].O What BUILDS and DOES> Does

10.1 Introduction

FORTH can be considered to operate at a number of different levels.
The lowest level is the execution of a word from the dictionary and
this can be termed a level 0 operation. The next higher level, which
we can call level 1, is the use of a defining word, e.g. VARIABLE, or
<:>, to produce a dictionary entry for later (level 0) execution. All
levels higher than 0 result in a new entry being made in the
dictionary. This chapter is concerned with the next higher 1level,
level 2, in which new defining words are formed. The sequence of
operations which is involved is:

a) generate a new defining word (level 2),

b) use the defining word to produce a new dictionary entry
(level 1),
c) execute the new entry (level 0).

One higher level is possible: to produce alternative ways of
generating defining words. This level, which is often termed
"meta~FORTH", enables the writing of totally new FORTH-like languages,
and is beyond the scope of this manual.

Each defining word in FORTH can be considered as a mini-compiler,
dedicated to compiling a particular type of structure into the
dictionary. If a new structure is required, e.g. an array, a new word
is required to allow its compilation. Just as the generation of a new
word (level 1) extends the FORTH language, the generation of a new
defining word (level 2) extends the FORTH compiler.

The two words <BUILDS and DOES> are used for this purpose. The <
and > signs (which are not pronounced!!) are present to indicate that
the two words should be used together and to show their order of use.

10.2 The Actions of <BUILDS and DOES>

The two words are used in a definition of the following form (level
2):

: FAMILY <BUILDS DOES> ;

where an optional list of words may follow each of the two. This is,
in one sense, an ordinary colon-definition and all the words are
compiled in the normal way. The use of <BUILDS and DOES> , however,
make it a level 2 definition.

The words following <BUILDS are concerned with building the
dictionary entry for the new word defined by FAMILY . Those following
DOES> determine the action of the new word, and though they are
compiled into the definition of FAMILY , they are not executed until
the new word is used. It is important to remember that the <BUILDS
words come into effect at compilation time, and the DOES> words at
execution time.

The execution of FAMILY takes the form:

FAMILY MEMBER

and may expect one or more values on the stack, depending on the

69

definition of FAMILY . This is a level 1 process and creates a
dictionary entry for the word MEMBER .

When <BUILDS executes it generates the dictionary entry header for
MEMBER , including its name, the link pointer to the previous
dictionary entry and a code field pointer as normal. It also reserves
an extra two-byte space immediately following the code field pointer.
The words, if any, after <BUILDS then execute and will usually act to
place values, or reserve space, in the parameter area of MEMBER .

The execution of DOES> takes the address of the first word after
DOES> in the dictionary entry of FAMILY and places it in the two-byte
space reserved by <BUILDS , creating a pointer to the list of words
that will be executed when MEMBER is used. It also re-writes the
contents of MEMBER's code-field address to point to a routine that
will handle this execution.

When MEMBER is executed (level 0) the address of its parameter
area is placed on the stack and then the words following DOES> , in
FAMILY , are executed. Execution of all words defined by FAMILY begins
with this code, so FAMILY produces a group of words with related
actions. <BUILDS and the words following it 'customise' each new word
by compiling items urnique to it (e.g. values from the stack, further
words) into the parameter area of its dictionary entry. When the new
word is used, the words after DOES> use the address of the parameter
area to gain access to these items, allowing each of the words created
by the same defining word to have its own function.

10.3 The use of <BUILDS and DOES>

Some simple examples may make the use of these words more clear.

Let us first have a look at an alternative definition of VARIABLE.
This word appears in the nucleus dictionary and its action has been
described in Section 5.3.2. It creates a dictionary entry with space
for a single variable, and initialises it. The following definition of
VARIABLE is identical except that the values of the variables it
creates are not initialised.

VARIABLE <BUILDS 2 ALLOT DOES> ;

When this is executed by typing:
VARIABLE SIZE
<BUILDS creates the dictionary entry for SIZE and 2 ALLOT reserves two
bytes in the parameter area. In this case there are no words after
DOES> so when SIZE is executed it just leaves the address of the
parameter field on the stack. This gives access to the value, which is
initally indeterminate, through ! and @ as normal.

The definition of the VARIABLE in the nucleus dictionary would be:
: VARIABLE <BUILDS , DOES> ;
Instead of allotting space, the value on the top of the stack is
compiled into the parameter area by <,> .

The definition of CONSTANT is:
: CONSTANT <BUILDS , DOES> @ ;

The compilation stage is identical to that of VARIABLE , but when the
word defined by CONSTANT is used, @ leaves the value on the stack.

70

We may also create single byte variables and constants by:
: CVARIABLE <BUILDS C, DOES> ;
and
: CCONSTANT <BUILDS C, DOES> C@ ;

These both expect a value in the range 0 to 255 on the stack to
initialise the value of the dictionary entry they create.

10.4 Arrays and Tables

The use of <BUILDS and DOES> to create new types of data structure can
be illustrated by the extension of FORTH to handle arrays.

10.4.1 One-dimensional Arrays
A simple definition for a one-dimensional array is:
ARRAY

<BUILDS 2* ALLOT
DOES> SWAP 2* +

h
A ten-element array of single precision variables is created by:
10 ARRAY VALUES

The words after <BUILDS reserve two bytes for each element. When
VALUES is executed, the index is taken from the stack and converted to
the address of the corresponding element. The contents of the array
VALUES are not initialised but it may be filled by, for example:

5 0 VALUES !
10 1 VALUES !

which will put the numbers 5 and 10 into the first two elements of
VALUES. The contents of a particular element may be placed on the
stack by, for example,

1 VALUES @
or typed on the display by
1 VALUES ? 10 OK

The array index must be on top of the stack before executing VALUES.
It must, for the above example, be in the range 0 to 9 inclusive. No
checks are made on the range of the index so care must be taken not to
over-write other dictionary entries by using an out-of-range index.

The following alternative definition of ARRAY will check the range
and give an error message, if needed.

: ARRAY
<BUILDS DUP 1 - , (STORE MAXIMUM INDEX)
2* ALLOT (RESERVE SPACE)
DOES> 2DUP (DUPLICATE INDEX AND PARAMETER ADDRESS)
@ OVER < (CHECK IF INDEX TOO LARGE)

71

SWAP 0< OR (OR IF NEGATIVE)

5 ?ERROR (ISSUE ERROR MESSAGE IF NEEDED)

2+ (OTHERWISE STEP OVER MAXIMUM INDEX VALUE)
SWAP 2* + (AND CONVERT INDEX TO ELEMENT ADDRESS)

.
1’

If a more specific error message is required, the words 5 ?ERROR may
be replaced with, for example,

IF DROP CR
." RANGE ERROR - ARRAY INDEX = " .
QUIT

THEN

The inclusion of error checks, such as that given above, has the
disadvantage that it decreases the speed of execution. A solution to
this problem is to develop an application using full error checks
until it is working correctly. When it is certain that no errors can
occur, the words containing error checks can be replaced by simpler,
faster, versions. If an application is developed by use of the editing
facilities described in Chapter 8, it is a simple matter to change
these words as the remainder of the application is unchanged.

10.4.2 Two-Dimensional Arrays

The following definition allows the creation of two-dimensional
arrays. The elements are single precision variables and the array
contents are not initialised. No index checking is done but error
checks could be added in a similar manner to that given for
one-dimensional arrays.

: 2ARRAY

<BUILDS DUP , (STORE SECOND INDEX)
* 2* ALLOT (RESERVE SPACE)

DOES> ROT (GET FIRST INDEX TO TOP)
OVER @ * (MULTIPLY BY STORED INDEX)
ROT + (ADD SECOND INDEX)
2% (CALCULATE BYTE OFFSET)
+ (ADD TO BASE ADDRESS)
2+ (STEP OVER STORED INDEX)

i

The use is

10 5 2ARRAY RECTANGLE

to create a 10 by 5 array called RECTANGLE. In this example the array
indices may range from 0,0 to 9,4 inclusive. The address of, say, the

2,3 element is left on the stack by:

2 3 RECTANGLE

10.4.3 Tables

It may be necessary to create a table of values for which only the
starting address is needed. This type of structure can be implemented

72

very simply as follows:

: CTABLE
<BUILDS ALLOT
DOES>

H
This, when used in the form
10 CTABLE DATA

will create the word DATA with space for ten single-byte values. When
DATA is executed it will leave on the stack the starting address of
the data table.

The word LIST of Section 6.3 is an example of a table which leaves
both its start address and the number of 16-bit items it contains. It
may be created by use of the following definition of the word:.TABLE .

¢+ TABLE
<BUILDS DUP , (store no. of items)
2* ALLOT (reserve space)
DOES> DUP 2+ (get start address)
SWAP @ (max number of items)

H
LIST is then created by
n TABLE LIST

where n is the required maximum number of items.

10.5 Strings

There are many ways of implementing string handling in FORTH. Two
examples are given in 'BYTE' magazine, in the August 1980 and February
1981 issues.

The following example shows a simple alternative method to handle
strings up to 255 characters in length.

: STRING (max length ...)
<BUILDS
DUP C, (KEEP MAXIMUM LENGTH)
0 C, (ZERO LENGTH BYTE = EMPTY)
ALLOT (RESERVE SPACE)
DOES >
1+ (STEP OVER MAXIMUM LENGTH)

An empty string is then created by, for example:
10 STRING WORDS

The string variable WORDS may now hold any character string up to 10
characters in length. A few additional words are required for input
and output of strings.

The definition of $IN uses the constant C/L , which gives the
number of characters per line in the display (i.e. 64). Remember also
that PAD returns the start address of the scratchpad area used for
text (Section 8.2.3) and for numeric conversion (Section 7.2.4).

73

: SIN ... addr\length)
HERE C/L 1+ BLANKS CLEAR MEMORY AT HERE)
1 WORD INPUT STRING TO HERE)

MOVE STRING TO PAD)
PREPARE TO MOVE STRING ...)
INCLUDING COUNT BYTE)

HERE PAD C/L 1+ CMOVE

(
(
(
(TERMINATED BY CARRIAGE RETURN)
(
PAD DUP C@ 1+ (
(

~e

(from addr\length\to addr ...)
2DUP 1 - C@ 1+ > (CHECK IF SPACE FOR STRING)
IF CR ." STRING OVERFLOW " (IF NOT GIVE ERROR)
2DROP DROP QUIT (CLEAR STACK & QUIT)

THEN

SWAP CMOVE (OTHERWISE STORE STRING)
: se (addrl ... addr2\length)

COUNT (PREPARE TO TYPE STRING)

o
’

The following shows how these words are used, assuming that the string
variable WORDS has been created as in the earlier example.

$IN HELLO OK
WORDS $! OK
WORDS $@ TYPE SPACE HELLO OK

If the words LEFTS$ and RIGHTS of Section 7.3.2 are also defined, the
following examples can be tried.

WORDS 2 LEFT$ TYPE SPACE HE OK
WORDS 3 RIGHTS$ TYPE SPACE LLO OK

10.6 A CASE Statement

10.6.1 Introduction

The conditional structure of Section 6.2 allows a two-way branch using
IF ... ELSE ... THEN

A CASE statement allows a branch to one of many possible word
sequences with a return to a common point. There are two basic methods
for the selection of the case to be executed. The first is a
'positional' case where the values to be tested are restricted to the
first n integers. The second method is a 'keyed' case where a value is
tested against a sequence of explicit values which need not be in
numerical order.

10.6.2 A Positional CASE

The following simple example of a positional CASE will select the
words to be executed by means of an integer value on the stack. The
value must be in the range from zero to one less than the number of
cases available in the particular example. No error checks are made
for a number outside the permitted range. This CASE structure is used
in the graphics package to select the resolution mode, and has an
added check to restrict the choice to the integers from 0 to 3
inclusive.

74

Here is the definition of the defining word CASE: :

: CASE:
<BUILDS SMUDGE]
DOES> SWAP 2%
+ @
EXECUTE

.
’

The word EXECUTE takes the execution (code field) address of a word
from the stack and executes the word's definition. Thus

' WARM (get parameter field address of WARM)
CFA (convert to code field address)
EXECUTE

has the same effect as executing WARM directly from the keyboard.
To use the case structure it is first necessary to define each of
the possible actions, for example:

: NOTHING
." CASE 0 DOESN'T DO MUCH " ;

BELL
." CASE 1 RINGS THE BELL "
7 EMIT ;

.

HOME
." CASE 2 HOMES THE CURSOR "
30 EMIT ;

These actions are then included in a case structure for, say, the word
TEST .

CASE: TEST
NOTHING BELL HOME ;

When TEST is being created, SMUDGE ensures that the new entry will be
found in a dictionary search and] then sets compilation mode, so that
the words following TEST will have their addresses compiled into the
dictionary entry.

When TEST is executed by:

0 TEST
1 TEST
or

2 TEST

the words following DOES> convert the case number to a pointer to the
address of the correct word in the list, and execute it.

Note that the CASE statements of many high-level languages are
based on GOTO-type control transfers, whereas this FORTH CASE has the
options compiled into the definition of the case word so that the
choice is fixed before execution. Basically, this is because it is not
easy to handle forward references, i.e. words that have not yet been
defined, in FORTH.

For a further discussion of a variety of possible forms for case
statements in FORTH see 'FORTH Dimensions' Vol.2 No.3 (1980) (see
Appendix E).

75

76

].]. Further Examples

11.1 Fast Divide-by-Two

Division reqires a large number of operations and is usually very slow
in a microcomputer. The following routine is a machine code primitive
which will divide by two. Its action is identical with

2/
but is about sixty times faster.
HEX
CREATE 2/
18 ¢, 1B5 , 910 , Feé '
200 , 1F6 , 1F0O , 38 ¢C,
176 , 76 , 4C C, 2842 ,
SMUDGE

Assembly Listing

18 CLC

B5 01 LDA 1,X
10 09 BPL 2D1V
F6 00 INC 0,X
DO 02 BNE NOINC
F6 01 INC 1,X
FO 01 NOINC BEQ 2DIV
38 SEC

76 01 2DIV ROR 1,X
76 00 ROR 0,X
4C 42 28 JMP NEXT

11.2 Recursion

- A recursive routine is one which uses itself. In FORTH a dictionary
entry cannot find a reference to itself while it is being defined.
This problem is solved by defining the IMMEDIATE word MYSELF.

: MYSELF
LATEST (get name field address of latest word)
PFA (convert to parameter field address)
CFA (convert this to code field address)
’ (compile the address)

; IMMEDIATE

11.2.1 PFactorials

The following example shows its use to form a recursive definition to
calculate factorials.

77

(FACT) (nl\n2 ... n3)
-DUP IF DUP ROT * SWAP
1l - MYSELF
THEN

~e

FACT (n ...)
DUP 0< OVER 7 > OR 5 ?ERROR
1 SWAP (FACT) .

.
4

The calculation of the factorial is performed by (FACT), which leaves
the result on the stack. Attempting to calculate factorials of numbers
greater than 7 will cause an arithmetic overflow. Factorials of
negative numbers are not defined. Error checking is confined to FACT.
This then uses (FACT) to calculate the result, which is displayed.

The following, alternative, definition of FACT makes use of MD¥,
defined in Section 4.4. The result is left as a double precision
number, allowing the calculation of factorials of numbers up to and
including 12.

: (FACT)
-DUP IF DUP 1 -
>R MD* R>
MYSELF
THEN

~

FACT (n ...)
DUP 0< OVER 12 > OR 5 ?ERROR
1 0 ROT (FACT) D.

11.2.2 Sorting an Array

The word QUICKSORT (nl\n2 ...) uses the quicksort algorithm to sort
elements nl to n2 inclusive of the array NUMBERS into increasing
numerical order.

Before typing in the following definitions you must first define

2/ (Section 11.1)
ARRAY (Section 10.4.1)
MYSELF (Section 11.2)
0 VARIABLE TEMP (TEMPORARY STORAGE)
256 ARRAY NUMBERS (OR WHATEVER SIZE YOU WISH)
EXCHANGE (nl\n2...) (EXCHANGE ELEMENTS nl & n2)
(OF NUMBERS)

NUMBERS DUP >R @ SWAP
NUMBERS DUP @ >R
! R> R> !

PARTITION (nl\n2 ... n3\n4) (SPLIT ARRAY INTO SMALLER SECTIONS,
EXCHANGING ELEMENTS WHERE NECESSARY)

BEGIN 2DUP > 0= WHILE

SWAP BEGIN DUP NUMBERS @ TEMP @ < WHILE 1+ REPEAT

2DUP EXCHANGE SWAP 1+ SWAP 1 -

REPEAT

78

~e

: QUICKSORT (nl\n2 ...)

2DUP 2DUP + 2/ NUMBERS @ TEMP ! PARTITION
>R ROT DUP R < R> SWAP

IF MYSELF ELSE 2DROP THEN 2DUP >

IF SWAP MYSELF ELSE 2DROP THEN

The routine can be checked by filling NUMBERS with integers in reverse
order by, for example

: NFILL (n ...)
DUP 0 DO
DUP I NUMBERS ! 1 -
LOOP DROP

i
Then execute, for example,
100 NFILL

which should fill the first 100 elements of NUMBERS with reverse-order
integers. Executing

0 99 QUICKSORT

should then leave the elements of NUMBERS in ascending order. The
contents can be checked by, for example:

NCHECK (n ...) 0 DO I NUMBERS ? LOOP ;
Then execute, for example:

100 NCHECK

11.3 A Screen Copying Utility

Copying screens, particularly with a tape-based version, can be very
tedious. The following routines will allow the copying of up to five
screens at a time from one tape to another. The screen contents are
temporarily stored in the graphics memory from #8200 to #8BFF. The
screens may be renumbered during the copying process but the input and
output screens must be numbered consecutively. They require the prior
loading of the tape interface.

BASE @ (SAVE CURRENT BASE)
HEX
OFFKEY (DISABLE KEYBOARD)
-1 20A +! ;
: ONKEY (RE-ENABLE KEYBOARD)
1 20A +! ;
: PAUSE (WAIT FOR A KEYPRESS)

KEY DROP CR ;

: INSCR (first screen no.\no. of screens to input ...)
CR ." PLAY " PAUSE

79

OFFKEY
0 DO
DUP I + LIST (LOAD AND LIST SCREEN)
FIRST 200 DUP
I * 8200 +
SWAP CMOVE (MOVE TO GRAPHICS MEMORY)
LOOP DROP
ONKEY

~e

OUTSCR (first screen no.\no. of screens to output ...)

OVER SCR ! (SET NEW SCREEN NO.)

. " RECORD" PAUSE

OFFKEY

0 DO
I 200 * 8200 + (TRANSFER FROM)
FIRST 200 CMOVE (GRAPHICS MEMORY)
SAVE
1 SCR +! (INCREMENT SCREEN NO.)
LOOP DROP

ONKEY

-1 SCR +! (RESET FOR NEXT BATCH)

~e

.

: COPY (first input screen no.\first output screen no.\
no. of screens ...

5 MIN (ENSURE NOT MORE THAN 5 SCREENS)
>R SWAP R (KEEP NO. OF SCREENS ON RETURN STACK)
INSCR
R> (RECOVER NO. OF SCREENS)
." NEW TAPE " PAUSE
OUTSCR
i
BASE ! (RESTORE ORIGINAL BASE)

To copy screens 6, 7 and 8 to a new tape, numbered as 15, 16 and 17,
execute:

6 15 3 CorY

Separate use of INSCR and OUTSCR will allow intermediate editing of
the screens provided each screen is moved from the graphics memory to
the tape buffer, edited and then returned to the same area of the
graphics memory. In HEX,

n FIRST 200 CMOVE (graphics ~> tape buffer)
FIRST n 200 CMOVE (tape buffer -> graphics)

where n may be
8200, 8400, 8600, 8800 or 8A00,

depending on which of the 5 screens is to be edited.

80

11.4 Use of the Operating System Monitor Routines

It may be necessary, from within FORTH, to use the cassette operating
system commands. The following definitions allow this to be done
either by direct execution from the keyboard or from within a
definition.

BASE @ HEX
CREATE OSCLI (call the OSCLI routine of the monitor)

8E86 , 20 C, FFF7 ,
8EA6 , 4C C, 2842 ,

SMUDGE

: (MONITOR)
1 WORD HERE PAD C/L 1+ CMOVE TRANSFER KEYED INPUT TO PAD)
PAD COUNT GET ADDRESS & LENGTH OF STRING)

(

(

2DUP + 0D SWAP C! (ADD 'RETURN' TO END)

1+ (INCREASE STRING COUNT)

100 SWAP CMOVE CR (TRANSFER TO COS BUFFER)
(
(
(

IN @ 60 IN ! PUT RTS HERE FOR MONITOR)
0SCLI INTERPRET & EXECUTE)
IN ! RESTORE VALUE OF IN)
: MONITOR
STATE @ IF (COMPILING A DEFINITION)
COMPILE QUERY
COMPILE
THEN
(MONITOR)
; IMMEDIATE

BASE !

Note that THEN does not create a compiled address but only marks the
end of a conditional, for calculation of an offset. The second COMPILE
will, therefore, compile (MONITOR) and not THEN.

Any of the Cassette Operating System commands of Chapter 19 of
'Atomic Theory and Practice' pages 139 to 142 may then be used. Note
that the initial * of these commands should not be used. For example,
to use the COS command *CAT to obtain a catalogue of a tape, the
sequence:

MONITOR CAT

should be used (and not MONITOR *CAT).

If MONITOR is used in a definition, it will, on execution of the
definition, wait for the command to be entered from the keyboard. This
allows the command to be selected at execution time rather than being
fixed at the time of definition.

11.5 WAIT

The following example is an implementation of the WAIT instruction of
ATOM BASIC, which waits until the next 'tick' of the 60Hz sync signal.
Each tick is signalled by a zero in the most significant bit of Port C
of the 8255 PIA, at address #B002 in the ATOM.

A simple implementation is as follows:

81

HEX
: WAIT
BEGIN B002 C@ 80 < UNTIL
BEGIN B002 C@ 7F > UNTIL ;
DECIMAL

This is equivalent to the machine code subroutine at #FE66 in ATOM
BASIC.

11.6 Using the Internal Loudspeaker

11.6.1 Generating Tones

The simplest way of generating a tone from the internal loudspeaker is
to TOGGLE bit 2 of the output port at address #B002. This is done by
the word BLIP1 which is used by TONEl to generate a short note.

HEX

: BLIP1
B002 4 TOGGLE ;

: TONE1l
100 0 DO BLIP1 LOOP ;

A second tone may be generated by toggling the speaker twice within a
definition.

: BLIP2
B002 4 2DUP TOGGLE TOGGLE ;

: TONE2
100 0 DO BLIP2 LOOP ;

The words BOP and BIP are useful for sound effects for paddle-type
games:

: BOP
30 0 DO BLIP1 LOOP ;

: BIP
30 0 DO BLIP2 LOOP ;

Finally, we can produce a warble tone by:

: WARBLES
0 DO BIP BOP LOOP;

This is used by typing, for example:

10 WARBLES

82

11.6.2 Music

The following definitions will allow the keyboard to be used to play
music via the internal speaker.

CREATE NOTE (O\FRE\LEN ...)

EAEA , EAEA , 6A0 , 88 C,
FDDO , 18 C, 2B5 , 475 ,
495 , 3BS , 575 , 595 ,
890 , 4A9 , 4D C, BOO2 ,
8D C, B002 , 5B0 , EAEA ,
EAEA , EA C, B5 , 5D0 ,
1D6 , 18 C, 590 , EAEA ,
EAEA , EA C, D6 , C7DO ,
1B5 , C6D0 , EBES8 , 4C C,
291E ,
SMUDGE
DECIMAL
: PITCH (FREQUENCY ... FRE)
256 5 */ ;
: TONE (FREQUENCY ...)

PITCH 0 SWAP 2500 NOTE ;

: TABLE (BYTESIZE ...)
<BUILDS ALLOT DOES> ;

20 TABLE KEYS 40 TABLE FREQUENCIES

CFILL (BYTEVALS\TABLENAME\BYTELENGTH ...)
0 DO
DUP I +
>R SWAP R> C!
LOOP DROP

32 93 91 64 59 80 76 75
73 74 85 72 89 71 70 82 68
69 83 65 KEYS 20 CFILL

TFILL (VALS\TABLENAME\LENGTH ...)
0 DO
DUP I 2* +
>R SWAP R> !
LOOP DROP

0 683 640 608 576 542 512 483
456 457 406 387 352 341 320 304
288 271 256 243 FREQUENCIES 20 TFILL

KBD (C\ADDR ... OFFSET)
0 BEGIN
>R 2DUP

R 19 > IF CR ." 2" 2DROP 1
ELSE R + C@ =
THEN R> 1+ SWAP

83

UNTIL

~e

¢ KEYBOARD
BEGIN
KEY KEYS KBD
>R 2DROP R>
2* FREQUENCIES + @ TONE
?ESC UNTIL

-
’

The tones produced by NOTE vary in timbre as well as pitch and are not
'pure' unless the value of FRE is an integral power of two. This is
because the speaker is only toggled when the value third on the stack
overflows. This occurs at slightly irregular intervals unless the
above condition is met. One effect is an apparent shift in the pitch
of some notes. The values in FREQUENCIES are therefore not exactly
those expected for a true scale, but are chosen for the best perceived
scale.

Executing KEYBOARD allows the notes to be played. Pressing the ESC
key will terminate execution. The arrangement of the keys used is as
follows:

E|R Y|U|I Ple@
A|S[D|F|G[H|J[K|L|; [T]

11.7 Using the VIA Timer

Execution times of FORTH words can be found by use of the VIA timer as
shown in the following examples. To avoid timing the compilation of
the words as well as their execution the timing should be carried out
within a colon-definition.

HEX
: TIMER-ON (START TIMER)
0 B8OA ! FFFF B808 ! ;
: .TIME (adjustment ...) (DISPLAY ELAPSED TIME)
20 B8OA !
FFFF B808 @ -
SWAP -

. " MICROSECONDS "

i
DECIMAL

The word .TIME, which displays the time interval in microseconds from
the instant the timer was started, requires a time adjustment on the
stack to correct for the time taken to read the counter and for any
other words whose timing is not required. The time to read the counter
is 620 microseconds.

84

Examples:

: DROPTEST
620 0 TIMER-ON DROP .TIME ;

DROPTEST 48 MICROSECONDS OK

(i.e. the word DROP executes in 48 microseconds)

: DUPTEST
620 TIMER-ON DUP .TIME DROP ;

DUPTEST 71 MICROSECONDS OK

: CONTEST
668 TIMER-ON 0 DROP .TIME ;

CONTEST 77 MICROSECONDS OK

This last example gives the execution time of a constant, in this case
the constant 0 . Its value must be dropped from the stack before
executing .TIME so the execution time of DROP is added to the time
adjustment, giving a total adjustment of 668 microseconds.

The following table gives execution times for some of the more
common words.

WORD: TYPE: EXECUTION TIME (MICROSECONDS) :
DROP CODE 48
DUP CODE 71
OVER CODE 71
ROT FORTH 424
PICK FORTH 1168
ROLL FORTH 9481 + 1636(n-4) (n =4, 5, 6 ...)
(NOTE: 1 ROLL = NOOP, 2 ROLL = SWAP, 3 ROLL = ROT)
@ CODE 80
! CODE 84
DO ... LOOP CODE 80 + 116n (n = no. of loops)
CODE 79
CODE 759 to 1379

depending on the number of non-zero
bits in the multiplier

/ CODE 4230 to 4394
largely depending on the number of digits
in the result.

The words * and / are colon definitions but most of the execution time
is spent in the machine-code primitives U* and U/ .The relatively long
execution time for ROLL is due to it being (like PICK) a FORTH
definition, rather than a machine code definition, and including an
error check. It is particularly slow since it involves a fairly high
degree of movement of the stack contents.

85

11.8 Further Graphics

The following application will plot a figure similar to that shown on
the front cover of this manual. It uses recursive calls to 3SIDES to
plot three sides of a rectangle, their orientation being controlled by
a case statement (see Section 10.6.2).

The application requires the GRAPHICS package to have been loaded
previously. This contains the definition of CASE: . The variables X
and Y are defined in the FORTH vocabulary and are therefore distinct
from the X and Y in the GRAPHICS vocabulary. Note that this
duplication is not detected by the system since, when FORTH is the
CONTEXT vocabulary, no other vocabularies are searched.

FORTH DEFINITIONS DECIMAL

4 CONSTANT N 128 CONSTANT HO

0 VARIABLE X 0 VARIABLE Y

0 VARIABLE X0 0 VARIABLE YO

0 VARIABLE H

: YSCALE (SCALE Y VALUE TO FILL SCREEN)
32* ;

XYLINE (DRAW LINE TO X,Y*3/2)
X @ Y @ YSCALE GRAPHICS LINE ;

s X+ (LINE IN +VE X-DIRECTION)
H @ X +! XYLINE ;
: Y+ (LINE IN +VE Y-DIRECTION)
H@Y +! XYLINE ;
X- (LINE IN -VE X-DIRECTION)
H @ MINUS X +! XYLINE ;
: Y- (LINE IN -VE Y-DIRECTION)
H @ MINUS Y +! XYLINE ;
: 3SIDES (INDEX\CASE NO ... INDEX)
OVER DUP (2 COPIES OF INDEX)
IF (NON-ZERO INDEX)
1 - SWAP (DECREMENT INDEX AND)
(

BRING CASE NO. TO TOP)

[HERE H !] NOOP
(RESERVE SPACE FOR ORIENTATION)
(- DEFINED LATER - AND SAVE)
(ADDRESS IN H)
ELSE 2DROP (CASE NO. AND INDEX)
THEN

ORA (THESE DETERMINE THE 4 ORIENTATIONS)
3 3SIDES X-
0 3SIDES Y-
0 3SIDES X+
1 3SIDES DROP

~

86

2 3SIDES Y+
1 3SIDES X+
1 3SIDES Y-
0 3SIDES DROP

~e

1 3SIDES X+
2 3SIDES Y+
2 3SIDES X-
3 3SIDES DROP

~e

0 3SIDES Y-
3 3SIDES X-
3 3SIDES Y+
2 3SIDES DROP

.
7

CASE: ORIENTATION
ORA ORB ORC ORD

’

' ORIENTATION CFA H @ !
(PLACE ADDRESS OF ORIENTATION IN 3SIDES)
(TO COMPLETE RECURSION)

INITIALISE
HO DUP H !
2 / DUP X0 ! YO !
GRAPHICS 3 CLEAR WHITE

~

: XYSET (START POSITION AND SIZE FOR EACH PLOT)
H@2,/DUPH !
2 / DUP X0 +! YO +!
X0 @ YO @
2DUP Y ! X !
YSCALE GRAPHICS MOVE

~e

: PLOT-IT

INITIALISE

0 BEGIN 1+ (INCREMENT INDEX)
XYSET
0 3SIDES
DUP N =

UNTIL
DROP
KEY DROP 12 EMIT

.
’

When the application has been entered the figure is displayed by
executing PLOT-IT. The number of iterations is governed by the
constant N . Its value may be changed by, for example:

87

In graphics mode 3, the largest value of N for a clear display is 5.
However an interesting textured effect can be produced by changing the
WHITE in INITIALISE by, for example:

GRAPHICS ' INVERT CFA (EXECUTION ADDRESS OF INVERT)
' XYSET NFA 4 - (LOCATION OF WHITE IN INITIALISE)
!

and executing PLOT-IT with N = 6.

11.9 Non-destructive Stack Print

The following short application will allow the stack contents to be
displayed without destroying them. It is useful, for example, in the
development and testing of an application.

It requires the previous loading of 2/ (Section 1l1.1).
Alternatively the somewhat slower <2 /> may be used. In addition the
silent user variable S0 must be given a dictionary header by

6 USER SO
The definitions are as follows:

: DEPTH (... n) (returns the number of stack items)
SP@ S0 @ SWAP - 2/ ;

: .S (oo) (non-destructive stack display)
CR DEPTH
IF SO @ 2 - SP@ SWAP
DO I ? -2 +LOOP
ELSE ." EMPTY "
THEN

.
’

The stack items are printed with the top stack item on the right.

88

12 Error Messages

Most detected errors in ATOM FORTH result in an error message of the
form:

? cccc MSG # n

where cccc is the word where FORTH thinks the error has occurred. The
general rule in error handling is that both the return and computation
stacks are cleared. The one major exception is error message 4,
indicating the redefinition of an existing word, when the message is
simply a warning. The message number is printed in the current base
so may not be immediately recognisable. In the following error
message list the message number is given in decimal and hex.

DECIMAL HEX Message
0 0 Unrecognised word or invalid character
1 1 Empty stack
2 2 Dictionary full
3 3 Has incorrect address mode (Assembler)
4 4 Not unique (warning only)
5 5 Index or parameter outside valid range
6 6 Tape/disc screen number out of range
7 7 Full stack
8 8 (Reserved for disc use)
9 9)
10 A)
11 B) User definable
12 C)
13 D)
14 E)
15 F (Reserved for disc use)
16 10 (Reserved for disc use)
17 11 Compilation only
18 12 Execution only
19 13 Conditionals not paired
20 14 Definition not finished
21 15 In protected dictionary
22 16 Use only when loading
23 17 Off current editing screen
24 18 Declare vocabulary

89

90

Glossary of FORTH Words

This glossary contains all words present in ATOM FORTH. Each entry is
of the following form:

Word Stack Action Uses Leaves Status Pronunciation

followed by a description and in many cases a numerical example.

The computation (parameter) stack action is shown, where appropriate,
as a list of the values and their types before and after the execution
of the word, in the form:

(stack contents before ... stack contents after)
In all references to the stack, numbers to the right are at the top of

the stack. The notation nl\n2 is read as "nl is beneath n2". The
symbols used to represent the different stack value types include:

n 16-bit (single precision) signed number

u 16-bit (single precision) unsigned number
addr 16-bit address (unsigned)

nd 32-bit (double precision) signed number
ud 32-bit (double precision) unsigned number
b 8-bit one-byte number (unsigned)

c 7-bit ASCII character

count 6-bit string length count

f boolean flag: 0 = false, non-zero = true
ff boolean false flag = 0

tf boolean true flag = non-zero

The number of stack values that the word uses and leaves are also
shown. Some words have an additional letter indicating their status.

only for the Acorn ATOM - not a standard FORTH word

may only be used in a colon definition

intended for execution only

has precedence bit set; will execute even when in compile mode

UEOQ»

Where not obvious, the standard pronunciation is given in square
brackets after the status.

The glossary contains all words that are immediately available to
the user when the basic system is loaded. This includes headerless
entries (see Appendix C), which are listed with their code field
(execution) addresses. Since they have no names in the dictionary
their names are completely arbitrary, but the names given are those
preferred in a standard FORTH system.

91

(n\addr ...) 20 [store]
Stores the value n at the address addr.

before: 7 35 -1234 4128
after: 7 35

(-1234 is stored in the two bytes from address 4128)

1ICSP oo [store C-s-P]

24

92

Stores the stack pointer value in user variable CSP. Used as part
of the compiler security.

(ndl ... nd2) 2 2 [sharp]

Converts the least-significant digit (in the current base) of the
double-precision number ndl to the corresponding ASCII character,
which it then stores at PAD . The remaining part of the number is
left as nd2 for further conversions. # is used between <# and #> .

If BASE is DECIMAL

before: 9 32 1234567
after: 9 32 123456

(ASCII code #37 is stored in PAD)

(nd ... addr\count) 2 2 [sharp-greater]

Terminates numeric output conversion by dropping the double number
nd and leaving the address and character count of the converted
string in a form suitable for TYPE .

.Hbefore: 23 19 0 0

after: 23 19 4128 3

(TYPE would display the 3-character string starting at address
4128)

(ndl ... nd2) 2 2 [sharp-S]

Converts the double-precision number ndl into ASCII text by
repeated use of # , and stores the text at PAD . The
double-precision number nd2 is left on the stack, and has a value
of zero. #S is used beween <# and #> .

before: 27 5 1234567 ’
after : 27 5 0000000

(ASCII codes #37, #36, #35, ... #31 are in consecutive memory
locations at PAD)

(... addr) 01pP [tick]
(during execution)
0o ‘
(during compilation)

Used in the form ' nnnn and leaves the parameter field address of
dictionary word nnnn if in execution mode.

If used within a colon definition it will execute to compile the
address as a literal numerical value in the definition.

(P [paren]

Used in the form (nnnn) to insert a comment. All text nnnn up to
a right parenthesis on the same line is ignored. Since (is a
FORTH word it must be followed by a space. A space is not
necessary before) since it is only used as a delimiter for the
text.

) is pronounced "close-paren".

(+LOOP) (n ...) 10 [bracket-plus-loop]l

Headerless code; execution address #28E0. The run-time procedure
compiled by +LOOP that increments the loop index by the signed
quantity n and tests for loop completion. See +LOOP .

(.") [bracket-dot-quote]

Headerless code; execution address #31E4. The run-time procedure
compiled by ." that transmits the following in-line text to the
output device. See ."

(;CODE) C

Headerless code; execution address #3146. The run-time procedure
that rewrites the code field address of the most-recently defined
word to point to the machine-code following (;CODE) . It is used
by the system defining words (<:>, CONSTANT etc.) to define the
machine-code actions of dictionary entries using them.
This is, in a sense, a machine-code version of DOES> .

(ABORT) [bracket-abort]

Headerless code; execution address #347A. Executes after an error
when WARNING is -1. It normally causes the execution of ABORT but
the contents of the parameter area can be changed (with care) to
point to to a user-defined error-handling procedure.

(DO) C

Headerless code; execution address #2910. The run-time procedure
compiled by DO that moves the loop control parameters to the
return stack. See DO .

(ENTER) 00 [bracket-enter]

Headerless code; execution address #3AF5. Interprets the current
contents of the tape input buffer.

(FIND) (addrl\addr2 ... pfa\b\tf) 2 3 [bracket-find]
(found)
(addrl\addr2 ... ff) 21

(not found)

Headerless code; execution address #2955. Searches the dictionary
starting at the name field address addr2 for a match with the text
starting at addrl. For a successful match the parameter field
address and length byte of the name field plus a true flag are
left. If no match is found only a false flag is left.

93

(LOAD) (addr\f ...) 20A [bracket-load]

Headerless code; execution address #3B69. The
implementation-dependent routine used by LOAD and --> to load
screens from tape or disc. The addr is that of the zero-page data
required by the operating system. This data is completed by the
creation of a 3-digit file name from the screen number and the
insertion of its address as the first item. If the rest of the
data is created by OSDATA then addr must be #62. The flag
determines the appearance of the prompt on the display. In all
cases an indication is given of the screen number for which a
search is being made. If the flag is false a further prompt PLAY
TAPE with a wait for a keypress is given. If the flag is true
(non-zero) these further actions do not occur.

(LOOP) [bracket-loop]

Headerless code; execution address #28BA. The run-time procedure
compiled by LOOP that increments the loop index by one and tests
for loop completion. See LOOP .

(NUMBER) (ndl\addrl ... nd2\addr2) 33 [bracket-number]

Headerless code; execution address #33B7. Converts the ASCII text
beginning at addrl + 1 according to the current numeric conversion
base. The new number is accumulated into ndl, being left as nd2.
Addr2 is the address of the first non-convertable digit. (NUMBER)
is used by NUMBER .

* (n1\n2 ... n3) 21 [times]
Leaves as n3 the product of the two signed numbers nl and n2.
before: 7 -3 9
after: 7 -27

*/ (n1\n2\n3 ... n4) 31 [times-divide]

Leaves as n4 the value nl*n2/n3. The product nl*n2 is kept as a
double precision intermediate value, resulting in a more accurate
result than can be obtained by the sequence nl n2 * n3 / .

before: 7 3 17 5
after: 7 10
* /MOD (n1\n2\n3 ... n4\n5) 32 [times-divide-mod]

Leaves, as n4 and n5 respectively, the remainder and the integer
value of the result of nl*n2/n3. The product nl*n2 is kept as a
double precision intermediate value, resulting in a more accurate
result than can be obtained by the sequence nl n2 * n3 /MOD .

before: 7 3 17 5
after: 7 1 10

+ (nl\n2 ... n3) 21 [plus]
Leaves as n3 the sum of nl and n2.

before: 19 7 24
after: 19 31

94

+! (n\addr ...) 20 [plus-store]
Adds n to the value at addr.
before: 25 -2 8427 (addr 8427 contains 29, for example)
after: 25 (addr 8427 now contains 27)

+- (n1l\n2 ... n3) 21 [plus-minus]
Leaves as n3 the result of applying the sign of n2 to nl.
before: 17 4 -7
after: 17 -4

+LOOP (n ...) 10Pp,C [plus-loop]
Used in colon definition in the form:
DO ... +LOOP

During execution +LOOP controls branching back to the
corresponding DO , dependent on the loop index and loop limit. The
loop index is incremented by n, which may be positive or negative.
Branching to DO will occur until

a) for positive n, the loop index is greater than or equal to the
loop limit, or

b) for negative n, the loop index is less than or equal to the
loop limit.

Execution then continues with the word following +LOOP .

+ORIGIN (n ... addr) 11 [plus-origin]
Leaves the address of the nth byte after the start of the boot-up
parameter area. Used to access or modify the boot-up parameters.

’ (n ...) 10 [comma]

Stores (compiles) n in the first two available bytes at the top of
the dictionary and increments the dictionary pointer by two.

- (n1\n2 ... n3) 21 [subtract]
Leaves as n3 the difference nl - n2.

-—=> P [next screenl]
Continues interpretation with the next screen of source code from
tape.

-DUP (ff ... ff) 11 [dash-dup]
or (tf ... tf\tf) 12

Duplicates the top stack value if it is true (non-zero).

-FIND (... pfa\b\tf) 03 [dash-find]
(if found)
(... £f) 01

(if not found)

Used as -FIND nnnn . The CONTEXT and then the CURRENT vocabularies
are searched for the word nnnn . If found, the entry's parameter
field address, name length byte, and a true flag are left;
otherwise just a false flag is left. ’

95

-TRAILING (addr\nl ... addr\n2) 22 [dash-trailing]
Changes the character count nl of the text string at addr so as
not to include any trailing blanks, and leaves the result as n2.

. (n ...) 10 [dot]
Prints the number n on the terminal device in the current numeric
base . The number is followed by one blank space.

. P [dot-quote]
Used as ." cccc"

In a colon definition the literal string cccc is compiled together
with the execution address of a routine to transmit the text to
the terminal device.

In the execution mode the text up to the second " will be printed
immediately.

.R (n1\n2 ...) 20 [dot-R]
Print the number nl at the right-hand end of a field of n2 spaces.
Unlike <.> no following space is printed.

/ (n1\n2 ... n3) 20 [divide]
Leaves the value n3 = nl / n2.
before: 13 27 6
after: 13 4

/MOD (n1l\n2 ... n3\n4) 22 [divide-mod]

Leaves the remainder n3 and quotient n4 of nl/n2. The remainder
has the sign of the dividend.

before: 13 27 6
after: 13 3 4
0,1,2 (... n) 01
These often-used numerical values are defined as constants in the
dictionary to save both time and dictionary space.
0< (n ... f) 11 [zero-less]

Leaves a true flag if n is less than zero, otherwise leaves a
false flag.

0= (n ... £) 11 [zero-equals]
Leaves a true flag if n is equal to zero, otherwise leaves a false
flag.

OBRANCH (f ...) 10 [zero-branch]

Headerless code; execution address #28A2. The run-time procedure
to cause a conditional branch. If f is false the following in-line
number is added to the interpretive pointer to cause a forward or
backward branch. It is compiled by IF , UNTIL and WHILE .

1+ (nl ... n2) 11 [one-plus]

Increments nl by one to give n2.

96

2% (nl ... n2) 11 [two-times]
Multiplies nl by two to give n2. Faster in execution than 2 * .

2+ (nl ... n2) 11 [two-plus]
Increments nl by two to give n2.

2DROP (nd ...) 20 [two-drop]
Drops the double-precision number nd (or two single precision
numbers) from the stack.

2DUP (nd ... nd\nd) 2 4 [two-dup]
Duplicates the top double-precision number (or the top two
single-precision numbers) on the stack.

: P,E [colon]

Used to create a colon definition in the form
: CCCC sees ;
Creates a dictionary entry for the word cccc as being equivalent
to the sequence of FORTH words until the next <;>. Each word in
the sequence is compiled into the dictionary entry, unless its
precedence bit is set (P), in which case it is executed
immediately.

; P,C [semi-colon]
Terminates a colon definition and stops further compilation.

:S P [semicolon-S]
Stops interpretation of a screen from tape. It is also the word
compiled by <;> at the end of a colon definition to return
execution to the calling procedure.

< (nl\n2 ... f) 21 [less-than]
Leaves a true flag if nl is less than n2, otherwise leaves a false
flag.
before: 15 2 17
after: 15 1 (true)

<# [1less-sharp]
Sets up for numeric output formatting. The conversion is performed
on a double number to produce text at PAD . See also # , #> , #S ,
SIGN .

<BUILDS C [builds]

Used within a colon definition in the form
: cccc <BUILDS DOES> ;

to create a new defining word cccc

When cccc is executed in the form:

cccc nnnn

a new dictionary entry is created for nnnn with a name and a
parameter area produced by <BUILDS and a high level execution
procedure defined by DOES> .

Q7

When nnnn is executed it has the address of its parameter area
(defined by <BUILDS) on the stack and executes the words after
DOES> in cccc .

<CMOVE (from\to\count ...) 30 [reverse—-C-move]

As CMOVE , but the source byte with highest address moves first
and bytes are transferred in sequence of decreasing addresses. It
is useful for short forward movements of memory contents, in cases
where CMOVE would over-write the source data.

<TABLE! (addrl\n ... addr2) 21 [reverse-table-store]

Headerless code; execution address #3B3F. Places a value n at
address addrl and decrements the address by two to give addr2,
ready for a new value. This can be used to store data in a table
which is filled from the highest address towards lower addresses.
It is used by LOAD to construct the address table for OSLOAD .

(nl\n2 ... f) 21 [equals]

Leaves a true flag if nl is equal to n2, otherwise leaves a false
flag.

before: 53 27 27
after: 53 1

> (n1l\n2 ... f) 21 [greater than]
Leaves a true flag if nl is greater than n2, otherwise leaves a
false flag.
before: 12 0 -1
after: 12 1

>R (n ...) l10C¢C [to-R]
Removes a number from the computation stack and places it on the
return stack. Its use must be balanced with R> in the same
definition. It is used temporarily to remove a number from the
stack to access a lower number. See R> .

? (addr ...) 10 [question-mark]
Prints the value contained in the two bytes starting at addr.
Equivalent to <@ .> .

2COMP [query-comp]
Issues an error message if not compiling.

2CSP [query-C-S-P]
Issues an error message if stack position differs from that saved
in CSP . Used as part of the compiler security.

2ERROR (f\n ...) 20 [query-error]

98

Issues error message number n if the boolean flag f is true. Uses
ERROR . The stack is always empty after an error message.

2ESC (... £) 01 [query-esc]

Tests the keyboard to see if the ESC key is depressed. A true
(non-zero) flag is returned if the key is down at the time of the
test, otherwise a false (zero) flag is returned. In many FORTH
systems this function is carried out by the word ?TERMINAL which
may test for any key being pressed.

?EXEC [query-exec]
Issues an error message if not executing.

?LOADING [query-loading]
Issues an error message if not loading from tape.

?PAIRS (nl\n2 ...) 20 [query-pairs]

Issues an error message if nl does not equal n2. The message
indicates that compiled conditionals (IF ... ELSE ... THEN or
BEGIN ... UNTIL etc.) do not match. It is part of the compiler
security. The error message is given if, for example, the sequence
IF ... UNTIL is found during compilation of a dictionary entry.
2STACK [query-stack]

Issues an error message if the stack is out of bounds.

2TERMINAL
See ?ESC .

e (addr ... n) 11 [fetch]
Leaves on the stack the 16-bit value s found at addr.

before: 11 4123
after: 11 375

(assuming the value 375 was stored in the two bytes from address
4123).

ABORT
Clears both stacks, enters the execution state, prints the
start-up message on the terminal device and returns control to the
keyboard.
ABS (n ... u) 11
Leaves u as the absolute value of n.
before: 12 -17
after: 12 17
AGAIN P,C
Used in a colon definition in the form
BEGIN ... AGAIN

During execution of a word containing this sequence, AGAIN forces
a branch back to the corresponding BEGIN to create a endless loop.

99

ALLOT (n ...) 10

The value of n is added to the dictionary pointer to reserve n
bytes of dictionary space. The dictionary pointer may be moved
backwards by use of a negative n but this should be used with
caution to avoid losing essential dictionary content.

AND (nl\n2 ... n3) 21
Leaves as n3 the bit-by-bit logical AND of nl and n2.
(assuming binary)
before: 1101 1010 1100
after: 1101 1000
BACK (addr ...) 10

Calculates the backward branch offset from HERE to addr and
compile into the next available dictionary memory address. Used in
the compilation of conditionals (AGAIN UNTIL etc.)

BASE (... addr) 01
A user variable containing the current number base used for input
and output conversion.

BEGIN 01p,cC
Used in a colon definition in the forms:

BEGIN ... AGAIN
BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT

BEGIN marks the start of a sequence that may be executed
repeatedly. It acts as a return point from the corresponding AGAIN
, UNTIL or REPEAT .

BL (... c) 01 [B-L]
A constant that leaves the ASCII value for 'blank' or 'space' (Hex
20).

BLANKS (addr\n ...) 20

Fill n bytes of memory starting at addr with blanks.

BLK (... addr) 01 [B-L-K]

A user variable indicating the input source. If BLK is zero, input
is taken from the keyboard. If it is non-zero input is taken from
the tape input buffer area.

BRANCH

Headerless code; execution address #288D. The run-time procedure
to cause an unconditional branch. The following in-line value is
added to the interpretive pointer to cause a forward or backward
branch. It is compiled by ELSE , AGAIN and REPEAT .

100

(o] (b\addr ...) 20 [C-store]
Stores byte b (8 bits) at addr.

before: 53 29 3127
after: 53

(29 is stored in the single byte at address 3127)

c, (b ...) 10 [C-comma]
Stores (compiles) b in the next available dictionary byte,
advancing the dictionary pointer by one.

C/L (... n) 01 [C-slash-L]

A constant containing the number of characters per line. This is
normally 64, so a full FORTH 'line' will occupy two lines of the
VDU display.

ce (addr ... b) 11 [C-fetch]
Leaves b as the 8-bit contents of addr.

CFA (pfa ... cfa) 11 [C-FP-A]

Converts the parameter field address of a word to its code field
(execution) address.

CLIT (... n) 01 [c-1it]

Headerless code; execution address #285B. Within a
colon-definition CLIT can be compiled before an 8-bit literal
value. When the word containing CLIT is later executed the 8-bit
value (in the range 0-255) is pushed to the stack as a
single-precision (16-bit) number with its most-significant part
set to zero.

This word is used by a number of system words but is not available
to the user via the keyboard interpreter, which uses only LIT .

CMOVE (from\to\count ...) 30
Moves 'count' bytes, starting at 'from' to the block of memory
starting at 'to'. The byte at 'from' is moved first and the

transfer proceeds towards high memory. No check is made as to
whether the destination area overlaps the source area.

COLD

The cold start procedure used on first entry to the system. The
dictionary pointer and user variables are initialised from the
boot-up parameters and the system re-started via ABORT . It may be
called from the keyboard to remove all application programs and
restart with the nucleus dictionary alone.

COMPILE

COMPILE acts during the execution of the word containing it. The
code field (execution) address of the word following COMPILE is
compiled into the dictionary instead of executing, cf. [COMPILE] .

101

CONSTANT (n ...) 10

A defining word used in the form
n CONSTANT cccc

to create a word cccc , with the value n contained in its
parameter field. When cccc is executed the value n will be left on
the stack.

CONTEXT (... addr) 01

A user variable leaving the address of a pointer to the VOCABULARY
in which a dictionary search will start.

COUNT (addrl ... addr2\n) 12

Leaves the address addr2 and byte count n of a text string
starting at addrl, in a form suitable for use by TYPE . It is
assumed that the text string has its count byte at addrl and that
the actual character string starts at addrl + 1.

(assuming that the text string 3 65 66 67 starts at 6124),

before: 47 6124
after: 47 6125 3

(TYPE would then display the 3 characters ABC)

CR [C-R]
Transmit a carriage return and line feed to the terminal output
device.

CREATE
A defining word used in the form
CREATE cccc
to create a dictionary header for the word cccc with its code
field pointing to the first byte of the parameter field.

One common use is, with the aid of <,>, to compile machine code
into the parameter area to produce a machine code primitive. This
does not need an assembler vocabulary.

Csp (... addr) 01 [c-s-P]
A user variable used for temporary storage of the stack pointer in
checking of compilation errors.

CURRENT (... addr) 01
A user variable containing a pointer to the vocabulary into which
new definitions will be placed. As soon as a definition is made in
the CURRENT vocabulary, it automatically becomes also the CONTEXT
vocabulary.

D+ (nd1\nd2 ... nd3) 4 2 [D-plus]

102

Leaves as nd3 the double number sum of double number ndl and nd2.

D+- (nd1\n ... nd2) 32 [D-plus-minus]
Applies the sign of single number n to the double number ndl,
leaving the result nd2. See +- .

D. (nd ...) 20 [D-dot]
Prints the signed double number nd according to the current BASE.
One blank is printed after the number. See <.>.

D.R (nd\n ...) 30 [D-dot-R]

Prints a signed double number nd on the right of a field n
characters wide. See .R . No trailing blank is printed.

DABS (nd ... ud) 2 2
Leaves the absolute value ud of a signed double number nd. See
ABS .

DECIMAL

Sets BASE to decimal numeric conversion for input and output.

DEFINITIONS

Sets the CURRENT vocabulary to the CONTEXT vocabulary. If used in
the form

cccc DEFINITIONS

where cccc is a VOCABULARY word, all subsequent definitions will
be placed in the vocabulary cccc .

DIGIT (c\nl ... n2\tf) 2 2
(valid)
(c\nl ... £ff) 21
(invalid)

Converts ASCII character c, wih base nl, to its binary equivalent
n2 and a true flag. If c is not a valid character in base nl, then
only a false flag is left.

In hexadecimal base, but displaying stack in binary.
a) Valid

Hex character 'D' has ASCII code #44, or 01000100 in binary,
and represents the value 1101 in binary

before: 00010110 01000100 00010000
after: 00010110 00001101 00000001

b) Invalid
Character 'G' has ASCII code #47, or 01000111 in binary, and
does not represent a hexadecimal value

before: 00010110 01000111 00010000
after: 00010110 00000000

103

DLITERAL (nd ...) 20P

(compiling)

In the compiling state a double number nd is compiled as a double
literal number in the dictionary. Later execution of the word
including this literal number will replace nd on the stack.

In the execution mode DLITERAL has no effect.

DMINUS (ndl ... nd2) 2 2
Change the sign of ndl, leaving it as nd2.

DO (nl\n2 ...) 20pP,C
May only be used within a colon definition in the forms

nl n2 DO ... LOOP

nl n2 DO ... +LOOP
This is the equivalent of a FOR ... NEXT loop in BASIC, repeating
a sequence of operations a fixed number of times. The value of nl
is the loop limit and n2 is the initial value of the loop index.
The loop terminates when the loop index equals or exceeds the
limit. The sequence of operations in the loop will always be
executed at least once. See I , LOOP , +LOOP , LEAVE .

DOES> [does]
Used with <BUILDS to create a new defining word cccc . When a word
nnnn (created with cccc) executes it uses the sequence of
operations following DOES> in cccc . At the start of this sequence
the address of the parameter field of nnnn will be put on the
stack so that the execution can refer to the particular values
associated with nnnn . See <BUILDS .

DP (... addr) 01 [D-P]
A user variable, the dictionary pointer, leaves addr, whose
contents point to the first free byte at the top of the
dictionary.

DPL (... addr) 01 [D-P-L]
A user variable containing the number of digits to the right of
the decimal point on double number input. It may also be used to
contain the column location of a decimal point in user-generated
output formatting. On single number entry the value in DPL
defaults to -l1.

DROP (n ...) 10
Drops the top number on the stack.
before: 53 21
after: 53

DUP (n ... n\n) 12

104

Duplicates the top number on the stack.

before: 53 21
after: 53 21 21

ELSE p,C
Used in a colon definition in the form
IF ... ELSE ... THEN

During execution ELSE causes a branch to the words after THEN if
the flag tested by IF was true, and is the destination of the
branch taken at IF if the flag was false. See IF .

EMIT (c ...) 10

Transmits ASCII character c to the output device. The contents of
OUT are incremented for each character output.

before: 23 65
after: 23
(A is displayed on the output).

ENCLOSE (addr\c ... addr\nl\n2\n3) 2 4

Headerless code; execution address #29Bl. The text-scanning
primitive used by WORD .

The text starting at addr is searched, ignoring leading
occurrences of the delimiter c, until the first non-delimiter
character is found. The offset from addr to this character is left
as nl. The search continues from this point until the first
delimiter after the text is found. The offsets from addr to this
delimiter and to the first character not included in the scan are
left as n2 and n3 respectively. The search will, regardless of the
value of ¢, stop on encountering an ASCII null (00) which is
regarded as an unconditional delimiter. The null is never included
in the scan.

Examples:

Text at addr nl n2 n3
ccABCDcc 2 6 7
ABCDcc 0 4 5
ABCOcc 0 3 3
Occc 0 1 0
ERASE (addr\n ...) 20

Sets n bytes of memory starting at addr to contain zeros.

ERROR (n ...) 10

Gives an error notification. The value in WARNING is examined and
if it is -1 a system ABORT is executed, via (ABORT) which is a
headerless dictionary entry. Otherwise an error message number n
is given, the stacks are emptied and control is returned to the
keyboard. In the system as supplied, WARNING is set to zero so the
error message is given. Changing WARNING to -1 and also the vector
in (ABORT) allows the user to define his own error response.

EXECUTE (addr ...) 10
Executes the definition whose code field (execution) address is on
the stack.

105

EXPECT (addr\count ...) 20

Transfers characters from the keyboard to the memory starting at
addr until a RETURN (#0D) is found or until the maximum count of
characters has been received. Backspace deletes characters from
both the display and the memory area but will not move past the
starting point at addr. One or more nulls are added at the end of
the text.

FENCE (addr ...) 10

A user variable containing an address below which the user is not
allows to FORGET . In order to use FORGET on an entry below this
point it is necessary to alter the contents of FENCE . In the
ATOM, changing the contents of FENCE to a value less than #8000
(the start of the upper block of RAM) may produce unpredictable
results for FORGET .

FILL (addr\n\b ...) 30
Fills n bytes of memory starting at addr with the value b.

FIRST (... n) 01

A constant that leaves the address n of the first byte of the tape
input/output buffer area.

FORGET B
Used in the form
FORGET cccc

to delete the definition with name cccc and all dictionary entries
following it. An error message is given if the CURRENT vocabulary
is not the same as the CONTEXT vocabulary, i.e. if the entry cccc
is not in the vocabulary that is searched first. An error message
is also given if cccc is in the protected area of the dictionary,
below FENCE . Regardless of the value stored in FENCE the nucleus
dictionary, all of which is necessary for the correct operation of
the system, is protected against FORGET .

FORTH P

The name of the primary vocabulary. Execution makes FORTH the
CONTEXT vocabulary. It is IMMEDIATE so it will execute if used
during the creation of a colon definition. Until other
vocabularies are defined, all new words become a part of FORTH .
All other vocabularies ultimately link to the FORTH vocabulary.
HERE (... addr) 01
Leaves the contents of DP i.e. the address of the first unused
byte in the dictionary.
HEX

Sets the numeric conversion BASE to sixteen (hexadecimal).

HLD (... addr) 01 [H-L-D]

A user variable containing the address of the latest character of
text produced during numeric output conversion (by #).

106

HOLD (c ...) 10

Used between <# and #> to insert an ASCII character c¢ into a
converted numeric string. 2E (hex) HOLD will place a decimal point
in the string.

I (... n) 01cC
Used in a DO ... LOOP to place the current value of the loop index
on the stack. It must be used at the same level of nesting as the
DO ... LOOP , i.e. it will not operate correctly if included in a
colon definition word beween DO and LOOP .

ID. (addr ...) 10 [I-D-dot]
Prints the name of a word from its name field address on the
stack.

IF (£ ...) 10P,C
Used in a colon definition in the forms
a) IF (true) ... THEN
b) IF (true) ... ELSE (false) ... THEN
If the flag f is true the sequence of words after IF is executed
and execution is then transferred to the word immediately
following THEN . If f is false execution transfers
a) to the word following THEN , or
b) to the sequence of words following ELSE and subsequently to the

first word after THEN .

IMMEDIATE
Sets the precedence bit of the most recently defined word so that
it will execute rather than being compiled during the compilation
of a word definition. See [COMPILE] .

IN (... addr) 01
A user variable containing the byte offset to the present position
in the input buffer (terminal or tape) from where the next text
will be accepted.

INTERPRET

The outer text interpreter which either executes or compiles a
text sequence, depending on STATE , from the current input buffer
(terminal or tape). If the word name cannot be found after a
search of the CONTEXT and then the CURRENT vocabularies, it is
converted to a number using the current base. If this conversion
also fails an error message is given.
If a decimal point is found as part of a number the position of
the decimal pointer will be stored in DPL and a double number will
be left on the stack. The number itself will not contain any
reference to the decimal point.

KEY (... ©) 01
Leaves the ASCII value of the next terminal key pressed.

LATEST (... addr) 01

Leave the name field address of the most recently defined word in
the CURRENT vocabulary.

107

LEAVE C

Forces the termination of a DO ... LOOP at the first following
time that LOOP or +LOOP is reached. This is done by setting the
loop limit equal to the current value of the loop index, which is
not changed. Execution will continue normally until reaching LOOP
or +LOOP .

LFA (pfa ... 1fa) 11 [L-F-A]
Convert the parameter field address, pfa, to its link field
address, 1lfa.

LIMIT (... addr) 01
A constant leaving the address of the first byte after the highest
memory available for the tape I/O buffer.

LIT 01cC

Within a colon definition, LIT is automatically compiled before
each 16-bit literal number encountered in the input text. Later
execution of LIT causes the contents of the following two bytes to
be pushed onto the stack.

LITERAL (n ...) P,C

During compilation the stack value n is compiled into the
dictionary entry as a 1l6-bit (single-precision) number.

A possible use is
: nnnn ... [calculate a value] LITERAL ... ;

Compilation is suspended (by [) for a value to be calculated and
then resumed (by]) for LITERAL to compile the value into the
definition of nnnn.

LOAD (n ...) 10

Searches the tape file for screen n and, when found, loads it into
the tape buffer. The PLAY TAPE response is as described in *LOAD,
page 140 of "Atomic Theory and Practice", with the addition that
the message '>n' is given, indicating that a search is being made
for screen n. The contents of the buffer is then interpreted.
Interpretation will end at the end of the screen or at ;S unless
--> is found, in which case loading will continue with screen n+l.

LOOP P,C
Used in a colon definition in the form

DO ... LOOP

During execution LOOP controls branching back to the corresponding
DO , dependent on the loop index and loop limit. The loop index is
incremented by one and tested against the loop limit. Branching to
DO continues until the index is equal to or greater than the limit
when execution continues with the word following LOOP .

M* (nl\n2 ... nd) 2 2 [M-times]

Leaves as the double-precision number nd the signed product of the
two signed single-precision numbers nl and n2.

108

M/ (nd\nl ... n2\n3) 32 [M-divide]
Leaves, as n2 and n3 respectively, the signed remainder and signed
quotient from the division of the double number dividend nd by the
single divisor nl. The sign of the remainder is that of the
dividend.

M/MOD (udl\u2 ... u3\ud4) 33 [M-divide-mod]

Leaves, as ud4 and u3 respectively, the double quotient and
remainder from the division of the double dividend udl by the
divisor u2. All are unsigned integers.

MAX (nl\n2 ... max) 21

Leaves as max the larger of nl and n2.

MESSAGE (n ...) 10
Prints on the output device error message number n.

MIN (nl\n2 ... min) 21
Leaves as min the smaller of nl and n2.

MINUS (nl ... n2) 11
Changes the sign of nl and leaves the result as n2. The sign is
changed by forming the two's complement.

MOD (n1\n2 ... mod) 21
Leaves as mod the remainder of nl/n2 with the sign of nl.

NFA (pfa ... nfa) 11 [N-F-Aa]
Converts the parameter field address of a definition to its name
field address.

NUCTOP (... addr) 01A

Headerless code, execution address #2822. A constant containing
the address of the top of the nucleus dictionary. Used by FORGET
to prevent accidental forgetting of the nucleus dictionary, all of
which is required for the correct operation of the system.

NUMBER (addr ... nd) 12

Converts the character string starting at addr with a character
count byte, to the signed double number nd using the current
numeric base. If the string contains a decimal point its position
will be given in DPL. If a valid numeric conversion is not
possible an error message will be given. Used by INTERPRET .

NOOP [no-op]

A no-operation in FORTH. One possible use is to reserve address
space in a colon-definition for later over-writing by the
execution address of a subsequent definition.

OR (nl\n2 ... or) 21
Leaves as or the bit-by-bit logical OR of nl and n2.

109

OSDATA (addrl\n ... addr2) 01A [0-S-datal

Headerless code; execution address #3B4B. The
implementation-dependent routine that creates the zero-page data
required by the operating system load or save, with the exception
of the pointer to the filename (see "Atomic Theory and Practice"
p.191). The beginning of this data, left as addr, is at #62.
OSLOAD (addr\f ...) 20A [0-S-1load]

Headerless code; execution address #3B24. The
implementation-dependent machine code used by (LOAD) to make the
appropriate call to the operating system load routines. The
meanings of addr and f are as for (LOAD) .

ouT (... addr) 01

A user variable containing a value that is incremented by EMIT .
It may be examined and changed by the user to control display
formats.

OVER (n1\n2 ... nl\n2\nl) 23
Copies the second stack item over the top item.

Before: 15 23 17
after: 15 23 17 23

PAD (... addr) 01
Leaves the address of the text output buffer. This is always 68
bytes above HERE . Numeric output characters are stored downwards
from PAD , character text is stored upwards.

PFA (nfa ... pfa) 11 [P-F-A]
Converts the name field address, nfa, of a dictionary entry to its
parameter field address, pfa.

QUERY
Inputs up to 80 characters terminated by RETURN (#0D) from the
keyboard. The text is stored in the terminal input buffer whose
address is given by TIB. The value of IN is set to zero (in
preparation for interpretation by INTERPRET).

QUIT
Clears the return stack, stops compilation and returns control to
the keyboard. No message is given.

R (... n) 01
Copy the top of the return stack to the computation stack. The
action is identical to that of I .

RO (... addr) 01 [R-zero]

A silent user variable (no dictionary entry) containing the
initial address of the top of the return stack. It may be given a
header in the dictionary by:

8 USER RO

110

R (... addr) 01 [R-sharp]
A user variable which contains the location of the editing cursor
for the Editor.

R> (... M) 01 [R-from]
Removes the top value from the return stack and leaves it on the
computation stack . See >R .

REPEAT p,C
Used in a colon definition in the form
BEGIN ... WHILE ... REPEAT
In execution REPEAT forces an unconditional branch back to BEGIN .

ROLL (n ...) 11

Rotates the top nl stack items so that the nth item is moved to
the top.

1 ROLL has no effect
2 ROLL is equivalent to SWAP
3 ROLL is equivalent to ROT

An error messadge is given if n is less than 1.

ROT (n1\n2\n3 ... n2\n3\nl) 33
Rotates the top three items on the stack, bringing the third item
to the top

before: 92 17 28 12
after: 92 28 12 17

RP! [R-P-store]
Initialises the return stack pointer.

RP@ (... addr) 01 [R-P-fetch]

Leaves the address of the return stack pointer. Note that this
points one byte below the last return stack value.

S->D (n ... nd) 12 [S-to-D]

Leaves as nd the signed single-precision number n converted to the
form of a signed double-precision number (with unchanged value).

S0 (... addr) 01 [S-zero]

A silent user variable (no dictionary entry) containing the
address which marks the initial top of the computation stack. It
may be given a header in the dictionary by:

6 USER SO

SCR (... addr) 01 [s-C-R]

A user variable containing the number of the most recently
referenced source text screen.

111

SIGN

(n\nd ... nd) 32

Stores an ASCII '-' sign in the converted numeric output string at
PAD if n is negative. The sign of n is usually that of the double
number to be converted. Although n is discarded the double number
nd is kept either for further conversion or to be dropped by #> .
SIGN may only be used between <# and #> .

SMUDGE

TOGGLEs the 'smudge bit' in the name header of the most recently
created definition in the CURRENT vocabulary. This switches
between enabling and disabling the finding of the entry during a
dictionary search.

The name field is smudged during the definition of a word to
prevent the incomplete definition from being found, and then
smudged again on completion.

SP! 00 [s-P-store]
Initialises the computation stack pointer.

Sspe@ (... addr) 01 [s-P-fetch]
Leaves the value of the stack pointer on the stack. The value
corresponds to the state of the stack before the operation.
before: 1 2
(address 58 56 54)
after: 1 2 56

SPACE
Transmits an ASCII blank to the output device.

SPACES (n ...) 10
Transmits n ASCII blanks to the output device.

STATE (... addr) 01
A user variable indicating the state of compilation. A zero value
indicates execution and a non-zero value indicates compilation.

SWAP (n1\n2 ... n2\nl) 2 2
Exchanges the top two items on the stack.
before: 17 23 59
after: 17 59 23

THEN P,C
Used in a colon definition in the forms

IF ... THEN
IF ... ELSE ... THEN
Marks the destination of forward branches from IF or ELSE as the
conclusion of the conditional structure . See IF .
TIB (... addr) 01

112

A user variable containing the address of the terminal input
buffer.

TRAVERSE (addrl\n ... addr2) 21

Headerless code; execution address #2FB8. Moves across the name
field of a dictionary entry. If n=1, addrl should be the address
of the name length byte (i.e. the NFA of the word) and the
movement is towards high memory. If n=-1, addrl should be the last
letter of the name and the movement is towards low memory. The
addr2 that is left is the address of the other end of the name.

TOGGLE (addr\b ...) 20
Complements the contents of addr by the bit pattern b.
before: b = 00110000, contents of addr = 01101010
after: contents of addr = 01011010
TYPE (addr\count ...) 20

Transmits count characters of a string starting at addr to the
output device.

U* (ul\u2 ... ud) 2 2 [U-times]
Leaves the unsigned double-precision product of two unsigned
numbers.

u. (n ...) 10 [U-dot]
Transmits the 16-bit value n to the output device. n is
represented as an unsigned integer in the current numeric
conversion base. A trailing space is printed.

u/ (ud\ul ... u2\u3) 32 [U-divide]
Leaves the unsigned remainder u2 and unsigned quotient u3 from the
division of the unsigned double dividend ud by the unsigned
divisor ul.

U< (unl\un2 ... f) 21
Unsigned comparision. Leaves a true flag if unl is less than un2,
otherwise leave a false flag. For correct operation the difference
between unl and un2 should not exceed 32767.

UNTIL (f ...) 10p,C
Used in a colon definition in the form
BEGIN ... UNTIL
If £ is false execution branches back to the corresponding BEGIN .
If f is true execution continues with the next word after UNTIL .

USER (n ...) 10

A defining word used in the form
n USER cccc

to create a user variable cccc . Execution of cccc leaves the
address, in the user area, of the value of cccc . The value of n
is the offset from the start of the user variable area to the
memory location (2 bytes) in which the value is stored. The value
is not initialised.

113

VARIABLE (n ...) 10

A defining word used in the form
n VARIABLE cccc

to create a variable cccc with initial value n. Execution of cccc
leaves the address, in the parameter area of cccc , containing the
value of cccc .

VLIST [v-1list]

Display, on the output device, a list of the names of all words in
the CONTEXT vocabulary and any other vocabulary from which the
CONTEXT vocabulary is chained. All VLIST's will therefore include
a listing of words in the FORTH vocabulary. The listing be be
interrupted by pressing the ESC key and resumed by pressing the
space bar. If, after interruption, The ESC key (or any other key
except the space bar) is pressed, the listing will be aborted.

VOC-LINK (... addr) 01

A user variable containing the address of a vocabulary link field
in the word which defines the most recently.created vocabulary.
All vocabularies are linked through these fields in their defining
words.

VOCABULARY E

A defining word used in the form
VOCABULARY cccc

to create a defining word for a vocabulary with name cccc .
Execution of cccc makes it the CONTEXT vocabulary in which a
dictionary search will start. Execution of the sequence:

cccc DEFINITIONS

will make cccc the CURRENT vocabulary into which new definitions
are placed. Vocabulary cccc is so linked that a dictionary search
will also find all words in the vocabulary in which cccc was
originally defined. All vocabularies, therefore, ultimately 1link
to FORTH .

By convention all voéabulary defining words are declared
IMMEDIATE .

WARNING (... addr) 01

A user variable whose value determines the action on detection of
an error. If WARNING contains -1 an error causes a system ABORT
which may, by changing a pointer in (ABORT) , be altered to a
user-defined response. If WARNING contains zero then an error
message number is given. In the system provided, WARNING is set to
zero on initialisation . See ERROR .

WHILE (£ ...) 10p,C

114

Used in a colon definition in the form
BEGIN ... WHILE ... REPEAT

WHILE tests the top value on the stack. If it is true execution
continues to REPEAT which forces a branch back to BEGIN . If f is
false execution skips to the first word after REPEAT . See BEGIN .

WIDTH (... addr) 01

A user variable containing the maximum number of letters saved
during the compilation of a definition's name. It must be a value
between 1 and 31 inclusive and has a default value of 31. The
value may be changed at any time provided it is kept within the
above limits.

WORD (c ...) 10

Accepts text characters from the input buffer (terminal or tape)
until a delimiter character c is found. The string starting with a
length count byte, is then placed in the WORD buffer starting at
HERE and two or more banks are added to the end. The choice of
input buffer is determined by BLK . See BLK , IN .

X
This is a pseudonym for the dictionary entry whose name is one
character of ASCII null (00). It is the procedure to terminate
interpretation of text from the input buffer, since both input
buffers have at least one null character at the end.

XOR (nl\n2 ... xor) 21
Leaves the bit-by-bit logical exclusive-OR of nl and n2.

[P [left-bracket]
Used in the creation of a colon definition in the form
:nnnn ... [...] ...
to suspend compilation of the definition and allow words to
execute . See] .

[COMPILE] P,C [bracket-compile]

Used in the creation of a colon definition to force the
compilation of an IMMEDIATE word which would otherwise execute.

The most frequent use is with vocabulary words e.g.
[COMPILE] FORTH
to delay the change of the CONTEXT vocabulary to FORTH until the
word containing the above sequence executes.
[right bracket]

Used during the creation of a colon definition, to resume
compilation after the suspension of compilation by [.

115

116

Appendix A
Two’s—- Complement Arithmetic

In unsigned arithmetic using 16-bit numbers, the lowest value that can
be represented is zero, appearing as binary notation as

00000000O0OO0O0OOOCOOO '
and the highest number appears as
l1111111111111111

which represents the decimal value 65535. There are therefore,
including zero, 65536 different numbers.

To understand the operations on signed numbers, consider what
happens if one is added to the highest unsigned value, 65535. In
binary notation this sum appears as

In a computer, working to 16-bit accuracy, the one in the 17th place
is lost and the value stored as the result will be zero. If we add one
to a number and find the result is zero, it is natural to interpret
the original number as having a value of -1.

Thus, for signed arithmetic, the number

1111111111111111

can be used to represent -1.

In general the number -x is represented by the value which gives a
zero result when +x is added to it (ignoring any overflow into the
17th place). The signed values -2 , -23 and -32768 are therefore
represented by

e
O
oM
O
oMM
oM
orH
O
orM
O
oM
oo
oM
cowr
cow

0
1
and 0 respectively.
All negative values are represented by binary numbers whose most
significant (16th) bit is a one. Accordingly, the highest positive
number that can be represented is:

0111111111111111

or +32767, and the most negative number is -32768, shown earlier.

The range for a signed number is thus from -32768 to +32767 which,
including zero, gives a total of 65536 different values (as for
unsigned numbers).

Whether a number is interpreted as a signed or an unsigned value
is entirely a matter of context; the binary number

1111111111111111

117

may represent either +65535 or -1 depending on the conversion routine
used.

The above discussion has been confined to 16-bit numbers but
similar considerations apply to any precision. In all cases the most
significant bit of the number will be zero for a positive value and
one for a negative value. It may, therefore, be regarded as a 'sign
bit'.

In general the binary representation of a negative number may be
found by writing down the binary representation of the corresponding
positive number, inverting all the bits and adding one. This is shown
in the following example to find the two's-complement representation
of -4 (in 8-bit precision):

00000100 (+4)

invert all bits (form the one's-complement):
11111011

add 1 (form the two's-complement):

11111100 (-4)

118

Appendix B
System FORTH

FORTH for the Acorn Systems 3 and 4 is almost identical to ATOM
FORTH, except for the changes in the memory map. FORGET is changed
to work in the range #3C00 and #8000 and no memory is needed above
#8000.

Pointer Contents Address
[/ /S /S 6000
USER VARIABLES
UP , LIMIT ----> S5FC4

DISC/TAPE BUFFER
FIRST —--==—===- > 5DCO

PAD ———==mmm L e
NUMERIC CONVERSION BUFFER
WORD BUFFER
DP ———m——m I I T
APPLICATIONS DICTIONARY
DP0) ——=m==mm > 3C00

NUCLEUS DICTIONARY

(As for ATOM FORTH)

0000

The system can be modified to use memory up to #8000 by changing
UP, LIMIT and FIRST, for example:

HEX

LIMIT 2000 + ' LIMIT
FIRST 2000 + ' FIRST
10 +ORIGIN @ 2000 + 10 +ORIGIN ! (change UP)
COLD (initialise)

The system should then be resaved:

SAVE FORTHA 240 400 2EB
SAVE FORTHB 2800 3C00 2EB

120

Appendix C
Dictionary Entry Structure

All dictionary entries in FORTH have the same general form:

NFA Name length (1 byte), Name
Characters of the name field
(up to 31 bytes)

LFA Link pointer to Link
previous NFA (2 bytes) field
CFA Pointer to machine Code
code to execute (2 bytes) field
PFA Parameter
field

The name length byte contains, in its least significant five bits, the
number of characters in the name of the word (maximum 31 characters).
The sixth bit is the 'smudge' bit which, when set to 1, will prevent
the dictionary entry from being found on a dictionary search (except
by VLIST). This is mainly used to prevent the finding and use of a
partly-completed dictionary entry. The seventh bit is known as the
precedence bit and marks a word as being IMMEDIATE when set to 1. The
eighth or most significant (sign) bit is always set to 1, as is the
sign bit of the last character of the name. This is to allow the
operation of TRAVERSE , which will move, in either direction, across
the name field of the word.

The link field contains the address of the start of the name field
of the preceding dictionary entry to allow a dictionary search to be
made. A link field containing zero marks the end of the dictionary.

The various types of dictionary entry differ only in the contents
of their code fields and parameter fields. The code field always
contains a pointer to the start of an executable machine code routine,
and the different possibilities are given in the following list.

a) Machine-code primitives

The machine code is placed in the parameter field of
the entry and the code field points to its start.

b) Constants

The value of the constant is contained in a two-byte
parameter field and the code field points to a
machine-code routine to place the contents of the
parameter field on the stack.

c) Variables

The value of the variable is contained in a two-byte
parameter field and the code field contains a pointer
to a machine-code routine which places the address of
the parameter area on the stack.

121

d) User Variables

The offset from the start of the user variable area to

the address where the variable is stored is contained in a
one-byte parameter area. The code field points to a
machine-code routine which adds the offset to the address

of the start of the user variable area and places the result
on the stack.

e) Colon definitions

The code field contains a pointer to a machine-code
routine which interprets the contents of the parameter
field as a list of addresses of other FORTH words to be
executed.

f) Words constructed using <BUILDS and DOES>

The first two bytes of the parameter area contain the
address of the words following DOES> in the creating word.
The remainder of the parameter area contains a series of
values placed there by the words (if any) following
<BUILDS in the creating word.

The code field contains a pointer to machine code which will

(i) place the address of the third byte of the parameter
area (the start of the values placed there by <BUILDS)
on the stack;

(ii) execute the list of words starting at the address
contained in the first two bytes of the parameter area
(the words following DOES>).

Saving Dictionary Space

The maximum length of the name of a dictionary entry is contained in
the user variable WIDTH . This may at any time be reduced from its
default value of 31 characters, with a consequent saving of space in
the name field of a dictionary entry. If, for example, the value of
WIDTH is reduced to 3 by

3 WIDTH !

then any new dictionary entry will be with the actual length of its
name, but only the first three characters saved. All words must then
be uniquely determined by their length and their first three
characters (i.e. LOOK and LOOP will not be distinguished). The use of
a value of WIDTH less than 3 is not recommended but, as this
demonstrates,

IT IS VER- EAS- TO REA- FOR-- IF YOU ONL- HAVE- THE FIR-- THR--
LET---- AND THE LEN--- OF THE WOR-

The value of WIDTH may be increased or decreased at any time (subject

to its remaining in the range 3 to 31 inclusive) and will not have any
effect on previously defined words.

122

Headerless Code

Some dictionary entries in ATOM FORTH are 'headerless'. This means
that their heads do not include name and link fields. They cannot,
therefore, be found by a dictionary search, or included in a new
definition unless their code field (execution) addresses are known to
the programmer. The glossary gives this address for each headerless
entry.

Creating headerless code is a very efficient way of saving memory,
but it does reduce the flexibility of the system since headerless
entries are relatively difficult to use.

The main use of headerless code is in producing a stand-alone
system whose action is fixed, such as a dedicated control system.

123

124

Appendix D

Memory Allocation

Pointer
UP , LIMIT ---->
FIRST -—-——=-- >
PAD ---—-——-- >
DP —————=—o >
DPQ —----=-- >
ORIGIN —--——=-= >

Contents

(L /L)Y

USER VARIABLES

TAPE I/0 BUFFER

APPLICATIONS DICTIONARY

GRAPHICS MODE 3

GRAPHICS MODE 2

GRAPHICS MODE 1
VDU/GRAPHICS MODE 0

/ST
/S /S
(LY

NUCLEUS DICTIONARY

BOOT-UP LITERALS

/ST
(/L)

BLOCK ZERO

Address

9800
97C4

95C0

8C00

8600
8400
8200
8000

3C00

2800
0400

0000

125

Block zero Memory Map

Pointer Contents Address
/ /S S S S S SSLLSS 0400
GRAPHICS PLOT VECTOR
03FE
LOWER DICTIONARY AREA
0240
OPERATING SYSTEM
VECTORS
0200
RO ————=—=- >
RETURN STACK
RP ———————- >
01A4
TERMINAL INPUT BUFFER
TIB -—-———-- > 0150
FREE (ECONET)
0140
COS\DOS INPUT BUFFER
0100
Top of
Zero Page RESERVED FOR COS\DOS
0098
FORTH SCRATCHPAD
AND POINTERS
0087
0086
FREE
006C
006B
TAPE INTERFACE
WORKSPACE
0062
GRAPHICS WORKSPACE
005A
SO0 ————=--- >
COMPUTATION
STACK
SP ——————=- >
0000

126

Relocation of the Applications Dictionary

The applications dictionary, tape buffer and user variable area
normally reside in memory between #8200 and #97FF. All addresses 1in
this range are, if treated as signed single-precision integers,
‘negative'. This has two important consequences for relocation of the
applications dictionary in the address range below #8000:

1. Before compiling a dictionary entry, FORTH checks whether there is
sufficient room between the top of the dictionary (contents of DP)
and the start of the tape buffer (value of FIRST). A 'positive'
value in DP and a 'negative' value of FIRST will cause the test to
fail and give error message 2 (dictionary full). In order to avoid
extensive changes to the system, relocation of the applications
dictionary below #8000 should be accompanied by a corresponding
relocation of the tape buffer.

2. The word FORGET performs an address validation check before
allowing part of the dictionary to be discarded. This check assumes
that valid addresses are 'negative', and they will therefore fail
in the relocated applications dictionary. The definition of FORGET
must be modified for the relocated system.

The modifications given here also relocate the user variables.
This is not strictly necessary but will leave the upper RAM completely
free so that mode 4 graphics can be used. The changes are made
permanent so that the new system can be saved on tape. The areas to be
saved are #240 to #400 and #2800 to #3C00, both with an execution
address of #2800. A minimum of 2K of RAM is required in the region
between #3C00 and #7FFF inclusive. In the code, XXXX represents the
RAM start address and YYYY the end address + 1.

COLD (start on an empty applications dictionary)
HEX
XXXX DUP DP ! (relocate applications dictionary)

DUP 1E +ORIGIN
DUP 1C +ORIGIN

(change DP boot-up parameter)
FENCE ! (FENCE and its boot-up parameter)

YYYY 3C - (start of new user variable area)
DUP 10 +ORIGIN ! (change user variable boot-up parameter)
DUP ' LIMIT ! (relocate end of tape buffer)
204 - ' FIRST ! (and the beginning)
: TEMP (a temporary definition of the new FORGET)
CURRENT @ CONTEXT @
- 18 ?ERROR (CONTEXT = CURRENT?)
[COMPILE]
DUP FENCE @
[2822 ,] (top of nucleus)
MAX < 15 ?ERROR (below FENCE or in nucleus?)
DUP NFA DP !

LFA @ CURRENT @ ! ;
If this definition is compiled successfully, all is well so far.
' TEMP HERE OVER - (PFA and parameter field length)

' FORGET SWAP CMOVE (overwrite FORGET)
(the new version is shorter, so OK)

127

FORGET TEMP
(If TEMP is forgotten successfully, everything is OK)

COLD (Finally, check out modified boot-up parameters)

128

Appendix E
Further Reading

1. The FORTH Interest Group in the U.S.A. supply many documents
relating to FORTH, including assembly listings for many different
microprocessors, a language model, reprints of "BYTE" magazine
articles and a bi-monthly magazine entitled "FORTH Dimensions".

For details of current costs for membership and their publications
write (with an SAE please) to:

FORTH Interest Group,
P.0. Box 1105,

San Carlos,

Ca. 94070.

2. The FORTH Interest Group U.K. is the British branch of the U.S.A.
group. At present it meets on the first Thursday of every month at 7
p.m. at the Polytechnic of the South Bank in London. Membership
includes a bi-monthly newsletter entitled "FORTHWRITE". Like its
parent group, F.I.G. U.K. exists to promote interest in and the use of
the FORTH language and its members are prepared to help with any
difficulties that may be encountered. For further details contact
(S.A.E. please):

The Honorary Secretary,
F.I.G. U.K.,

15, St. Albans Mansions,
Kensington Court Palace,
London W8 5QH

3. A number of articles on FORTH have appeared in "BYTE" magazine:

August, 1980 A FORTH language 'special'
February, 1981 Stacking Strings in FORTH
March, 1981 A Coding Sheet for FORTH

The August 1980 issue is now unobtainable, but reprints of all the
BYTE articles are available from the U.S.A. FORTH Interest Group (Ref.
1).

4. "FORTH for Microcomputers" Dr. Dobb's Journal No. 25 (May 1978).
A brief review of the external and internal workings, with a variety
of examples.

129

5. "Starting FORTH" L. Brodie.
published by Prentice-Hall (Nov. 1981).

Available from: Computer Solutions Ltd.,
Treway House,
Hanworth Lane,
Chertsey.
Tel: Chertsey (09328) 65292

The author is from FORTH Inc., the company started by Charles Moore,
the inventor of FORTH. This is a very good introduction to the
language, with lots of examples.

6. "Threaded Interpretive Languages" R. G. Loeliger,
published by Byte Books (McGraw-Hill) (1981).

A good, clear, description of the internal workings of FORTH-like

languages, based on an implementation for the %-80 microprocessor. Not
for the complete beginner, but try it in a couple of month's time!

130

! (FORTH word) 21, 92
ICSP (FORTH word) 92

" character 96

£ (FORTH word) 53, 92
£> (FORTH word) 53, 92
£S (FORTH word) 53, 92

$! examp.e 74
$@ example 74
$IN example 51, 73, 74
' (FORTH word) 92

((FORTH word) 60, 93
(+LOOP) (FORTH word) 93
(.") (FORTH word) 93
(;CODE) (FORTH word)
(ABORT) (FORTH word)
(DO) (FORTH word) 93
(ENTER) (FORTH word) 93
(FIND) (FORTH word) 93
(LINE) (graphics word) 67
(LOAD) (FORTH word) 94
(LOOP) (FORTH word) 94
(NUMBER) (FORTH word) 46,
(PLOT) (graphics word) 66

93

) character 60, 93

* (FORTH word)
*/ (FORTH word)
* /MOD

12, 94
12, 94
(FORTH word) 12, 94

+ (FORTH word) 12, 94

+! (FORTH word) 22, 95

+- (FORTH word) 12, 95
+LOOP (FORTH word) 39, 95
+ORIGIN (FORTH word) 95

+ (FORTH word) 24, 95

- (FORTH word) 12, 95

--> (FORTH word) 60, 95
-DUP (FORTH word) 13, 37,
-FIND (FORTH word) 95
-TRAILING (FORTH word) 45,

. (FORTH word) 11, 45,
." (FORTH word) 45, 96
.POUNDS example 53

.R (FORTH word) 51, 96
.REAL example 54

51,

46, 93

47,

95
51,
96

Index

94

96

.S example 88
.TIME example 84

/ (FORTH word) 12, 96
/MOD (FORTH word) 12, 96
0 (FORTH word) 96

0< (FORTH word) 15, 96
0= (FORTH word) 15, 96
OBRANCH (FORTH word) 96

1 (FORTH word) 96
1+ (FORTH word) 12, 96

2 (FORTH word) 96

2* (FORTH word) 12, 97

2+ (FORTH word) 12, 97

2/ example 77

2ARRAY example 72

2DROP (FORTH word) 17, 97
2DUP (FORTH word) 17, 97

3-COUNT example 39

(FORTH word) 20, 97
; (FORTH word) 20, 97
+S (FORTH word) 61, 97
< (FORTH word) 15, 97
<€ (FORTH word) 53, 97
<BUILDS (FORTH word) 69,
<CMOVE (FORTH word) 48,
<TABLE! (FORTH word) 98

70,
98

= (FCRTH word) 15, 98

> (FORTH word)
>R (FORTH word)

15,
13,

98
98

? (FORTH word) 22, 98
?CCMP (FORTH word) 98
?CSP (FORTH word) 98
?ERROR (FORTH word) 98
?ESC (FORTH word) 42,
?EXEC (FORTH word) 99
?LOADING (FORTH word)
?PAIRS (FORTH word) 99
?STACK (FORTH word) 99
?TERMINAL (FORTH word)

99

99

99

@ (FORTH word) 22, 99

ABORT (FORTH word) 99

97

ABS (FORTH word) 12, 99
AGAIN (FORTH word) 42, 99
allocation memory 125
ALLOT (FORTH word) 70, 100
AND (FORTH word) 15, 100
animated graphics 66
applications separating 21
arithmetic 10

double-precision 16

single-precision 11

two's-complement 117
arrays 71

one-dimensional 71

two-dimensional 72

with index check 71

B (editor command) 63
BACK (FORTH word) 100
BACKWARDS example 39

BASE (FORTH word) 23, 49, 100

base BASE-36 50

BINARY 50

conversion example 50
BASE-36 base 50
bases numeric 49
BEGIN (FORTH word) 42, 100
BINARY base 50
BL (FORTH word) 49, 100
BLACK (graphics word) 66
BLANKS (FORTH word} 49, 100
BLK (FORTH word) 23, 100

blocks of memory manipulating 48

BRANCH (FORTH word) 100
branches 35

conditional 35

nested 37
BREAK key 7

C (editor command) 62
C! (FORTH word) 101
C, (FORTH word) 24, 101
C/L (FORTH word) 73, 101
C@ (FORTH word) 101
CASE example 74, 75
CFA (FORTH word) 20, 101
character input 45
output 50
CLEAR (FORTH word) 65
clear graphics 67
screen 67
CLIT (FORTH word) 101
CMOVE (FORTH word) 48, 101
intelligent 49
code field address 19
code headerless 123
coding example 4
COLD (FORTH word) 8, 101
cold start 8
colon-definitions 20
compilation of 30

132

form of 20
comments 60

compilation of colon-definitions

30
IMMEDIATE words 31
numbers 32
COMPILE (FORTH word) 31, 101
example 32
compiler security 31
computation stack 10
conditional branches 35

CONSTANT (FORTH word) 21, 70,

CONTEXT (FORTH word) 23, 28,
conversion numeric 47
copying screens 79
COUNT (FORTH word) 45, 51,
COUNTER example 38
COUNTS example 38
cover figure 86
CR (FORTH word) 102
CREATE (FORTH word) 24, 102
+ example 27
AND example 27
RP@ example 28
CSP (FORTH word) 23, 102
CTABLE example 73
CURRENT (FORTH word) 23, 28,
cursor editing 62
CVARIABLE example 71, 71

D (editor command) 61

D+ (FORTH word) 16, 102

D+- (FORTH word) 17, 103

D->H example 50

D. (FORTH word) 51, 103

D.R (FORTH word) 52, 103

DABS (FORTH word) 17, 103

DATA example 73

DECIMAL (FORTH word) 50, 103

decimal point 16

definite loops 37

definitions 19

DEFINITIONS (FORTH word) 29,

DELAYS example 38

DELETE (editor command) 63

deleting lines 61

DELTAX (graphics word) 67

DELTAY (graphics word) 67

demonstration graphics 86

DIAGONAL example 66

dictionary entries 19, 121
entry types 121
relocation 127

dictionary space extra 65
saving 122

DIGIT (FCRTH word) 103

discs 64

DLITERAL (FORTH word) 32, 104

DMINUS (FORTH word) 17, 104
DO (FORTH word) 37, 104

DO-IT-LATER example 31
DO-IT-NOW example 30
double-precision arithmetic 16
numbers 16
operators 16
DP (FORTH word) 23, 104
DPL (FORTH word) 16, 23, 46, 47,
104
DROP (FORTH word) 13, 104
DUMP example 52
DUP (FORTH word) 13, 104

E (editor command) 61
econet 64
editing cursor 62
example 58, 59, 63
lines 61
strings 62
editor 58
editor commands:
B 63
C 62
D 61
DELETE 63
61
62
61
61
63
MATCH 63
N 63
P 60, 61
R 61
S
T

BEHITTM

61
61

TILL 62

WHERE 57

X 62
editor loading 55
EDITOR vocabulary 58
ELSE (FORTH word) 105
EMIT (FORTH word) 50, 105
EMPTY-BUFFERS (FORTH word) 58
ENCLOSE (FORTH word) 105
ERASE (FORTH word) 49, 105
erasing lines 61
ERR (graphics word) 67
ERROR (FORTH word) 105
error message from arrays 72

messages 91
errors 91
examples:

$1 74

se 74

$IN 51, 73, 74

.POUNDS 53

«REAL 54

.S 88

.TIME 84

2/ 11

2ARRAY 72
3-COUNT 39
BACKWARDS 39
base conversion 50
CASE 74, 75
coding 4

COMPILE 32
COUNTER 38
COUNTS 38

CREATE + 27
CREATE AND 27
CREATE RP@ 28
CTABLE 73
CVARIABLE 71, 71
D->H 50

DATA 73

DELAYS 38
DIAGONAL 66
DO-IT-LATER 31
DO-IT-NOW 30
DUMP 52

editing 58, 59, 63
FACT 77, 78
factorials 77
FAMILY 69

fast 2 / 77
FLASH 66

GCD 43
HELL-FREEZES-OVER 43
IMMEDIATE 30, 32
INPUT 47

INSCR 80

INVERT editing 62
JTEST 41
KEYBOARD 83
LEFTS 51

LIST 73

LOOK-UP 40, 41
MD* 17

MEMBER 69
MONITOR 81

NUMIN 46

OUTSCR 80

PAUSE 42

PLOT-IT 86
quadratic 12, 14
QUICKSORT 78
RECTANGLE 72
recursion 77
RIGHTS 51

RND 59

SEQUENCE 39
SHOWASCII 45
SIZE 70

sort 78

STARS 7

STRING 73
STRINGS 51
TENCOUNT 37
tones 82

133

TRIANGLE 67

VALUES 71

WAIT 81

WASHING 4

WORDS 73

[COMPILE] 31, 32
EXECUTE (FORTH word) 105
execution address 19
execution time of words 85
EXPECT (FORTH word) 106
extension memory 67, 127
extra dictionary space 65

F (editor command) 62
FACT example 77, 78
factorials example 77
FAMILY example 69
fast 2 / example 77
FENCE (FORTH word) 23, 106
FILL (FORTH word) 49, 106
FIRST (FORTH word) 106
FLASH example 66
FORGET (FORTH word) 21, 28, 106
form of colon-definitions 20
FCRTH (FORTH word) 29, 106
FORTH words:

121, 92

ICSP 92

£ 53, 92

£> 53, 92

£S 53, 92

''92

(60, 93

(+LOOP) 93

(.") 93

(;CODE) 93

(ABORT) 46, 93

(DO) 93

(ENTER) 93

(FIND) 93

(LOAD) 94

(LOOP) 94

(NUMBER) 46, 47, 94

* 12, 94

*/ 12, 94

*/MOD 12, 94

+ 12, 94

+! 22, 95

+- 12, 95

+LOOP 39, 95

+ORIGIN 95

, 24, 95

-12, 95

--> 60, 95

-DUP 13, 37, 95

-FIND 95

-TRAILING 45, 51, 96

. 11, 45, 51, 96

." 45, 96

.R 51, 96

134

/ 12, 96

/MOD 12, 96

0 96

0< 15, 96

0= 15, 96
OBRANCH 96

1 96

1+ 12, 96

2 96

2% 12, 97

2+ 12, 97

2DROP 17, 97
2DUP 17, 97

: 20, 97

; 20, 97

;S 61, 97

< 15, 97

<€ 53, 97
<BUILDS 69, 70, 97
<CMOVE 48, 98
<TABLE! 98

= 15, 98

> 15, 98

>R 13, 98

? 22, 98

?2COMP 98

?CSP 98

? 98

?ESC 42, 99
?EXEC 99
?LOADING 99
?PAIRS 99
?2STACK 99
?TERMINAL 99

@ 22, 99

ABORT 99

ABS 12, 99
AGAIN 42, 99
ALLOT 70, 100
AND 15, 100
BACK 100

BASE 23, 49, 100
BEGIN 42, 100
BL 49, 100
BLANKS 49, 100
BLK 23, 100
BRANCH 100

Cc! 101

C, 24, 101

c/L 73, 101

ce 101

CFA 20, 101
CLEAR 65

CLIT 101

CMCVE 48, 101
CoLD 8, 101
COMPILE 31, 101
CONSTANT 21, 70, 102
CONTEXT 23, 28, 102
COUNT 45, 51, 102

CR 102

CREATE 24, 102
CURRENT 23, 28, 102
D+ 16, 102

D+- 17, 103

D. 51, 103

D.R 52, 103

DABS 17, 103
DECIMAL 50, 103
DEFINITIONS 29, 103
DIGIT 103

DLITERAL 32, 104
DMINUS 17, 104

DO 37, 104

DOES> 69, 70, 104
DP 23, 104

DPL 16, 23, 46, 47, 104
DRCP 13, 104

DUP 13, 104

editor commands 62
ELSE 105

EMIT 50, 105
EMPTY-BUFFERS 58
ENCLOSE 105

ERASE 49, 105
ERROR 105

EXECUTE 105
execution time of 85
EXPECT 106

FENCE 23, 106

FILL 49, 106

FIRST 106

FORGET 21, 28, 106
FORTH 29, 106

HERE 45, 51, 106
HEX 50, 106

HLD 23, 106

HOLD 53, 107

I 38, 107

ID. 107

IF 35, 107
IMMEDIATE 30, 107
IN 23, 107

in text 1
INTERPRET 107

J 41

K 42

KEY 107

LATEST 77, 107
LEAVE 40, 108

LFA 20, 108

LIMIT 108

LIST 56

LIT 108

LITERAL 32, 108
LOAD 56, 108

LOOP 37, 108

M* 16, 108

M/ 17, 109

M/MOD 17, 109

MAX 15, 109
MESSAGE 109

MIN 15, 109

MINUS 12, 109

MOD 12, 109

names of 89, 122
NFA 20, 109

NOOP 109

NUCTOP 109

NUMBER 46, 109

OR 15, 109

OSDATA 110

OSLOAD 110

ouT 23, 110

OVER 13, 110

PAD 54, 61, 110
PFA 20, 110

PICK 13

PROGRAM 58
pronunciation of 89
QUERY 45, 110

QUIT 110

R 13, 110

RE 23, 111

RO 23, 110

R> 13, 111

REPEAT 42, 43, 111
ROLL 13, 111

ROT 13, 111

RP! 111

RP@ 111

S->D 111

S0 23, 111

SCR 23, 57, 111
SIGN 53, 112
SMUDGE 16, 24, 112
SP! 112

sp@ 112

SPACE 112

SPACES 112

stack actions of 89
STATE 23, 112
status of 89

SWAP 13, 112

THEN 35, 112

TIB 23, 112

TOGGLE 15, 113
TRAVERSE 113

TYPE 45, 50, 51, 113
U* 16, 113

Uu. 11, 52, 113

u/ 17, 113

U< 15, 113

UNTIL 42, 113

USER 22, 113
validity of 4
VARIABLE 22, 114
VLIST 7, 114
VOC-LINK 23, 114
VOCABULARY 19, 28, 114

11358

WARM 8
WARNING 23, 46, 114
WIDTH 23, 115, 122
WORD 45, 115
X 115
XOR 15, 115
[30, 115
[COMPILE] 30, 115
1 30, 115
further reading 129

GCD example 43
glossary of FORTH words 89
GOTO 35
graphics 65, 86

animated 66

clear 67

demonstration 86

line-drawing 66

memory 65

mode 4 67

modes 65

package 65

point-plotting 66

relative plotting 67

resolution 65
GRAPHICS vocabulary 66
graphics words:

(LINE) 67

(PLOT) 66

BLACK 66

DELTAX 67

DELTAY 67

ERR 67

INVERT 66

LINE 67

MOVE 67

PLOT 66

REL 67

RLINE 67

RMOVE 67

RPLOT 67

SETXY 67

WHITE 66

XDIR 67

YDIR 67

H (editor command) 61
headerless code 123
HELL-FREEZES-OVER example 43

HERE (FORTH word) 45, 51, 106

HEX (FORTH word) 50, 106
HLD (FORTH word) 23, 106
HOLD (FORTH word) 53, 107

I (editor command) 61
(FORTH word) 38, 107

ID. (FORTH word) 107

IF (FORTH word) 35, 107

IMMEDIATE (FORTH word) 30, 107

136

example 30, 32

words compilation of 31
IN (FORTH word) 23, 107
indefinite loops 42
index check for arrays 71
index to manual 113
indirect threaded code 4
input 45

character 45
INPUT example 47
input numeric 46

text 45
INSCR example 80
integers printing 11
intelligent CMOVE 49
INTERPRET (FORTH word) 107
introduction to FORTH 2

to manual 1
INVERT (graphics word) 66
INVERT editing example 62
IP location 25, 26

J (FORTH word) 41
JTEST example 41

K (FORTH word) 42
KEY (FCRTH word) 107
KEYBOARD example 83

LATEST (FORTH word) 77, 107
LEAVE (FORTH word) 40, 108
LEFT$ example 51
LFA (FCRTH word) 20, 108
LIMIT (FORTH word) 108
LINE (graphics word) 67
line-drawing graphics 66
lines deleting 61

editing 61

erasing 61

replacing 61
link field address 19
LIST (FORTH word) 56

example 73
LIT (FORTH word) 108
LITERAL (FCRTH word) 32, 108
LOAD (FORTH word) 56, 108
loading editor 55

FORTH 7

screens 56

tape interface 55
locations:

IP 25, 26

N 25

UP 25

W 25, 26

XSAVE 25, 25

zero-page 25
logical operators 15
LOOK-UP example 40, 41
LOOP (FORTH word) 37, 108

loop index 37, 38
limit 37

loops indefinite 42
nested 39

loudspeaker 82

M (editor command) 63

M* (FORTH word) 16, 108

M/ (FORTH word) 17, 109
M/MOD (FORTH word) 17, 109
machine-code 24

manipulating blocks of memory 48

MATCH (editor command) 63

MAX (FORTH word) 15, 109

MD* example 17

MEMBER example 69

memory allocation 125
extension 67, 127
graphics 65

memory map ATOM FORTH 125, 126

System FORTH 119
memory usage 65
MESSAGE (FORTH word) 109
meta-FORTH 69
MIN (FORTH word) 15, 109
MINUS (FORTH word) 12, 109

mixed-precision operators 16, 17

MOD (FORTH word) 12, 109
mode 4 graphics 67

modes graphics 65
monitor commands 81
MONITOR example 81

MOVE (graphics word) 67
music 83

N (editor command) 63
location 25
name field address 19
names of FORTH words 89, 122
nested branches 37
loops 39
NFA (FORTH word) 20, 109
NOOP (FORTH word) 109
notation postfix 11
reverse-Polish 11
NUCTOP (FORTH word) 109
NUMBER (FORTH word) 46, 109
numbers compilation of 32
double-precision 16
single-precision 11
numer ic bases 49
conversion 47
input 46
output 51
output formatting 53
NUMIN example 46

OCTAL 50
one-dimensional arrays 71
operators:

double-precision 16
logical 15
mixed-precision 16, 17
relational 15
single-precision 12
stack 13, 17
OR (FORTH word) 15, 109
OS commands 81
OSDATA (FORTH word) 110
OSLOAD (FORTH word) 110
OUT (FORTH word) 23, 110
output 50
character 50
formatting numeric 53
numeric 51
text 50
OUTSCR example 80
OVER (FORTH word) 13, 110

P (editor command) 60, 61

PAD (FORTH word) 54, 61, 110

parameter field 19

stack 10
PAUSE example 42
PFA (FORTH word) 20, 110
PICK (FORTH word) 13
PLOT (graphics word) 66
PLOT-IT example 86
point-plotting graphics 66
POPTWO 24
postfix notation 11
printing integers 11
PROGRAM (FORTH word) 58

pronunciation of FORTH words 89

quadratic example 12, 14
QUERY (FORTH word) 45, 110
QUICKSORT example 78

QUIT (FCRTH word) 110

R (editor command) 61
(FORTH word) 13, 110
RE (FORTH word) 23, 111
RO (FORTH word) 23, 110
R> (FORTH word) 13, 111

reading further 129
RECTANGLE example 72
recursion 77

example 77
references 129
REL (graphics word) 67
relational operators 15

relative plotting graphics 67

relocation dictionary 127
tape buffer 127
user variable area 127
REPEAT (FORTH word) 42, 43,
replacing lines 61
resolution graphics 65
return stack 10, 13

111

137

reverse-Polish notation 11
RIGHTS$ example 51

RMOVE (graphics word) 67
RND example 59

ROLL (FORTH word) 13, 111
ROT (FORTH word) 13, 111
RP! (FORTH word) 111

RP@ (FORTH word) 111

RPLOT (graphics word) 67

S (editor command) 61
S->D (FORTH word) 111
S0 (FORTH word) 23, 111
SAVE (tape interface word) 57
saving dictionary space 122
SCR (FORTH word) 23, 57, 111
screen clear 67
copying utility 79
numbering 63
screens 55, 58
loading 56
security compiler 31
separating applications 21
SEQUENCE example 39
SETXY (graphics word) 67
SHOWASCII example 45
SIGN (FORTH word) 53, 112
single-precision arithmetic 11
numbers 11
operators 12
SIZE example 70
SMUDGE (FORTH word) 16, 24, 112
sort example 78
sound 82
SP! (FORTH word) 112
SP@ (FORTH word) 112
SPACE (FORTH word) 112
SPACES (FORTH word) 112
stack actions of FORTH words 89
stack computation 10
operators 13, 17
overflow 38
parameter 10
print 88
return 10, 13
transfers 13
stacks 9
STARS example 7
STATE (FORTH word) 23, 112
status of FORTH words 89
storage of strings 50, 51
STRING example 73
string handling 51
strings 73
editing 62
STRINGS example 51
strings storage of 50, 51
SWAP (FORTH word) 13, 112
System FORTH 119

138

T (editor command) 61
tables 72
tape buffer relocation 127
tape interface 56

loading 55
TENCOUNT example 37
terminating jumps 25
text FORTH words in 1

input 45

input delimiter 46

output 50
THEN (FORTH word) 35, 112
threaded code 4
TIB (FORTH word) 23, 112
TILL (editor command) 62
timer 84
TOGGLE (FORTH word) 15, 113
tones example 82
TRAVERSE (FORTH word) 113
TRIANGLE example 67
two's-complement arithmetic 117
two-dimensional arrays 72
TYPE (FORTH word) 45, 50, 51, 113

U* (FORTH word) 16, 113
U. (FORTH word) 11, 52, 113
U/ (FORTH word) 17, 113
U< (FORTH word) 15, 113
UNTIL (FORTH word) 42, 113
UP location 25
USER (FORTH word) 22, 113
user variable area relocation 127
user variables 23
utilities:

MONITOR 81

screen copying 79

validity of FORTH words 4
VALUES example 71
VARIABLE (FORTH word) 22, 114
example 70
VIA timer 84
VLIST (FORTH word) 7, 114
VOC-LINK (FORTH word) 23, 114
vocabularies:
EDITOR 58
FORTH 29
GRAPHICS 66
VOCABULARY (FORTH word) 19, 28,
114

W location 25, 26

WAIT example 81

WARM (FORTH word) 8

warm start 7

warning 91

WARNING (FORTH word) 23, 46, 114
WASHING example 4

WHERE (editor command) 57

WHILE (FORTH word) 42, 43, 114

WHITE (graphics word) 66 YDIR (graphics word) 67
WIDTH (FORTH word) 23, 115, 122

WORDS example 73 zero-pade location 25

X (FORTH word) 115

[(FORTH word) 30, 115
(editor command) 62 [COMPILE] (FORTH word) 30, 115
X-register 25 example 31, 32
XDIR (graphics word) 67
XOR (FORTH word) 15, 115 1 (FORTH word) 30, 115
XSAVE location 25, 25

139

SECOND EDITION
ACORNseH Copyright © Acornsoft Limited 1982
ISBN 0 907876 05 6

	FTP_10_0069
	FTP_10_0070
	FTP_10_0071
	FTP_10_0072
	FTP_10_0073
	FTP_10_0074
	FTP_10_0075
	FTP_10_0076
	FTP_11_0077
	FTP_11_0078
	FTP_11_0079
	FTP_11_0080
	FTP_11_0081
	FTP_11_0082
	FTP_11_0083
	FTP_11_0084
	FTP_11_0085
	FTP_11_0086
	FTP_11_0087
	FTP_11_0088
	FTP_12_0089
	FTP_12_0090
	FTP_13_0091
	FTP_13_0092
	FTP_13_0093
	FTP_13_0094
	FTP_13_0095
	FTP_13_0096
	FTP_13_0097
	FTP_13_0098
	FTP_13_0099
	FTP_13_0100
	FTP_13_0101
	FTP_13_0102
	FTP_13_0103
	FTP_13_0104
	FTP_13_0105
	FTP_13_0106
	FTP_13_0107
	FTP_13_0108
	FTP_13_0109
	FTP_13_0110
	FTP_13_0111
	FTP_13_0112
	FTP_13_0113
	FTP_13_0114
	FTP_13_0115
	FTP_13_0116
	FTP_a_0117
	FTP_a_0118
	FTP_b_0119
	FTP_b_0120
	FTP_c_0121
	FTP_c_0122
	FTP_c_0123
	FTP_c_0124
	FTP_d_0125
	FTP_d_0126
	FTP_d_0127
	FTP_d_0128
	FTP_d_0129
	FTP_d_0130
	FTP_i_0131
	FTP_i_0132
	FTP_i_0133
	FTP_i_0134
	FTP_i_0135
	FTP_i_0136
	FTP_i_0137
	FTP_i_0138
	FTP_i_0139
	FTP_i_0140

