) ... make sure that the power on-off switch at the back of the COMX
35 is in the OFF position,

(b} ... check that the power converter voltage rating matches the output
voltage of the AC outlet on your wall,

Now, connect the end of the power cord with a plug into the jack at the
back of the COMX 35 labelled POWER, and the other end, where the
converter is, into the AC outlet. Switch the power switch to the on position.
The lighting up of the red POWER light, and the sounding of a few audible
notes indicate that COMX 35is turned on.

Select and fine tune CHANNEL 36(UHF) for PAL systems or, CHANNEL
3 (VHF) for NTSC systems on the TV (the channel may vary with different
local frequencies) and tune the TV until the following multi-colored
COMX 35 messages appear. For the adjustment of your COMX 35
computer, refer to Section A.5.

Fig. 1.3.1 COMX 35turn-on messages (to begin computing, just press
any key)
comx_
[COPYRIGHTED ©1983 BY
Lo COMX
WORLD OPERATIONS LTD

(a) {b)

ChibPDF - www.fastio.com

—_— N 444__._"___—n

LELLLERLRREEERRNLY
B W

1l

Tuning the TV set to the frequency of the COMX 35TV output has to be
done slowly. As you turn the tuning knob on the TV set, the TV picture
disappears, and then the TV gives a *‘snowy” display. Continue to adjust
the tuner such that the “snowy’’ display suddenly clears up, and the
messages in Fig. 1. 3. 1 appears. Now, adjust the contrast, brightness and
color controls of the TV to give you a clear, color display. The sound
volume of the TV may be turned to the minimum since the sound effects
come from a built-in loudspeaker inside the COMX 35 and not from the
TV loudspeaker.

The turn-on messages (a) and (b) alternates indefinitely. The colors of
message (a)} will change. This may be used as a ‘‘test pattern” for best
color adjustment.

(Note: Before leaving the quality assurance section of the factory, each
COMX 35is adjusted -to- give the best color. If this has been disturbed,
adjustment may be made with a small screw-driver through the tiny holes
located at the bottom side of COMX 35.The “test pattern” is intended
for such adjustment. If in doubt, consult your dealer.)

To begin a computing session, press any key, except the space bar, and the
turn-on messages will be replaced by the following “READY"’ message.

Fig. 1.3.2 COMX 35 “READY” message

“COMX_ BASIC V1.00
READY

L 4

Note that the screen background is black in color, the computer output on
the screen is in cyan (light blue) color, and the diamond shaped “cursor” is
in magenta (pink).

The cursor indicates the position of the next character to be printed if a
key is pressed.

http://www.fastio.com/

14

ChhPDF

The colon: is referred to as the “prompt’” symbol (or simply the prompt)
for the COMX 35BASIC. It serves to remind the user that the computer
is waiting for the user to input something.

The COMX 35keyboard

On the COMX keyboard there are 55 keys including the space bar arranged
in a way similar to typewriter keys.

The SHIFT KEYS allow for nearly twice as many characters with the same
number of keys. If a key is pressed, the lower symbol will be displayed on
the screen. If the same key is pressed while the shift key is held down, the
upper symbol or a graphic symbol is displayed.

Unlike a typewriter keyboard, the COMX 35 keyboard does not have
lower-case letters. Also, the letter “O” and the number zero “0"" are
differentiated by the presence of a slash in the latter. It is important not
to confuse O with 0" and “L" with 1",

It is important to understand the functions of those keys not found on
a typewriter. At this stage, you may not fully appreciate them, but they
are useful and important.

The key marked CR (Carriage Return) causes the cursor to return to the
leftmost position of the screen in the following row. (It also sends a
message to the computer to signify the end of a command or instruction.
See also section 2.1.) The CR key is also referred to as simply the

RETURN key.

The RT or RESET resets the computer to the same conditions as when the
computer was powered on. Resetting will clear the screen, and cause the
computer to output the messages shown in Fig. 1.3. 1.1t should be noted
that whenever the reset key and the space bar are pressed simultaneously,
everything in memory is cleared. This means that all programs and data
previously in memory are lost. Avoid pressing reset unless all wanted
programs and data have been saved by recording them onto cassette
tapes (see section 3. 13). Again, to start a computing session, just press
any key except the space bar. It is to be noted that to use the RT key,
it is necessary to type and hold down the ‘‘space bar” at the same time.
This is to prevent resetting by accident. After pressing these two keys,

- www fastio.com

"1%

| \I

A

lllnnnumnnmmmgq._;
NN W W NN W W W WD W W W W W W

!
A

1.5

and not until the keys are released, will the COMX 35display the start-
up message.

The ESC or ESCAPE Key enables you to stop the execution of a program
(to “escape” from a program). When the ESC key is pressed, the message
“READY” is displayed showing that the computer is ready for a new
BASIC command.

Pressing the CNTL or CONTROL key by itself does not put any character
on the screen or do anything else. If the CNTL key is held down and
another appropriate key is pressed, the computer responds by performing
certain actions or printing certain . characters. For example, pressing C
while the CNTL key is held down will cause the computer to ignore the
line being typed (see section 2. 1). The cursor will move to the leftmost
position on the next line. This function is useful if a user makes a mistake
in a line and wishes to start again on the next line. The functions of the
CNTL keys. are further discussed in sections 2.1 and 3.15.

The COMX 35 screen

When power is first turned on, the computer will output characters in cyan
{light blue) for computer generated messages or computations and the
keyboard input characters will be displayed in white against a black screen
(background) color. This assumes that you are using a color TV and the
color/brightness/contrast controls are properly adjusted. The screen
displays 24 lines with 40 characters per line.

As will be shown in section 2.3, the colors of the screen and characters
can be changed using COMX 35BASIC commands.

COMX BASIC VI.00
READY
:PR | LOVE comxl" ¢ —

Cyan output

Red Cursor
White Input

Black Screen

http://www.fastio.com/

CHAPTER TWO

GETTING FAMILIAR WITH SOME BASIC COMMANDS

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

wvvwfastio.com

(s

LELLE.

ALLLLLLELELELEN)

Ej

I

N

I
[

CHAPTER 2 GETTING FAMILIAR WITH SOME BASIC COMMANDS

At the end of this Chapter, you will be able to:

(a) ... use the COMX 35as if it is an advanced calculator,

{b) ... use the more common "“BASIC” commands,

(c) ... know what to do if mistakes are made, and how to correct them,

(d) ... use the “BASIC"” commands for creating color graphics and for making
music,

Using the COMX 35to do the job of a calculator is certainly under-utilizing the
immense power of the COMX 35, but it is a good way to learn the BASIC
language. You can use this mode of operation to do fairly complex calculations
or help your kid brother or sister to check his or her arithmetic homework.
When you are familiar with the BASIC commands, you can then use a sequence
of these commands, i.e. a program, to solve a complex problem requiring many
steps. Thus, this Chapter prepares the groundwork for the following chapters on
programming.

10

http://www.fastio.com/

2.1

Using the COMX 35 to print a message

Turn on the computer to obtain the welcome message. Refer to section
1.5 if you encounter difficulties.

Type on the keyboard,

PRINT ““HI COMX 35"

followed by pressing the key marked CR. Remember to hold the shift
key down when you type the quotes (”). Pressing CR causes the cursor to
move to the left margin of the screen. Pressing CR also tells the computer
that you have come to the end of your command. The screen should look
as follows:

You type PRINT “HI COMX 35"

Hi COMX 35

COMX 35responds

COMX 35 SUMMARY

To print a message, use the command PRINT followed by the message
included in a pair of quotes. End the command by pressing the key marked
CR.

You need not type PRINT, using the abbreviation PR will have the same
effect.

Typing PR followed by pressing the CR key will move the cursor to the
next line. This is called a “newline’’ operation.

ChihPDF -

COMX 35footnote: Correcting mistakes or Editing
If you discover a typing mistake BEFORE you type CR:

(1) ... Pressing the DEL (for delete) key will move the cursor backward
(called backspacing), and the character moved over will aiso be deleted. To
make corrections, delete wrong characters by the DEL key and retype.

11

VWAV WY fastio.com

1 e ;___!

W W W ww

: " i 3

w

W

4w

w W

(2) ... Alternatively, hold the CNTL (for control) key down while pressing
C. This has the effect of moving the cursor to the leftmost position on the
next line. This makes the line (containing the errors) invalid, and the
COMX 35will ignore this line.

Try typing,
PRINT “TEST”

but before pressing CR, hold the CNTL key down while pressing C. Note
that no message is printed since the incomplete statement is simply ignored.

If you discover a mistake AFTER you have typed CR:

I1f you misspell the word “PRINT", you will get the following error
message:

ERR CODE 30
READY
R 2

The error message with code number 30 means “Unacceptable last character
in PRINT statement”. The presence of : indicates that no harm is done,
and you can retype your command. To understand why this happens, we
can examine an error producing print statement such as PRNNT “HI”,
where an “N” has by mistake been typed instead of an “I”’. The computer
will still recognize the first two letters as PR’ which has the same meaning
as "PRINT”. The computer then interprets the “NNT" as a variable and
the “HI”” as a literal, but there is no separator such as a comma or
semicolon between them. It is the lack of a separator that cause the error.

if you miss the first or the last quote, the computer will print:

ERR CODE 22
READY

e

12

http://www.fastio.com/

]

‘ f(l s 2.2 Using the COMX 35as a calculator
The error message with code number 22 means “missing quote”. - S
o - . i] TheCOMX 35 can be used as a super calculator.
ther error messages and their meanings are given in the Appendix. ‘ ;
‘ | Try this on the COMX 35
If you did not get any response, perhaps vou forget to end your command ;
by pressing CR. L [PRINT 5+6 |
Lo g
. Y
. E | and press CR. TheCOMX 35 will respond with:
xamples j : g
E L]
Now, try the following commands to see if you get the corres i ;- ‘ Y
ponding | 3
outputs: E |
E’ \ g The COMX 35 can do b arithmetic operations:
you type—s| PRINT “MONEY CANT BUY ME LOVE — BEATLES" =
MONEY CAN'T BUY ME LOVE — BEATLES E 1 3 (a) ... ADDITION, indicated by +.
you type—»| PRINT “TO ERR IS HUMAN, TO REALLY MESS THINGS = ‘ 0. | (b) ... SUBTRACTION, indicated by —. Try,
UP YOU NEED A COMPUTER” -
TO ERR IS HUMAN, TO REALLY MESS THINGS UP E i PRINT 34 —16
YOU NEED A COMPUTER =
E a to get 18. Don't forget to press CR at the end of your comand.
you type—s| PRINT “A CHILD MISEDUCATED IS A CHILD LOST — ‘ :
JOHN F. KENNEDY" E } g {c) ... MULTIPLICATION, indicated by *.
A CHILD MISEDUCATED IS A CHILD LOST—JOHN F. ‘
KENNEDY. = i
.] IR
Repeat some of the above examples using PR instead of PRINT and note E ! a
that the computer responses are identical.. ! ‘ (d) ... DIVISION, indicated by /.
E =
B) to get —on——— 8
!f L :g {e) ... EXPONENTIATION. It is sometimes necessary to multiply a number
‘ ' by itself for a given number of times.
: | B
| Try ——— | PRINT 2%2%2%2%*2
.&; ‘ @ to get —— 3 32
|
‘ “ :a However, instead of writing the above, you can represent the same by the
; following:
u 4
14
3 B =

ChibPDF - www.fastio.com

(

http://www.fastio.com/

y

oW R Wl W W W W WWWwWww w

™Yy ——— PRINT 215 COMX 35 SUMMARY

toget ——88M 32

The COMX 35 can solve complex arithmetic problems involving +, —,
* [and 1 . Always press CR at the end of your comand. Use the
computer notations * and / instead of X and + . Use parentheses wherever
necessary. For more detailed information, see section 5.3.

The upward arrow 1 is typed by pressing the key & while holding down
the shift key. When computer languages like “BASIC" were being designed,
the authors decided to use special symbols for certain functions, so that
the user would not accidentally use the wrong keys, and these special
symbols had to be found on an ordinary computer keyboard like the
COMX 35. Thus, the X in (3 X 5) became *, so that multiplication
would not be confused with the letter ““X"’. Division became "'/’ instead
of “ + "asthereisno’ - "ona regular keyboard. The “+'" and “—"*
symbols were left untouched. Since exponentiation is shown in an ex-
pression by character placement such as “10%”, and most computer
displays cannot show "“super-script” characters, a symbol is required. The
1" was chosen as it points up showing that the next character is a super-
script or an exponent {e.g. 102 becames 10 2).

1

All of the above examples involve two numbers and one operation. The
COMX 35 can also solve more complicated problems involving many

$ numbers and many different operat?ons. 4”: bkl‘“ ’.%L*ML (<
S Try —— PRINT (6+6) * (9 -7)
to get ———— 22

Try —m—— PRINT (7 —4) * (19 — 14) /
(8 —-3)
to get ————— 3

Ty —— PRINT(313+214)/(2*5)
toget —— 4.3

The computer will do certain operations first before others e.g. like the
ordinary rules of arithmetic, it will do * and / first before + and —. A
complete set of similar rules are given in section 5.3. At this stage, use
parentheses "*()" as often as you like to tell computer which
operations are to be done first.

™

16

.

15

AL EE R L LR RN NN RN

ChibPDF - www.fastio.com

http://www.fastio.com/

2.3 Changing colors

The COMX 35 screen display is multi-colored. The keyboard input of
the user is displayed (or echoed) in white, and the computer output and
error messages are in cyan (a light biue). The diamond shaped cursor is
in magenta (pinkish). The overall effect is to increase readability, and to
facilitate “dialogue” between the user and the computer and generally
enable the user to program faster with fewer errors. These features are
especially important for first time users. The color combination described
above is the “default” scheme, i.e. it is the scheme normally used by
COMX 35 unless it is specifically instructed to use other colors. Other

color schemes are possible through the use of the COLOR, SCREEN and
CTONE commands described below.

23.1 Experiment with the COLOR command

The COLOR command is in the form,
COLOR (X)

Where X is a numeric expression which determines the color
combination to be used for user input and computer output
characters. The color combinations for different values of X are
given in Table 2.3.1.

Now, type the command

COLOR (10)

fotlowed by pressing CR, and note that user input characters have
turned magenta and the computer outputs have turned blue. Try
some other color commands with the “10" replaced by any number
from 1 to 12 inclusive. Observe the color changes and compare

them with Table 2.3.1. Note that COLOR {12) corresponds to the
default character colors.

17

ChibPDF - www.fastio.com

-

3
w =

i

‘ -
.
.

R |
e
i
.=
i

i

|3
.
= =
g
.=

LE.
| VUV R

Table 2.3.1 COLOR Schemes for COLOR (X)

X COMPUTER RESPONSE KEYBOARD INPUT
1 BLACK (0) GREEN (59)
2 RED (30) YELLOW (89)
3 BLUE (1 CYAN (70)
4 MAGENTA (41) WHITE (100)
5 BLACK (0) BLUE (11)
6 RED (30) * MAGENTA (41)
7 GREEN (59) CYAN (70)
8 YELLOW (89) WHITE (100)
9 BLACK (0) RED (30)
10 BLUE (11) MAGENTA (41)
1 GREEN (59) | YELLOW (89)
12 CYAN (70) WHITE (100)

NOTE: The bracketed numbers are the luminances in %.

2.3.2 Experiment with the SCREEN command

The SCREEN command which is in the form,

SCREEN (X)

where X is a numeric expression {varying from screen 1 to 8
inclusively) which determines the color of the background. The
different screen colors corresponding to different values of X are
given in Table 2.3.2.

Now, try the command

SCREEN (2)

18

http://www.fastio.com/

followed by pressing CR, and note that the screen color changes
from black to green. Replace the “2’" by numbers from 1 to 8
inclusive, and compare the screen color observed with Table 2.3.2.
Note that SCREEN (1) corresponds to the default screen color.
Note also that if either the input or output characters have the
same color as the screen, the characters would not be visible.

The brightnesses or luminances of different COMX 35 colors are
also given in Table 2.3.1. in general, the best result is obtained with
bright characters against a dark background (e.g. COLOR (12) and
SCREEN (1), or COLOR (12) and SCREEN (3)); dark characters
against a bright background (e.g. COLOR (5) and SCREEN (2))
may also be used; COLOR (12) and SCREEN (7) is also a pleasing
combination.

TABLE 2.3.2 Screen color for SCREEN {X)

X Color

1 BLACK (0)

2 GREEN (59)
3 BLUE » (11)
4 CYAN) (70)
5 RED (30)
6 YELLOW (89)
7 MAGENTA (41)
8 WHITE (100)

Note: The bracketed numbers are the luminances in %.

19

ChibPDF - www.fastio.com

)

AN

W OW W W W W W WU W wwWww w

EELLRELEE
\l

2.4

2.3.3 The CTONE command

This is/'m/the form,
CTONE (X)

where the numeric expression X is either zero or non-zero. If Xis
non-zero, the color-tone effect is turned on such that the screen
color remains unchanged but the color of the characters displayed
is similar to the screen color with a different degree of BRIGHT-
NESS. If X is zero, the color-tone effect described above is turned
off.

Producing sound effect

In the COMX 35, high quality sound effect is generated by a built-in
speaker. The ““music command” produces the 7 music notes over 8-octave
frequency ranges, and 16 volume levels. The “noise command’’ produces
Gaussian white noise over 8 frequency ranges, and 16 volume levels. In
addition, there is the ““tone command’’ which is like the music command
(i.e. over 8 octaves and 16 volume levels) except that for each octave,
instead of the 7 music notes, the frequency may be varied in 128 steps.
Using suitable combinations of these three commands, a musical tune can
be synthesized, and realistic sound effects can be generated to synchronize
with pattern and ‘color changes. As these are all programmable, the COMX
35 output display is therefore not just numbers and texts, but can
include animated pictures accompanied by music and sound.

2.4.1 Experiment with the MUSIC command

The MUSIC command is in the form,
MUSIC (X, Y, Z)

where X, Y and Z are numeric expressions. X determines the music
note and can vary from 1,2 ... to 7. Thus

20

http://www.fastio.com/

until it is replaced by another music command. To turn-off the

1=D0O] . .
2= RAY ‘, t music note, type “
3=Mi I |
_ (e
4=FA E' -1 MuUSIC (0,0,0)
5=50 » | b i db i
6=LA E' E Of course, always remember to terminate a command by pressing
7=TI | - CR.
B
Y determines the Octave and can vary from 1, 2, ... to 8 with 8 ‘ 24.2 Experiment with the NOISE command
being the octave with the highest upper frequency. E ! E
‘ The NOISE command is in the form,
Z determines the amplitude and can vary from 0, 1, to 16 with 15 E EE
being the loudest. | =< NOISE (Y, 2)
Pe N
Now, try E L Y determines the frequency range of the Gaussian white noise, and
o can vary from 1,2, ... to 8.
MUSIC (1,1, 1)] “ E Z determines the amplitude and can vary from 0, 1, 2,... to 15,
-
followed by pressing CR to get a weak “DO’ over the lowest | B Try
octave. B
N NOISE (1, 1)
Try E! o
] followed by pressing CR, and note the noise effect.
MUSIC (1, 1, 2) : Ei ¥ |
| Try
and note the increase in volume. ij ﬁ
NOISE (1, 2)
Try’ t' ?E v
) l) and note the increase in loudness (or amplitude).
MUSIC (2,1,2) K 4
| Try
and note the change to a “RAY". !i E I]
NOISE (2, 2)
Try K il
) ‘ \ and note the increase in pitch (or frequency).
MUSIC (2,2, 2) | T
] \ To turn-off the noise operator, type
and note the change to a higher octave. ‘j "E
NOISE (0, 0)
Notice that once a music command is issued, the note will continue t‘ H
‘! a Again, always remember to terminate a command by pressing CR.
p3] . 22

ChibPDF - www.fastio.com

http://www.fastio.com/

243

244

ChhPDF

Gaussian white noise, is noise that can be heard between stations ;

when turning an “FM" radio. This type of noise, which contains
many different frequencies is very useful in producing sound
effects.

Experiment with the TONE command

The TONE command sends out a continuous tone, It is in the form,
TONE (X,Y, 2Z)

where X determines the frequency, and can vary from 1,2, ... to
128.

Y determines the octave, and can vary from 1, 2, ... to 8.

Z determines the amplitude and can vary from 0, 1, ... to 15.

Table 2.4.3 shows the relationship between the actual output
frequencies and the parameter X in the TONE command. This
table refers to the 4th octave (i.e. Y =4). Frequency will be doubled
for a higher octave and halved for each lower octave.

Table 2.4.3

Parameter | Freq. Music Parameter Fregq. Music
X {Hz) note X {Hz) note
6 482 | B 9 452 | BP/A*
2 426 | A 4 410 | AP/G*
8 382 | G 1 363 | GP/F*
5 341 | F 9 321 | E
3 303 | EP/D* 7 287 | D
2 270 | pP/c* 6 257 | C

The VOLUME command

This is in the form,

VOLUME (X)

23

wvvwfastio.com

where the integer X varies from 1 (softest) to 4 (loudest). This
“MASTER VOLUME CONTROL"” command will affect all MUSIC,
NOISE and TONE commands issued after it. All sound commands
preceding the VOLUME command will not be affected.

2.5 Using the cassette recorder for storing programs and data

25.1

Transferring a program from the computer to the recorder using
PSAVE

Firstly, connect up the cassette recorder for subsequent use as
described in section 1.2,

Let’s assume that you have a program in the computer memory
which you wish to save for future use. Type LIST to have a quick
check at the program in memory to see that there are no unwanted
fragments of a program. Adjust the recorder’s volume control to an
appropriate setting. For the COMX 35,Setting the volume to mid-
level will usually work. Now, proceed to do the following:

(1) ... Insert a blank cassette tape into your recorder and rewind
the tape. (If your recorder is provided with a tape position counter,
set it to zero. Recording on used tape will of course erase information
previously recorded.) '

(2) ... Start recording on the tape by pressing both “PLAY’’ and
“KRECORD" down.

(3) ... Type PSAVE for “program save” and press CR to start
transferring the program onto tape.

(4) ... When (3) is finished, the message ‘“Ready’’ followed by
‘@ " reappears. Remember to note the tape position corres-
ponding to the end of the recorded program for future reference.
Step (3) is further detailed below. When PSAVE is keyed in followed
by CR, the cursor should disappear, and a long high-pitch note
marking the beginning of the program (called the program header)
can be heard.

24

http://www.fastio.com/

ChhPDF -

We should start the cassette recorder first to ensure that the blank
“leader” tape will not be recorded on. This leader tape, used in
most commercial tapes will not record any signals and thus part of
your program or data could be lost if we started to recorder right
from the start.

Then, a noisy note follows, indicating the transfer of the first page
(256 bytes) of the program. This is followed by a shorter high-pitch
note, the page header, marking the beginning of the second page,
and then another noisy note indicating the transfer of the second
page of program. The high-pitch page header and the noisy note
alternate until the entire program is transferred. The end of the
transfer is marked by a high-pitch note followed by a fow-tone.
By getting accustomed to the above sequence of sound, the user
can tell whether normal transfer is taking place.

The COMX 35 is so designed that the sound signal is sent out by
the computer to the recorder via the cable connected to the two
MIC jacks. The signal goes through the recorder and returns to the
computer via the cable connected to the two EAR jacks. I there is
a wrong and/or loose connection, or if the recorder is not turned-
on, the sound signal path is disrupted and cannot be heard. This
serves to alert the user to check the connections.

* It is to be noted that not all recorders will produce the above
sound sequence as they record. If this is the case, do not worry,
you can still use your recorder with the COMX 35, but no sound
will be heard.

25

wvvwfastio.com

L}

A AW R N R W W W W W W W W W W W

N NRE R RN R NN RN N NNRY

R

)

2.5.2 Saving Data Using DSAVE

To save data instead of program, proceed with (1) and (2) above
except that for (3), instead of PSAVE, use DSAVE for “data
save’’. The content of that part of the computer memory reserved
for data (numbers, strings and/or arrays) will be stored on the tape.

The same sound sequence as described in the previous section
indicates proper functioning of the loading process.

2.5.3 Transferring programs from the recorder to the computer using

PLOAD.

To transfer or load a computer program stored on a cassette tape
into the computer memory, firstly, connect up the recorder as
described in section 1.2. Then proceed as follows:

(1) ... Insert the cassette tape into your recorder, and locate the
beginning of the program.

26

http://www.fastio.com/

254

ChhPDFE -w

(2) ... Make sure that any program and/or data now in memory is
no longer wanted, or has been saved. This is because step (3) will
clear the entire user memory and any program and/or data in
memory will be lost.

(3) ... We assume that the computer is powered up, and the
“READY" message followed by “: @ " is displayed. Now, type
PLOAD, and press the PLAY button. When a high pitch note is
heard, press the CR key to start loading the program. The cursor
will disappear, followed by the sequence of sound described in
section 2.5.1.

(4) ... When the loading of the program is completed, the message
"READY" followed by *“: @ * will reappear.

Loading Data Using DLOAD

The DLOAD (for data load) command loads from tape any
previously stored data (resulting from a DSAVE). The procedure
is similar to that described in section 3.13.3 except that DLOAD
is used instead of PLOAD. The data is automatically placed at the
end of existing program memory space and overwrites any existing
data.

nvw L fastio.com

{

EEENEENENNEN

DN W RN AN E W R W WL W WL

|

f

- ! ———

2.5.5 Further Points Related to DLOAD

25.6

In connection with the use of the DLLOAD command, three points
must be considered:

(1) ... If the user memory space contains both a program and data,
any editing of the program will wipe out the data. Therefore,
before any editing is done, do a DSAVE to save the data (if desired),
edit the program, and do a DLOAD to return the data.

{2) .. Note that the act of doing a DLOAD automatically
dimensions any arrays within the stored data.

(3) ... Strings are placed at the end of array space. If additional
arrays are dimensioned after the strings have been generated, the
strings will be wiped out by the growing array space. For this
reason, all array dimensioning should be done before any strings
are generated.

Further tips on saving or loading programs on tapes

In order to prevent the loss of valuable programs and data, the
following points ought to be observed:

{1) ... Save more than one copy by repeated use of PSAVE and
DSAVE, and for programs representing'many hours of work, save
the same in another tape.

(2) ... Listen to the sound sequence which provides a fair indication
of a successful transfer.

(3) ... After step (1), load the saved program back to the computer
and LIST. If loading cannot be completed successfully, the original
program may remain intact and attempt to save the program may
be repeated.

(4) ... Handle the tapes carefully to aviod scratches. Also, avoid
putting the tapes near strong magnetic fields. Keep the tapes away
from the TV. See also Appendix A.3 on “Twenty important
cassette recordingguidelines.”

28

http://www.fastio.com/

CHAPTER THREE

WRITING SIMPLE PROGRAMS

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

wvvwfastio.com

CHAPTER 3 WRITING SIMPLE PROGRAMS

3.1

Your first COMX 35BASIC program

We shall introduce you to programming by the use of examples. You are
invited to type in sample programs, and then observe the computer re-
sponse. The first program is intended to show you the main structure of a
program, and the use of certain BASIC commands. Type the followings:

PROGRAM 3.1

NEW

10 PR “Hi COMX 35"
20 PR 2+3

30 PR 5+6)*(9—-7) The program
40 END

RUN The RUN command

Hi COMX 35 Computer response
5 .
22

READY

™

VW W W W N

il

-

A VR VR TR Y

fanunnnnnnnnmnmnmquun

The screen display is divided into three main parts,
(i) the program itseif

(ii) the RUN command telling the computer to obey or run the pro-
gram instructions, and finally

(iii) the output by the computer resulting from obeying the program
instructions.

Let's examine further the program itseif.

NEW is a command (or statement) telling the computer to erase
all programs or data previously entered.

29

http://www.fastio.com/

J

Each line of instruction in the program begins with a line number, 10,
20 etc. The computer will obey the instructions in sequence i.e. in the
order of the line numbers, that is from the smallest to the largest number.

COMX 35 Summary: What is a program?

A program is a group (or a sequence) of instructions each beginning with
a line-number. The computer will normally obey (or execute) these
instructions in sequence i.e. in numerical order of the line-numbers. The
command NEW at the beginning of the program will erase all previous
programs, and the command END causes the computer to terminate
execution. The command RUN tells the computer to begin execution
starting with the instruction with the lowest line-number. Commands are
often referred to as statements. Thus, we speak of the statement END, the
statement RUN etc.

"e RN

If you examine instructions 10, 20 and 30, you may notice that you
have met them before in Chapter 2. However, in this case, the instructions
are obeyed as a group (after you type RUN), instead of being obeyed one
instruction at a time. This is the main difference between using COMX 35
as a computer to run programs and usingCOMX 35 as a calculator.

1

The command END indicates the end of a program. When the computer
encounters END, it terminates program execution.

RUN is a command to tell the computer to begin program execution.
The computer searches for the lowest line-number and begins executing
each line in numerical order.

COMX 35 Footnote: More On Line-Numbers

COMX 35 recommends you to begin your program with line-number 10
and goes up to 20, 30, 40 ... etc, i.e. leaving gaps for 9 more instructions.
This will allow you to insert extra lines without the need to change the
original line numbers. If you add line 15, this instruction will be obeyed
before line 20.

When you begin an instruction with a line-number, you are in fact telling
the computer not to execute it until you type RUN. You are using the
computer in the program mode. If you do not use any line-numbers, as in
Chapter 2, execution will begin as soon as you type CR. You would then
be in the calculator mode.

The line-number also serves as the name (or label) for the instruction.
Line-numbers are also used in GOTO statements and in program editing.
See sections 3.2 and 3.3.

31

30

NN N N W N W R W R W R WL W W Wl WW W W

PERERERENREREEERN

(

ChibPDF - www.fastio.com

http://www.fastio.com/

To tell the computer to display a program, try,
3.2 Teaching the COMX 35 to jump (using the GOTO statement)

, LIST
As explained in section 3.1, the computer will normally obey instructions

in sequence. However, the computer may be told to obey instruction out
of sequence using the GOTO statement. Try inserting the statement 15
GOTO 30" into the program in section 3.1 you should get,

followed by CR and the computer will respond by displaying the latest
program entered, in this case, program 2 as follows:

2:
| 3
E
10 PRINT “HI COMX 35"
PROGRAM 3.2 E 15 GOTO 30
20 PR 2+3
NEW !E 30 PR (5+6) " (9-7)
10 PR “HICOMX 35" — 40 END
15 GOTO 30 Additional GOTO]
20 PR 2+3 statement To replace a line, type the line-number of the line to be replaced, followed
30 PR {(5+6)*(9-7) E by the new instruction. The following replaces line 15. Try,
40 END
E 15 GOTO 40
RUN LIST
HI COMX 35 Note: Statement 20, and The computer wili respond by:
22 hence the output 56"
has been skipped. 10 PRINT “Hl COMX 35"
15 GOTO 40 This replaces the
20 PRINT 2+3 old line
COMX 35summary: GOTO Statement 30 PRINT (5+6)"(9-7)
40 END

The statement “GOTO n” tells the computer to execute the statement
with the line-number n next, instead of the one immediately following.
The statement is said to be an "“unconditional branch” since the computer
is told to jump or branch off to another statement always, under ali con-
ditions i.e. unconditionally. If the line-number n does not exist, an error
message is generated. “n’’ can be an expression. Thus, “GOTO A—B" and
“GOTO B0 * (A + B)" are valid statements.

To delete a line, type the line-number followed by CR. The following will
delete line 15. Try,

15 A line-number followed by CR
LIST

The computer will respond by:

BN N W M E N W E W EWWWEWE LW W W W

10 PR “HI COMX 35
; : fai 20 PR 2+3
3.3 Displaying and editing a program 30 PR (546 *(9_7)
. 40 END
The following session assumes that you have entered PROGRAM 2 in
section 3.2 into the computer. If you have not, do so now before
proceeding. i
33
2 e
ChihPDF - www . fastio.com ‘

http://www.fastio.com/

)

To insert a line between line 20 and Iiné 30, choose a line-number, say 25, 3.4 Write a program which will accept data from the keyboard (using the

and type, INPUT statement)
i?ST eoTo 0 Beginning with the fast program in section 3.3, try
5 INPUT A, B Insert the new INPUT statement
10 Delete line 10
The computer will respond by: 20 PRINT ALB
25 Delete lines 25 and 30
10 PR “HI COMX 35" 30
20 PR 2+3 40 END
25 GOTO 40 The new line has
30 PR (5+6)*(9~7) been inserted LisT
40 END

After the editing, the computer wili respond by

PROGRAM 3.4
COMX 35 footnote: More on LIST
5 INPUT AB
LIST 20 PRINT A+B
LIST n 40 END

LIST n, m
Line 5 is the input statement and A and B are the “not yet specified’’ or

The statement LIST (with nothing following) will cause the computer to
display or list the entire program. “LIST n” wili only list line numbered n.
“LIST n, m” will start listing at the line n and end at the line m inclusive.
Both “n” and “m" may be an arithmetic expression.

“unknown’’ quantities called the variables. When the computer encounters
the input statement, it stops and outputs a question mark ‘2 on the
screen. it then waits for the user to respond. The user should type in as
many numbers as there are variables. These numbers specify the values of

, the “unknown quantities” or “variables”’.
If, at any time, the expression equals a number which is a non-existent line

number, then the nearest line humber after will be listed. ForA=2, "B=3, try

— - L e i S—

‘ RUN User input data for A and B in

i ? 2,3 response to ‘?"

‘ 5 Computer output, equal to A+B,
COMX 35 summary: Editing a program

To edit a program is to correct or to modify it. We can replace a line, For A=1012, B = 4517, try

delete a line or insert a line by making use of the line numbers. Always

i i RUN
d, to
LIST the program, or that part of the program which has been edited,
make sure that the expected change has been made (see also section 3.11). 2529 1012, 4517 ﬁzgther set of data for A and B.

35
34

NENERRENENNNENRNERERENNRNNEN,
WO W N W N W O WL U WU W W W W W W w W

ChibPDF - www.fastio.com

|

http://www.fastio.com/

ChhPDF -

’

N
W w

You have now a program which will give you the sum of two numbers
when the values for the two numbers are supplied.
Try other values of A and B.

Try Now, replace line 20 by a more complicated expression.

20 PRINT (A*A+B*B) 1 05

LIST

The program becomes

5 INPUT A B
20 PRINT (A*A+B*B) 105
40 END

Which when executed, gives

RUN
? 34
5

Some of you may recognize that the above program is an application of
Pythagoras’ Theorem which you are most likely to come across in your
geometry lessons. If you wish to know more about the Theorem, please
read the following footnote.. Meanwhile, the important point is to note
the supreme usefulness of these 3-line program.

Line 5 can be modified to accept data for more than two variables. Line
20 can be replaced by a complicated aigebraic expression of these variables.
When the program is executed, and values are assigned to the variables in
response to "?”, the computer will output the result of the expression.
You can repeat with other sets of values without the need to type in the
expression again. You input the data, the computer will execute the
program to give you the answer. This is the essence of power ofacomputer
program, and may be illustrated as follows:

Input Data Computer Output Answer
”l Program 4
36
www fastio.com

[

"

LR ERE NN RN NRY

&

W

W

VR VIR VR TR VY

|

When the computer is used without the line-numbers (as in Chapter 2, in

what is called the calculator mode), you have to provide the computation
steps for every set of data.

COMX 35 footnote: Pythagoras’ Theorem

If the hypotenuse (or slanting side) of a right-angled triangle is of length c,
and the lengths of the two other sides are a and b, as shown, according to
Pythagoras’ Theorem,

c=(a%+b?)"

a

i.e. given a and b, ¢ may be calculated as above. To do so using BASIC,
we have to rewrite the algebraic expression on the left into a BASIC
expression i.e. (A*A+B*B) 1 0.5. The following section gives more
examples of how to rewrite an algebraic expression into a BASIC expression.

3.5 Algebraic expressions and BASIC expressions

You are probably familiar with certain algebraic formulas e.g. the formulas
for calculating the circumference and area of a circle. However, since the
computer can only recognize BASIC expressions, these algebraic formulas
would have to be rewritten into the equivalent BASIC expressions before
being input into the computer. For example, “ab”’, “a = b”, “ab” would
have to be written as ““a * b”, “a/b” and “a 4 b’ respectively. The fol-
lowing table gives more examples:

37

http://www.fastio.com/

')

Table 3.6 Converting algebraic expressions into BASIC expressions Beginning with the 3-line model program 3.4 of section 3.4, and the

S rightmost column of the Table 3.5, try writing programs for some or
.:/‘i all of the seven problems.
Algebraic) | ; 3.6 Getting the COMX 35 to make decisions
Description expression BASIC expression ‘ g :
!
. R . E \ Type the following program for computing the area of a triangie, RUN,
1. Area of a circle, TR PI"R? 2 ! | g and input 3 sets of data as follows:
radius R |
} PROGRAM 3.6
2. Circumference of 27R 2*PI*R E L
a circle, | NEW
P
radius R ! " 3 10 INPUT A, B, C
; 20 IfTA <O THEN GOTO 50
3. Area of a triangle, 1/2 H8B H*B/2 E i L 25 S={A+B+C)/2
given height H, E = | 30 PRINT (S*(S—A)*(S—B)*(S—C)) t+ 0.5
and base B. ‘ 40 GOTO 10
‘ 50 END
|
4. Area of a triangle, JS(S—A) (S—B) {S—C) S = (A+B+C)/2 = ‘ L RUN
given three sides , (S™(S—A)™(S—B) = ? 7,89
A, B, and C and *(S—CNh10.5 E ‘ 26.8328
S=1/2(A+B+C) E | g ?12,14,17
83.0267
5. The hypotenuse C=(a® + b?)% C=(A*A+B"B) 1 0.5 = } = ? -1,2,3
C of a right- orC=(At 2+B12) i READY
angled triangle + 05 L7 S
given the other E :’ o
sides A and B E | 3
' e . . ‘) When the computer encounters the “GOTO 10" statement in line 40, it
6. The.solutlons for = —-BX,/B“—4AC i(g(—%*“é)B/(g::) A E i a will always branch back to statement 10 and ask for another set of input
X, glven. a 2A)t 0. ‘ data. This can go on indefinitely (provided your data is correct, e.g. any
quadr.atlc an_d B*B_4*A*C) ! | a two sides of the triangle is greater than the third side), and with this little
equzatlon, B X—(T_OB;(/ 2*;) ‘ program, you can compute the area of all the triangies in the world! The
AX* +BX+C=0 B)/(‘ | a problem is how to tell the COMX 35 to stop! That is the purpose of line
verincioal ol b (14 R)D . R ‘1 20. This new statement asks the computer to examine the value of A, and
7. .PrlnCIs? i)us () P*(1+R}Tn ‘ : a if A is less than zero, then branch to 50 to terminate execution. This
|nter|es a aound i GOTO statement is obeyed only if a certain condition (in this case, A< 0)
yearly cont1p » n | is true. This “IF .. THEN GOTO” statement is. called a conditional
m;er:s’f ra. € “’P branch i.e. branch if certain condition is true.
R ; fl;mmpa 4 o a We can also say that the COMX 35 is making a decision as to what to
and atter n years do next depending on certain conditions.

ChibPDF - www.fastio.com

|

http://www.fastio.com/

COMX 35 footnote: |F statement

The symbols,

> greater than
< less than

are called relational operators. Other relational operators are,

= equal to

<> notequal to
> = greater than or equal to
<= less than or equal to.

ChbPDF -

e

L}
Sl
~7
\O_ﬁlW

40

wvvwfastio.com

.

'‘EEEERNERNEN EENEREREN

e

W W W W W W W W W W Ww W W W W W W W

u

w

3.7

In many versions of BASIC, the “IF ... THEN GOTO" statement is the
only form of the “IF" statement. In COMX 35 BASIC, however, “IF ...
THEN” may be followed by a group of statements {separated by colons).
This is a very important advantage as the flexibility helps to make the
program easier to be understood, or more “structured”’.

Line 25 is an ‘‘assignment’’ statement. The value resulting from evaluating
the right-hand-side expression is given or assigned to the variable on the

left.

Using the second form of the IF statement, the above program can be
rewritten as follows, but giving identical results.

NEW

10 INPUT A,B,C

20 IFA>0 THEN S=(A+B+C)/2:
PRINT (S*(S—A)*(S—B)*(S—C))1 0.5: GOTO 10

30 END

Line 20, consisting of many statements separated by colons, will be
executed only if A > 0, i.e. if A is greater than 0. If A < 0, line 20 is
skipped, and line 30 terminates execution.

Forming good programming habits

Let’s improve program 3.6. Type the following lines.

PROGRAM 3.7
NEW
1 REM THIS IS A PROGRAM TO COMPUTE THE AREA

OF A TRIANGLE

5 PRINT “THIS PROGRAM COMPUTES THE AREA OF
A TRIANGLE"”

10 INPUT “PLEASE INPUT THE LENGTH OF THE SIDES
A,B,C"A,B,C

20 IF A < O THEN GOTO 120

30 S = (A+B+C)/2

41

http://www.fastio.com/

40 IF S < ATHEN GOTO 100

50 IF S <BTHEN GOTO 100

60 IF S <CTHEN GOTO 100

70 T=(S* (S—A) * (S—B) * (S—C)) 4 0.5

80 PRINT “THE AREA OF THE TRIANGLE ="; T

90 GOTO 10

100 PRINT “INCORRECT DATA: TWO SIDES OF THE
TRIANGLE NOT LONGER THAN THE THIRD"

115 GOTO 10

120 PRINT “END OF SESSION” : END
RUN

EERY

THIS PROGRAM COMPUTES THE AREA OF A TRIANGLE
PLEASE INPUT THE LENGTHS OF THE SIDES
A,B,C?12,13,14

THE AREA OF THE TRIANGLE = 72.3079

PLEASE INPUT THE LENGTH OF THE SIDES
A,B,C?12,13,26

INVALID DATA: TWO SIDES OF THE TRIANGLE NOT
LONGER THAN THE THIRD

PLEASE INPUT THE LENGTHS OF THE SIDES
A,B,C?-1,2,3

END OF SESSION

Let’s examine what you have done.

Line 1 beginning with the keyword REM (short for REMARK) which
allows you to insert after it any remarks to explain what the program is
doing or how it works. REM statement may be used liberally anywhere in
a program. It is listed (by LIST) but is ignored by the computer during

program execution. It is intended for the reader of the program more so
than for the computer.

Line 10 is similar to the INPUT statement previously used except that the
pair of quotes allows you to insert a message which wili be printed before

the question mark “?"" prompts you to input data.

Similarly, line 80 is similar to the PRINT statement previously used except
that the message within quotes is foliowed by a variable T separated by the

42

ChibPDF - www.fastio.com

mNEN

_{_n__*ﬂ

CE R VN T T T T TV T T T TR T T

3.8

semi-colon. This allows you to insert a message to explain the meaning of
T.

Lines 40, 50 and 60 cause the error message in line 100 to be printed if the
data is incorrect. Such is the case of the second set of input data where

12+ 13 < 26.

Compare program 3.7 with program 3.6, the former is seen to have .ma’r:y
more words, messages and explanations (referred to as ““documentation }.
These are intended to make both the program and the output' m<.>re
meaningful and readable. For a short program, and when the' thI’I,‘\klng
behind the program is stilt fresh in your mind, such “documentatllon may
not seem necessary. For a long program, and for somebody who p|c|‘<ls up a
program for the first time, or even for yourself after a few weeks, dos:u-
mentation” would be much appreciated. Now that .you are budding
programmer, forming good habits by fully documenting your program
with ““REM messages”’ is most desirable.

Simple programming exercises with solutions

Remember our motto? “Learn programming by doing”? We are convinced
that after you have followed this manual and try all -s_te;.)s on the COM?(
35, you will have much appreciation of what computing is abou't, and will
be in a better position to understand more formal textbooks. 'T|.10rough
understanding comes from experience”. The following e>ferC|ses are
intended t6 provide you with opportunities to gain more experience.

Compound Interest

Statement of the problem

Given, P = the principal or the original amount ($)
R = the annual interest rate(%)

Y = number of years
T

= the number of times in a year that interest is com-
pounded e.g. if compounded daily,
T =365

You are requested to write a program to output,

F = the principal plus interest, or the final amount ($)

43

http://www.fastio.com/

Suggestion

You may wish to write your own program before you look up the solution,
You learn more that way.

Solution
10 REM THIS PROGRAM COMPUTES THE PRINCIPAL PLUS
20 REM INTEREST F, GIVEN,
30 REM P = THE PRINCIPAL ($)
40 REM R = ANNUAL INTEREST RATE (%)
50 REM Y = NUMBER OF YEARS
60 REM T = NUMBER OF TIME/YEAR INTEREST IS
COMPOUNDED
70 REM Input P = — 999 to stop.
75 PRINT “THIS PROGRAM COMPUTES PRINCIPAL PLUS
COMPOUND INTEREST"
77 PRINT
78 PRINT
80 INPUT “PRINCIPAL" P
85 IFP=-999 THEN GOTO 210
90 INPUT “ANNUAL INTEREST” R
100 INPUT “NUMBER OF YEARS"” Y
110 INPUT ""NUMBER OF TIMES INTEREST IS COMPOUNDED IN
AYEAR"T
115 REM Lines 120 to 150 detect errors in the input data
120 IF P < 0 THEN GOTO 190
130 IF R <0 THEN GOTO 190
140 IF Y < 0 THEN GOTO 190
150 IF T <1 THEN GOTO 190
160 F=P* (1 +R/(100* T+ (Y *T)
165 PRINT
170 PRINT “PRINCIPAL PLUS INTEREST =$"; F
180 GOTO 77
190 PRINT
195 PRINT “INCORRECT DATA TRY AGAIN"
200 GOTO 77
210 PRINT
215 PRINT “END OF SESSION'"' : END

ChbPDF -

44

wvvwfastio.com

4

!’}'“S
- S
s 3
= o
= o
E
E 3
= =
E;'s
E!S
E,Ea
E =
= 3
= A
!!B
E"B
s 3
E =
Eéa
E -
x =
E =
E -

?

RUN

THIS PROGRAM COMPUTES PRINCIPAL PLUS COMPOUND INTEREST

Principal ? 1000

Annual Interest? 15

Number of years? 5

Number of times compounded in a year? 365

Principal plus interest = $2115.99

Principal? 15000

Annual Interest? 10

Number of years? 3

Number of times compounded? —12

Incorrect data try again

Principal? 15000

Annual Interest? 10

Number of years? 3

Number of times compounded? 12
Principal plus interet = $20222.6

Principal? —999

END OF SESSION

Comment on the solution

Your program will not be the same as the solution given. Where they are

significantly different, pause to think which is better. Don’t be surprised if

yours is!

Carbon dating

When an ancient object e.g. a fossil or a mummy is found, it is often of
interest to determine the age or date of the object. One method is by

carbon dating.

45

http://www.fastio.com/

COMX 35 f : i F
ootnote: More on carbon dating '7 “S 30 REM P= THEPERCENTAGE OF
.Scientist determines the percentage P of carbon 14 (a radioactive isotope) E S 40 REM CARBON 14 IN THE OBJECT
in the object relative to that in the atmosph i 50 REM RELATIVE TO THAT FOUND IN
phere, and knowing the rate of
decay R of radioactivity, the age of the object T in years can be det i E a 60 REM THE ATMOSPHERE
as follows: etermined =2 70 REM ~T= AGE OF OBJECT IN YEARS
g 80 REM TYPE P = —999 to stop.
E a 90 PRINT “CARBON DATING"
g RT ... (1 E‘ @ 100 PRINT
100 & = e o 105 INPUT “PERCENTAGE LEVEL OF RADIOACTIVITY"” P
E, g 110 IF P=-999 THEN GOTO 180
R |t_self is determined .from H, the half-life, which is the time in years A 120 IFP <0 THEN GOTO 160
required for the carbon isotope to lose half of its radioactivity. Thus, E = 125 IF P>100 THEN GOTO 160
T 130 .T=5730 * ABS (LOG(P/100)}/LOG(2)
_ 2 7 140 PRINT “AGE OF OBJECT IN YEARS =""; T
R= |09 e /H (2) E’ Ig 150 GOTO 100
Combining (1) and (2), E‘ a 160 PRINT “INCORRECT DATA: TRY AGAIN"
T p r 170 GOTO 100
= —Hlog (—) floge? 180 PRINT ‘“END OF SESSION” : END
1000 E
= H Abs(log7hg) / log e? E 3 RUN
E 3 CARBON DATING
H equals 5730 years. Therefore given P, one can compute T.
E a PERCENTAGE LEVEL OF RADIOACTIVITY? 52
Statement of the problem | AGE OF OBJECT IN YEARS = 5405.78
- PERCENTAGE LEVEL OF RADIOACTIVITY? 120
E =
Given P, the % of “carbon 14" i . o ' INCORRECT DATA: TRY AGAIN
T (in years) Of"the objerc:gy e 'fr; ITS “?bje:t,smelntist can compute the age E = PERCENTAGE LEVEL OF RADIOACTIVITY? 80
'ng tormuta, AGE OF OBJECT IN YEARS = 1844.65
P E a PERCENTAGE LEVEL OF RADIOACTIVITY? —999
T=5730 Abs {log ——) /log e? END OF SESSION
10 = =
You are asked to write a well-documented program accepting the input | 3.9 Going around in loops (use of the FOR/NEXT loop)
P from the user, and outputing the age of the object T. E
E a You may recal! in section 3.4 how a three-line program can compute the
Solution) areas of all the triangles in the wo‘rld!_ The trick was to use the GOTO
—_— a statement to branch back to the beginning of the program. There are other
10 E ' ways to tell the computer to obey a block of instructions repeatedly. Such
20 REM THIS PROGRAM DETERMINES THE AGE OF 3 a block is called a loop. We talk about going round the loop (i.e. a block of
REM AN OBJECT BY CARBON DATING. I J d instructions) n times or simply to loop for n times.
N =
46 g l a 47

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

Try the following:

10 FOR1=1TO 100 STEP 1
20 PRINT “COMX 35;

30 PRINT “* IS CLEVER”
40 NEXT |

RUN

What happens? You are-filling your screen with rows and rows of the
message “COMX 35 IS CLEVER", one hundred times to be exact.

The FOR statement in line 10 and the NEXT statement in line 40 work
together as a “FOR/NEXT" pair. The pair tells the COMX 35 to repeat
obeying the instructions in-between (line 20 and line 30) 100 times i.e.
for I =1 to | = 100 using a step-size of 1.

Try again,

10 FOR I =0TO 2000 STEP 2
20 PRINT 1;

30 NEXT

RUN

The screen is filled with 024 ... 2000". In this example, the step size is
2 and therefore 1001 numbers are printed. A line by line analysis is as
follows:

48

wvvwfastio.com

5

RERENAMNRERNNNARRRNNNERN

Table 3.9 A line by line description of the action of a FOR/NEXT toop

line number action

10 Setl=0

20 Print 0

30 Increase | by 2, (the step size), and go back to 10
10 1=2

20 Print 2

30 Increase | by 2, go back to 10
10 1=4

20 Print 4

30 Increase | by 2, go back to 10
10 1=6

VL VR VT T VTV TV T T T T TR T/ TR T TRV 'O TR

This will continue until and including | = 2000, and the looping will stop.
Note that in this example, the PRINT instruction to be obeyed repeatediy,
namely line 20, changes with |,

The step size can be negative. Try

10 For A=111t08 Step —1
20 PRINT A

30 NEXT A

40 PRINT “FINISH"'

RUN

11

10

9

8

FINISH

If the step size is not specified, a step size of 1 is assumed. Also, it is
possible to have a FOR/NEXT loop within another FOR/NEXT loop, a
situation described as ‘““nested” loop.

49

http://www.fastio.com/

Try E | 7 As a final example, try

outer loop E IS
10 FOR A=1 to3 — 10 FOR A=11010
20 FOR B=1t0 6 step 2 B = 20 © IFA=4 THENA=9
30 PRINT A,B inner 30 PRINT A

loop F o 40 NEXT A
40 NEXT B ’ 50 PRINT “FINISH"
50 NEXT A — E ~
60 PRINT “FINISH" 7 RUN
RUN E v 1
2

1 1 | 3
1 5 E = 10
2 1 FINISH
2 3 } A=2 E =
2 5 g Note how the |F-statement in line 20 reduces the looping from 10 to 5
3 1 E: - times.
3 3 A=3
3 5 Ef 3 3.10 Breaking a complicated program into blocks (using subroutines) — GOSUB
FINISH and RETURN

Imagine you are to write a program which will enable you to play a game
similar to the “Space Invader”’. Being able to write a game program of such
sophistication has made many very rich and famous. With the clever
COMX 35BASIC, COLOR graphics and sound effect, you are in fact well
equipped to do this. It takes learning, a mixture of fun, hardwork and
= imagination. How should you begin?

The inner loop is repeated three times for each time the outer loop is gone
through, i.e. for each value of A. Follow the above program, noting how
the values for A and B change, in particular, when A changes from 1 to 2,
B beginsat B = 1.

e m
W W

One way is to identify the various jobs which has to be done repeatedly
e.d. job 1 to draw the space-ship at any position on the screen, job 2 to
draw the missile-launcher, job 3 to create the color graphics and sound
effect when a space-ship is hit, job 4 to create the color graphics and sound
effect when the missile-launcher is hit, job 5 to determine whether a space-
ship has been hit, etc.

To simulate a moving space-ship, draw a space-ship (by calling upon job 1}
at its original position, but using the color of the background. This will
erase the original space-ship. Now, draw a space ship slightly displaced
from its original position and along the direction of flight. If this is repeated
many times, and rapidly, you have a moving space-ship, but job 1 will have
to be activated many times indeed.

50 51

VRSN VIR VIR VIR VY VY T

ChibPDF - www.fastio.com

http://www.fastio.com/

Now, job 1 is done by a block of program. If we insert this block of i
w, | Y prog ack o 5000 REM SUBROUTINE TO

. . 100 REM DRAW SPACE SHIP
program in places wherever a space-ship is to be drawn, the program will a
be very long indeed. Another way is to store a copy of the job 1 program i\ 15 110 GOSUB 5000 : 5010 REM DRAW SPACE
(called the subroutine) somewhere, and insert a ‘‘goto subroutine’” or 1*\ a 120 @ SHIP
“GOSUB" statement in the main program wherever a space-ship is to be J/ ’ ® |
drawn. This is illustrated in fig. 3.10, where the numbered arrows corres- E’ a

pond to the steps below.
200 REM DRAW SPACE SHIP
210 GOSUB 5000 /

220 \L ®

Main Program Subroutine

Step 1 when the computer encounters “GOSUB 5000” in line 110, 6000 RETURN

it goes or transfers control to the beginning of the subroutine
at line 5000.

Oﬂ/(’@
) et
S
®

\ VIR VIR VIR VR VIRV VR VIRV VT VOV VT TRV TR T T T T THRT T TT TRV T

Step 2 Instructions in the subroutine is obeyed until the fast instruct-

Fig. 3.10 A step-by-step explanation of the action of a main program
ion RETURN is reached. 9 p-by-step exp prog

calling a subroutine by GOSUB

Step 3 Control is returned to line 120, immediately below the

“GOSUB" statement in line 110. Note that in “GOSUB N”, N is the line-number of the first instruction in

the subroutine. Note also that a subroutine always ends with a RETURN
. t.

Step 4 Execution of the main program is continued. statemen
To illustrate the use of subroutines, we shall write a program to find the
greatest common divisor & GCD (also known as the highest common
factor, HCF) of three integers, A, B and C. We shall need a subroutine to
find the GCD of two numbers. Let the GCD for A and B be Y. Then, we
call the subroutine again to find the GCD of Y and C. The result is then
the GCD of A, B and C.

Step5 The computer encounters another “GOSUB 5000” in line
210 and as in step 1, control is transferred to the beginning
of the subroutine.

Step 6 Same as step 2.

Step 7 Control is returned to line 210.

Step 8 Execution of the main program is continued.

52 53

FEENEEEERERRERNRNERRERN

ChibPDF - www.fastio.com

http://www.fastio.com/

GREATEST COMMON DIVISOR tl ”B This is done through the use of the command EDIT. This has the form

‘! S EDIT X
10 REM THIS MAIN PROGRAM g
20 REM THE GCD OF INTEGERS L4 where X is an integer denoting the line number of the statement requiring
30 REM A.B,C : correction,
40 REM E a
42 PRINT “THIS PROGRAM FINDS THE GCD” ® e In response to Edit X, line X is displayed. The computer is now said to be
43 PRINT : in the “edit mode” (i.e. under the control of the EDITOR instead of in the
50 INPUT “AV, A m g “COMX 35 BASIC mode” which puts COMX 35 under the control of
55 IF A < 0 THEN GOTO 150 o the BASIC interpreter (see section 4.3})). The user can now move the
60 INPUT “B",B ifﬁ ![3 cursor {by pressing the space key) to a position under the line displayed
70 INPUT “C”.,C i that is one character before (i.e. to the left of) the character to be modified.
80 X=A i | g At this point, three EDIT options are available. The user may type | {for
90 Y=B ' Insert), D (for Delete) or C (for Change). After the option is selected, the
100 GOsuB 1000 E a option character (§, D or C) is displayed and the cursor is now directly
110 X=C under the character to be modified.
120 GOSuUB 1000
130 PRINT “THE GREATEST COMMON DIVISOR ="; Y = a The Insert option allows characters to be entered or inserted immediately
140 GOTO 50 | after the position specified by |. The Delete option removes character
150 PRINT “END OF SESSION"; END E from the line sequentially for each pressing of the space key i.e. pressing
1000 REM THIS SUBROUTINE FINDS THE GCD OF E = space key n times will delete n characters. The Change option replaces
1010 REM TWO INTEGERS X AND Y . sequentially each character with the new one that is typed after C.
1020 REM AND THEGCD =F =
1030 REM E = After the user has performed the desired modification, typing CONTROL
1040 Q = INT (X/Y) ; R S (holding CNTL key down then press S) causes line X to be retyped with
1045 R=X-Q"Y E the modification incorporated. Note that in one pass, only one option
1050 IFR=0 THEN GOTO 1100 E a (I, D or C) is allowed. If necessary, the user, however, can exercise one of
1060 X=Y the 3 options as many times as is needed for all corrections to be made.
1070 Y =R E 13 When this is done, press CNTL S again to “exit” from the EDIT mode
1080 GOTO 1040 and to indicate that the editing of line X is completed.
1100 RETURN E a

The above may be illustrated as follows where ““u’’ denotes the space key.
3.11 Further editing tips B = Type,
_ _ _ ;= 10 PRINT “HELLO"

As we attempt to write longer programs, mistakes are likely to be made E
more often, and the editing facilities described in sections 2.1 and 3.3 may
not be adequate. In addition to the use of the “DEL" key, “CNTL", and E a
“line numbers” for editing (see section 2.1 and section 3.3), COMX 35 ,
in fact provides more sophisticated facilities for correcting errors in a E a
program.

E =

54 E a 55

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

To edit line 10, type EDIT 10 to get,

: EDIT 10
10 PRINT

S EESEEEEEEE X

“HELLO"”

where the line to be edited is 10. Now, position the cursor beneath the
* getting ready for the next step.

To insert SAY before HELLO in line 10, select the | option, and type SAY
followed by SPACE to get,

EDIT 10
10 PRINT “HELLQO"”
ISAYu
Now type CNTL S to get
10 PRINT “SAY HELLO"”

Type CNTL S again to exit from EDIT mode.

To delete SAY, and change HELLO to JERRY, select D option, followed
by 4 spaces to get

EDIT 10
10 PRINT “SAY HELLO”

Duuuu

Note that for each space after D, one character is deleted. Press CNTL S
to display the corrected line. Since the editing is not completed yet, we
do not exit edit mode at this point. We proceed and position the cursor
under ** in the partially corrected line, and choose Change option,

10 PRINT “HELLO"
CJERRY
Pressing CNTL S will display,
10 PRINT “JERRY"
56

wvvwfastio.com

XILE

=1

0

"R

mEERRRNN

W WD W

FWw e ww

u

1 VR VA VIR VA VY TV T

3.12

Note that the 5 characters HELLO have been changed or replaced by
another 5 characters JERRY. Now that the editing job is completed,

press CNTL S again to exit the edit mode. The computer will respond
by

READY
R &

showing that control is now returned to the COMX 35 BASIC inter-
preter.

For an error to occur in a short simple line, retyping the entire line using
the same line number is the simplest way to do editing. For a long line,
there is the possibility of introducing new errors whilst attempting to
correct the old ones. In this case, the use of EDIT is preferred.

Pressing CNTL C while in the EDIT mode will abort the edit mode and
return to BASIC mode leaving the line being edited unchanged.

Creating Special Graphical Characters

3.12.1 Built-in “Graphical Characters” — using the function CHR$

To have a preview of the built-in graphical characters, run the
following program.

Program 3.12.1

10 FOR |=0 to 127

20 PR I, CHR$ (1}, ”;
25 IF 1=127 THEN PR
30 NEXT

RUN

The application of the function CHR$(X) is detailed in section 5.5,
Briefly, CHR$(X) is a function which returns a character for each
integer X given. Corresponding to each key, there is an integer or
code (the ASCII code to be exact where ASCI| stands for “American
Standard Code for Information Interchange”) and a character e.g.

57

http://www.fastio.com/

ChhPDF -

the key A has a code number of 65 (65 in decimal, or 41 in hex-
adecimal), and pressing key A will normally output the character
A. Hence “PR CHR$ (65)" is equivalent to PR ““A”’. The above
program will thus display all the 128 characters corresponding to
the code numbers O to 127. Now, when the COMX 35 is first
turned-on, characters having decimal codes from32 to 95 and 160
to 223 give the standard characters (i.e. SP !, etc. through 1,2, ...
9, A, B, C ... Z, etc.) as shown in Appendix A.2. The keys having
decimal codes 0 to 31,96 to 127, 144 to 159 and 224 to 255, give
built-in graphical characters, e.g. PR CHR$(21) will print the
hexagonal shape in cyan color.

TRY, PR CHR$ (111, 112, 113)

and press CR. The three built-in characters printed side-by-side
make up the picture of an aeroplane.

Draw a longer plane by,

PR CHR$ (111, 112, 112, 112, 113)

The same picture can be obtained by holding down the shift key
and press keys O (once), P (3 times) and Q (once).

58

wvvwfastio.com

-

Ww W wi

W W W e ® W

WeyweEeewwew

, 4 . ! } d !) 4 . 1 =4 Lt A

3.12.2 User-defined characters — using the command SHAPE

It is possible to redefine the character printed by the pressing of
a key e.g. it is possible to redefine the character for decimal code
65 such that pressing key A will give, for example, a chinese
character instead of the letter A.

This is done by using the command SHAPE which has the form
(for TV using the PAL system),

SHAPE (X, ““18 hex numbers’’)
where X is an integer corresponding to the decimal code of the

key. Within the pair of double quotes are 18 hexadecimal numbers
which together specify the color and shape of the character. Try,

10 SHAPE (65, ““48487E6A7E48484800")
RUN

{Note: SHAPE can also be used in the direct-execution mode
without the line-number.)

Pressing key A will cause the Chinese character c}: to be printed in
magenta. in fact, notice that all letter A’s on the screen have been
replace by o after the execution of the above SHAPE command!

Try the following examples, you will appreciate the magic done by
these commands.

Example 1

SHAPE (153, “8F8D8CHC7E7E7E5SC00")
An apple will be printed when you ““PRINTED CHR$ (153).”

Example 2

SHAPE (119, “84848CBF9E9C94A400")

Whenever you press the letter “W’ with the SHIFT key being held
down, the computer will respond by giving you a green star.

59

http://www.fastio.com/

Example 3

SHAPE (20, ““00000000DF FFFFDF00")
SHAPE (21, “00FCFCFCFFFFFFFF00")
SHAPE (22, ““00000000F EFFFFFE00")

After pressing CNTL-T, CNTL-U, and CNTL-V, you can get a
submarine on the screen.

For TVs using the NTSC system, instead of using 18 hex numbers,
use 16 hex numbers to specify the shape.

COMX 35 Footnote on Hexadecimal Numbers

Hexidecimal requires 16 distinct characters, and therefore, 6
characters in addition to 0, 1, ... 9 are needed to represent ‘10",
“11",, 16", These are usually taken to be A, B, C, D, E, F.
Hexadecimal is related to binary using four-bit groups. Thus,

111 /1010 /0001 / 0010 / 0001

becomes

7A121

in hexadecimal.

ChhPDF -

60

wvvwfastio.com

_

"ORN
444‘___._.______________________.____._.‘__________———-4-—-—;5

LN LYYW W W W w Wl w @

To determine the 9 pairs of hex numbers, consider a rectangle of 8
units by 9 units as follows:

Fig. 3.12 Writing the SHAPE command for the character ¢

7

3 (6A)
¢l /%/‘75 A7, * in hexadecimal
VA

\’V‘/ W_‘)
bits used to specify bits used to specify
color the shape

Consider each row of 8 squares. The leftmost two squares, which
are to be filled inby 1’sand 0's, determine the color of the remaining
6 squares in accordance with Table 3.12.2, Each of the rightmost
6 squares of each row is represented by 1 if that square is “’painted”’
or “filled”, by O if it is not (i.e. if it has the same color as the
background). Thus, the first two columns of squares (from the left)
are used to define colors, whereas the rightmost 6 columns of
squares (6 x9 squares) are used to define the shape. Each row is
coded into two hex numbers. With there being 9 rows, 18 hex
numbers are needed to define both the colors and the shape. For
example, consider the 4th row from the top of Fig. 3.12, if the
magenta color is chosen, the leftmost two bits should be 01 (see
Table 3.12.2). The remaining six bits are “101010” as shown in
Fig. 3.12, coding a ‘filled square” into 1", and an “empty
square” into “0”. The eight bit pattern “01101010" may be
represented by the two hex numbers 6A. Hence, the 4th pair
{corresponding the 4th row) of hex numbers is 6A (see Fig. 3.12).

Note that for PAL system, the resolution per character is 6 x 9
dots. For NTSC, only 8 pairs of hex digit is required giving6 x 8
dots if the hex string is longer than required, the rest is ignored. In

61

http://www.fastio.com/

both cases, each character can be multi-colored. Note also that
string variables can be used instead of literals when defining a
shape, also the user-redefined characters or symbols can be printed
like any other normal characters,

The default character set will be restored during power-up or
system reset {i.e. pressing of and space bar simultaneously)

Table 3.12.2 Colors of one row of squares as a function of the first two bits

ChhPDF -

Left most ' Color o Color
two bits (if output by (if input from
computer) keyboard)

0 0 BLACK RED

0 1 BLUE MAGENTA
1 0 GREEN YELLOW

1 1 CYAN WHITE

62
www fastio.com

AN N R NN

DONON NN N W N W R LW W wEWwd W ww e i

3.13 Time-controlled subroutines — use of the commands TIMOUT and TIME

The commands TIMOUT and TIME are used jointly to enable the pro-
grammer to call a subroutine after a specified lapse of time. The “alarm
clock” is set by the command,

TIME (X)

where X is an integer. When the above instruction is executed, the “clock”
starts ticking. When X units of time has elapsed, the command,

TIMOUT Y

is activated and the computer is directed to jump to asubroutine beginning
with the line number Y.

In the PAL version of the COMX 35,, 50 units is equivalent to 1 second.

In the NTSC version of the COMX 35,. 60 units is equivaient to 1 second.

@@, .

http://www.fastio.com/

ChhPDF -

The typical structure of a program involving a time-controlied subroutine,
and the sequence of actions are illustrated in Fig. 3.13.

Step 1:

The instruction TIMOUT (1000} is encountered. The computer takes note
of the beginning address of the subroutine, but there is no other action as

yet.

The instruction TIME (150} is executed, and the ““clock” is set to tick.
Step 2:

The computer proceeds as usual.

Step 3:

When 150 units of time (i.e. 3 seconds for PAL machines or 2.5 seconds
for NTSC machines) have elapsed after the execution of statement 100,

the “clock alarm’* will cause the computer to jump to the beginning of
the subroutine.

Step 4:
The subroutine is being executed. It is usual to find the “clock’ being set

inside the subroutine but this is not mandatory. Statement 1990 shows
that the “clock” is set to give an “alarm’’ after 100 units of time.

Step b:

Upon hitting RETURN, control is returned to statement 20 immediately
after TIMOUT.

Step 6:

The computer will proceed as usual until 100 units of time have elapsed
after statement 1990, when again control is passed to the subroutine.

64

wvvwfastio.com

—

C VY VYU Y 1 T T T T T T T T | TR T 7

RN EEREEREEEREEREENEENENNNNN N

3.14

10 TIMOUT 1000 1000 REM THIS IS THE
20 REM BEGINNING OF THE
REM TIME-CONTROLLED
REM SUBROUTINE
O |® ®
@
100 TIME (150)
@l/ /(ED 1990 TIME (100)
200 P 2000 RETURN
Main Program Subroutine

Fig. 3.13 The typical structure and sequencing of a program using a time-
controlled subroutines.

Functions of the Control (CNTL) key

If certain keys are bressed when the controt (CNTL) key is held down, the
computer will take certain action, but no character will be displayed on
the screen.

CNTL C

As discussed on section 2.1, if key C is pressed while CNTL key is held
down (an operation abbreviated as “CNTL C") prior to pressing CR, the
line being typed will be ignored, and the cursor wili jump to the leftmost
position on the next line. CNTL C enables the user to instruct the com-
puter to ignore a partially typed statement.

CNTL R

CNTL R will cause the computer to repeat the last statement input on the
screen. This facility is specially useful in the situation when the new state-
ment to be typed in differs slightly from the last statement. Modifying the
second copy of the last statement by the DEL key and by retyping, and
then press CR will send the new statem ent to the computer,

65

http://www.fastio.com/

Cursor movement (CNTL 1, K, M, L)

Pressing keys I, K, M and L while holding the CNTL key down will move
the cursor position as follows:

| : Cursor moved up by onerow { 1)

M : Cursor moved down by one row ({)

K : Cursor moved to the right by one
column (—)

J Cursor moved to the left by one

column («)

Note: total number of moves must not exceed 95 when executed directly
from keyboard.

Use PRINT CHR${128) to move cursor up in program,

Use PRINT CHR${130) to move cursor down in program.

Use PRINT CHR$({129) to move cursor right in program.

Use PRINT CHR$(131) to move cursor left in program.

Real-time contro! of a program — using KEY and the JOYSTICK

KEY

This function returns the ASCIl code of a key pressed. lts use may be
illustrated by the following example,

10 IF KEY =65 THEN GOTO 30
20 GOTO 10

30 PRINT “KEY A PRESSED”
40 END

When the function KEY is encountered, the keyboard is scanned, and the

ASCII code of the key pressed is returned. If this is equal to 65 (which is
the ASCII decimal code for key A), the message “KEY A PRESSED” is
printed, and the program is terminated. If any key other than key A is
pressed, the program goes round a loop, scanning the keyboard repeatedly.

66

ChibPDF - www.fastio.com

_

¥

LV < T - T TR T - T T

The above program illustrates the tyical situation the function KEY is
used. It is most often used in an | F-statement” located within a loop, such
that the keyboard is scanned repeatedly, and certain action will be taken if
a specified key is pressed. This enables the pressing of the specified key to
control the flow of a program.

{Note: the following information may become useful for a more detailed
understanding of the KEY function. When a key is pressed, its ASCI! code
is sent to a register or latch. Functions like KEY (or INPUT) will read the
content of this latch, and then clear the latch. If no key is pressed, KEY
will return the value 0.)

JOYSTICK

The built-in joystick is a device which controls 4 keys. It will input into
the computer one of 4 codes according to which direction the joystick is
pressed. The 4 codes (which will not be displayed) have ASCI| decimal
codes of 136, 137, 138, and 139, corresponding respectively to the up,
right, down and left positions of the joystick. If the statement, “IF KEY =
136 THEN ...”” appears somewhere within a loop, whenever the joystick is
flicked to its “up’. position, (which has an ASClI decim al code of 136},
the condition within the IF statement is satisfied. This enables the joy-
stick to control the flow of the program. oo

67

http://www.fastio.com/

IF KEY =136 THEN GOTO 30
GOTO 10

PRINT “JOYSTICK IS ACTIVATED"”
END

The program wil! print a message when the joystick is flicked to the ""up”
position.

iy

CHAPTER FOUR

FUNDAMENTAL COMPUTER CONCEPTS

-

- -
; g
=

|
T\
i
}

ChibPDF - www.fastio.com

http://www.fastio.com/

i

N
LV VR L T T T T T T i TR T T

CHAPTER 4 FUNDAMENTAL COMPUTER CONCEPTS

4.1 What is a computer?

A computer is a device capable of accepting, processing and outputing
information. The information is in the form of electrical signals and
represents alpha-numeric data (i.e. text, words and numbers). By
processing, we include mathematical: and.:logical:-ofjerations, sorting,
retrieval and rearrangement: The output *‘processed” information has
three main categories of application, (a) data processing (including
business and accountancy application, record keeping, information
retrieval, management information system to facilitate decision making),
(b} scientific computation and engineering design, and (c) industrial
contro!l in which the input information is picked up and converted by
sensors or transducers into electrical signals and processed in a prescribed

manner. The output signals are then used to activate various electro-
mechanical devices.

SOURCE
DOCUMENT REPORT

—_—7 PROCESSING {(——> WRITE

EEEEREREERERERRERY

Fig. 4.1 The Computer as an information processor.

mm
VRV

69

"
X

ChibPDF - www.fastio.com

http://www.fastio.com/

4.2

The main parts of a computer

Problems may be solved by the computer or by a human operator
equipped with a calculator, pencil and paper. It is instructive to
compare these two situations, and in so doing, identify the subsystems
of a computer. The comparison is shown in Table 4.2.

Table 4.2 Problem solving by a human operator and by the computer —

a comparsion of their requirements

W W Wwww

W i

unit. In the computer, these two subsystems are often grouped together
in one central processing unit or the CPU. The CPU is likened to the
human operator equipped with a calculator.

{b).. A device for storing the program, the input data and the inter-
mediate results. In the computer, these are stored in the main memory.
The main memory is likened to the pencil and paper used by the human
operator.

(c).. Input and output devices for the computer to communicate with the
the outside world, enabling the computer to accept a statement of the

Human operator Computer problem and the associated data (e.g. from the keyboard), and to
output the results (e.g onto the TV screen).
1. Problem sheet — for recording Input device

the specification of the problem.

2. An algorithm — an ordered sequence Program storage
of steps specifying the procedure

for solving the problem.

Data which when processed according

Data storage.

{d).. Another device for storing a vast amount of information which is
less frequently used. Such mass-storage devices (e.g. the floppy disk or
the cassette tape) are slower than the main memory, but can store a large
volume of information. It is likened to the library of reference books
which the human operator may consult occasionally.

Therefore the main subsystems of a computer are: the CPU, the main

to the prescribed algorithm, yields
memory, the input/output devices and a mass-storage device.

the required answers.

The arithmetic/
logic unit {(ALU)

4. The “calculator” — which performs
the basic operations.

input Devices
{e.g. keyboard)

Mass-storage
(e.g. cassette tape)

b. The human operator — which controls The control unit.

the execution of the algorithm

Temporary (scratch—
pad) storage.

6. Pencil and paper — for recording
the intermediate results.

Output Devices
{e.g. Screen Display)

Main Memory

7. Result sheet for recording the The output device.
final results.
) Fig. 4.2. The main subsystems of a computer
8. A library of reference books. Mass storage.

4.3 Computer software

Table 4.2 shows that the computer consists of

By “‘software”, we refer to the programs or the step-by-step procedures
given to the computer telling it how to perform different tasks. There
are three main types of software.

(a).. A subsystem for doing arithmetic/logic operations and another
subsystem for controlling the sequencing of each step. The former is
called the arithmetic-logic unit or the ALU and the latter, the control

70 71

MMMMMMMMMMMMMMMMMHMMM!N‘

| VR VI U VA Y VR T T Tt T 1 T T TV

ChibPDF - www.fastio.com

http://www.fastio.com/

{a).. Application software, for solving specific scientific or data-processing
problems e.g. programs for doing general ledger, inventory control, and
for designing the structure of a building. These are acquired (or
written) by the user.

(b).. System software, which makes it more convenient for the user to
operate the computer, e.g. programs which can perform a variety of
tasks such as enabling the user to save a program on the cassette tape,
and subsequently to load it back to memory.

(c).. Language compilers and/or interpreters, which enables the user to
write his application programs in a language like his natural language.
Inside the computer, programs and data are represented by a large
number of devices which can exist in two and only two ‘'states’”
designated by 1 and 0, (like a switch which is either opened or closed).
The computer can directly interprets these “one-zero”’ patterns. For the
user, however, writing his programs using only 1's and O's is an extremely
difficult, if not an impossible task and the resulting programs would not
be easily “readable’”. He would prefer to express his probiem-solving
procedure in a language similar to his natural language, such as BASIC,
which would have to be converted into ““one-zero” (or binary) pattern
before it can be executed by the computer. Such conversion is effected

CHAPTER FIVE

COMX 35 BASIC REFERENCE GUIDE

by software referred to as “compilers’” or “interpreters”. A compiler
translates the entire program written in higher language into a machine-
language version which is then executed. An interpreter translates and

executes each source program statement before proceeding to the next
statement.

y 1 ;] . B M iy . i r ‘*‘, 'c w .lw m 5
n ‘ ; A R | v " v ok 3

nen

" m

ChhPDF -

http://www.fastio.com/

ChhPDF -

wvvwfastio.com

_

" |
BB N B EEEBENNENENEENEENSENNNRNNN:

—— e e o ——— ———

Wow

a

W oa Wow

W & W o

vy

s

A O o

u

CHAPTER 5 COMX 35 BASIC REFERENCE GUIDE

This chapter is intended to be used as a reference manual. It provides
comprehensive information on the COMX 35 BASIC Language. Users not
familiar with BASIC and reading this chapter for the first time may find
it dry and difficult to follow. As you become more familiar with BASIC, you
will find this chapter an invaluable source of information.

5.1

Programs, statements, expressions and functions

A PROGRAM is a collection of computer-executable statements which
tell a computer how to solve a problem. It embodies a methodology in
the form of a step-by-step procedure called the ALGORITHM and DATA
upon which the algorithm operates. Thus “‘program = data + algorithm’’.

A STATEMENT (which is preceded by a line number} consists of
BASIC keywords (e.g. END, NEXT), expressions and functions.

FUNCTIONS are BASIC keywords which return values e.g. LOG(X)
SIN{X) etc. A list of functions are given in section 5.4. The bracketed
quantity is called the ARGUMENT of the function. The keyword
defines a rule by which the argument may be transformed into a value
called the value of the function.

AN EXPRESSION, which is short for arithmetic expression, may consist
of anything from a single number, a single variable, a function or a group
of operands (numbers, variables and functions etc) tied together with
arithmetic operators. Some examples are:

8
5
A
3" sin (45) 0.5

3 (2+ A /(B +C)

5.2 Numbers and variables

COMX 35 handles both integers and floating-point numbers. Both types
are stored as 32-bit signed numbers.

73

http://www.fastio.com/

53

FLOATING POINT NUMBERS can have values ranging from —0.170141
x 10°° to +0.170141 x 10%°. The fractional part of the mantissa is
accurate to six digits.

INTEGERS range from —2147483647 to +2147483647.
accurate over the entire range.

They are

All numbers entered from the keyboard are stored in the form they are
entered. If entered without a decimal point, they are stored as integers;
if entered with a decimal point or with the “E’* notation, they are stored
as floating point.

Operators

COMX 35 operators can be divided into five categories: arithmetic,
assignment, relational, logical and miscellaneous.

Arithmetic operators

The following list gives the arithmetic operators with their symbols and
the priority or order each will be acted upon in a mathematical expression.

Unary minus : — : first priority

Exponentiate : t : first priority
Multiply * : second priority
Divide / : second priority
Add + : third priority
Subtract — : third priority

Operators on the same level of priority are acted upon from left to right.
The symbol “—" is also used to denote negative numbers. Some examples
illustrating the exercise of priorities foliow.

4*312=36 (312 will be acted upon first before 4*(312))

4/2*3=6
4+2*3-6=5

74

ChibPDF - www.fastio.com

.

[N

x A

m

© —

A W & W

A VI VR

Assignment operator

The assignment symbol is the equal sign “=". When this symbol is used
for the purpose of assignment, it takes on the meaning “‘takes the value
of” rather than ‘‘equals’’. Some examples are:

LET A=5
LET B=B+A™2

The keyword LET is optional and may be omitted. The second example
may be interpreted as: evaluate B+A*2 and use the result to replace

B.

POKE (expr1, expr2)

This statement, which should be used with extreme caution, is used
to write any location in memory with any data. The location in
memory is defined by exprl and the data is defined by expr2. For
example, POKE {5000,255) will place the hexadecimal equivalent of
255 (FF)} in memory at the decimal address 5000. A more common and
much safer approach is POKE (m 1F23, #FF) which places the hex-
adecimal data FF at hexadecimal location 1F23.

Relational operators

The relational operators are listed below.

Equality: =

Inequality: < >

Greater Than: >

Less Than: <

Greater Than or Equal To: > =
Less Than or Equal To: < =

Expressions that contain relational operators are evaluated to true or
false rather than to a numeric value. Some examples are:

IF A=3+B>2 THEN

IF A< >4 THEN
IF A*2<=B/4 THEN

75

http://www.fastio.com/

ChhPDF -

L.ogical operators

The logical operators are AND, OR, XOR NOT. It should be noted
that the logical operators convert the expressions to integer before
performing the indicated operation and that the expression following
the NOT operator must be within parentheses. Further, the logical
operators have the same level of priority as + and —.

Some examples are:
IF (A AND B) < >C THEN
FOR I=(A AND B) TO (A OR B) STEP A/B
PR (A XOR B)
GOTO NOT (A)

In the first three examples, the parentheses are inserted for clarity.
They may be omitted.

Miscellaneous operators

The miscellaneous operators are listed below.
: separates statements on the same line
; PRINT delimiter
> PRINT delimiter
string delimiter
(group terms
) group terms
AV 8-bit binary values
8-bit hexadecimal values
L] 16-bit hexadecimal values

Some examples are:

PRINT A,B: “YES":GOTO 10
LET A = (3 + 4)/2

LET B = # F8: C=m01F3
IF A < > \10011010\ THEN GOTO 100
Note 1 Use ; in PRINT statement to print the next item directly

after the last without any spaces in between.

76

wvvwfastio.com

o

ol oW oW oW o

5.4

Note 2 Use , in PRINT statement to print the next item at the
beginning of the next printing-zone. One printing-zone is eight characters
wide.

Note 3 Use ' to indicate the limits of a string of characters and
therefore cannot be used as a member of the string.

Mathematical Functions

The term function is defined in section 1. The argument of a mathematical
function may be a number, a variable or an expression. Functions are
classified into (i) built-in functions, and (ii) derived functions. Derived
functions are those which may be obtained from an expression involving
the built-in functions. For example, SIN{(X) and COS(X) are built-
in functions, whereas TAN(X) is a derived function, since TAN(X)
can be computed as SIN({X)/COS(X}.

The preset state of COMX 35 assumes all angles to be expressed in radians.
The following examples assume this state. To change this to degrees,
type DEG followed by CR. To revert back to radians, type RAD followed
by CR.

5.4.1 Built-in Functions

These consist of ABS, ATN, COS, EXP, FNUM, INT, {NUM,
LOG, MOD, PI, RUN, SGN, SIN, and SQR.
ABS (expr)
This function returns the absolute value of the expression
For example
PR ABS (—10%2)
will print
20
ATN (expr}

This function which has the same meaning as ARCTAN
(expression) returns the angle {normally expressed in radians)
whose tangent is equal to the value of the expression. This
function is a floating-point function.

77

http://www.fastio.com/

ChhPDF -

For example
PR ATN(1)
will print
0.7854

since TAN (0.7854) = TAN Pl/4 = TAN 45° = 1

COS (expr)

This function returns the cosine of the angle determined by the
value of the expression {(normally expressed in radians). This
function is a floating-point function. For example

PR COS (PI/3)
will print
0.5

since cos 60° = 0.5

EXP (expr)

This function returns a floating-point number of 2.71828 (e}
raised to the power of the value of the expression. For example

PR EXP (6/3)
will print

7.3891
since e 6/3-=-¢2 =.2,718282 = 7.3891
FNUM (expr)

This function rounds the expression to the nearest whole number
and converts it to the floating-point mode. It is an exact
counterpart to INUM. For example '

PR FNUM (RND (6})

will print a floating point value.

78

wvvwfastio.com

N

W W oW W

INT (expr)

This function returns the integer part of the floating-point
expression truncating out the fractional part. The result is
still in the floating-point mode. This function is not to be
confused with INUM (described later). For example

A=7.9: B=INT(A):PR A,B.

will print
7.9 7
INUM (expr)

This function converts the floating-point expression to the integer
mode, rounding to the nearest whole number. It provides a
means for forcing a particular function to the integer mode.

For example

PR SQR (62.41)
would result in
7.9
and
PR INUM (SQR (62.41))
would result in
8

LOG (expr)

This function returns a floating point number the value of which
is the natural logarithm of the value of the expression.

For example
PR LOG (10}
will print
2.3026
and should be
PR LOG (EXP (2))
will print

2

79

http://www.fastio.com/

ChhPDF -

MOD (expr1, expr2)

This function (modulo) returns as its value the following
equivalent

exprl — (expri/expr2)*expr2

where each expression is first converted to integer. The function
defaults to an integer mode value. For example

PR MOD (10,3}
would result in

1

Pl

This function returns as its value 3.14159.

RND

This function returns a random floating-point number greater
than or equal to zero and less than or equal to one.

RND (expr)

This function returns a random integer number greater than or
equal to zero and less than the value of the expression.

However, if the random integer number generated is assigned to
a variable, the variable must be defined as an integer first,
(e.g. DEFINT A).

SGN (expr)

The value of this function is either +1, 0, or — 1 depending upon
the sign of expr. If expr is positive, the function returns a +1. If

expr evaluates to zero, the function returns as its value a O.
If expr is negative, the function returns a —1.

80

wvvwfastio.com

-

R e e P e

oW W W

A W L

1
i

W L WL W

i

AN X AR

A\

54.2

543

SIN (expr)

This function returns the sine of the angle determined by the
value of the expression (normally expressed in radians). This
function is a floating-point function. For example

PR SIN (PI/6)
will print

05
SOR (expr)

This function returns the square root of the value of the
expression. This function is also floating point. For example

PR SQOR (65)
will print
8.0623

More examples on mathematical functions

The following examples serve to illustrate the power of the
COMX 35 BASIC mathematical functions. Arguments of
functions can be functions or expressions themselves, leading to
an ability 10 express very complex mathematical equations.

PR SIN (45)

A=INT (10*SQOR (LOG (A™B)))
C=EXP (10 + A}

PR ATN (A*SIN(A))

Derived functions

The following functions are not built-in COMX-35 BASIC
library functions but may be computed from the available
built-in functions listed in section 5.4.1 using the following
formulas:

81

http://www.fastio.com/

ChibPDF -

TAN (X) = SIN(X)/COS(X)

ARC SIN(X) = ATN (X/SQR(1 — X*X))

ARC COS(X) = —ATN (X/SQR(1 — X*X)) + 1.5708

ARC SEC(X) = ATN (SQR(X*X — 1) + (SGN (X) — 1)* 1.5708

ARC CSC(X)= ATN(1/SQR(X*X)—1) + (SGN(X)—1)*
1.5708

ARC COT(X) =—ATN({X) + 1.5708

ARC SINH(X) = LOG(X + SQR(X*X + 1))

ARC COSH(X)= LOG(X + SQR(X*X—1))

ARC TANH(XE LOG{{1 + X)/(1 — X)}/2

ARC SECH(X)= LOG ({SQR (1 — X*X) + 1)/X)

ARC CSCH(X)= LOG({SGN(X)*SQR(X*X + 1) + 1)/X)

ARC COTH(X)=LOG ((X + 1)/ (X — 1))/2

COT{X) = 1/TAN(X)

CSC{X) = 1/SIN(X)

SEC(X) = 1/COS(X)

COSH(X) = (EXP(X) + EXP(—X)}/2

COTH(X}= EXP(—X}/{(EXP(X)—EXP(—X))*2 + 1

CSCH(X) = 2/(EXP(X) — EXP{—X))

SECH(X) = 2/(EXP(X) + EXP(—X))

SINH(X) = (EXP(X)—EXP{-X))/2

TANH(X)= —EXP(—X)/(EXP(X) + EXP(—X))*2 + 1

5.5 Strings and string functions

A string is a sequence of characters {any printable characters or non-
printable characters). A blank space may be included in a string but the
quotation mark “* cannot because quotation marks are string delimiters
i.e. they are used to mark the beginning and end of a string. For COMX-35
BASIC, each string can contain up to 127 characters.

Strings are used to represent non-numeric data as labels, messages etc.
Just as the ability to manipulate numbers enables the computer to do
scientific calculations, the ability to manipulate strings enables the
computer to do word-processing, record keeping and information retrieval.

The functions for manipulating strings are: ASC, CHRS$, FVAL, LEN,
and MIDS.

82

wvvwfastio.com

AL LR NN NN RN NN NN

VIS VR VIRV VA VAN WV VIO VA VT VT T VR VT VY VI VIR T VR T TR TR VT T

ASC (string expr)

This function returns as its value the decimal equivalent of the ASCII
value of the first character in the referenced string. The value returns in
floating point as a default. If it has been preceded by any integer function
it will be converted to integer.

For example

AS$(5) = “ARITHMETIC"
B=ASC(A$(5))

The variable B would contain as its value, 65., the decimal ASCI!I
value of the letter A.

As another example

5 A$="TEST”

10 FOR A = 1 TO LEN{(A$)
20 PR ASC(MIDS$(AS,A))

30 NEXT A

would result in

84
69
83
84

CHR$ (expr, expr,)

Corresponding to each bracketed expression, this function returns a
character. Thus, CHR$ performs a function opposite to that of ASC.
It evaluates each expression and outputs a character having an ASCI|
decimal code equal to the value of the expression. For example

PR CHR$ (65)
would result in

A

since the ASCII decimal code for A is 65, and

83

(

http://www.fastio.com/

-

PR CHRS (#42) LEN (string var)

This function returns as its value the number of characters in the specified
string. The value returns in floating point unless it is preceded by an
integer number or function, in which case it is automatically converted to
integer. The following is an example.

would result in

B

since the ASCII code for B in hexadecimal is 42.
A$="ARITHMETIC"”

PR CHRS (#41, #42, #43) PR LEN(AS$)
would result in gives

ABC. 10 {the length of A$)
For more examples of the use of CHRS, see section 3.12. Appendix A.2 and
gives the ASCII codes for all built-in characters.

PR 3*LEN (A$)

FVAL (string expr) gives
This function is special to COMX 35. It evaluates the string expression as 30

an arithmetic expression and returns its value. In this manner the user
can create mathematical functions. The followings contain three examples Note that string must be previously defined.
of FVAL usage.

10 A$="8+4" MIDS$ (string var, expr1)
20 PR FVAL (A$)
30 PR FVAL (A$+"/2")

40 PR FVAL (”SQR(3)")

MIDS$ (string var, expr1, expr2)

This function is a string function which, when executed, extracts a
portion of the specified string. The first term, expr1, defines which
character from the {eft is to start the substring. Expr2 defines the number
of characters to be used in the substring. If expr2 is not used, all of the
remaining characters are used.

:RUN (execute program)

12 (evaluate and print A$)

10 (evaluate and print FVAL ("'8+4/2"))

1.73205 (evaluate and print SQR (3))

The following is an example.
A$="YES"
B$=MID$(AS$,2,1)

B$ would then contain the letter “'E”.

AS(10)="EXPERIMENT"
PR MID$(A$(10),7,3)

READY

2

The string is limited to about 48 characters. Beyond that length,
.valuable data area may be clobbered.

84 85

mEREREREREREREREEAERRENOTAOMNOTNDENNN
A A N NN NEWE W R W W WKW AW W W W w

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

would result in
IIMENII
being printed.

10 INPUT A$ (1)

20 IF MID$(A$(1),1,1)="Y"” GOTO 100
30 GOTO 10

100 END

The last example would wait until some word beginning with the letter
“Y” was input at which time the program would branch to line
100.

Common functions like LEFT$ and RIGHTS$ of other BASICs can be
implemented with the MID$ function in the following way
MID$ (AS$,1,N)

is the same as
LEFT$(AS,.N)

and

MID$(AS,(LEN(AS)—N+1) LEN(AS))
is the same as

RIGHTS$(A$,N)

Concatenation of strings

Concatenation is the process of adding two or more strings together such
as adding “HELLO” and "“JANE" to form another string “HELLOJANE":
In concatenation, we use the + (plus) sign and form an assignment
statement using strings and/or string variables.

The only limitation on string concatenation is that any string resulting
from the addition of two or more strings may not exceed the 127-—
character limit.

For example

10 A$="NEVER”
20 B$="THE"

86

wvvwfastio.com

_

VXN NN N NN N NEWEWE W

meREAMAREREREREREEAERERERNAAEAEENAEENERNNANRMNNEN

oW W ow w

!

i

30 LET A$(5)=""LESS”
40 LET B$(1)=A$+B$+AS$(5)
50 PRINT B$(1)

Line number 40 would result in the creation of a new string B$(1) that

contains the first three strings placed back to back. “NEVERTHELESS”
would be printed at line number 50.

Inputing a string, and using strings in |F statement

Considering the example below:

10 INPUT BS

20 A$(1)="CONTINUE"

30 A$(2)="PHASE 1"

40 AS$(3)="PHASE 2"

50 IF B$=AS$(1)+A$(2) GOTO 100
60 IF B$=AS$(1)+A$(3) GOTO 200
70 GOTO 10

The above program would wait at line number 10 for a string to be
entered. That string would be stored in B$. It would then be compared
to A$(1)+A$(2) and AS$(1)+A$(3) with program execution transferred
to the appropriate spot depending upon a match or mismatch.

87

http://www.fastio.com/

ChhPDF -

5.6 Arrays

A collection of items, all bearing the same group-name, but each
designated by a number (or a set of numbers), is calied an array. For
example, a;, a;, ... a, = A [1:n] is a one-dimensional array (a list or
a vector) of dimension n. Each element in the list, ai is designated
by a number i which marks the position of the element in the list relative
to the first element in the list.

a1i,4d12,-.. @n

az1,d22,-.. 82n
Al1:m, 1:nl=

Ami,8m2, - .- amn

is a two-dimensional array (or a table). Each element in the table has a
row-value i and a column-value | which together specify the position of
the element in the array.

COMX 35 is equipped with 26 arrays [Alexpr) to Z{expr)l and 26
strings or string arrays A$ to Z$ and [AS$S{expr) to Z$(expr)]l. The
26 numeric arrays may be one or two dimensional arrays. The maximum
size of the array is 255 in any dimension. The minimum size of any
dimension is 1. The largest array that can exist is G(255,255) and the
smallest is G(1). The maximum number of array elements is limited by
the amount of RAM that is available. Any array that is used must first
be dimensioned by use of a DIM statement, which is explained in section
5.9.

The array space is cleared in several ways: RUN, NEW and CLD. This
step is discussed later in the explanation of each of these statements. It
is also valuable to know how much memory is being used by each array.
Each element in the array is four bytes long. Furthermore, each array has
a header of five bytes. Therefore, an array that is dimensioned DIM A
(10, 10) contains 100 elements (10 X 10}, which is 405 bytes for
the array named “A”. Similarly, array B, dimensioned as DIM B{20),
would contain 20 elements, 80 bytes plus the header and bring the
total to 85 bytes. The EOD statement, as explained later, tells how to
find out how full the data space is getting.

88

wvvwfastio.com

W i W kWKWK W oW ow w

mTMANTERDMENRNERTDNEND T W NN

A W L

A W

| VI VR VY VY TN T

5.7

String capability is also provided by COMX 35. It provides 26 string
variables {A$ to Z$). Each string can contain up to 127 alphanumeric
characters. Also included are string arrays that enable the programmer
to index into a table of strings by means of some numerical argument. A
string, therefore, may be referenced to by A$ (N) where N is any
expression (or number) with a maximum value of 255. If a number
greater than 255 is used, erroneous results could occur.

A string having no argument is assumed to have an argument of zero.
For example

A$ is equivalent to A$ (0).

It is also important to note that no dimensioning of any kind for strings
is necessary. Memory is automatically allocated each time a string is
generated. Also note that the generation of a string C$ (10) does not
imply that C$ (1) through C$ (9) exist. Only C$ (10) exists and an
attempt to read C$ (1) results in an error message stating the C$ (1) has
not yet been generated.

Commands to control the flow of a program

These are called control statements. They perform conditional and
unconditional branching. The control statements include END, EXIT,
FOR, GOSUB, GOTO, IF, NEXT, RETURN, and WAIT.

END

This statement (end of program) serves as a stop or end. It terminates
program execution and returns COMX 35 BASIC to the direct execution
mode. An END statement may be placed anywhere and any number of
times in a COMX 35 BASIC program. It may also be deleted completely
if desired, if it would have been the last statement in a program.

EXIT expr

This statement is an unconditional branch to a line number defined by
expr. It is intended for a premature escape from a FOR/NEXT loop or
a subroutine. One precaution should be noted. if subroutines or FOR/

89

http://www.fastio.com/

ChhPDF -

NEXT loops are nested, the EXIT statement is designed to transfer
control to a line number within the next level down of nesting. For
example, if FOR/NEXT loops are nested four deep and it is desired
to prematurely branch outside of the fourth:FOR/NEXT loop, COMX 35
BASIC expects to be somewhere in the third FOR/NEXT loop after the
EXIT has been executed. An EXIT may then be taken to some line
within the second FOR/NEXT loop, and so on. This statement is used
instead of the standard GOTO and is designed to clean up all of the
modified stack pointers that result from a FOR/NEXT or a subroutine
call. An example follows.

10
5

10 FOR I=1
20 FOR J=1
30 A=B+C
40 |F A=15 THEN EXIT 60
50 NEXT J

60 PR A

70 NEXT |

TO
TO

FOR var = expr1 To expr2 STEP expr3

This statement assigns to a variabie the value of exprl. The program
continues executing until a NEXT statement is encountered. At that time
the value of the variable is incremented by the amount defined by expr3
which may be either positive or negative. Expr2 — var is then evaluated
and compared to the sign of the step. It is assumed that zero has
a positive sign. If a match in sign does not occur, execution resumes at
the first statement-after the last FOR statement and continues through
the loop. At any time during the loop, the user can modify the value of
the variable name by any available means (e.g., a LET statement}.
It should also be noted that the mode of the variable name sets the mode
in which expr1, expr2, and expr3 are evaluated. If the STEP expr 3
is deleted, a step size of one is assumed. (See also section 3.9)

GOSUB expr

This statement (subroutine call) is identical to the GOTO statement with
the exception that the program remembers where the GOSUB occurred.
When COMX 35 BASIC encounters a RETURN statement, it will return

90

wvvwfastio.com

PEREERERERERMEAEEREANANAADODEEAEADTNENNN

A A & I R

|

Y

i

) VI

WA W oW WA WE KWW W

to the statement following the last GOSUB statement executed. In this
way subroutines may be nested as deep as memory will allow (the stack
grows as the number of nested GOSUB's grows). An example of the
GOSUB statement is

5 A=2000

10 GOSUB 1000: GOSUB 1000

20 GOSUB A

30 END

1000 PR “DONE—-"

1010 RETURN

2000 PR “FINISHED GOSUB 3000:GOTO 1010
3000 PR “COMPLETE: RETURN

This example results in the following being printed.
DONE ——
DONE ——
FINISHED
COMPLETE

See also section 3.10.

GOTO expr
This statement is an unconditional branch. It transfers execution
immediately to the start of the line number specified by the expr. If
the line number does not exist, an error message is generated. Examples
are as follows.

10 GOTO 50

10 GOTO A+B
10 GOTO 100* (A-B)

IF statement

This may take one of the two following forms:

IF string reference < > string expr THEN statement

91

http://www.fastio.com/

ChhPDF -

IF expr (relational operator) expr THEN statement

This statement is a conditional statement but in COMX 35 BASIC, it
is not only a conditional branch as in some other BASIC's. It tests for a
condition, and if the condition is met, a statement or group of statements
(separated by colons) is executed. If the condition is not met, then
execution continues at the next line number. When string relations are
compared, an equal or not equal sign is the only acceptable relation. In
the case of arithmetic expressions, the following are acceptable relational
operators.

equal to

< > not equal to
> greater than
<

less than
>= greater than or equal to
<= less than or equal to

The mode of the first expression defines the mode of the second express-
ion. An example of a conditional statement follows.

10 IF A=B THEN PR A:WAIT(200):CPOS(0,0):CLS:GOTQ 200"
20PR B

In this case, if the value of A is equal to the value of B, then the value of
A will be printed, a delay will occur, the screen will be cleared, and
execution will continue at line #200. If A is not equal to B, then the

value of B is printed and execution continues from line #20 onward.

One additional point to be made is that the keyword THEN is optional
and need not be used. A common mistake to be avoided is the following.

IF A>N THEN 200

Anything to the right of THEN, if it appears, is to be an executable
statement. The number 200 is not an executable statement. The correct
version would be as follows.

IF A>B THEN GOTO 200 or
IF A>B GOTO 200

92

wvvwfastio.com

Ly

O oR R W R W R Wl WKW W W W oW w

FEENEBEEEREERNENENERNNENN N,

S - g O) VU S — Y

VR

i

Some more examples of acceptable IF statements are given below. Note
the multiple conditions in the last example. If any of the conditions
are not met, execution continues at the next line number. If all of the
conditions are met, execution will finally get transferred to line #500
by means of the GOTO statement. It follows that the GOTO statement
could have been any executable statement.

10 IF A(2)*B(1)>=C*SIN(A) PR A:GOTO 50

10 IF A$(2);nn “LIST” LET B=3:GOTO 100

10 IF B$(A+B)=MIDS$S(A$,2,4) PR “OK"

10 I{F MID$(A$(5),2,4) = “EBCD” PR “MATCH':GOTO 500
10 IF A$=B$+C$ THEN GOSUB 200:CLS:PR “DONE"

10 IF A=INT(S/5) IF B>10 IF C<5 GOTO 500

NEXT

NEXT Simple var

This statement closes the FOR/NEXT loop as described in the FOR
statement. If the variable name is omitted, the NEXT statement
returns to the last FOR statement and continues. If the variable name
is included, COMX 35 BASIC will check to see if it matches the variable

name used in the last FOR statement. If it does not match, an error
message is issued.

RETURN

This statement (return from a subroutine call) marks the end of a

subroutine. Execution returns to the statement following the last
GOSUB executed.

WAIT (expr)

This statement provides a way to insert a delay in the execution
of a program. The length of the delay is directly proportional to the
value of the expression. 1 equals 128000 CPU clocks. The delay for an
expression of 1 is approximately 6.4 milliseconds (i.e. 128000 x 1/

(2 x 10)). An example of one application of the WAIT statement is
as follows:

93

http://www.fastio.com/

ChhPDF -

10 INPUT AS$(1)
20 PR “MESSAGE 1S”; A$(1)
30 WAIT (500):CLS:GOTO 10

This routine allows the message to be viewed for some period of time
(500 x 6.4 ms) before the screen is cleared and execution continued.

5.8 Command Statements

Command statements are system directives. The command statements
include CLD, CLS, CPOS, EDIT, EOD, EOP, FORMAT, LIST, NEW,
RENUMBER, RUN, RUN+, and TRACE.

CLD

This statement {ciear data) when executed erases all strings and arrays.
It does so by reseting all string and array pointers to their initial states.

CLS

Clears the screen from the current cursor position.-To clear the compiete
screen type CPOS (0,0):CLS.

94

wvvwfastio.com

PR REEEREREEREAREENAEDOEEMEEAENENMNNN

VI VA VA VAV VAT WV VT VY i T VT T T VR T VRN TR TR TR AT

w w

CPOS (expr, expr)

This statement (Cursor Position} directs the cursor to a position in the
screen specified by the two expressions in bracket. The first specifies the
row position (0 to 23} and the record, the column position (0 to 39) of
the cursor. CPOS may be used together with CLS to enable part of the
screen to be cleared, with PRINT for printing messages and headings
beginning from specified position on the screen, or with SHAPE to create
color graphics. For example

10 CPOS (11, 0)
20 CLS
RUN

will clear the lower half of the screen.

10 CPOS (11, 12)
20 PRINT “THIS IS A TEST”
RUN

will print the message at the centre of the screen.

EDIT expr

This statement opens the line number called by expr and allows the
user to modify the line on a character basis. Further details are given in
section 3.11.

EOD
EOP

The EOD statement (end of data) prints the hexadecimal address of the
end of data (arrays and strings) space. The EQP statement {end of
Program) is similar to EOD in that, when executed {normally in the
direct execution mode), it automatically prints the hexadecimal address of
the end of the current program space. The user can type it at any time
'during program development to see where the end of program is located
in memory. The following example

95

http://www.fastio.com/

EOP : EOD the result is,

* X X X ¥ %

could result in

L N B

= 4411

» 441A If line 40 is replaced by

40 PR —67890.1

indicates that the number following is in hexadecimal.

This example indicates that the end of program is 4411 (HEX) and the the result is

end of data is at 441A (HEX). EOD is valid only after data has been
generated by running the program (and after DIM has been executed).

L R K

—_ % * ¥ % *

AW o e U oW ow w

Summing up, if the field size of a positive number is greater than N, N
asterisks will be printed. If the number is negative, a negative sign followed
by {N—1) asterisks will be printed.

FORMAT N

’LlJ

This statement specifies the field size (i.e. the number of places of printed
numeric data. Any PRINT statement coming after the FORMAT
statement, whether printing the value of a variable, or printing a number,
will have the field size specified. For example

The range of n is from 1 to 15.

i L

FORMAT 0 means that the constraint due to FORMAT is turned-off.
For example,

"

10 A~=12345.6
20 Format7
30 PRA

40 PR 67890.1

10 FORMAT 5
20 PR 123456
30 FORMAT o0
40 PR 123456

o

— e ——————— e —— —~——— e —— e —

RUN :
=
will give, B RUN
o
v will give,
12345.6 3
67890.1 | _ e
B A

123456

If line 20 is replaced by,]

20 FORMAT 6 I

RUN]

97

»
TV VR VIRt VRt Y

o =

ChibPDF - www.fastio.com ”

http://www.fastio.com/

ChhPDF -

LIST
LiIST expr
LIST expr, expr

This statement (list the program), with no expression, will list the entire
program in user space. If one expression is given, only one line, the
number of which corresponds to the value of the expression, will be
listed. Likewise, if two expressions are given and separated by commas,
the listing will start and end at the respective lines corresponding to the
values of the expressions. If, at any time, an expression evaluates to a
number which is a nonexistent line number, then the line with the nearest
line number after the non-existent line will be fisted. (see also section 3.3)

NEW

This statement totally initializes COMX 35 BASIC, the user space, and
all data space. That is, it erases the user-generated COMX 35 BASIC

program and initializes all string and array pointers.

RENUMBER

RENUMBER N

The RENUMBER statement allows the user to renumber the lines within
a program to a given increment. If no argument follows the RENUMBER
statement, the increment defaults to 10, i.e., line numbers 10, 20, 30,
and so forth. When n is given, it becomes the initial line number as
well as the increment. The n value that is displayed for numbers above
256 will always be module 2566. A warning message indicating the number
of “‘computed branches’ is issued. A “‘computed branch” is a statement
requiring the computer to branch or jump to another statement the line
number of which is yet to be determined. For example, consider the

following program,

98

wvvwfastio.com

_

Ww w w w

TR TR T VR T TR T TR’ TR

NN W N W oa W oE W

!

10 FOR A=11t0 5

15 N(A) =0
20 NEXT
25 GOTO 10

RENUMBER 20

will give the message

0 COMP BR

and LIST will give,

20 FOR A=1t0 5

40 N=0
60 NEXT
80 GOTO 20

!flote that the lines have been renumbered. Note also that the statement
25 GOTO 10" has become “80 GOTO 20" since the old line 10 has
been renumbered 20. “GOTO 10” is not a-"computed branch’ (hence

the r.nessage "0 COMP BR”) because the computer is able to determine
the line to branch or jump to.

Consider another example, with “GOTO 10" ¢
, eplaced by “GOTO 5*2"
{or “GOTO B"), ! e

10 FORA=1to5
15 N(A)=0

20 NEXT

25 GOTO 5*2

RENUMBER 20

will give the message,

1 COMP BR

99

http://www.fastio.com/

ChbPDF -

and LIST will give,

20 FOR A=1tob
40 N(A)=0

60 NEXT

80 GOTO 5*2

The warning message that there is one “‘computed branch’’ prints to the
fact that one line, on this case, line 80, will give rise to error because
of renumbering. “GOTO 5*2” (and “GOTO B”) are examples of
“computed branch’’.

RUN

This statement sets COMX 35 BASIC into the program execution mode.
COMX 35 BASIC searches for the lowest line number and begins
executing each line in numerical order. Before execution begins, however,
the RUN statement clears all array and string data space to make room
for new data.

RUN expr

This statement starts execution at a line number specified by expr. It
is similar to RUN with no trailing expression in that it sets COMX 35
BASIC into the execution mode. If the line number specified by expr
does not exist, an error code is generated. In addition, because this. RUN
statement does not clear the data space, the user can execute a program
with data (strings or arrays) generated previously.

RUN+

’

This statement searches through the user's program and replaces “‘inter-
pretive branches”” with “‘absclute address branches’”” and then starts
execution. This step greatly enhances speed. After the initial RUN+ cycle,
RUN will cause execution in this faster mode. |f any program editing
occurs, the system automatically goes but to the slower mode.

100

wvvwfastio.com

R RERERAREERAEAEEAEAAEEEREDTREANNEN

AN LN RNE LR W N LN NN NG W W W

5.9

A program converted by RUN+ should not be saved in this form because
of the absolute address assignments.

(Note: When RUN+ is executed, whenever the BASIC interpreter en-
counters a ‘‘branch or goto statement’’ such as “GOTO 10", it will find
the absolute address where the line-number ““10" is stored, and hence
converts the statement from what is called an “interpretive branch”
into an ‘“‘absolute address branch”.

A statement such as “GOTO B” is not an “interpretive branch” since
it is known that the line-number to branch to is stored in the location

with symbolic address B.)

TRACE expr

If the trailing expression evaluates to anything other than zero, the “‘trace’”
action is turned on. That is, each line that is executed by COMX 35
BASIC will transmit the following to the screen:

TR (line number)

The numbers on the screen are the line-numbers of each statement as it
is executed. This enables the user to follow or “‘trace” the flow of the
program, and is specially useful in the debugging stage to ensure that the
program is doing what is intended.

1f 2 TRACE statement is executed with the trailing expression evaluating
to zero, the trace will shut off. These statements may be placed anywhere
in a COMX 35 BASIC program. A very useful place for a TRACE
statement is in an interrupt routine.

TRY the following with a BASIC program

TRACE (1): RUN

Comment and Definition Statements

Comment and definition statements allow the programmer 1o insert
comments into the program and to configure the memory, that is,

101

http://www.fastio.com/

space back to 4400 (HEX) is by another DEFUS to 4400 (HEX). The

to define the starting address of the program, to allocate memory for statement destroys the user program currently in memory.

data, and the like. The comment and definition statements include

PEFINT, DEFUS. DEG, DIM, FIXED. RAD, and REM. An interesting feature of moving the start of user program space lies in

the PSAVE statement. If a program has been generated at a moved location

"R

and it has associated with it some machine language routines, a PSAVE
statement will save everything from 4400 (HEX) to the end of program
space. Included would be the machine language routines as well‘as the
associated COMX 35 BASIC program. A subsequent PLOAD will Ioafd
in all of the above, including the machine language routines, ar_\d will
also redefine the start of user space to where it was when the file was

created. No book-keeping is necessary.

DEFINT

w

DEFINT var name

This statement (define integer variables) when executed without any
variable name sets all variables (A—Z) and all arrays (Alexpr)—Z
(expr)) as floating point. If a variable name is included in the DEFINT
statement, all variables and arrays from A up to and including the variable
name will be set up as integer. For example,

DEFUS = 6D00 or
DEFUS w 6DCC moves the start of user space to 6D00

DEFUS » 4400 moves the start of program space back to
its original location

DEFINT D

defines variables and array names A, B, C and D as integer. A NEW
statement will always revert all variables to floating point. It is for this
reason that, if integer variables are to be used in a program, a DEFINT
statement should appear early in the program.

BFFF (HEX)

Note also that if a DEFINT is used with no variable name, it must end in a
carriage return. That is, a colon may not be used to concatenate any

T beginning of program space
further commands on the same line. <

specified by expr.
T “hole”

44¢¢
DEFUS expr

System variables
This statement (define the start of user space) is provided to allow the
start of program space to be moved further up in memory, as shown in
Fig. 5.9.1. It allows the programmer to create a “hole” in memory in
which he can store machine language routines. Expr defines where the
program space will begin. In COMX 35 BASIC the user space begins at
hexadecimal 4400. The expression must evaluate to a number greater
than 4400 (HEX). COMX 35 BASIC will round down the expression
to give only even-page increments of movement. If an attempt is made
to define the user space at an address lower than 4400 (HEX), COMX 35
BASIC will “self-destruct”, i.e. since the program overwrites the system
area {see Fig. 5.9.1), the BASIC interpreter will no longer work properly.
Once a DEFUS statement is executed, the only way to get the program

3FFF (HEX)

ROM BASIC

¢opd (HEX)

Fig. 5.9.1 Action by DEFUS to move the beginning of program space up

103
102

LU T T T TR T TR TR T T R T T T

ChibPDF - www.fastio.com

http://www.fastio.com/

DEG

This statement sets the unit of measure for angular functions to degrees,
The preset state of COMX 35 BASIC is radian measure. The complement
of this statement is RAD.

DIM var list

This statement (dimension arrays) serves to reserve memory for arrays of
numbers. These arrays may be one dimensional or two dimensional. The
expression defines how large the array is in one or both dimensions. See
the earlier discussion of arrays and their size limitations. The mode of
the array (floating point or integer) depends on whether its associated
variable name has been defined as either integer or floating point. For
instance, if all variables A—Z are floating point, then all arrays will be
floating point (independent of the mode of the expression defining its
limits). If variables A, B, and C are defined as integer, then arrays named
A, B and C (if used) will be defined as integer. Multiple arrays may be
dimensioned in the same DIM statement .so long as each array is separated
by a comma.

It memory is exceeded when an array is being dimensioned, an error
message will result. Trying to use any array element that has not been
previously dimensioned will also result in an error message. The
programmer can use a CLD statement to clear all unwanted data space
in order to reclaim all data space.

The following is an example of a DIM statement.
DIM A{10, 10), B(20)

The above example sets aside space for 100 numbers (10 x 10) with the
names ranging from A(1, 1) to A(10, 10) and 20 numbers with names
ranging from B(1) to B{20).

The dimension statement can be used in the direct mode of execution
if desired. Any arrays generated by a program remain intact after program
execution is completed. One can interrogate the contents of any array in
the direct mode by means of the PRINT statement. The array remains
intact until a CLD is executed or any editing to the program is done. Note

that if a “RUN expr” is executed, the data space is not cleared and the

104

ChibPDF - www.fastio.com

DA WON DWW W W W W W LW ww w

B EE N NNENNENNENRNNSNNNNMNHNHN
- e e e e — — . ——— . — T N N W B NN A NSNS I EENEE BN BN BN NS A DM N e

array has not been deleted. In this case, redimensioning will result
in an error message. For that reason, the programmer should begin
execution at a line-number after the DIM statement, if he wants to use
previously generated data. The array data as well as the string data, exists
directly after the user space. Any editing of the original program will
alter the user space and thus destroy the data. It should be noted that
an array can be redimensioned without destroying other arrays or strings.

This statement when executed formats the printing of all numbers both
floating point and integer. The value of the expression defines how many
digits to the right of the decimal point will be printed. Trailing zeroes will
be filled in to complete the number. If necessary, the number will be
rounded. The expression must evaluate to a number between 0 and 6. If a
number greater than 6 is entered COMX 35 BASIC reverts to its normal
mode (i.e. FORMAT 0) of outputing numbers. For example,

FIXED 2
PR 123 will result in 123.00
PR 123.567 will result in 123.57
PR 6E7 will result in .60EOQ8
FIXED 7

PR 123.50 will result in 123.5

RAD

This statement sets the unit of measure for angular functions to radians.
This state is the preset state of COMX 35 BASIC. The complement
of this statement is DEG.

REM
When REM is placed at the start of any COMX 35 BASIC line, the entire

fine is listed but ignored during program execution. Its purpose is to
enable the programmer to insert comments for documenting the listing.

105

http://www.fastio.com/

5.10 Program Data Statement 50 READ A$(1),B,C

60 PR A$(1);B*C
70 DATA““B*C IS EQUAL TO", 20,30

Program data statements allow the programmer to embed lists of data in

the program and provide the mechanism to read the data during program E
execution. The program data statements include DATA, READ, and)
RESTORE. Eu The result of the above example is that the array A would be loaded as

follows:

DATA date list A(1)=10 A(2)=20 A(3)=30 A(4)=40
Line # 60 would result in

The DATA statement contains data to be used by a READ statement. B*C IS EQUAL TO 600

Each element in the DATA statement must be separated by a comma. Any E,
string of characters must be enclosed in quotes. The DATA statement
may appear anywhere in a COMX 35 BASIC program. The following é RESTORE

are acceptable DATA statements.
This statement resets the previously mentioned COMX 35 BASIC pointer
back to the start of the first DATA statement in the program, thus
allowing the multiple use of DATA in one program.

1 DATA 2*A, A$(1), “HELLO", B
1000 DATA 1,2,3,4 EI
5000 DATA SIN(45), SIN(60), SIN(90) '

READ var list

The READ statement is used to read data from the DATA statement
and assign that data to a particular variable. Each time the READ
statement requests more data, an internal COMX 35 BASIC pointer
moves to the next piece of data in the DATA statement. When a
DATA statement is out of data, COMX 35 BASIC will search onward
for another DATA statement. If none is found, an error message will be
returned indicating the lack of data. It is important to keep track of
the variable names or string names in the READ statement and the corres-
ponding data in the DATA statement. They must match in form; strings
go with strings, and so on. An example of an acceptable DATA/READ
statement pair is as follows.

5 DIMA(4)
10 DATA 10,20,30,40
20 FORA=1TO4
30 READ A(A)
40 NEXT

A VR VAL VR U VIV VT VT V1 T T VT VY VT T T TR TR "R 17 T/

106

107

mnaPRrREEREERERTER®EMTMN

ChibPDF - www . fastio.com

http://www.fastio.com/

5.11

1/0 Statement

i/0 (input/output) statements provide the interface between a program
and the program user. The 1/O statements include INPUT, PRINT and PR.

INPUT var list

When COMX 35 BASIC encounters an input statement, it stops and
issues a question mark “‘?”’ to the screen as a prompt. It then waits for
a user response. A list of variable names may appear after the INPUT
statement. Each of the variable names must be separated by a comma.
In response to the prompt *‘?’, the user may answer with any expression
or group of expressions separated by commas. If the INPUT statement
has three variable names after it and the user responds with only two
expressions, COMX 35 BASIC will issue another prompt (?) and wait
for the third expression. Conversely, if the INPUT statement has only one
variable name and the user responds with two or more expressions,

COMX 35 BASIC will continue execution. When it encounters another
INPUT statement it will pick up the last unused expression without
issuing another prompt. It will continue to do so until all the unused
inputted data is used up. Then, at that time, another prompt “2?" will
be issued. The data that is picked up is assigned to the associated
variable name as it is inputted. The mode of the variable name defines the
mode in which the associated input expression will be evaluated.

Note that an INPUT statement may not contain both string variable names
and normal variable names at the same time. Furthermore, each INPUT
statement containing a string variable name can contain one and only
one name. Because of this limit, in response to an INPUT A$ statement,
the programmer can answer with a string of characters with no quotation
marks. The carriage return marks the end of the string. The following
are acceptable INPUT statements.

10 INPUT A, B, C,(1)
107 INPUT A(1), A(B)

10 INPUT A$

10 INPUT B$(B)

108

ChibPDF - www.fastio.com

e — . - — -

mmm@m@mwm"'mmwwwwwwwmmww

rPREBRREREERARRERERAEERAMAEMEERANENERN

The following are incorrect INPUT statements.

10 INPUT AB(no delimiter between variables)
10 INPUT A$, B${multiple string names forbidden)

INPUT ““string” var list

This INPUT statement is identical with the one above except that directly
after the keyword INPUT a quote appears allowing a message to be printed
prior to the question mark prompt. No delimiter or separator is used
before the first quote or after the last quote.

PRINT or PR
PRINT print list

PR is used as an abbreviation for PRINT. In a listing, PR’s are replaced

with PRINT’s. The purpose of this statement is to output to the 1/0
routines any expr or string function as defined earlier. Each of the items
to be printed must be separated by an acceptable delimiter, either a
comma or a semicolon. Each of the delimiters serves a special function.
When a comma is used, the next item to be printed is placed at.the next
eighth column increment called “‘printing-zone’”’. When a semicolon is
used, no spaces are inserted and the next item is printed directly after
the last. The semicolon and comma also serve to inhibit the carriage
return at the end of PRINT statement. The next PRINT statement
encountered in the program, therefore, will begin where the previous one
left off. If a PRINT statement is used all by itself, then a carriage return/
line feed is outputted. There are two functions that are usable only in
a PRINT statement: TAB(expr) and CHR${expr). A description of these
two functions is given in sections 5.13 and 5.5 respectively. Examples of
acceptable PR statements are as follows:

PRINT 5

PRINT A

PR (A+B)/C

PR A, B, 1234, C(5)

PR “THE VALUE OF A= "A
PR AS$(1)+A3%(2)

109

http://www.fastio.com/

PR A$(2),AB;

PRINT MID$(A$,1,2)

PRINT TAB(A+B);10;TAB(30);E
PR A,

PR

Note that when more than one arithmetic expression appears in a PRINT
statement, each expression may be evaluated in a different mode.

Machine Language Subroutine Statement

Machine language subroutine statements allow the programmer to include
machine language code within his program to take advantage of particular
characteristics of the processor or for speed enhancements in real-time
applications. The machine language subroutine statement is CALL.

CALL (expr1)
CALL (expr1, expr2)
CALL (expr1, expr2, expr3)

This statement provides the link between COMX 35 BASIC and machine
language programming. It serves as a machine language subroutine call. It
transfers execution to a machine language subroutine, the address of which
is determined by expr1. The machine language routine should be written
with the following rules in mind.

(1) ... The program counter upon entry into the subroutine is R3.

(2) .. Transfer is f’nad*e back to COMX 35 BASIC by means of a Db
(SEP R5) instruction.

{3) .. The machine language routines have free use of R8, RA, RC, RD,
and RE. If any other registers are to be used, they should be saved first
on the stack and restored before returning to COMX 35 BASIC.

Note: The standard call and return technique (SCRT) is not used because
it destroys the upper part of register F(RF.1).

(4) .. Call and return conventions have been established by COMX 35
BASIC and no further initialization is required by the machine language
subroutines.

110

ChibPDF - www.fastio.com

E

PR REREREADERDDRMDM

VA VR VR V-V T T T T T T T T T

(5) .. The stack is available for use (point to by R2) so long as it
returns as it was left.

Any of the expressions (expr1, expr2, expr3) may be expressed in either
integer or floating point. COMX 35 BASIC will automatically convert
them to integer. The value of expr2, if used, is then passed to the machine
in R8. A second piece of data may also be passed to the machine language
subroutine in register RA. The value will be that of expr3. RD is initialized
to timing constant for utility program.

1/O Functions

The function in this group include MEM, PEEK, and TAB.

MEM

This function enables the user to determine how much memory is
left. When executed, MEM returns a decimal number representing the
number of memory bytes left between the end of data (string and arrays)
and the end of the normal stack. The actual number returned is reduced
by 256 to allow for stack growth during program execution. For example,
to receive the value on the screen the user should type

PR MEM

PEEK (expr)

This function returns the decimal equivalent of the contents of memory
at an address determined by the expression. The decimal result defaults
to floating point. For example:

10 A=PEEK (16842)
20 IF A=8 THEN PRINT “NTSC MACHINE"”
30 IF A=9 THEN PRINT “PAL MACHINE"”

Variable A now contains the “CONTENTS'' stored at memory location
16842. This is a ‘‘system variable’’ which tells whether your COMX 35
is a PAL or NTSC machine.

111

http://www.fastio.com/

TAB (expr)
This function is not a function in the same sense as the previous ones in
that it does not return a value of any kind. It is used and recognized
only in the PRINT statement. It-places the cursor at the horizontal
position determined by the value of the expression. The new cursor
position is referenced to column 0 and not to the previous cursor position.
Printing continues from that point on.
Following are some examples.

PR TAB(10}; 1
will print a 1 at column 10.

PR TAB(10);1; TAB(20);2
will print a 1 at column 10 and 2 at column 20.

PR TAB (); 11%qr

will print a star {¥) at column A. ,‘ I cHAPTER SIX

MORE PROGRAMMING EXAMPLES

Machine Language Function

The only function in this group is USR

USR (expr1}
USR (expr1, expr2)
USR (expr1, expr2, expr3)

This function acts like to CALL statement described in the previous
section but with the difference that USR is a function to be used as
part of an expression. When USR is encountered, a subroutine call is
made to the machine language routine stored at expri. Data may be
passed to the subroutine in exactly the same way as the CALL statement.

Please note that USR and CALL use 1802 microprocessor conventions
and registers, please consult an 1802 programming manual for a detailed
explanation of the 1802 CPU.

ChhPDFE - www

http://www.fastio.com/

ChhPDF -

wvvwfastio.com

E -
| ol
| e |
= =
| S|
[|
E =
E =
e s
E =2
E =
E =
= -
E =
E =
B =
E =
s =
5 -
B =
K =

CHAPTER 6 MORE PROGRAMMING EXAMPLES

This chapter contains a collection of programs. Besides the usefulness of the
programs themselves, they are included as examples to illustrate the application
of certain BASIC commands. For each program, besides providing the BASIC
source listing, and the screen displays for a typical run, comments will be

made on certain programming techniques used.

6.1 First example on CAl (Computer Aided Instruction) — demonstrating

the use of the COMX 35 COLOR, SCREEN and MUSIC commands

6.1.1 The program listing
The program listing
10 REM THIS PROGRAM IS A TUTORIAL TO
20 REM SHOW HOW TO COMMAND COMX 35
30 REM TO CHANGE THE COLOR OF THE
40 REM CHARACTERS, AND OF THE SCREEN
50 REM AND HOW TO PRODUCE SOUND
60 REM EFFECT
70 REM
75 CPOS (0,0):CLS
80 SCREEN (3): COLOR (8): CPOS (1,7}: PRINT “Hi!
| AM THE CLEVER COMX 35!”
90 CPOS (3,4): PRINT “l LIKE TO SHOW YOU”
100 CPOS (5,4): PRINT “HOW TO DO THE FOLLOWING:"”
110 CPOS (7,4): PRINT “ 1. HOW TO CHANGE THE
COLORS”
120 PRINT “ OF THE CHARACTERS DISPLAYED”
140 CPOS (10,4): PRINT “ 2. HOW TO CHANGE THE
COLOR"”
150 PRINT ” OF THE SCREEN.”
160 CPOS (13,4): PRINT: “ 3. HOW TO PRODUCE SOUND
EFFECTS.”
170 CPOS (15,2): INPUT “WHICH OF THE ABOVE WOULD
YOU LIKE TO KNOW? 1,2 OR 3. ANSWER 0 TO END”
K

113

http://www.fastio.com/

175
177
180
200
204
205
210
215
220
225
230
235
240
245
247
250

255
260
265
270
275
280

285

295
300
305
310
315
320
325
400
404

405
410
415
420

ChibPDF - wn

PRINT

IF K=0 THEN GOTO 710

GOTO K*200

SCREEN (1): COLOR (7): CPOS (0,0}: CLS

CPOS (3,8): PRINT “TO CHANGE THE COLOR OF THE”
CPOS (4,11): PRINT “CHARACTERS, WE USE THE"
CPOS (5,11): PRINT “COMMAND COLOR(N) WHERE N”
CPOS (6,11): PRINT “DETERMINES"”

CPOS (8,8): PRINT “ THE COLOR OF THE COMPUTER"
CPOS (9,9): PRINT “ OUTPUT CHARACTERS, AND"
CPOS(11,8): PRINT ** THE COLOR OF THE KEYBOARD"”
CPOS (12,9):PRINT “ INPUT CHARACTERS”

CPOS (14,8): PRINT “PLEASE TYPE”

CPOS (16,8): PRINT ““ COLOR (N)”

CPOS (18,8): PRINT ““(WHERE N CAN BE 2,3,4,5,6,7,8)"
CPOS (20,8): PRINT “AFTER THE ?SIGN. THEN.
PRESS"”

CPOS (21,11): PRINT “THE CR KEY"”

INPUT A$

B$=MID$(A$,7,1)

C=FVAL (B$)

COLOR (C)

PRINT “TYPE ANY KEY, FOLLOWED BY"”

PRINT "“PRESSING CR TO REVERT TO”

PRINT “ORIGINAL COLOR”

INPUT AS$

COLOR (12)

PRINT “N CAN HAVE VALUE FROM 1 TO 12"
PRINT “INCLUSIVE. YOUR MANUAL WILL"”

PRINT “TELL YOU WHAT COLOR”

PRINT “COMBINATION FOR EACH VALUE”
PRINT "“OF N.”

CPOS (0,0): CLS: GOTO 80

SCREEN (7): COLOR (12): CPOS (0,0): CLS

CPOS (6,4): PRINT “TO CHANGE THE BACKGROUND
COLOR"”

CPOS (8.,4): PRINT “OF THE SCREEN, WE USE THE"”
CPOS (10,4): PRINT ““SCREEN(M) COMMAND."

CPOS (13,4): PRINT “FOR EXAMPLE’ PLEASE TYPE”
CPOS (16,4): PRINT * SCREEN({M)"

114

v fastio.com

PR RREEREEREEASEAEANDN TN ERARRN
\ U VR VIV VIR 1 VY VOV VIV VT V=T VTR VI~ TR VI T 17 TR T/

422

425

430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
600
604

605
610
615
620
625
630
635

640
645
650
655
660
665

670
675
680
685

CPOS (19,4): PRINT “(WHERE M IS ANY INTEGER 1
TO 8)”

CPOS (21,4): PRINT “AFTER THE ? SIGN. AND PRESS
CR”

INPUT A$

B$=MIDS$(A$,8,1)

C=FVAL (B$)

SCREEN (C)

PRINT “PRESS ANY KEY FOLLOWED BY CR”

PRINT “REVERT TO THE ORIGINAL SCREEN"
PRINT “COLOR”

INPUT A$

SCREEN (1)

PRINT “M CAN HAVE VALUES OF 1 TO 8"

PRINT “INCLUSIVE. YOUR MANUAL WILL"

PRINT “TELL YOU THE SCREEN COLOR”

PRINT “CORRESPONDING TO EACH"”

PRINT “VALUE OF N”

CPOS (0,0): CLS: GOTO 80

SCREEN (2): COLOR (5): CPOS (0,0): CLS

CPOS (3,4): PRINT “MUSICAL NOTE IS GENERATED
USING”

CPOS (5,4): PRINT "“THE MUSIC (X,Y,Z} COMMAND"
CPOS (8,4): PRINT “ X=1TO 7 FOR DO TO TEE"”
CPOS (10,4): PRINT“ Y=1TO 8 FOR OCTAVE"”

CPOS (12,4): PRINT “ 2=0 TO 9 FOR AMPLITUDE"
CPOS (15,4): PRINT “TRY, FOR EXAMPLE, TYPING,”
CPQOS (18,4): PRINT ** MSUIC (X,Y,2)"

CPOS (21,4): PRINT “AFTER THE ? SIGN. THEN PRESS
CR”

INPUT AS$

X$=MID$ (A$,7,1)

Y$=MID$(A$,9,1)

Z$=MID$(A$,11,1)

X=FVAL (X$)

Y=FVAL (Y$)

Z=FVAL (Z3)

MUSIC (X,Y,2Z)

PRINT “HIT ANY KEY FOLLOWED BY CR TO"”

PRINT “STOP THE MUSIC NOTE"”

115

http://www.fastio.com/

lj

6.2 Second example program on CAIl (Computer Aided Instruction) —

690 INPUT A$

700 MUSIC (0,0,0)

705 CPOS (0,0): CLS: GOTO 80

710 SCREEN (1): COLOR (12): END

using COMX 35 to evaluate mathematical expressions

6.2.1 The program listing

6.1.2 Notes on programming tips

\ /
(1) .. Lines 10 to 60 Note the use of REM to describe the aim ‘ =
of the program. ’x
(2) .. Line 75 This clears the screen for subsequent display. \
(3) .. Line 80 Note the use of SCREEN and COLOR to change |
the colors of the display. ‘
\
(4) .. Lines 80 to 160 Note the use of CPOS to position the ‘
messages to be displayed. |
| NS\

(5) .. Line170" This INPUT statement outputs a message to
explain to the user how to ““talk” to the computer. In this
case, he is asked to choose an option by answering 1,2,3 or
0.

2

The program listing

10 REM THIS PROGRAM IS A TUTORHAL TO

20 REM SHOW HOW COMX MAY BE USED

30 REM AS A CALCULATOR TO EVALUATE

40 REM COMPLEX MATHEMATICAL EXPRESSIONS

60 CPOS (0,0): CLS

70 CPOS (4,5): PRINT "I WISH TO SHOW YOU MY MATH"

80 CPOS (5,6): PRINT“ ABILITY"

90 CPOS (7,5): PRINT “LET'S BEGIN WITH ADDITION.”

100 CPOS (8,5): PRINT “THE OPERATOR IS +."

130 CPOS (10,5): PRINT “PLEASE TYPE"

140 CPOS (12,5): PRINT “3+4"

150 CPOS (14,5): PRINT “AFTER THE? SIGN.”

160 CPOS (17,5): PRINT “THEN, PRESS THE CR KEY"

165 CPOS (19,56): PRINT “WATCH OUT FOR THE ANSWER
IN"

(6) .. Line 260 The computer accept the string A$ which
has the form COLOR (N) from the user. Let’s assume that the
user enters COLOR (6).

(7) .. Lines 265to 275 The computer has to be instructed
to execute the COLOR (6) instruction as requested by
the user. These three lines do just that using the MID$ and
FVAL functions. Line 265 extracts the character 6 from the
string COLOR (6). Hence B$ equals the ASCIl code of the
character 6. In line 270, FVAL evaluates the character 6 and
returns its value to C. In this case C=6, and COLOR (C)
does the color change as required. The same technique is
repeated in limes 435 to 445, and lines 645 to 675.

116

ENENRENERNRENRENNNRENERRRYN.
VNN NN W N W N DWW W R Wl e

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

167 CPOS (20,6): PRINT “* THE NEXT LINE"

170 INPUT A$

180 PRINT FVAL (AS$)

182 INPUT “HIT THE RETURN KEY AND PRESS CR TO
CONTINUE” K$

184 CPOS (0,0): CLS

190 CPOS (8,4): PRINT “NOW, LET'S TRY SOMETHING
MORE"”

200 CPOS (9,6): PRINT “COMPLICATED"”

210 CPOS {11,4): PRINT “TYPE AFTER THE? SIGN”

220 CPOS {13,4): PRINT “ 12+14+61"

221 CPOS (15,4): PRINT "“THEN, PRESS CR FOR THE
ANSWER"’

224 PRINT

226 PRINT

230 INPUT A$

240 PRINT FVAL (A$)

242 INPUT “HIT ANY KEY AND PRESS CR TO CONTINUE"
A$

250 CPOS (0,0): CLS

260 CPOS (8,4): PRINT “THE OPERATOR IS—."

270 CPOS (11,4): PRINT “PLEASE TYPE"”

280 CPOS (13,4): PRINT ** 9-5 ~

290 CPOS (15,4): PRINT “AFTER THE? SIGN. PRESS CR”

300 PRINT A$

310 PRINT FVAL (A$)

315 INPUT “HIT ANY KEY AND PRESS CR TO CONTINUE"

K$
320 CPOS (0,0): CLS: CPOS (7,8): PRINT “NOW, TRY THE
FOLLOWING"

330 CPOS (9,8): PRINT “TYPE AFTER THE? SIGN”

340 CPOS (12,8): PRINT ** 5+6-—7

345 CPOS (15,8): PRINT ““AND PRESS CR FOR THE
ANSWER"

3560 INPUT A$

360 PRINT FVAL (A$)

365 INPUT “HIT ANY KEY AND PRESS CR TO CONTINUE"
K$

370 CPOS (0,0): CLS: CPOS (5,5): PRINT “NOW, LET'S
TRY MULTIPLICATION"

380 CPOS (7,5): PRINT “THE OPERATOR IS*”

118

wvvwfastio.com

PREABRREREREREARAAOTERPERENRNRAN
\ LI VIR VIV VI VR VY VT VY VT T VT T VO TV T T TR T T

390
400
410
420
430
435

440

450
460
465
470
480
490
500
520

522

530
540
550
560
570
575

580

590
600
610
620
625

630

640
650
660
670

CPOS (9,5): PRINT "“PLEASE TYPE”

CPOS (12,5): PRINT “9*7”

CPOS (15,5): PRINT “AFTER THE? SIGN. PRESS CR"’
INPUT A$

PRINT FVAL (A$)

JANPUT “HIT ANY KEY AND PRESS CR TO CONTINUE"

K$

CPOS (0,0): CLS: CPOS (5,5): PRINT "NOW LET'S TRY
DIVISION”

CPOS (7,5): PRINT ““THE OPERATOR IS /*

CPOS (9,5): PRINT “PLEASE TYPE”

CPOS (12,5): PRINT ** 63/7

CPOS (15,5): PRINT: AFTER THE? SIGN. PRESS CR"”
CPOS (17,5): PRINT */(63/7 MEANS 63 DIVIDED BY 7)”
INPUT A$

PRINT FVAL (A$)

CPOS (20,0): INPUT “HIT ANY KEY AND PRESS CR TO
CONTINUE” K$

CPOS (0,0): CLS: CPOS(2,5): PRINT “NOW, LET'S TRY
A MORE COMPLEX"

CPOS (4,5): PRINT “EXPRESSION. PLEASE TYPE"
CPOS (7,5): PRINT ** (5+6)*(9—7) *

CPOS (10,5): PRINT “AFTER THE? SIGN. PRESS CR”
INPUT A$

PRINT FVAL (A$)

INPUT “HIT ANY KEY AND PRESS CR TO CONTINUE"
K$

CPOS (0,0): CLS: CPOS(8,4): PRINT “NOW, TRY
ANOTHER. PLEASE TYPE”

CPOS (11,4): PRINT ** (7+4)*(19—14)/(8-3) "

CPOS (13,4): PRINT “AFTER THE? SIGN. PRESS CR"
INPUT A$

PRINT FVAL (A$)

INPUT “HIT ANY KEY AND PRESS CR TO CONTINUE"
K$

CPOS (0,0): CLS: CPOS (55): PRINT “PLEASE FEEL
FREE TO TRY ANY OF”

CPOS (7,5): PRINT ““YOUR OWN EXPRESSION "

CPOS (10,5): PRINT “JUST TYPE IT AFTER THE? SIGN”
CPOS (12,5): PRINT “AND PRESS THE CR KEY”

INPUT A$

119

http://www.fastio.com/

680
690
692
694
720

730
740
750

760

770
780
785

790
800

810
820
830
840
850

PRINT FVAL (A$)

INPUT “ANOTHER EXPRESSION, ANSWER Y/N"Q$

IF Q$="Y" THEN GOTO 630

IF Q$="N" THEN GOTO 720

CPOS (0,0): CLS: CPOS (5,5): PRINT “AFTER YOU
FINISH THIS TUTORIAL"”

COPS (7,5): PRINT “YOU CAN USE COMX TO COMPUTE"

CPOS (9,5): PRINT “ANY EXPRESSION OF YOUR OWN.”
CPOS (12,6): PRINT “JUST TYPE PR OR PRINT.
FOLLOWED"”

CPOS (14,5): PRINT “BY THE EXPRESSION. THEN
PRESS” ‘

CPOS (16,5): PRINT “THE CR KEY. FOR EXAMPLE,”
CPOS (19,5): PRINT “PR6%5/9"”

CPOS (23,1): INPUT “HIT ANY KEY AND PRESS CR
TO CONTINUE"” K$

CPOS (0,0): CLS: CPOS (5,5): PRINT “COMX CAN IN
FACT HANDLE"”

CPOS (7,5): PRINT “"TRIGONOMETRIC, LOG, EXPONEN-

TIAL"

CPOS (9,5): PRINT “AND MANY OTHER FUNCTIONS.”
CPOS (12,5): PRINT “PLEASE CONSULT THE MANUAL"
CPOS (15,7): PRINT “USING THE COMX 35"

CPOS (20,7): PRINT “GOOD BYE! HAVE FUN"

END

ChhPDF -

120

wvvwfastio.com

e .

EENEENNNENNRENNNRENENRNSRY

NN NN N KW EWEWEWNE W

!

1
i

A Wa R W W W uw

6.2.2

Notes on programming tips

In line 140, the user is asked to input an arithmetic expression
3+4. Hence, string A$ is 3+4. The statement PRINT FVAL(A$)
in line 180 evaluates the arithmetic expression 3+4.

More complex arithmetic expressions may be evaluated in this
manner. The same technique is used throughout the program
in fines 230, 240, lines 300, 310 etc.

Line 690 is an INPUT statement allowing the user to make a

choice by answering Y (for yes) or N (for no). Different actions
are taken in lines 692 and 694.

~

121

http://www.fastio.com/

1’)
et

i i]
L
fom et

[

N

84

AR T A

[

APPENDIX

i}

=
&
=
&
E
=
]
& =
i ==
=
E o
. =
-
E =
o
5B

ChibPDF - www.fastio.com

http://www.fastio.com/

ChhPDF -

wvvwfastio.com

|

i

ER N EERN

L

iLELEE.E.LE

AR N RN KN R W R WEWR W AW LK E W W

LERRLE

A1

COMX 35 ERROR MESSAGE

00
01
02
03
04
05
06
07
08
09
10

1

12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Program HALTED by USER

Syntax error in ASC or LEN function

ARRAY out of RANGE or NOT DIMENSIONED
DIMENSION error

DEFINT has illegal ending

PARENTHESES missing in ARGUMENT

ARGUMENT out of range

MIXED MODE calculation encountered

DIVIDE by ZERO error, or LOG of NEGATIVE NUMBER
NON-EXECUTABLE function encountered

EXIT command must be used with FOR/NEXT or GOSUB/
RETURN »

FOR/NEXT stack overflow, or FOR/NEXT executed
directly.

Syntax error in FOR

GOSUB stack overflow

UNACCEPTABLE character in HEXADECIMAL number
FLOATING POINT NUMBER too large to be converted
to INTEGER or INTEGER MULTIPLY overflow
UNACCEPTABLE OPERATOR in CONDITIONAL
statement

INPUT or FVAL cannot be directly executed

Must have VARIABLE or STRING name in READ

Syntax error in READ or INPUT

Syntax error in LEN function

Syntax error in ASSIGNMENT statement

Missing QUOTE

Syntax error in LIST

No such WORD found in LIBRARY

Syntax error in MID$ function

UNACCEPTABLE variable name found in NEXT statement
Either a NUMBER or a LETTER is EXPECTED

Missing arithmetic PARENTHESES

Wrong number of ARGUMENTS in POKE statement
UNACCEPTABLE last character in PRINT statement
Syntax error in DATA statement

No more DATA found

No such STRING found in INPUT statement

Missing EQUAL sign in ASSIGNMENT statement

122

http://www.fastio.com/

35 Missing PARENTHESES in STRING ARRAY A. 2 Key ASCII codes and the built-in characters
36 Too many ARGUMENTS in USR or CALL ﬁ,‘ y
37 Syntax error in CHR$ function
38 U.NACCEPTABLE character in BINARY number E - GRAPHIC STANDARD
39 Line buffer OVERFLOW Output Output
40 File not opened for INPUT E j Decimal Hex Key pressed Shape Color |Decimal Hex Key pressed Shape Color
41 File not opened for OUTPUT
42 UNACCEPTABLE line end or NON-EXECUTABLE statement &' o ? ? oNT 32 20 Space Bar
43 STACK OVERFLOW N e SO AR ! c
— 2 2 CNTL-B C 34 22 “ " C
44 Too many DIGITS in number - oy 3 3 35 23 # # c
45 UNACCEPTABLE character in NUMBER fold 4 4 CNTL-D c 36 24 $ $ c
46 No such LINE NUMBER found .~ 5 5 CNTL-E c 37 25 % % c
47 UNACCEPTABLE operation in IF statement e 5 Q- S ®E B e & c
48 MEMORY OVERFLOW @ 8 8 ONTL_H c | 20 ((c
49 Wrong number of arguments in MOD statement] 9 9 41 29)) c
50 Program TOO LARGE for memory = | 10 A LINE FEED 42 2A * x c
51 ARGUMENT out of RANGE _ . NTLL . | B 2 + c
52 Wrong number of arguments E‘ 'i 13 D CARRIAGE 45 20 : ’_ g
53 Wrong number of arguments RETURN
54 STRING variable not defined E E 14 E CNTL—N o] 46 2E . . c
55 TAPE READ error o :2 10': CNTL-O c 47 pig / / (o
TR CNTL~P
%6 TAPE WRITE error B o 17 11 CNTL-Q g ZS 2(1) ? <1z> g
57 FILE is net a BASIC program | 18 12 50 32 2 2 c
58 FILE isnot BASIC data E 19 13 51 33 3 3 c
59 RESERVED L 20 14 CNTL-T C 52 34 4 4 C
60 RESERVED E! [E! ;; :2 SETL_U c o o : > <
TL-V C 54 36
61 RESERVED i: ™ | 23 17 CNTL-W c 55 37 S 3 g
62 ROM or ROM CARD not PRESENT 3 24 18 CNTL-X c 56 38 8 8 c
63 Not enough MEMORY for RENUMBER to OPERATE . 25 19 CNTL-Y o] 57 39 9 9 c
64 RENUMBER located LINE NUMBER error E | ;s :Q CNTL-2Z o] 58 3A : : c
) 59 3B ;
B STAING s over 127 charasers B = 2 © x < <o
. : 29 1D 61 3D = = c
67 NUMBER OF ARGUMENTS in COLOR MUST BE 1 e 30 1E 62 3E > > c
68 NUMBER GF ARGUMENTS in SCREEN MUST BE 1 i= y 31 1F 63 3F > ? c
69 NUMBER OF ARGUMENTS in CTONE MUST BE 1 i
70 NUMBER OF ARGUMENTS in VOLUME MUST BE 1 E g
71 NUMBER OF ARGUMENTS in NOISE MUST BE 2 _. i
72 SUMBER OF ARGUMENTS in TONE or MUSIC MUST BE ! Note: CNTL—A stande for CONTROL A.
B =
E -
123 E_ ! a 124

F

ChibPDF - www.fastio.com

http://www.fastio.com/

E =
| s
B~ ECIAL CHARACTERS (HEX 80 — HEX 8F)
Output Output E ~ S
Decimal Hex Key pressed Shape Color | Decimal Hex Key pressed Shape Color | Decimal Hex Used as output Read from keyboard
. _— == ~3EC @5 oulput
64 40 || [] c 96 60 ¢ G E ‘ g 128 80 Cursor Up (Vertical tab)
65 a4 A A c 97 61 SHIFT—A 1 G ‘ 129 81 Cursor right
w o omoo s ocfwm @z o BH L mo2 e
- 131
68 44 D D C | 100 64 SHIFT-D 4 C = 132 53 Cursor left
69 45 E E c | 101 65 SHIFT-E & G ' 84 Carriage return
70 a6 F F c 102 66 SHIFT—F 6 G 133 85 Clear to end of screen
71 47 G G c | 103 67 SHIFT-G 7 G F = 134 86 Del
72 48 H H C 104 68 SHIFT—H 8 G 135 87 elete Key
73 49 [I c 105 69 SHIFT—-I 9 G E g 136 88 Control-§
74 4A J J c 106 6A SHIFT—J ¢ G 137 Joystick up
75 B K K c | 107 6B SHIFT—K G , o 89 Joystick right
76 4c L L c 108 6C SHIFT—L B E 138 8A Joystick down
77 4D M M c 109 6D SHIFT-M Bik) 139 8B J .
78 & N N c | 10 6E SHIFT-N c E = 140 8C oystick left
79 4 O o c | 11 6F SHIFT-O c 141 8D Control—R
80 50 P P c 112 70 SHIFT-P c Control—C
81 51 Q o) c | 13 71 SHIFT-Q c E = 142 8E
82 52 R R c 114 72 SHIFT-R [N c \ 143 8F
83 53 S S C 115 73 SHIFT-S [N c E |
84 54 T T c 116 74 SHIFT-T [C] c
85 55 U u c | 7 76 SHIFT-U [O] c E -
86 56 v v c 118 76 SHIFT-V [M c
87 57 w w c 119 77 SHIFT-W [X c -
88 58 X X c 120 78 SHIFT-X | G E ﬂ
89 59 Y Y C 121 79 SHIFT-Y [C] c
90 A Z z c | 122 7JA SHIFT-2 [O] c B =
91 5B = =] c 123 78 M B
92 5C c 124 7C u E —
93 5D =1 =2 c 125 7D] G
94 5E (A c 126 7€ © G 4
95 56 []) c 127 7F 2 g B =
125
E = 126

ChibPDF - www.fastio.com

http://www.fastio.com/

Decimal

144
145
146
147
148
149
150
151
152
153
154
165
156
157
158
159

GRAPHIC STANDARD
Qutput Output
Hex Key pressed Shape Color Decimal Hex Key pressed Shape _Color
20 w 160 A®

91 W 161 A1l ! w
92 162 A2 ” W
93 163 A3 # w
94 W 164 A4 $ W
95 W 165 A5 % W
96 W 166 A6 & W
97 w 167 A7 ! W
98 W 168 A8 (W
99 w 169 A9) W
9A w 170 AA * W
9B i AB + w
9C 172 AC ? W
9D 173 AD — W
9E 174 AE . w
9F 175 AF / W

: 176 B¢] W
177 B1 1 w

178 B2 2 W

179 B3 3 w

180 B4 4 W

181 B5 5 W

182 B6 6 w

183 B7 7 W

184 B8 8 W

185 BS 9 w

186 BA : w

187 BB H w

188 BC < w

189 BD = w

190 BE > W

191 BF ? W

ChibPDF - www.fastio.com

127

i & & w u

TR REeERERRAEENEREEAERADOREAEERE SN ENNERN
o ' B L AT\ I

NN YN R NN NN WE W W W

w

T

i

Output Output
Decimal Hex ey pressed Shape Color Decimal Hex Key pressed Shape Color
192 co _ w 224 E¢ ¢ Y
193 ct A W 225 E1 1 Y
194 c2 B8 w 226 E2 2 Y
195 c3 c W 227 E3 3 Y
196 ca D w 228 E4 4 Y
197 c5 E w 229 E5 5 Y
198 c6 F W 230 E6 6 \4
199 c7 G w 231 E7 7 Y
200 c8 H w 232 ES 8 Y
201 co I W 233 E9 9 Y
202 CA J w 234 EA ¢ Y
203 cB K W 235 EB 3%
204 cc L W 236 EC M
205 CD M w 237 ED R
206 CE N W 238 EE w
207 CF o w 239 EF w
208 D¢ P w 240 Fo w
209 D1 o w 241 F1 w
210 D2 R w 242 F2 J w
211 D3 S w 243 F3 4 w
212 D4 T w 244 F4 T w
213 D5 U W 245 F5 O] W
214 D6 v w 246 F6 M w
215 D7 w w 247 F7 X]| w
216 D8 X w 248 F8 - Y
217 D9 Y w 249 F9 = w
218 DA z w 250 FA (0] Y
219 DB] w 251 FB [M] M
220 DC w 252 FC X R
221 DD =] w 253 FD — Y
222 DE 4 w 254 FE © W
223 DF L w 255 FF E M
128

http://www.fastio.com/

3

A.3 Important cassette recording guidelines

1. .. Use high quality tapes.
Special Keyboard Command

wu

2. .. Use shortest tapes possible.

Control - C Cancel input line

Control — | Cursor up 3. .. Use the supplied cables, which are specially shielded.
Control — J Cursor left

Control — K Cursor right 4. .. Keep the heads and the pinch rollers clean.

Control — M Cursor down

Control — R Repeat last line (until ‘return’ key) 5. . . Keep the heads aligned for tape interchangability.
Control — § Stop edit

6. . . Avoid recording too close to the beginning of tapes.

Color Abbreviations 7. .. Make sure the cassette is properly seated in the recorder.

Blk — Black 8. .. If you have trouble with a cassette tape, try another one. You can
B — Blue have a bad spot on the tape or a warped cassette.

G — Green

C ~— Cyan 9. .. Try to find the best volume setting for loading programs.

R — Red

Y — Yellow 10. .. A dirty recorder mechanism can cause tape problems.

M — Magenta

W — White 11. .. Make sure the recorder connection plugs make good contact.

12. .. Rewind the tape before removing them from the recorder.

13. .. Store tapes in original dust-proof containers.

14. . . Avoid exposing the tapes to heat or magnetic fields.

15. . . Before recording, wind the tape to one end.

16. .. Some cassette recorders will give problems once in a while (They
don’t like certain cassettes, etc.). |f one unit gives you problems most of
the time, try another one.

17. .. Make sure that the MIC plug is connected before recording.

18... You may have to record with the EAR plug out for some tape
recorders, check the recorder manual.

129 130

EENEENNNEENS NN EENNNNERNR
N DN NN KW NN R WL LWL LW R R W

ChibPDF - www.fastio.com

http://www.fastio.com/

19. .. Always use the AC adaptor with the recorder for best results,
unless the batteries are fully charged.

20... When a tone control is available, adjust it to the highest possible
setting.

21... Demagnetize the head and pinch rollers periodically if possible.

Magnetized header tends to slowly erase tape contents.

22 ... Listen to your program by unplugging the ear cord. An uneven
header tone indicates cassette/head problems.

23... For the best results, demagnetise your cassette recorders period-
ically. ‘

131

ChibPDF - www.fastio.com

4 B B

NN NKE N KK KRS NELWANANLLA LN N W

AR RERERIEEREEAAAADDOD N

A.4 INDEX OF COMX 35

STATEMENTS AND FUNCTIONS

ABS
ASC
ATN

CALL
CHR$
CLD
CLS
CNTL
COLOR
Ccos
CPOS
CTONE

DATA
DEFINT
DEFUS
DEG
DIM
DLOAD
DSAVE

EDIT
END
EOD
EOP
EXIT
EXP

FIXED

77
83
77

110
57,82,83
94
94
65
17
78
95
20

106
102
102
104
104

27

26

55,05
89
95
95
89
78

105

132

FNUM
FOR
FORMAT
FVAL

GOSUB
GOTO

IF
INPUT
INT
INUM

KEY

LEN
LET
LIST
LOG

MEM
MID$
MOD
MUSIC

78
90
96
84

51,90

- 32,91

87,
35,108
79
79

66

85
75
98
79

111
85
80
20

http://www.fastio.com/

‘ A5 NOTES ON HARDWARE
E N
l A5.1. POWER UP SELF—DIAGNOSTIC SEQUENCE
mE;,(VT 98 SCREEN 18 \ On initial power-up or after system reset (press SPACE BAR and
NOISE 93 SGN 80 = : L | RT simuitaneously), your COMX 35 computer will generate
22 SHAPE 59 several beeps and display a test pattern on the TV screen.
SIN 81 E ‘ Li This is a self-test sequence and it contains a lot of information
PEEK SQR 81 E about your COMX 35 computer. Our service personnel can
Pl 151;; E i li -deduce the source of problems should any servicing be required.
glc')oKéD 26 TAB 112 E | a This test pattern is also useful in adjusting your TV receiver.
PR 75 TIME 63 l Colors will change at a rate of about once every 7 seconds and
PRINT 109 TIMOUT 63 = o you should adjust the TUNING, BRIGHTNESS, CONTRAST,
PSAVE 109 TONE 23] ‘ COLOR and HUE control of your TV set for the best color
24 TRACE 101 E [E picture. After a good TV picture is obtained, you can press any
USR 112 ‘ key, except the space bar, the COMX 35 will display its software
I version number and is now ready for‘your commands.
RAD 105 | { L Y
EEQD 106 VOLUME 23 F
105 ‘ A.5.2. PAL AND NTSC VERSION
RENUMBER 98 E ‘ 'i
EEiI;%RE 107 WAIT 93 “ ' The COMX 35 computer has 2 .versions which are specially
RND N 51,98 E \ a designed for PAL and NTSC television system. There are several
RUN 80 i ‘ , differences between these two versions and users are advised to
RUN+ 188 BE i =g note the following points:
E ‘ a 1... Each character in PAL version is made up of 9 horizontal
| lines while characters in NTSC version consist of 8 horizontal
E\‘ a lines. This makes some graphic characters look differently since
\ the last (9th) horizontal line is not displayed in the NTSC
E \ = | version of COMX 3b.
|
i lg This will also affect the SHAPE command since the 17th and
‘; 18th digits are not used to define the shape of symbols or
| = | characters, in the NTSC system.
|
!f‘ i 2. .. The internal timer is decremented at a rate of 50 times
per second in the PAL version. It is decremented at a rate of 60
E' a times per second in the NTSC version. Users should use different
E" a values in the TIME(X) command if accurate timing is needed.

ChibPDF - www.fastio.com

[

http://www.fastio.com/

A53. DIFFERENTIATION OF PAL AND NTSC VERSION

The user can tell whether his COMX 35 is a PAL version or a
NTSC version machine by just looking at the test pattern after
power-up or system reset. The two horizontal lines will show a
different color sequence in the PAL or the NTSC version.

—COLOR BAR INDICATING
c o M x PAL OR NTSC VERSION

PAL version NTSC version

C O M X BAR
CYMR G
YCMB G
MCYG B

C O M X BAR
CYMR Y
YCMB C
MCYG C

Picture 1
Picture 2
Picture 3

C=CYAN Y=YELLOW M=MAGENTA
R=RED G=GREEN B=BLUE

If a program is to be run on both PAL and NTSC machines with
identical results, the program must first check the machine
version by looking at the system parameter located at address
41CA (HEXIDECIMAL). If the content is 9, it is a PAL machine.
If the content is 8, it is an NTSC machine.

Users can access this parameter with the PEEK command and do
the appropriate actions as illustrated by the following example.

10 V =PEEK (m41CA): REM find out the version and
put into variable V.

20 IFV=8THEN TIME (120) REM 2 seconds delay

in NTSC system.

REM 2 seconds
. delay in PAL system.

30 [IFV=9THEN TIME (100)

135

ChibPDF - www.fastio.com

_

Cand ! S d v - Ll LN RN R R R R K kR LW Y <

w I w

A A

iq

MM AR AR WA A

40 |FV =8 THEN SHAPE (20,’"FF000000000000FF ')
50 |FV =9 THEN SHAPE (20,"FF00000000000000F F')

This program example first finds out the version and puts it
into variable V. In lines 20 and 30, there are different time
delay constants for PAL and NTSC machines so that both
machines can have an accurate 2 seconds delay. in lines 40
and 50, the program will create a graphic symbol with the top
and bottom lines. This will look identical on TV screens although
they are made up of 8 or 9 horizontal lines respectively.

LSS

07000000 /70

O~ WN =

OONDOTD~WN =

AL/ LI AI 7
NTSC version

VLS A

PAL version

A54. ADJUSTMENT OF COMX 35 COMPUTER

Every COMX 35 computer has been factory-adjusted to give the
best results. |f any adjustment has been disturbed, re-adjustment
may be made with a small screw-driver (those used by watch-
repairman} through 3 small holes located at the bottom side of the
computer.

These three holes are marked MIX, SYNC and VIDEO respec-
tively. Their functions and adjustment procedures are listed be-
low. :

(1 mix

This is used to adjust the frequency of the color subcarrier
signal so as to minimize the interference between the luminance
and chrominance signalis.

136

http://www.fastio.com/

ChhPDF -

If this control is disturbed, moving or stationary color dots will
appear on the edges of characters displayed.

PARASITIC
COLOR
DOTS

NORMAL DISPLAY "‘MIX" MIS-ADJUSTED

PROCEDURE FOR ADJUSTMENT OF “MIX"” CONTROL

(a). .. Type in the program below and vertical bars wiilr~»be~

displayed.

(b). .. Carefuily insert a small screw-driver into the hole marked
“MIXT.

(c). .. Observe the edges of the number ““1"" and the boundaries
between color bars; turn the screw-driver slowly and carefully.

(d). . . Adjust until the parasitic color dots disappear.

Note: TV display may suddenly become BLACK and WHITE in
some machines; rotate the screw-driver in the opposite direction
and color will re-appear.

NEW
10 SHAPE (#40, “FFFFFFFFFFFFFFFFFF")
20 PRINT “111111111111111111111111111111111

TM1M1111111111111117;
30 FOR L1=1 TO 22
40 PRINT CHR$ (107,108,64,237,235,236,192);

50 FOR I=1 TO 8

60 READ A

70 FOR D=1 TO 4:PRINT CHRS$(A); : NEXT
80 NEXT

90 PRINT “ "

137

wvvwfastio.com

moRAERRRERRDRAPAMAMOMDMDMEEDDNNEMN

LB VR VI VY VY VR VI VY VT VY VT T VT VR T T PR V' TR "7 VTR / A7

100 RESTORE

110 NEXT

120 REM

130 GOTO 120

140 DATA 32,107,108,64,237,235,236,192:END

READY
:RUN

{I) SYNC

This is used to adjust the amplitude of synchronizing pube.
Adjustment of this control is not necessary, unless it has been
mis-adjusted by user. Re-adjustment should be done by qualified
service personnel. ‘

(111) VIDEO

This is used to adjust the amplitude of the video signal feeding
into the RF modulator. Low amplitude will give a dim display
while high amplitude will make yellow characters appear as
white on TV screen.

Adjustment of this control is not necessary unless it has been

mis-adjusted by user. Re-adjustment should be done by qualified
service personnel.

138

http://www.fastio.com/

2]
Aﬁw
<
a<
434¢
WYY SAS oLl
WOd WSY
W9d oIsvd
EEal:}
ERYCERE [N 4449 ¢aa =4
$op 0
8 444q
L 9 g ¥ € z 1 0 a3aAgasad dPv4
St 4443
#OINve i EELE [0l
M WVH HILOVHVHD 4444 00v4
¢¢83
e WvH N3340S
4444
pug e

mYuMnmPew

"ERE R R R EE R R EER R R R K’

dVIN AHOW3IW 9V

,_mﬂ_mm_ﬂﬂdﬂ

w W

v W WWYNNY

‘poINoaxs sl

(X) NIIHOS USYM SJOjOO UBBIIS
Bulpuodsaiiod au; o}edtpuy

3QIND 3ONIYI43H MOIND v ‘SHILOVHVHO NI-11Ing

shey OSuIBWNU BY} SAOGE $10]0D Y
1043U02 10SIND——' @ joquis soydesb ayj Jo 10103 IndinQ
¥oelg ng ©
anig a V-141HS Jo loquis dydeis L
< V-1LND JO
uodiny > Ju toquiis oiydesn
uehd 2 Rmv
10j0D plabt-y | TRy 1oqués sydesb ayy jo i0j02 indinQ *
: ®JON
N
(3]
-
(na)) ()] 8, g
3 u Z
s _E__._m: / * : m s_ ﬁ ; Tmo'
B @ A&s ~ —
.8 ERIZH ._mn § § —
) o)} .9 [t) AQ c
& Ed =
v ~ =
a3 |1 = |[d E >> o. 283 7
) () (Igp+ve) (&) .8 ‘0- 8. Auv [B)] “—
< = >] 6 o € =
@ 4 { ﬁ v _) * . L #* n 14 =
HIMOd ALHM VINIOVR ;o._._m> NVAD ania N3IHD ¥ovia =
L
—~
a
=
\—

http://www.fastio.com/

Memory Map of COMX 35

Memory Location

Description

0000 — 3FFF (hexadecimal)

4000 — 43FF
4400 — BDFF
BEOO — BFFF
CO00 — DFFF
E000 — EFFF
FOO0 — F3FF
F400 — F7FF
F800 — FFFF

ChibPDF - www.fastio.com

Build-in system ROM

Contains {1) BASIC INTERPRETER
(2} TV and keyboard operating system
(3) Cassette operating system

System parameter storage area.

BASIC 'PROGRAM’ and ‘DATA’ storage area.
Top of system stack located at BDFF.

Reserved for disk operating system

8 banks of 8K bytes

—Used for system expansion

—Program must select the desired bank before making
read/write operation to this area.

Reserved

—Used for inter-bank communication

—For application that cannot be fitted into one 8K
byte bank.

Reserved

Character definition RAM area.

—This area holds the dot pattern of the 128 characters.

—The character can be changed using the SHAPE
command in BASIC.

—Each character uses 9 bytes in PAL system.

—Each character uses 8 bytes in NTSC system.

~ —This area can only be accessed by turning on the

“character memory access’’ mode of the CDP 1869
fC.

Screen page memory
—Each byte holds the character code of one dispiay
character position on the screen.
—Before scrolling, F800 represents the left-top
character position on the screen,
F801 is the one next (to the right) to it and so on.
FBBF represents the bottom-right position on the
screen.
—Hardware scrolling is accomplished by changing the
home address register inside the CDP 1869 IC.
—This area is write-only and can only be accessed
during the non-display period. The program may
wait for non-display period and directly write to
this area.

e.g. B1 $...check EF1 and wait for non-display
STR R7 ... write to this area.
141

mm|mmm€eNnmn

i

|
H

mwmm W W

m m

http://www.fastio.com/

	./ipr00_1.tif
	./ipr00_2-3.tif
	./ipr00_4-5.tif
	./ipr00_6.tif
	./ipr0i_001.tif
	./ipr0i_002.tif
	./ipr1_003.tif
	./ipr1_004-005.tif
	./ipr1_006-007.tif
	./ipr1_008-009.tif
	./ipr2_000.tif
	./ipr2_010.tif
	./ipr2_011-012.tif
	./ipr2_013-014.tif
	./ipr2_015-016.tif
	./ipr2_017-018.tif
	./ipr2_019-020.tif
	./ipr2_021-022.tif
	./ipr2_023-024.tif
	./ipr2_025-026.tif
	./ipr2_027-028.tif
	./ipr3_000.tif
	./ipr3_029.tif
	./ipr3_030-031.tif
	./ipr3_032-033.tif
	./ipr3_034-035.tif
	./ipr3_036-037.tif
	./ipr3_038-039.tif
	./ipr3_040-041.tif
	./ipr3_042-043.tif
	./ipr3_044-045.tif
	./ipr3_046-047.tif
	./ipr3_048-049.tif
	./ipr3_050-051.tif
	./ipr3_052-053.tif
	./ipr3_054-055.tif
	./ipr3_056-057.tif
	./ipr3_058-059.tif
	./ipr3_060-061.tif
	./ipr3_062-063.tif
	./ipr3_064-065.tif
	./ipr3_066-067.tif
	./ipr3_068-000.tif
	./ipr4_000-069.tif
	./ipr4_070-071.tif
	./ipr4_072.tif
	./ipr5_073.tif
	./ipr5_074-075.tif
	./ipr5_076-077.tif
	./ipr5_078-079.tif
	./ipr5_080-081.tif
	./ipr5_082-083.tif
	./ipr5_084-085.tif
	./ipr5_086-087.tif
	./ipr5_088-089.tif
	./ipr5_090-091.tif
	./ipr5_092-093.tif
	./ipr5_094-095.tif
	./ipr5_096-097.tif
	./ipr5_098-099.tif
	./ipr5_100-101.tif
	./ipr5_102-103.tif
	./ipr5_104-105.tif
	./ipr5_106-107.tif
	./ipr5_108-109.tif
	./ipr5_110-111.tif
	./ipr5_112.tif
	./ipr6_113.tif
	./ipr6_114-115.tif
	./ipr6_116-117.tif
	./ipr6_118-119.tif
	./ipr6_120-121.tif
	./iprA_000.tif
	./iprA_122.tif
	./iprA_123-124.tif
	./iprA_125-126.tif
	./iprA_127-128.tif
	./iprA_129-130.tif
	./iprA_130-132.tif
	./iprA_133-134.tif
	./iprA_135-136.tif
	./iprA_137-138.tif
	./iprA_139-140.tif
	./iprA_141.tif

